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ABSTRACT

Spatial and temporal variation within water bodies causes uncertainties in freshwater monitoring 
programmes that are surprisingly seldom perceived. This poses a major challenge for the repre-
sentative sampling and subsequent assessment of water bodies. The sources of variability in lakes 
are relatively well known. The majority of them produce consistent patterns in water quality that 
can be statistically described. This information can be used in calibrating the sampling intervals, 
locations and monitoring methods against the typical variation in a water body as well as the accu-
racy requirements of monitoring programmes. Similarly, understanding of ecosystem history and 
functioning in different states can help in contextualizing the collected data. Specifically, studies 
on abrupt transitions and the interactions involved produce a framework against which recent 
water quality information can be compared.

This thesis research aimed to facilitate water quality monitoring by examining 1) feasible 
statistical tools to study spatial and temporal uncertainty associated with sampling efforts, 2) 
the characteristics of variation and 3) ecosystem interactions in different states. Research was 
conducted at Lake Vesijärvi, southern Finland. Studies of uncertainty utilized data-rich observa-
tions of surface water chlorophyll a from flow-through, automated and remote sensing systems. 
Long-term monitoring information of several trophic levels was used in the analysis of ecosystem 
interactions. Classical sample size estimates, bootstrap methodology, autocorrelation and spatial 
standard score analyses were used in spatio-temporal uncertainty analysis. A systematic procedure 
to identify abrupt ecosystem transitions was applied in order to characterize lake interactions in 
different states. 

The results interlink variability at the study site with information required in sampling design. 
Sampling effort estimates associated with the spatial and temporal variance were used to derive 
precision information for summary statistics. The structure of the variance illustrated with an au-
tocorrelation model revealed the low spatial representativeness of discrete sampling in the study 
area. A generalized autocorrelation model and its parameters from the monitoring area were found 
applicable in sampling design. Furthermore, areas with constantly higher chlorophyll a concen-
trations, which had an effect on the water quality information derived with remote sensing, were 
identified from the study area. Characterization of the interactions between the main trophic levels 
in different ecosystem states revealed the key role of zooplankton in maintaining the current state 
as well as the resilience of the studied pelagic ecosystem. The results are brought into a broader 
context by discussing the applicability of presented methods in sampling design of water quality 
monitoring programmes.

According to this thesis research, sampling design in individual monitoring regimes would 
benefit from the characterization of variance and subsequent uncertainty analysis of different data 
sources. This approach allows the calibration of sampling frequency and locations on the observed 
variance, as well as a quantitative comparison between the abilities of different monitoring meth-
ods. The derived precision information also supports the joint use of several monitoring methods. 
Furthermore, analysis of long-term records can reveal the key elements of freshwater ecosystem 
functioning and how it has responded to earlier pressures, to which recent monitoring data can be 
compared. This thesis thus highlights analysis of the variance and history of the monitored system 
in developing a rationalized and adaptive monitoring programme. 
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ABBREVIATIONS

a.k.a. 	 also known as
Ca. 	 circa (approximately)
i.e. 	 id est (that is)
inter alia	 among other things
e.g. 	 exempli gratia (for example)
cf. 	 confer (compare)

chl-a 	 Chlorophyll a
chl-a:TP ratio 	 Ratio between chlorophyll a 	and total phosphorus concentrations
TP 	 Total phosphorus

RSI	 Regime Shift Index
SD 	 Standard deviation
SE 	 Standard error
Z-score 	 Standard score

WFD 	 Water Framework Directive
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1. INTRODUCTION

Freshwater lakes and rivers are fundamental to 
the maintenance and survival of terrestrial life, 
although they represent only a small fraction 
(around 0.009%) of the total volume of water 
in the biosphere (Wetzel, 2001). For humans, 
lakes and rivers provide a variety of goods and 
services including water for domestic, agricul-
tural and industrial use, food production and 
recreational opportunities, as well as less tan-
gible aesthetic and cultural benefits (Maltby & 
Ormerod, 2011). Freshwater ecosystems con-
front well-acknowledged threats that endanger 
the provision of these services. The degrada-
tion of surface waters is often also interlinked 
with global or regional phenomena including 
climate change, acidification and eutrophica-
tion (Schindler et al., 1996; Carpenter et al., 
1999; Blenckner et al., 2010). Considering the 
ever-growing threats to freshwater resources, 
precise ecological assessments and appropri-
ate management of freshwater ecosystems are 
required (Hawkins, 2010; Lindenmayer et al., 
2011).

The legislative framework to protect and 
restore aquatic systems in Europe arose from 
concern over the status of water bodies, where 
strong economic interests were often set against 
the diffuse interests of the general public (Hoo-
rnbeek, 2004). The Water Framework Directive 
(WFD; European community, 2000), which is 
the main initiative to protect European lakes, 
aims at conditions with minor or no effects from 
human actions in surface and coastal waters. It 
strongly guides freshwater quality monitoring 
programmes in EU countries. The Directive re-
quires assessment of water bodies based on a 
variety of biological and chemical water quality 
elements, where the current status is compared 
against the assumed pristine conditions. The 
reference condition for a water body is typical-
ly estimated with reference sites, modelling, 
historical data sets or using expert judgment 
(Hawkins et al., 2010; Andersen, 2011). The 
current status, on the other hand, is assessed 
with water quality monitoring data that are for 
the time being mainly based on manual in situ 

sampling. The WFD has been praised for its 
integrative way of measuring ecological quali-
ty, with a focus on the hydrological catchment 
instead of administrative borders, and on the 
harmonization of classification and monitoring 
methods across Europe (Hering et al., 2010). 
However, significant criticism has been directed 
at the underestimation of the effort and costs for 
the participating countries (Carstensen, 2007), 
at issues related to the classification and com-
bination of different quality elements (Moss, 
2008) and at the insufficient characterization 
of uncertainty in monitoring data (Carstensen, 
2007; Håkanson, 2007; Hering et al., 2010). 
One of the main concerns has been the lack 
of precise guidelines on how the spatial and 
temporal variation within water bodies should 
be acknowledged in monitoring and subsequent 
assessment. 

Conventional water quality monitoring data 
include pooled samples taken across seasons 
from a variable number of locations to derive 
annual ecological conditions for the monitoring 
area (Wright et al., 2000). The level of confi-
dence in these summary statistics is dependent 
on the number of samples collected (Dixon 
& Chiswell, 1996). The greater the variation 
in water quality, the greater is the number of 
samples needed to obtain a statistically sound 
estimate that describes parameter behaviour 
(Strobl & Robilliard, 2008). The collection of 
data, however, is typically controlled by the 
available funding for monitoring. Thus, many 
standard monitoring programmes, for instance 
related to the Water Framework Directive, and 
many national monitoring programmes have 
been criticized for collecting too few samples 
from too few locations for the sound assessment 
of ecological status (Knowlton & Jones, 2006; 
Carstensen, 2007; Erkkilä & Kalliola, 2007; Hå-
kanson, 2007). The consequent error and bias, 
inter alia, in annual mean estimates is in many 
cases unclear (e.g. Carstensen, 2007; Heffernan 
et al., 2010). A typical strategy to overcome 
uncertainty caused by temporal variability has 
been to perform sampling in specific periods of 
the growing season to catch certain events in 
the annual cycle (Barbour et al., 1996; Niemi 
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et al., 2001). On a spatial scale, expert judg-
ment has typically been used in the selection 
of suitable sampling locations to represent pe-
lagic and littoral areas. Extrapolation based on 
the bottom area and water masses with varying 
methods has commonly guided site selection 
(Carstensen, 2007). These traditional strategies 
to assess spatial and temporal variation have 
not been considered sufficient in constantly 
changing aquatic ecosystems. Criticism clear-
ly originates from the limitations in traditional 
water sampling, which is still the backbone of 
most monitoring programs. Several arguments 
have been presented to show that measurements 
from discrete locations and a sparse sampling 
frequency guided by available funding fail to 
give a synoptic spatial or temporal depiction 
of water quality and might lead to significant 
bias in estimations of the water quality status 
(Håkanson, 2007; Carstensen, 2007; Heffernan 
et al., 2010). Even though the underlying the-
oretical concepts to assess uncertainty at tem-
poral and spatial scales are well known among 
statisticians (e.g. Clarke and Hering, 2006; 
Carstensen, 2007), these methods have not yet 
been implemented in water quality monitoring 
programmes. Strobl and Robilliard (2008) not-
ed that research has been too general or specific 
to be easily incorporated into large monitoring 
programmes, given the time and budget con-
straints. A fundamental problem, however, is 
typically not in the statistical metholds but the 
lack of information from variability occurring 
in monitoring regimes.

1.1 Sources of spatial and 
temporal variation in lakes 

Freshwater ecosystems are under constant 
change, which occurs at variable spatial and 
temporal scales. Although this poses a major 
challenge for water quality monitoring and 
assessment (Carstensen, 2007; Hawkins et al., 
2010; Hering et al., 2010), the sources of vari-
ation are relatively well known. Temporal vari-
ation in lakes typically follows the main diurnal 
and seasonal cycles induced by light, tempera-

ture and nutrient availability (cf. Wetzel, 2001). 
Naturally, several factors cause variability in 
these cycles, including trophic interactions, 
stochastic (extreme) events driven by climate 
or human perturbation (Tuvikene et al., 2011). 
Sources of spatial variation, on the other hand, 
are associated with run-off from the drain-
age basin, lake morphology and water move-
ments (e.g. George & Edwards, 1976; George 
& Heaney, 1978; Chiew & McMahon, 1999; 
Vuorio et al., 2003; Ekholm & Mitikka, 2006), 
as well as with biological factors, including the 
buoyancy properties of different phytoplankton 
species and movements of zooplankton and fish 
shoals (Horppila et al., 1998; Moreno-Ostos et 
al., 2006; Moreno-Ostos et al., 2009). 

