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a b s t r a c t

Experiments have shown that a gradient design, in which grain size spans over four orders
of magnitude, can make strong nanomaterials ductile. The enhanced ductility is attributed
to the considerable strain hardening capability obtained in the gradient metals. A non-
uniform deformation on the lateral sample surface is also observed. This might inject
geometrically necessary dislocations (GNDs) into the sample. However, no direct evidence
has been provided. Therefore the issues remain: why can the gradient structure generate
high strain hardening, and how does it reconcile the strength-ductility synergy of gradient
nanostructures? Here for the first time we quantitatively investigate the strain hardening
of a gradient interstitial-free steel by developing a dislocation density-based continuum
plasticity model, in which the interaction of the component layers in the gradient structure
is represented by incorporating GNDs and back stress. It is demonstrated that both the
surface non-uniform deformation and the strain-hardening rate up-turn can be quanti-
tatively well predicted. The results also show that the strain hardening rate of the gradient
sample can reach as high as that of the coarse-grained counterpart. A strength-ductility
map is then plotted, which clearly show that the gradient samples perform much more
superior to their homogeneous counterparts in strength-ductility synergy. The predicted
map has been verified by a series of experimental data. A detailed analysis on GNDs dis-
tribution and back stress evolution at the end further substantiates our view that the good
strain hardening capability results from the generation of abundant GNDs by the surface
non-uniform deformation into the nano-grained layers of the gradient sample.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Refining grains down to nanoscale renders metals ultra-high strength but low ductility (Beyerlein et al., 2015; Farrokh and
Khan, 2009; Gleiter, 1989; Khan et al., 2000; Khan and Liu, 2016; Li et al., 2014; Meyers et al., 2006; Ovid'ko, 2002; Rodríguez-
Gal�an et al., 2015; Rupert, 2016; Weng, 2011; Zhu and Li, 2010). The ultra-high strength opens a new challenge of reconciling
both strength and ductility in nanostructured metallic metals and alloys. This strength-ductility trade-off dilemma has led to
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a severe setback to their engineering applications. Therefore, over the last two decades it has been constantly pursued to have
the unity of nano-grain's ultra-high strength and coarse-grain (CG)’s excellent ductility in the same sample (Kou et al., 2014; Li
et al., 2010b ; Li et al., 2016; Liu et al., 2015; Lu et al., 2009; Ma, 2006; Ovid'ko and Langdon, 2012;Wang et al., 2002;Wei et al.,
2014; Youssef et al., 2005; Zhao et al., 2008). Recently, gradient nanostructured metals have attracted much interests due to
their high strength and high ductility (Fang et al., 2011; Kou et al., 2014; Li and Soh, 2012a; Lu, 2014;Moering et al., 2015, 2016;
Wu et al., 2014a; Yang et al., 2016; Yin et al., 2016; Yuan et al., 2016; Zeng et al., 2016). For example, a gradient copper made by
surface mechanical grinding treatment possesses almost the same uniform tensile elongation and a doubled yield strength as
compared with its CG counterpart (Fang et al., 2011).

This class of materials is marked by a gradual grain-size variation from the sample surface into its interior by four orders of
magnitude. As shown in Fig. 1a and b, the grain size in the gradient structure is typically tens of nanometers on the surface
layer, but deep in the sample it can increase to the CG size (typically tens of micrometers). This is in sharp contrast to those
homogeneous samples with uniform grain size distribution (Fig. 1c). Generally, the gradient structure has two gradient
surface layers (one on the top and the other at the bottom), and in-between a sandwiched CG core (Fig. 2a). This type of
microstructures can be produced by surface nano-crystallization technique, which has been introduced in the form of many
process variations that are both cost-effective and amenable to large-scale industrial production, such as surface mechanical
attrition treatment (Lu and Lu, 2004) and surface mechanical grinding treatment (Li et al., 2008).

The good balance of strength and ductility of gradient sample is found to be resulted from the considerable strain
hardening capability obtained in the gradient structure (Wu et al., 2014a; Yang et al., 2015). For example, a strain hardening
up-turn is observed in the gradient interstitial free (IF) steel sample fabricated by Wu et al. (2014a) using surface mechanical
attrition treatment. The up-turn, also found in copper (Yang et al., 2015), is believed to be responsible for the high strength
and ductility in the gradient IF steel sample, i.e., 2.5 times higher yield strength at a loss of only 3.3% uniform elongation as
compared with the CG counterpart. They also observed a non-uniform deformation on the lateral surface of the gradient
sample with a height profile up to 30 mm that is absent in ordinary homogeneous structures (Fig. 2). The non-uniform
deformation might generate geometrically necessary dislocations (GNDs) into the gradient sample but no evidence has
been provided.

As compared with so many experimental investigations, corresponding simulation and theoretical works are scarce due to
the huge grain size variation in the gradient structure. All the existing crystal plasticity and molecular dynamics studies are
limited to 2-D structures, in which the grain size varies only across two length scales (~10 nme~100 nm) (Li et al., 2015b; Liu
and Mishnaevsky Jr., 2014; Zeng et al., 2016), because of the high computational cost, whereas the theoretical investigations
tend to focus on 1-D stress state without incorporating the interface effect of different layers (Li et al., 2010a; Li and Soh,
2012b). Although one could get some insights from the above investigations, they cannot describe the 3-D nature of the
problem with the experimentally observed lateral surface non-uniform deformation. Therefore, there are several critical
questions remained to be answered: (1) what leads to the strong strain hardening in the gradient structure? (2) how does the
non-uniform deformation form on the lateral surface? (3) are the GNDs that are associated with the surface non-uniform
deformation responsible for the strong strain hardening capability? (4) if the answer of (3) is yes, what is their quantita-
tive relation? and (5) how does the gradient microstructure modulate the strain hardening? In order to answer the above
critical questions, we embark on the development of a dislocation density-based theoretical model to quantitatively describe
the strain hardening in gradient structure. Since non-uniform deformation is generally associated with GNDs (Ashby, 1970;
Demir et al., 2009; Fleck and Hutchinson, 1993; Gao et al., 1999; Lyu et al., 2015; Martínez-Pa~neda and Niordson, 2016), it is
important to incorporate the effect of GNDs in the present model.

The paper is organized as follows. The developedmodel will be presented in Section 2 to identify the constitutive behavior
of all the component layers by considering GNDs and back stress. The overall mechanical response is then calculated based on
Fig. 1. (a) Microstructure of gradient sample, reprinted from Lu (2014) with permission from AAAS, and (b) its schematic diagram. (c) Schematic of homogeneous
structure.



