
Department of Computer Science
Series of Publications A

Report A-2013-6

Creativity-Supporting Learning Environments:
Two Case Studies on Teaching Programming

Mikko-Ville Apiola

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
XIV, University Main Building, on August 23rd, 2013, at noon.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14928737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisor
Dr. Matti Lattu, Dr. Tomi Pasanen, University of Helsinki, Finland

Pre-examiners
Professor Lauri Malmi, Aalto University, Finland
Associate Professor Henrik Hansson, Stockholm University, Sweden

Opponent
Professor Erkki Sutinen, University of Eastern Finland

Custos
Professor Esko Ukkonen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c� 2013 Mikko-Ville Apiola
ISSN 1238-8645
ISBN 978-952-10-9030-1 (paperback)
ISBN 978-952-10-9031-8 (PDF)
Computing Reviews (1998) Classification: K.3.2
Helsinki 2013
Unigrafia

Creativity-Supporting Learning Environments: Two Case
Studies on Teaching Programming

Mikko-Ville Apiola

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
mikko.apiola@helsinki.fi

PhD Thesis, Series of Publications A, Report A-2013-6
Helsinki, August 2013, 62 + 83 pages
ISSN 1238-8645
ISBN 978-952-10-9030-1 (paperback)
ISBN 978-952-10-9031-8 (PDF)

Abstract

It is known that students’ learning approaches, types of motivation, and
types of self-regulation are connected with learning outcomes. It is also
known, that deep learning approaches, self-regulated learning, and intrinsic
types of motivation are connected with creativity. However, in computing
pedagogy there is a lack in empirically grounded analyses in integration of
the varying educational theories to build learning environments that sup-
port creativity. The literature of programming education proposes a variety
of theoretical, as well as practical viewpoints in relation to the teaching and
learning situation. However, little e↵ort has been put on understanding cul-
tural and contextual di↵erences in pedagogy of programming. Literature
shows that education is highly context dependent, and that educational de-
sign should account for contextual di↵erences. In programming education,
the nature and implications of those di↵erences are hitherto unclear.

In this study, the paucity in research about creativity-supporting learning
environments in computing education, and about contextual di↵erences in
the pedagogy of programming are addressed through two case studies. In
the first context (CUH) of this study (Department of Computer Science,
University of Helsinki, Finland), a method of learning-by-inventing was de-
signed and integrated into a robotics-based programming class, and its ef-
fects on students’ learning were investigated through qualitative analysis of
144 interviews. In the second context (CTU) of this study (IT Department,
Tumaini University, Iringa University College, Iringa, Tanzania) a number

iii

iv

of interventions for supporting intrinsic motivation and deep approaches to
learning were designed, and their e↵ects on students’ learning were studied
through qualitative and quantitative methods, and a controlled research
setup. In addition, a mixed methods study about contextual factors, which
a↵ect the learning environment design was conducted.

In context CUH , the results show that the provided environment supported
the learning of creative processes through a number of mechanisms. In gen-
eral, the provided environment was shown to facilitate changes in students’
problem management approaches, and extended students’ deep and sur-
face learning approaches to computer science related problem solving and
problem management. In context CTU , the results reveal that students
face many similar challenges than students in other educational contexts,
and that the standard learning environment does not o↵er enough support
for gaining the requisite development. Learning is also hindered by many
contextually unique factors. Testing a model where students work on their
homework under guidance, facilitated by active student-teacher collabora-
tion did not result in significant advantage over the control group. However,
the qualitative results about guided environments were exclusively positive.

In context CUH , the analysis suggests that learning of creativity may be
facilitated by supporting deep learning strategies, intrinsic motivation, and
self-regulated learning through utilizing a combination of open learning en-
vironment configuration, learning-by-inventing, and robotics as the vehicle
for learning. Secondly, the analysis suggests challenges in context CTU to be
addressed through increasing the number of practical exercises, by selecting
the proper amount of guidance required in the learning environment, and
by implementing educational action research as a standard component into
the learning and teaching environment.

Computing Reviews (1998) Categories and Subject
Descriptors:
K.3.2 Computer and Information Science Education

General Terms:
Design, Experimentation, Human factors

Additional Key Words and Phrases:
Creativity, Motivation, Learning approaches, CS1, Capstone Courses

Acknowledgements

Thank you to the following people who helped with this book and its even-
tual realization: Esko Ukkonen, Matti Tedre, Matti Lattu, Tomi Pasanen,
Lauri Malmi, Erkki Sutinen, Nella Moisseinen, Markku Hannula, Jari Lavo-
nen, and Henrik Hansson. I also want to thank my parents, friends, other
family members, and especially my wife Saila.

v

List of Original Publications

This thesis consists of the present introduction and the following five origi-
nal research papers denoted in this thesis as P1..P5, printed in their original
form. The contributions of the present author are detailed in section 4.4,
p. 44.

P1: Apiola, M., Lattu, M., and Pasanen, T.A. Creativity-Supporting
Learning Environment—CSLE. ACM Transactions on Computing Educa-
tion, 12(3):11:1–11:25, July, 2012.

P2: Apiola, M., Tedre, M. Deepening Learning through Learning-by-
Inventing. Journal of Information Technology Education: Innovations in
Practice, 12(01):185–202, July, 2013.

P3: Apiola, M., Tedre, M. Towards a Contextualized Pedagogy for Pro-
gramming Education in Tanzania. In Proceedings of 2011 IEEE Africon
Conference. Livingstone, Zambia, September, 2011.

P4: Apiola, M., Tedre, M. New Perspectives on the Pedagogy of Pro-
gramming in a Developing Country Context. Computer Science Education,
22(03):285–313, September, 2012.

P5: Apiola, M., Moisseinen, N., Tedre, M. Results From an Action Re-
search Approach for Designing CS1 Learning Environments in Tanzania.
In Proceedings of 2012 ASEE/IEEE Frontiers in Education Conference.
Seattle, WA, USA, October, 2012.

vii

Contents

List of Original Publications vii

1 INTRODUCTION 1

2 THEORETICAL BACKGROUND 7
2.1 Approaches to Teaching Programming 7
2.2 A Framework for Supporting Creativity 13
2.3 Conceptualizing a Learning Environment 17
2.4 Students’ Actions in a Learning Environment 23

3 METHODS AND DATA 29

4 RESULTS 35
4.1 Overview of the Articles . 35
4.2 Results (Context CUH) . 37
4.3 Results (Context CTU) . 40
4.4 Contributions of the Present Author 44

5 DISCUSSION AND CONCLUSIONS 47
5.1 Future Suggestions . 49

References 53

ix

Chapter 1

INTRODUCTION

Creativity and Computing Education

A range of research has been conducted in the area of computer science
education. There are studies from pedagogical viewpoints including mo-
tivation, cognition, and multiple learning theories, as well as a collection
of experience reports making practical suggestions, and observations re-
lated to the learning and teaching situation. Some of the trends in the
recent decades of computing education suggest the inclusion of student-
centered practices such as problem-based-learning (PBL) or inquiry learn-
ing (IL), which are argued, among other things, to support intrinsic motiva-
tion and deep approaches to learning. Contrasting evidence on alternative
approaches have spoken in the favor of more traditional, teacher-driven
learning practices. Research about contextual or cultural factors of the
learning environment is also inconclusive. Despite the large amount of
research, there is no coherent understanding about how pedagogical ap-
proaches work in di↵erent courses, contexts, cultures, and continents in
computer science education.

