
Smolyak Quadrature

Vesa Kaarnioja
University of Helsinki

Department of Mathematics and Statistics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14928756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Mathematics and Statistics

Vesa Kaarnioja

Smolyak Quadrature

Applied mathematics

Master’s thesis May 2013 75 pages

Smolyak quadrature, curse of dimensionality, sparse grids, dimension-adaptive quadrature

Kumpula Science Library

This thesis is an introduction to the theoretical foundation and practical usage of the Smolyak
quadrature rule, which is used to evaluate high-dimensional integrals over regions of Euclidean
spaces. Given a sequence of univariate quadrature rules, the Smolyak construction is defined in
terms of tensor products taken over the univariate rules’ consecutive differences. The evaluation
points of the resulting multivariate quadrature rule are distributed more sparsely than those of e.g.
tensor product quadrature. It can be shown that a multivariate quadrature rule formulated in this
way inherits many useful properties of the underlying sequence of univariate quadrature rules, such
as the polynomial exactness.

The original formulation of the Smolyak rule is prone to a copious amount of cancellation of
terms in practice. This issue can be circumvented by isolating the occurrence of duplicates to a
separate term, which can be computed a priori. The resulting combination method forms the basis
for a numerical implementation of the Smolyak quadrature rule, which we have provided using the
MATLAB scripting language.

Our tests suggest that the Smolyak rule provides a competitive alternative in the realm of
multidimensional integration routines saturated by the stochastic Monte Carlo method and the
deterministic Quasi-Monte Carlo method. This statement is especially valid in the case of smooth
integrands and it is backed by the error analysis developed in the second chapter of this thesis.
The classical convergence rate is also derived for integrands of sufficient smoothness in the case of
a bounded integration region.

The third chapter serves as a qualitative approach to generalized sparse grid quadrature. Espe-
cially of interest is the dimension-adaptive construction. While it lacks the theoretical foundation of
the Smolyak quadrature rule, it has the added benefit of adapting to the spatial structure of the in-
tegrand. A MATLAB implementation of this routine is presented vis-à-vis the Smolyak quadrature
rule.

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

Introduction 2
0.1 Prerequisites and notation . 4

1 The Smolyak method 6
1.1 Tensor product . 6
1.2 Smolyak quadrature rule . 10
1.3 Numerical implementation . 20

2 Error analysis 25
2.1 Polynomial exactness . 27
2.2 Fundamental theorem of Smolyak quadrature 33
2.3 Numerical experiments . 40

3 Generalized sparse grids 45
3.1 Weighted index set . 46
3.2 Dimension-adaptive quadrature 47
3.3 Concluding remarks . 50

Appendix A: On univariate quadrature rules 52

Appendix B: Combinatorial results 56

Appendix C: MATLAB programs 59

1

Introduction

This thesis is an introduction to the Smolyak quadrature rule, which is used
to evaluate high-dimensional integrals of the form

IdWf =

∫
I1×···×Id

W (x1, ..., xd)f(x1, ..., xd) dxd · · · dx1, ∅ 6= Ij ⊆ R an interval,

where f is integrable in the hyperrectangle I1 × · · · × Id and the weight
function W (x1, ..., xd) = W1(x1) · · ·Wd(xd) is a product of nonnegative inte-
grable functions in Ij for j = 1, ..., d. We interpret IdWf simply as an iterated
integral with d nested integral signs.

A straightforward method to evaluate multidimensional integrals such as
IdWf is to compound univariate rules coordinate-wise. The problem with this
approach lies in the number of function evaluations: using univariate rules
with n evaluation points results in a d-dimensional quadrature rule with a
total of nd points – an exponential correspondence with the dimension of the
problem! This phenomenon has been dubbed the curse of dimensionality,
which renders the naïve approach useless even on modern computers for
moderately high values of d.

There have been various attempts to remedy the situation. The reader
may be familiar with the stochastic Monte Carlo method (MC) or the de-
terministic Quasi-Monte Carlo method (QMC). They are variations on the
concept of sparse grids and make use of the fact that accuracy of the quadra-
ture rule increases as the discrepancy of the evaluation points decreases. MC
uses computer-generated pseudo-random sequences to achieve this goal while
QMC utilizes the crutch of number-theoretic sequences.

Given a sequence of univariate rules, the Smolyak quadrature rule is for-
mulated as a sum of tensor products taken over the consecutive differences in
the univariate sequence. The primary motive for the Smolyak construction is
the fact that the evaluation points are generated more sparsely than those of
the compounded approach. It can be shown that the asymptotic behaviour
of the error term takes on the alternative methods with increasing order.

2

INTRODUCTION 3

This result is known as the fundamental theorem of Smolyak quadrature in
this thesis.

The first chapter opens with a discussion of the preliminary concepts
leading to the definition of the Smolyak quadrature rule. We proceed to
derive several properties of the Smolyak rule culminating in the celebrated
combination method. The combination method forms the essential ingredient
to construct the numerical implementation of the Smolyak rule. A MATLAB
implementation of the algorithm is given in appendix C.

In the second chapter we concern ourselves with the approximation prop-
erties of the Smolyak rule. It can be shown that Smolyak’s construction
inherits the polynomial exactness of the underlying univariate rules. The
role of polynomial exactness is remarkable since practically no restrictions
need to be placed on the univariate sequence to derive strong results. In con-
trast the explicit convergence rate for Smolyak quadrature is derived only in
the case of a bounded integration region.

The third and final chapter of this thesis serves as a qualitative approach
to the generalized sparse grid quadrature rule and its relation to the Smolyak
rule. The dimension-adaptive construction is presented as well since it pro-
vides a more dynamic alternative to high-dimensional integration problems
than the relatively static Smolyak rule. MATLAB implementations of these
methods are given in appendix C.

The results presented in this thesis fall into two categories: auxiliary
results and main results, which are the tensor product theorem, the combi-
nation method, polynomial exactness, lemma 2.6 and theorem 2.11. By their
nature, auxiliary results are properties which have not been proven in the
references of this thesis. Some results such as dimension recursion and propo-
sition 1.7 are known to the authors of selected works in the bibliography, but
I have constructed their proofs for the sake of completeness.

The proof of the combination method and lemma 2.6 are referenced from
the original paper by Wasilkowski and Woźniakowski [28]. The proof of the
tensor product theorem is inspired by [27] but the proof is ultimately carried
out using a different strategy. The results regarding polynomial exactness
follow the lines of [20] and [16] but have been adapted to fit the tone and
scope of this thesis. The inference leading to theorem 2.11 differs from the
general approach taken in the source material as it does not exploit nested
univariate sequences.

The main results have been generalized in two regards: the integration
region is allowed to be a hyperrectangle as opposed to a hypercube and the
assumption that the underlying univariate rules are nested has been omitted.
This omission is salvaged by a result in approximation theory due to Brass
in [3].

INTRODUCTION 4

0.1 Prerequisites and notation
Knowledge of basic uni- and multivariate calculus should be sufficient for
understanding the theoretical portion of this thesis. We shall additionally
construct a numerical implementation of the Smolyak quadrature rule and
its dimension-adaptive counterpart using MATLAB scripting language. This
thesis is not a textbook on scientific computing so knowledge of the afore-
mentioned language is assumed on the part of the reader.

We go through some of the necessary terminology used in the course of
this thesis. Let E be an arbitrary normed space. The set of linear mappings
from E to R is called the algebraic dual space of E, which we denote by E∗.
Elements of the set E∗ are called linear functionals. On the other hand, the
set of continuous, linear functionals from E to R is called the topological dual
space of E and it is denoted by E ′. The vector space E ′ forms a complete
normed space when it is accompanied by the operator norm

||T || = sup{|Tx|; x ∈ E and ||x||E ≤ 1}, T ∈ E ′,

where we understand || · ||E as the norm associated with the vector space
E. It is a simple exercise to show that the operator norm fulfills the norm
postulates.

Let T ∈ E∗. We call T bounded if there exists a constant C ≥ 0 such that
|Tx| ≤ C||x||E for all x ∈ E. It is well-known from elementary functional
analysis that T is continuous if and only if T is bounded. The last requirement
is in turn equivalent to saying that ||T || < ∞. Hence for continuous, linear
functionals T : E → R we have

|Tx| ≤ ||T || · ||x||E for all x ∈ E.

We follow the convention 0 ∈ N. Throughout this thesis we employ so-
called multi-index notation. If α ∈ Nd, then we refer to its jth coordinate
universally as αj. Let β ∈ Nd. We write α ≥ β if αj ≥ βj for all j = 1, ..., d.
We define additionally the shorthand 1 = (1, ..., 1) ∈ Nd.

We define the following multi-index norms

|α|1 =
d∑
i=1

αi and |α|∞ = max
1≤i≤d

αi

and introduce the following convention for the mixed derivative operator:

∂α

∂xα
=

∂|α|1

∂xα1
1 · · · ∂x

αd
d

, x = (x1, ..., xd) ∈ Rd.

INTRODUCTION 5

The derivative operator has the order |α|1 and the mixed order |α|∞.
Let ∅ 6= Ω ⊆ Rd1 and ∅ 6= Ξ ⊆ Rd2 . Suppose that f : Ω × Ξ → R has

continuous mixed derivatives up to mixed order r. Let α ∈ Nd1 and β ∈ Nd2

such that |α|∞ ≤ r and |β|∞ ≤ r. In the course of this thesis, we occasionally
employ the following nonstandard notation for the derivative operator:

∂αf(x, y)

∂xα
=
∂α̃f(z)

∂zα̃
and

∂βf(x, y)

∂yβ
=
∂β̃f(z)

∂zβ̃
,

where x ∈ Ω, y ∈ Ξ, z ∈ Ω × Ξ and we have set α̃ = (α, 0, ..., 0) ∈ Nd1+d2

and β̃ = (0, ..., 0, β) ∈ Nd1+d2 .
The terminology and theory behind quadrature rules of one variable is

briefly discussed in appendix A and the relevant combinatorial results are
presented in appendix B. Especially of interest are the cardinalities of multi-
index sets, which have been collected to theorem B.3 and the accompanying
corollary B.4.

Chapter 1

The Smolyak method

In this chapter we introduce the Smolyak quadrature rule. In the original
paper [25] by Smolyak, the method was developed for general tensor product
spaces. Although we make use of the terminology concerning tensor product
spaces, we shall not develop the theory to this extent. We instead limit our-
selves to integrals over regions of Rd, i.e. connected and non-empty subsets,
which may contain some of their boundary points.

In addition we shall discuss the implications of the Smolyak quadrature
formula and construct its numerical implementation based on the combina-
tion method. The convergence properties of this method are pursued in the
subsequent chapter. Before we press onto these matters, we must cover some
essential groundwork.

We turn our attention to the function spaces

Hr(Ω)=

{
f : Ω→ R;

∂αf(x)

∂xα
exists and is bounded in Ω for all |α|∞ ≤ r

}
for a fixed region ∅ 6= Ω ⊆ Rd. We call r regularity of functions in Hr(Ω)
and accompany these function classes with the respective norms

||f ||Hr(Ω) = max
α∈Nd
|α|∞≤r

sup

{∣∣∣∣∂αf(x)

∂xα

∣∣∣∣ ; x ∈ Ω

}
.

1.1 Tensor product
Suitably defined tensor products are a convenient tool to factorize mathe-
matical entities with product structure. Tensor product factorization can
be applied to functions, linear operators or vector spaces among others. In
this section we follow the outline presented in [27] and begin by limiting

6

CHAPTER 1. THE SMOLYAK METHOD 7

ourselves to tensor products defined for linear functionals of definite form –
namely that of quadrature rules.

Definition 1.1. Suppose that ∅ 6= Ω ⊆ Rd1 and ∅ 6= Ξ ⊆ Rd2 and let
S : Hr(Ω) → R and T : Hr(Ξ) → R be functionals. Suppose additionally
that they admit to representations

Sf =
m∑
i=1

aif(xi) and T f̃ =
n∑
i=1

bif̃(yi)

for a selection of positive weights (ai)
m
i=1 and (bi)

n
i=1 and vectors (xi)

m
i=1 and

(yi)
n
i=1 in the domains Ω and Ξ. Now Ω×Ξ ⊆ Rd1+d2 and the tensor product

of S and T is the linear functional S⊗T : Hr(Ω×Ξ)→ R defined by setting

S ⊗ Tf =
m∑
i=1

n∑
j=1

aibjf(xi, yj).

Remark 1. The quadrature-like operators in the previous definition are
linear and bounded. Consider for example the operator S. Let f ∈ Hr(Ω)
and α ∈ Nd1 , |α|∞ ≤ r. Then∣∣∣∣S∂αf(x)

∂xα

∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

ai
∂αf(x)

∂xα

∣∣∣∣
x=xi

∣∣∣∣∣ ≤ m max
1≤i≤m

|ai| max
α∈Nd1
|α|∞≤r

sup
x∈Ω

∣∣∣∣∂αf(x)

∂xα

∣∣∣∣ .
Since α was arbitrary, taking the supremum over the set of functions f ∈
Hr(Ω) such that ||f ||Hr(Ω) ≤ 1 yields ||S|| ≤ m max

1≤i≤m
|ai| <∞.

Let Ωj 6= ∅ be regions in Euclidean spaces Rdj and let Tj : Hr(Ωj) → R

be functionals for j = 1, 2, 3, ... such that

Tjf =

mj∑
i=1

w
(j)
i f(x

(j)
i),

where (w
(j)
i)

mj
i=1 are positive weights and (x

(j)
i)

mj
i=1 is a sequence of vectors in

Ωj. We define the following shorthand notation:
1⊗
i=1

Ti = T1 and
n⊗
i=1

Ti =
n−1⊗
i=1

Ti ⊗ Tn for n = 2, 3, 4, (1.1)

By induction with respect to n it is easy to prove that T1 ⊗ · · · ⊗ Tn defines
a linear functional Hr(Ω1 × · · · × Ωn)→ R such that

n⊗
i=1

Tif =

m1∑
i1=1

· · ·
mn∑
in=1

w
(1)
i1
· · ·w(n)

in
f(x

(1)
i1
, ..., x

(n)
in

) for n = 1, 2, 3,

CHAPTER 1. THE SMOLYAK METHOD 8

It is immediately obvious from definition 1.1 that the tensor product is
not commutative: generally S ⊗ T 6= T ⊗ S for quadrature-like operators
S and T . From the extended definition, we see that the tensor product is
associative: (S⊗T)⊗R = S⊗(T⊗R) for quadrature-like operators S, T and
R. Furthermore, the form of the operators permits the use of the distributive
identity (S + T)⊗R = S ⊗R + T ⊗R, when + is taken to be the ordinary
pointwise sum.

The role of the tensor product in the scope of this thesis is twofold. It is
used directly in the formulation of the Smolyak quadrature rule as we shall
see in the next section. On the other hand, it has an important isometric
property in the dual of Hr(Ω) spaces which is essential in the derivation of
the error term of the quadrature rule. This is a nontrivial property which we
will formulate in the following theorem.

Theorem 1.2 (Tensor product theorem). Let Ωj 6= ∅ be regions in Euclidean
spaces Rdj and define the functionals Tj : Hr(Ωj)→ R for all j = 1, 2, 3, ..., n
by setting

Tjf =

mj∑
i=1

w
(j)
i f(x

(j)
i),

where (w
(j)
i)

mj
i=1 are positive weights and (x

(j)
i)

mj
i=1 is in Ωj. Then∣∣∣∣∣

∣∣∣∣∣
n⊗
i=1

Ti

∣∣∣∣∣
∣∣∣∣∣ =

n∏
i=1

||Ti||

in the respective operator norms.

Proof. It is sufficient to prove the claim for n = 2. The general case follows
via induction due to representation (1.1).

