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ABSTRACT 
 
Dyslexia is a highly heritable neurobiological disorder defined as a persistent difficulty 

in learning to read. Phonological processing skills, associating letters to sounds, and 

word retrieval are deficient in many children with dyslexia. Poor reading accuracy and 

slow reading speed are, in turn, characteristic for adults with dyslexia.  

 Intact processing of even minor differences in speech sounds is essential for 

language development and reading skills. Speech perception requires sound 

discrimination and phoneme identification, despite the variation in their acoustical 

features. Accurate phonological representations are also important for learning the 

connection between sounds and letters. Difficulties in auditory processing are common 

in individuals with dyslexia. Cortical auditory processing can be investigated by 

recording the electroencephalography (EEG). The detection of changes in the 

regularities of the auditory input gives rise to neural activity in the brain that is seen as a 

mismatch negativity (MMN) response of the event-related potential (ERP) recorded by 

EEG. As the recording of MMN requires neither a subject’s behavioural response nor 

attention towards the sounds, it is suitable for studies of even young children. Despite 

its advantages over behavioural measures, a major obstacle to the use of the MMN 

method has been the relatively long duration of its recording. However, the multi-

feature MMN paradigm with several types of sound changes was recently developed in 

order to obtain a comprehensive profile of auditory sensory memory and discrimination 

accuracy in a short recording time. 

 The present thesis investigated cortical multi-attribute auditory processing in 

dyslexia and the efficacy of intervention on reading-related skills and cortical speech 

sound discrimination. Moreover, the feasibility of the multi-feature paradigm for 

dyslexia research, and studies in children was tested for the first time. In this thesis, the 

multi-feature paradigm was found to be well suited for studies investigating central 

auditory processing in dyslexia and in children. The results showed that cortical 

auditory processing is aberrant in dyslexia. In children at risk for dyslexia, auditory 

processing seems to be deficient even at the initial phase of sound encoding. 

Furthermore, these children also showed a widespread pattern of abnormal cortical 
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auditory discrimination processes. Adults with dyslexia, in turn, have difficulties in 

discriminating sound frequency and duration features in a complex auditory 

environment. Early intervention can influence the developmental path of dyslexia, 

however. The results of this thesis show that even a short intervention with audio-visual 

letter-sound exercises improves children’s reading-related skills and cortical 

discrimination of vowel contrasts. 
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TIIVISTELMÄ 
 

Lukivaikeus on vahvasti perinnöllinen neurobiologinen häiriö, jota määrittää pysyvä 

vaikeus lukemaanoppimisessa. Fonologinen prosessointi, kirjain-äänne –vastaavuuksien 

oppiminen sekä sanahaku ovat usein poikkeavia lapsilla, joilla on lukivaikeus. 

Lukemisen virheet ja hitaus ovat puolestaan lukivaikeudelle tyypillisiä piirteitä 

aikuisuuteen saakka.  

 Normaali kielenkehitys ja lukemaanoppiminen edellyttävät puheessa tapahtuvien 

muutosten tarkkaa käsittelykykyä. Puheen havaitseminen vaatii äänten hienojakoista 

erottelukykyä ja foneemien tunnistamista akustisten piirteiden vaihtelusta huolimatta. 

Vahvat fonologiset edustukset ovat tärkeitä myös kirjain-äänne –vastaavuuksien 

oppimisessa. Kuulotiedon käsittelyn vaikeudet ovat yleisiä lukivaikeudessa. 

Kuulotiedon esitietoista käsittelyä voidaan tutkia aivosähkökäyrää mittaamalla. 

Ääniympäristöstä poikkeavien äänien havaitsemisesta syntyvä hermosolujen 

aktivoituminen näkyy aivosähkökäyrässä tapahtumasidonnaisena MMN-jännitevasteena 

(engl. mismatch negativity). Koska MMN:n rekisteröiminen ei edellytä tutkittavalta 

tehtävän tekemistä tai ärsykkeiden aktiivista kuuntelemista, sen avulla voidaan tutkia 

sensorisen kuulotiedon käsittelyä jo pienillä lapsilla. Vaikka MMN-tutkimuksella onkin 

huomattavia etuja verrattuna behavioraalisiin menetelmiin, sen yleistymistä laajempaan 

käyttöön on jarruttanut MMN-rekisteröinnin suhteellinen hitaus. Vastikään kehitetyillä 

koeasetelmilla voidaan kuitenkin rekisteröidä lyhyessä ajassa useiden äänten piirteiden 

prosessoinnin profiilit. 

 Tässä väitöskirjassa tutkittiin esitietoista kuuloprosessoinnin profiilia 

lukivaikeudessa sekä kuntoutusmenetelmän vaikutuksia lukuvalmiustaitoihin ja 

puheäänissä tapahtuvien muutosten esitietoiseen erotteluun. Lisäksi 

monipiirreparadigman soveltuvuutta lukivaikeus- ja lapsitutkimuksiin tutkittiin 

ensimmäistä kertaa. Väitöskirjan tulokset osoittavat, että monipiirreparadigma soveltuu 

sensorisen kuulotiedon käsittelyn tutkimukseen lukivaikeudessa ja lapsilla. Väitöskirjan 

tulosten mukaan sensorinen kuulotiedon käsittely on poikkeavaa lukivaikeudessa. 

Lapsilla, joilla on riski lukivaikeuteen, kuulotiedon sensorinen käsittely poikkeaa jo 

äänitiedon peruskäsittelyssä. Lisäksi näillä lapsilla kuulotiedon esitietoinen 
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erottelutarkkuus on heikompaa niin kielellisten kuin ei-kielellisten ääntenpiirteiden 

osalta. Aikuisilla, joilla on lukivaikeus, on puolestaan vaikeuksia muodostaa 

muistijälkeä äänen taajuudelle ja kestolle ääniympäristön ollessa haasteellinen. 

Lukivaikeuden kehityskulkuun voidaan kuitenkin vaikuttaa aikaisella kuntoutuksella. 

Väitöskirjan tulosten mukaan jo lyhytkestoinen audiovisuaalinen kirjain-äänne –

yhteyksien harjoittelujakso kohentaa lasten lukemiseen liittyviä taitoja ja esitietoista 

vokaalierottelua.  
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1 INTRODUCTION 
 

From early on, a child is exposed to a rich sound environment created by the 

surrounding culture and spoken languages. Small children are keen on hearing their 

close ones sing and play with rhymes and words. In this early interaction, the basis for 

the upcoming language development is born which then continues stepwise towards 

fluent communication, with spoken and written language skills. However, depending on 

the genetics and the environmental influences, children receive varying possibilities and 

abilities related to communication. One of these skills is reading, which some children 

learn as early as at the age of three whereas some other children struggle with fluent 

reading and writing and continue to do so into adulthood. Over the past decades, there 

has been a growing interest in trying to understand why some children, despite normal 

intellectual abilities, have difficulties in reading acquisition. As reading is a basic skill, 

important both in everyday life, as well as for success at school, problems in this area 

may not only affect the child’s prerequisites for academic achievements but also cause 

severe problems for self-esteem and behaviour. 

 Nowadays, there are several theories trying to explain the underlying causes of 

reading problems. These theories also guide the attempts to help these children. The 

earlier the child gets adequate help, the easier it is to prevent further problems related to 

reading. In the present set of studies, electrophysiological methods were used to 

determine auditory discrimination skills in dyslexic adults and children at risk for 

dyslexia. Furthermore, behavioural and electrophysiological methods were used to 

determine whether a short intervention could alleviate reading-related problems even 

before the school start. Moreover, the feasibility of the multi-feature MMN paradigm 

for dyslexia research and studies in children was tested for the first time. 

 

1.1 Clinical characteristics and the brain basis of dyslexia 
 

Dyslexia is a neurobiological disorder that is defined as a persistent difficulty in 

learning to read that is not explained by sensory or cognitive deficits, lack of 
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motivation, or lack of adequate reading instruction and schooling (Shaywitz, 2003). 

Current diagnostic criteria (Siegel, 1992; Waber et al., 2000) no longer require a 

discrepancy between reading abilities and intelligence quotient (IQ) scores but rather 

reading problems while the IQ is within normal limits (>80). Problems in central 

auditory processing of the sounds of language, phonological processing, is seen as one 

of the core features of dyslexia (Bradley & Bryant, 1978; Snowling et al., 2000; 

Gabrieli, 2009). Learning to read requires explicit phonological awareness, the 

understanding of how spoken words are composed of different sounds that relate to 

letters and syllables. Younger children with dyslexia often have problems in operating 

with sounds within words and with word segmentation (Snowling et al., 2000). 

Learning the alphabet or letters and associating letters to phonemes is often hard and 

word retrieval can be slow (Lyytinen et al., 2007). Older children who can read have, in 

turn, problems with unfamiliar words (Wimmer & Schurz, 2010; Wimmer et al., 2010). 

This impairment is evident when asked to read nonsense words that are decoded on the 

basis of grapheme-to-phoneme mapping principles. Even children who improve in their 

reading accuracy often continue to read very slowly. In addition to working memory 

problems, which are often present in dyslexic individuals (Siegel & Ryan, 1989; 

Swanson, 1993; Vargo et al., 1995), dyslexia affects reading comprehension later on as 

the focus switches from learning to read to reading to learn.  

Both the function and structure of the brain areas involved in reading and language 

processes are atypical in individuals with dyslexia. Neuroimaging studies have revealed 

reduced or absent activation of the left temporo-parietal cortex, which is normally 

activated when individuals perform tasks that require phonological awareness for print 

(Rumsey et al., 1992; Shaywitz et al., 1998; 2002; Temple et al., 2003; Blau et al., 

2010). This brain area is hypothesized to support the cross-modal interaction of auditory 

and visual processes during reading (Hoeft et al., 2007). Furthermore, atypical 

activations in dyslexia are also found in the left occipito-temporal regions associated 

with visual analysis of letters and words (Shaywitz et al., 2002; Kronbichler et al., 2006; 

Hoeft et al., 2007; Maurer et al., 2011), left middle and superior temporal gyri 

associated with receptive language (Hoeft et al., 2007), auditory sensory thalamus, the 

medial geniculate body (MGB), associated with attending to phonemes (Díaz et al., 

2012), and left prefrontal regions associated with verbal working memory (Hoeft et al., 
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2007). Moreover, dyslexic children do not show activation in the left prefrontal cortex 

during auditory perception of rapidly changing non-speech stimuli that is seen in 

typically developing children (Temple et al., 2003).  

The functional abnormalities overlap with structural variations reported in dyslexia. 

Structural imaging studies using voxel-based morphometry (VBM) have demonstrated 

grey matter reductions in individuals with dyslexia in bilateral temporo-parietal and left 

occipito-temporal cortical regions and in the cerebellum bilaterally (for reviews, see 

Eckert, 2004; Richardson & Price, 2009; for meta-analysis studies, see Linkersdörfer et 

al., 2012; Richlan et al., 2012). Recent diffusion tensor imaging (DTI) studies, in turn, 

have revealed weaker than normal white matter tracks in left temporo-parietal regions 

of dyslexic adults (Klingberg et al., 2000, for a review, see Vandermosten et al., 2012a). 

Furthermore, reduced fractional anisotropy in the left arcuate fasciculus, in particular in 

the segment that directly connects posterior temporal and frontal areas was shown in 

dyslexic adults (Vandermosten et al., 2012b). This fractional anisotropy was 

demonstrated to have a specific relation to performance on phoneme awareness and 

speech perception (Vandermosten et al., 2012b). Weaker white matter tracks were 

suggested to reflect a lower degree of myelination in dyslexic individuals 

(Vandermosten et al., 2012b). White-matter connectivity in the corpus callosum was, in 

turn, greater than normal in dyslexic adults (Dougherty et al., 2007). This was suggested 

to reflect a too strong projection between hemispheres and an atypical reliance on right-

hemisphere regions for reading in dyslexia (Gabrieli, 2009). Recently, these findings 

have lead to hypotheses that dyslexia is a disorder of network connections in the brain 

(Vandermosten et al., 2012b).  