In universities, computer science is being taught in a myriad ways. Some
curricula may focus for example in programming, algorithmic thinking, and
problem-solving skills, while other curricula may, for example, emphasize
contextually relevant practical skills. While some learning environments
utilize student-centered pedagogies, others may prefer alternative peda-
gogical approaches. In some cases, educators prefer tangible instruments,
such as robotics tools in the knowledge construction process, while others
may prefer starting from abstract ideas, and utilize visualization platforms
to support the learning process. Di↵erent learning environments are con-
structed from a combination of intended learning outcomes, pedagogical

1

2 1 INTRODUCTION

approaches, types of educational resources and educational technology, and
grading criteria. Each type of curriculum, and each taught topic promotes
a specific view of the learning environment, and defines the required skill
set of the teacher.

In general, learning objectives of tertiary education have been catego-
rized in multiple well-justified ways. Learning objectives may range from
ones that are narrowly defined and typically easy to measure–such as learn-
ing of factual knowledge or specific skills–to those that are more broadly
defined and di�cult to measure–such as improvement of activating and self-
reguled learning skills, and improvement of creative abilities (Entwistle,
2007). One categorization is based on intended levels of understanding
(Biggs, 1979).

A survey study (Joy et al., 2009) reviewed major computer science
education journals and conference series including over 3500 papers in all,
and found that most articles focus on technical descriptions with often
very little evaluation from an educational perspective (Joy et al., 2009).
It has also been argued, that computing education papers generally lack
in having a well justified educational perspective (Randolph et al., 2005).
Many papers do not address educational issues, but are based on reports
of tool development or of use of technology in the classroom (Joy et al.,
2009). Some have argued, that:

“too much of the research in computing education ignores the
hundreds of years of education, cognitive science, and learning
sciences research that have gone before us. We know that stu-
dent opinions are an unreliable measure of learning or teaching
quality.”(Almstrum et al., 2005)

Computer science is a relatively new discipline, and the identification of
appropriate strategies to teach the diverse topics it includes remains open
to debate. Even though student-centered, problem-based pedagogical ap-
proaches are becoming more common in computing education, in general
they are still rare in comparison to more traditional instruction (O’Grady,
2012). It is widely accepted, that understanding how to support deep
approaches to learning, creativity and intrinsic types of motivation is a
globally important challenge in all disciplines of education. The main mo-
tivation for this study comes from a lack of studies about understanding
creativity, intrinsic motivation, and learning approaches in the context of
computer science education.

In the broad scheme of things, the challenges and problem types of
computing are constantly growing more complex. Computer science is in-
creasingly penetrating into other fields of life, which will further expand

3

the problem types posed to computing professionals. In the future, com-
puting professionals will need to cope with problems of a wider variety, and
problems, which will require innovative and multifaceted ways of problem
solving. From this viewpoint, broadening students’ skills from working with
basic types of problem solving into focusing also in creativity and real-life
complexity is a global challenge, too.

Framing the Research

The factors, which a↵ect learning in di↵erent contexts, countries, cultures,
and continents may di↵er a lot, but finding ways to support motivation,
deep approaches to learning, and creativity can be considered as glob-
ally important. Whilst there is an impressive array of research (Trigwell
et al., 1999) on deep approaches to learning (Marton and Säljö, 1976),
creativity (Csikszentmihalyi, 1996, Mumford, 2003), and intrinsic motiva-
tion (Niemiec and Ryan, 2009)—their embodiments in modern creativity-
supporting learning environments, as well as their implications to design of
novel learning environments of computer science, are hitherto poorly un-
derstood. The abundance of competing theories on learning and motivation
makes the design of new learning environments a daunting task. How does
one combine ideas from educational theories–such as self-determination,
problem discovery, creative problem solving, cognitive development, and
threshold concepts–so that their combination supports creativity, intrin-
sic motivation and deep approaches to learning? The paucity in studies
on exploring the support for creativity, intrinsic motivation and deep ap-
proaches in modern learning environments of computing education leads to
the broader research aim for this study, which is set as follows.

How does one provide support for creativity, deep approaches
to learning, and intrinsic motivation in teaching of computer
programming and software development?

In this research, the strategy to address this aim is divided into several
actions. Firstly, addressing the aim is seen to require a theoretical model
about how to provide a learning environment supportive of creativity, in-
trinsic motivation, and deep approaches to learning. Second, the theoretical
framework needs to be put to practice and researched. In this study, the
second phase was conducted in two educational contexts. The first case
study was conducted in the context of computer science undergraduate
program of the University of Helsinki (denoted in this study as context

4 1 INTRODUCTION

CUH), and the second case study was conducted within a newly initiated
information technology program: Tumaini University’s BSc in IT Program
in Iringa University College, Iringa, Tanzania (denoted in this study as
context CTU).

Roughly speaking, the research progressed as follows: based on consid-
eration and comparison, a selection of central theories of creativity, moti-
vation, and learning approaches was done, upon which a theoretical frame-
work was built. In the first case of study, turning the theoretical framework
to practical arrangements included the usage of LEGO R�Mindstorms as a
platform for students’ learning. Preliminary visions for the experiment
included providing an open learning environment, which would grant stu-
dents with more freedom over their problem-discovery, problem-solving,
and problem management processes. The concrete plans included arrang-
ing experimental courses in the University of Helsinki (context CUH), and
conducting educational research on the courses from the perspective of a
number of central learning theories.

In the second case of this study (context CTU), the theoretical frame-
work was utilized to improve and analyze the learning environment of com-
puter programming courses in Tumaini University, Tanzania. Because the
educational and sociocultural context was foreign, and because program-
ming had been considered as the most challenging topic both for the stu-
dents and the former teachers in that educational context (Tedre et al.,
2011, Tedre and Kamppuri, 2009), it was seen necessary to conduct an
additional study (as compared to context CUH) for gaining understanding
of the contextual challenges in teaching and learning programming. The
visions for modifying the learning environment in context CTU included
the increase of student-centered activating exercises, and the decrease of
instructivist lectures.