Let S : Hr(Ω)→ R and T : Hr(Ξ)→ R be functionals such that

Sf =
m∑
i=1

aif(xi) and T f̃ =
n∑
i=1

bif̃(yi).

Let f ∈ Hr(Ω× Ξ). Fix x0 ∈ Ω and α ∈ Nd, |α|∞ ≤ r. Define the functions
g : Ω→ R and h : Ξ→ R by setting

g(x) =
n∑
i=1

bif(x, yi) and h(x) =
∂αf(z, x)

∂zα

∣∣∣∣
z=x0

.

CHAPTER 1. THE SMOLYAK METHOD 9

We immediately find that g ∈ Hr(Ω) and h ∈ Hr(Ξ). Especially ||h||Hr(Ξ) ≤
||f ||Hr(Ω×Ξ) regardless of x0 and α. We compute∣∣∣∣∣∂αg(x)

∂xα

∣∣∣∣
x=x0

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

bi
∂αf(x, yi)

∂xα

∣∣∣∣
x=x0

∣∣∣∣∣ = |Th| ≤ ||T || · ||h||Hr(Ξ)

≤ ||T || · ||f ||Hr(Ω×Ξ).

Since x0 and α were arbitrary, we obtain ||g||Hr(Ω) ≤ ||T || · ||f ||Hr(Ω×Ξ).
On the other hand, we attain a useful identity:

Sg =
m∑
i=1

aig(xi) =
m∑
i=1

ai

n∑
j=1

bjf(xi, yj) =
m∑
i=1

n∑
j=1

aibjf(xi, yj) = S ⊗ Tf.

These facts yield the inequality

|S ⊗ Tf | = |Sg| ≤ ||S|| · ||g||Hr(Ω) ≤ ||S|| · ||T || · ||f ||Hr(Ω×Ξ).

Taking the supremum over the set {f ∈ Hr(Ω×Ξ); ||f ||Hr(Ω×Ξ) ≤ 1} implies
||S ⊗ T || ≤ ||S|| · ||T ||.

The other inequality follows in a trivial manner. Let g ∈ Hr(Ω) such
that ||g||Hr(Ω) ≤ 1 and h ∈ Hr(Ξ) such that ||h||Hr(Ξ) ≤ 1. Define f(x, y) =
g(x)h(y). We observe that ||f ||Hr(Ω×Ξ) ≤ 1 and achieve

||S ⊗ T || ≥ |S ⊗ Tf | =

∣∣∣∣∣
m∑
i=1

n∑
j=1

aibjg(xi)h(yj)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

aig(xi)

∣∣∣∣∣ ·
∣∣∣∣∣
n∑
j=1

bjh(yj)

∣∣∣∣∣
= |Sg| · |Th|.

Taking suprema over the right-hand side of the inequality above yields the
desired result ||S ⊗ T || = ||S|| · ||T ||.

Example 1.3. Consider the problem of evaluating

IdWf =

∫
I1

· · ·
∫
Id

W1(x1) · · ·Wd(xd)f(x1, ..., xd) dxd · · · dx1

using a sequence of univariate quadrature rules (U
(j)
k)dj=1, where the subscript

denotes the number of evaluation points. Suppose that the univariate rules
are chosen in such a way that U (j)

k p = I1
Wj
p holds for all polynomials p

of degree at most mk in Ij. Let (w
(j)
i)ki=1 be the weights and (x

(j)
i)ki=1 the

evaluation points of the rule U (j)
k .

CHAPTER 1. THE SMOLYAK METHOD 10

Employing the quadrature rules U (j)
k to the integral IdWf coordinate-wise

yields the approximation

IdWf ≈
∫
I1

· · ·
∫
Id−1

W1(z1) · · ·Wd−1(zd−1)
k∑

id=1

w
(d)
id
f(z1, ..., zd−1, x

(d)
id

) dzd−1· · · dz1

≈
k∑

i1=1

· · ·
k∑

id=1

w
(1)
i1
· · ·w(d)

id
f(x

(1)
i1
, ..., x

(d)
id

).

The above can now be expressed in tensor product form

IdWf =
d⊗
i=1

U
(i)
k f + error. (1.2)

In literature this type of quadrature is typically referred to as tensor product
quadrature. It turns out that more imaginative use of the tensor product
reveals a multivariate quadrature rule that is perhaps less immediate but
in many respects more efficient than the approach taken above – at least
in terms of the number of function evaluations as the quadrature order is
increased.

1.2 Smolyak quadrature rule
Using definition 1.1 of the tensor product, we are ready to present the
Smolyak quadrature rule.

Definition 1.4 (Smolyak quadrature rule). Let (U
(j)
i)∞i=1 be a sequence of

univariate quadrature rules in the interval ∅ 6= Ij ⊆ R, j = 1, ..., d . We
introduce the difference operators in Ij by setting

∆
(j)
0 = 0, ∆

(j)
1 = U

(j)
1 and ∆

(j)
i+1 = U

(j)
i+1 − U

(j)
i for i = 1, 2, 3,

The Smolyak quadrature rule of order k in the hyperrectangle I1× · · ·× Id is
the operator

Qdk =
∑
|α|1≤k
α∈Nd

d⊗
i=1

∆(i)
αi
. (1.3)

Remark 2. The tensor product ∆
(1)
α1 ⊗ · · · ⊗∆

(d)
αd in the summand of (1.3)

vanishes whenever αi = 0 for some index i. In the sequel we always assume
that α ≥ 1 and hence k ≥ d.

CHAPTER 1. THE SMOLYAK METHOD 11

Remark 3. In the case d = 1, we obtain

Q1
k =

k∑
i=1

∆
(1)
i = U

(1)
1 +(U

(1)
2 −U

(1)
1)+...+(U

(1)
k −U

(1)
k−1) = U

(1)
k for all k ≥ 1.

We can directly apply properties of univariate quadrature rules to the Smolyak
rule in the one-dimensional case. This makes properties of the Smolyak rule
easy to prove by dimension-wise induction.

Using the difference operators defined above, we can write the tensor
product operator (1.2) of order k in the form

d⊗
i=1

U
(i)
k =

(
k∑

α1=0

∆(1)
α1

)
⊗ · · · ⊗

(
k∑

αd=0

∆(d)
αd

)
=

k∑
α1=0

· · ·
k∑

αd=0

d⊗
i=1

∆(i)
αi

=
∑
|α|∞≤k
α∈Nd

d⊗
i=1

∆(i)
αi
.

The rule (1.3) can therefore be considered as a delayed sum of the ordinary
tensor product operator (1.2).

Denote the evaluation point set of U (j)
i by X

(j)
i . Construction of the

evaluation points used by Qdk is illustrated in the schematic below.

(a) Product grids X
(1)
i1
×X

(2)
i2

such that
.....#X

(j)
k = 2k−1 and |(i1, i2)|∞ ≤ 3.

(b) The grid corresponding to rule Q2
4 is

.... the set
⋃
{X(1)

i1
×X(2)

i2
; |(i1, i2)|1≤4}.

Figure 1.1: Construction of Smolyak quadrature evaluation points. These
images were kindly produced for use in this thesis by Janika Kaarnioja.

CHAPTER 1. THE SMOLYAK METHOD 12

We shall postpone more involved convergence inspections until the next
chapter. We first proceed to explore several useful properties of the Smolyak
rule.

Dimension recursion is a quintessential property of the Smolyak rule.
In this thesis, we use this term to refer to two closely related results. The
most important use of dimension recursion is to allow us to perform the
dimension-wise induction step and prove properties of the Smolyak rule.

Proposition 1.5 (Dimension recursion). Let k ≥ d ≥ 2. Then

Qdk =
∑

|α|1≤k−1

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆(i)
αi

)
⊗ U (d)

k−|α|1 =
k−1∑
i=d−1

Qd−1
i ⊗∆

(d)
k−i.

Proof. We establish notation for the summation index set of rule (1.3) by
setting

I (k, d) = {α ∈ Nd; |α|1 ≤ k and α ≥ 1}.

It is easy to check that the following recursion relation is valid for k ≥ d ≥ 2:

I (k, d) = {(α, j) ∈ Nd; α ∈ I (k − 1, d− 1) and 1 ≤ j ≤ k − |α|1}.

The first equality can now be proven by writing the summation index set of
(1.3) recursively and utilizing the distributive property of the tensor product.
In this way we attain

Qdk =
∑

|α|1≤k−1

α∈Nd−1, α≥1

k−|α|1∑
j=1

(
d−1⊗
i=1

∆(i)
αi

)
⊗∆

(d)
j

=
∑

|α|1≤k−1

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆(i)
αi

)
⊗

k−|α|1∑
j=1

∆
(d)
j

=
∑

|α|1≤k−1

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆(i)
αi

)
⊗ U (d)

k−|α|1 ,

where the last equality follows from remark 3.

CHAPTER 1. THE SMOLYAK METHOD 13

Continuing where we left off, we can further compute

Qdk =
∑

|α|1≤k−1

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆(i)
αi

)
⊗ U (d)

k−|α|1

=
k−1∑
j=d−1

∑
|α|1=j

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆(i)
αi

)
⊗ U (d)

k−j

=
k−1∑
j=d−1

∑
|α|1=j

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆(i)
αi

)
⊗

k−1∑
`=j

∆
(d)
k−`

=
k−1∑
j=d−1

k−1∑
`=j

∑
|α|1=j

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆(i)
αi

)
⊗∆

(d)
k−`.

Changing the order of the first two summation signs nets us

Qdk =
k−1∑
`=d−1

(∑̀
j=d−1

∑
|α|1=j

α∈Nd−1, α≥1

d⊗
i=1

∆(i)
αi

)
⊗∆

(d)
k−` =

k−1∑
`=d−1

Qd−1
` ⊗∆

(d)
k−`

proving the claim.

The form in which we presented the Smolyak rule seems to imply that in
practical usage, a great amount of cancellation of terms is bound to occur
due to the presence of difference operators. The following example sheds
light on this issue

Example 1.6. Given univariate rules U (j)
1 , U (j)

2 , and U (j)
3 , determine Q3

5.

We suppress the spatial direction by writing Ui = U
(j)
i for the univariate

rules and ∆i = ∆
(j)
i for the respective difference operators. The collection of

all multi-indices α ∈ N3 with α ≥ 1 and |α|1 ≤ 5 is

{(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2, 1),

(2, 1, 2), (1, 2, 2), (3, 1, 1), (1, 3, 1), (1, 1, 3)}.

Plugging these into the rule (1.3), we get

Q3
5 = ∆1 ⊗∆1 ⊗∆1 + ∆2 ⊗∆1 ⊗∆1 + ∆1 ⊗∆2 ⊗∆1 + ∆1 ⊗∆1 ⊗∆2

+ ∆2 ⊗∆2 ⊗∆1 + ∆2 ⊗∆1 ⊗∆2 + ∆1 ⊗∆2 ⊗∆2 + ∆3 ⊗∆1 ⊗∆1

+ ∆1 ⊗∆3 ⊗∆1 + ∆1 ⊗∆1 ⊗∆3

CHAPTER 1. THE SMOLYAK METHOD 14

= U1 ⊗ U1 ⊗ U1 + U2 ⊗ U1 ⊗ U1 − U1 ⊗ U1 ⊗ U1 + U1 ⊗ U2 ⊗ U1

− U1 ⊗ U1 ⊗ U1 + U1 ⊗ U1 ⊗ U2 − U1 ⊗ U1 ⊗ U1 + U2 ⊗ U2 ⊗ U1

− U1 ⊗ U2 ⊗ U1 − U2 ⊗ U1 ⊗ U1 + U1 ⊗ U1 ⊗ U1 + U2 ⊗ U1 ⊗ U2

− U1 ⊗ U1 ⊗ U2 − U2 ⊗ U1 ⊗ U1 + U1 ⊗ U1 ⊗ U1 + U1 ⊗ U2 ⊗ U2

− U1 ⊗ U1 ⊗ U2 − U1 ⊗ U2 ⊗ U1 + U1 ⊗ U1 ⊗ U1 + U3 ⊗ U1 ⊗ U1

− U2 ⊗ U1 ⊗ U1 + U1 ⊗ U3 ⊗ U1 − U1 ⊗ U2 ⊗ U1 + U1 ⊗ U1 ⊗ U3

− U1 ⊗ U1 ⊗ U2

= U1 ⊗ U1 ⊗ U1 − 2U2 ⊗ U1 ⊗ U1 − 2U1 ⊗ U2 ⊗ U1 − 2U1 ⊗ U1 ⊗ U2

+ U2 ⊗ U2 ⊗ U1 + U2 ⊗ U1 ⊗ U2 + U1 ⊗ U2 ⊗ U2 + U3 ⊗ U1 ⊗ U1

+ U1 ⊗ U3 ⊗ U1 + U1 ⊗ U1 ⊗ U3.

The example above poses the question, whether there exists an alternative
expression of the rule (1.3) that does away with the difference operators.
The answer to this question is positive and we shall derive the so-called
combination method in the form presented by Wasilkowski and Woźniakowski
in [28].

In order to achieve such a representation, we first need to understand
the behaviour of difference operators in tensor product operations. This is
the leeway that allows us to ultimately gain control over the cancellation of
duplicate terms. To this end, we present the following result.

Proposition 1.7. Let α ∈ Nd and α ≥ 1. Then

d⊗
i=1

∆(i)
αi

=
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi .

Proof. A natural approach to show this proposition is to apply dimension-
wise induction. In the elementary case we need only to verify the two possible
cases:

∆
(1)
1 = U

(1)
1 = (−1)0U

(1)
1−0;

∆
(1)
i = U

(1)
i − U

(1)
i−1 = (−1)0U

(1)
i−0 + (−1)1U

(1)
i−1, i ≥ 2.

Next we suppose that the claim holds for some d ≥ 1. Let α ∈ Nd+1 and
α ≥ 1. If we first assume that αd+1 6= 1, then we get by direct computation

CHAPTER 1. THE SMOLYAK METHOD 15

∑
γ∈{0,1}d+1

α−γ≥1

(−1)|γ|1
d+1⊗
i=1

U
(i)
αi−γi =

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1+0

(
d⊗
i=1

U
(i)
αi−γi

)
⊗ U (d+1)

αd+1−0

+
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1+1

(
d⊗
i=1

U
(i)
αi−γi

)
⊗ U (d+1)

αd+1−1

=
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1

(
d⊗
i=1

U
(i)
αi−γi

)
⊗∆(d+1)

αd+1

since ∆
(d+1)
αd+1 = U

(d+1)
αd+1 − U

(d+1)
αd+1−1. The induction hypothesis implies that

∑
γ∈{0,1}d+1

α−γ≥1

(−1)|γ|1
d+1⊗
i=1

U
(i)
αi−γi =

(
d⊗
i=1

∆(i)
αi

)
⊗∆(d+1)

αd+1
=

d+1⊗
i=1

∆(i)
αi
.

If αd+1 = 1, then we substitute U (d+1)
αd+1−1 = 0 in the computations above and

arrive at the same conclusion. This proves the claim.

The previous proposition immediately yields a rudimentary representa-
tion of the rule (1.3) sans difference operators:

Qdk =
∑
|α|1≤k
α∈Nd

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi .

We can freely change the order of summation since both summation sets in
the expression above are finite:

Qdk =
∑

γ∈{0,1}d

∑
|α|1≤k

α∈Nd, α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi .

This allows us to replace the summation variable α by β = α − γ with the
conditions β ≥ 1 and |β|1 ≤ k− |γ|1. Since the latter condition also imposes
the upper bound |β|1 ≤ |β|1 + |γ|1 ≤ k to the range of multi-indices β, we
can change the order of summation one last time to arrive at the formula

Qdk =
∑
|β|1≤k

β∈Nd, β≥1

∑
γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1
d⊗
i=1

U
(i)
βi
.