 

1.2 Risk factors for dyslexia 
 

Genetics plays an important role when risk for dyslexia is evaluated. Dyslexia is highly 

heritable, as 54-75 % of children who have a parent or a sibling with dyslexia also 

become dyslexics (Pennington & Gilger, 1996). Several candidate risk genes have been 

identified (Taipale et al., 2003; Hannula-Jouppi et al., 2005; Paracchini et al., 2006; 

Galaburda et al., 2006). These genes are important for neural migration and brain 

development, which suggests that dyslexia may be a consequence of atypical neural 
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migration in the developing brain (Gabrieli, 2009). Reduction in glucose levels within 

the brain during childhood could also be one of the factors leading to phonological 

difficulties in dyslexia (Roeske et al., 2011). A risk haplotype that may lead to a 

reduced expression of a gene important for glucose levels in neurons was recently found 

in dyslexic children. The risk haplotype was associated with aberrant preattentive 

speech sound discrimination performance in these children (Roeske et al., 2011). 

There are several early behavioural indicators related to the risk for dyslexia. The 

prospective studies have provided ways to successfully identify, already at a relatively 

early age, those children who face the risk of delays in reading acquisition at school age 

(Scarborough, 1990; Lyytinen et al., 2004). As early as at the ages of 8 and 19 months, 

canonical utterances were of lower proportion and syllable structures less complex in 

children with familial risk for dyslexia (Smith et al., 2010). Furthermore, at the age of 2 

years, the maximum sentence length was shorter in children at risk for dyslexia, and had 

a predictive correlation on developing reading skills (Lyytinen et al., 2004). Articulation 

accuracy is also poorer at the age of 2.5 years in the risk group (Turunen, 2003). 

Moreover, inflectional morphology at the age of 3 years (Lyytinen et al., 2004), 

phonological awareness (Puolakanaho et al., 2004), and letter-knowledge at the age of 

4-7 years (Lyytinen et al., 2007), verbal short-term memory, and the rapid serial naming 

at the age of 5 years (Lyytinen et al., 2004; 2007), and the perception of phonemic 

duration at the age of 6 years (Lyytinen et al., 2007), differentiate the risk children from 

children without the risk and have predictive correlation on upcoming reading skills. 

Complexity of the orthography exacerbates some symptoms of dyslexia (Landerl et 

al., 2012), however. Phoneme deletion and rapid naming (RAN) are strong concurrent 

predictors of developmental dyslexia, while verbal short-term memory and general 

verbal abilities play a comparatively minor role (Landerl et al., 2012). The impact of 

phoneme deletion and RAN-digits was stronger in complex than in less complex 

orthographies (Landerl et al., 2012). In Finnish children, the measures of letter naming, 

rapid naming, morphology, and phonological awareness have the strongest predictive 

links to later reading skills (Torppa et al., 2010). 
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1.3 Central auditory processing in dyslexia 
 

Intact processing of even minor differences in speech sounds is essential for language 

development and reading skills. A child’s language was suggested to develop on a 

specific setting of phonological prototypic representations that depend on the language 

context (Kuhl, 1992). For perceiving speech, one has to both discriminate sounds, and 

to identify phonemes, despite the variation in their acoustical features. For example, the 

speaker, background noise, and speech rate varies in everyday communication. 

Accurate and strong phonological representations were also suggested to be important 

for understanding and learning the connection between sounds and letters (Liberman, 

1973). 

Dyslexia was suggested to be a heterogeneous group of conditions, which could be 

divided into subtypes (Boder, 1973; Castles & Coltheart, 1993). For example, Boder 

(1973) suggested three subgroups of dyslexia (see also e.g., Castles & Coltheart, 1993; 

Borsting et al., 1996; Cohen et al., 1992; Fried et al., 1981; Wolf & Bowers, 1999; Wolf 

et al., 2002). The first group would include individuals that have problems in 

phonological processing and grapheme-phoneme conversion, called dysphonetics, the 

second group would include those that have difficulties in sight vocabulary, called 

dyseidetics, and the third group would be a combination of those that have problems in 

both processes, called dysphoneidetics. There is still no agreed classification of the 

possible subtypes of dyslexia. However, many individuals with dyslexia have 

phonological problems (Snowling et al., 2000; Ramus et al., 2003), and at least a sub-

group of individuals with dyslexia have auditory processing problems (Ramus et al., 

2003; for a review, see Hämäläinen et al., 2012). Both behavioural and neural-level 

evidence of auditory processing deficits in dyslexia exist. In particular, difficulties in 

discriminating sounds are very common (for a review, see Farmer & Klein, 1995; 

Studdert-Kennedy & Mody, 1995). Dyslexic individuals seem to perceive single 

auditorily presented sounds normally (Tallal, 1980). However, the identification of 

different sound stimuli is impaired (Farmer & Klein, 1995; Haggerty & Stamm, 1978; 

McCroskey & Kidder, 1980). Dyslexic individuals need a longer time interval between 

two sounds in order to hear them as separate sounds (McCroskey & Kidder, 1980). 
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Moreover, dyslexic children have difficulties in evaluating whether the sounds they hear 

come at the same time or not (Laasonen et al., 2000). 

Many studies have also found dyslexics to be less sensitive for detecting amplitude 

envelope onset (rise time) or its correlate sound strength (amplitude) modulations (for a 

review, see Hämäläinen et al., 2012), which are behaviourally closely associated with 

the perceptual experience of speech rhythm and stress (Morton et al., 1976). In line with 

this, perception of stress patterning in speech in dyslexic adults (Leong et al., 2011), and 

perception of musical beat patterns in dyslexic children (Huss et al., 2011; Goswami et 

al., 2012) were recently shown to be altered. Dyslexic individuals are also poorer in 

auditory frequency discrimination (e.g. DeWeirdt, 1988; Baldeweg et al., 1999; Ahissar 

et al., 2000; Amitay et al., 2002; for a review, see Hämäläinen et al., 2012) and have 

elevated just noticeable differences for frequency (McAnally and Stein, 1996; Hari et 

al., 1999). Their detection of tones in narrowband noise, and the perception of the 

direction of sound sources moving in virtual space, and that of the lateralized position 

of tones based on their interaural phase differences are also impaired (Amitay et al., 

2002).  

Even duration discrimination is impaired at fast stimulation rates in adults and in 

children with dyslexia (Thomson & Goswami, 2008; Goswami et al., 2011; Banai & 

Ahissar, 2004; for a review, see Hämäläinen et al., 2012). Also infants at risk for 

dyslexia are poorer in perceiving stimulus-duration differences (Richardson et al., 

2003). Furthermore, dyslexic individuals show less well separated and broader 

phonemic categories than normal readers (e.g. Godfrey et al., 1981). Poor phonological 

processing skills are also reported in tasks involving pseudo-word repetition (Brady et 

al., 1983; Kamhi & Catts, 1986; Snowling et al, 1986). Moreover, dyslexic individuals 

perform worse than normal on pseudo word repetition in noise (Ahissar et al., 2006), 

and have decreased decoding of spectral cues of the speech in noise (Sperling et al., 

2005; Ziegler et al., 2009). They even perform poorly in auditory tasks involving 

backward masking (Ramus et al., 2003). 

The auditory problems in dyslexia seem to be expressed at the early auditory 

sensory-memory stage of information processing (for reviews, see Bishop, 2007; 

Kujala, 2007). Both cortical auditory discrimination of changes in speech sounds 

(Schulte-Körne et al., 2001) and tones are altered in dyslexia (Baldeweg et al., 1999; 



! *(!

Kujala et al., 2003; for a review, see Hämäläinen et al., 2012). There are also studies 

showing altered sensory encoding (for a review, see Lyytinen et al., 2005) and 

brainstem timing for sound features (e.g. Banai et al., 2009). All in all, these deficits 

reflect impairments in both explicit (awareness) and implicit (preattentive) operations 

on phonological and auditory representations as well as altered auditory processing at 

the stage of sound encoding and brainstem timing. 

Several theories have tried to explain these phonological and auditory processing 

deficits in dyslexia. According to the phonological-deficit theory of dyslexia, 

individuals with dyslexia have a specific phoneme-awareness impairment which affects 

their auditory memory, word recall, and sound association skills when processing 

speech (Ramus, 2003; Mody et al., 1997; Snowling et al., 2000; for a review, see 

Vellutino et al., 2004). The rapid-auditory processing deficit model suggests that the 

phonological deficit is related to a more widespread difficulty in temporal processing 

(Stein & Talcott, 1999; Tallal, 1980; for a review, see Stein 2001). As speech is 

composed of fast sequences of brief stimuli, such a deficit would impair speech 

perception (Tallal & Percy, 1973). Another theory, the Cerebellar deficit hypothesis, 

postulates that a mildly dysfunctional cerebellum can cause articulation problems, 

which then lead to phonological problems. In addition, as the cerebellum is involved in 

skill automatisation, it would alter automatisation of reading and writing processes in 

individuals with dyslexia (Nicolson et al., 2001). The magnocellular model, in turn, 

suggests that dyslexia results from a neurodevelopmental abnormality of the 

magnocellular system, which causes auditory, visual and sensory processing deficits in 

dyslexia (Galaburda et al., 1994; Stein & Walsh, 1997).  

Moreover, it has also been suggested that the problems of dyslexic individuals are 

more pronounced in tasks requiring sensory integration than in those limited to one 

modality (Laasonen et al., 2000). Furthermore, a specific deficit in audiovisual 

integration was suggested to be a proximal cause for the reading deficit in dyslexia 

(Blau et al., 2010; Blomert, 2011; Mittag et al., 2013; Widmann et al., 2012). This 

cross-modal binding deficit of letters and speech sounds is suggested to interfere with 

and/or slow down the incremental tuning of auditory and multisensory cortex for the 

fast integration of unique audiovisual orthographic–phonological objects. This would 

negatively influence and/or delay the tuning of the fusiform cortex for letters and words 
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(Blomert et al., 2011). The binding deficit would not only be a proximal cause for 

reading deficits in dyslexia but also explain the lack of reading fluency in dyslexia 

(Blomert et al., 2011). 

At least three theories emphasize attentional deficits as one of the dysfunctional areas 

associated with dyslexia (for a review, see Shaywitz & Shaywitz, 2008). According to 

the attentional sluggishness hypothesis, the attentional mechanisms that underlie 

switching from processing one object to processing another are inefficient in dyslexia. 

Individuals with dyslexia have a longer “attentional blink” which alters their ability to 

identify a second target that is presented in a time window of 200-400 ms after the first 

target (Hari & Renvall, 2001). This prolongation might then affect the development of 

cortical representations (Hari & Renvall, 2001; Lallier et al., 2010). Recently, it was 

further suggested that sluggish multisensory attention shifting impairs the sublexical 

mechanisms that are critical for reading development (Facoetti et al., 2006; 2008; 2010; 

Ruffino et al., 2010), whereas “Impaired-anchoring” is suggested as a specific type of 

altered attention hypothesis (Ahissar, 2007). According to this hypothesis, specific 

anchors guide the perceptual interpretation of subsequent stimuli, and contribute to the 

ability to retain and explicitly retrieve recently presented stimuli. The deficits of 

dyslexic individuals would reside in the dynamics that link perception with sensory 

memory through the implicit formation of stimulus-specific anchors rather than due to 

poor long-term representations for phonemes. The double deficit hypothesis of dyslexia 

considers naming speed problems as a second core deficit independent of a 

phonological deficit in dyslexia (Bowers & Wolf, 1993; Wolf, 1997; Wolf & Bowers, 

1999). Attention, executive functioning and general speed of processing are seen as 

important areas involved in rapid naming rather than viewing rapid naming as only 

phonological in nature.  

Recently, the temporal sampling framework (TSF), was proposed as a novel causal 

framework for developmental dyslexia (Goswami, 2011). In this framework, the core 

deficit in dyslexia is considered to be phonological. A specific deficit in temporal 

sampling of speech by neuroelectric oscillations that encode incoming information at 

different frequencies would explain the perceptual and phonological difficulties with 

syllables, rhymes and phonemes found in individuals with dyslexia (Goswami, 2011). 
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The proposed auditory phase locking deficit was also suggested to have implications for 

the efficient functioning of other sensory systems (Goswami, 2011).  
 