Thesis Structure

This thesis consists of the present introduction, and the five original re-
search papers (cited as Paper I, II, III, IV, V) that are refereed interna-
tional journal and conference publications. In order to explore the research
phenomenon outlined in this thesis, each paper contributes to the increased
understanding on improvement of learning environments of computer sci-
ence.

Paper I provides a general framework for a learning environment sup-
portive of creativity, intrinsic motivation and deep approaches to learning in
computer science. The framework is developed in context CUH (University

5

of Helsinki, Department of Computer Science, Finland.) Paper II deepens
the understanding of students’ behavior in a learning environment, which
is based on the framework described in Paper I. Papers III and IV explore
contextual elements, which a↵ect the learning environment design in basic
programming courses in context CTU (Tumaini University’s IT-programme
in Iringa, Tanzania.) Paper V extends the understanding of the learning
environment in context CTU by studying the impact of guidance for home-
work practice, and by exploring the students’ study approaches.

By following this theme, the structure of the present introduction has
been modeled upon the research papers in the following way: Chapter 2
introduces background studies in relation to teaching computer program-
ming and software development (section 2.1), this thesis’ theoretical stance
on creativity (section 2.2), a model for designing computer science learning
environments from the teacher’s perspective (section 2.3)1, and theories to
understand students’ actions in learning environments (section 2.4). Chap-
ter 3 introduces the research methods and data, followed by overview of the
results in Chapter 4. Finally, Chapter 5 provides discussion of the results,
and concludes the thesis.

1The learning environment model presented in section 2.3 partly o↵ers such new
contribution to the thesis, which is not presented in the articles.

Chapter 2

THEORETICAL BACKGROUND

This chapter introduces the theoretical background for this thesis. Firstly,
a survey of recent approaches for teaching computer programming and soft-
ware development is presented (section 2.1). Secondly, a theoretical basis
for supporting creativity is presented (section 2.2). Thirdly, a conceptual
framework for designing and analyzing learning environments is presented
(section 2.3). Finally, a collection of theories for understanding students’
behaviors in a learning environment is presented (section 2.4).

Computer science consists of three intertwined traditions (Denning et al.,
1989). The theoretical tradition deals with verifiable theoretical structures,
such as algorithms, data structures, and their properties. The engineering
tradition aims at working implementations, products, and inventions. The
scientific tradition aims at finding causalities and generalizations based on
models, theories, and laws (which in turn derive from empirical observa-
tions and measurements). The traditions upon which di↵erent curricula
and courses are rooted bring great variation to each curriculum’s problem
types and to suitable pedagogical approaches (Tedre and Sutinen, 2008).

2.1 Approaches to Teaching Programming

This section presents an overview about computer science education re-
search focusing especially on introductory computer programming courses
(generating novice programmers), and on software development courses
(turning novices into experts).

Introductory programming (Generating novices)

Programming education is a widely researched and intensely discussed
topic. A working group of McCracken et al. (2001) investigated the pro-

7

8 2 THEORETICAL BACKGROUND

gramming competency of students, which had just completed their CS1 and
CS2 courses. Several universities participated in the study with a combined
sample of 216 students from four universities. The disappointing results re-
vealed, that many students did not know how to program at the end of their
introductory courses with an average score of 22.89 out of 110 points on an
evaluation criteria designed for the purposes of the study (McCracken et al.,
2001). Many studies report, that learning programming poses great chal-
lenges to many students (see for example: Robins et al. (2003), McCracken
et al. (2001), Lister et al. (2004)). One popular explanation for the learn-
ing challenges is related to lacks in abilities to problem-solve (Lister et al.,
2004).

A number of studies consider the most important aspect of program-
ming education to be related to problem-solving skills (Pears et al., 2007,
Palumbo, 1990). Those studies propose that addressing the development
of problem-solving skills should be a major goal of the pedagogical de-
sign in introductory programming. One extensive literature review drew a
strong connection between the learning of programming and the learning
of problem-solving skills (Palumbo, 1990). The authors of that review ar-
gued that in a typical introductory course in programming, too little time
is spent on practice in order to develop the necessary problem-solving skills
(Palumbo, 1990). Another popular view of programming education empha-
sizes the learning of syntax and structure of a programming language; most
introductory programming books follow this view (Pears et al., 2007).

Lister et al. (2004) studied a hypothesis that students’ challenges in
programming might be related to their “fragile grasps of basic program-
ming principles and the ability to systematically carry out routine pro-
gramming tasks”, in a study involving students from seven countries. The
results revealed, that students’ abilities to carry out code tracing (or “desk
checking”), and their abilities to predict outcomes of codes, and values of
variables at given points of program execution were generally weak. Lis-
ter et al. (2004) suggest that ”this is because students have a fragile grasp
of skills that are a prerequisite for problem-solving.” A great number of
other experiments and research also exists (see for example: Pears et al.,
2007). One ongoing debate centers around the appropriateness of di↵erent
programming languages for teaching programming (Pears et al., 2007).

Results from studies by Soloway and Ehrlich (1984) show, that expert
programmers use two types of programming knowledge: 1) generic program
fragments known as programming plans, and 2) such rules of the program-
ming discourse, which capture the conventions in programming and govern
the composition of the plans into programs. It is suggested, that syntax

2.1 Approaches to Teaching Programming 9

and semantics is not enough, but instead students must be given instruc-
tion about “vocabulary terms”, such as program mechanisms, explanations,
goals, plans, rules of programming discourse, and plan composition meth-
ods, which are sca↵olds that expert programmers have learned to know and
use (Soloway, 1986).

It is generally accepted that it might take a long time to turn a novice
programmer into an expert programmer (Robins et al., 2003). The ability
to understand written program code is a good starting point. However,
research studies have shown there to be little correspondence between the
ability to read a program and the ability to write one (Winslow, 1996, 21).

A typical way to teach CS1 courses in universities is to utilize a tra-
ditional pattern of instructional lectures, seasoned with a collection of
take-home exercises, followed by a pen-and-paper exam. This is the ap-
proach adopted in most introductory programming courses and textbooks,
although problem-solving, program design, and constructing an executable
program have been suggested to comprise the underlying issues in learn-
ing programming (Robins et al., 2003). A number of alternative approaches
exist, based on, for example, student-centered approaches (O’Grady, 2012).