CHAPTER 1. THE SMOLYAK METHOD 16

In the expression above the second summation sign actually controls the
cancellation of duplicate terms, which we are now free to manipulate. We
refer to theorem B.3i) in the appendix to find that∑

γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1 =

min{d,k−|β|1}∑
i=0

(−1)i
∑

γ∈{0,1}d
|γ|1=i

1

=

min{d,k−|β|1}∑
i=0

(−1)i#{γ ∈ {0, 1}d; |γ|1 = i}

=

min{d,k−|β|1}∑
i=0

(−1)i
(
d
i

)
.

The term above vanishes whenever d ≤ k−|β|1 so we can discard these multi-
indices. Recalling that β ≥ 1 we can assume that |β|1 ≥ max{d, k − d+ 1}.
Using equation (B.1) from appendix B yields∑

γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1 = (−1)k−|β|1
(

d− 1
k − |β|1

)
.

Explicitly writing down the discussion above yields the sought-after result.

Characterization 1.8 (Combination method). Let U (j)
i be univariate quad-

rature rules in the interval ∅ 6= Ij ⊆ R and suppose that k ≥ d. Then

Qdk =
∑

max{d,k−d+1}≤|α|1≤k
α∈Nd, α≥1

(−1)k−|α|1
(

d− 1
k − |α|1

) d⊗
i=1

U (i)
αi
. (1.4)

Looking back at example 1.6 where we determined Q3
5 from the rules U1,

U2 and U3, observe that the solution according to (1.4) is

Q3
5 =

∑
3≤|α|1≤5
α∈N3, α≥1

(−1)5−|α|1
(

2
5− |α|1

)
Uα1 ⊗ Uα2 ⊗ Uα3

= (−1)2

(
2
2

)
U1 ⊗ U1 ⊗ U1

+ (−1)1

(
2
1

)
(U2 ⊗ U1 ⊗ U1 + U1 ⊗ U2 ⊗ U1 + U1 ⊗ U1 ⊗ U2)

+ (−1)0

(
2
0

)
(U2 ⊗ U2 ⊗ U1 + U2 ⊗ U1 ⊗ U2 + U1 ⊗ U2 ⊗ U2

+ U3 ⊗ U1 ⊗ U1 + U1 ⊗ U3 ⊗ U1 + U1 ⊗ U1 ⊗ U3)

CHAPTER 1. THE SMOLYAK METHOD 17

= U1 ⊗ U1 ⊗ U1 − 2U2 ⊗ U1 ⊗ U1 − 2U1 ⊗ U2 ⊗ U1 − 2U1 ⊗ U1 ⊗ U2

+ U2 ⊗ U2 ⊗ U1 + U2 ⊗ U1 ⊗ U2 + U1 ⊗ U2 ⊗ U2 + U3 ⊗ U1 ⊗ U1

+ U1 ⊗ U3 ⊗ U1 + U1 ⊗ U1 ⊗ U3,

which is precisely the same result we achieved in example 1.6 with less tedium!
An immediate consequence of the formula (1.4) is the way it renders

the evaluation point sets of the Smolyak rule explicitly known. Let U (j)
i be

univariate quadrature rules in Ij and let X(j)
i be point sets containing the

respective quadrature rules’ evaluation points. Then by (1.4) the evaluation
points of Qdk form the set

η(k, d) =
⋃

max{d,k−d+1}≤|α|1≤k
α∈Nd, α≥1

X(1)
α1
× · · · ×X(d)

αd
for all k ≥ d.

We call elements of the set η(k, d) the nodes of Qdk. The cardinality of the set
η(k, d) is also called the cost of Qdk since it determines the minimum number
of function evaluations required to compute the Smolyak rule.

Denote the number of evaluation points of U (j)
i by n(j)

i and suppose that
n

(j)
i ≤ n

(j)
i+1. If the univariate rules are nested, i.e. X

(j)
i ⊆ X

(j)
i+1, then the

nodes of Qdk form the set

η(k, d) =
⋃
|α|1=k

α∈Nd, α≥1

X(1)
α1
× · · · ×X(d)

αd
for all k ≥ d.

Example 1.9. We compare the evolution of η(k, 2), when the univariate
rules are chosen to be the non-nested Gauss-Legendre and nested Gauss-
Patterson quadrature rules of 1, 3, 7, 15 and 31 points in [−1, 1]. The nested
Gauss-Patterson rule manages to yield a more economical point set as hinted
by the preceding discussion.

Gauss-Legendre

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Gauss-Patterson

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

CHAPTER 1. THE SMOLYAK METHOD 18

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 1.2: The evolution of η(k, 2) for k = 3, 4, 5, 6.

.
The selection of basis sequence affects both the accuracy and cost of

Smolyak quadrature. In the numerical sections of this thesis we shall inspect
three kinds of choices for the basis sequence:

i) slowly increasing, non-nested Gauss-Legendre and Gauss-Hermite se-
quences U (j)

i with the cardinality n(j)
i = i;

CHAPTER 1. THE SMOLYAK METHOD 19

ii) rapidly increasing, nested Clenshaw-Curtis sequence U (j)
i with the car-

dinality n
(j)
1 = 1 and n

(j)
i = 2i−1 + 1 for i > 1. This sequence is

recommended by Novak and Ritter in [19];

iii) delayed, nested Gauss-Patterson and Genz-Keister rules. The construc-
tion of these basis sequences is described below.

Let Ui = U
(j)
i be a slowly increasing Gauss-Patterson or Genz-Keister

basis sequence with ni evaluation points and polynomial exactness mi. Holtz
[17] recommends the following construction for a delayed basis sequence Ũi
with ñi points and polynomial exactness m̃i:

i = 1;
` = 0;
repeat

` = `+ 1;
while m` ≥ 2i− 1 do

Ũ
(j)
i = U

(j)
` ;

i = i+ 1;
end

until a basis sequence of desired length is achieved.

This procedure yields the following sequences:

i 1 2 3 4 5 6 7 · · · 12 13 · · · 24
ñi 1 3 3 7 7 7 15 · · · 15 31 · · · 31
m̃i 1 5 5 11 11 11 23 · · · 23 47 · · · 47

2i− 1 1 3 5 7 9 11 13 · · · 23 25 · · · 47

Table 1.1: The delayed Gauss-Patterson sequence.

i 1 2 3 4 · · · 8 9 · · · 15 16 · · · 32
ñi 1 3 3 9 · · · 9 19 · · · 19 41 · · · 41
m̃i 1 5 5 15 · · · 15 29 · · · 29 63 · · · 63

2i− 1 1 3 5 7 · · · 15 17 · · · 29 31 · · · 63

Table 1.2: The delayed Genz-Keister sequence.

The concept of delaying should be interpreted in the following sense: after
a certain number of repetitions, the Smolyak rule with a delayed Gauss-
Patterson or Genz-Keister basis sequence becomes equal in accuracy with
their slowly increasing Gaussian counterpart and no further improvements

CHAPTER 1. THE SMOLYAK METHOD 20

are possible without passing higher order rules to the Smolyak construction.
Observe that in example 1.9 we used a slowly increasing Gauss-Patterson
basis sequence instead of a delayed one.

We end this section with an elementary result regarding the cost of Qdk,
when the basis sequence U (j)

i has n(j)
i = 2i−1 evaluation points. This sequence

has special interest to us since it will be used in the error analysis of the
Smolyak rule.

Proposition 1.10. Let U (j)
i be univariate quadrature rules with n(j)

i = 2i−1

nodes and k ≥ d ≥ 1. The cost of Qdk is

#η(k, d) =
k∑

i=max{d,k−d+1}

2i−d
(
i− 1
d− 1

)
.

Proof. Utilizing the combination method we evaluate

#η(k, d) =
∑

max{d,k−d+1}≤|α|1≤k
α∈Nd, α≥1

n(1)
α1
· · ·n(d)

αd
=

k∑
i=max{d,k−d+1}

∑
|α|1=i

α∈Nd, α≥1

2|α|1−d

=
k∑

i=max{d,k−d+1}

2i−d
∑
|α|1=i

α∈Nd, α≥1

1.

The latter sum is equal to #{α ∈ Nd; |α|1 = i and α ≥ 1}, which is precisely(
i−1
d−1

)
according to theorem B.3ii). This is the desired result.

Remark 4. This result is actually a modified version of a result concerning
the topology of sparse grids, the theory of which is explored in detail by
Bungartz and Griebel in [5].

1.3 Numerical implementation
In this section we formulate the numerical implementation of the Smolyak
rule for evaluation of integrals of the form

IdWf =

∫
Id

W (x1, ..., xd)f(x1, ..., xd) dxd · · · dx1.

For simplicity we have assumed the integration region to be the hypercube
Id = I × · · · × I, where ∅ 6= I ⊆ R is an interval. It is straightforward

CHAPTER 1. THE SMOLYAK METHOD 21

to generalize the discussion in this section to hyperrectangles. The weight
function has the form W (x1, ..., xd) = W1(x1)d. The univariate rule is chosen
in such a way that the contribution of W1 is eliminated altogether.

The problem formulation is the following: given the function f and uni-
variate rules Uj with the nodes (x

(j)
i)

nj
i=1 and weights (w

(j)
i)

nj
i=1, compute

k∑
`=max{d,k−d+1}

∑
|α|1=`

α∈Nd, α≥1

nα1∑
i1=1

· · ·
nαd∑
id=1

coef(k, d, `)w(α1)
i1
· · · w(αd)

id
f(x

(α1)
i1

, ..., x
(αd)
id

),

where coef(k, d, `) = (−1)k−`
(
d−1
k−`

)
. The above is just the combination method

(1.4) written down explicitly. Observe that the cumbersome nested sums can
be replaced by summation over all occurring combinations of univariate nodes
and weights.

Before we can construct the algorithm, we need to account for the follow-
ing components:

i) a generator of univariate nodes and weights;

ii) a combinatorial algorithm that generates all multi-indices α ∈ Nd such
that α ≥ 1 and |α|1 = `, ` ≥ d;

iii) for any vector sequence (v(i))`i=1, v(i) = (v
(i)
1 , ..., v

(i)
ni) ∈ Rni , determine

its vector combination defined inductively by

combvec((v(i))1
i=1) = v(1);

combvec((v(i))`i=1) =

(
combvec((v(i))`−1

i=1) · · · combvec((v(i))`−1
i=1)

v
(`)
1 · · · v

(`)
1 · · · v

(`)
ni · · · v

(`)
ni

)
,

where the notation on the bottom row of the matrix means that each
individual vector element of v(`) is repeated to match the width of the
previous vector combination iteration.

For example, the vector combination of v(1) = (1), v(2) = (2, 3) and v(3) =
(4, 5, 6) is the matrix

combvec((v(i))3
i=1) =

1 1 1 1 1 1
2 3 2 3 2 3
4 4 5 5 6 6

 .

We address parts i)-iii):
i) We assume that the nodes and weights of the univariate quadrature

rules are provided on the part of the user. Suggestions for the generation of
univariate rules are given in appendix A.

ii) We use the drop algorithm by Thomas Gerstner [11, algorithm 8.1.1].

CHAPTER 1. THE SMOLYAK METHOD 22

Algorithm 1.11. . .
Generate all d-dimensional multi-indices (k1, ..., kd) with k1 + ...+ kd = `.

Input: dimension d, order `
Output: matrix ind containing multi-indices, count containing its size
p = 1;
count = 0;
initialize matrix ind;
for i = 1, ..., d do

ki = 1;
k̂i = `− d+ 1;

end
while kd < `− d+ 1 do

kp = kp + 1;
if kp > k̂p then

kp = 1;
p = p+ 1;

else
for i = 1, ..., d do

k̂i = k̂p − kp + 1;
end
k1 = k̂1;
p = 1;
count = count+ 1;
append matrix ind with (k1, ..., kd);

end
end

See program C.2 in appendix C for the MATLAB implementation of this
algorithm.

iii) The MATLAB Neural Network Toolbox function combvec works as
advertised above when the input is given as row vectors.†

For notational simplicity, we define an auxiliary notation. Let A be the
k × n matrix defined by A = (aij), 1 ≤ i ≤ k and 1 ≤ j ≤ n, and define the

†If the Neural Network Toolbox is not installed, I have included the program C.7 in
appendix C with identical functionality in this context.

CHAPTER 1. THE SMOLYAK METHOD 23

column-wise matrix product with itself by setting

∏
column-wise

A =

(k∏
i=1

aij

)n
j=1

.

With these requisites, we are ready to write down the algorithm for the
generation of Smolyak quadrature nodes and weights.

Algorithm 1.12 (Smolyak quadrature rule). . .
Generate the d-dimensional Smolyak quadrature rule of order k.

Input: dimension d, order k
Output: matrix snodes containing the Smolyak quadrature nodes,

vector sweights containing the respective weights
initialize matrix snodes;
initialize vector sweights;
for ` = max{d, k − d+ 1}, ..., k do

generate ind with dimension d and order ` using algorithm 1.11;
for each multi-index α in ind do

determine univariate nodes x(αj) = (x
(αj)
1 , ..., x

(αj)
nαj

) and weights
w(αj) = (w

(αj)
1 , ..., w

(αj)
nαj

);

x = combvec((x(αj))dj=1);
w = coef(k, d, `)

∏
column-wise

combvec((w(αj))dj=1);

append matrix snodes with x;
append vector sweights with w;

end
end

See program C.3 for the MATLAB implementation of this algorithm.

The nodes are aligned vertically in the matrix snodes. This choice is one
of being practical: MATLAB built-in functions operate natively on column
vectors. If we want to compute the integral of the function func defined
in MATLAB environment, we can load the computed Smolyak quadrature
nodes snodes and weights sweights and run

>> sum(sweights.*feval(func,snodes))

A test run was conducted to determine the Smolyak quadrature rule based
on a slowly increasing Gauss-Legendre basis sequence with input parameters
d = 20 and k = 25. This produced the profile report on the next page.

CHAPTER 1. THE SMOLYAK METHOD 24

SmolyakRule (1 call, 136.492 sec)
Lines where the most time was spent

Line Number Code Calls Total Time % Time Time Plot

98 tmpnodes = combvec(tmpnodes,tm... 1009451 59.906 s 43.9%

99 tmpweights = combvec(tmpweight... 1009451 59.756 s 43.8%

81 [ind,count] = Drop(d,l); 5 9.249 s 6.8%

123 save(filename,'snodes','sweigh... 1 2.160 s 1.6%

113 tmpweights = (-1)^(k-l)*nchoos... 53129 1.580 s 1.2%

All other lines 3.840 s 2.8%

Totals 136.492 s 100%

Figure 1.3: The profile report produced by a test run of the program C.3.

The majority of runtime was split evenly between computing the Smolyak
quadrature nodes and weights, which is the intent of the program. The auxil-
iary function Drop is not vectorized so its performance contributes notably to
the total runtime. However, the increasing complexity of the combvec process
with high values of d and k diminishes Drop by a wide margin.

Numerical experiments using the program C.3 are postponed until sec-
tions 2.1 and 2.3 of the next chapter.

Chapter 2

Error analysis

In this chapter we explore the rate at which the Smolyak quadrature rule
approximates the integral

IdWf =

∫
I1×···×Id

W (x1, ..., xd)f(x1, ..., xd) dxd · · · dx1, ∅ 6= Ij ⊆ R an interval,

under sufficient smoothness conditions for the integrand f and the weight
function W . Our first goal is to quantify the admissible integrands and
weight functions.

Let Ω = I1 × · · · × Id. In the general case where Ω is allowed to be
unbounded, we are mostly limited to inspecting the polynomial exactness of
the Smolyak rule. If we assume that Ω is bounded, we can proceed to derive
error estimates for functions in the class Hr(Ω).