Horizontal variation in water quality can be 
dependent on the annual cycle of the ecosystem 
and is also affected by the climatic conditions. 
Moreno-Ostos et al. (2006; 2008; 2009) report-
ed differences in spatial variation to be depen-
dent on the dominant algal group and weather 
conditions. They observed that during the win-
ter, when the studied lake was isothermal and 
the phytoplankton was dominated by diatoms, 
there was no significant spatial variation. Con-
versely, during the summer stratification, when 
positively buoyant cyanobacteria dominated 
the phytoplankton community, they found a 
very strong non-uniform spatial distribution in 
the phytoplankton. Furthermore, they observed 
that a favourable growing environment for cya-
nobacteria can emerge when a calm wind period 
supports the formation of colonies, but storms 
and high wind speed periods typically disrupt 
the patterns in water quality. 

Some water quality parameters, such as chlo-
rophyll a and inorganic suspended matter can 
create stationary patterns in the water. This phe-
nomenon has been noted in many studies, and 
in many monitoring regimes it is considered a 
typical water quality property (Lindell et al., 
1999; Östlund et al., 2001; Dekker et al., 2001; 
Erkkilä & Kalliola, 2004; Wang & Liu, 2005). 
For example, rivers carry eroded material from 
the catchment and create near-shore patterns 
in lake water quality (e.g. Vuorio et al., 2003). 
Similarly, runoff from urban areas is another 
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typical point source of pollution that is greatly 
affected by factors such as the imperviousness 
of the urban catchment area (Chiew & McMa-
hon, 1999). Localized growing environments 
for the biological components in the lake can 
be created by diffuse sources of nutrients and 
suspended solids arising from surrounding ag-
ricultural areas (e.g. Ekholm & Mitikka, 2006) 
or by bottom topography, which affects the wa-
ter current speed and sediment resuspension 
areas (Håkanson, 2004). Wind-induced water 
movements also create patterns in water qual-
ity, which lake morphology can further enhance 
(George & Edwards, 1976). Schernewski et al. 
(2000) demonstrated that particles that are driv-
en or resuspended by the wind can be trapped 
in shallow areas and create localized patterns 
of water quality. 

To summarize, the spatial and temporal 
variation in lake water quality is a result of 
many interacting factors. The way these varia-
tions are manifested depends on how annual 
cycle, the lake biota, lake morphology, drain-
age basin characteristics and variable climatic 
conditions interact (George & Edwards, 1976; 
George & Heaney, 1978; Horppila et al., 1998; 
Schernewski et al., 2000). The majority of 
variability results from consistent natural and 
anthropogenic processes typical for the moni-
toring regime. This encourages that the main 
features of variability can be statistically char-
acterized.

1.2 Sampling design 

Water quality monitoring refers to the acquisi-
tion of quantitative and representative informa-
tion characterizing a water body over time and 
space (Sanders et al., 1983). This includes the 
number and spatial distribution of monitoring 
stations, sampling frequency, the selection of 
parameters and monitoring methods as well as 
the mode of data transfer (Strobl & Robillard, 
2008). Water quality monitoring can also be 
seen as a tool that is enforced mainly by the 
legislative framework to guarantee decisions 
leading to a healthier environment. For decision 

making, the complex ecosystem information 
described with monitoring data needs to be 
condensed. The key aspects from an otherwise 
overwhelming amount of information are often 
isolated with indicators that help policy makers 
to see the larger patterns of the ecosystem state 
and determine the appropriate action (Niemei-
jer, 2002). In the process of condensing data to 
derive indicators, information is always lost. 
Therefore, to avoid erroneous decisions, the 
monitoring data used needs to provide a repre-
sentative picture of the ecosystem state. 

Sampling design, on the other hand, refers 
to the procedure and criteria for matching the 
information needs with the requirements for 
the monitoring data (Strobl & Robillard, 2008). 
Its ultimate goal is to define the objectives and 
accuracy criteria for monitoring as completely 
as possible (Steele, 1987). In practice, however, 
sampling design is used to provide the required 
information with sufficient accuracy and with 
rationalized costs. It is thus a compromise be-
tween data collection costs and the ability to 
cover the different sources of uncertainty that 
affect the data (Beliaeff & Pelletier, 2011). 
Therefore, while considering the spatio-tempo-
ral representativeness of collected data, the key 
issue is the understanding of typical variability 
in monitored areas and the abiotic conditions 
associated with this variation (Hawkins et al., 
2010). Furthermore, understanding of how this 
variability is captured with available monitor-
ing methods is relevant. In other words, in sam-
pling design the ability of different monitoring 
methods to measure variation needs to be as-
sessed in relation to the variation typical for the 
monitored system (Fig. 1). 
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1.3 Sources of uncertainty in 
water quality monitoring

The underlying sources of uncertainty in wa-
ter quality monitoring can be partitioned into 
analytical error and random sampling error, as 
well as the uncertainty caused by spatio-tem-
poral variation (Carstensen, 2007; Hawkins et 
al., 2010). Random sampling error refers to the 
variation among replicate samples from a single 
location at the same time, and analytical error 
includes systematic error in the measurement 
or prediction of an attribute. These sources of 
uncertainty are typically considered in moni-
toring programme guidelines (e.g. Anonymous, 
2003). Uncertainty caused by spatial and tem-
poral variation, however, has been neglected in 
the majority of water quality assessment sys-
tems (Hering et al., 2010), and the error caused 
by a deficient sampling frequency in time and 
space is often unclear.

The questions of when, where, how often and 
how many locations to observe have already 
been noted in early monitoring programmes 
(Sanders et al., 1983), but have been difficult to 
address with conventional monitoring methods. 
Only recently has the importance of these ques-
tions in quantitative assessment been raised (cf. 
Hering et al., 2010). The problem is clearly re-
lated to the statistical requirement to obtain a 
representative sample within an observed sys-
tem. Essentially, it is a matter of the probability 
of estimating the true value of a water quality 
parameter that is affected by different sources 
of uncertainty. Hawkins et al. (2010) clarified 
the problem with a diagram showing the effect 
of different uncertainty sources on a hypotheti-
cal ecological index (Fig. 2), where each source 
of variability increases the uncertainty over ob-
serving a true value.

Figure 1. The role of sampling design in deriving representative information on the ecological state of 
water bodies for decision making.
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Water quality monitoring programmes are 
still mainly based on traditional manual obser-
vations, which benefits from the number of ob-
servable parameters, accurate laboratory mea-
surement and the possibility to cover several 
sampling depths. These discrete measurements, 
however, lack the potential for synoptic spatial 
and temporal observations and can be expen-
sive (e.g. Vosa et al., 2003; Le Vu et al., 2011). 
Therefore, new methodologies, including au-
tomated, ship-of-opportunity or flow-through 
and remote measurements are increasingly be-
ing taken in use (Bierman et al., 2011). All of 
these differ in their ability to measure water 
quality at spatial and temporal scales. Moored 
automated monitoring stations, for instance, 
can cover the whole range of temporal vari-
ability (Le Vu et al., 2011), but are limited in 
the spatial dimension as well as in the number 
of parameters that can be measured. Ship-of-
opportunity or flow-through measurements, on 
the other hand, can give a more representative 
picture of spatial variation than discrete mea-
surements (Lindfors et al., 2005; Ruokanen et 
al., 2007), but their operative application can be 

expensive, especially in freshwater monitoring 
areas. Depending on the remote sensing instru-
ment and monitored target, this data source can 
provide spatially and temporally representative 
information with varying accuracy from the op-
tically active water quality parameters. Proper-
ties of the used instrument such as the spectral, 
spatial and temporal resolution, as well as the 
difficulty in making measurements on optically 
complex waters from large distances, affect the 
usability of this data source (cf. Bukata, 2005). 

While considering the differences between 
monitoring areas, their surroundings, accessi-
bility, size, water properties, as well as their 
natural variability, sampling design obviously 
needs to be adapted to the specific characteris-
tics of the aquatic monitoring area (Håkanson, 
2007; Strobl & Robilliard, 2008). Definition of 
the abilities of different monitoring methods to 
detect the variance in different dimensions can 
thus be used as basis for rationalized sampling 
design. It can essentially allow a quantitative 
comparison between monitoring data sources 
and reveals the strengths and weaknesses of dif-
ferent methods in a specific monitoring area. On 

Figure 2. Effect of different uncertainty sources on a hypothetical ecological index. Rsv = random 
sample variation, tv = temporal variation, sv = spatial variation and b = bias, i.e. analytical or prediction 
error. Modified from Hawkins et al. (2010) with permission. 
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the other hand, such analysis is also a starting 
point for data assimilation, where more accu-
rate information can be provided by combining 
data sources. To allow this, information on the 
precision of each data source is required (e.g. 
Pulliainen et al., 2004). Furthermore, since the 
suitability and costs of different monitoring 
methods to measure water quality differ be-
tween monitoring regimes, the complementary 
use of several data sources is likely to be ben-
eficial (Vosa et al., 2003; Pomati et al., 2011).