There is a range of attempts of implementing a problem solving ap-
proach to CS1 courses by bringing student centered and problem based
learning into programming courses (Ambrosio and Costa, 2010, Bakar and
Shaikh Ab Rahman, 2005, Beaumont and Fox, 2003, Duke et al., 2000,
Nuutila et al., 2005, Peng, 2010). Common in adding problem based learn-
ing (PBL)-style activities to the learning environment is emphasis put on 1)
open-ended “real-world” learning tasks, 2) the changed role of the teacher
from an instructor to a coach, and 3) studying in collaborative groups,
4) granting the students more control in terms of planning their studies
and setting their own personal learning objectives, and 5) the extension
of the learning objectives from basic programming to “life-long learning”,
self-regulatory, and group work skills.

How the problem-based activities are implemented in practice and how
they are researched di↵ers on multiple dimensions. Some approaches uti-
lize open ended projects (Ambrosio and Costa, 2010, Bakar and Shaikh
Ab Rahman, 2005), while some utilize a combination of open-ended and
traditional programming tasks (Nuutila et al., 2005), and some report the
utilization and development of an extensive ”problem-oriented” learning
material, which is intended to guide and lead the students’ thinking to
the right solutions (and to learning) (Kurhila and Vihavainen, 2011, Duke
et al., 2000). For example, a study (Duke et al., 2000) reports an extensive
HTML-material consisting of 160 programming problems, and several hun-

10 2 THEORETICAL BACKGROUND

dred webpages consisting of tips and guides of varying di�culty level, while
another study (Nuutila et al., 2005) introduces an approach where a com-
bination of group work case-based discussion sessions guided by a tutor are
utilized in combination with individual programming assignments, a pro-
gramming project, and essay tasks. One study (Kurhila and Vihavainen,
2011) was partly based on a modification to the learning environment by
adding one-on-one guidance to the homework practice-environment.

In many papers, the changed role of the teacher means the utilization of
tutors and assistants in helping group work, or extensive practical sessions
where students are able to drop in and out, and where assistants are avail-
able to provide support and continuous feedback in students’ individual
work (Duke et al., 2000, Kurhila and Vihavainen, 2011). The changed role
of the teacher might also mean that there is no lecture sessions at all, or it
might mean that the lectures utilize di↵erent kinds of learning practices. An
example of such learning practice is the utilization of a think-aloud method,
where programs are written together with students on-the-fly (Duke et al.,
2000). In one approach (Nuutila et al., 2005) students are presented with
cases, which the students examine, after which they identify the problems
related to the task, brainstorm together, sketch an explanatory model, and
establish their own learning goals, after which a period of individual study
follows. Finally, closing sessions to discuss and combine each student’s work
is held (Nuutila et al., 2005). In one approach (Duke et al., 2000) practical
assessment tasks are utilized instead of pen-and-paper exams.

Many of the approaches utilize only learning tasks that students must
complete in groups of students (Ambrosio and Costa, 2010, Bakar and
Shaikh Ab Rahman, 2005, Beaumont and Fox, 2003, Peng, 2010). Some
problem-based approaches report a combination of both group and indi-
vidual work (Nuutila et al., 2005), while some approaches emphasize only
individual work (Duke et al., 2000, Kurhila and Vihavainen, 2011). Many
approaches report granting more control to students in terms of arranging
their own studies, setting their own learning objectives, and finding their
own learning materials. Granting control means also posing additional
learning objectives related to self-regulation, group work, and individual
study. The amount of guidance and control has triggered debates, as some
argue for example that too open learning environments are not suitable for
novice learners (Kirschner et al., 2006).

The role of educational technology is one track of research in relation to
learning introductory programming. There exists a variety of software tools
designed to support learning of programming (see for example Kelleher
and Pausch (2005)). One popular and well-studied tool especially aimed at

2.1 Approaches to Teaching Programming 11

program visualization in introductory programming courses is Jeliot (Ben-
Ari et al., 2011). Recently, the utilization of MOOC (Massive Open Online
Course) softwares have also become common as a platform for teaching CS1
courses.

Advanced programming (Turning novices into experts)

A common approach to teach software development in universities is to
take the software engineering perspective (see for example: Dugan (2011)).
Software engineering is the discipline concerned with the application of
theory, knowledge, and practice for e↵ectively and e�ciently building soft-
ware systems that satisfy the requirements of users and customers (ACM
Information Technology Curriculum Committee, 2005). In software engi-
neering, the concept of life cycle model is used to define phases, which
occur during software development (Abran et al., 2004). The common set
of phases include requirements analysis, design, implementation, verifica-
tion, and maintenance. Examples of common life cycle models include the
waterfall-model, evolutionary development, the spiral model and iterative
or incremental development. Popular iterative models include for example
the XP (eXtreme Programming) and Agile models.

Capstone courses are courses, which are targeted towards university
students who are nearing the completion of their studies, and who have
acquired the basic skills from their previous courses. The idea of capstone
courses are to teach how to apply the content learned in previous courses to
practice. This is often achieved through a final year, group-based software-
engineering project. Alternate capstone course models found in the exten-
sive survey study of Dugan (2011) included a research experience course
(see Schneider (2002)), but research experience courses were found to be
rare in comparison to a mainstream of software-engineering projects, and
were often considered by educators as ”lacking the authentic experience
needed by industry-oriented students”.

Teaching of software development through software engineering princi-
ples is often done by utilizing a teacher-driven lecture session followed by a
practical project, which often aims at simulating a real-world engineering
project (Dugan, 2011, Baker et al., 2003). One pedagogical justification
is based on the argument that a good way to learn is by practicing in an
environment as much similar to “real world” (a job in software industry,
for example) as possible. In a number of cases (see for example: dos Santos
et al., 2009, Brodie et al., 2008, Qiu and Chen, 2010) such an environment
is seen as a favourable way to teach software development. On the other
hand, software engineering courses have been critizised for their ignorance

12 2 THEORETICAL BACKGROUND

of learning theories, and for poor constructive alignment (Biggs and Tang,
2011) between the learning outcomes, and the learning environment (Baker
et al., 2003, Chimalakonda and Nori, 2011, Armarego, 2008, Navarro and
van der Hoek, 2008).

It has been argued that while learning theories have been leveraged
in software engineering only in a minimal way, they actually could play a
significant role in this domain (Baker et al., 2003). One hypothesis is, that
following industry standard recipes and defined processes already in the
academia may restrict students’ possibilities to come up with ideas, explore,
dwell on subjects, problems and matters of the students’ own learning needs
and interests. Thus, it is not well understood, how tuning for e�ciency
already in academia will a↵ect the students’ e�ciency and creativity later
on, when entering the “real world”.