The class of weight functions is defined in the following way: W ∈ W (Ω)
if and only if W satisfies the following postulates:

W1) W (x1, ..., xd) = W1(x1) · · ·Wd(xd) for all (x1, ..., xd) ∈ Ω and Wj ≥ 0
for all j = 1, ..., d;

W2) the mapping x 7→ xkWj(x) is integrable in Ij for all k ∈ N and j =
1, ..., d;

W3) there exists a sequence of univariate quadrature rules (U
(j)
i)∞i=1 such

that ||I1
Wj
− U (j)

i || ≤ BCi for some positive constants B and C.

The norm ||·|| denotes the operator norm in the dual ofHr(Ω) for the entirety
of this chapter.

Define the operator Sd : Hr(Ω)→ R by setting

Sdf =

nd∑
i=1

wif(xi),

25

CHAPTER 2. ERROR ANALYSIS 26

where (wi)
nd
i=1 is a collection of positive weights and the sequence (xi)

nd
i=1

belongs to Ω as usual. We append our definition 1.1 of the tensor product
by setting

Id1W ⊗ I
d2
V f =

∫
Id1×···×Id1+d2

W (z1, ..., zd1)V (zd1+1, ..., zd1+d2)f(z1, ..., zd1+d2) dz;

Sd1 ⊗ Id2V f =

nd1∑
i=1

wi

∫
Id1+1×···×Id1+d2

V (z)f(xi, z) dz;

Id1W ⊗ S
d2f =

∫
I1×···×Id1

nd2∑
i=1

wiW (z)f(z, xi) dz

for f ∈ Hr(Ω)∩L1(Ω),W ∈ W (I1×· · ·×Id1) and V ∈ W (Id1+1×· · ·×Id1+d2),
where we take L1(Ω) to mean the set of integrable functions in Ω. It turns
out that the tensor product theorem 1.2 holds for our appended definition
of the tensor product. Checking this is arduous, so we shall only verify the
parts which we will need.

Suppose that ||Id1W || < ∞ and ||Id2V || < ∞. First we note that the new
definition retains the associative and distributive properties of definition 1.1.
The relation ||Id1W⊗I

d2
V || ≤ ||I

d1
W ||·||I

d2
V || holds according to Fubini’s theorem.

It suffices to check the condition ||Sd1⊗Id2V || ≤ ||Sd1|| · ||I
d2
V ||. The inequality

||Id1W ⊗ Sd2|| ≤ ||I
d1
W || · ||Sd2|| follows in a similar fashion.

Let Ω1 = I1 × · · · × Id1 , Ω2 = Id1+1 × · · · × Id1+d2 and Ω = Ω1 × Ω2.
Additionally, let f ∈ Hr(Ω) and V ∈ W (Ω2). Fix x0 ∈ Ω1 and α ∈ Nd1 ,
|α|∞ ≤ r. Define the functions g : Ω1 → R and h : Ω2 → R by setting

g(x) =

∫
Ω2

V (z)f(x, z) dz and h(x) =
∂αf(z, x)

∂zα

∣∣∣∣
z=x0

.

It immediately follows that g ∈ Hr(Ω1), h ∈ Hr(Ω2) and ||h||Hr(Ω2) ≤
||f ||Hr(Ω) hold regardless of x0 and α. The rest of the proof is completely
analogous to the first part of the proof of theorem 1.2. The key observations
are

||g||Hr(Ω1) ≤ ||Id2V || · ||h||Hr(Ω2) and Sd1g = Sd1 ⊗ Id2V f.
Combining the above yields

|Sd1 ⊗ Id2V f | = |S
d1g| ≤ ||Sd1|| · ||g||Hr(Ω1) ≤ ||Sd1 || · ||Id2V || · ||f ||Hr(Ω).

Taking the supremum over the set {f ∈ Hr(Ω); ||f ||Hr(Ω) ≤ 1} yields the
desired result. For details, we refer the reader to the proof of theorem 1.2.

CHAPTER 2. ERROR ANALYSIS 27

2.1 Polynomial exactness
It is customary to compare the exactness of univariate quadrature rules by
their polynomial exactness. While not the best universal measure of exact-
ness outside the realm of polynomials (for exploration on this, see e.g. [26]),
one can infer from considerable polynomial exactness of the integration rule
that high smoothness of the integrand translates to high accuracy of the
approximation. In the domain of univariate rules, the highest polynomial
exactness that can be achieved using n evaluation points is 2n − 1. These
rules are called Gaussian and in this section we shall see that this prop-
erty translates in some capacity to the Smolyak rule with a Gaussian basis
sequence.

Another interesting reason to inspect the polynomial exactness of the
Smolyak rule is the generality of the results stated in this section. For exam-
ple, we do not even have to assume that the intervals Ij be bounded. The
results derived in this section hold especially for Gaussian integrals∫

Rd

e−||x||
2

f(x) dx,

which can be approximated using the non-nested Gauss-Hermite or the nested
Genz-Keister rule by choosing Wj(x) = e−x

2 and Ij = R.
The polynomial exactness of Smolyak quadrature is explored in detail

by Novak and Ritter in [20] and partly by Heiss and Winschel in [16]. The
results in this section are based on these papers.

First we need to quantify the relevant polynomial spaces. Define the
following notation for multivariate monomials:

xβ =
d∏
i=1

xβii ,

where x = (x1, ..., xd) ∈ Rd and β ∈ Nd. If β = (0, ..., 0), then we define
xβ = 1. We use this notation to define the space of multivariate polynomials

Pdk =

Rd 3 x 7→
∑
|β|1≤k
β∈Nd

aβx
β ∈ R; aβ ∈ R for all β ∈ Nd

 .

If p(x) =
∑
aβx

β ∈ Pdk is not the zero-mapping, then we define the total
degree of p by setting deg(p) = max{|β|1; aβ 6= 0 for some β ∈ Nd, |β|1 ≤ k}.
If p(x) = 0 for all x ∈ Rd, then we set deg(p) = −∞.

CHAPTER 2. ERROR ANALYSIS 28

We provide the following definition for polynomial tensor product spaces:
d⊗
i=1

P1
mi

=

{
Rd 3 (x1, ..., xd) 7→

d∏
i=1

pi(xi) ∈ R; pi ∈ P1
mi

for i = 1, ..., d

}
.

Example 2.1. Pdk is clearly spanned by the sequence
(
xβ
) .

.
β∈Nd
0≤|β|1≤k, which is

linearly independent. The cardinality of this sequence is called the dimension
of Pdk. We find that

dim(Pdk) =
k∑
i=0

#{β ∈ Nd; |β|1 = i}.

Using the combinatorial result B.4 yields

#{β ∈ Nd; |β|1 = i} =

(
d+ i− 1

d− 1

)
and utilizing property (B.2) nets us

dim(Pdk) =
k∑
i=0

(
d+ i− 1
d− 1

)
=

(
d+ k
d

)
.

As a special case, we verify the well-known identity

dim(P1
k) =

(
1 + k

1

)
= k + 1.

Recall that interpolatory quadrature formulae with polynomial exact-
ness m are derived for predetermined points by solving a linear system of
dim(P1

m) = m + 1 equations for d = 1. To establish polynomial exactness
of total degree m for d > 1, we would similarly need to solve a system of
dim(Pdm) =

(
d+m
d

)
equations. As one might hanker a guess, this is not the

most efficient approach to the problem. Hence the need for multivariate
quadrature algorithms.

We are ready to prove the first main result of this section.

Proposition 2.2. Let U (j)
i be univariate quadrature rules that correspond to

the weight Wj and have polynomial exactness mi such that mi ≤ mi+1. Let
W (x1, ..., xd) = W1(x1) · · ·Wd(xd). Then

IdWf = Qdkf for all f ∈
∑
|α|1=k

α∈Nd

d⊗
i=1

P1
mαi

and k ≥ d,

where we define A+B = {a+ b; a ∈ A and b ∈ B} for sets A and B.

CHAPTER 2. ERROR ANALYSIS 29

Proof. The proof is carried out by dimension-wise induction. If d = 1, then
the claim is reduced into I1

W1
f = U

(1)
k f for f ∈ P1

mk
. This is true by our

assumptions. Suppose that the claim is true for some d ≥ 1.
Let β ∈ Nd+1 such that |β|1 = k and k ≥ d + 1. Define f(x1, ..., xd+1) =

g(x1, ..., xd)fd+1(xd+1), where g(x1, ..., xd) = f1(x1) · · · fd(xd) and fi ∈ P1
mi

for i = 1, ..., d + 1. Now clearly f ∈
⊗d+1

i=1 P
1
mβi

. It is sufficient to prove the
claim for the function f since linearity of the Smolyak rule implies that the
claim then holds for any element in

∑
|α|1=k

⊗d+1
i=1 P

1
mαi

as well.
Using dimension recursion and the product structure of f we get

Qd+1
k f =

k−1∑
i=d

Qdi ⊗∆
(d+1)
k−i f =

k−1∑
i=d

Qdi g ·∆
(d+1)
k−i fd+1.

If βd+1 ≤ k − i− 1, then mβd+1
≤ mk−i−1 ≤ mk−i and we have U (d+1)

k−i fd+1 =

U
(d+1)
k−i−1fd+1 = I1

Wd+1
fd+1. Especially ∆

(d+1)
k−i fd+1 = 0 and we can trucate the

expression for Qd+1
k by considering summation over the indices k − βd+1 ≤

i ≤ k − 1.
Using the fact that k = |β|1 allows us to write the rule Qd+1

k in the form

Qd+1
k f =

k−1∑
i=β1+...+βd

Qdi g ·∆
(d+1)
k−i fd+1.

Our induction hypothesis implies that IdW1···Wd
g = Qdi g for β1 + ...+βd ≤ i ≤

k − 1 and we achieve

Qd+1
k f =

k−1∑
i=β1+...+βd

IdW1···Wd
g ·∆(d+1)

k−i fd+1

= IdW1···Wd
g · U (d+1)

k−β1−...−βdfd+1

= IdW1···Wd
g · U (d+1)

βd+1
fd+1

= IdW1···Wd
g · I1

Wd
fd+1 = Id+1

W f

proving the claim.

Combining the Smolyak quadrature rule with the high polynomial ex-
actness of Gaussian rules, we achieve a remarkable result concerning the
exactness of the Smolyak rule using a slowly increasing Gaussian basis se-
quence.

CHAPTER 2. ERROR ANALYSIS 30

Proposition 2.3. Let U (j)
i be a slowly increasing basis sequence of Gaus-

sian rules corresponding to the weight function Wj. Let W (x1, ..., xd) =
W1(x1) · · ·Wd(xd). Then

IdWf = Qdkf for all f ∈ Pd2(k−d)+1 and k ≥ d.

Proof. It suffices to prove the claim for monomials. In the case d = 1 the
claim is reduced into one describing the polynomial exactness of univariate
Gaussian rules. We assume that for some d ≥ 1, it holds that

IdW1···Wd
xβ = Qdkxβ for all k ≥ d, β ∈ Nd and |β|1 ≤ 2(k − d) + 1.

Let β ∈ Nd+1 be such that |β|1 ≤ 2(k − d− 1) + 1 = 2(k − d)− 1. Using
dimension recursion we can write

Qd+1
k xβ =

k−1∑
i=d

Qdix(β1,...,βd) ·∆(d+1)
k−i xβd+1 .

If βd+1 ≤ 2(k − i − 1) − 1, then U
(d+1)
k−i xβd+1 = U

(d+1)
k−i−1x

βd+1 = I1
Wd+1

xβd+1

and hence ∆
(d+1)
k−i xβd+1 = 0. We can assume that βd+1 ≥ 2(k − i − 1). This

implies that β1 + ...+ βd + 2(k− i− 1) ≤ |β|1. Our selection of β now yields
β1+...+βd+2(k−i−1) ≤ 2(k−d)−1. In other words β1+...+βd ≤ 2(i−d)+1.
According to our induction hypothesis we get

Qd+1
k xβ = IdWx(β1,...,βd)

k−1∑
i=d

∆
(d+1)
k−i xβd+1 ,

where βd+1 ≥ 2(k − i − 1). If βd+1 = 2r for some r ∈ N, then the sum can
be written over the indices k − r − 1 ≤ i ≤ k − 1 and we achieve

Qd+1
k xβ = IdW1···Wd

x(β1,...,βd)

k−1∑
i=k−r−1

∆
(d+1)
k−i xβd+1

= IdW1···Wd
x(β1,...,βd) · U (d+1)

r+1 x2r = IdW1···Wd
x(β1,...,βd) · I1

Wd+1
xβd+1

since 2(r + 1)− 1 = 2r + 1 ≥ βd+1. On the other hand, if βd+1 = 2r + 1 for
some r ∈ N, then we consider the indices i ∈ N with k− r− 3/2 ≤ i ≤ k− 1
and we attain

Qd+1
k xβ = IdW1···Wd

x(β1,...,βd)

k−1∑
i=k−r−1

∆
(d+1)
k−i xβd+1 = IdW1···Wd

x(β1,...,βd) · U (d+1)
r+1 xβd+1

= Id+1
W1···Wd+1

xβ

since 2(r + 1)− 1 = 2r + 1 ≥ βd+1. This concludes the proof.

CHAPTER 2. ERROR ANALYSIS 31

We conclude this section with two examples demonstrating integration of
polynomials using the program C.3. We first present a well-behaved example.

Example 2.4. Consider the integral∫
[0,1]d

3d
d∏
i=1

x2
i dxd · · · dx1,

when d = 10.

The integrand is normalized in such a way that the exact result is equal
to 1. Clearly the integrand has total degree k′ = 20. The smallest order to
fulfill the criterion 2(k− d) + 1 ≥ k′ is k = 20, which yields the relative error
of 1.68326 · 10−7 in our numerical experiment.

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 10 11 12 13 14 15 16 17 18 19 20

re
la

ti
v
e

 e
rr

o
r

order

Figure 2.1: The integral of example 2.4 computed using the program C.3.

When the integration region is symmetric with respect to the origin, diffi-
culties begin to arise. The following example should be considered cautionary.

Example 2.5. Consider the integral∫
Rd

2d

πd/2
exp

(
−

d∑
i=1

x2
i

)
d∏
i=1

x2
i dxd · · · dx1,

when d = 10.

CHAPTER 2. ERROR ANALYSIS 32

The integrand is normalized such that the result is equal to 1. The total
degree of the integrand is 20, discounting the Gaussian weight function. The
Smolyak rule of order 20 yields the relative error 6.99441 · 10−15 but the
results look rather peculiar this time around!

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

 10 11 12 13 14 15 16 17 18 19 20

re
la

ti
v
e

 e
rr

o
r

order

Figure 2.2: The integral of example 2.5 computed using the program C.3.

What happened? The answer has to do with the structure of the Carte-
sian coordinate system. In the case of symmetric interpolatory quadrature
rules, the lower order evaluation points of the Smolyak rule are distributed
along the coordinate axes. Due to the product structure of the integrand,
the quadrature rule is guaranteed to produce the value zero for any quadra-
ture order k ≤ 2d − 1. However, proposition 2.3 assures us that the precise
nonzero result is attained not later than the order k = 20.

The discussion above alludes to the unfortunate side effect of the Smolyak
construction: its dependence on the Cartesian coordinate system. This phe-
nomenon has no bearing on the fact that we integrated over the whole space
Rd; the same result can be observed by integrating over bounded regions that
are symmetric with respect to the origin.

CHAPTER 2. ERROR ANALYSIS 33

2.2 Fundamental theorem of Smolyak quadra-
ture

The results of the preceding section were delightfully general: we are al-
ways assured some notion of convergence when we use the Smolyak rule in
conjunction with an interpolatory basis sequence. However, polynomial ex-
actness does not provide us with a tangible convergence rate when we operate
outside the class of polynomials.

Before we impose conditions on the basis sequence, we begin this section
by introducing a general convergence result due to Wasilkowski and Woźni-
akowski [28]. As long as the assumptions are valid, we obtain a crude error
estimate for the Smolyak rule.