1.4 Dyslexia interventions 
 

Despite the growing knowledge of symptoms and predicting factors of dyslexia, there 

are still relatively few attempts of early preventive interventions. Intervention programs 

have sofar mostly been designed for and also tested with school children. Research on 

cortical plasticity highlights that the training should be extensive and intensive as well 

as adaptive and highly motivating, in order to produce learning induced changes 

(Merzenich et al., 1996). In the dyslexia remediation studies conducted sofar, auditory 

training, involving listening exercises designed to improve the function of the central 

auditory system, has been one of the predominant approaches. With the improved 

technology, computer-based programs become available and are promising in dyslexia 

remediation. 

For example, FastForWord Language program (FFW, Scientific Learning 

Corporation, Oakland, CA) is designed to train temporal processing, speech perception, 

and language comprehension skills in children who have specific language impairment 

(SLI) or dyslexia. At least 13 studies have reported positive effects of the FFW training 

on language, phonological awareness and/or reading skills (for a review, see Loo et al., 

2010). For example, 8-12 year-old dyslexic children improved their receptive and 

expressive language, rapid naming, real word reading, pseudo-word decoding, and 

passage comprehension after an 8-week training period with this program (Temple et 

al., 2003). However, the FFW has not been reported to improve children’s spelling 

skills. 

Earobics (Houghton Mifflin Harcourt Publishing Company) is designed for the 

training of phonological awareness and auditory-language processing. The few studies 

that have assessed the use of the Earobics as a training program, have reported a 

positive effect on phonological awareness, but the evidence on the efficacy of the 

program in improving reading and spelling skills is still limited (Russo et al., 2005; 

Warrier et al., 2004; Hayes et al., 2003). 
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Some intervention programs are instead designed to train audio-visual matching 

instead of auditory training only. In fact, recent studies of dyslexia highlight the 

importance of combining auditory and visual training in attempts at improving reading 

skills (Kujala et al., 2001; Törmänen et al., 2009; Brem et al., 2010; Snowling & 

Hulme, 2012; for a review, see Loo et al., 2010). The Audilex (Karma, 1999) is one of 

these programs and includes audiovisual training without linguistic material, with the 

exercises requiring matching sound elements that vary in pitch, duration, and intensity 

with the visually presented material. In the study of Kujala et al. (2001), dyslexic 

children improved their reading skills after 14 training sessions of about 10 minutes 

twice a week during a period of 7 weeks with the Audilex. Furthermore, it has been 

suggested that audio-visual training that focuses in particular on the pairing of letters 

with sounds would support the acquisition of reading and spelling skills as it supports 

phonological awareness (Lyytinen et al., 2009). For example, an audio-visual program 

that included matching exercises of consonant-vowel syllables that the child both heard 

and saw, improved both reading and spelling skills in children with dyslexia (Veuillet et 

al., 2007).  

The GraphoGame intervention program (Lyytinen et al., 2007) trains both phoneme 

awareness and letter knowledge. The exercises progress from grapheme–phoneme 

relations to the stage of phonological recoding and decoding, covering the basic areas 

needed for fluent and accurate reading. In the study by Saine et al., (2010), school-

beginning children with deficits in the core reading-related skills (letter knowledge, 

phonological awareness, or rapid automatized naming) were divided into two groups. 

One of the groups was exposed to regular phonics-based remedial reading training 

whereas the other group also played the GraphoGame as a part of the training. Both 

groups were performing the exercises in 4 weekly sessions of 45 min over a period of 

28 weeks in Grade I. The follow up of the training effects showed that the children in 

the GraphoGame group had reached the average level of the mainstream children by the 

end of Grade 2 in the word-level reading fluency.  

The effects of dyslexia interventions have been studied both with behavioural and 

brain-imaging methods. For example, at the same time as the children’s oral language 

and word reading improved by playing The FastForWord Language program, functional 

magnetic resonance imaging (fMRI) measurements showed that their brain activity also 
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increased in the left temporo-parietal cortex and left inferior frontal gyrus, bringing 

activation in these regions closer to that of normal-reading children (Temple et al., 

2003). Increased activation was also seen in the right-hemisphere frontal and temporal 

regions and in the anterior cingulate gyrus, which was suggested as reflecting an 

additional compensatory activation (Temple et al., 2003). In line with this, greater right 

prefrontal activation during a reading task that demanded phonological awareness, was 

recently shown to predict future reading gains in dyslexia together with right superior 

longitudinal fasciculus white-matter organization (Hoeft et al., 2011). Furthermore, the 

audiovisual Audilex training without linguistic material that improved dyslexic 

children’s word reading, also caused neurofunctional changes in the auditory cortex 

(Kujala et al., 2001). The learning of letter-speech sound correspondences with 

GraphoGame, in turn, resulted in an initial sensitization to print in specific areas within 

the occipito-temporal cortex in young non-reading children (Brem et al., 2010).  

 

1.5 Auditory event-related potentials (ERPs) used in dyslexia 
research 

 

1.5.1 ERPs reflecting acoustic feature processing 
 

The auditory event-related potentials (ERPs) have recently become a popular means of 

determining auditory impairments in dyslexia as they provide an accurate way of 

monitoring the timing and changes of the synaptic communication of the neurons 

involved in central auditory processing (Coles & Rugg, 1995). ERPs can be non-

invasively recorded from the scalp using the electroencephalogram (EEG). Auditory 

ERPs are transient voltage changes in the EEG caused by, and time-locked to, acoustic 

or cognitive events. 

The long-latency auditory ERPs start with the exogenous components that reflect the 

transient detection of the physical stimulus features. These components are obligatorily 

elicited by all stimuli, and mainly reflect the physical features of the stimuli. The 

endogenous components, in turn, reflect also cognitive processes (Näätänen, 1992). The 

exogenous and endogenous components are generated in the auditory cortex and related 

cortical areas. 
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In adults, the obligatory long-latency components are the P1, N1, P2, and N2. The P1 

peaks at about 50 ms, and the N1 at 100 ms from stimulus onset. The P1 is generated in 

the primary auditory cortex (Liegois-Chauvel et al., 1994), and the N1 in the temporal 

lobes (Näätänen & Picton, 1987). The P2 peaks at 175-200 ms and, depending on 

stimulus duration, may be followed by the N2 (Kushnerenko et al., 2001; for a review, 

see Näätänen, 1992). These responses were suggested to reflect sound detection and the 

encoding of physical stimulus features (Näätänen & Picton, 1987; Näätänen & Winkler, 

1999). Their amplitude and latency strongly depend on the physical features of the 

stimulus input (Wunderlich & Cone-Wesson, 2006). For example, N1 amplitude 

diminishes with a decreasing stimulus intensity. 

The studies on the exogenous ERPs in childhood are limited in number but the 

children’s exogenous ERP waveform is known to be quite different from that of adults. 

In children, the waveform is typically dominated by the P1 response, which usually 

peaks at 100 ms, and is followed by a broad negativity at about 200 ms (N2) (Sharma et 

al., 1997; !eponiene et al., 2001, 2002), and often by the N4 response (!eponiene et al., 

1998, 2001; Cunningham et al., 2000; Ponton et al., 2000). The P1 and N2 components 

were suggested to reflect auditory sensory processing of tones in 4- to 9-year -olds 

(!eponiene et al., 2002). The N1 and P2 components, in turn, start to emerge with 

adult-like latencies at approximately 9 years of age, with the amplitudes increasing and 

latencies decreasing with age until the early adulthood (Ponton et al., 2000, 2002). 

However, when long ISIs are used, these components can be seen at even earlier ages 

(!eponiene et al., 2002).  

  

1.5.2 MMN 
 

The endogenous mismatch negativity (MMN) ERP component (Näätänen et al., 1978) 

has been widely used in studies investigating auditory and speech perception as it 

reflects early cortical stages of sound discrimination (for a review, see Näätänen et al., 

2007). The MMN is elicited by any discriminable change in a sequence of repetitive 

speech or non-speech sounds, or by a sound violating an abstract rule or regularity in 

the preceding auditory context (Näätänen et al., 2001). The MMN normally peaks at 

100-250 ms after change onset. The amplitude of the MMN is larger and the latency 
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shorter, the larger the deviance magnitude is (Sams et al., 1985; Tiitinen et al., 1994; 

Kujala & Näätänen, 2001; Rinne et al., 2006; Pakarinen et al., 2007). Furthermore, the 

MMN is correlated with behavioural discrimination abilities. Large amplitude, short 

latency MMNs are associated with accurate discrimination, and low amplitude, long 

latency MMNs with poor discrimination skills (Kujala et al., 2001; Lang et al., 1990; 

Novitski et al., 2004; for a review, see Kujala & Näätänen, 2010). 

According to Näätänen (1990), repetitive sounds form a memory trace based on the 

regularities of the preceding auditory context. The MMN reflects a pre-attentive 

memory-based comparison process where each incoming sound is compared with this 

memory trace (Näätänen & Winkler, 1999; Näätänen & Alho, 2005). The MMN is 

elicited when an incoming sound does not match with the physical or temporal 

attributes of the memory trace (Kujala et al., 2007; Näätänen et al., 2001). Several 

studies have shown that although the MMN operates at the sensory memory level 

(Näätänen & Winkler, 1999), it is also affected by long-term sound representations such 

as those formed for the native phonemes (Dehaene Lambertz, 1997; Näätänen et al., 

1997). Extensive exposure to a certain language facilitates the processing of the acoustic 

changes that are linguistically relevant in that language (Dehaene-Lambertz et al., 2000; 

Huotilainen et al., 2001). This is reflected as an enhanced MMN for these changes. For 

changes of native-language phonemes, the MMN often predominates in the left 

hemisphere (Alho et al., 1998; Näätänen et al., 1997; Shtyrov et al., 2000). For non-

speech changes, the MMN is lateralized to the right hemisphere (Levänen et al., 1996; 

Paavilainen et al., 1991; Sorokin et al., 2010). 

The MMN is composed of two components, the first component generated in the left 

and right supratemporal auditory cortices and the second one in the frontal lobes (for 

reviews, see Näätänen, 1992; Näätänen & Alho, 1995; Rinne et al., 2000; Näätänen & 

Rinne, 2002). The exact source locations vary depending on the sound feature to be 

discriminated and, therefore, these source locations were suggested to reflect activity 

directly related to sensory-memory traces (Giard et al., 1995; Molholm et al., 2005). In 

addition to sound discrimination, the process generating the MMN has been proposed to 

play an important role in initiating involuntary attention switch to changes in auditory 

environment (Escera et al., 1998; 2000). This may be reflected in the second MMN 

component, one that is generated in the frontal lobes (Näätänen & Alho, 1995; Näätänen 
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& Rinne, 2002; Opitz et al., 2002), and by P3a following the MMN (Escera et al., 

2000). 

The MMN is well suited for studies addressing central auditory processing in clinical 

groups and children because it is elicited even without the subject's attention towards 

the sounds or without a task related to the sounds (Näätänen, 1979, 1985; Näätänen et 

al., 1978). The advantage of the MMN is that it is considerably less affected by 

vigilance or task-related artifacts than behavioral measures. The MMN can even be used 

for investigating subjects with communication problems or with limitations in 

performing behavioural discrimination tasks. These features have made it popular for 

investigating sound discrimination in various patient groups (for a review, see 

Näätänen, 2003; Näätänen et al., 2012), for example specific language impairment (e.g., 

Kraus et al., 1996), dyslexia (e.g., Baldeweg et al., 1999), and autism (e.g., Lepistö et 

al., 2005; for a review, see Kujala et al., 2013). MMN responses have also been 

recorded from infants (Alho et al., 1990) and fetuses (Huotilainen et al., 2005) by using 

magnetoencephalography (MEG) which detects the magnetic field produced by the 

active neurons in the fetal brain tissue from above the mother’s abdomen. 