Fig. 2. Schematic diagram of the deformation of IF steel samples subjected to uniform uniaxial tensile strain ε
a
z: (a) gradient sample consisting of two grain size

gradient surface layers (GSL) sandwiching a coarse-grained (CG) core, in which ht is the half thickness of the whole sample; (b) homogeneous sample. Note the
non-uniform deformation on the lateral surface of the gradient sample in (a).
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the properties of these individual layers through volume averaging. The results and discussion will be given in Section 3,
which is followed by conclusions (Section 4).

2. Constitutive model for gradient structure

A gradient IF steel sample is assumed to be a perfectly-bonded multilayered structure. The grain size is assumed to be
uniformly distributed in each layer (called homogeneous layer). The constitutive behavior of the constituent homogeneous
layers with different grain size will be established first by using two sub-models, i.e., the nanocrystalline (NC) sub-model for
layers with grain size varying from tens of nanometers to several hundred nanometers (called NC layers), while the micro-
crystalline (MC) sub-model is for thosewith grain size ranging from submicrometer to tens of micrometers (calledMC layers).
We assume that there are n layers in the gradient region, and the CG core can be viewed as the (nþ1)-th layer, where the
sample is subjected to uniaxial tension in z direction (Figs. 2a and 3a). The lateral and thickness directions are set as x and h (or
y), respectively. Therefore, the z-h plane is the lateral surface (Fig. 2a).

In order to describe how the surface non-uniform deformation forms, we first consider the deformation of free-standing
layers with different grain sizes (i ¼ 1, 2,…, nþ1, and grain size increases as i increases) subjected to uniaxial tensile strain ε

a
z ,

as shown in Fig. 3a. Generally, the free-standing layers with smaller grain sizes (outer layers) are more prone to plastic
instability (or necking/shrinking in the lateral (x) direction) than those with larger grain sizes (inner layers). Hence, the
shrinking magnitude in the necked region, i.e., �εxiw, or εziw/2 for incompressible material, varies in different layers (Fig. 3b).
The subscripts x and z denote directions and i represents the i-th layer. In the gradient structure, the interaction between
different layers will modify the deformation behavior of each layer, that is, the faster lateral necking of the outer layers is
suppressed by the higher capability of the inner layers to resist plastic instability, which produces the surface non-uniform
deformation, as schematically shown by the curved boundary in Fig. 3c. According to Ashby (Ashby, 1970), the non-uniform
deformation is able to inject GNDs into the gradient sample (Fig. 3c). We assume that all GNDs in the gradient sample are
induced by the surface non-uniform deformation. As a result, the effect of layer interfaces can be considered by incorporating
GNDs in the present constitutive model. In the following, we will first provide the constitutive framework for gradient



Fig. 3. The formation of non-uniform deformation on the lateral surface (z-h plane) of a gradient sample. (a) free-standing layers with different grain sizes before
tension; (b) free-standing layers during deformation as layer k starts necking in the lateral (x) direction; (c) gradient structure with injections of GNDs after
tension.
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structure based on the conventional strain gradient theory of plasticity (Huang et al., 2004) and Kocks-Mecking-Estrin (KME)
model (Estrin andMecking,1984) with flow stressmodified (Section 2.1). The surface non-uniform deformation and the GNDs
density are then calculated by obtaining the shrinking strain of each layer (εxi or εzi) using a Marciniak-Kuczy�nski (M-K) type
analysis (Marciniak et al.,1973) and by transforming the gradient problem into a plane strain thermal stress one for the sake of
easy solution using finite element simulations (Section 2.2).

The total strain rate tensor _ε for each constituent layer can be expressed as (the layer index i is omitted for clarity):

_ε ¼ 1
2m

_s0 þ 1� 2n
3E

dd: _sþ 3 _εp

2s
s0; (1)

where s is the stress tensor and a dot denotes differentiation with respect to time t; and d, s
0¼s�dd:s/3, s¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3s 0 : s 0=2
p

, _εp,

_εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _εp: _εp=3

p
, E, m and n are Kronecker's delta, deviatoric stress, equivalent von Mises stress, plastic strain rate, equivalent

von Mises plastic strain rate, Young's modulus, shear modulus and Poisson's ratio, respectively. A kinetic equation is then
applied to correlate _εp and s as (Huang et al., 2004):

ε

·p ¼ ε

·
�
s
.
sf

�m
; (2)

where ε
· ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
$0
: ε
$0
=3

q
(ε
· 0 ¼ ε

· � dd: ε
$
=3 is the deviatoric strain rate), sf andm are the equivalent strain rate, flow stress and rate-

sensitivity exponent, respectively. The flow stress sf for the component homogeneous NC and MC layers in gradient structure
will be addressed in the following subsection 2.1.

Specifically, for incompressible material (v ¼ 0.5) as adopted in the present analysis, the constitutive equations of each
layer (Eq. (1)) in the gradient structure subjected to uniform uniaxial tension _εaz can be specified as (i.e., Eq. (A.5) in Appendix
A), see Fig. 2a for the coordinate system used:

_εx ¼ 1
2

�
1
2m

_sx þ hsx

�
� 1
2
_εz

_εy ¼ �1
2

�
1
2m

_sx þ hsx

�
� 1
2
_εz;

_gxy ¼ 1
m
_txy þ 2htxy

(3)

where h ¼ 3 _εp
2s . Here, considering the geometry of each layer with thickness much less than the other two dimensions, we
adopted the assumption of sy¼0, as used in the optimal, shear-lag model for multi-layered elastic structure (Nairn and
Mendels, 2001). The above assumption has been validated by the following finite element calculations (Appendix D and
Supplementary Note 1), which shows that the magnitude of sy is ignorable as compared with those of sx and sz except in only
a very small region near the right (lateral) surface (Supplementary Fig. 1b). Eqs. (2)e(3) describe the triaxial constitutive
relations for all component layers of different grain sizes in a gradient structure subjected to uniaxial tension.
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2.1. Flow stress for component homogeneous layers