Lemma 2.6. Suppose that ||I1
Wj
|| ≤ A and let U (j)

i be univariate quadrature
rules such that ||I1

Wj
− U (j)

i || ≤ BCi for some positive constants A, B and
C. Suppose that ||∆(j)

i || ≤ DCi for some D > 0. Then the following holds:

||IdW1···Wd
−Qdk|| ≤ BCk max

{
A

C
,D

}d−1(
k

d− 1

)
for all k ≥ d.

Proof. The proof is carried out by induction with respect to d. If d = 1, then
the claim follows immediately from the univariate case since

||I1
W1
−Q1

k|| =

∣∣∣∣∣
∣∣∣∣∣I1
W1
−

k∑
i=1

∆
(1)
i

∣∣∣∣∣
∣∣∣∣∣ = ||I1

W1
− U (1)

k || for all k ≥ 1.

Suppose that the claim holds for some d ≥ 1. If k + 1 ≥ d + 1, then by
utilizing the triangle inequality we attain

||Id+1
W1···Wd+1

−Qd+1
k+1|| = ||I

d+1
W1···Wd+1

−Qdk ⊗ I1
Wd+1

+Qdk ⊗ I1
Wd+1

−Qd+1
k+1||

≤ ||(IdW1···Wd
−Qdk)⊗ I1

Wd+1
||

+

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
|α|1≤k

α∈Nd, α≥1

d⊗
i=1

∆(i)
αi
⊗ I1

Wd+1
−

∑
|α|1≤k+1

α∈Nd+1, α≥1

d+1⊗
i=1

∆(i)
αi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣.

Using the tensor product theorem and assumption ||I1
Wj
|| ≤ A, we can eval-

uate the former term as follows:

||(IdW1···Wd
−Qdk)⊗ I1

Wd+1
|| ≤ ||IdW1···Wd

−Qdk|| · ||I1
Wd+1
|| ≤ A||IdW1···Wd

−Qdk||.

CHAPTER 2. ERROR ANALYSIS 34

Apply dimension recursion to the latter sum in the second term to get∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
|α|1≤k

α∈Nd, α≥1

d⊗
i=1

∆(i)
αi
⊗ I1

Wd+1
−

∑
|α|1≤k+1

α∈Nd+1, α≥1

d+1⊗
i=1

∆(i)
αi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
|α|1≤k

α∈Nd, α≥1

d⊗
i=1

∆(i)
αi
⊗ I1

Wd+1
−

∑
|α|1≤k

α∈Nd, α≥1

d⊗
i=1

∆(i)
αi
⊗ U (d+1)

k+1−|α|1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ .

Regrouping the formula above nets us

||Id+1
W1···Wd+1

−Qd+1
k+1|| ≤ A||I

d
W1···Wd

−Qdk||

+

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
|α|1≤k

α∈Nd, α≥1

d⊗
i=1

∆(i)
αi
⊗(I1

Wd+1
− U (d+1)

k+1−|α|1)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ .

The tensor product theorem implies

||Id+1
W1···Wd+1

−Qd+1
k+1|| ≤ A||I

d
W1···Wd

−Qdk||

+
∑
|α|1≤k

α∈Nd, α≥1

d∏
i=1

||∆(i)
αi
|| · ||I1

Wd+1
− U (d+1)

k+1−|α|1 ||.

Utilizing the rest of the assumptions yields

||Id+1
W1···Wd+1

−Qd+1
k+1|| ≤ ABC

k max

{
A

C
,D

}d−1(
k

d− 1

)
+

∑
|α|1≤k

α∈Nd, α≥1

DdC |α|1BCk+1−|α|1

= ABCk max

{
A

C
,D

}d−1(
k

d− 1

)
+BCk+1Dd

k∑
i=d

∑
|α|1=i

α∈Nd, α≥1

1.

CHAPTER 2. ERROR ANALYSIS 35

The latter sum is equal to the cardinality of the set {α ∈ Nd; |α|1 =
i and α ≥ 1}, which is equal to

(
i−1
d−1

)
by theorem B.3ii). Moreover, property

(B.2) implies that
k∑
i=d

(
i− 1
d− 1

)
=

(
k
d

)
.

Hence

||Id+1
W1···Wd+1

−Qd+1
k+1|| ≤ ABC

k max

{
A

C
,D

}d−1(
k

d− 1

)
+BCk+1Dd

(
k
d

)
.

If A/C ≥ D, then by Pascal’s identity:

||Id+1
W1···Wd+1

−Qd+1
k+1|| ≤ A

dBCk−d+1

(
k

d− 1

)
+BAdCk+1−d

(
k
d

)
= AdBCk−d+1

[(
k

d− 1

)
+

(
k
d

)]
= AdBCk−d+1

(
k + 1
d

)
=BCk+1A

d

Cd

(
k + 1
d

)
.

If A/C ≤ D holds instead, we have similarly

||Id+1
W1···Wd+1

−Qd+1
k+1|| ≤ ABC

kDd−1

(
k

d− 1

)
+BCk+1Dd

(
k
d

)
≤BCk+1Dd

(
k

d− 1

)
+BCk+1Dd

(
k
d

)
=BCk+1Dd

(
k + 1
d

)
.

This proves the claim.

Call back to mind the Landau notation. Let f and g be functions N →
R. We write f(n) = O(g(n)), if there exist constants C > 0 and M ∈
N such that |f(n)| ≤ C|g(n)| for all n ≥ M . Observe that the following
characterization is valid:

f(n) = O(g(n)) if and only if lim sup
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ <∞.

CHAPTER 2. ERROR ANALYSIS 36

Example 2.7. Fix d ∈ N \ {0}. If we let k ≥ d, then(
k − 1
d− 1

)
=

(k − 1) · ... · (k − (d− 1))

(d− 1) · ... · 1
= O(kd−1). (2.1)

This implies (
k

d− 1

)
= O((k + 1)d−1) = O(kd−1). (2.2)

In the expression above we have used the fact that the leading polynomial
term is dominant in asymptotic behaviour:

anx
n + ...+ a1x+ a0 = O(xn), a0, ..., an ∈ R.

Let us go back to the implications of lemma 2.6. At this point a couple
of problems occur. To achieve a convergence rate, we need to have a good
grasp on the convergence properties of the univariate rules. For example, the
convergence rate of the Gauss-Hermite rule differs greatly from the Gaussian
rules in a bounded interval [7]. Moreover, it is difficult to provide classical
convergence rates for the Gauss-Patterson and Genz-Keister schemes due to
their construction.

For the remainder of this section we consider the integral with unitary
weight function over the hypercube [−1, 1]d

Idf =

∫
[−1,1]d

f(x1, ..., xd) dxd · · · dx1,

where f ∈ Hr([−1, 1]d) and d ≥ 1. We choose the univariate rules Ui to
be interpolatory quadrature rules with positive weights and ni evaluation
points such that ni < ni+1. This allows us to use the following result from
approximation theory to our advantage.

Theorem 2.8. Let Ui be interpolatory quadrature rules for the positive func-
tional I1 with ni evaluation points in [−1, 1]. If the rules have positive weights
and ni < ni+1, then the following holds in the class of functions of regularity
r:

lim sup
i→∞

(nri ||I1 − Ui||) <∞.

Proof. This result is proven by Brass in [3]. A closely related theorem is
proven by Petras in [22].

CHAPTER 2. ERROR ANALYSIS 37

We are now able to verify that the assumptions of lemma 2.6 are fulfilled.
The choice of interval implies that A = 2. As a corollary to theorem 2.8, it
is possible to find a constant βr = β(r) corresponding to the function space
of regularity r such that

||I1 − Ui|| ≤ βrn
−r
i for all i = 1, 2, 3, ..., (2.3)

when Ui have the properties stated above. Selecting quadrature rules with
ni = 2i−1 nodes, we can set B = B(r) = 2rβr and C = C(r) = 2−r.
Furthermore, we compute

||∆i|| ≤ ||Ui − I1||+ ||I1 − Ui−1|| ≤ B(1 + 2r) · 2−ri = B(1 + 2r)Ci.

Set D = D(r) = B(1 + 2r) to fulfill the assumptions of lemma 2.6.
The previous discussion yields an initial estimate for the convergence of

the Smolyak quadrature rule.

Corollary 2.9. Suppose that f ∈ Hr([−1, 1]d) and let Ui be interpolatory
quadrature rules in [−1, 1] with positive weights and ni = 2i−1 nodes. Then∣∣∣∣∣∣∣∣

∫
[−1,1]d

f(x1, ..., xd) dxd · · · dx1 −
∑
|α|1≤k
α∈Nd

d⊗
i=1

∆αif

∣∣∣∣∣∣∣∣ = O(2−rkkd−1),

where we have suppressed the parameters r and d in the Landau notation.

Proof. We use the fact that the result of lemma 2.6 can be written in the
form

|Idf −Qdkf | ≤ BCk max{A/C,D}d−1O(kd−1)

by using (2.2). Plugging in the values of A, B, C and D determined above
yields the desired result.

The corollary states in no uncertain terms that the Smolyak rule is an
approximation of a d-dimensional integral provided that r ≥ 1. It turns
out that the convergence rate can be expressed classically as a function of
quadrature nodes, making it possible to compare the convergence rate of this
quadrature rule to rivalling methods. In this thesis I have dubbed this result
the fundamental theorem of Smolyak quadrature.

We did most of the work regarding the cost of Smolyak quadrature in
proposition 1.10. For the following discussion, denote N(k, d) = #η(k, d).
Proposition 1.10 now has a simple consequence.

CHAPTER 2. ERROR ANALYSIS 38

Corollary 2.10. Let Ui be univariate quadrature rules with ni = 2i−1 nodes.
Then

N(k, d) = O(2kkd−1).

Proof. We previously ascertained that

N(k, d) =
k∑

i=max{d,k−d+1}

2i−d
(
i− 1
d− 1

)
.

The mapping i 7→
(
i− 1
d− 1

)
is non-decreasing for each fixed d ≥ 1. Hence

N(k, d) ≤
(
k − 1
d− 1

) k∑
i=max{d,k−d+1}

2i−d = 21−d
(
k − 1
d− 1

)
(2k − 2max{d−1,k−d}).

Since O(2k − 2max{d,k−d+1}) = O(2k), we can estimate the asymptotic be-
haviour of the binomial coefficient by (2.1) to achieve

N(k, d) = O(2kkd−1)

proving the claim.

Let ni = 2i−1 and k ≥ d as usual. For sufficiently large k, this implies
2k ≤ N(k, d) and hence k ≤ log2(N(k, d)). The logarithm base is arbitrary
in terms of asymptotic behaviour, so we opt to suppress it. As a follow-up
to corollary 2.10 we achieve

2−k = O
(

kd−1

N(k, d)

)
= O

(
log(N(k, d))d−1

N(k, d)

)
.

It follows that

||Id −Qdk|| = O(2−rkkd−1) = O
(
(2−k)r log(N(k, d))d−1

)
= O

(
log(N(k, d))r(d−1)

N(k, d)r
log(N(k, d))d−1

)
= O

(
log(N(k, d))(r+1)(d−1)

N(k, d)r

)
.

This leads to the main result of this section.

CHAPTER 2. ERROR ANALYSIS 39

Theorem 2.11 (Fundamental theorem of Smolyak quadrature). Let ni =
2i−1 denote the number of evaluation points of interpolatory quadrature rules
Ui with positive weights in [−1, 1]. If we denote N(k, d) = #η(k, d), then
the corresponding Smolyak quadrature rule of degree k has the asymptotic
convergence rate of∣∣∣∣∣∣∣∣
∫

[−1,1]d

f(x1, ..., xd) dxd · · · dx1 −
∑
|α|1≤k
α∈Nd

d⊗
i=1

∆αif

∣∣∣∣∣∣∣∣ = O
(

log(N(k, d))(r+1)(d−1)

N(k, d)r

)

for all f ∈ Hr([−1, 1]d).

Let N denote the number of quadrature evaluation points, d the dimen-
sion and r the regularity. The convergence rate of Smolyak quadrature should
be compared with the respective error terms listed in table 2.1. The conver-
gence rates of tensor product quadrature and MC are derived in [7] and the
rate of QMC is derived in [18].

tensor product MC QMC

O(N−r/d) O
(

1√
N

)
O
(

log(N)d

N

)
Table 2.1: Convergence rates of various multivariate quadrature rules.

The denominator of the asymptotic convergence rate dominates the log-
arithmic term in the numerator for sufficiently high values of N . The regu-
larity parameter r provides an additional boost to the Smolyak rule over the
alternatives in table 2.1 implying that the Smolyak method is preferable in
the integration of smooth functions.

The issue of ”sufficiently large N ” should not be left unaddressed. Simply
put, the threshold is determined both by the integrand’s regularity and the
dimension of the problem. The dichotomy between these is the following:
the dimension has an increasing effect on the order of N and the regular-
ity parameter acts as a counterbalance. To achieve good or even moderate
performance in high-dimensional problems, the applicability of the Smolyak
rule is effectively restricted to smooth integrands.

In conclusion, the results of this section are validated only for very high
values of N – possibly unattainably high by the standards of modern com-
puters – but they do describe the nature of Smolyak’s construction insofar as
we expect good performance for smooth integrands. This nature is reflected
in the polynomial exactness of the Smolyak rule as well.

CHAPTER 2. ERROR ANALYSIS 40

2.3 Numerical experiments
Genz [9] introduced the following family of functions to test the performance
of high-dimensional quadrature rules in the unit hypercube [0, 1]d:

Attribute Integrand Family

Oscillatory f1(x) = cos

(
2πu1 +

d∑
i=1

aixi

)
Product Peak f2(x) =

d∏
i=1

1

a−2
i + (xi − ui)2

Corner Peak f3(x) =

(
1 +

d∑
i=1

aixi

)−(d+1)

Gaussian f4(x) = exp

(
−

d∑
i=1

a2
i (xi − ui)2

)
Continuous f5(x) = exp

(
−

d∑
i=1

ai|xi − ui|
)

Discontinuous f6(x) =


0, if x1 > u1 or x2 > u2;

exp

(d∑
i=1

aixi

)
otherwise.

The sequences (ai)
d
i=1 and (ui)

d
i=1 should be uniformly distributed pseudo-

random numbers in [0, 1]. The sequence (ai)
d
i=1 can be scaled to match any

given difficulty parameter L = a1 + ...+ad. The higher the difficulty, the less
numerically stable the integrand.

We tested the program C.3 using the Genz functions with d = 10 and the
difficulty levels L = 3.0 and L = 15.0. The Smolyak rule was generated using
three different basis sequences: slowly increasing Gauss-Legendre, delayed
Gauss-Patterson and rapidly increasing Clensaw-Curtis. We compared the
performance of the Smolyak rule to the MC and QMC rules, which were
computed using the formula∫

Ω

f(x) dx ≈ |Ω|
n

n∑
i=1

f(xi),

where ∅ 6= Ω ⊆ Rd is a hypercube and | · | denotes the Lebesgue measure of a
set. The point set (xi)

n
i=1 in Ω = [0, 1]d was generated using pseudo-random

numbers in the case of MC and the Sobol sequence in the case of QMC. The
reference values were computed using Wolfram Mathematica 7.