However, the MMN has usually been recorded with the so-called oddball paradigm, 

which requires long recording sessions. As the signal-to-noise ratio is affected by 

vigilance, paradigm improvements have been welcome (Kujala et al., 2007). In order to 

obtain a more comprehensive view on cortical discrimination within a tolerable 

recording time, the new multi-feature MMN paradigm was developed (“Optimum-1”; 

Näätänen et al., 2004). With this paradigm, the MMN can efficiently (see Fig 1., p. 39) 

be recorded in about 15 min for five different types of sound changes. In the traditional 

oddball paradigm, there are normally 80-90 % repetitive standard sounds, with the rest 

of the sounds being deviants. In the new paradigm, 50 % of the stimuli are standards 

and 50 % deviants. Each of the deviants differs from the standard in one acoustic 

feature only and the deviants alternate with the standard sounds, with every second 

sound being a standard and every second a deviant. The new paradigm is based on the 

assumption that each sound strengthens the memory trace for the standard stimulus for 

those features that it shares with the standard. The multi-feature paradigm yields similar 

or even slightly larger MMN responses for changes in sound duration, frequency, 

intensity, location (Näätänen et al., 2004; Pakarinen et al., 2007), and for sounds 
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including a short gap (Näätänen et al., 2004). Hence, the multi-feature paradigm enables 

one to determine the profile of discrimination abilities. 

As MMN studies investigating speech-sound discrimination are popular, recently a 

new variant of the multi-feature paradigm was developed for this purpose (Pakarinen et 

al., 2009). In this paradigm, semi-synthetic consonant-vowel syllables are used as 

standards whereas the deviants include vowel, vowel-duration, consonant, frequency 

(F0), and intensity changes. In adults, the MMNs recorded with this multi-feature 

paradigm were very similar to those obtained with the traditional oddball paradigm 

(Pakarinen et al., 2009). 

 

1.5.3 P3a 
 

The MMN process is usually followed by the P3a, which is an ERP component that can 

be elicited by any unexpected physical stimulus change, even when the stimuli are not 

actively attended. The P3a peaks at 200-300 ms from stimulus onset (Squires et al., 

1975). The amplitude of the P3a response varies with the magnitude of stimulus change 

(for a review, see Escera et al., 2000), and it is especially large for novel, surprising 

sounds. It has been associated with an orienting response (Nieuwenhuis et al., 2011), 

and involuntary attention shifting elicited by perceivable sound changes (Escera et al., 

2000; for a review, see Escera et al., 2007). The P3a has several neural sources 

including prefrontal, temporal, and parietal cortices, as well as the posterior 

hippocampus, parahippocampal gyrus, and cingulate gyrus (for reviews, see Escera et 

al., 2000; Näätänen, 1992; Yago et al., 2003). 

An abnormally large P3a response is related to a lowered threshold for involuntary 

attention switch, as unattended information reaches the consciousness more easily (for a 

review, see Escera et al., 2000). Enhanced P3a responses were shown in patients with 

closed-head injuries (Kaipio et al., 1999), in chronic alcoholics (Polo et al., 2003), and 

in children with attention deficit/hyperactivity disorder (Gumenyuk et al., 2005), 

whereas patients with prefrontal (Knight, 1984), temporo-parietal (Knight et al., 1989), 

and posterior hippocampal lesions (Knight, 1996) have diminished P3a responses.  

 



! "'!

1.5.4 ERP findings reflecting acoustic feature processing in dyslexia 
 

Studies investigating the P1, N1, P2, N2, and N4 responses in individuals with dyslexia 

have reported rather inconsistent results. The studies have shown both normal, 

diminished, and increased exogenous ERP amplitudes as well as differences in the ERP 

latencies and sources for speech and non-speech stimuli in adults and children with 

dyslexia as well as in children at familial risk for dyslexia. Diminished P1-N1 peak-to-

peak response amplitudes and longer P1 peak latencies for word stimuli were found 

among children with spelling problems (Byring & Järvilehto, 1985). In contrast, no 

differences in obligatory responses were found by Yingling et al. (1986). Poorly reading 

girls had larger P2 and N2 amplitudes but no differences in their N1 for a large pitch 

change compared to poorly reading boys or control children (Bernal et al., 2000). 

However, in 9-year old dyslexic children, the N1 response was larger than normal to 

stimuli with short within-pair-intervals and long rise time (Hämäläinen et al., 2007). 

Moreover, the magnetic counterpart of the N1 (N1m) was abnormally strong in the left 

supratemporal auditory cortex for speech-sound onsets (Helenius et al., 2002a) and 

spoken words presented in sentence context in adults with than without dyslexia 

(Helenius et al., 2002b). 

 Several studies report dyslexia-related hemispheric variation of the exogenous 

components. The N1 amplitude for speech-related stimuli was larger over the right than 

the left hemisphere in adults and children with dyslexia, whereas in their normally 

reading age-mates, a reversed asymmetry was observed (Fried et al., 1981; Rosenthal et 

al., 1982). Children with dyslexia were also shown to have larger responses over the left 

than right hemisphere at the P1 and P2 time windows for tone pairs with long within 

pair intervals (255 ms) than their controls but not for tone pairs with short within pair 

intervals (10 ms) for which they showed equal amplitudes over both hemispheres (Khan 

et al., 2011). This was suggested to indicate that individuals with dyslexia process basic 

auditory information abnormally when the tones are within the temporal window of 

integration. Recent MEG studies show that the sources of N1m (Heim et al., 1999; 

2003a) and P1m (Heim et al., 2003b), the magnetic counterparts of P1 and N1, are 

different in dyslexic than in normal reading individuals. The N1m source in the 

temporal areas to speech sounds seems to be more symmetrical in adults with dyslexia 

than in control adults whose N1m source is anterior in the left to that in the right 
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hemisphere (Heim et al., 2003a). The P1 sources seem to be more symmetrical in 

children with dyslexia than in normal reading children whose P1m source was located 

anterior in the right to left hemisphere (Heim et al., 2003b). 

Even newborns at risk for dyslexia have a tendency for right hemispheric 

predominance for early speech sound processing whereas a reversed asymmetry is 

present in controls (Pihko et al., 1999; Leppänen et al., 1999; Molfese et al., 2000; 

Guttorm et al., 2001). Van Herten et al. (2008) found that the P1 and P2 peaks were 

delayed for standard word stimuli in children at risk for dyslexia at the age of 17 

months. Moreover, hemispheric group differences were observed for the N2 amplitude 

and the P1 latency. While the N2 peak amplitude was similar in size for the left and 

right hemispheres in the control group, in the at-risk group it was larger for the right 

than left hemisphere. The P1 occurrence, in turn, was delayed in the left hemisphere in 

the at-risk group. In addition, larger P1 and P2 amplitudes for deviant words were found 

in the control but not in the at-risk group. Conversely, only at-risk children showed 

enlarged N4 amplitudes for the deviant relative to the standard stimuli.  

Even the very early stages of central auditory processing seem to be strongly 

associated with upcoming reading skills. Based on ERP responses to speech sounds 

within 36 hours of birth, those infants who were diagnosed as having dyslexia at the age 

of 8 were identified with over 81 % accuracy (Molfese et al., 2000). Newborn event-

related potentials (ERPs) of children with and without familial risk for dyslexia are also 

associated with receptive language and verbal memory skills between 2.5 and 5 years of 

age (Guttorm et al., 2005) as well as phonological skills, rapid naming, and letter 

knowledge at the age of six (Guttorm et al., 2010). Moreover, the early obligatory 

responses for pitch changes in tones are associated with phonological processing at the 

age of 3.5 years, as well as with reading speed and reading accuracy in the 2nd grade of 

school (Leppänen et al., 2010). Furthermore, Banai et al. (2009) even showed a 

correlation between the timing of subcortical auditory processing and phonological 

decoding skills. 
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1.5.5 MMN in dyslexia 
 

The MMN studies have indicated impairments in discriminating both speech and non-

speech sounds in dyslexia. Several studies suggested diminished MMNs for sound 

frequency changes in dyslexic adults (Baldeweg et al., 1999; Kujala et al., 2003; 

Renvall & Hari, 2003). Baldeweg et al. (1999) found that MMNs to frequency changes 

(15-, 30-, and 60-Hz deviation) of 50 ms long 1000 Hz pure tones but not to duration 

changes (40-, 80-, 120-, and 160-ms deviation) of 200 ms long tones were abnormally 

small in amplitude in dyslexic subjects. The MMN area also was markedly reduced and 

the MMN onset and peak latencies longer for the frequency contrasts in adults with 

dyslexia than those in controls. Further evidence of such a neurophysiological deficit 

was given by the finding of a similarly specific impairment in discriminating tone 

frequency, but not tone duration, in a separate behavioural discrimination task. The 

MMN scalp topography for frequency changes was also abnormal in adults with 

dyslexia as the MMN amplitude was significantly smaller over the left hemisphere in 

dyslexic than in control subjects (Kujala et al., 2003). In agreement with this, MMNm 

(the magnetic counterpart of MMN) fields to frequency changes in tones were 

diminished in the left hemisphere of dyslexic subjects (Renvall & Hari, 2003).  

Furthermore, dyslexic adults also have pre-attentive difficulties in the processing of 

rapid temporal patterns. For example, the MMNs for tone pattern deviations, in which 

two segments of identical frequency but of different duration were exchanged, were 

smaller in the dyslexic group (Schulte Körne et al., 1999). In agreement with these 

results, attenuated MMN amplitudes were also found for tone order reversals in tone-

pairs, when an additional third tone followed the pairs after a 10 ms silent gap (Kujala et 

al., 2003). This was suggested to reflect temporal discrimination problems and 

increased backward-masking in the auditory cortex of dyslexic individuals.  

In dyslexic children, the cortical discrimination of consonant changes in syllables 

was impaired (Schulte-Körne et al., 1998; Sharma et al., 2006). The MMN for 

frequency change in tones did not differ between dyslexic teenagers and controls, 

whereas the MMNs elicited by the syllable deviant (da/ vs. /ga/) were diminished in 
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dyslexic individuals (Schulte-Körne et al., 1998). A similar finding was also reported in 

adults with dyslexia by the same research group (Schulte-Körne et al., 2001). 

Smaller MMNms to a consonant change in a stream of syllables (/ba/–/da/) were also 

found in dyslexic than in non-dyslexic children, the group difference being more 

pronounced in the left than right hemisphere (Heim et al., 1999). Interestingly, the 

cortical discrimination of tone frequency and consonant changes in syllables (/ba/ vs. 

/da/) was altered only in a subgroup of dyslexic children (Lachmann et al., 2005). 

Whereas the MMNs for frequency and consonant changes did not differ between 

controls and dyslexic children, who were impaired in non-word reading (or both non-

word and frequent word reading), the MMNs were diminished in the dyslexic group 

which had difficulties in frequent word reading but not in non-word reading. Both 

groups, in turn, showed altered cortical sound reception as reflected in diminished N250 

response amplitudes to tones and syllables compared with those of controls. These 

results were suggested to indicate that different diagnostic subgroups of dyslexics have 

different patterns of auditory processing deficits.  

The MMNs for a duration change in harmonical tones were enhanced in amplitude, 

but delayed in latency in dyslexic children (Corbera et al., 2006). Furthermore, the 

MMN laterality for duration changes in tones was abnormal in dyslexic children. In the 

dyslexic group, the MMN peak responses were larger over the left than right 

hemisphere, whereas the opposite pattern was found in controls (Huttunen et al., 2007). 

Children with dyslexia did not show enhanced MMNs to native-vowel prototypes either 

in comparison to responses to atypical vowels as controls did (Bruder et al., 2011). 

They even lacked crossmodal effects in an audiovisual letter-speech sound oddball 

paradigm (Froyen et al., 2011). Furthermore, whereas MMN amplitudes were larger to 

syllable changes in combination with written syllables than with scrambled images in 

fluent readers, dyslexic readers showed no difference between syllables vs. scrambled 

image condition (Mittag et al., 2013). MMNs to consonant and frequency changes also 

peaked later in dyslexic than fluent readers (Mittag et al., 2013). 