1.4 High-frequency data and 
their use in representative 
sampling analysis

One limitation in the characterization of spa-
tio-temporal variability in lakes has probably 
been the lack of appropriate data from the mon-
itoring area (Hering et al., 2010). Water quality 
monitoring methods, such as automated, remote 
sensing or flow-through applications, can pro-
vide spatially and temporally extensive infor-
mation from monitored areas. The significance 
of these data-rich methods in water quality 
monitoring programmes is expected to increase, 
as they can provide a significantly lower cost 
per measurement ratio than traditional methods. 
In addition, for the provision of actual data for 
water quality monitoring programmes, these 
data sources can be used in characterizing the 
variability within monitoring areas (e.g. Le 
Vu et al., 2011; Bierman et al., 2011; Kallio, 
2012). Data-rich monitoring methods can give 
representative estimates of the variance in spa-
tial and temporal dimensions and can be used 
to assess the uncertainties associated with less 
frequent or spatially discrete sampling. While 
these methods are increasingly being taken in 
use, the maintenance, calibration and manage-
ment of retrieved data causes expenses that are 
still in many cases undefined (cf. Huttula et al., 
2009). However, data-rich monitoring sources 
are rightfully claimed to provide new informa-
tion on the dynamics within an ecosystem that 
is undetectable with discrete and infrequent 
sampling.

At its simplest, a representative set of high-
frequency data on spatial or temporal dimen-
sions can be used to derive the typical variance 
for the monitoring regime to be used in the esti-
mation of representative sample sizes. Cochran 
(1967) presented a basis for determining sample 
sizes to estimate the sample mean with random 
sampling and certain margins of error from nor-
mally distributed data sets. Regardless of statis-
tical assumptions involved, methods based on 
this classical approach are still applicable (e.g. 
Strobl & Robilliard, 2008). Cochran’s approach 
provides a straightforward tool to provide first 
estimates on sampling requirements when 
prior information on the variance exists. One 
step further in the use of high-frequency data 
is to examine how the variance changes with 
the distance or time separating observations, 
i.e. to study and model autocorrelation in data 
sets (cf. Legendre, 1993). This approach can 
be used to characterize the spatial or temporal 
structure in data sets (Bierman et al., 2011). 
Furthermore, it has applications in calibrating 
sampling locations to the existing variation by 
revealing the distance at which observations 
become statistically independent (Kitsiou et al., 
2001; Heffernan et al., 2010). In statistics, boot-
strapping refers to the methods where measures 
of accuracy are assigned to sample estimates 
(Efron & Tibshirani, 1994). Benefits in different 
bootstrapping variants include that statistically 
independent or normally distributed data sets 
are not required; methods are based on rela-
tively simple computerized calculation and can 
be based on the actual measured data (Vogel & 
Shallcross, 1996; Varian, 2005). Several tech-
niques exist to investigate temporal patterns 
at spatial scales that are also applied in water 
quality data sets. These are essentially based on 
the identification of sub-areas within data from 
different time periods with constantly differing 
characteristics. Applications range from rela-
tively simple single parameter methods such 
as standard score analyses, where local means 
are compared to whole data sets mean (Getis & 
Ord, 1996), to mathematically more challeng-
ing multivariate techniques. Cluster analysis, 
for instance, is used to measure the similarity 
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in water quality observations between differ-
ent measurement sites and to group them (e.g. 
McNeil et al., 2005). Factor and principal com-
ponent analysis (PCA), on the other hand, are 
used to describe the relationships between wa-
ter quality variables and to reduce their num-
bers by combining them (Singh et al., 2004; 
Navarro & Ruiz, 2006)

1.5 Long-term records: key to 
understanding the system

The value of long-term data sets has been 
strongly emphasized during recent years, and 
their importance in sustainable management 
and in mitigation to the presumably increasing 
ecosystem regime shifts has been highlighted 
(e.g. Scheffer et al., 2001; Carpenter et al., 
2011). Furthermore, Carpenter et al. (2011) 
underlined the importance of such analysis in 
contextualising scientific information for deci-
sion makers. Analysis of long-term data thus 
has a direct affiliation with the indicator infor-
mation derived from environmental monitoring 
programmes. 

Identified interactions in the history of an 
ecosystem can provide a better understanding 
of the current ecosystem state and its direc-
tion than information based solely on recent 
monitoring data. Analysis of long-term records 
before and after an abrupt ecosystem transition 
(i.e. a regime shift) can reveal features in eco-
systems that can be used to contextualize imme-
diate observations. Long-term records and the 
identification of the interactions between dif-
ferent trophic levels can be used to benchmark 
ecosystem functioning in different ecological 
states (Bestelmeyer et al., 2011; Maberly & El-
liot, 2012). Information is thus required from 
the ecosystem components that describe the 
state (response) and cause the change (driv-
ers), as well as the feedback mechanisms that 
tend to maintain the present state. This is es-
sential information when interpreting monitor-
ing data, thus providing clear implications for 
lake monitoring and management. Such analy-
sis obviously requires a representative number 

of observations from each ecosystem state; in 
other words, representative long time series are 
essential (Bestelmeyer et al., 2011). 

Ecosystem transitions can be gradual or 
abrupt, depending on how ecosystem drivers 
and response mechanisms interact. Complex 
ecosystems such as lakes include feedback 
mechanisms that tend to maintain their current 
state. Slowly increasing pressure caused by cli-
mate change or sudden events such as storms or 
human actions can deteriorate feedback mech-
anisms (a.k.a. resilience). After crossing a crit-
ical level, this can cause a major and abrupt 
shift in the ecosystem state, the persistence of 
which depends on the changes occurring in the 
functional form of the ecosystem (Carpenter et 
al., 1999; Scheffer et al., 2001; Anderssen et al., 
2009; Bestelmeyer et al., 2011). The above-cit-
ed authors have identified general types of 
abrupt transitions, namely linear, threshold 
and hysteresis. These can be described with 
the features found in time series of ecosystem 
driver, response and feedback variables, in their 
relationships, in the frequency distribution, as 
well as in the indicative signals for the change, 
such as temporal variance of the response vari-
able. Bestelmeyer et al. (2011) suggested a sys-
tematic approach to the identification of these 
transition types. They emphasized the benefits 
of such an approach, for example in the char-
acterization of ecosystem functioning, and its 
use in pro-active ecosystem management. Thus, 
deeper understanding of the current state and 
direction of the ecosystem can be derived by 
interpreting recent monitoring data against the 
identified ecosystem interactions and against 
the potential early warning signals (Contamin 
& Ellison, 2009). 

2. OBJECTIVES OF THE PRESENT 
STUDY

As the legislation for the protection and resto-
ration of natural waters proceeds, issues con-
cerning representative monitoring have been 
raised (Carstensen, 2007; Hawkins et al., 2010). 
The uncertainty associated with temporal and 
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spatial variability in water quality monitoring 
is one of the major challenges in the next phase 
of WFD implementation (Hering et al., 2010). 
On the other hand, the analysis of long-term re-
cords is an essential tool in contextualizing and 
translating scientific information into meaning-
ful policy recommendations and management 
interventions (Bestelmeyer et al., 2011). Long-
term records can reveal the key elements of 
freshwater ecosystem functioning and respons-
es to earlier pressures. Such analysis is valuable 
in adaption to and preparation for the threats 
facing freshwater ecosystems (Contamin & El-
lison, 2009; Maberly & Elliot 2012).

This thesis presents tools to characterize 
spatio-temporal variation and study ecosystem 
interactions to allow adaptive water quality 
monitoring. Papers I-III concentrated on the 
uncertainty associated with the spatial and 
temporal variability and utilized surface water 
chl-a as an indicator for water quality. Paper I 
focuses on the structure of spatial variation in 
lake water quality, and the results were used to 
determine the horizontal representativeness of 
point-source sampling. Paper II concentrates on 
the temporal representativeness of water quality 
monitoring at varying intervals and highlights 
the importance of careful calibration of auto-

mated fluorometer measurements. Paper III de-
fines the areas in the study lake (Lake Vesijärvi) 
with constantly differing water quality and uses 
this information to assess the representativeness 
of pixel-type observations of different sizes. Fi-
nally, paper IV conceptualizes lake ecosystem 
interactions and functioning by using long-term 
monitoring data to derive understanding for the 
lake management purposes. This thesis com-
bines the key results of the papers and presents 
a synopsis on the applicability of the results in 
water quality sampling design (Fig. 3). 

The individual objectives were to:
1.	 Identify feasible tools to assess the spa-

tio-temporal uncertainty associated with 
water quality monitoring data (I–III);

2.	 Analyse long-term monitoring records to 
identify ecosystem interactions in different 
states for lake management purposes (IV);

3.	 Discuss how sampling design can benefit 
from the uncertainty analysis and identi-
fied ecosystem interactions (synopsis).

Figure 3. Associations between the main research themes of papers I-IV and synopsis of the thesis.