CHAPTER 2. ERROR ANALYSIS 41

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1 10 102 103 104 105

function evaluations

Oscillatory (L = 3.0)

re
la

tiv
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1 10 10
2

10
3

10
4

10
5

function evaluations

Oscillatory (L = 15.0)

re
la

ti
v
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1 10 102 103 104 105

function evaluations

Product Peak (L = 3.0)

re
la

tiv
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1 10 10
2

10
3

10
4

10
5

function evaluations

Product Peak (L = 15.0)

re
la

ti
v
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1 10 102 103 104 105

function evaluations

Corner Peak (L = 3.0)

re
la

tiv
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1 10 10
2

10
3

10
4

10
5

function evaluations

Corner Peak (L = 15.0)

re
la

ti
v
e

 e
rr

o
r

GL
GP
CC
MC

QMC

CHAPTER 2. ERROR ANALYSIS 42

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1 10 102 103 104 105

function evaluations

Gaussian (L = 3.0)

re
la

tiv
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1 10 10
2

10
3

10
4

10
5

function evaluations

Gaussian (L = 15.0)

re
la

ti
v
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 102 103 104 105

function evaluations

Continuous (L = 3.0)

re
la

tiv
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 10
2

10
3

10
4

10
5

function evaluations

Continuous (L = 15.0)

re
la

ti
v
e

 e
rr

o
r

GL
GP
CC
MC

QMC

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1 10 102 103 104 105

function evaluations

Discontinuous (L = 3.0)

re
la

tiv
e
 e

rr
o
r

GL
GP
CC
MC

QMC

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1 10 10
2

10
3

10
4

10
5

function evaluations

Discontinuous (L = 15.0)

re
la

ti
v
e

 e
rr

o
r

GL
GP
CC
MC

QMC

CHAPTER 2. ERROR ANALYSIS 43

In the case of integrands with low difficulty, the Smolyak algorithm out-
performed MC and QMC in all but the discontinuous case. In the evaluation
of the oscillatory, product peak and Gaussian integrands the routine actu-
ally reached the accuracy goal of the Mathematica software under a ”mere”
105 function evaluations. These results reflect the theoretical foundation ex-
plored in the first part of this chapter as the user would expect high accuracy
from smooth integrands.

Once the difficulty of the Genz functions is increased, the convergence rate
of the Smolyak algorithm becomes comparable with the MC and QMC rules.
In the case of the differentiable integrands, the Smolyak rule has a tendency
to increase in accuracy with each successive order while the evolution of the
MC and QMC routines does not have this monotony.

Venturing outside the class of differentiable functions the convergence
properties of the Smolyak routine diminish noticeably. None of the Smolyak
rules exhibit convergence in any meaningful way in the discontinuous case,
and even in the continuous case the Gauss-Legendre rule ceases to converge
monotonously.

Example 2.12. Consider the integral∫
Rd

e−||x||
2

sin(||x||2) dx,

when d = 5.

In this case, the exact value of the integral can be computed as a reference
by using formula 3.923.1 in the table of Gradshteyn and Ryzhik [15]∫

R

e−x
2

sin(x2 + r) dx =

√
π

4
√

2
sin
(π

8
+ r
)

for all r ∈ R.

Iterating the formula above d times reveals that∫
Rd

e−||x||
2

sin(||x||2) dx =
πd/2

2d/4
sin

(
dπ

8

)
for all d ≥ 1.

Using the slowly increasing Gauss-Hermite and delayed Genz-Keister
rules, the contribution of the exponential term can be eliminated. We can
compare the results attained using program C.3 to the exact value. The re-
sults suggest that the delayed Genz-Keister rule is preferable to the slowly
increasing Gaussian basis sequence.

CHAPTER 2. ERROR ANALYSIS 44

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 5 7 9 11 13 15 17 19

re
la

ti
v
e
 e

rr
o
r

order

GH

GK

Figure 2.3: The integral of example 2.12 computed using the program C.3.

The difference between the results obtained by these two methods can be
explained by the fact that univariate rules with higher polynomial exactness
are passed to the Genz-Keister rule at a lower order than the respective
Gauss-Hermite rule. While this could be seen as problematic in terms of
the number of function evaluations, it should be noted that the 19th order
delayed Genz-Keister rule has 98,523 unique nodes compared to the 1,868,878
unique nodes of the 19th order Gauss-Hermite rule. The high exactness and
low number of unique evaluation points make delayed basis sequences very
attractive in high-dimensional applications.

Chapter 3

Generalized sparse grids

In this section we touch upon the concept of generalized sparse grid quadra-
ture. The subject matter is considered qualitatively only and in the ensuing
discussion we suppress the spatial direction of the univariate rules by writing
Ui = U

(j)
i for univariate rules and ∆i = ∆

(j)
i for the respective difference

operators.

Definition 3.1. Given an index set I ⊆ Nd, the generalized sparse grid
quadrature rule is the operator

QdI =
∑
α∈I

d⊗
i=1

∆αi . (3.1)

Remark 5. By choosing I = I (k, d) = {α ∈ Nd; |α|1 ≤ k} in the
formula (3.1) we attain the Smolyak rule of order k. Selecting I = I (k, d) =
{α ∈ Nd; |α|∞ ≤ k} nets us the corresponding tensor product quadrature
formula. These can therefore be regarded as special cases of the generalized
sparse grid method. Program C.6 is a MATLAB implementation of the rule
(3.1), where the index set is supplied by the user. The tensor product of
difference operators is computed using proposition 1.7.

We shall present two strategies to compute generalized sparse grid quadra-
ture index sets: the method of weighted index sets and the dimension-
adaptive construction by Gerstner [13]. The methods are integrand-specific
insofar as they use spatial properties of the integrand to determine which
indices can be suppressed based on their contribution to the sum total.

45

CHAPTER 3. GENERALIZED SPARSE GRIDS 46

3.1 Weighted index set
Consider the ordinary Smolyak quadrature rule of dimension d and order k:

Qdk =
∑
|α|1≤k
α∈Nd

d⊗
i=1

∆αi .

We may have a priori knowledge that certain multi-indices have less contribu-
tion to the sum total than others. For instance, such a scenario may present
itself in the case of polynomials. If we code this information to the weight
vector γ = (γ1, ..., γd) ∈ Rd

+ in such a way that the so-called Hadamard prod-
uct α ◦ γ = (α1γ1, ..., αdγd) is in Nd for all α ∈ Nd, |α|1 ≤ k, then we can
replace the quadrature rule by the formula

Q̃dk =
∑
β=α◦γ

|α|1≤k, α∈Nd

d⊗
i=1

∆βi .

We illustrate this strategy with an example.

Example 3.2. Consider the function f(x, y, z) = g(x, z) in [−1, 1]3. Deter-
mine Q3

5f using univariate rules U1, U2 and U3 in [−1, 1].

The difference operator ∆i measures the change in the quadrature formu-
lae Ui and Ui−1 for i > 1. It is apparent from the structure of the integrand
that there is no contribution to the difference operator along the y-axis. In the
expression for the 5th order Smolyak rule, we can safely remove the marked
terms without a decrease in quadrature accuracy for the specific integrand:

Q3
5f = ∆1 ⊗∆1 ⊗∆1f + ∆2 ⊗∆1 ⊗∆1f +(((((((((

∆1 ⊗∆2 ⊗∆1f

+ ∆1 ⊗∆1 ⊗∆2f +(((((((((
∆2 ⊗∆2 ⊗∆1f + ∆2 ⊗∆1 ⊗∆2f

+(((((((((
∆1 ⊗∆2 ⊗∆2f + ∆3 ⊗∆1 ⊗∆1f +(((((((((

∆1 ⊗∆3 ⊗∆1f

+ ∆1 ⊗∆1 ⊗∆3f

= U1 ⊗ U1 ⊗ U1f + U2 ⊗ U1 ⊗ U1f − U1 ⊗ U1 ⊗ U1f

+ U1 ⊗ U1 ⊗ U2f − U1 ⊗ U1 ⊗ U1f + U2 ⊗ U1 ⊗ U2f

− U1 ⊗ U1 ⊗ U2f − U2 ⊗ U1 ⊗ U1f + U1 ⊗ U1 ⊗ U1f

+ U3 ⊗ U1 ⊗ U1f − U2 ⊗ U1 ⊗ U1f + U1 ⊗ U1 ⊗ U3f − U1 ⊗ U1 ⊗ U2f

= − U2 ⊗ U1 ⊗ U1f − U1 ⊗ U1 ⊗ U2f + U2 ⊗ U1 ⊗ U2f

+ U3 ⊗ U1 ⊗ U1f + U1 ⊗ U1 ⊗ U3f.

CHAPTER 3. GENERALIZED SPARSE GRIDS 47

�0.5

0.0
0.5

�0.5

0.0
0.5

�0.5

0.0

0.5

�0.5

0.0
0.5

�0.5

0.0
0.5

�0.5

0.0

0.5

Figure 3.1: The weighted and unweighted grids of example 3.2 using a slowly
increasing sequence of Gauss-Legendre rules with 1, 2 and 3 evaluation points.

We can apply the inference in the previous example to e.g. any spatially
oriented integrand, such as a polynomial. In practice, this method is much
too reliant on foreknowledge of the integrand to be absolutely reliable.

3.2 Dimension-adaptive quadrature
In the case of the Smolyak or tensor product quadrature rule, the index
set I = I (k, d) is predetermined by the dimension d and order k. The
dimension-adaptive construction of the index set takes into account the spa-
tial structure of the integrand and adds increments to the index set along
the spatial direction that contributes most to its respective difference opera-
tor. This is the diametric opposite of the method presented in example 3.2,
where we removed the directions with the least contribution to the sum. As
an added benefit, it is possible to terminate the algorithm at any point and
still attain an estimate for the integral.

Let f be the integrand and êi = (0, ..., 1, ..., 0) ∈ Rd the standard basis
vector which is zero with the exception of its ith component. The idea is to
start with an active index set A = {1} and an old index set B = {β ∈
Nd; βi = 0 for some i = 1, ..., d}. At each successive iteration, we take the
element α ∈ A with the highest local error indicator

gα = |∆α1 ⊗ · · · ⊗∆αdf |

and update the index sets by setting

A = A \ {α} and B = B ∪ {α}.

CHAPTER 3. GENERALIZED SPARSE GRIDS 48

New indices are added to A if they fulfill the following admissibility
criterion: if for some i = 1, ..., d the multi-index β = α+êi satisfies β−êj ∈ B
for all j = 1, ..., d, then we add it to the active index set A = A ∪ {β} and
update the integrand value and error estimate accordingly. The integral can
be estimated by computing the sum (3.1) over the union of A and B

QdA ∪B =
∑

α∈A ∪B

d⊗
i=1

∆αi .

Algorithm 3.3 (Dimension-adaptive quadrature). . .

Compute the generalized sparse grid index set and integral estimate of
the function f using dimension-adaptive quadrature.

Input: function f , dimension d, tolerance TOL
Output: multi-index set A ∪B, integral estimate res
α = 1;
A = {α};
B = {β ∈ Nd; βi = 0 for some i = 1, ..., d};
res = ∆α1 ⊗ · · · ⊗∆αdf ;
η = gα;
while η > TOL do

select α from A with the largest local error indicator gα;
remove α from A ;
add α to B;
η = η − gα;
for i = 1, ..., d do

β = α + êi;
if β − êj ∈ B for all j = 1, ..., d then

add β to A ;
s = ∆β1 ⊗ · · · ⊗∆βdf ;
res = res+ s;
η = η + gβ;

end
end

end
return res, A ∪B.

Program C.4 is the MATLAB implementation of this algorithm.

CHAPTER 3. GENERALIZED SPARSE GRIDS 49

A test run to integrate the function f(x1, ..., x10) = 310x2
1 · · ·x2

10 over
the unit hypercube [0, 1]10 with tolerance 1 % produced the following profile
report.

AdaptiveQuadrature (1 call, 135.883 sec)
Lines where the most time was spent

Line Number Code Calls Total Time % Time Time Plot

149 s = TensorDifferenceProduct(fu... 2475 132.593 s 97.6%

52 [n,w] = UnivariateRule(ii,rule... 99 1.610 s 1.2%

146 x = ismember(newind,actind,'ro... 4901 0.770 s 0.6%

147 y = ismember(newind,oldind,'ro... 4901 0.480 s 0.4%

133 x = ismember(oldind,hlpind,'ro... 2824 0.230 s 0.2%

All other lines 0.200 s 0.1%

Totals 135.883 s 100%

TensorDifferenceProduct (2477 calls, 132.633 sec)
Lines where the most time was spent

Line Number Code Calls Total Time % Time Time Plot

47 gamma = dec2bin(ii,d)-'0'; 2532948 61.007 s 46.0%

64 weights = combvec(weights,tmpw... 529362 31.148 s 23.5%

63 nodes = combvec(nodes,tmpnodes... 529362 30.578 s 23.1%

48 if all(vec-gamma > 0) 2532948 4.720 s 3.6%

56 gamma = dec2bin(ii,d)-'0'; 58818 1.880 s 1.4%

All other lines 3.300 s 2.5%

Totals 132.633 s 100%

Figure 3.2: The profile report produced by a test run of the program C.4.

CHAPTER 3. GENERALIZED SPARSE GRIDS 50

The run time is distributed evenly between the combvec routine and the
generator of binary vectors. The complexity of these is interchangeable:
should we directly use the formula (3.1), the amount of calls to the binary
vector routine would be transitioned over to the combvec routine.

In problematic cases it may be advantageous to attempt brute forcing a
solution by setting the tolerance to zero and placing a maximum iteration
count. Using a different basis sequence may also speed up the convergence
of this routine.

Figure 3.3: The evolution of the dimension-adaptive grid for f(x, y) = ex+y

using the slowly increasing Gauss-Legendre basis sequence in [−1, 1]×[−1, 1].

We end this section with a numerical example conducted using the pro-
gram C.4.

Example 3.4. Consider the integral∫
[−1,1]d

1

2d sinhd(1)
exp

(
d∑
i=1

xi

)
dxd · · · dx1,

where d = 10.

The integral has been normalized such that the result is equal to 1. The
development of the estimate is documented in the figure on the next page.
After 500 iterations, the relative error is 3.38788 · 10−3.

3.3 Concluding remarks
The Smolyak quadrature rule provides a competitive alternative to the mar-
ket of multidimensional quadrature rules saturated by MC and QMC rou-
tines. The tests of section 2.3 showed that the Smolyak rule outperforms
its competitors in the domain of smooth integrands. This observation is
validated by the theory explored in chapter 2.

CHAPTER 3. GENERALIZED SPARSE GRIDS 51

1e-03

1e-02

1e-01

1e+00

 1 100 200 300 400 500

re
la

ti
v
e

 e
rr

o
r

iterations

Figure 3.4: The integral of example 3.4 computed using the program C.4.

There are benefits to the use of Smolyak quadrature. The construction
of the Smolyak rule provides it with a strong theoretical foundation. As a
deterministic method it does not call costly random functions and its rate
of convergence overcomes both MC and QMC in problems with sufficiently
high smoothness. The Smolyak quadrature rule also retains the polynomial
exactness of the univariate quadrature rules, a property for which neither
MC nor QMC accounts.

The Smolyak rule provides an interesting utility in the evaluation of Gaus-
sian integrals ∫

Rd

e−||x||
2

f(x) dx

without the need to apply a smoothness reducing transformation to the inte-
gral. Gaussian integrals arise in a variety of applications in physics, stochas-
tics, and finance. The dimensionality of these problems may easily be in
the range of hundreds of variables and as such their computation with any
reasonable degree of accuracy practically requires the use of low-discrepancy
methods. The dimension-adaptive construction may provide additional com-
putational relief if the problem is spatially oriented.

Appendix A

On univariate quadrature rules

In this section we list some recommendations for the use of univariate quadra-
ture rules. The rules we discuss have the form

Uf =
n∑
i=1

wif(xi) (A.1)

for a sequence of positive weights (wi)
n
i=1 and a sequence of nodes (xi)

n
i=1

in some interval ∅ 6= I ⊆ R. We call the rule (A.1) interpolatory if the
following holds:

Up =

∫
I

W (x)p(x) dx for all polynomials p whose degree is at least n− 1.

We assume that the weight function W is nonnegative and the mapping
x 7→ W (x)xk is integrable in I for all k ∈ N.