Pre-school children at familial risk for dyslexia also differed from their peers without 

such a risk with regard to their MMNs to frequency and phoneme changes (Maurer et 

al., 2003). The MMNs were smaller for frequency changes in tones in the at-risk than in 

the control group (Maurer et al., 2003. Moreover, the MMN to consonant deviance (/ba/ 
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vs. /ta/ and /da/) in syllables tended to be less lateralized to the left hemisphere in the at-

risk than in the control group (Maurer et al., 2003). As early as at the age of 6-months, 

infants with a familial risk for dyslexia showed reduced MMNs to varying /t/ durations 

in a pseudoword /ata/ (Leppänen et al., 2002) and to a frequency change in tones 

(Leppänen et al., 2010). An abnormal hemispheric ERP pattern was also observed.  

Taken together, several MMN studies suggest that the problems in dyslexia are 

expressed even at the early auditory sensory-memory stage of information processing 

(for reviews, see Bishop, 2007; Kujala, 2007; Schulte-Körne & Bruder, 2010; Leppänen 

et al., 2012; Hämäläinen et al., 2012). Furthermore, the altered change detection process 

reflected in the MMN was associated with later reading-related skills. The newborn 

MMNs for a frequency change were associated with phonological skills and letter 

knowledge prior to school age and with the phoneme duration perception, reading speed 

and spelling accuracy in the 2nd grade of school (Leppänen et al., 2010). Moreover, in 9-

year-old children, the MMN amplitudes to the native-vowel prototype correlated with 

more advanced reading and spelling skills (Bruder et al., 2011). In dyslexic adults, in 

turn, the MMNs for frequency changes were associated with the degree of impairment 

in phonological skills, as reflected in reading errors of regular words and non-words 

(Baldeweg et al., 1999).  

 

1.5.6 P3a in dyslexia 
 

There are only few studies that have investigated P3a in dyslexia. In adults with 

dyslexia, the P3a tends to be smaller in amplitude for pitch changes (Kujala et al., 2003) 

in unattended auditory stimulus sequences. In dyslexic children, the P3a amplitude is 

reduced and the latency delayed for a duration change of tones (Corbera et al., 2006). 

The P3a amplitude is also diminished for a frequency change in sinusoidal tone pairs 

(Hämäläinen et al., 2008). 

Moreover, reduced P3a was found in response to sounds incongruent with an 

asynchronously presented visual symbol in comparison with congruent sounds in 

dyslexic children when they were performing a symbol-to-sound matching task 

(Widmann et al., 2012). Enlarged P3a to novel sounds was, in contrast, found for novel 

sounds in dyslexic adults in an active listening condition (Rüsseler et al., 2002). These 
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results suggest that attention shifting, as indicated by the P3a (Escera et al., 2000; 

Squires et al., 1975), is abnormal at least in a subgroup of dyslexic individuals, which is 

in agreement with the notion that some dyslexic subjects suffer from attentional 

problems (Willcutt & Pennington, 2000; Willcutt et al., 2000; Carrol et al., 2005). 

 

1.5.7 Intervention, language-related deficits and ERPs 
 

There are so far only a few studies that have investigated effects of remediation 

programs on reading and spelling skills and concurrent changes in neural processes as 

reflected by auditory ERPs. In the study by Kujala et al. (2001) the non-speech audio–

visual computer program Audilex (Karma, 1999) improved auditory discrimination of 

infrequent order reversals in a group of dyslexics. This was reflected in increased MMN 

amplitudes in the Audilex group, which did not occur in the control group. The MMN 

amplitude change also correlated with the improvement in reading performance. In a 

recent study by Huotilainen et al. (2011) the same audio–visual training modestly 

improved the discrimination of duration and frequency changes as reflected in increased 

MMN amplitudes in 5-year-old children born with an extremely low birth weight and 

having reading-related difficulties. However, their reading-related skills did not 

significantly improve by the training. 

 In the MEG study by Pihko et al. (2007), the effectiveness of a phonological 

intervention program was assessed in bilingual preschool children with specific 

language impairment (SLI). Auditory evoked magnetic fields were measured before and 

after the intervention for phoneme changes in syllables. Also a behavioural 

discrimination test of these phoneme changes was performed. The phonological training 

group manifested changes of brain activity in both hemispheres and slightly improved 

in the behavioural discrimination test. Effects of the intervention were observed both in 

sound encoding (P1m) and sound discrimination (MMNm) as the strength of the P1m 

responses, and the MMNm for the syllable deviant increased in the training group. 

Together, these studies suggest that ERPs provide an excellent tool for investigating 

possible cortical changes caused by reading-related remediation programs. 
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2 THE AIM OF THE STUDY 
 

The present thesis addressed cortical multi-attribute auditory discrimination in dyslexia 

and the effects of intervention on reading-related skills and speech sound 

discrimination. Furthermore, the feasibility of the multi-feature MMN paradigm for 

dyslexia research and studies in children was tested for the first time. 

 

Study I aimed at determining the pattern of cortical auditory discrimination in adults 

with dyslexia, more specifically, whether they have difficulties in the discrimination of 

frequency, duration, intensity, and location changes as well as a short gap in tones, and 

if so, whether these auditory deficits are affected by stimulus duration or paradigm 

complexity. By comparing the MMNs obtained with the multi-feature paradigm and 

oddball paradigm, the feasibility of the new, time-effective paradigm for evaluating 

auditory impairments in dyslexia was addressed. It was hypothesized that adults with 

dyslexia would have deficits in frequency discrimination of shorter but not longer sound 

stimuli. Furthermore, the multi-feature paradigm was hypothesized to be more 

challenging than the oddball paradigm for the sensory memory of dyslexic individuals. 

 

The goal of Study II was to determine the feasibility of the multi-feature paradigm for 

investigating auditory discrimination of vowel, vowel-duration, consonant, frequency, 

and intensity changes in syllables in 6-year-old normally developing children. To this 

end, it was determined whether the MMNs elicited with the new multi-feature paradigm 

were similar to those in the oddball paradigm. If the MMNs elicited in the two 

paradigms were similar, then the more time-efficient multi-feature paradigm could be 

applied in future studies to determine auditory discrimination profiles in children. 

 

Study III aimed at gaining a comprehensive view on the possible ERP markers 

associated with dyslexia even before school age.  Sound encoding and sound 

discrimination critical for speech perception were investigated with the new multi-

feature paradigm in children at risk for dyslexia. Also the oddball paradigm was used in 

order to determine whether the multi-feature paradigm yields results consistent with 
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those obtained with the oddball paradigm. The children at risk for dyslexia were 

hypothesized as having difficulties in sound encoding and particularly in sound 

discrimination of vowel, vowel-duration, consonant, and frequency contrasts.  

 

Study IV wished to determine whether an intervention game developed for 

strengthening phonological awareness by letter-sound association training has a 

remediating effect on reading skills and central auditory processing in 6-year-old 

children with difficulties in reading-related skills. The effectiveness of the intervention 

was evaluated by testing reading-related skills and by recording auditory ERPs with the 

multi-feature MMN and oddball paradigms before and after the training period. 

Reading-related skills and phonetic discrimination accuracy were hypothesized to 

improve in the intervention group as these were actively trained in the intervention 

game.  
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3 METHODS 
3.1 Subjects 
 

The subjects were adults with dyslexia (Study I), 6-year-old children without 

indications of dyslexia (Study II), children with familial risk for dyslexia having 

reading-related difficulties (Study III), and children with reading-related difficulties 

with or without a familial risk for dyslexia (Study IV). The clinical groups in Studies I 

& III were compared with an age-matched control group. All the subjects were 

monolingual Finnish-speakers. 

In Study I, all the adult dyslexic subjects described reading problems according to 

the ICD-10 (World Health Organization, 1993) and had a performance worse than -1 

SD below the mean of the age-matched normative data (Virsu et al., 2003) on at least 

three of the reading-skills tests. 

The children (Studies II, III, & IV) underwent a rigorous assessment related to 

developing reading skills. The children tested were thereafter selected to Studies II, III, 

& IV based on the history of reading-related difficulties in their families and children’s 

performance on reading-related tests:  

In Study II, none of the children had two or more test results 1 SD or more below 

the normative mean in reading-related tests. In tests without normative data, the 

children were not expected to be able to read or write, even though many of them did. 

In Study III, the criterion for the dyslexia risk was to have at least the mother or the 

father and one additional close relative with a history of reading-related problems and a 

performance worse than 1 SD below the mean in at least two of the reading-related 

tests. The criteria for the control group was not to have relatives with reported history of 

developmental disorders and to have no more than one test result 1 SD below the 

normative mean in reading-related tests, to be able to write his/her own name, and to 

name at least 17 letters. 

In Study IV, the at-risk children from Study III and additional children who were 

not able to read and who had performance on at least one reading-related task more than 

1 SD below the expected, were chosen for the training period. 
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A more detailed description of the subjects is given in Table 1. An informed written 

consent was obtained from the adult subjects (Study I) and parents (Studies II, III, & 

IV), and a verbal assent from the children. The studies were approved by the Ethical 

Committee of the former Department of Psychology, the University of Helsinki. 
 

Table 1. Charasteristics of the subjects 

* PIQ was assessed with WISC-III in child (Wechsler, 1991) and with WAIS-R in adult (Wechsler, 1981) 

subjects. 

 

3.2 Reading skills and reading-related skills 
 

In Study I, the adult subjects were tested with several reading-skill tests. In 

phonological tests, the subjects were asked to either discriminate non-words, or to form 

words from speech sounds. The non-word span was tested with a task to repeat non-

word lists, and naming speed with Rapid Alternating Stimulus Naming (RAS; Wolf, 

1986). In a test of reading accuracy, the subject had to read a text, and in a word 

segmentation speed test (Lindeman, 1998) to mark word boundaries as fast and 

accurately as possible. Reading comprehension test included questions on a fiction and 

a non-fiction text (for 6th graders), presented one-by-one (Lindeman, 1998). The subject 

could read the text as many times as required without time constraints. The word 

segmentation speed test and reading comprehension test for children (Lindeman, 1998) 

were previously shown to be applicable even to adults with dyslexia when compared to 

adult norms (Laasonen, 2002). 

In Studies II-IV, the children were assessed with phonological tests: Phonological 

Processing (NEPSY; Korkman et al., 1997), Phonological Processing (Diagnostic Tests 

1; Poskiparta et al., 1994), and Repetition of Non-words (NEPSY; Korkman et al., 

1997). In these tasks, the child operated with sounds within words, segmented words 
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into parts and repeated non-words after the play recorder.  The naming speed was 

assessed with Rapid Alternating Naming Test (RAN; Ahonen et al., 2003), and digit 

span (forward and backward) with WISC-III (Wechsler, 1991). Their reading was 

assessed with Reading Fluency (Lukilasse; Häyrinen et al., 1999) and with a test called 

Reading Syllables and Non-words where children read syllables and non-words. 

Children’s letter knowledge and writing skills were assessed with tests as follows: 

Letter Knowledge, Letter Recognition (Studies III & IV), Writing Words and Non-

words, and Writing Syllables and Non-words. In these tasks, children were asked to 

name the Finnish alphabets, to recognize Finnish letters from other symbols, and to 

write down syllables, easy Finnish words, and non-words. In Study IV, Phonological 

processing (Poskiparta et al., 1994), Reading Syllables and Non-words, Letter 

Knowledge, Letter Recognition, Spelling Words and Non-Words, and Spelling 

Syllables and Non-Words were administered twice to the children who participated in 

the training period. Analysis of variance (ANOVA), paired-samples t-test, and one-

tailed Spearman test were used for statistical analysis of the behavioural data. 

 

3.3 Intervention  
 

In Study IV, 29 children successfully completed a computer game training period of 3 

weeks (5-20 min training per session, total of 3 hours) in the child’s preschool or at the 

child’s home. The intervention game GraphoGame (Lyytinen et al., 2007) was played 

by 16 children, and the control number-knowledge game by 13 children. Both games 

were matched in terms of game type, visual appearance, and motivational aspects. 

In GraphoGame, the player makes a choice from orthographic items (letters) that 

match speech sounds (phonemes) delivered concurrently. The letters are presented in 

falling balls each containing a stimulus. The child’s task is to find and click with the 

mouse on the visual target that matches the auditory stimulus he/she hears from the 

headphones. The game proceeds via several levels depending on the child’s learning. 