The flow stress in the NC layers can be approximated as:

sf ¼ s0 þMamb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs þ rG

p þ sb þ sGB; (4)

where M, a, b, rs, rG , sb and s0 are the Taylor factor, Taylor constant, magnitude of the Burgers vector, statistically stored

dislocation density, GNDs density, back stress and lattice friction stress, respectively. The GNDs density in gradient structure
has been given by Li et al. (2015a). The essential expressions are summarized here for completeness. All GNDs are assumed to
be edge type and positioned uniformly along the lateral (x) direction (Fig. 3c). The dislocation line of each GND is idealized as a
straight line running through the entire sample along the tensile (z) direction (Figs. 2a and 3c). Therefore, the total length of
the GNDs z injected by the non-uniform lateral deformation in the unit layer with thicknessDh can be expressed as

z ¼ lDh
s

¼ la
b
; (5)

where l is the total length of the gradient sample (Fig. 2a), s¼b(Dh/a) is the spacing between individual slip steps near the

lateral surface, a (>0) is the displacement difference along the x-axis between two adjacent deformed layers, which char-
acterizes the lateral surface non-uniform deformation. By assuming that all GNDs are uniformly distributed in each layer, the
volume occupied by GNDs can be approximated as V¼l(Dh)2. Thus, the GNDs density can be given as

rG ¼ z

V
¼ a

bðDhÞ2
: (6)
On the other hand, the predicted GNDs density (Eq. (6)) can be evaluated by the measured hardness along the sample
depth since it is difficult tomeasure GNDs density directly. By using Tabor's factor l to convert the flow stress sf (Eq. (4)) to the
measured hardness, i.e., H ¼ lsf ¼ lðs0 þ sGB þ sb þMamb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs þ rG

p Þ, we have

H � H0 ¼ lMamb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs þ rG

p
; (7)

where H0¼l(s0þsGBþsb) represents the hardness along the thickness on the lateral surface of gradient sample before

deformation. As for free standing component layers after deformationwithout incorporating GNDs (i.e., rG¼0), their hardness
Hs can be obtained from Eq. (7), i.e.,

Hs � H0 ¼ lMamb
ffiffiffiffiffi
rs

p
: (8)
By combining Eqs. (7) and (8), rG can be expressed as

rG ¼ ðH � H0Þ2 � ðHs � H0Þ2
ðlMambÞ2

: (9)
The hardness parameters H, H0 and Hs can be measured through experiments (Fig. 2c of Wu et al., 2014a).
As observed in experiments (Yang et al., 2016), back stress plays a role in enhancing strain hardening of gradient structure.

The back stress in the gradient structure is a long range internal stress caused by the interaction and pile-up of GNDs near the
layer interfaces. Since it is the spatial variation of GNDs density that contributes to the long-range internal stress (Bayley et al.,
2006; Evers et al., 2004; Groma et al., 2003; Yefimov et al., 2004), the internal stress resulted from single edge GND can be
given as (Bayley et al., 2006)

sx ¼ 3mbR2

8ð1� nÞ
vrG
vy

; sxy ¼ � mbR2

8ð1� nÞ
vrG
vx

sy ¼ mbR2

8ð1� nÞ
vrG
vy

; sxz ¼ 0;

sz ¼ mbnR2

2ð1� nÞ
vrG
vy

; syz ¼ 0

(10)

where R is the integral circular domain for GNDs to contribute to the back stress. Based on the assumption that GNDs are
positioned uniformly along the x direction in each unit layer, we have vrG
vx ¼ 0, and vrG

vy can be approximated as DrG
Dh , inwhichDrG

is the difference of GNDs density between neighboring layers. Then the non-zero internal stress components are sx, sy and sz.
As a result, the GNDs-induced back stress can be approximated as the von-Mises equivalence of the above stress components,
i.e.,
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sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16n2 � 16nþ 7

p mbR2

8ð1� nÞ
DrG
Dh

: (11)
The parameter R should be in the order of layer thickness Dh in order to model the interaction of adjacent layers. The last
term sGB¼kHP/d in flow stress arises from a Hall-Petch type strengthening due to the refined grains (Capolungo et al., 2007;
Carvalho Resende et al., 2013; Delince et al., 2007), where kHP is a constant Hall-Petch slope, and d denotes grain size.

The evolution of statistically stored dislocation density r with respect to plastic strain can be expressed as:

drs
dεp

¼ Mðkþ k1
ffiffiffiffiffi
rs

p � k2rs � kersÞ; (12)

where k¼k3/(bd), k1¼j/b, k2 ¼ k20ð_εp= _ε0Þ�1=n0 , j is a proportionality factor, k20 and _ε0 are material constants, k3 is a geometric
factor related to the grain shape and proportion of dislocations arriving at the grain boundaries, n0 is inversely proportional to

temperature (Estrin and Mecking, 1984), and ke ¼ ðde=dÞ2 is an additional dynamic recovery factor, where de is a reference
grain size corresponding to the critical grain size at which enhanced dynamic recovery occurs (Li and Soh, 2012b).

The expressions of the flow stress for MC layers are set to be the same as those of NC layers, but with different values for
parameters according to experimental observations (Wu et al., 2014a), such as Hall-Petch slope kHP, reference grain size de and
dynamics recovery factor k2. This makes the two sub-models consistent.

2.2. Calculation of GNDs density and back stress

The objective of this section is to calculate the GNDs density presented in Eq. (6) and back stress in Eq. (11) by solving the
3-D plastic deformation problem of a gradient structure subjected to uniaxial tension, i.e., Eqs. (2) and (3). As for the layers
without considering GNDs (i.e., rG¼0, sb¼0), these equations can be solved numerically independently layer by layer.
However, for the layers with GNDs injected by the lateral surface non-uniform deformation, the above equations should be
solved by combining all the component layers. The key is to calculate themagnitude of shrinking of each layer (Fig. 3b), that is,
εzi(¼�2εxi) as appeared in Eq. (3). Fig. 3b shows that as the applied strain of the gradient structure approaches the limit strain
of the k-th layer, i.e., εaz ¼ ε

0�
zk (the strain in the section of uniform deformation as a neck sets in), it starts shrinking/necking.

The strain in the necked region along z direction, i.e., εz, for layer k is εzk ¼ �2εxk ¼ ε
�
zk ¼ ckε

0�
zk ¼ ckε

a
z , where ε�zk is the critical

strain in the necked region and ck ¼ ε
�
zk=ε

0�
zk is the limit strain ratio. The values of ε0�zk and ε

�
zk can be calculated using the

following M-K analysis. Moreover, the layers 1-(k-1) have already necked since their limit strains are smaller than that of the
layer k. However, in order to model the surface non-uniform deformation, we assume that they are able to afford to deform
even after necking. This assumption is conceivable because in a gradient structure the necking of the layers 1-(k-1) could be
suppressed by the inner layers with better resistance to plastic instability, as schematically shown in Fig. 3b. The εz of these
layers are set to be similar in form to that of the k-th layer, i.e., εzi ¼ ciε

a
z , i ¼ 1, 2,…, (k-1), where ci has the same definition as

the above ck. Finally the εz in the stable layers (i¼(kþ1), (kþ2),…, (nþ1)) are identical to the applied strain ε
a
z , i.e., εzi ¼ ε

a
z . As a

result, the z-component strains for all component layers in a gradient structure subjected to uniaxial tensile strain ε
a
z (ε

a
z ¼ ε

0�
zk )

can be summarized as

εzi ¼
(
ciε

a
z ; if ε

a
z � ε

0�
zi ðfor necked layers; i ¼ 1;2:::; kÞ

ε
a
z ; if ε

a
z < ε

0�
zi ðfor stable layers; i ¼ kþ 1; kþ 2; :::; nþ 1Þ (13)
The values of ci for the i-th layer will be obtained by implementing M-K analysis based on the constitutive behavior of
layer i without incorporating GNDs (i.e., rG¼0).