Common Pedagogical Trends

Since the shift from behaviorist to constructivist thinking on teaching and
learning in the recent decades, student-centered, project-based, and problem-
based pedagogical approaches have become increasingly common, also in
the context of computer science education. Common examples of pedagogi-
cal theories, which follow the constructivist learning paradigm are Problem
Based Learning (PBL), Project Based Learning, and Progressive Inquiry
(see for example: (Hmelo-Silver, 2004, Jonassen, 2000, Hakkarainen, 2003,
Barron et al., 1998)). One important aspect in all these pedagogical theo-
ries is that the teacher’s role is switched from a behaviorist model of giving
direct instruction towards acting as a coach, or a facilitator of the learning
process. In addition, realistic, open-ended projects, and cases are utilized
as learning tasks in contrast to fixed, closed-ended tasks.

Wide range of experiments have been reported, which aim at imple-
menting student-centered practices into computing education (O’Grady,
2012). Currently, most studies on problem-based principles in computer
science education cluster around describing pedagogical interventions, and
students’ reactions (opinions) about the interventions. While a lot of re-
ports on utilizing problem-based principles in CS education exist, only a
minority of studies has a more thorough educational perspective, evalu-
ating the approaches beyond student feedback. Even though attempts of
implementing problem-basedness exists in courses ranging from introduc-
tory programming to software development, it is argued, that currently the
penetration and research of problem-based principles in computing educa-
tion is shallow (O’Grady, 2012).

Many open debates around problem-based, and student-centered in-

2.2 A Framework for Supporting Creativity 13

struction are ongoing. One of the debates is that about the amount of
control between the teacher and the student. Problem-based and simi-
lar open environments are typically considered to be more open, granting
students more control over their learning. However, problem-based learn-
ing, for example, has been criticized for being “minimally-guided”, and as
such improper for certain learner groups (Kirschner et al., 2006). Other
arguments have responded, that while minimally guided instruction indeed
does not fit all learner groups, it is a misinterpretation to conclude problem-
based learning as equivalent to minimally guided learning (Schmidt et al.,
2007). Other ongoing debates center, for example, around the problem
types, which should be utilized in problem-based learning approaches.

The more modern approaches vary quite much in terms of, for exam-
ple, the tasks and problem types utilized (ranging for example from closed
problems to open problems), which kind of classroom interaction is uti-
lized (ranging for example from student-centered to teacher-driven), how
much control, and guidance students are granted, and whether group work
is utilized and how is it utilized, what is the teacher per student ratio,
which kind of classroom tools are utilized. The learning objectives vary
from short-term related (programming) objectives, to long-term (problem-
solving, self-regulation and active learning styles) learning objectives. The
definition of a learning environment may be thought to consist of sets of
variables, which properties and values vary over multiple dimensions.

2.2 A Framework for Supporting Creativity

Creativity

Creativity is a widely researched, and intensely discussed concept, defining
of which is, however, complex (see for example: Mumford (2003), Sternberg
and Lubart (1999)). Sternberg and Lubart (1999) define creativity as “the
ability to produce work that is both novel (i.e. original, unexpected) and
appropriate (i.e., useful, adaptive concerning task constraints)”, and note
that “Creativity is a topic of wide scope that is important at both the
individual and societal levels for a wide range of task domains.”

Creativity may also be defined as the ability to challenge assumptions,
to recognize patterns, to see in new ways, to make connections, take risks
and to seize upon change (Herrmann, 1996). The ability to be creative has
been connected to a certain working style or problem-solving process, which
involves a persistent process of idea generation, idea evaluation, and the
ability to transfer the selected ideas to action (Jackson and Shaw, 2006,
89-108). Csikszentmihalyi (1996) argues, that “creativity occurs when a

14 2 THEORETICAL BACKGROUND

person, using the symbols of a given domain such as music, engineering,
business, or mathematics, has a new idea or sees a new pattern, and when
this novelty is selected by the appropriate field for inclusion into the relevant
domain.”

There are a multitude of viewpoints to creativity (see for example Mum-
ford (2003)). However, for the purposes of this thesis, creativity is under-
stood from the viewpoint of several popular studies (Amabile, 1983, Csik-
szentmihalyi, 1996), according to which, creativity requires the simultane-
ous presence of three components: intrinsic motivation, certain cognitive
processes and working styles, and domain-relevant skills. Highest levels of
creativity may be found from where these three components overlap the
most (Amabile, 1983). Those three components of creativity are briefly
introduced in the forthcoming subsections.

Intrinsic Motivation

Intrinsic motivation is defined as the motivation to engage in an activity
primarily for its own sake, because the activity is perceived as interesting,
involving, satisfying, or challenging (Amabile, 1987, Ryan and Deci, 2001,
2000b). In contrast, extrinsic motivation is defined as the motivation to en-
gage in an activity primarily in order to meet a goal extrinsic to the work
itself, such as attaining a reward, winning a competition, or meeting some
external reward such as recognition. One study (Amabile, 1983) proposed
a hypothesis that ”the intrinsically motivated state is conductive to creativ-
ity, whereas the extrinsically motivated state is detrimental to creativity.”
The concept of intrinsic motivation has gained a lot of interest in educa-
tional psychology, and in addition to being beneficial for creativity, it has
been argued to be a favorable condition in itself, for example for learning
(Niemiec and Ryan, 2009).

According to several studies, intrinsic type of motivation is connected
to deep approaches to learning, while extrinsic types of motivation connect
with surface learning approaches (Marton, 2005, Fransson, 1977). There
again, intrinsic motivation has been identified as one crucial component
in creativity (Amabile, 1987). One study (Amabile, 1987) introduced the
phenomena by using a “maze metaphor”, in which the creative problem-
solving process is represented using the metaphor of a maze with various
exits representing di↵erent kinds of solutions to a problem. Extrinsically
motivated straightforward, algorithmic, or step-by-step solutions are rep-
resented by a straight path from the entrance to the exit. More unusual
or creative solutions require intrinsic motivation and thus can be reached
only by taking a more heuristic approach and exploration of the problem

2.2 A Framework for Supporting Creativity 15

space (the maze) (Amabile, 1987)).
According to some studies, extrinsic rewards, such as positive evalua-

tions or other awards prior to performance, seem to create extrinsic moti-
vation (Amabile, 1987, Amabile and Collins, 1999). On the other hand, if
a task is constrained or controlled, it has been argued to result in reduced
autonomy, and thus, reduced intrinsic motivation (Amabile and Collins,
1999). The perceived level of autonomy and freedom are related to higher
levels of intrinsic motivation, where for example competing for prizes to
be o↵ered for best products may restrict intrinsic motivation, and also cre-
ativity (Amabile and Collins, 1999). The self-determination theory (SDT)
(Ryan and Deci, 2000a) argues that intrinsic motivation can be supported
by supporting its three forming factors: autonomy, competence, and relat-
edness.