Firstly, the child gets to practice with the most frequent letter–sound (grapheme–

phoneme) pairs, therafter moving to less frequent and more complex graphemes, 

monosyllabic words, and pseudowords. As the player progresses through the levels, 

both the number of alternative orthographic items (distracters) and their rate of falling 
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increase. The control game consists of arithmetic exercises instead. The player trains 

number knowledge, size and quantity estimations, ordering of numerals, and basic 

addition and subtraction. As the GraphoGame, the control game also proceeds via 

several levels, depending on the child’s learning. The player gets to more advanced 

levels only if she/he responds with high accuracy at the present level. In both games, 

correct performance is rewarded with visual “stickers” that are collected as well as by 

verbal encouragement produced by the game. 

 

3.4 Event-related potential recordings 
 

3.4.1 Experimental conditions and stimuli 
 

ERPs were recorded with multi-feature and oddball paradigms in all studies (Fig. 1). In 

Study I, the standard sounds were harmonical tones composed of 500, 1000 and 1500 

Hz sinusoidal tones of 100 ms (3 multi-feature and 3 oddball blocks) or 50 ms (3 multi-

feature and 3 oddball blocks) duration. In the multi-feature condition, the deviant 

sounds differed from the standards by frequency (± 6 %), duration (-35 ms with the 100 

ms standards and -17 ms with the 50 ms standards), intensity (± 5 dB), location 

(presented 0.65 ms earlier to the right, or left ear), or by including a gap (10 ms within 

the 100 ms standards and 5 ms within the 50 ms standards). In the oddball condition, the 

frequency and duration deviants were the same as in the multi-feature paradigm 

whereas the rest of the deviant stimuli were replaced with standard stimuli. 

 In Studies II-IV, the standard sounds were semi-synthetic consonant-vowel (CV) 

syllables, /pi:/ in a half of the blocks, and /te:/ in the other half of the blocks. There were 

4 blocks that were multi-feature paradigm sequences and 4 blocks with oddball 

sequences. The fundamental frequency (F0) of the syllable was 101 Hz and duration 

170 ms. In the multi-feature condition, the deviant syllables differed from the standards 

by the vowel (/pe:/ and /ti:/), vowel-duration (-70ms; /pi/ and /te/), consonant (/ti:/ and 

/pe:/), syllable frequency (± 8 %), or intensity (± 7 dB). In the oddball condition, vowel 

and vowel-duration deviants were the same as in the multi-feature paradigm whereas 

the rest of the deviant stimuli were replaced with standard stimuli. In all studies, the 
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order of the stimulus blocks was counterbalanced and the stimulus-onset asynchrony 

(SOA) was 500 ms.  

 

 
Figure 1. Illustration of the multi-feature (a) and oddball (b) paradigms. S denotes standard tone/syllable 

and D1-5 deviant types. D1 and D2 were either frequency and duration deviants (Study I) or vowel and 

vowel-duration deviants (Studies II-IV) which were used in both paradigms. D3-D5 were intensity, gap 

and location deviants (Study I) or consonant, frequency (F0) and intensity deviants (Studies II-IV), 

which were used in the multi-feature paradigm only (Adapted from Näätänen et al., 2004). 
 

 

 All the experiments were carried out in an electrically shielded and sound-attenuated 

room. The stimuli were presented through headphones with an intensity of 55 dB (SPL) 

(Study I) or through two loudspeakers that were positioned behind the subject, who 

heard the stimuli as coming from the back midline space at an intensity of 60 dB (SPL) 

(Studies II-IV). All the subjects were watching a silent movie during the recordings. 

 

3.4.2 Data acquisition and analysis 
 

The electroencephalogram (EEG) was recorded with electrodes placed according to the 

International 10-20 system (Jasper, 1958). In Study I, the electrodes were placed at F3, 

Fz, F4, C3, Cz, C4, Pt3, Pz, T3, and T4 and in Studies II-IV, at F3, Fz, F4, C3, Cz, C4 

scalp sites. In all the studies, electrodes were also placed at the left and right mastoids 

and the reference at the tip of the nose. Vertical and horizontal eye-movements were 

monitored as well, with electrodes placed below and at the outer corner of the right eye. 

The ERPs were separately averaged for each standard and deviant type, filtered, and 

baseline-corrected. The details of data acquisition and analysis are presented in Table 2. 
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The electrodes and the windows for the ERP latency and amplitude quantifications were 

chosen based on the guidelines by Picton et al. (2000) and by visual inspection of the 

waveforms. The grand-mean peak P1, N2 and N4 latencies were identified from the 

waveforms for the standards at F3 (Study III) and Fz (Study IV). The windows for the 

latency identification were at 50-150 ms (P1), 150-300 (N2), and 300-400 ms (N4) from 

standard-stimulus onset. The MMN (Studies I-IV) and P3a (Studies I & IV) responses 

were quantified from the difference waveforms obtained by subtracting the ERPs 

elicited by standard stimuli from those elicited by deviants. These difference waveforms 

were separately created for each deviant type. In Study I, the MMN latency and 

amplitude were quantified at Fz at 100-250 ms and those for P3a at Cz at 200-350 ms 

from deviant stimulus onset from the individual difference waveforms. The amplitude 

values were measured with a 50 ms window centered at the individual peaks.  In Study 

II, the MMN latency and amplitude were quantified from the difference waveforms at 

Fz at 200-330 ms, in Study III at the F3 at 200-400 ms, and in Study IV at the Fz at 

200-400 ms. The window for the P3a was 300-500 ms from deviant-stimulus onset 

(Study IV). The individual mean amplitudes were integrated over 50 ms around the 

grand-mean peak latencies. 
 

Table 2. The details of the data acquisition and analysis 

 

 

 

 

 

 

 

 

 

 

T-tests were used to determine whether the responses significantly differed from 

zero. Differences in the ERP amplitudes and latencies between the groups (Studies I, 

III, and IV), between the multi-feature and oddball paradigms (Studies I - IV), and 

between the measurement times before and after the training period (Study IV) were 

analyzed with the analysis of variance (ANOVA) for repeated measures. The 
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Greenhouse-Geisser correction was applied to determine the sources of the significant 

main effects and interactions. Unless otherwise mentioned, all results presented in the 

Results section are significant with p-values less than .05. 
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4 RESULTS AND DISCUSSION 
 

4.1 Multi-feature MMN paradigm as a research tool 
 

In Study I, the MMNs for frequency and duration changes in harmonical tones were 

comparable in amplitude in the multi-feature and the oddball paradigms in the adult 

control group. The dyslexic adults had, in turn, significantly smaller MMNs for 

frequency and duration changes when they were presented with the multi-feature than 

the oddball paradigm. This suggests that dyslexic adults have more difficulties in 

detecting changes in sound streams with than without variation, as the auditory context 

in the multi-feature paradigm is more complex than in the oddball paradigm.  

In Study II, normally developing children had significant MMNs for vowel, vowel-

duration, consonant, frequency (F0), and intensity changes in syllables presented with 

the multi-feature paradigm (Fig. 2). Furthermore, the responses for vowel and vowel-

duration changes were comparable to the ones recorded with the oddball paradigm as no 

significant differences between the responses between the two paradigms were observed 

(Fig. 3). These results suggest that the multi-feature paradigm is suitable for studies in 

children. 

 

 

        
 
Figure 2. Deviant-minus-standard difference waveforms for ERPs elicited by vowel, vowel-duration, 

consonant, frequency (F0) and intensity deviants at the Fz scalp location in the Multi-feature paradigm in 

normally developing children. 
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Figure 3. Deviant-minus-standard ERP difference waveforms for vowel and vowel-duration deviants at 

Fz loci in the Multi-feature and Oddball paradigms in normally developing children. 

 

 

In Study III, the MMNs recorded with the two paradigms did not significantly differ 

from each other, either in the control group or the group at risk for dyslexia. However, 

in Study IV, the MMN amplitudes were larger in general in the multi-feature than in 

the oddball paradigm. Taken together, these results suggest that the multi-feature MMN 

paradigm produces either similar or even a better MMN signal than the oddball 

paradigm in adults and in children and is therefore suitable for clinical studies. 

 

4.2 Cortical auditory processing in dyslexia 
 

4.2.1 Obligatory ERPs 
 

Obligatory ERPs were investigated in Study III including children at risk for dyslexia. 

The amplitude of the P1 waveform for syllables was nearly significantly smaller in the 

at risk children than in their controls, particularly over the right hemisphere (group main 

effect (F(1,17) = 3.52, p< .08) (see Fig. 4). Furthermore, the group waveforms (Fig. 4) 

suggest amplitude differences of the N2 and N4 responses between the groups although 

these differences were not statistically significant. These results are in agreement with 

previous studies that have also suggested deficits even at the stage of establishing sound 

presentations in children at risk for dyslexia (Guttorm et al., 2001; Van Herten et al., 

2008; Leppänen et al., 2012). The processing speed of sound feature encoding, in turn, 
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was comparable in children at risk for dyslexia and controls as no latency differences in 

the standard-sound ERPs were found between the groups.  

 

      
 
Figure 4. Grand mean ERP waves for the standard syllables at the F3, Fz, F4, C3, Cz, and C4 scalp loci 

in the multi-feature and oddball paradigms in children at risk for dyslexia and controls. 

 
 

4.2.2 MMN 
 

In Study I, the MMN recorded with the multi-feature paradigm was significantly 

diminished for a tone frequency change and enhanced for a location change in adults 

with dyslexia (Fig. 5). In contrast, there were no significant group differences in the 

MMN amplitudes recorded for the frequency change in the oddball paradigm (Fig. 5). 

The longer stimuli (100 ms vs. 50 ms) did not seem to facilitate frequency 

discrimination as no tone duration x group interaction was found. The results obtained 

with the multi-feature paradigm suggesting impaired frequency discrimination in adult 

dyslexics are in agreement with previous studies (Baldeweg et al., 1999; Kujala et al., 

2003; Renvall & Hari, 2003), whereas the results obtained with the oddball paradigm 

are not. 

The failure to replicate the frequency discrimination impairment in dyslexia in an 

oddball condition could have been caused by use of the spectrally rich stimuli used in 

the present study, whereas the previous studies used sinusoidal tones (Baldeweg et al., 

1999; Kujala et al., 2003; Renvall & Hari, 2003). As a rich spectral sound structure 

facilitates frequency discrimination (Tervaniemi et al., 1999), it may have improved 
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frequency discrimination in dyslexic subjects, thereby abolishing group differences in 

the oddball condition. The high degree of variation in multi-feature condition, in turn, 

might have caused the diminished frequency MMN in dyslexic subjects.  

Stimulus parameters had, in turn, an effect on the location discrimination, as the 

MMNs for sound location changes were enlarged for the 50 ms tones but not for the 100 

ms tones in the dyslexic group compared to controls in the multi-feature paradigm. This 

suggests that dyslexic adults are superior to their controls in discriminating location of 

short but not of long tones. The enhanced MMN for sound location changes of 50 ms 

sounds in the dyslexic subjects is a novel finding (Fig. 5). Previously, in a behavioral 

study by Amitay et al. (2002), the dyslexics were poorer in discriminating sound 

locations produced with interaural phase differences of 500 Hz sinusoidal 500 ms 

sounds compared to controls. Again, different stimulus parameters in these two studies 

may be the reason for the discrepant results (e.g., pure tones vs. spectrally rich tones, 

short vs. long sound duration). 

 



! $&!

 
 
Figure 5. Deviant-minus-standard ERP difference waveforms for the 50 ms (top) and 100 ms stimuli 

(bottom) in the Multi-feature and Oddball paradigm in adults with dyslexia and controls. 

 

 

In Study III, children at risk for dyslexia had diminished MMN amplitudes for the 

vowel, vowel-duration, and consonant changes compared to the controls (Fig. 6). These 
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results are in agreement with previous studies (Schulte-Körne et al., 1998; Leppänen et 

al., 2002; Sharma et al., 2006), and indicate deficient pre-attentive phoneme processing 

in dyslexia. The results are compatible with the contention that dyslexia is associated 

with a difficulty in establishing accurate phonological representations (Snowling et al., 

2000). Furthermore, the MMNs for intensity changes were also diminished in the at-risk 

group. This suggests that even the discrimination of non-linguistic changes and changes 

involving no rapid transitions are impaired in children at risk for dyslexia. As sound 

intensity, how the sound energy changes in amplitude over time, is crucial information 

for syllabic segmentation, impairments in intensity discrimination could lead to word 

segmentation difficulties often present in young dyslexic children (Snowling et al., 

2000).  