Spatial and temporal 
variability in lake

Lake-ecosystem’s functioning 
in different states

High frequency measurements
(I - III, synopsis)

Characterization of variability 
and sampling

requirements (I - III)

Uncertainty in monitoring data
(I - III, synopsis)

Long term monitoring and
auxiliary data (IV)

Characterization of ecosystem’s
interactions (IV)

Interpretation of monitoring data
(IV, synopsis)

Applicability in sampling design
(synopsis)
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3. MATERIALS AND METHODS

3.1 Study site

Data sets were collected from the Enonselkä ba-
sin of Lake Vesijärvi in Southern Finland (25° 
37’24’’E 61° 0’ 30’’N) (Fig. 4). Lake Vesijärvi 
is relatively large (110 km2) and shallow (mean 
depth 6 m). The drainage basin of the lake is 
relatively small (514 km2) and the land cover 
is dominated by forests (ca. 60%) agricultural 
areas (ca. 23%), wetlands (ca. 9%) and urban 

areas (ca. 9%). Over 150 000 people live in the 
vicinity of the lake, the majority in the city of 
Lahti located around the southern basin of the 
lake (Fig. 4). The lake was originally oligo-
humic with highly transparent water, but was 
polluted by nutrient and organic matter loading 
from domestic sewage of the city of Lahti, in-
dustry, agriculture and timber storage activities 
(Keto & Sammalkorpi, 1988). It became one of 
the most eutrophicated lakes in Finland (Kaire-
salo & Vakkilainen, 2004) and experienced se-
vere cyanobacterial blooms until concern over 
its status was materialized into restoration ac-

Figure 4. Lake Vesijärvi and land cover information on the drainage basin together with the locations 
of automated monitoring stations (crosses, II) and longterm sampling sites (circles, IV) in the southern 
Enonselkä basin.
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tions. The municipal sewage load was diverted 
in 1976 and industrial waste in the 1980s, but 
the status of the lake remained poor (Keto & 
Sammalkorpi, 1988) until intensive bioma-
nipulation was performed during 1989–1993 
(e.g. Horppila & Peltonen, 1994; Kairesalo et 
al., 1999). The mass removal of planktivorous 
fish, which continued with management fishing 
and the stocking of piscivorous fish, resulted 
in clearly improved water quality with high-
er water transparency, lower chlorophyll and 
nutrient concentrations as well as a collapse 
in cyanobacterial populations (Horppila et al., 
1998, Kairesalo et al., 1999). In the 2000s, 
however, the condition of the lake showed signs 
of deterioration and occasional cyanobacterial 
blooms have also occurred (Kuoppamäki et al., 
unpublished). In 2009–2010, restoration con-
tinued in the Enonselkä basin with large-scale 
aeration using nine Mixox circulation pumps 
[Vesi-Eko Oy (Water-Eco Ltd), Kuopio, Fin-
land] that transport and mix oxygen-rich sur-
face water into the hypolimnion. The effects 
and consequences of this management action 
for the status of the lake are still unclear.

Short history of monitoring in Lake 
Vesijärvi

Water quality monitoring data from Lake Vesi-
järvi and Enonselkä basin extend back to the 
early 1960s. Monitoring has been conducted 
in two parallel monitoring programmes by the 
regional environment authorities and the Uni-
versity of Helsinki. Major limnological param-
eters, including total nutrients, chlorophyll a, 
Secchi depth, turbidity and conductivity, pH, 
alkalinity, water colour and micronutrients (Fe 
and Mg), have been measured and recorded 
for over 40 years. The number of yearly ob-
servations and observed parameters has var-
ied between years, being fewer in the earlier 
part of the monitoring period, but these have 
increased since the start of biomanipulation. 
Manual monitoring has been conducted at sev-
eral sites. In the Enonselkä basin, the longest 
and most consistent records have been collected 
from two monitoring stations located above the 

deepest points of the basin (Fig. 4). Together 
with a few shorter monitoring records from oth-
er locations, a relatively representative picture 
of annual variation in the pelagic areas of the 
lake can be derived. However, as also noted by 
Horppila et al. (1998), discrete manual sam-
pling is likely to give an insufficient under-
standing of the within-lake variation.

The first automated water quality monitoring 
station was installed in 2004 in the Enonselkä 
basin. At the time of study II, three automated 
monitoring stations had been installed in the 
basin, which almost continuously recorded 
chlorophyll a, phycocyanin, temperature and 
oxygen concentrations from one to several 
fixed depths. Although the possibility to meas-
ure fine-scale dynamics in water quality and 
save in expenses was welcomed by researchers 
and the local authorities, the use of automated 
measurements has also raised concerns. The 
amount of total costs from the maintenance, 
calibration and data management of automated 
measurements still remain unclear.

The first extensive study concerning the 
spatial variation of water quality in the lake 
was conducted by Horppila et al. (1998), who 
investigated differences in food web compo-
nents with manual grid sampling in the south-
ern part of Lake Vesijärvi. They concluded that 
the prediction of water quality development is 
obscured due to the spatio-temporal variation 
in the lake, and this sets high requirements for 
sampling programmes. Other spatial moni-
toring methods have occasionally been used 
in Lake Vesijärvi. The usage of flow-through 
measurements from a moving boat (e.g. Lind-
fors & Rosenberg, 2011) and interpretation of 
space-borne remote sensing images (e.g. Vak-
kilainen et al., 2012) have been conducted in 
separate research projects over the years. The 
results have revealed considerable variation in 
water quality, but the implementation of such 
data in monitoring programmes has so far been 
lacking. 
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3.2 Data sets

Flow-through measurements

Flow-through datasets were collected using a 
fluorometer system in a moving boat, the po-
sition of which was constantly recorded with 
GPS. The flow-through system allowed spa-
tially extensive measurements in a relatively 
short period of time (3–4 hours) from the study 
site. The system pumped water from a depth 
of 0.4 m into a flow cap that was attached to 
a SCUFA fluorometer (Turner Design). The 
fluorometer measured fluorescence (460 nm 
excitation and 685 nm emission) and turbidity 
(90º scatter) with a frequency of 1 Hz. Water 
samples for the calibration of fluorescence val-
ues to the chl-a concentration were taken with 
a Limnos tube sampler from the surface water 
every 30 minutes. The chlorophyll a concen-
tration was spectrometrically analysed after 
the field campaigns in a laboratory according 
to standard procedures (SFS 5772). Field sur-
veys were conducted at a constant speed (9–11 
km/h) in relatively calm weather conditions. 
Altogether, nine flow-through measurements 
campaigns were conducted during the summers 
of 2005–2007, and are described in more detail 
in papers I and III.

Automated measurements

Automated monitoring measurements included 
hourly fluorescence data from three monitor-
ing stations installed in the Enonselkä basin 
that were collected during two years (2009 
and 2010). Each station measured relative 
chl-a fluorescence (Trios Micro Flu chl sensor, 
470 nm excitation and 685 nm emission) and 
one station also measured the fluorescence of 
phycocyanin (TriOS Micro Flu blue, 620 nm 
excitation and 655 nm emission). The relative 
fluorescence measurements were first trans-
formed to chl-a and cyanobacteria fluorescenc-
es by using standard conversion coefficients 
provided by the manufacturer and the supplier 
of the instrumentation. Fluorescense of chl-a 
was then further calibrated with a multiple re-

gression technique as presented, for example, 
in Seppälä et al. (2007), in which manual water 
samples taken next to the stations are explained 
with chl-a and phycocyanin fluorescences. The 
calibration methodology and the manual sam-
pling are described in detail in paper II. In the 
subsequent temporal representation analysis, 
daily mean values of chl-a were used in order to 
disregard the effect of diurnal variation.

Long-term monitoring data sets

Long-term data sets collected during a 40-year 
period from the two monitoring stations in the 
deepest points of the Enonselkä basin (Fig. 4) 
were combined. Measurements of chl-a, as an 
ecosystem response variable, and total phos-
phorous (TP), as the key driver, were harmo-
nized to represent the mean annual conditions 
(IV). Changes in an important ecosystem troph-
ic component, zooplankton, were described us-
ing the length of Daphnia (Cladocera) ephip-
pia in lake sediment remains. These data were 
taken from the detailed study of Nykänen et al. 
(2010). Results from several earlier studies (Ju-
rvelius & Sammalkorpi, 1995; Peltonen et al., 
1999; Ruuhijärvi et al., 2005; Nykänen et al., 
2010; unpublished reports) concerning changes 
in the fish populations in Lake Vesijärvi were 
used in order to complete the information on 
different trophic levels during the study period.

Remote sensing estimation

The remote sensing-based interpretation of 
chl-a presented in this thesis was derived by 
using Envisat/MERIS satellite data (MEdium 
Resolution Imaging Spectrometer on board the 
ENVISAT satellite operated by the European 
Space Agency [ESA]) and the boreal water 
quality processor within BEAM software de-
veloped for ESA by Brockman Consult. Atmos-
pheric correction was performed according to 
Doerffer & Schiller (2008a) and chl-a estima-
tion with an inversion algorithm as presented in 
Doerffer & Schiller (2008b).
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3.3 Statistical methods

Classical sample size estimates

Cochran (1977) presented an equation to derive 
representative sample sizes (n) in order to esti-
mate the mean value from normally distributed 
data sets with random sampling: 

	  (1)

where t corresponds the chosen significance 
level derived from the probability density func-
tion of the normal distribution (for instance, 
1.96 for 5% acceptable risk for the false esti-
mate), s is the sample standard deviation and d 
the acceptable margin of error. In paper I, Eq. 1 
was applied to the standard deviations derived 
from the four spatially extensive flow-through 
measurement campaigns, with a significance 
level of 5% and the margin of error calculated 
as the proportional difference from the mean 
value of each data set (I).