In the context of higher education, it has been argued that intrinsic mo-
tivation can be supported by promoting a feeling of autonomy (in contrast
to a feeling of being controlled), promoting the feeling of relatedness (in
contrast to the feeling of isolation), and supporting the feelings of compe-
tence (in contrast to the feelings of incompetence) (Ryan and Deci, 2001,
2000b).

Cognitive Processes

The required cognitive process of creativity may be defined as a process,
which involves the generation of multiple ideas, and the ability to select
the good ideas from the pool of available ones. Thus, the process involves
persistence in idea generation and idea evaluation. Finally, the good ideas
need to be transferred to action (Jackson and Shaw, 2006, pp. 89-108).

The cognitive process of creativity is sensitive to both internal and ex-
ternal barriers. It seems that the type of problem is related to the required
cognitive process: well-defined problems may not require a creative cogni-
tive process to be solved, but open-ended problems should be used instead.
The problem should also pose enough, but not too much challenge. Other
generally acknowledged enhancing factors for the creative process are time
for incubation (Sio and Ormerod, 2009), and a positive mood (Davis, 2009).
It is argued, that the environment should be psychologically safe.

Thus, previous research about the cognitive processes of creativity has
identified a number of factors, which are linked with the process. Those fac-
tors include the problem types, challenge level, incubation time, mood, and
psychological safety. Connecting with other learning theories, the cognitive
process of creativity is linked with deep approaches to learning (Marton
and Säljö, 1976), which have further been researched to connect with epis-

16 2 THEORETICAL BACKGROUND

temological positions (Perry, 1970), conceptions of learning (Marton et al.,
1993), and other properties of the learner such as attitudes, or orientations.

There exists many pragmatic methods proposed to support creative
work. Most of the methods are based on the thought that creativity requires
an environment that encourages risk-taking (it does not for example reward
for simple but working text-book solutions), and self-initiated projects and
provides help and time for developing ideas and individual e↵ort. Some of
the methods introduced in the literature include brainstorming (Osborn,
1963), verbal check-lists (Eberle, 2008, Osborn, 1963), picture stimulation
and mind mapping (Buzan, 1991), and 3+ (Lavonen and Meisalo, 2009)1. A
general idea in these methods is the purpose of supporting idea generation
by suppressing the common tendency to criticize or reject ideas, delete old
ways of thinking and encourage new kinds of mental associations using
di↵erent types of games or tasks.

Domain Relevant Skills

A person must be exposed into the domain in question, and must posses
the domain relevant knowledge and skills to be able to add to that spe-
cific domain. “No matter how enormous mathematical gifts a child may
have, he or she will not be able to contribute to mathematics without learn-
ing its rules” (Csikszentmihalyi, 1996). Further on, even if the rules are
learned, the domain must recognize and legitimate the novel contributions
(Csikszentmihalyi, 1996).

Domain-relevant skills are seen as one essential requirement for creativ-
ity (Amabile, 1987, Amabile and Collins, 1999). For example, to be able
to compose creative music, one has to hold preliminary skills in music. Or,
if one is to publish creative results in the domain of science, it is necessary
to master things such as scientific research methods, and domain-relevant
previous research. In the domain of software development, programming
skills are one domain-relevant prerequisite. In learning introductory pro-
gramming, part of the domain relevant skills are related to skills, which are
a prerequisite for the programming-related problem-solving abilities (see
for example: Lister et al. (2004)).

Synthesis: a Framework for Promoting Creativity

It is now possible to combine a framework for supporting creativity in com-
puter science higher education (Table 2.1). The framework is combined
together from five components. The three first components (competence,

1For many others see (Smith, 1998, Higgins, 1994).

2.3 Conceptualizing a Learning Environment 17

Table 2.1: Conceptual Framework for Supporting Creativity
Component Method of support

In
tr
in
si
c

m
ot
iv
at
io
n

Autonomy Provide choice and
opportunity for self-direction

Competence Use creativity-enhancing methods,
provide e↵ectance promoting feedback

Relatedness Promote interaction with creative
working methods (games and plays)

Domain-relevant skills Support learning to recognize one’s
own skills, and learning needs

Cognitive Processes Use creativity-enhancing methods:
brainstorming, 3+, and open-space workshops
Support deep approaches to learning
Encourage risk-taking and exploration

autonomy, relatedness) derive from intrinsic motivation research. The other
two required components are domain-relevant skills (DRS) and cognitive
processes and working styles (CP). The table lists these main components,
and general guidelines for supporting each component in the learning envi-
ronment.

2.3 Conceptualizing a Learning Environment

This section defines a model through which a learning environment may be
defined and analyzed. A learning environment is a combination of teach-
ing practices, physical surroundings, learning tasks, and assessment prac-
tices. A learning environment provides sca↵olds for a student’s learning
trajectory—a path that a learner takes to accomplish learning goals (Dron,
2007, pp. 61-70). The learning environment may generate destructive fric-
tion in cases, where the environment is too strictly or too loosely structured
in relation to a student’s self-regulation skills. Constructive friction emerges
from a proper amount of shared control between the teacher and the student
(Vermunt and Verloop, 1999). The learning environment should activate
the student’s zone of proximal development (ZPD) (Vygotsky, 1978).

Emotions and motivation a↵ect each other, which together have an ef-
fect on performance (Pekrun, 2006). Task involvement is fostered by many
emotions, and solving a challenging task often requires a range of emo-
tions. The learning environment should promote a balance between feel-
ings of competence and feelings of challenge (Moneta and Cśıkszentmihályi,
1999). Imbalance leads to a decrease in concentration and involvement. As
a rule of thumb, a too high challenge is better for concentration than a
too low challenge (Moneta and Cśıkszentmihályi, 1999). The organismic

18 2 THEORETICAL BACKGROUND

integration theory (OIT) argues, that intrinsic motivation is a favorable
state for learning, and the learning environment can support it by utilizing
a proper combination of autonomy, relatedness, and competence (Niemiec
and Ryan, 2009).

The following subsections present a combination of variables in aim to
understand learning environments of computing education.

2.3.1 Intended learning outcomes and assessment

An intended learning outcome defines what a student is expected to be able
to do after exposure to teaching (Biggs and Tang, 2011). Intended learning
outcomes may be categorized between easily definable and easily assessable
“short-term” learning outcomes, such as memorizing of factual information
or understanding how a certain algorithm works, to more ill-defined, di�-
cultly assessable “long-term” learning outcomes, such as acquisition of new
learning skills, self-regulation skills, problem-solving skills, deep approaches
to learning, or active learning skills, for example. In a study, researchers
found out that it took years for change in learning styles to show up in
test scores (Lonka and Ahola, 1995). Short-term learning outcomes are
typically more straightforward to measure.