In contrast to the results from the study with adult subjects (Study I) and previous 

studies showing altered frequency processing in dyslexia (Baldeweg et al., 1999; Kujala 

et al., 2003, 2006b; Renvall & Hari, 2003; Maurer et al., 2003; Leppänen et al., 2010), 

there were no significant differences between the children at risk for dyslexia and 

controls in the MMNs for the frequency change. However, there are also other studies 

that have reported similar MMNs to a frequency change in dyslexic children and their 

controls (Schulte-Körne et al., 1998; Corbera et al., 2006). As suggested before, it may 

be that there is only a subgroup of dyslexic children that have difficulties in frequency 

discrimination (Ramus et al., 2003; Lachmann et al., 2005). Furthermore, it has been 

suggested that the frequency discrimination skills might not be adult-like until the ages 

of 7-9 (Jensen & Neff, 1993). If these skills are still developing in 6-year-old children, it 

may be difficult to find group differences. 
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Figure 6. Deviant-minus-standard ERP difference waveforms at the F3, Fz, F4, C3, Cz, and C4 scalp 

location in the multi-feature and oddball paradigms in children at risk for dyslexia and controls. 

 
 

MMN abnormalities in the at-risk group were also seen in the scalp topography. 

Whereas the MMN amplitudes were smaller in the at-risk than in the control group for 

the vowel deviant in all electrode loci, and for the vowel-duration and intensity deviants 

over the lateral scalp loci, the MMN for the consonant deviant was diminished in 

amplitude over the right hemisphere in the at risk group. These results are in agreement 

with previous studies suggesting altered neural generators for speech sound processing 

in dyslexia. Even though the present study shows group differences in the MMN 
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topography for several sound features, the results do not indicate a special left-

hemisphere dysfunction in at-risk children suggested by previous studies (Shaywitz et 

al., 1998; Renvall & Hari, 2003; Temple et al., 2003). However, there are also imaging 

studies that show differences between dyslexic subjects and normal readers in both 

hemispheres (Eden et al., 1996; Klingberg et al., 2000; Maurer et al., 2011). For 

instance, reduced word-specific activation in dyslexic 5th grader's fMRI data occurred 

bilaterally in middle temporal regions and in the left posterior superior sulcus (Maurer 

et al., 2011). Moreover, as only a limited number of electrodes were used, it is difficult 

to interpret exactly which brain areas contributed to the results.  

The latency comparisons (Studies I and III) indicated no significant group 

differences. This suggests that the speed of cortical auditory discrimination in adult 

dyslexics and at risk children is comparable to their controls.  

 

4.2.3 P3a 
 

In Study I, there were no significant amplitude or latency group effects on the P3a. 

However, amplitude differences could be seen in the grand-mean difference waves (Fig. 

5). Moreover, there were fewer significant P3a responses in dyslexic than control 

subjects. These results are in agreement with previous studies that have suggested to 

some extent impaired involuntary attention shifting to sound changes as indicated by the 

P3a in dyslexia (Kujala et al., 2003; Corbera et al., 2006; Hämäläinen et al., 2008). 

Even though attentional problems often co-occur with dyslexia (Carroll et al., 2005), it 

is possible that only a subsample of individuals participating in Study I had attentional 

problems.  

The P3a responses were not analyzed in Study III as there were no clear P3a 

deflections seen in the group difference waveforms for all the deviants. A small P3a 

deflection can only be seen for the vowel-duration change, which also elicited the 

largest MMNs compared to the other deviants (Fig. 6). These results suggest that 

involuntary attention did not shift to vowel, consonant, frequency, and intensity changes 

in syllables in either of the child groups. The results are in agreement with Study II and 

a previous adult study that used the same syllable stimuli (Pakarinen et al., 2009).  
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4.3 Intervention effects 
  

In Study IV, the brief training period with audio-visual intervention improved central 

skills needed for successful reading-skill acquisition. Although there appears to be a 

difference in the group averages before the training period (Figs. 7 and 8), no 

statistically significant differences were found. The children who played the 

intervention game improved in all the reading-related skills tested, while the children in 

the control group improved only in few (Fig. 7). Letter Knowledge, Phonological 

Processing and Reading Syllables and Non-Words were skills that developed in both 

groups, whereas the children in the intervention group also improved in recognizing 

letters belonging or not belonging to Finnish, and learned to write syllables, non-words, 

and words, effects that were not present in the control group. These results are in 

agreement with previous studies with GraphoGame (Brem et al., 2010, Saine et al., 

2010; Lyytinen et al., 2007) that report improved reading-related skills after audio-

visual letter-sound association training. 
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Figure 7. Test scores in Phonological processing, Letter Knowledge, Letter Recognition, Reading 

syllables and non-words, Writing words and non-words, and Writing syllables and non-words before and 

after the training period (1=before, 2=after) in the intervention and control groups. Significant differences 

before and after the training are marked with asterisks, *p < .05, **p < .01, ***p < .001 (matched pairs 

test). 

 
 

Reading improvements were parallelled by functional changes in the brain, reflected 

in the increased MMN amplitudes for the vowel and vowel-duration changes in the 

intervention group. The training effects were best reflected in the vowel MMN (Fig. 8). 

Moreover, there was a significant correlation between the increase in the MMN 

amplitude and improvements in Letter Knowledge and in Letter Recognition. This 

result indicates a close relationship between the passive cortical discrimination of vowel 

changes and the active letter processing ability. As expected, MMN amplitudes for 

frequency and intensity changes, in turn, were not increased by the intervention as they 

were not features actively trained in the games. 
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Figure 8. Deviant-minus-standard ERP difference waveforms at Fz in the Multi-feature and Oddball 

paradigms before and after the training period in the intervention and control groups. 

 

 

In both groups, the MMN latency was faster for the vowel change after the training 

period. The training effects were also seen in the enhancement of the P3a amplitude 

(Fig. 8). As both games required quick responses to the stimuli and demanded a strong 

attentional engagement from the child, these results may reflect a general improvement 

in reaction speed and improved attention shifting to speech sound changes in both 

groups. Unlike the MMN and P3a, the obligatory P1, N2 or N4 showed no significant 

differences between the recordings before and after the training periods or groups. This 

was expected as these ERPs are thought to reflect basic reception and encoding of a 

sound, which was not actively trained in the games (Näätänen & Winkler, 1999). 
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5 GENERAL DISCUSSION 
 

5.1 Multi-feature MMN paradigm in dyslexia research 
 

As indicated by the compatible (Studies II and III) or even larger (Study IV) MMN 

amplitudes for vowel and vowel-duration changes in the multi-feature paradigm than 

those in the oddball paradigm in children, it can be concluded that the multi-feature 

paradigm produces either a compatible or even a better MMN signal than the oddball 

paradigm in children. This suggests that the multi-feature paradigm is well suited for 

studies in children. 

The results from Study I showed that the MMN amplitudes for frequency and 

duration deviants were diminished in adults with dyslexia compared to those of their 

controls in the multi-feature but not in the oddball paradigm. This indicates that the 

multi-feature paradigm is more sensitive than the traditional oddball paradigm in 

tapping auditory impairments in dyslexic adults. In line with this, the multi-feature 

paradigm also provides a more sensitive measure than the oddball paradigm for 

detecting auditory discrimination deficits in schizophrenia (Thönnesen et al., 2008). 

Furthermore, a paradigm with continuously changing (‘roving’) standard stimuli was 

suggested to characterise the abnormal processes underlying cognitive impairments in 

schizophrenia more appropriately than the oddball paradigm (Baldeweg et al., 2004). 

Taken together, these results suggest that responses measured with more challenging 

paradigms than the oddball paradigm more appropriately characterise the central 

auditory processes underlying cognitive impairments in adults.  

Furthermore, the results from Study I are to some extent in agreement with the 

anchoring-deficit hypothesis of Ahissar (2007), which predicted that the MMN process 

would be more abnormal in dyslexic subjects under conditions that tax the formation of 

the memory trace. In agreement with Ahissar’s (2007) hypothesis, it seems to be more 

difficult for dyslexic individuals to form a memory trace for the standard sound-

frequency and duration in the multi-feature paradigm that includes more variation than 

the oddball paradigm. In line with this, children with better results in Auditory Memory 
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Span test have a higher incidence of the MMN in multi-feature paradigm (Bauer et al., 

2009). 

However, in contrast to the results from the adult study, children at risk for dyslexia 

processed vowel and vowel-duration contrasts in a deficient way in both paradigms and 

not only in the multi-feature paradigm. Possibly, the at-risk children did not similarly 

benefit from the simple acoustic context of the oddball paradigm as did the adult 

dyslexic subjects. It would be worth studying, whether the ability to discriminate sound 

features is more severely altered in the early childhood than later in life in dyslexia. 

Consistent with this, younger SLI children were poorer in sound discrimination than 

older SLI children (McArthur & Bishop, 2004). This was suggested to reflect an 

immature development of auditory cortex in SLI, such that the adult level of auditory 

discrimination performance is attained several years later than normal. Furthermore, an 

impaired N1 tuning for print was shown to play a major role for dyslexia at the 

beginning of learning to read whereas other aspects of visual word form processing 

remained impaired after several years of reading practice (Maurer et al., 2011). This 

was suggested to reflect how neural deficits associated with dyslexia are plastic and 

change throughout the development and reading acquisition (Maurer et al., 2011). 

In conclusion, the results from this thesis suggest that the multi-feature paradigm is 

an attractive tool for future studies that address auditory processing in children and 

clinical groups. This is consistent with recent studies in which the multi-feature 

paradigm with tones was successfully used to investigate healthy newborns (Sambeth et 

al., 2009), 2-3- year-old toddlers (Putkinen et al., 2012), and with individuals with 

Asperger syndrome (Kujala et al., 2007), schizophrenia (Thönnesen et al., 2008), post-

traumatic stress disorder (Menning et al., 2008), central auditory processing disorder 

(Bauer et al., 2009), and epilepsy (Korostenskaja et al., 2010). The multi-feature 

paradigm with syllables, in turn, has been successfully applied to study healthy 

newborns (Partanen et al., 2013), and children with the Asperger syndrome (Kujala et 

al., 2010). Recently, new versions of the multi-feature paradigm have been developed 

(Thönnesen et al., 2010; Shtyrov et al., 2010; Sandmann et al., 2010; Partanen et al., 

2011; Pakarinen et al., 2012), for example one with pseudo-words (Partanen et al., 

2011).  
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5.2 Altered cortical auditory processing in dyslexia 
 

As indicated by a tendency for diminished amplitudes of the obligatory ERPs, the 

processing of auditory information in children at risk for dyslexia differs from the 

typical path even at the early stages of sound feature encoding. It could be assumed that 

these difficulties contribute to the phonological problems in dyslexia as deficits in 

sound feature encoding may weaken the development of phonological representations. 

However, it is unlikely that atypical sound feature encoding alone is sufficient to lead to 

dyslexia but rather is a risk factor causing cumulative effects on those processes that are 

critical for learning to read. Moreover, since the exact functional correlates of the 

childhood P1, N2 and N4 responses are still poorly understood, further studies in 

normally developing children and in children at risk for dyslexia at different ages are 

needed before these findings can be used as markers of dyslexia risk.  

As reflected in the diminished MMN amplitudes, the adults and children at risk for 

dyslexia have a deficient way of discriminating non-speech and speech sound changes. 