Temporal representativeness of regular 
sampling

In paper II, a moving block bootstrap method 
was used in estimating the standard errors of 
the mean and standard deviation expected with 
regular sampling at differing intervals. In the 
moving block bootstrap method, a time series 
is divided into equal length blocks according 
to the sample size variant. A random sample 
is then taken from each block and the sample 
mean and standard deviation are calculated 
from these. In paper II, random sampling from 
each of six time series of chl-a measurements 
(daily means from three monitoring stations 
and two years) were iterated 1000 times for 
each sample size (n), and standard deviations 
of the resulting means and standard deviations 
were used to derive the standard errors (SE = 

) for respective sample sizes. Standard 
errors derived from the different time series 
were combined and simple rational functions 

were fitted. Fitting was performed with Mat-
lab-software (Mathworks Inc.) and utilized the 
Levenberg–Marquardt algorithm in an iterative 
minimization process to find the least squares 
residuals between the model and observations. 

Spatial structure analysis

Variogram analysis was used in order to char-
acterize the spatial dependency found in the 
spatially extensive flow-through measurements 
and to examine the representativeness of point 
source samples. The analysis is based on geo-
statistical methods that were first formalized by 
Matheron (1971) and are generally explained, 
for example, in Burrough and McDonnell 
(1998). The idea is to observe and model the 
variance between measurements from differ-
ent locations as a function of the distance that 
separates them. The assumption is that meas-
urements close to each other are more simi-
lar, i.e. have less variance, than measurements 
separated by larger distances. The dependence 
of observations in space is also referred to as 
spatial autocorrelation. 

Spatial autocorrelation can be assessed by 
calculating semivariances for all observation 
pairs in a data set (Eq. 2): 

	 (2)

where n is the number of observations of pa-
rameter z at location xi, which is separated by 
distance h from another observation z(xi+h). 
Semivariances in large data sets are often fur-
ther averaged into groups that include obser-
vations separated by similar distances. These 
groups are known as lags. In paper I, semivar-
iances were standardized in order to combine 
values from different data sets. This was done 
by dividing semivariances in each lag by the 
half of variance of all observations in respective 
lag (a sub-sample from the whole data set). In 
an empirical variogram (hereafter referred as 
variogram), the semivariances are plotted as a 
function of distance and modelled using specif-
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ic functions. In paper I, a spherical model was 
chosen, since it described the semivariances in 
our data sets most suitably (Eq. 3):

	 (3)

where ϲ0 refers to the nugget parameter, ϲ0+ ϲ1 
is the sill, and a is the range parameter. These 
parameters define the form of the variogram 
model. The range parameter defines the maxi-
mum distance at which spatial dependence 
occurs. The nugget parameter accounts for 
the sampling error and/or spatial dependence 
occurring at intervals less than the sampling 
interval. The sill parameter is equal to the vari-
ance of a random variable, which means that 
it represents the maximum semivariance value 
where spatial dependence still exists. Together 
with the chosen variogram model, these param-
eters can be used to define the spatial structure 
in a data set (Legendre et al., 1989). Anisotropy 
in the data sets was also studied, but no clear 
effect on semivariances related to direction was 
found, so omnidirectional semivariances were 
used. In paper I, these methods are applied to 
data from the four spatially extensive sets of 
flow-through measurements to illustrate their 
potential in sampling design.

Stationary patterns in water quality 

Stationary patterns in water quality were 
studied by calculating spatial standard scores 
(z-scores). This analysis can be used to deter-
mine whether observations in some locations 
tend to differ from the mean of the whole data 
set (Getis & Ord, 1996). The analysis is based 
on the calculation of z-scores, where local 
means around each observation are separately 
compared to the mean of the whole data set and 
further normalized with the respective standard 
deviation (Eq. 4).

	  (4)

where µloc,n is the local mean around observa-
tion n and µtot and σtot are the mean and standard 
deviation of the whole data set, respectively. 
Local mean was calculated by using an inverse-
distance squared method (explained in detail 
in III). A significant difference from the mean 
value of the whole data set is reached when the 
local mean receives a z-score value higher than 
1.95 or lower than -1.95. 

In paper III, z-scores for each measurement 
were calculated for nine flow-through field 
campaigns. These were further interpolated to 
fine resolution z-score grids with the ordinary 
kriging method. Kriging is among the geosta-
tistical methods that applies modelled semi-
variances in spatial interpolation. Variograms 
defined separately for each data set were used 
to derive z-score grids. The resulting grids were 
then classified into binary values [0,1] repre-
senting whether they significantly differed from 
the mean concentration of the whole monitoring 
regime. Finally, areas where significant differ-
ence was observed in more than five occasions 
were identified.

Ecosystem interactions 

In paper IV, a systematic approach suggested 
by Bestelmeyer et al. (2011) was followed in 
order to identify abrupt transitions and charac-
terize driver–response interactions in the pelag-
ic ecosystem of Lake Vesijärvi. This approach 
concentrates on ecosystem driver and response 
variables and includes the visualization of 
temporal patterns, analysis of breakpoints in 
time series, description of the frequency dis-
tributions and temporal variance of response 
variables, and importantly, assessment of the 
relationships between ecosystem response 
variable and key driver in different regimes. 
A method presented in Rodionov (2004) and 
Rodionov & Overland (2005) was applied to a 
long time series of water quality parameters (TP 
and chl-a) and to the length of Daphnia ephi-
ppia (as an indicator of cladoceran body size) 
from Lake Vesijärvi to identify breakpoints 
that separate different regimes. The method 
sequentially tests whether the next observation 
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in the time series differs from the mean of the 
previous observations in the same regime. If a 
significant observation is found (marked with 
c to indicate a potential changing point), the 
subsequent observations are used to confirm 
whether the change remains. The significance 
of a change in the time series is tested with a 
regime shift index (Eq. 5).

	 (5)

where l refers to the length of the regimes be-
ing tested (cut-off length) and σl to the average 
standard deviation for all one-year intervals in 
the time series. The number of years from the 
changing point are marked with m = 0,...,l-1 
and  represents the cumulative sum of 
the normalized difference from the mean level 
of the hypothetical new regime ( ). For this 
regime, the difference from the current regime  
( ) needs to satisfy the conditions of the Stu-
dent’s t-test (Eq. 6):

	 (6)

where t refers to the value of the t-distribution 
with 2l-2 degrees of freedom at the given proba-
bility level p. In order to verify the regime shift, 
the cumulative sum needs to remain positive (in 
the case of a shift to a greater concentration) or 
negative (in a shift to a lower concentration) 
until the cut-off length is reached.

Basically, the minimum interval of detect-
able regime shifts is determined with the cut-off 
length (l) and probability level (p) that affect 
the sensitivity of the identification. In paper 
IV, we used a 7-year cut-off length and a 10% 
significance level to detect major transitions 
in the time series and respective values of 3 
years and 20% to inspect minor changes in the 
time series. Similar values have also been used 
elsewhere (e.g. Rodionov & Overland, 2005). 
After identification of the regimes, the driver–
response interaction was examined by fitting 
linear regression models to study the relation-
ship between TP and chl-a concentrations for 
the identified regimes. Further details of the 
methods used are provided in paper IV.

4. RESULTS AND DISCUSSION

4.1 Classical sample 
size estimates

Environmental assessment of water bodies, 
which is typically based on summary statistics, 
requires a certain number of samples in order 
to be statistically valid. An increase in the num-
ber of collected samples evidently reduces the 
standard error of the mean value. Sample size 
selection is related to the risk of false estimates 
(confidence), acceptable margin of error (preci-
sion), the variability of the data being sampled 
and the available funding and time (de Smith, 
2011). From the lake manager perspective, 
funding and time, are typically set by external 
parties. Therefore the remaining i.e. confidence 
level, required precision and the variability in 
data are the factors lake manager need to con-
sider in respect to the information quality to 
be derived. 

Cochran’s formula (Eq. 1) provides a start-
ing point for representative sampling analysis 
if prior knowledge of the data variability exists 
(Bartlet, Kotrlik & Higgins, 2001). In water 
quality monitoring, information on variance 
typically exists from previous observations, re-
search, expert judgment or from similar aquatic 
ecosystems. In the paper I we concluded that 
discrete sampling can lead to erroneous mean 
estimates for the area of interest. We utilized Eq. 
1 with measured spatial variance and according 
to the results, a mean estimate with a margin of 
error of 20% requires more than 5 random and 
independent chl-a samples, and the expected 
error increases rapidly with fewer samples (Fig. 
5). Håkanson (1984), who presented one variant 
of Cochran’s equation, claimed that an error 
larger than 20% carries limited information, 
since the error bars around the mean will be 
too large to address questions related to changes 
in the aquatic system. 

This easily incorporated approach can be ap-
plied to observed variance in spatial or temporal 
scales and can provide initial estimates of the 
expected random sampling error of different 
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sampling efforts (I). The equation has evolved 
several variants, all of which are based on the 
relationship between three elements; two in-
volving risk assessment (significance level and 
variance) and one involving the size of the ef-
fect one is seeking to discover (margin of error) 
(de Smith, 2011). The usability of the results 
apparently depends on the prior information on 
the variance from the observed system. There-
fore, the standard deviation used in sampling 
effort analysis should reflect the variance ex-
pected in the specific time period of interest 
(Hedger et al., 2003). Drawbacks in classical 
sample size estimates are that they assume ran-
dom sampling and therefore do not take into 
consideration the possible dependency between 
observations or characteristics of variation. 