The original M-K method is aimed at analyzing sheet necking behavior and calculating the forming limit diagrams of the
sheets by introducing an initial non-uniformity (Hutchinson and Neale, 1978; Marciniak et al., 1973). Therefore, M-K analysis
is an appropriate approach to find the limit strain ratio ci of layer i as defined above because the free-standing component
layers in a gradient sample could be viewed as a sheet. The M-K analysis used here is along the line of that by Hutchinson and
Neale (1978) but using the material behavior developed in the present model. For brevity, the subscript ‘i’ is omitted
whenever there is no danger of confusion. Assume the material is rigid-plastic and incompressible, the law of plastic flow (Eq.
(1)) becomes

dε ¼ 3
2
dε
s
s0; (14)

where dε¼2dε:dε/3. The yield condition is s¼sf for rigid-plastic material (see Eq. (2)), and for plane stress condition

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2z � szsx þ s2x

q
. The detailed M-K analysis is given in Appendix C, which yields two differential equations for solving the
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equivalent strains ε0 in the uniform section and ε in the necked region, i.e., Eqs. (C.9) and (C.11). The two equations can be
rewritten as

dε0

dε
¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
B
� 1

ð1� xÞ2
1� B� G

B

�
s0

s

�2

exp
�
� 2Cε0 � 2εy

�vuut
dεy
dε

¼ �A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B� G

p

ð1� xÞ
s0

s
exp

�
� Cε0 � εy

�
� D

dε0

dε

; (15)

where x is the initial geometric non-uniformity, and the expressions of A, B, C, D and G are given in Appendix C. Physically, the
value of dε0/dε should be selected as positive. Now we can use the fourth-order Runge-Kutta method to solve the two dif-
ferential equations in (15), which gives the variation of ε0 with respect to ε, then the critical strain ε

*
z , ε

0*
z , and the ratio c ¼

ε
*
z=ε

0*
z as well can be obtained by using the criterion dε0/dε¼0.
After getting the value of εz in Eq. (3) for each layer, it is ready to solve the plastic deformation problem of gradient

structure subjected to uniaxial tension. However, since the value of h differs in different layers and it evolves during defor-
mation, it is difficult, even not impossible, to solve them numerically. In this study, the above difficulty has been circumvented
by transforming the above 3-D plastic deformation problem into a plane strain problem of the same structure subjected to
thermal load _T . In the following, we will prove this transformation.

As for a gradient structure in plane strain condition subjected to thermal load _T , the constitutive relations of each layer are
given as follows (Appendix B).

_εx ¼ 1
2

�
1
2m

_sx þ hsx

�
þ 3
2
a _T

_εy ¼ �1
2

�
1
2m

_sx þ hsx

�
þ 3
2
a _T

_gxy ¼ 1
m
_txy þ 2htxy ; (16)
where a is thermal expansion coefficient. Compare Eqs. (3) and (16), if we set 3
2aT

·
¼ �1

2ε
·
z, and by integration we get

3
2aDT ¼ �1

2εz. Then by setting DT¼�1�C, we have

a ¼ 1
3
εz: (17)
Now the two sets of equations turn out to be identical. That is, the solution of the 3-D plastic deformation problem of a
gradient sample subjected to uniaxial tension, i.e., Eqs. (2) and (3), is equivalent to that of a plane strain thermal-stress
problem, i.e., Eqs. (2) and (16). The latter can be easily solved by finite element simulations (Appendix D), which yields the
values of the non-uniform deformation parameter a, and the GNDs density and back stress, see Eqs. (6) and (11).

2.3. Overall mechanical response of gradient structure

Since the focus of the present study is on uniaxial tensioning of gradient structure in which the sample is subjected to
uniaxial uniform strain ε

a
z through its thickness in experiments, the overall stress-strain response sGz in the gradient sample

can be approximately obtained through volume averaging over all the component layers as:

sGz ¼
Pn*

i¼1 s
GND
zi hi

ht
; (18)

where sGNDzi denotes the z-component stress of layer i in the gradient sample considering both GNDs and back stress; hi and ht
are the thickness of layer i and that the half thickness of the entire gradient sample, respectively; and n* is the layer number of
the whole sample adopted in the finite element model. According to the experimental measurements (Wu et al., 2014a), the
grain size d along the sample thickness h in the gradient region can be approximated as log10(d)¼agh

2þbg, where ag and bg are
constants depending on the grain size of the topmost phase d1 and CG core dc. In order to calculate the uniform elongation of
the homogeneous or gradient IF steel samples, Consid�ere criterion is implemented, i.e., dsGz =dε

a
z � sGz . As for yield strength, it

is commonly defined as 0.2% offset stress.
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3. Results and discussion

Since the MC model is proposed for homogeneous IF steels with grain size ranging from submicrometer to tens of mi-
crometers, while the NC model is for those with grain size varying from tens of nanometers to submicrometer, and
considering that (i) the existing modified versions of KMEmodels for coarse- and fine-grained metals can be applied down to
1 mm (Delince et al., 2007) and those for nano- and ultrafine-grained metals can be applied up to 583 nm (Liu and
Mishnaevsky Jr., 2014); and (ii) the enhanced dynamic recovery usually occurs in submicrometers, e.g., 700 nm for copper
(Duhamel et al., 2010), the boundary should lie in the range of submicrometers. The boundary value is determined to be
680 nm by fitting the model predictions with the experimental data so that the proposed model could be able to describe
accurately the grain size dependence of the constitutive behavior of homogeneous IF steels with grain sizes ranging from
nanoscale to microscale (Figs. 4 and 5). The main difference between the two sub-models lies in the specific values of the
parameters in Hall-Petch constants s0 and kHP as well as the dynamic recovery factors k2 and ke (or de) due to the grain size
effect. The Hall-Petch constants should be set as different for the two sub-models according to the experimental measure-
ments that the Hall-Petch slope (kHP) in the submicrometer to micrometer range is smaller than that in the nanometer to
submicrometer range, whereas the corresponding lattice frictional stress (s0) is larger for the former than the latter (Fig. 5a).
The dynamic recovery factor k2 of NC sub-model should be larger than that of MC sub-model because the dynamic recovery is
much larger in refined grains than that in larger grains due to the sharply increased grain boundary region volume fraction as