If x1 < ... < xn is a sequence of points in I, then we can always find an
interpolatory formula (A.1) by solving the weights (wi)

n
i=1 from the linear

system 

w1 + ...+ wn =

∫
I

W (x) dx;

w1x1 + ...+ wnxn =

∫
I

W (x)x dx;

...

w1x
n−1
1 + ...+ wnx

n−1
n =

∫
I

W (x)xn−1 dx.

(A.2)

52

APPENDIX A. ON UNIVARIATE QUADRATURE RULES 53

The determinant of the system (A.2) is known as the Vandermonde determi-
nant, which is nonzero whenever the nodes are distinct [30].

We will discuss the construction of selected quadrature rules in the inter-
val [−1, 1].

Clenshaw-Curtis quadrature. The Clenshaw-Curtis rule is a de facto
nested quadrature rule. It is included in this thesis on account of the praise
it received by Novak and Ritter in [19]. The cardinality of the sequence is

n1 = 1 and ni = 2i−1 + 1 for i > 1.

In the first iteration we choose the node x(1)
1 = 0 and the weight w(1)

1 = 2.
The nodes of the ith iteration can be computed using the formula

x
(i)
j = − cos

(
π · j − 1

ni − 1

)
for j = 1, ..., ni

and their respective weights are

w
(i)
1 = w(i)

ni
=

1

ni(ni − 2)
;

w
(i)
j = w

(i)
ni+1−j =

2

ni − 1

(
1− cos(π(j − 1))

ni(ni − 2)

− 2

(ni−3)/2∑
k=1

1

4k2 − 1
cos

(
2πk · j − 1

ni − 1

))
for j = 2, ..., ni − 1.

Gaussian quadrature. Gaussian rules are characterized by the fact that
they have the maximal degree of exactness 2n−1 attainable with n evaluation
points. Their construction is a delicate matter and will be covered in an
extremely abridged manner.

If the weight function W fulfills the requirements listed above, then it is
possible to define the inner product

〈p, q〉W =

∫
I

W (x)p(x)q(x) dx, p and q polynomials,

and construct a family (Pi)
∞
i=0 of orthogonal polynomials by applying Gram-

Schmidt orthogonalization to the initiator polynomial P0(x) = 1 in the ge-
ometry induced by 〈·, ·〉W . Orthogonal polynomials have various interesting
properties which include:
O1) The sequence (Pi)

k
i=0 spans the space of polynomials whose degree is

at most k. Especially every polynomial can be expressed as a linear
combination of a given sequence of orthogonal polynomials.

APPENDIX A. ON UNIVARIATE QUADRATURE RULES 54

O2) Each Pk has k distinct real roots in I.

It can be shown [4] that the orthogonal polynomials are characterized by
a three-term recurrence formula

P0(x) = 1;

P1(x) = (x− a1)P0(x);

Pk+1(x) = (x− ak+1)Pk(x)− bk+1Pk−1(x), k ≥ 1,

where the coefficients are

ak+1 =
〈xPk, Pk〉W
〈Pk, Pk〉W

and bk+1 =
〈Pk, Pk〉W
〈Pk−1, Pk−1〉W

.

In the thesis we use two Gaussian rules: the Gauss-Legendre rule in [−1, 1]
with the weight function W ≡ 1 and the Gauss-Hermite rule in R with the
weight function W (x) = e−x

2 . The orthogonal polynomials that are related
to these rules are called Legendre polynomials defined by

ak = 0 and bk+1 =
1

4− k−2
for k = 1, 2, 3, ...

and Hermite polynomials defined by

ak = 0 and bk+1 =
k

2
for k = 1, 2, 3,

Writing the three-term recurrence as a telescoping linear system and per-
forming an appropriately chosen similarity transformation, Golub andWelsch
[14] found that the nodes x(n)

j of the nth order Gaussian quadrature are pre-
cisely the eigenvalues of the symmetric tridiagonal matrix

An =


a1

√
b2 0 · · · 0√

b2 a2

√
b3 · · · 0

0
√
b3 a3 · · · 0

...
...

...
0 0 0 · · · an

 .

Let vj = (v1,j, ..., vn,j) ∈ Rn be the eigenvector Anx
(n)
j = x

(n)
j vj such that

||vj|| = 1. Then the weights of the Gaussian quadrature are w(n)
j = v2

1,j〈1, 1〉W .
Gaussian rules are notoriously nonnested, meaning that the nodes of the

previous iteration cannot be reiterated in subsequent computations. There
lies interest in modifying Gaussian rules to be nested even at the penalty of
decreased accuracy.

APPENDIX A. ON UNIVARIATE QUADRATURE RULES 55

Gaussian rules with n evaluation points can be extended by addition of
p nodes. Let pn+2p−1 be an arbitrary polynomial whose degree is at most
n+ 2p− 1. It can be written in the form

pn+2p−1(x) = qn+p−1(x) + Pn+p(x)

p−1∑
k=0

ckx
k,

where qn+p−1 is a polynomial with degree at most n+p−1 and Pn+p is the (n+
p)th order orthogonal polynomial corresponding to the interval and weight
function. The extended quadrature rule is interpolatory by construction
so it integrates qn+p−1 exactly. Moreover, it holds that 〈Pn+p, x

k〉 = 0 for
k = 0, ..., p − 1. Hence the extended quadrature rule has the degree of
exactness n+ 2p− 1.

Gauss-Patterson quadrature is the extension of Gauss-Legendre rules in
[−1, 1] discovered by Patterson in [21]. The nested counterpart of the Gauss-
Hermite rule is known as Genz-Keister quadrature, the derivation of which is
described in [10]. Tables of the Gauss-Patterson and Genz-Keister quadra-
ture rules can be found in e.g. the QUADPACK library at http://people.sc.fsu.
edu/~jburkardt/f_src/quadpack/quadpack.html.

Appendix B

Combinatorial results

In this section we go through some of the combinatorial results used in the
course of this thesis. Especially of interest are the results concerning cardi-
nalities of multi-index sets.

Consider an arbitrary set A and call back to mind the definition of the
power set: P(A) = {B; B ⊆ A}. We can use this to establish the standard
definition of the binomial coefficient.
Definition B.1. The binomial coefficient is defined by setting(

d
k

)
= #{A ∈ P({0, 1, ..., , d− 1}); #A = k}

for integers 0 ≤ k ≤ d and 0 otherwise. Especially
(

0
0

)
= 1.

Recall that the binomial coefficient
(
d
k

)
denotes the number of ways of

picking k unordered outcomes out of d possibilities when 0 ≤ k ≤ d. This
allows us to discover a curious recursive property. Denote P(d, k) = {A ∈
P({0, ..., d− 1}); #A = k}. The following can be shown:

i) there exists a bijective mapping φ : P(d+1, k+1)→ P(d, k)∪P(d, k+1);

ii) P(d, k) ∩ P(d, k + 1) = ∅.

Since φ is a bijection and its image set can be expressed in terms of two
distinct point sets, we have

#P(d+ 1, k + 1) = #φ[P(d+ 1, k + 1)] = #P(d, k) ∪ P(d, k + 1)

= #P(d, k) + #P(d, k + 1).

Using the definition of the binomial coefficient yields the following result.

56

APPENDIX B. COMBINATORIAL RESULTS 57

Lemma B.2 (Pascal’s identity). Let 0 ≤ k ≤ d. Then the following holds:(
d+ 1
k + 1

)
=

(
d
k

)
+

(
d

k + 1

)
.

Repeated application of the previous lemma reveals a simple recursive
method to generate the binomial coefficient for any pair (d, k) ∈ N2. Visually
it has the representation known as Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

...
...

...
...

...

In other words, the element on the (d + 1)th row and (k + 1) th column of
Pascal’s triangle is precisely the binomial coefficient of (d, k).

Pascal’s identity is a powerful tool when combined with mathematical
induction to derive combinatorial identities. The two identities we have listed
here can be found in the table of Gradshteyn and Ryzhik [15, equations
0.151.1 and 0.151.4]:

k∑
i=0

(−1)i
(
d
i

)
= (−1)k

(
d− 1
k

)
for d ≥ 1 and k ≥ 0 (B.1)

and

k∑
i=0

(
d+ i
d

)
=

(
d+ k + 1
d+ 1

)
for d ≥ 1 and k ≥ 0. (B.2)

Of special interest to us are the cardinalities of multi-index sets, which
can be expressed in terms of combinatorial quantities.

Theorem B.3.

i) #{γ ∈ {0, 1}d; |γ|1 = k} =

(
d
k

)
for 0 ≤ k ≤ d;

ii) #{α ∈ Nd; |α|1 = k and α ≥ 1} =

(
k − 1
d− 1

)
for 0 ≤ d ≤ k.

APPENDIX B. COMBINATORIAL RESULTS 58

Proof. We follow the classical ”stars and bars” argument presented by Feller
[8]. We represent by stars (?) the amount of objects that are enclosed in bins,
which we separate by bars (|). For example, we can represent k = 9 objects
by using nine stars

? ? ? ? ? ? ? ? ?

and one possible way to enclose them into d = 5 bins is

? ? | ? | ? | ? ? ? ?| ? .

Feller argues that the nature of the objects does not matter, hence the ab-
straction of combinatorial quantities by arbitrary objects that are placed into
bins can be used to determine general combinatorial results.

i) We interpret the vector γ ∈ {0, 1}d as a collection of d bins such that
0 denotes an empty bin and 1 a nonempty one. If |γ|1 = k, then precisely k
bins are nonempty. By the very definition of the binomial coefficient there
exist

(
d
k

)
possible configurations of k nonempty bins out of a total of d bins.

ii) The vector elements are positive in this case, which forbids the exis-
tence of empty bins. Let us separate the d bins by d− 1 bars. Multiple bars
cannot be placed adjacent to each other. Between k objects there exist now
k− 1 gaps, which we are free to fill with d− 1 bars. The amount of possible
configurations of d− 1 bars placed into k − 1 free gaps is

(
k−1
d−1

)
.

By accounting for the possibility of empty loci in the multi-index, we
can exploit theorem B.3ii) to k → k + d objects and arrive at the following
corollary.

Corollary B.4.

#{α ∈ Nd; |α|1 = k} =

(
d+ k − 1
d− 1

)
for d ≥ 1 and k ≥ 0.

Appendix C

MATLAB programs

This is a repository of the programs created for this thesis. The programs are
c© Vesa Kaarnioja (2013) and they can be freely distributed and modified
with the author’s permission.

Program C.1 (Univariate quadrature rules). . .

function [nodes,weights] = UnivariateRule(n,rule)

% This function loads the univariate nodes and weights from the
% files ’/rule/nodes#.dat’ and ’/rule/weights#.dat’, where # =
% n. The available rules are slowly increasing Gauss-Legendre
% (’GL’), delayed Gauss-Patterson (’GP’), Clenshaw-Curtis
% (’CC’) in [0,1] with 2^(n-1)+1 nodes for n > 1, Gauss-
% Hermite (’GH’) and delayed Genz-Keister (’GK’). With the
% exception of GH and GK, the rules are given in [0,1].

nodes = zeros(n,1);
weights = zeros(n,1);
switch rule

% Gauss-Legendre rule in [0,1]

case ’GL’
name1 = sprintf(’GL/nodes%d.dat’,n);
name2 = sprintf(’GL/weights%d.dat’,n);

% Gauss-Hermite rule

59

APPENDIX C. MATLAB PROGRAMS 60

case ’GH’
name1 = sprintf(’GH/nodes%d.dat’,n);
name2 = sprintf(’GH/weights%d.dat’,n);

% Clenshaw-Curtis rule in [0,1] (Novak & Ritter)

case ’CC’
name1 = sprintf(’CC/nodes%d.dat’,n);
name2 = sprintf(’CC/weights%d.dat’,n);

% Delayed Gauss-Patterson rule in [0,1]

case ’GP’
name1 = sprintf(’GP/nodes%d.dat’,n);
name2 = sprintf(’GP/weights%d.dat’,n);

% Delayed Genz-Keister rule

case ’GK’
name1 = sprintf(’GK/nodes%d.dat’,n);
name2 = sprintf(’GK/weights%d.dat’,n);

end
nodes = load(name1);
weights = load(name2);
nodes = reshape(nodes,1,[]);
weights = reshape(weights,1,[]);

Program C.2 (Generator of multi-indices α ∈ Nd such that α ≥ 1 and
|α|1 = `.). . .

function [ind,count] = Drop(d,ell)

% This function determines all d-tuples the sum of whose
% elements is equal to k. It is based on algorithm 8.1.1 in
% "Sparse Grid Quadrature Methods for Computational Finance"
% (2007) by Thomas Gerstner.

k = ones(1,d);
khat = (ell-d+1)*k;
ind = zeros(1,d);
count = 0;

APPENDIX C. MATLAB PROGRAMS 61

p = 1;
while k(d) <= ell

k(p) = k(p)+1;
if k(p) > khat(p)

if p ~= d
k(p) = 1;
p = p+1;

end
else

khat(1:1:p-1) = khat(p)-k(p)+1;
k(1) = khat(1);
p = 1;
count = count+1;
ind(count,:) = k;

end
end

Program C.3 (Generator of Smolyak quadrature nodes and weights). . .

function SmolyakRule(d,k,rule)

% This function stores the d-dimensional Smolyak quadrature
% rule of order k in the mat-file SmolyakRule_rule_d#_k##.mat,
% where # = dimension and ## = order. The value of k should be
% at least d and the value of d should be at least 2.
%
% USES: Drop.m, UnivariateRule.m,
% Neural Network Toolbox (optional).

% Force input values to be integers.

d = round(d);
k = round(k);

% Check that the input parameters are sensible.

if d < 2 || k < d
error(’Invalid input! Enter values k >= d and d >= 2.’);

end

% Prompt the user in case of GL, GP or CC rules.

APPENDIX C. MATLAB PROGRAMS 62

if strcmp(rule,’GL’) || strcmp(rule,’GP’) || strcmp(rule,’CC’)
lbnd = input(’Enter lower univariate integration bound >’);
ubnd = input(’Enter upper univariate integration bound >’);

elseif ~strcmp(rule,’GH’) && ~strcmp(rule,’GK’)
error(’Invalid univariate rule!’);

end

% Store the univariate rules to memory.

nw = struct(’nodes’,[],’weights’,[]);
for ii = 1:1:k-d+1

[nodes,weights] = UnivariateRule(ii,rule);
nw(ii).nodes = nodes;
nw(ii).weights = weights;

end

% Initialize the respective arrays for Smolyak quadrature
% nodes and weights.

snodes = [];
sweights = [];

% Designate the name of output data file.

filename = sprintf(’SmolyakRule_%s_d%d_k%d.mat’,rule,d,k);

% The outmost loop is determined by the Smolyak quadrature
% order.

for l = max(d,k-d+1):1:k

% Handle the trivial case separately.

if l == d
snodes = nw(1).nodes;
sweights = nw(1).weights;
snodes = repmat(snodes,d,1);
if strcmp(rule,’GL’) || strcmp(rule,’GP’) ...

|| strcmp(rule,’CC’)
snodes = (ubnd-lbnd)*snodes+lbnd;

APPENDIX C. MATLAB PROGRAMS 63

sweights = (ubnd-lbnd)*sweights;
end

% Account for the Smolyak quadrature coefficient.

sweights = (-1)^(k-l)*nchoosek(d-1,k-l)*sweights^d;
if l == k

save(filename,’snodes’,’sweights’);
end

else

% Determine all multi-indices of dimension d, whose
% 1-norm is equal to l using the drop algorithm.