4.2 Temporal representativeness 
of regular sampling

In paper II, we examined the temporal uncer-
tainty of regular sampling frequencies in es-
timating the seasonal statistics. The study re-

sulted in standard error models for the mean 
and standard deviation estimates for different 
regular sampling intervals (Fig. 6). Based on 
the measured variance in chl-a, fortnightly 
sampling would provide reasonable precision 
in summary statistics (ca. 7% in the mean and 
12% in the SD). Loftis and Ward (1980) stated 
that sample statistics computed from monitor-
ing data can be affected by three general factors: 
(1) random changes due to storms, rainfall, etc.; 
(2) seasonal changes; and (3) serial correlation 
(i.e. autocorrelation). The bootstrap approach 
used in paper II assumes that the temporal nat-
ural variance of a water quality parameter can 
be described. We used daily time series from 
two years and three locations to describe the 
variance. It is likely that these do not compre-
hensively cover typical inter-annual and spatial 
variation at the study site, although all chl-a 
time series showed similar patterns and season-
al succession (Fig. 3 in II). Furthermore, me-
teorological and anthropogenic perturbations 
in water quality are partly averaged in the cal-
culation of combined standard errors. The ap-
plied method is thus less suitable in water areas 

Figure 5. Required sample sizes to estimate the mean chlorophyll a concentration with different 
margins of error. Estimates are based on standard deviations (SD) observed (obs.) from the four 
spatially extensive flow-through data sets from Lake Vesijärvi. Modified from study I.
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where the variation is unpredictable. Benefits in 
moving block bootstrap method include that it 
works with dependent data and also allows esti-
mation of the probability of observing high con-
centrations (Fig. 6 in paper III). Observations 
of high concentrations are valuable, since they 
often indicate extreme situations such as algae 
blooms or rapid water inflows after storms. The 
risk of not having these observations can there-
fore lead to ignorance of essential information. 

Similar quantitative tools to determine sam-
pling intervals for water quality monitoring is 
difficult to find in the literature, although the 
problem is well acknowledged (Strobl & Ro-
billiard, 1998). Ward et al. (1986) stated that 
establishment of temporal sampling criteria re-
quires appropriate statistical tests with which to 
obtain the desired information from the collect-
ed data. Knowlton and Jones (2006) examined 
the detection of slow and abrupt rates of change 
from water quality time series with differing 

sampling intervals. They concluded that to de-
tect a gradual change (doubling of chl-a over 
20 years) would require more than 20 years of 
observations with monthly or twice-monthly 
sampling. Furthermore, the abrupt doubling of 
chl-a in one year required 3 years of weekly 
sampling in order to reach 75% probability for 
statistically valid detection. Elsdon and Connel 
(2009), on the other hand, observed that varia-
tion over short time scales of days was large rel-
ative to variation at scales of weeks and months. 
They concluded that monitoring of long-term 
trends must be mindful of short-term variation 
and its capacity to confuse interpretations over 
broader time scales. Temporal representative-
ness analysis can also include the avoidance 
of collecting too many samples. Oversampling 
is rarely a problem in funding-limited manual 
sampling programmes, but it might be an is-
sue of concern in water quality monitoring by 
space-borne remote sensing, where even dai-

Figure 6. Modelled accuracy limits (± standard error percentages) for the mean and standard 
deviation estimates of different sampling frequencies from the time series. Vertical lines indicate 
monthly, fortnightly and weekly sampling intervals (II).
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ly observations are typical. As the daily pro-
cessing of remote sensing data to derive water 
quality estimates is time consuming, there is a 
clear need to match the amount of work with 
the actual information requirements stated by 
the monitoring programmes.

4.3 Structure of variability

Observations are often dependent either in time 
or space, and ignoring this can lead to bias in 
conventional statistical estimates and the sig-
nificance levels these utilize (Jassby & Powel, 
1990; Heffernan et al., 2010). Therefore, fur-
ther analysis of the structure of variance and 
its specific characteristics is required in sam-
pling design. High-frequency data accessible 
with automated measurements, remote sensing 
or extensive flow-through measurements have 

been successfully used to reveal within-lake 
variation (e.g. Pulliainen et al., 2001; Lindfors 
et al., 2005; Le Vu et al., 2011) and are suitable 
for characterizing the typical variance for the 
monitoring area (Curran & Atkinson, 1998; 
Hedger et al., 2001).

Autocorrelation in data sets reveals the 
representativeness of discrete water quality 
measurements as well as the distance between 
measurements at which they become statisti-
cally independent (Bierman et al., 2011). The 
variogram model in Figure 7 describes the spa-
tial dependency in a combined set of four spa-
tially extensive flow-through measurements. 
Due to the spatial variation in the monitoring 
area, semivariances between observations in-
crease rapidly as a function of distance. Con-
sequently the representativeness of discrete 
measurements decreases. Results from study I 
thus suggest that due to the patchiness in water 

Figure 7. Standardized semivariances and variogram model based on spatially extensive flow-through 
measurements from the Enonselkä basin. A standardized semivariance value of one represents the 
respective value for the whole data set (I).
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quality, data from a limited number of discrete 
samples can be very misleading in describing 
the situation in the monitoring area. In Lake 
Vesijärvi, for instance, the representativeness of 
discrete samples decreased to only 50% within 
a distance of 200 m (Fig. 5 in paper I). 

The main outcome from paper I was that a 
general representation of autocorrelation can be 
created with certain limitations. Similar conclu-
sions have also reported in spatial dimensions 
(Kitsiou et al., 2001; Hedger et al., 2001) and in 
temporal dimensions (Heffernan et al., 2010). 
The practical implementation of such general-
ized models in sampling design can be realized 
through indication of the statistically independ-
ent sampling distances (range parameter a in 
Eq. 3). This is necessary to avoid redundancy 
in the collected data. The nugget parameter 
(c0 in Eq. 3), on the other hand, indicates the 
random sampling error or variance occurring 
at smaller distances or time periods than the 
sampling intervals. This can be valuable in the 
comparison of different data sources and their 
sensitivity in detecting small-scale spatial var-
iation. Furthermore, spatial dependency stud-
ied across different directions (anisotropy) can 
indicate that water movements distribute point 
source pollutants with certain patterns (Wang 
& Liu, 2005). In this case, the dependency is 
greater in parallel with the pattern and smaller 
across it. Furthermore, Kallio et al. (2003) used 
a similar approach in estimation of the optimal 
pixel size for remote sensing. Generalized var-
iogram models are also suitable for deriving 
spatial variance estimates for the point source 
or transect sampling to be used in data assim-
ilation, as demonstrated in Pulliainen et al. 
(2004). General models are justified, since the 
variability is generated by consistent processes 
and area-specific sources. However, the spatial 
dynamics can vary during the growing season 
(Moreno-Ostos et al., 2008) and therefore need 
to be studied during different periods in the an-
nual cycle and in varying weather conditions 
(Hedger et al., 2001). A variogram model also 
assumes that correlation between measure-
ments is not affected by physical boundaries, 
such as large islands or capes. The analysis thus 

requires relatively continuous and unbroken 
water bodies. 

4.4 Stationary patterns in water 
quality and remote sensing 
in small monitoring areas

If the parameter is known to vary in some kind 
of structured manner, for example spatially 
or temporally, then it makes sense to sample 
less frequently in the less variable phases or 
zones and more frequently where the variance 
is greater (de Smith, 2011). Various sources of 
horizontal variation such as point or diffuse 
pollution sources and wind-driven patterns in 
water quality support the formation of station-
ary patterns, as discussed in the introduction of 
this thesis. It is noteworthy to recognize that 
stationary patterns resulting from these sources 
are typically located close to the shoreline and 
might also indicate specific pollution sources. 

Remote sensing images can provide spatial-
ly extensive information from a whole lake in 
a single image. The example of remote sens-
ing estimation in Figure 8A reveals both the 
strengths and weaknesses of remote sensing 
data in small water quality monitoring areas 
with respect to the spatial resolution. Estimates 
of the chl-a concentration at a 300-m pixel size 
with the MERIS instrument cover the whole 
lake on a cloud-free day, but areas close to land 
cannot be observed. This is due to the mixed 
pixel effect from nearby land areas, floating 
macrophytes and disturbing reflectance from 
the lake sediments (Koponen et al., 2002). 
Therefore, water quality information from these 
areas cannot be reliably derived with remote 
sensing observations. Spatial variability can 
thus cause a systematic error in the mean and 
variance estimations derived with satellite data 
due to the inability to observe near-shore areas 
and the averaging of small-scale variance with-
in each pixel (cf. Benson & MacKenzie 1995; 
Aplin, 2006). The magnitude of this error is de-
pendent on the areal proportion and distribution 
of areas with differing concentrations as well as 
the strength of this variability. 
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Figure 8. Chlorophyll a concentration in Lake Vesijärvi estimated from a MERIS/Envisat satellite image 
taken on 19.8.2010 (A). Areas with constantly differing water quality in the southernmost Enonselkä 
basin were detected with z-score analysis (B, modified from III). 