grain size is reduced down into nanoscale (Meyers et al., 2006). For the same reason, the reference grain size de in ke ¼ ðde=dÞ2
corresponding to the initiation of enhanced dynamic recovery should also be smaller in NCmodel than that in the MCmodel.
There are totally seven adjustable parameters in the proposed model; and all can be determined by fitting with experimental
data while the material and geometric parameters are directly taken from experiments or existing KME models. The number
of the layers in the gradient region, i.e., ng, has been selected to be large enough to enable each layer to have homogeneous
grain structure, as demonstrated in Supplementary Note 2. The Tabor's factor is determined by dividing the measured
Fig. 4. True stress-true strain relations of homogeneous IF steel samples predicted by the proposed NC (a) and MC (b) sub-models. The experimental data for
d ¼ 96 nm, 650 nm, 4.7 mm and CG IF steel samples are included for comparison.

Fig. 5. The predicted Hall-Petch relation (a) and strength-ductility relation (b) for homogeneous IF steel samples with grain sizes ranging from tens of nano-
meters to tens of micrometers. The experimental data for the two relations are also included for comparison.



Table 1
Material parameters for NC and MC IF steel samples.

Parameter Symbol NC IF steel MC IF steel

Grain size d 10 nme680 nm 680 nme35 mm
Elastic modulus (GPa) E 200 200
Shear modulus (GPa) m 77 77
Poisson's ratio n 0.28 0.28
Magnitude of Burgers vector (nm) b 0.26 0.26
Taylor factor M 3.06 3.06
Taylor constant a 0.3 0.3
Hall-Petch slope (MPa$m1/2) kHP 0.194 0.252
Lattice frictional stress (MPa) s0 110.3 40
Tabor's factor l 3.23 3.23
Rate sensitivity exponent m 20 20
Proportionality factor j 0.019 0.019
Dynamic recovery factor k2 29.05 4.5
Dynamic recovery constant 1 k20 21 3.25
Dynamic recovery constant 2 n0 21.25 21.25
Geometric factor k3 0.05 0.05
Reference strain rate (s�1) _ε0 1 1
Applied total strain rate (s�1) _εaz 1�10�3 1�10�3

Reference grain size de 950 nm 3.5 mm
Initial dislocation density (m�2) r0 3 � 1012 3 � 1012

(2 � 1011 for CG)
Original orientation of the groove b 25.3� 25.3�

Initial geometric non-uniformity x 0.015 0.015
Proportional loading ratio (uniaxial tension) r �0.5 �0.5
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hardness of the topmost layer (with grain size of 96 nm) of the gradient IF steel samplewith hg¼ 120 mmby its yield strength.
The parameter values used in the analysis are listed in Tables 1 and 2. In addition, except otherwise stated, the experimental
data used in the present analysis for comparison with the model predictions have all been adopted from the experiments of
Wu et al. (2014a). For brevity no more statement on them will be given further.
3.1. Stress-strain curves of homogeneous IF steels

The constitutive behavior of homogeneous NC andMC IF steel samples without incorporating GNDs (rG¼0) and back stress
(sb¼0) predicted by the proposed model will be validated first before investigating the overall mechanical response of
gradient structure. Fig. 4 presents the predicted true stress-true strain curves for several NC and MC IF steel samples with
grain size d ¼ 35mm, 4.7 mm, 680 nm, 650 nm and 96 nm; and the corresponding experimental data for d ¼ 35mm, 4.7 mm,
650 nm and 96 nm are included for comparison. The elastic moduli of the predicted curves are tuned to coincide with the
experimental measurements. The two 680 nm curves in (a) and (b) are almost identical but they are respectively predicted by
the NC and MC sub-models. It can be clearly shown that the predicted curves are in good agreement with the experimental
data in terms of both strength and strain hardening behavior except the case of d¼ 4.7 mm. In the latter case the yield strength
and uniform elongation measured in experiments (i.e., 188.7 MPa and 21.7%) are also well reproduced by the proposed model
(i.e., 192.85 MPa and 21.5%) in spite of predicting higher flow stress. The lower measured flow stress is might due to the
specific situation of the tested sample such as annealing technique and microstructure. In order to obtain an overview of the
predictive capability of the proposedmodel for homogeneous IF steel samples, we also plotted the Hall-Petch relation and the
yield strength-uniform elongation map predicted by the model, as presented in Fig. 5a and b, respectively. The overall
quantitative agreement between the model prediction and the experimental data demonstrated the validity of the proposed
model to identify the constitutive behavior of homogeneous NC and MC IF steels with different grain sizes ranging from
nanoscale to microscale. The above results also show that the proposed sub-models could be applied up to a strain of the
uniform elongation of the CG sample, i.e., 26% (Fig. 5b).
3.2. Lateral surface non-uniform deformation in gradient IF steels

The lateral surface non-uniform deformation can be represented by the height profile that can be obtained from the
difference between the lateral (x) displacements along the sample depth and that of the topmost layer on the lateral surface.
Fig. 6 presents the variation of the calculated height profile with respect to the sample depth h for a gradient IF steel sample
(d1¼96nm, dc¼35mm, hg¼120mm, ht¼500mm) subjected to various uniaxial tensile engineering strains, i.e., εez ¼ 0:05, 0.1 and
0.25. Six measured data for height profile at εez ¼ 0:25 are also included, see the symbols in Fig. 6a. The comparison shows that
the predicted height profile agrees quantitatively very well with the experimental data for the case of 0.25, which validates
the proposed model's capability to predict the non-uniform deformation on the lateral surface of a gradient structure. With
height profile known, the predicted GNDs density can be calculated using Eq. (6), as shown in Fig. 6b. The results show that rG



Table 2
Material and geometric parameters for gradient IF steel.