Adults with dyslexia show deficits in discriminating frequency and duration differences 

in a demanding auditory context including variation. However, their discrimination of 

intensity changes and gap seems to be unaffected and the processing of location even 

enhanced. Children at risk for dyslexia showed a widespread pattern of deficits, which 

was manifested in the compromised processing of vowel, vowel-duration, consonant 

and intensity but not frequency contrasts. The failure to replicate frequency-

discrimination impairment in adults in the oddball paradigm and in children at risk for 

dyslexia in the multi-feature paradigm may be caused by different stimulus types 

(simple tones in previous studies vs. spectrally rich tones and syllables in the present 

ones), different magnitudes of the sound changes, and experimental parameters. These 

differences may at least partially explain the inconsistencies that concern the findings 

on auditory processing deficit in dyslexia. Therefore, future studies in dyslexia should 

longitudinally investigate, with the help of multi-feature paradigm, how individuals 

with dyslexia differentiate different magnitudes of different sound feature contrasts, 

such as frequency and duration, in both tone and speech contexts at different ages. 

Knowledge of these processes could, in the long run, help in designing remediation 

programs. 
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The great heterogeneity of the symptoms in dyslexia or heterogeneity of the disorder 

(Boder, 1973; Castles & Coltheart, 1993; Borsting et al., 1996; Cohen et al., 1992; Wolf 

& Bowers, 1999; Wolf et al., 2002; Kirby et al., 2003; Ramus et al., 2003; 

Papadopoulos et al, 2009; Araújo et al., 2010) may also be factors leading to varying 

findings on auditory processing deficits in dyslexia. Recent studies report auditory 

processing deficits in ca. 39 % of individuals with dyslexia (Hämäläinen et al., 2012), 

and it has been suggested that only a sub-group of dyslexic individuals has a pitch 

discrimination deficit (Bailey & Snowling, 2002; Banai & Ahissar, 2004). The majority 

of the children at risk for dyslexia in Study III may have been children that do not pose 

difficulties in frequency discrimination while having a deficient way of processing other 

sound differences. As suggested by Lachmann et al. (2005), different subgroups of 

dyslexic children may have different kinds of auditory problems. In their study, 

frequency and consonant processing was altered only in a subgroup of dyslexic children 

who had problems in frequent word reading. As the children in Study III were 

investigated before the school start, it was not possible to know how many of them do 

become dyslexics later on, and what kind of reading problems they may suffer from.  

The present thesis supports the view that one of the developmental pathways leading 

to dyslexia involves compromised low-level auditory-processing skills. It is also one of 

the potential areas on which to focus in order to prevent upcoming reading problems. 

However, advances in the EEG analysis techniques are needed in order to be able to 

increase the signal-to-noise ratio and thereby enable interpretations and actions at an 

individual level.  
 

5.3 Intervention effects on reading-related skills and cortical 
processes 
  

Training grapheme-phoneme associations with GraphoGame (Lyytinen et al., 2007) for 

only 3 hours was sufficient for causing reading-related improvements, as the children 

who played the intervention game made progress in all the reading-related skills tested. 

Previous remediation studies have tended to include extensive amounts of training, 

resulting in a conclusion that a 5-18 hour training period over several weeks is needed 

in order to gain maximal effects (Ehri et al., 2001). The present results show that even a 
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short carefully targeted intervention that is adaptively administered and motivating for 

the child can induce significant changes. 

As in many intervention studies, also the control group improved in reading-related 

skills (e.g., Rouse & Krueger 2004; Given et al., 2008; Törmänen et al., 2009). This 

may at least partially be caused by the children’s sensitive developmental stage at the 

age of six. Reading-related skills are actively learned in Kindergarten, at home and even 

independently, and the improvements can be fast (Aro, 2006; Lyytinen et al., 2006). 

Letter knowledge is thought to be the most important basic skill needed for learning to 

read a shallow orthography such as Finnish, and it was this skill that developed in both 

groups. However, the intervention group learned not only to recognize letters but also 

improved in recognizing letters belonging or not belonging to Finnish. Moreover, only 

the intervention group improved in the spelling skills. Only few previous studies 

investigating the effects of auditory or audiovisual remediation reported improved 

spelling skills together with improved reading-skills (for a review, see Loo et al., 2010). 

In the present study, the children learned to write syllables, non-words, and words. In 

Finnish, reading and spelling skills seem to develop hand-in-hand. When a child learns 

to read a word he/she also learns to write it (Aro, 2006). These results may therefore 

indicate a generalized training effect. 

The phonological processing task, in which the child was asked to remove and 

change the phonemes of the words, shows whether the child has developed a sensitivity 

to attend to small segments of speech sound (here phonemes) and to manipulate these in 

his/her mind. This metaskill is a prerequisite and a predictor of the emerging reading 

ability (Bradley & Bryant, 1978), and also a skill which is developing at the age of six 

(Wagner et al., 1994). The children were expected to improve in syllable reading, since 

the intervention trains association between graphemes and phonemes, which is the core 

of the decoding skill in transparent orthography (Lundberg et al., 1980; Lyytinen & 

Lyytinen, 2004; Ziegler & Goswami, 2005). Indeed, the intervention group improved in 

both phonological processing skills and in reading short syllables and words. Also the 

control group improved in these skills, although the improvement in phonological 

processing was stronger in the intervention than control group. Unfortunately, the 

reading test included only few syllables and words, and the effects of the intervention 

may have been stronger had more items been used as in the spelling tasks. 
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The reading improvements were also parallelled by functional changes in the brain. 

The training effects were best reflected in the vowel MMN in the intervention group as 

the MMN amplitudes for the vowel change showed a large increase over time in the 

intervention group. The training-induced enhancement of the MMN amplitude 

presumably indicates an increased accuracy of cortical auditory representations for 

vowels (Kraus et al., 1995; Näätänen et al., 2002; for a review, see Näätänen & Kujala, 

2010). The MMN amplitude for the consonant change showed no increase, however. 

Even though consonants were trained as much as vowels in the intervention game, the 

consonant stimuli in the multi-feature paradigm were probably too difficult to 

discriminate in order to reflect training-induced improvements. Finnish stop consonant 

changes have elicited small and even unreliable MMN amplitudes in healthy adults 

(Pakarinen et al., 2009) and in children (Studies II and III). The consonant change 

from /t/ to /p/ and vice versa maybe the most challenging one in Finnish since the 

acoustic difference is very small and the Finnish clusile consonants are very weak. 

Another explanation is that the training period was too short for consonant-related 

learning to proceed sufficiently. In future remediation studies, it would be of interest to 

include several magnitudes of duration, vowel and consonant contrasts in order to 

optimize the deviant parameters so that they are as sensitive as possible to detect 

training induced plastic cortical changes. 

The functional changes in the brain even correlated with the behavioural measures in 

the present study. The vowel-MMN amplitude enhancement correlated with the 

improvement in the Letter Knowledge and the change in the Letter Recognition test 

scores. These results support the idea that cortical auditory discrimination is causally 

connected to reading-related skills (for reviews, see Bishop, 2007; Kujala, 2007). 

One of the novel findings in Study IV was that the MMN peak latency was shorter 

for the vowel change in both groups after the training period compared to the MMN 

latencies before the training period, and that the training effects were also seen in the 

P3a response. Both the intervention and control games facilitated faster performance as 

the children were expected to respond to the stimuli as quickly as possible. Therefore, 

the shorter MMN peak latency may reflect a general improvement in reaction speed. As 

the behavioral results of this study showed improved phonological processing skills in 

both groups, the shorter MMN peak latency for vowel changes may also indicate 
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improvement in vowel discrimination in both groups. The increased P3a response could 

either (1) follow this improved discrimination accuracy or (2) reflect general 

improvement in involuntary attention shifting (Escera et al., 2000) as both games also 

demanded a strong attentional engagement from the child. The children stayed focused 

as the play-like contexts and immediate rewards were highly motivating for the 

children. Getting on-line feedback on an improving performance motivates the child to 

continue competing against himself/herself in order to get even better results. It could 

be assumed that the training improvements seen in both groups partly depend on 

attention, as it is an important factor in facilitating neural changes (Kujala & Näätänen, 

2010). In line with this, recent studies with computerized visuospatial working memory 

tasks with similar designs as the games in Study IV have improved performance not 

only in visual but also in verbal working memory tasks (for a review, see Klingberg, 

2010). These improvements were also accompanied by changes in brain activity in 

frontal and parietal cortex (for a review, see Klingberg, 2010). 

Taken together, the results from the reading-skill related tests and neurophysiological 

measures are consistent and indicate improvement caused by the GraphoGame 

intervention: (1) The intervention group improved in all reading-related skills but the 

control group only in some of them, (2) There were group differences in reading-related 

test results after but not before the intervention, (3) The MMN results indicated greater 

improvements in central auditory processing in the intervention than in the control 

group, (4) There was a correlation between the vowel-MMN amplitude change and the 

change in the Letter Knowledge and Letter Recognition test scores. Therefore, the 

behavioural and MMN results suggest that the effects of training were associated with 

the improved phonological discrimination which is considered one of the most typical 

bottlenecks affecting reading acquisition. The results support the idea that when the 

cortical memory representations for phonemes become stronger also the behavioral 

phonological processing skills and letter knowledge improve as letter knowledge shows 

a high degree of overlap with phonological awareness in the orthographically highly 

consistent Finnish. These improvements lead, in turn, to improved reading and spelling 

skills.  

In future, the remediation efficacy of a short audio-visual training period should be 

separately determined with larger samples, at different ages, and for different dyslexia 
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subgroups in order to investigate the possible benefits of the intervention more 

profoundly. Moreover, long-term effects of this kind of a short intervention should be 

followed up as the mechanisms and processes that lead to permanent improvements in 

reading-related skills are still quite unknown. An extensive training period with 

GraphoGame in Grade 1 was previously shown to help children with reading-related 

difficulties reach the average level in reading fluency by the end of Grade 2 (Saine et 

al., 2010). Here the follow-up was not possible for ethical reasons, as both groups were 

given both games after the training period. 

 

5.4 Clinical implications 
 

As a consequence of early deficits in central auditory processing of sound changes, a 

child at-risk for dyslexia receives atypical quality of sound information from the 

environment. This abnormal sound quality is likely to affect the experience dependent 

phonological representations in the brain that are essential for learning to read. 

Furthermore, at least in a subgroup of dyslexics, the early auditory deficits persist until 

adulthood and continue to affect fluent reading. These concerns illuminate the 

importance of the early detection and intervention of these deficits.  In future, the MMN 

may provide a means for early detection paralleled by behavioural techniques. With the 

multi-feature MMN paradigm, early multi-attribute cortical auditory profiles can be 

measured time-efficiently even from infants and young children. As soon as the 

stimulus parameters are optimised and the signal-to-noise ratio is sufficiently high, 

auditory deficits could be diagnosed at an individual level. Based on the individual 

auditory profile, in turn, an optimally targeted auditory training or assistive listening 

device (see e.g., Hornickel et al., 2012) could be designed for each individual. 

The training of sound-letter-associations that strengthens phonological 

representations is one of the ways that help children in the process of learning to read. 

Musical training, in turn, may also be useful in early dyslexia intervention as it 

strengthens the entire integrated auditory system (Kraus, 2012), e.g., improves pitch 

processing not only in music but also in speech (Besson et al., 2007), and even 

improves the experienced mood (Särkämö et al., 2008). In line with this, training with 
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musical audio-visual matching was previously shown to be effective in dyslexia 

remediation (Kujala et al., 2001).  

 

5.5 Conclusions  
 
The present thesis investigated cortical multi-attribute auditory discrimination in 

dyslexia and the effects of intervention on reading-related skills and speech sound 

discrimination. Moreover, the feasibility of the multi-feature MMN paradigm for 

dyslexia research and studies in children was tested for the first time. The results show 

that the multi-feature paradigm is well suited for studies investigating auditory 

processing in dyslexia and in children. Furthermore, the results show that cortical 

auditory processing is compromised in dyslexia. In children at risk for dyslexia, 

auditory processing diverges from the typical path even at the initial phase of sound 

encoding. In addition, these children have a widespread pattern of deficient cortical 

auditory discrimination processes. Adults with dyslexia, in turn, have difficulties in 

anchoring to sound frequency and duration features in a complex auditory environment. 

The developmental path of dyslexia can be influenced by early intervention, though. 

Even a short intervention with audio-visual letter-sound exercises improves children’s 

reading-related skills and cortical discrimination of vowel contrasts. 
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