In study III, the spatial z-score analysis 
identified areas where the chl-a concentration 
typically differed from the mean of the moni-
toring area (Fig. 8B). These dynamic areas may 
pinpoint potential pollution sources, but also 
indicate upcoming changes in water quality as 
they may also function as a source of nutrients 
and particulate matter. Thus, if these areas are 
neglected in the monitoring programs, infor-

mation on the reasons behind the changes in 
water quality might be lost (III). When using 
remote sensing data in small or rugged water 
areas, this is an issue of special concern. The 
pixel sizes of the remote sensing data current-
ly used in operative water quality monitoring 
range from 250 m to 1000 m, and information 
from the water areas close to land cannot be de-
rived. However, if remote sensing is applicable, 
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pixel observations typically cover a relatively 
large area of the monitoring regime, even when 
mixed pixels are disregarded. Therefore, they 
can give spatially representative mean value es-
timations from the illuminated water (Fig. 5A in 
III). However, information from often dynamic 
near-shore areas is lost and variance estimates 
are obscured (Fig. 5B in III). Such analysis on 
scale depended observations can help in eval-
uating the spatial precision of available remote 
sensing data for different monitoring areas. 

4.5 Ecosystem interactions

Broad understanding of the interactions between 
water quality variables is useful in solving vari-
ous water quality related problems (Sanders et 
al., 1983). Paper IV highlights the importance 
of long-term data in identifying the ecosystem 
interactions for lake management purposes. 
We used a general systematic approach sug-
gested by Bestelmeyer et al. (2011) to identify 
an abrupt ecosystem transition that occurred 
during the biomanipulation of Lake Vesijärvi 
from 1989–1993. Break-point analysis divided 
the long time series of the key pelagic ecosys-
tem driver (TP), the response variable (chl-a) 
and the indicator of trophic structure (the size 
of Daphnia ephippia in lake sediment) into 
two distinct regimes: a eutrophic state before 
biomanipulation and a mesotrophic state after 
restoration (Fig. 9). In the eutrophic state, the 
lake followed a linear tracking response, i.e. 
the chl-a concentration linearly followed the 
TP concentration. After the biomanipulation, 
however, the chl-a concentration remained rel-
atively low and stable, and did not follow the 
changes in TP (Fig. 10). Thus, the driver–re-
sponse interaction apparently changed during 
the biomanipulation, also suggesting a change 
in ecosystem functioning, which is one of the 
main indicators of regime shifts (Scheffer et 
al., 2001; Bestelmeyer et al., 2011). In paper 
IV, we concluded that the regime shift was ini-
tiated by the diminished fish-mediated nutrient 
transfer from the benthic and littoral habitats 
to the lake pelagic zone, as reported in earlier 

studies (Hansson et al., 1998; Horppila et al., 
1998; Kairesalo et al., 1999). However, the cur-
rent mesotrophic state was only reached after 
an increase in the size of efficiently feeding 
zooplankton (Fig. 9C). This typical feedback 
mechanism in biomanipulation, initiated by the 
mass removal of planktivorous fish and aiming 
at enhanced ecosystem resilience (Carpenter et 
al., 1985), was earlier considered less important 
in Lake Vesijärvi. This was probably due to the 
inconsistent zooplankton records, a deficiency 
that was improved by Nykänen et al. (2010) 
with palaeolimnological data. Another conclu-
sion in paper IV is that the current clearer water 
regime in Lake Vesijärvi is fragile and the lake 
could return to a eutrophic state. This is prob-
ably because the nutrient concentrations still 
provide a luxurious growing environment for 
phytoplankton (Ojala et al., 2003), enhanced 
feedback grazing is artificially controlled by 
fishing management and because of the recent 
observations of deteriorating water quality 
(Kuoppamäki et al., in preparation).

Indicators of the ecosystem transition in Lake 
Vesijärvi, i.e. the identified break points (Fig. 
9.), the bimodal frequency distribution of the 
response variable and peaked temporal variance 
(Figs 3A and B in IV), as well as the altered rela-
tionship between driver and response variables 
(Fig. 10), had similarities with irreversible hys-
teresis and reversible threshold types of transi-
tions (Bestelmeyer et al., 2011; Carpenter et al., 
2011). The change in ecosystem functioning, 
i.e. enhanced zooplankton grazing, points to a 
nebulously reversible hysteretic change, but the 
current fragile state in the pelagic ecosystem of 
Lake Vesijärvi suggests that the transition could 
be reversed. The distinction between these two 
types of regime shifts can be artificial in the 
case of Lake Vesijärvi, mainly because the lake 
is still managed, but also because ecosystem 
responses to several additional drivers, includ-
ing oxygen deficiency, qualitative changes in 
phytoplankton communities and zooplankton 
feeding behaviour, the effects of which can vary 
between years (Winder & Schindler, 2004; Ha-
vens, 2008). It is likely that an alternate stable 
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state has not been reached in lake Vesijärvi fol-
lowing the biomanipulation.

The importance of representative data has 
been highlighted in regime shift analyses, 
since the power of regime shift indicators de-
clines rapidly with increasing within- and be-
tween-year variability in used variables (Con-
tamin & Ellison, 2009; Carpenter et al., 2011). 
Temporally unrepresentative monitoring can 
hide the information required, for instance, in 
the temporal variance, and spatial variation can 
increase the uncertainty in the collected time 
series, as considered earlier in this thesis. In 
study IV, the harmonization of the time series 
and the use of information from several trophic 
levels increased the confidence in the analysis 
of regime shifts and ecosystem interactions. 
The univariate threshold-testing technique ap-
plied to time series from several trophic levels 
revealed the time lag in the correspondence 
of variables. This was essential in concluding 
on the importance of zooplankton grazing as 
a feedback and resilience mechanism in the 
pelagic ecosystem of Lake Vesijärvi. The de-
tection of the time lags in ecosystem responses 
would probably be missed with multivariate 

techniques such as principal component analy-
sis, which combine information from a variety 
of variables applied in regime shift detection 
(cf. Andersen et al., 2009).

4.6 Sampling design

Regardless the direct relationship with the cost 
of monitoring programmes, quantitative criteria 
for specifying the sampling effort are surpris-
ingly seldom used in monitoring programmes 
(Strobl & Robillard, 2008; Hering et al., 2010). 
It is likely that an all-encompassing schema for 
sampling design cannot be determined in con-
stantly changing and dynamic aquatic environ-
ments. Nonetheless, even less comprehensive 
datasets and feasible statistical tools increase 
the rationale in the planning and quotation of 
monitoring programmes (I, II, III). This was al-
so supported by Carstensen (2007), who stated 
that sampling requirements should not be inter-
preted as exact numbers, but as an indication 
towards more representative and rationalized 
monitoring to derive the required information. 

Figure 10. Correlation between chl-a and TP concentrations for the eutrophic regime from 1974 to 
1989 (Regime 1; crosses) and the clear-water regime from 1994 to 2011 (Regime 2; circles), together 
with respective linear regression lines. The years of transition during the biomanipulation (1990–1992) 
are marked with asterisks. (IV)
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Key components in the general schema of 
water quality monitoring include the determi-
nation of the objectives, sampling design, data 
handling and analysis, as well as information 
utilization (Sanders et al., 1983; Ward et al., 
1986; Allan et al., 2006). Monitoring programs 
should be directed by the objectives, since they 
determine the parameters to measure and the 
requirements for their accuracy (Lovett et al., 
2007; Timmerman & Ottens, 2000). The indi-
cators for the ecological state used in the WFD, 
for instance, set the parameters for the assess-
ment and more generally the required precision1 
and confidence2 (Anonymous, 2003). The “ad-
equate” and “sufficient” levels of precision and 
confidence are related to spatial and temporal 
coverage of conducted sampling, but also to 
the abilities of the monitoring methods used to 
measure the existing variation. In this context, 
sampling design, i.e. where, when and how to 
monitor, is crucial, since the costs for the mon-
itoring and management of water bodies can 
be extremely high (Strobl & Robillard, 2008). 

A recent strategy for the monitoring of envi-
ronmental status in Finland (Anonymous, 2011) 
recommended the use of data-rich monitoring 
techniques such as remote sensing and automat-
ed monitoring to provide spatially and tempo-
rally more representative information. Howev-
er, data-rich monitoring methods do not alone 
solve the problems related to cost-efficient wa-
ter quality monitoring. Restrictions caused by 
specific properties of these monitoring methods 
and the clear need for calibration and accuracy 
assessment hinder their use to cover the sam-
pling requirements in itself. Instead, different 
methods should be considered as complemen-
tary (e.g. Pulliainen et al., 2004; Seppälä et al., 
2007; Strobl & Robilliard, 2008; Izydorczyk et 
al., 2009). Description of the typical variance in 
different dimensions is also a starting point for 
the rationalized joint use of several monitoring 
methods by allowing quantitative comparison 
1	  The discrepancy between the answer (e.g. a mean) given 
by the monitoring and sampling programme and the true value 
(Anonymous, 2003).
2	  The probability (expressed as a percentage) that the answer 
obtained (e.g. by the monitoring programme) does in fact lie 
within calculated and stated limits, or within the desired or 
designed precision (Anonymous, 2003).

between the abilities of different methods in a 
specific monitoring area. Furthermore, defined 
precision for spatial or temporal dimensions are 
required in the accuracy assessment of ecolog-
ical models and in the assimilation of several 
data sources (e.g. Marsili-Libelli et al., 2003; 
Pulliainen et al., 2004). In general, high res-
olution remote sensing on lake water quality 
could provide a cost-efficient data source for 
sampling design (eg. Kallio et al., 2008). A set 
of such data covering the seasonal changes in 
a monitoring area allows identification of areas 
with greater concentrations and variance, and 
can as well be used in estimation of general 
models for autocorrelation for monitoring areas 
(Hedger et al., 2001). 