Parameter Symbol Magnitude

Grain size of coarse grained core (mm) dc 35
Grain size of topmost phase (nm) d1 200, 96, 30 or 10
Phase number in the gradient region n 20, 24, 49, 50, or 98
Thickness of gradient surface layer (mm) hg 50, 120, 150, 200, 250, 300, 350, 400, or 490
Half thickness of the total sample (mm) ht 500
Half width of the total sample (mm) w 1.25
Layer thickness in finite element simulations (mm) Dh 9
Integral domain for back stress (mm) R 3

J. Li et al. / International Journal of Plasticity 88 (2017) 89e10798
first increases and then decreases with respect to the sample depth, which generates a maximum near the interface between
the gradient region and the CG core and that the maximum move towards to the CG core as the applied engineering strain
increases from 0.05 to 0.25, i.e., the maximum rG increases from 1.66 to 5.94�1013m�2, while the corresponding critical h
increases from 53.64 mm to 80.42 mm, see the black balls in Fig. 6b. Fig. 6 also pointed out that the magnitudes of the height
profile and the GNDs density are increased considerably as the applied strain rises, which leads to more GNDs and stronger
strain hardening in the gradient structure. The GNDs density distributions that are derived from themeasured hardness along
the sample depth of the gradient sample are also shown in Fig. 6b for comparison (Eq. (9)). Note that it is difficult, even not
impossible, to measure the value of hardness of each free standing component layer after deformation, i.e., Hs, in the gradient
surface layer (h2[0, 120mm]). Here they are approximated as those of the hardness along the sample depth of the free-
standing gradient surface layer with thickness of 120 mm. However, all the values of the hardness parameters in Eq. (9) in
the CG core (h�120mm) has been given in Fig. 2c of Wu et al. (2014a). The comparison for the CG region shows that, although
there are some quantitative discrepancies between the predictions and the experimental data, they agree well with each
other overall for all the three applied strains. And it is important to note that no parameter adjustment has been made. As for
the experimental derivation of GNDs density in the gradient region, there exist also maximums near the interface between
the gradient layer and the CG core for all the three applied strains, i.e., the maximum (rG, h) increases from (98.2 mm,
5.41�1013m�2) to (107.23 mm, 11.57�1013m�2). The comparison in the gradient layer show that the model predictions are in
qualitatively agreement with the experimental data. The quantitative difference might result from the underestimated Hs in
Eq. (9) in the gradient layer for the experimental calculations.
3.3. Strain hardening in gradient IF steels

The overall true stress-true strain curves of gradient IF steels (d1¼96nm, dc¼35mm, hg¼120mm, ht¼500mm) with both
GNDs and back stress incorporated are shown in Fig. 7a. The results for the sample with GNDs only and those without GNDs
and back stress are also included for comparison. Their corresponding strain hardening rates are presented in Fig. 7b, while
Fig. 7c compares the predicted strain hardening rateswith the experimental measurements for both CG and gradient samples.
Two phenomena are found intriguing. First, there is an upturn appearing in the plot of the strain hardening rate of the
gradient sample with GNDs at the strain of around 1.3% (green solid line in Fig. 7b), and the incorporation of back stress
Fig. 6. (a) The predicted height profile on the lateral surface of a gradient IF steel sample subjected to various uniaxial tensile engineering strains; and (b)
corresponding distribution of GNDs density along the sample depth h (Eq. (6)). The GNDs densities derived from the measured hardness along the sample depth
using Eq. (9) are included in (b) for comparison.
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further enhances the magnitude (red dashed line). The predicted appearance of the upturn is in quantitatively good accord
with the experimental observation, in which the upturn occurs at the strain of around 1.1% (Fig. 7c). This upturn is resulted
from the initiation of the injection of the GNDs into all the component layers as the topmost layer starts to neck that is
nevertheless suppressed by the other layers with higher plasticity in the gradient structure during uniaxial tension. Second,
the strain hardening rate after upturn is even higher than that in CG IF steel sample. The upturn is followed by a decrease of
strain hardening that eventually reaches as high as the value of CG sample, see the red dashed line for gradient sample and the
Fig. 7. (a) The predicted true stress-true strain curves of gradient IF steel samples incorporating GNDs (and back stress (BS)). The predicted curve of gradient IF
steel sample without incorporating GNDs (and BS) and the corresponding experimental data are also included for comparison. (b) The predicted strain hardening
rate corresponding to (a). The predicted data for CG sample are also included in (b) for comparison. (c) Comparison of the predictions and the experimental data
for both the gradient and CG samples.
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black solid line for CG sample. As a result, the upturn enhances considerably the strain hardening capability in the gradient
structure, see the red dashed line versus the blue dot-dashed one. Furthermore, Fig. 7c shows that the predicted strain
hardening behavior and the experimental observation coincide overall although the predicted value is higher than the
measurement for the gradient sample, the reasons of which will be discussed later. Finally the uniform elongation of the
gradient IF steel samplewith GNDs and back stress is predicted as 0.2336 (red ball in Fig. 7c), which is in good agreement with
the experimental value, i.e., 0.2329 (violet ball in Fig. 7c). The predicted yield strength is 177.35 MPa, which is also very close
to the experimental datum (205 MPa).

It should be noted from Fig. 7a and c that the predicted flow stress and strain hardening rate after yielding of the gradient
IF steel sample are larger than the experimental data. There are possibly three reasons accounting for the over-predictions.
The first one could be the assumption of zero sy. The existence of non-zero sy in the very small region near the lateral surface
(Supplementary Fig. 1b) may influence the model predictions. The second one is the simplified assumption of the perfectly
bonded multi-layered structure. The idealized layer interface in the present model is actually grain boundary in the real
structure. The former is sharp and clear whereas the latter is curved and has many triple junctions. The damage of the actual
grain boundary in real gradient structure during deformation could reduce the overall strain hardening capability as
compared with the predicted behavior (Fig. 7a and c). The last one might come from the simplified assumption of multi-
layered structure with two gradient surface layers and a CG core. Actually, there exists a narrow deformed CG region (around
10e20mm) observed adjacent to the undeformed CG core, in which the grain boundary is not actually high-angle boundary
but just sub-grain boundary. However, in the present analysis the deformed CG region with different sub-grain sizes are
viewed as different layers with different grain sizes. Therefore, the flow stress of the layers in the deformed CG region is
overestimated. That is one of the possible reasons why the predicted flow stress is higher than the experimental data.
Considering the complicated gradient microstructure, the predicted curves are in reasonably agreement with the experi-
mental data.
Fig. 8. Strength-ductility maps of gradient IF steel samples without (a) (Region II) and with (b) GNDs and back stress (BS) (Regions III and IV). The experimental
data for homogeneous (Wu et al., 2014a) and gradient (Li et al., 2010a; Wu et al., 2014b) IF steel samples as well as the model predictions for homogeneous
samples are included in (a) and (b) for comparison. In (b), the predicted data without GNDs and back stress for d1¼96 and 30 nm as presented in (a) (Region II)
and those with GNDs only (Region III) are also included for comparison.
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3.4. Strength-ductility map for gradient IF steels