The assessment tasks should be in a proper constructive alignment
(Biggs and Tang, 2011) with the intended learning outcomes, and with
the teaching activities. If not, students can “escape” by engaging in inap-
propriate learning activities such as surface approaches to learning (Biggs
and Tang, 2011, pp. 99).

One property of intended learning outcomes and assessment is control,
which means how much control the students and the teacher have in defining
the intended learning outcomes and the assessment procedures. In a very
open environment, students may participate in setting their own intended
learning outcomes (and assessment tasks), while in a typical university
course the teacher is in full control of the intended learning outcomes and
the assessment tasks. From the teacher’s perspective, there is variation in
how much the learning outcomes and assessment tasks are determined by
institutional demands, and other background factors.

2.3.2 Learning tasks

The learning environment provides the student with certain learning tasks,
i.e. problems, which the student solves in order to learn. A variety of prob-
lem types can be found in education, which may include for instance log-
ical problems, algorithmic problems, story-problems, rule-using problems,

2.3 Conceptualizing a Learning Environment 19

decision-making problems, troubleshooting problems, diagnosis-solution prob-
lems, strategic performance problems, case-analysis problems, and design
problems (Jonassen, 2000). Problems share a number of properties, for
example they are subject-relative and context-dependent (Mills, 1956, pp.
76). Problems may also be classified according to their openness. In closed
(well-structured) problems the starting point, solving technique, and goal
state are known (Sutinen and Tarhio, 2001). In open (ill-structured) prob-
lems the starting point, technique, and goal can all vary from closed to
open. Other problem classifications include the dimension between pseudo-
problems, authentic problems, and ethical problems. The selection of prob-
lem types in computing education is usually highly related to the computing
tradition, and to the intended learning outcomes.

2.3.3 Tradition of computing

Computer science consists of three intertwined traditions (Denning et al.,
1989) (see section 2). Although the traditions are deeply interwoven, most
problems (learning tasks) typically emphasize one of the traditions over
the others. The traditions may be tacit within a department’s ethos, and
thus invisible to the teacher and the learners. Each tradition of comput-
ing determines techniques, theories, and working modalities in computing
practice.

2.3.4 Problem control

Solving a problem is often only one stage in a process of solving multiple
problems. Many problems raise more new problems than they solve, and
thus the process of managing the solving of multiple problems is important
in a learning environment. In computing education, problem control can
be closed/controlled by the teacher (teacher gives certain tasks to solve),
or it can be controlled for example with an industry-standard software
engineering model (in software development courses), or it can be more
open (a science-like research project, or a design-oriented software course)
(Apiola et al., 2012). Other restrictions or limitations include the selection
between individual work and groupwork, and the particular platform or
environment where the problem is to be solved. Another factor is the
width versus depth of problem coverage: the environment may provide a
wide range of material to be touched only on the surface, or vice versa: a
narrow range of topics with increased depth.

20 2 THEORETICAL BACKGROUND

2.3.5 Subenvironments

The learning environment typically contains a number of subenvironments.
The subenvironments may include for example a classroom environment
(lectures), exercise meetings, the homework environment, and exam envi-
ronment. A subenvironment may also be digital, for example a program
visualization environment such as Jeliot (Ben-Ari et al., 2011). Each of
the environments have their own unique characteristics, and may contain
multiple factors, which enhance or restrict students’ learning.

The classroom environment is a typical subenvironment known in higher
education. Usually the classroom environment means lectures or excer-
cise sessions where a teacher or several teachers interact with a group of
students. A classic distinction between interaction styles is that between
teacher-driven (instructivist), and student-centered (constructivistic) inter-
action styles. Although many opinions exist, the general trend is against
instructivist teaching, which has been argued to connect with surface learn-
ing (Entwistle, 2007, Biggs and Tang, 2011), extrinsic motivation (Hoskins
and Newstead, 2009), bad learning outcomes, insu�ciency of stimulating
higher order thinking, and low attention (Biggs and Tang, 2011). Exam-
ples of constructivist classroom interaction may include for example peer
instruction (Mazur, 1998), think-aloud modelling, work-along excercises,
concept maps, and many others (Biggs and Tang, 2011).

The amount of control, and guidance in di↵erent subenvironments may
vary. Examples of teacher-controlled subenvironments include lecturing
and tutorials, where the teacher is highly in control. Environments, which
contain more of student participation may include peer-assisted studying,
various types of group work, and various types of interactive excercise ses-
sions. Subenvironments outside of university premises may include home-
environments, libraries, and other places, which all have their own unique
factors, which influence the learning situation. The home environment is,
for example, typically highly individually managed.

2.3.6 Learning materials and available resources

Learning materials can be of a variety of types. Other resources available in
the learning environment may include for example availability of facilities,
electricity, light, computers (measured by for example guaranteed access
hours), books, libraries, digital libraries, tables and other furniture, as well
as availability of support and guidance from peers, teachers, and assistants.

2.3 Conceptualizing a Learning Environment 21

Learning Task (1..n)

ClosedOpen
Starting point

ClosedOpen
Solving technique

ClosedOpen
Goal state

UnguidedGuided
Guidance

ConstructivistInstructivist
Interaction styles

LowHigh
Peer interaction

Subenvironment (1..n)

StudentTeacher
Control in Setting

Term
Intended Learning Outcome (1..n)

ClosedOpen
Problem Control

ClosedOpen
Project Control

EngineeringTheoretical
/ Scientific

Computing Tradition

General Properties

ShortLong

Figure 2.1: Central Variables of a CS Learning Environment

2.3.7 Control

An open environment grants full control to a student, while a closed en-
vironment gives the teacher full control over the learning situation. In an
open environment, the learning is similar as visiting a marketplace: the
learners interact with those market stalls (subenvironments), which fulfill
their learning needs (Meisalo and Lavonen, 2000). The learner may also
be in control of the intended learning outcomes, assessment, learning tasks,
and even the amount of control in di↵erent environments (the student may
be granted the control to choose the amount of control). If the learners are
left with more control, they should be able to understand the consequences
of their choices (Dron, 2007).

Synthesis: CS Learning Environments: Teacher’s Perspective

The most relevant variables introduced in the above sections are summa-
rized in Figure 2.1. In the upper part of Figure 2.1 are the intended learning
outcomes, which can be set on a continuum from long-term learning out-
comes to short-term learning outcomes, and which can be either controlled
by the teacher or the student (as discussed in section 2.3.1). A learning

22 2 THEORETICAL BACKGROUND

environment typically contains at least one intended learning outcome.