Lake Vesijärvi has a long history of research 
and comprehensive monitoring by the local au-
thorities and the University of Helsinki. The 
objectives of this monitoring have included the 
maintenance of the lake’s status and thus the 
direction of restoration actions, but diverse re-
search purposes also exist. The comprehensive 
automation of measurements in Lake Vesijär-
vi was aimed at cost savings. High-frequen-
cy measurements have undoubtedly revealed 
fine-scale dynamics in the ecosystems and also 
raised several new research questions, but the 
original aim to save in expenses is arguable. The 
requirement for additional sampling to calibrate 
automated measurements (II) and the mainte-
nance of the equipment have turned out to be 
laborious. Based on the results of this thesis 
research, the characterized within lake variance 
can be used to rationalize sampling efforts. For 
instance, the results suggest that remote sensing 
observations supported by one suitably locat-
ed and carefully calibrated automated sensor 
could provide reasonable spatio-temporal pre-
cision in deriving average chl-a concentrations 
to fulfil WFD requirements per se (cf. Vuori et 
al., 2009). A comprehensive sampling design 
is, however, clearly more complex and the as-
sessment of costs can be difficult. Assessment 
of the status of water bodies requires various 
types of information, and monitoring methods 
also differ in the number of measurable param-
eters. Manual sampling, for instance, allows 
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the simultaneous sampling of a wide range 
of parameters, although subsequent analyses 
can be expensive. In papers I–III, only chl-a 
concentrations were used to represent spatial 
variability. However, the variance most likely 
differs between water quality parameters. Some 
parameters, such as nutrients and chl-a, can be 
expected to correlate and similar sampling ef-
forts are probably justified. The distribution of 
dissolved organic matter, on the other hand, can 
significantly differ from the above parameters 
(Bracchini et al., 2004), and different sampling 
efforts might be required. Further investiga-
tions should also be conducted on diurnal and 
vertical variation in lakes that are affected by 
factors such as light, temperature, stratification 
or migration of plankton (e.g. Wetzel, 2001). 
Both of these produce additional uncertainty 
sources for water quality monitoring.

An efficient monitoring network design 
should not only be able to successfully track 
specific substances, but also be effective in 
helping to understand how various ecosystem 
components interact and change over the long 
term (Strobl & Robilliard, 2008). The identi-
fication of ecosystem states and interactions 
between trophic levels provides insights into 
general ecosystem functioning (Maberly & El-
liot, 2012), and thus has practical applicability in 
lake management (IV). Reviewing recent mon-
itoring data against the information on ecosys-
tem interactions in different states can help lake 
managers to link the current measurements to 
ecosystem functions. Furthermore, understand-
ing of the key interactions can also guide mon-
itoring programmes to include relevant water 
quality parameters (Bestelmeyer et al., 2011). 
The drawbacks in approaches involving only 
the key trophic levels is that they simplify eco-
system functioning and neglect several other po-
tential drivers of the ecosystem state. For lake 
management, however, the definition of the key 
elements in ecosystem functioning is crucial. It 
allows the building and maintenance of resil-
ience of a desired ecosystem state and is there-
fore probably the most pragmatic and effective 
way to manage ecosystems (Scheffer et al., 
2001). The identification of abrupt transitions 

can also provide indications of the reversibility 
of regime shifts that have occurred or are in dan-
ger to occur (Andersen et al., 2009; Bestelmeyer 
et al., 2011). Together with the potential early 
warning signals for threatening transitions (Fig. 
3B in IV), this is valuable information in turn-
ing the observations into restoration decisions 
(Contamin & Ellison, 2009). 

Strategies to adjust limited sampling resourc-
es to the temporal and spatial variance have tak-
en shape during the long history of water quality 
monitoring. On temporal dimension, conven-
tional strategies such as timing of sampling to 
certain seasonal events or regular sampling in-
tervals are justified since prior knowledge on the 
temporal variation usually exists. On spatial di-
mension commonly used strategy that aims to get 
representation from pelagic or littoral areas, is 
closer to the random sampling strategy, because 
prior information on the spatial variation from 
these areas is usually limited. The error associ-
ated with the different sampling strategies and 
retrieved data, however, has been in many cases 
unknown. The rationalization and improvement 
of the accuracy of water quality monitoring pre-
sume the description of the uncertainty sources 
that affect the accuracy and precision of the data 
(Hawkins et al., 2010). Commonly considered 
analytical error can be relatively easily derived 
for the different monitoring methods, for in-
stance by comparison against the most accu-
rate data source. The assessment of spatial and 
temporal precision, however, requires studies 
on the typical variance in each monitoring area 
and the abilities of different monitoring methods 
to detect these variations. Essentially, when the 
variation is more adequately described, it helps 
to reduce random variation, improve indicator 
precision and reduce monitoring requirements 
(Carstensen, 2007). This can be done by cali-
brating the sampling sites or frequency and se-
lecting a suite of methods to derive the required 
information with sufficient accuracy (cf. Fig. 1).

When the variability at spatial and temporal 
scales is described for a specific monitoring re-
gime, a variety of methods, as also presented 
in this study, can be applied in the design of 
sampling schemes. It seems evident that sam-
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pling design cannot be harmonized over dif-
ferent water bodies, but needs to be calibrated 
against the typical variance and characteristics 
of the specific monitored system (Hedger et al., 
2001; Håkanson, 2007) as well as to the mon-
itoring methods available. The procedure thus 
requires determination of the costs, abilities and 
uncertainty sources, i.e. bias, random sampling, 
spatial and temporal errors for each applicable 
monitoring method in the area and the scrutiny 
of these with respect to the monitoring goals. In 
other words, sampling design should be seen as a 
rational procedure where sufficient information 
is derived using a suite of monitoring methods 
that minimize the uncertainty sources, costs and 
time. Sampling design should also be periodi-
cally re-assessed due to changing environmental 
conditions (Strobl & Robilliard, 2008), and the 
different dynamics in aquatic ecosystems during 
the growing season should additionally be noted 
(cf. Moreno-Ostos et al., 2008). 

5. CONCLUSIONS AND FUTURE 
PERSPECTIVES

The implementation of the WFD has been, and 
still is, a challenge for almost all EU Member 
States. Considerable time and resources have 
been spent on developing tools to obtain the 
required data for the assessment and to pre-
pare management plans (Hering et al., 2010). A 
well-acknowledged problem in the use of water 
quality monitoring data in assessment has been 
the effect of spatial and temporal variation on 
the precision and confidence of the data (Cars-
tensen, 2007). This variation has been diffi-
cult to overcome with traditional monitoring 
techniques, and the uncertainty that this causes 
in the monitoring data is still in many cases 
unclear. In practice, water managers face the 
problem of deciding whether the error associ-
ated with the predicted average value is small 
enough to detect changes in the actual condi-
tions (Noges et al., 2009). Although statistical 
methods to assess the uncertainty sources exist, 
they have not been implemented in monitoring 
programmes. In order to be feasible in large-

scale monitoring programmes, statistical sam-
pling design tools need to be relatively easy to 
apply and also linked to the information avail-
able from the monitored system. 

This thesis research aimed to facilitate water 
quality monitoring by applying feasible statis-
tical tools to assess water quality variability 
and by characterizing ecosystem interactions 
in different states. 

The work derived following conclusions:
1.	 The required sampling effort and design 

are dependent on the specific properties of 
individual monitoring areas; 

2.	 Ignorance of spatial and temporal variation 
can lead to erroneous summary statistics, 
and monitoring methods vary in their abil-
ity to detect variation;

3.	 Data-rich monitoring methods provide 
an essential tool to estimate the adequate 
sampling intervals and locations and the 
characteristics of variance;

4.	 General statistical representations of the 
variance within water bodies can be creat-
ed with certain limitations;

5.	 Information derived from past transitions 
provides a powerful insight into ecosystem 
interactions and responses to pressures that 
can be used in interpretation of recent ob-
servations;

6.	 Sampling design should be seen as a ra-
tional procedure where sufficient informa-
tion is derived with a suite of monitoring 
methods that minimize the uncertainty 
sources, costs and time and acknowledge 
the properties of the monitored ecosystem;

7.	 Fundamentally, as understanding of the 
variance and history of the observed sys-
tem increases, the requirements for sam-
pling can also be more accurately defined.

The value of water quality monitoring should 
be evaluated against the consistency of col-
lected data and the ability to answer to ex-
plicit scientific questions (Lovett et al, 2007; 
Erkkilä & Kalliola, 2007). As anthropogenic 
disturbance of aquatic systems, the depletion 
of natural resources and climate change pro-
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ceed, the significance of sound monitoring pro-
grammes and long-term records is expected to 
increase (Lovett et al., 2007; Andersen et al., 
2009; Bestelmeyer et al., 2011). In this thesis 
research, I aimed to contribute to the develop-
ment of adaptive monitoring programmes that 
are calibrated to the typical variance within 
monitoring sites and that aim at maintaining 
the natural resilience of ecosystems. In the fu-
ture, assessment of uncertainty sources in wa-
ter quality monitoring will probably be further 
emphasized as the rationalization of monitoring 
programmes continues. Research is still needed 
in order to develop a feasible tool set for water 
ecosystem managers to assess the uncertainty 
sources, to integrate information and to evalu-
ate the risk of misjudgements in relation to the 
expected costs.
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