In order to comprehensively investigate the effect of GNDs and back stress on the strength-ductility performance, sixteen
case studies are conducted to obtain a yield strength-uniform elongation (or strength-ductility) map. The CG core maintains a
constant grain size of 35mm, whereas the grain size of the topmost layer d1 is tuned to be 10, 30, 96, and 200 nm. For each d1
the gradient surface layer thickness varies from 50mm to 490mm (with corresponding gradient layer thickness/volume
fraction ranging from 10% to 98%) as the half thickness of the total sample keeps constant at 500mm. The strength-ductility
map of gradient IF steel without incorporating GNDs and back stress is plotted in Fig. 8a (Region II). The predicted and
experimental data for homogeneous IF steel samples are also included for comparison (Region I). The results clearly show that
the gradient sample possess better synergy of strength and ductility as compared with the homogeneous samples except
small and high strength regions, even though no GNDs are considered.

In addition to the results presented in Fig. 8a, the predicted strength-ductility data of the gradient IF steel samples with
GNDs and back stress incorporated (Region IV) are plotted in Fig. 8b. The data of homogeneous samples (Region I), gradient
samples without GNDs and back stress (Region II) and gradient samples with GNDs only (Region III) are all included from
comparison. The results show that the GNDs and back stress can further considerably enhance the strength-ductility synergy
(Regions III and IV) as compared with the gradient samples without them (Region II). Fig. 8b also shows that GNDs play a
dominant role (Region III) in enhancing the strength-ductility balance of gradient structure, whereas the back stress plays a
minor role (Region IV). The results suggest that in order to gain a good balance of strength-ductility in gradient IF steel
sample, the topmost layer grain size should not be too larger or too small and should be less than 100 nm and larger than
10 nm. For example, the d1¼30nm, hg¼400mm sample possesses a good strength-ductility balance at the strength of 508 MPa
and ductility of 9.67%, see the numeral 1 in the oval of Fig. 8b, which are increased by 227 MPa and 7.26% (or 81% and 301% in
percent), respectively, as compared with the homogeneous IF steels. By using Consid�ere criterion, a series of experimental
strength-ductility data are obtained from the published stress-strain relations for gradient IF steel samples (Li et al., 2010a;
Wu et al., 2014b) with dc¼35mm, ht¼500mm but with different surface mechanical attrition treatment times, which generates
different topmost layer grain size d1 and gradient layer thickness hg. The above experimental data are also shown in Fig. 8b for
Fig. 9. GNDs density distribution in case 1 (d1¼30nm, hg¼400mm) (a) and case 2 (d1¼96nm, hg¼490mm) (b) at different applied strains, see the numerals above
the lines; and the evolution of GNDs density at different sample depth (c) and back stress (d) with respect to applied strain for the two cases.
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comparison. Note that nearly all the experimental data for gradient samples are located along the outer boundary of the
yellow region predicted by the proposed model, which clearly demonstrated the proposed model's capability in predicting
the strength and ductility of gradient IF steel samples. Fig. 8b also show that the proposed model could be applied up to a
strain of at least 25.44% depending on the thickness of the gradient region hg and the grain size of the topmost layer d1
(Fig. 8b).

Finally, a detailed analysis on GNDs distribution and back stress evolution is made (Fig. 9). Two cases are selected, i.e.,
d1¼30nm, hg¼400 mm sample (case 1), and d1¼ 96 nm, hg¼490 mm (case 2) with a strength-ductility synergy of (465.39 MPa,
8.18%) is analyzed (Fig. 9). Note case 1 possesses both higher strength and higher ductility than case 2, see the two symbols in
the oval of Fig. 8b. Fig. 9 show that the GNDs density and back stress in case 1 are much higher than case 2. It is noteworthy
that the maximum rG of case 1 occurs in small sample depth (161e170 mm) (Fig. 9a), i.e., in nano-grained layers (grain size
ranging from 93.9 nm to 106.9 nm for applied strains larger than 0.04), whereas that of case 2 appears in much larger sample
depth (205e321 mm) (Fig. 9b), i.e., in micro-grained layers (grain size varying from 0.924 mm to 1.22 mm for applied strains
larger than 0.02), which indicates that the nano-grained layers of case 1 has receivedmuchmore GNDs and thus gainedmuch
higher strain hardening capability than case 2. Therefore, the plastic instability of nano-grained layers in case 1 is much more
suppressed than case 2. Moreover, the stress-strain relations and the corresponding strain hardening rates for the two cases
(Supplementary Fig. 4) show that the strength and enhancements of strain hardening capability thanks to the existence of
GNDs and back stress in case 1 are much larger than those in case 2, which undoubtedly leads to a better strength-ductility
synergy in the former than the latter.

4. Conclusions

In this paper a dislocation density-based theoretical model has been proposed to describe the strain hardening of gradient
IF steels by incorporating GNDs that are associated with the non-uniform deformation as experimentally observed on the
lateral surface. A principle assumption has been made that all GNDs in the gradient structure are injected by the observed
surface non-uniform deformation. The main findings are summarized as follows:

(1) The predicted non-uniform deformation on the lateral surface is in quantitatively good agreement with the mea-
surements for a gradient IF steel sample.

(2) The strain hardening rate up-turn as observed in experiments is well reproduced. The strain hardening rate is able to
reach as high as that of coarse-grained sample.

(3) The developed strength-ductility map for gradient IF steel samples show that the strength-ductility performance of
gradient samples is remarkably enhanced as compared with their homogeneous counterparts. The predicted map has
been verified by a series of experimental data.

(4) By analyzing the GNDs density distribution and back stress evolution in detail, we can conclude that the high strain
hardening capability results from the generation of abundant GNDs into the nano-grained layers of the gradient
structure.