[ind,count] = Drop(d,l);
for ii = 1:1:count

% Construct all combinations of univariate
% quadrature nodes and weights.

alpha = ind(ii,:);
tmpnodes = nw(alpha(1)).nodes;
tmpweights = nw(alpha(1)).weights;
for jj = 2:1:d

tmp1 = nw(alpha(jj)).nodes;
tmp2 = nw(alpha(jj)).weights;

% The Neural Network Toolbox function
% combvec is used at this point to determine
% all vector combinations of the univariate
% quadrature nodes and weights.

tmpnodes = combvec(tmpnodes,tmp1);
tmpweights = combvec(tmpweights,tmp2);

end

% If the univariate integration interval is
% specified, apply the appropriate transformations
% to the nodes and weights.

if strcmp(rule,’GL’) || strcmp(rule,’GP’) ...

APPENDIX C. MATLAB PROGRAMS 64

|| strcmp(rule,’CC’)
tmpnodes = (ubnd-lbnd)*tmpnodes+lbnd;
tmpweights = (ubnd-lbnd)*tmpweights;

end

% Account for the Smolyak quadrature coefficient
% and collect the Smolyak quadrature data into the
% arrays snodes and sweights.

tmpweights = (-1)^(k-l)*nchoosek(d-1,k-l)*...
prod(tmpweights);

snodes = [snodes,tmpnodes];
sweights = [sweights,tmpweights];

end
end

end
if k ~= d

% Store the results to a data file.

save(filename,’snodes’,’sweights’);
end

Program C.4 (Dimension-adaptive quadrature). . .

function [res,ind,count] = AdaptiveQuadrature(func,d,rule,...
tol,maxiter)

% This function is an implementation of the dimension-adaptive
% quadrature rule. The user supplies the integrand, dimension,
% desired univariate rule, tolerance and maximum iteration
% count. The dimension must not be less than 2. The function
% returns the integral value, corresponding generalized sparse
% grid quadrature index set and final iteration count.
% If there are issues with convergence, use a different basis
% sequence or attempt to brute force a solution by setting the
% tolerance to zero.
%
% USES: UnivariateRule.m, TensorDifferenceProduct.m,
% Neural Network Toolbox (optional).

APPENDIX C. MATLAB PROGRAMS 65

% Initializations.

d = round(d);
maxiter = round(maxiter);
lbnd = 0;
ubnd = 1;
if d < 2

error(’The dimension must not be less than 2!’);
end
if nargin < 4

error(’Enter tolerance and maximum iteration count!’);
elseif maxiter < 1 || nargin < 5

error(’No maximum iteration count specified!’);
end

% Prompt the user in case of GL, GP or CC rules.

if strcmp(rule,’GL’) || strcmp(rule,’GP’) || strcmp(rule,’CC’)
lbnd = input(’Enter lower integration bound > ’);
ubnd = input(’Enter upper integration bound > ’);

elseif ~strcmp(rule,’GH’) && ~strcmp(rule,’GK’)
error(’Invalid univariate rule!’);

end

% Store univariate rules to memory.

nw = struct(’nodes’,[],’weights’,[]);
maxdepth = 99; % Change the maximum depth if higher resolution

% is required.
for ii = 1:1:maxdepth

[n,w] = UnivariateRule(ii,rule);
nw(ii).nodes = n;
nw(ii).weights = w;

end

% Format the active index set actind and old index set oldind.

actind = ones(1,d);
oldind = [];

% Compute the initial integral increment and its absolute value

APPENDIX C. MATLAB PROGRAMS 66

% Delta.

res = TensorDifferenceProduct(func,actind,rule,nw,lbnd,ubnd);
Delta = abs(res);
gerr = Delta;
eta = Delta;
count = 0;
actsize = 1;

% Make sure that the integrand is not constant in the
% neighbourhood of the initial active index set. Otherwise
% shift the active index set.

flag = 1;
for ii = 1:1:d

hlpind = actind;
hlpind(ii) = hlpind(ii)+1;
hlpres = TensorDifferenceProduct(func,hlpind,rule,nw,...

lbnd,ubnd);
if abs(hlpres) > max(1e-12,tol)

flag = 0;
break;

end
end
if flag

actind = [actind;actind+ones(1,d)];
s = TensorDifferenceProduct(func,actind(2,:),rule,nw,...

lbnd,ubnd);
res = res+s;
Delta = abs(s);
eta = eta+Delta;
gerr = [gerr;Delta];
actsize = actsize+1;

end

% Construct a loop that terminates once the global error
% estimate eta is less than the supplied tolerance or once the
% maximum iteration count is reached.

while eta >= tol && count < maxiter

APPENDIX C. MATLAB PROGRAMS 67

% Select the vector maxind from the active index set actind
% that corresponds to the largest local error indicator in
% gerr.

[tmp,gind] = max(gerr);
maxind = actind(gind,:);

% Move the vector maxind to the old index set oldind and
% remove it from the active index set actind.

oldind = [oldind;maxind];
actind = [actind(1:1:gind-1,:);actind(gind+1:1:actsize,:)];
gerr = [gerr(1:1:gind-1,:);gerr(gind+1:1:actsize,:)];
actsize = actsize-1;

% Update the global error estimate.

eta = eta-tmp;

% Search for admissible indices in the neighbourhood of
% maxind.

for ii = 1:1:d
newind = maxind;
newind(ii) = newind(ii)+1;
flag = 1;

% Apply the admissibility condition to newind.

for jj = 1:1:d
hlpind = newind;
hlpind(jj) = hlpind(jj)-jj;

% Discard null indices.

if hlpind(jj) > 0
x = ismember(oldind,hlpind,’rows’);
if ~any(x)

flag = 0;
break;

end

APPENDIX C. MATLAB PROGRAMS 68

end
end

% If newind is admissible, append the active index set
% actind, compute the integral increment s and update
% the integral value and error estimates.

if flag
x = ismember(newind,actind,’rows’);
y = ismember(newind,oldind,’rows’);
if ~any(x) && ~any(y)

s = TensorDifferenceProduct(func,newind,...
rule,nw,lbnd,ubnd);

actind = [actind;newind];
actsize = actsize+1;
res = res+s;
Delta = abs(s);
eta = eta+Delta;
gerr = [gerr;Delta];

end
end

end
count = count+1;

end

% The sparse grid quadrature index set is the union of the
% active and old index sets.

ind = [actind;oldind];

Program C.5 (Tensor product of difference operators). . .

function res = TensorDifferenceProduct(func,vec,rule,nw,...
lbnd,ubnd)

% Computes the integral increment res of the function func
% using the multi-index vec. The univariate rule should be
% supplied in the struct nw containing nodes and weights in the
% format specified in the programs SmolyakRule.m,
% AdaptiveQuadrature.m and SparseGridQuadrature.m. If any one
% of the rules GL, GP or CC is used, then the lower and upper

APPENDIX C. MATLAB PROGRAMS 69

% integration bounds should be input as lbnd and ubnd respec-
% tively.
%
% USES: Neural Network Toolbox (optional)

% Initializations.

res = 0.0;
s = size(vec);
d = s(2);

% If the upper and lower integration bounds are not supplied,
% use the unit interval.

if nargin < 5
lbnd = 0;
ubnd = 1;

elseif nargin == 5
error(’Input the upper integration bound!’);

end
if norm(vec-ones(1,d),1) < .5

% Handle the trivial case separately.

nodes = nw(1).nodes;
weights = nw(1).weights;
nodes = repmat(nodes,d,1);
if strcmp(rule,’GL’) || strcmp(rule,’GP’) ...

|| strcmp(rule,’CC’)
nodes = (ubnd-lbnd)*nodes+lbnd;
weights = (ubnd-lbnd)*weights;

end
res = weights^d*feval(func,nodes);

else

% Generate binary multi-indices. We keep the indices that
% fulfill the criterion vec-gamma >= 1 as specified in
% proposition 1.7.

ind = 0;
for ii = 1:1:2^d-1

APPENDIX C. MATLAB PROGRAMS 70

gamma = dec2bin(ii,d)-’0’;
if all(vec-gamma > 0)

ind = [ind,ii];
end

end

% Determine quadrature nodes exactly as in SmolyakRule.m.

for ii = ind
gamma = dec2bin(ii,d)-’0’;
beta = vec-gamma;
nodes = nw(beta(1)).nodes;
weights = nw(beta(1)).weights;
for jj = 2:1:d

tmpnodes = nw(beta(jj)).nodes;
tmpweights = nw(beta(jj)).weights;
nodes = combvec(nodes,tmpnodes);
weights = combvec(weights,tmpweights);

end
if strcmp(rule,’GL’) || strcmp(rule,’GP’) || ...

strcmp(rule,’CC’)
nodes = (ubnd-lbnd)*nodes+lbnd;
weights = (ubnd-lbnd)*weights;

end
res = res+(-1)^sum(gamma)*...

sum(prod(weights).*feval(func,nodes));
end

end

Program C.6 (Sparse grid quadrature). . .

function res = SparseGridQuadrature(func,ind,rule)

% This function determines the integral of func using the
% generalized sparse grid quadrature rule. The user must supply
% the multi-index set ind and the corresponding univariate rule.
%
% USES: UnivariateRule.m, TensorDifferenceProduct.m,
% Neural Network Toolbox (optional).

lbnd = 0;

APPENDIX C. MATLAB PROGRAMS 71

ubnd = 1;

% Prompt the user in case of GL, GP or CC rules.

if strcmp(rule,’GL’) || strcmp(rule,’GP’) || strcmp(rule,’CC’)
lbnd = input(’Enter lower univariate integration bound >’);
ubnd = input(’Enter upper univariate integration bound >’);

elseif ~strcmp(rule,’GH’) && ~strcmp(rule,’GK’)
error(’Invalid univariate rule!’);

end

% Initializations.

s = size(ind);
maxiter = s(1);
res = 0.0;

% Store univariate rules to memory.

nw = struct(’nodes’,[],’weights’,[]);
for ii = 1:1:max(max(ind))

[n,w] = UnivariateRule(ii,rule);
nw(ii).nodes = n;
nw(ii).weights = w;

end

% Use the formula for the generalized sparse grid rule to
% compute the integral.

for ii = 1:1:maxiter
alpha = ind(ii,:);
res = res+TensorDifferenceProduct(func,alpha,rule,nw,...

lbnd,ubnd);
end

Program C.7 (Alternative combvec routine). . .

function vec = combvec(vec1,vec2)

% An alternative function to use in place of the Neural Network
% Toolbox function of the same name.

APPENDIX C. MATLAB PROGRAMS 72

vec = [kron(vec1,ones(1,length(vec2)));
reshape(vec2’*ones(1,length(unique(vec1,’rows’))),1,[])];

Bibliography

[1] Aarts, R. & Weisstein, E. ”Fubini theorem” from Wolfram MathWorld.
http://mathworld.wolfram.com/FubiniTheorem.html

[2] Björck, Å & Dahlquist, G. Numerical Methods in Scientific Computing,
Volume I. Society for Industrial and Applied Mathematics, 2008.

[3] Brass, H. ”Error Bounds Based on Approximation Theory” in NATO
ASI Series, Vol. 357 (1992), pp. 147-163.

[4] Bulirsch, R. & Stoer, J. Introduction to Numerical Analysis. Springer,
New York, 1980.

[5] Bungartz, H. & Griebel, M. ”Sparse Grids” in Acta Numerica, Vol. 13
(2004), pp. 1-123.

[6] Cools, R. ”Constructing cubature formulae: the science behind the art”
in Acta Numerica, Vol. 6 (1997), pp. 1-54.

[7] Davis, P. & Rabinowitz, P. Methods of Numerical Integration. Academic
Press, New York, 1975.

[8] Feller, W. An Introduction to Probability Theory and Its Applications.
Volume 1. Second edition. John Wiley & Sons Inc., New York, 1971.

[9] Genz, A. ”Testing Multidimensional Integration Routines” in Tools,
Methods, and Languages for Scientific and Engineering Computation.
Edited by Ford, B., Rault, J. & Thomasset, F. North-Holland, 1984.

[10] Genz, A. & Keister, B. ”Fully symmetric interpolatory rules for multiple
integrals over infinite regions with Gaussian weight” in Journal of Com-
putational and Applied Mathematics, Vol. 71, No. 2 (1996), pp. 299-309.

[11] Gerstner, T. Sparse Grid Quadrature Methods for Computational Fi-
nance. University of Bonn, lecture notes, 2007.

73

BIBLIOGRAPHY 74

[12] Gerstner, T. & Griebel, M. ”Numerical Integration using Sparse Grids”
in Numerical Algorithms, Vol. 18, No. 3-4 (1998), pp. 209-232.

[13] Gerstner, T. & Griebel, M. ”Dimension-Adaptive Tensor-Product
Quadrature” in Computing, Vol. 71, No. 1 (2003), pp. 65-87.

[14] Golub, G. & Welsch, J. ”Calculation of Gauss Quadrature Rules” in
Mathematics of Computation, Vol. 23, No. 106 (1969), pp. 221-230.

[15] Gradshteyn, I. & Ryzhik, I. Table of Integrals, Series, and Products.
Fourth edition. Academic Press, New York, 1980.

[16] Heiss, F. & Winschel, V. ”Likelihood approximation by numerical in-
tegration on sparse grids” in Journal of Econometrics, Vol. 144, No. 1
(2008), pp. 62-80.

[17] Holtz, M. Sparse Grid Quadrature in High Dimensions with Applications
in Finance and Insurance. Springer, Heidelberg, 2011.

[18] Niederreiter, H. Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial and Applied Mathematics, Philadelphia,
1992.

[19] Novak, E. & Ritter, K. ”High dimensional integration of smooth func-
tions over cubes” in Numerische Mathematik, Vol. 75, No. 1 (1996), pp.
79-97.

[20] Novak, E. & Ritter, K. ”Simple Cubature Formulas with High Polyno-
mial Exactness” in Constructive Approximation, Vol. 15, No. 4 (1999),
pp. 499-522.

[21] Patterson, T. ”The Optimum Addition of Points to Quadrature For-
mulae” in Mathematics of Computation, Vol. 22, No. 104 (1968), pp.
847-856.

[22] Petras, K. ”Asymptotic behaviour of Peano kernels of fixed order” in Nu-
merical Integration III, International Series of Numerical Mathematics
85. Birkhäuser Verlag, Basel, 1988, pp. 186-198.

[23] Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical
Recipes: The Art of Scientific Computing. Third edition. Cambridge
University Press, New York, 2007.

BIBLIOGRAPHY 75

[24] Reed, M. & Simon, B. Methods of Modern Mathematical Physics: Func-
tional Analysis I (Revised and enlarged edition). Academic Press, San
Diego, 1980, pp. 49-54.

[25] Smolyak, S. ”Quadrature and interpolation formulas for tensor products
of certain classes of functions” in Soviet Mathematics, Vol. 4 (1963), pp.
240-243. Translation of Doklady Akademii Nauk SSSR.

[26] Trefethen, L. ”Is Gauss Quadrature better than Clenshaw-Curtis?” in
SIAM Review, Vol. 50, No. 1 (2008), pp. 67-87.

[27] Urban, K. Numerical Finance. University of Ulm, lecture notes, 2009.

[28] Wasilkowski, G. & Woźniakowski, H. ”Explicit Cost Bounds of Algo-
rithms for Multivariate Tensor Product Problems” in Journal of Com-
plexity, Vol. 11 (1995), pp. 1-56.

[29] Weisstein, E. ”Binomial Coefficient” from Wolfram MathWorld.
http://mathworld.wolfram.com/BinomialCoefficient.html

[30] Weisstein, E. ”Vandermonde Determinant” from Wolfram MathWorld.
http://mathworld.wolfram.com/VandermondeDeterminant.html

	Introduction
	Prerequisites and notation

	The Smolyak method
	Tensor product
	Smolyak quadrature rule
	Numerical implementation

	Error analysis
	Polynomial exactness
	Fundamental theorem of Smolyak quadrature
	Numerical experiments

	Generalized sparse grids
	Weighted index set
	Dimension-adaptive quadrature
	Concluding remarks

	Appendix A: On univariate quadrature rules
	Appendix B: Combinatorial results
	Appendix C: MATLAB programs