As a concluding remark, the proposed theoretical framework for gradient nanostructures could be implemented into a
finite element scheme as done by (Martínez-Pa~neda et al., 2016; Nielsen and Niordson, 2014) to improve the accuracywithout
imposing some assumptions such as zero stress component along the thickness direction.
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Appendix A. Constitutive equations for a gradient structure subjected to uniaxial tension

As for a gradient structure subjected to uniform uniaxial tension _εz, the constitutive relations (Eq. (1)) for each component
layer under incompressible material assumption become

_ε ¼ 1
2m

_s0 þ hs0; (A.1)
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The non-zero stresses components are sx, sz and txy, and the non-zero strain components are εx, εy, εz and gxy. By adopting
sy¼0, the constitutive relations can be specified as
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The incompressible condition is:

_εx þ _εy þ _εz ¼ 0: (A.3)
From the first and second equations in (A.2), we have

_εx � _εy ¼ 1
2m

_sx þ hsx: (A.4)
The combination of Eq. (A.3) and (A.4) yields
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Appendix B. Constitutive relations for a gradient structure subjected to thermal load

As for a gradient structure (in plane strain condition) subjected to thermal load _T , the constitutive relation is

ε

· ¼ 1
2m

s
· 0 þ hs0 þ aT

·
d: (B.1)
Non-zero stress components are sx, sz , txy (the assumption of sy¼0 is also adopted here); and non-zero strain components
are εx, εy, and gxy. The constitutive relations are given as
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The plane strain condition yields

ε

·
z ¼ 0: (B.3)
From (B.3) and the third equation of (B.2), we can derive



J. Li et al. / International Journal of Plasticity 88 (2017) 89e107104
1
2m

�
� 1
3
s
·
z

�
þ h

�
�1
3
sz

�
¼ 1

2

�
1
2m

�
� 1
3
s
·
x

�
þ h

�
�1
3
sx

�
þ aT

·
�
: (B.4)
Substitute (B.4) into the first and second equations of (B.2), we have

_εx ¼ 1
2

�
1
2m

_sx þ hsx

�
þ 3
2
a _T

_εy ¼ �1
2

�
1
2m

_sx þ hsx

�
þ 3
2
a _T

_gxy ¼ 1
m
_txy þ 2htxy : (B.5)
Appendix C. M-K type analysis for component layers

Let us consider a free-standing layer with a geometric non-uniformity in the form of a groove or band in the center with an

initial thickness hð0Þ, while the thickness of the outside region (uniform section) is h0ð0Þ, which gives the initial geometric

non-uniformity x ¼ ½h0ð0Þ � hð0Þ�=h0ð0Þ � 0 (Fig. C.1). Throughout themanuscript, the subscript or superscript ‘0’ denotes the
quantities in the uniform section while its absence refer to those in the groove or band. The band width-to-thickness ratio is
assumed to be very large. The dashed and solid bands in Fig. C.1 are those before and after deformation, respectively, the
orientations of which are b and g, respectively.

Fig. C.1. Schematic and conventions for M-K analysis for single free-standing layer in a gradient sample. The dashed and solid bands denote those before and after
deformation, respectively.

Proportional loading is imposed on the edges of the layer, i.e.,
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The equilibrium conditions across the band yield

s0nnh0 tð Þ ¼ snnh tð Þ; s0nth0 tð Þ ¼ snth tð Þ; or
snt
snn

¼ s0nt
s0nn

; (C.2)

0 0
where snn and snt are the normal and shear stress components in the band. By combining the equilibrium condition and the
definition of logarithmic strain, we have
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�
εy � ε

0
y

�
: (C.3)
From the relation between the normal stress and the principle stress in the uniform section (Fig. C.1), we can obtain
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By applying the incompressibility condition (ε0x þ ε
0
y þ ε

0
z ¼ 0) and the definition of equivalent strain in the uniform

section, the strain in the thickness dimension is
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0
y ¼ �

ffiffiffi
3

p
ð1þ rÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r þ r2

p ε
0 ¼ �Cε0: (C.5)

Assume
dεtt ¼ dε0tt ; (C.6)

and consider the law of plastic flow Eq. (14) as well as the equilibrium condition Eq. (C.2), we get
snn
s

¼ 1
AH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B

�
dε0

dε

�2
s

; (C.7)

ffiffiffip 	 2 2 
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �2vu

A ¼ 3

2
; B ¼ 3 sin gþ r cos g

4
	
1þ r þ r2


 ; H ¼ 1þ 2ðr � 1Þsing cosg

ð2þ rÞcos2gþ ð1þ 2rÞsin2g

ut : (C.8)
Substitute (C.4), (C.5) and (C.7) into the equilibrium condition (C.3), we have

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� B� GÞ

p "
1� B

�
dε0

dε

�2#�1=2

¼ ð1� xÞ s

s0
exp

�
Cε0 þ εy

�
; (C.9)

ðr � 1Þ2 sin2g cos2g

G ¼ 	

1þ r þ r2

 : (C.10)
From Eqs. (14), (C.6) and (C.7), we get

dεy
dε

¼ �A
H

"
1� B

�
dε0

dε

�2#1=2
� D

dε0

dε
; (C.11)

ffiffiffi
3

p 	
sin2gþ r cos2g




D ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1þ r þ r2


q : (C.12)

0 N
Eqs. (C.9) and (C.11) can be combined to calculate the equivalent strains ε and ε. Note that if we set s¼Kε (for power law
hardening material), the above equations are identical to those given by Hutchinson and Neale (1978).

Appendix D. Finite element simulations for gradient structure

In order to calculate the lateral surface non-uniform deformation as well as GNDs density and back stress, we use ABAQUS
(2012) by constructing a 1/4 symmetric finite element model considering the geometric symmetry and the uniaxial load
condition. The element is chosen to be four-node bilinear plane strain element CPE4. The detailed procedure is given as
follows. (1) the limit strain ε

0*
zi in the uniform section or the limit strain ration ci of free-standing layer i (i ¼ 1, 2, …, nþ1) is

calculated using the M-K type analysis. (2) select a series of applied strain ε
a
z . (3) when the applied strain ε

a
z is equal to the

limit strain of layer k, ε0*zk , the z-component strains εzi for each constituent layers of the gradient structure can be obtained
using Eq. (13). (4) calculate the value of thermal expansion coefficient ai for each layer by ai¼εzi/3 (Eq. (17)). (5) obtain from
the finite element simulations the lateral (x) displacement of the j-th node on the lateral surface along the sample depth uj,
j ¼1, 2, 3, …, n*þ1 (n* is the layer number of the whole sample in the finite element model), for the given applied strain. (6)
calculate the lateral surface non-uniform deformation parameter a for layer j-1 by using aj�1 ¼ ðuj � uj�1Þ , j¼ 2, 3, ..., n*þ1. (7)
obtain parameter a for another given applied strain by repeating procedures (3)e(6). (8) calculate the GNDs density rG (Eq.
(6)) and the back stress sb (Eq. (11)) as well as the flow stress of each layer subjected to uniaxial tension (Eq. (4)).
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Appendix E. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ijplas.2016.10.003.
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