A learning environment consists of a number of subenvironments (sec-
ond section in Figure 2.1). As discussed in section 2.3.5, the amount of
guidance may vary in di↵erent subenvironments from minimally guided to
maximally guided. Also, the interaction styles may vary on a continuum
between instructivist and constructivist, as well as the amount of peer-
interaction, which may vary on a range from low to high.

Learning tasks (third section in Figure 2.1) are given to students in
aim for them to achieve the intended learning outcomes. Learning tasks
in computer science can be categorized on three continuums based on the
openness of the starting point, solving technique, and goal state of each
task (see section 2.3.2). A learning environment may contain an unlim-
ited amount of learning tasks. Learning tasks are related to the intended
learning outcomes.

Other central properties of the learning environment (fourth section
in Figure 2.1) include the problem control (section 2.3.4), which can vary
from open to closed, the overall control in the learning environment (section
2.3.7), and the tradition of computer science, which can vary between the
theoretical, scientific and engineering traditions (section 2.3.3).

Theoretically speaking, any selection for the values of the variables can
be made by the teacher. In practice, the configuration options are in-
fluenced by forces such as the characteristics of the surrounding context
(sometimes denoted as the “design milieu” (Duveskog et al., 2013)), the
skills of the teacher, and other factors, part of which can be hard to op-
erationalize. The presented model can hardly be conclusive or exact: it is
a well recognized issue, that in educational settings it can be considerably
di�cult to treat classroom settings, combined with social and psychological
issues, motivation, and conceptions as independent or dependent variables
(for example: Juuti and Lavonen (2006)).

In this study, the present model is utilized in several ways. Firstly, to
contrast a typical learning environment for software development (see sec-
tion 2.1) a new kind of learning environment is provided and researched in
context CUH of this study. This is accomplished by “switching” the student
more control over setting the intended learning outcomes (as compared to
typical learning environments in context CUH), by promoting open-ended
learning tasks, and by granting the students freedom in problem control.
The classroom environment is also “switched” from instructivist to con-
structivist with high peer-interaction. Secondly, in context CTU of this
study, several modifications for a typical learning environment of intro-
ductory programming are inspected. Generally speaking, the classroom

2.4 Students’ Actions in a Learning Environment 23

environment is “switched” from instructivist to constructivist by develop-
ing a variety of contextually relevant classroom pedagogies. In addition, a
new configuration to the homework environment is inspected by studying
the impact of increased guidance.

2.4 Students’ Actions in a Learning Environment

The learning environment provides the student with problems to learn how
to solve, and the student then takes an approach for solving the required
problems, utilizing the sca↵olds and support structures o↵ered by the learn-
ing environment. The types of students’ approaches to solving the problems
may di↵er on a large scale.

A student’s learning process is proposed to be a↵ected by a number
of factors. The student’s learning process has been researched for exam-
ple from the viewpoint of approaches to learning, self-regulation, cognitive
processing, metacognitions, learning orientations, conceptions of learning,
motivation, a↵ect, social interaction, context, and meta-a↵ect (see for ex-
ample: Marton and Säljö, 1976, Pintrich, 2004, Lonka et al., 2004, Hannula,
2004). The process of problem solving (through which learning may partly
happen) is a↵ected with motivation, emotions, knowledge transfer, mem-
ory processes, language parsing, intellectual ability, and expertise (see for
example: Kotovsky, 2003).

Two mainstream research tracks on student learning are the SAL (Stu-
dents’ Approaches to Learning) track, and the SRL (Self-Regulated Learn-
ing) track (Lonka et al., 2004). SAL is based on European research, while
SRL is based on North-American research. SRL learning models have been
criticized for being overcomplicated to be valuable for educators or edu-
cational researchers. In contrast, the SAL models have been criticized for
oversimplifying learning (Biggs, 2001).

Approaches to Learning (SAL)

Research on deep and surface approaches started in the mid-1970s (Mar-
ton and Säljö, 1976), and have since been followed with a broad range of
research. The surface approach to learning is described as an information-
reproducing approach, while the deep approach is described as the knowl-
edge transforming approach. Deep approaches to learning have been shown
to produce better learning outcomes in comparison to surface learning ap-
proaches (Marton and Säljö, 1976). It has been shown, that a student may
switch between learning approaches in di↵erent learning tasks (Richardson,
2005), and also within one study task. Switching of learning approaches

24 2 THEORETICAL BACKGROUND

has been confirmed for example among engineering students (Marton and
Säljö, 1976, Laurillard, 2005).

A student’s learning approach is not seen as a stable tendency of a stu-
dent, but it is seen to be formed as a result of the interaction between the
student and the learning environment (Marton and Säljö, 1976). It has been
shown, that the choice of a student’s learning approach is also a↵ected by
the student’s general conception of learning (Marton, 2005, Marton et al.,
1993, Van Rossum and Schenk, 1984), the student’s conception of the spe-
cific learning task, and the student’s conception of what is required of her
(Marton and Säljö, 1976). In addition, it has been shown that intrinsic
motivation generated by a non-demanding and supportive learning envi-
ronment is related to deep approach to learning, and extrinsic motivation
resulting from threat to self-esteem and ego-involvement is connected with
surface learning approach (Fransson, 1977).

Deep and surface learning approaches have been found by a number of
studies, and their existence has been confirmed among a number of study
topics, for example in the domains of problem solving and engineering (Mar-
ton, 2005, Laurillard, 2005). In this study, approaches to learning were
analyzed “directly” by investigating students’ problem-solving approaches
in relation to programming and other learning tasks, as well as through
students’ conceptions of learning in general, the specific learning tasks they
were given, what is required of them, and openness of their learning environ-
ment. This was done because approaches to learning have been confirmed
to influence students’ learning outcomes.

Self Regulation (SRL)

Learning related self-regulatory behavior may be described from four di-
mensions: motivation/a↵ect, behavior, cognition, and context (Pintrich,
2004). According to Pintrich (2004), self-regulatory activities follow a time-
ordered sequence consisting of making plans, setting goals, monitoring, con-
trolling, reacting and reflecting. However, there is no strong evidence about
the time-order, and thus di↵erent phases may also operate in parallel, and
dynamically for example in cases, where plans and goal setting activities
update themselves on the basis of information received from control threads
(Pintrich, 2004).

The cognition dimension represents activities and strategies for plan-
ning, monitoring and regulation of cognition. It includes activities for acti-
vating prior cognitive and metacognitive knowledge, and includes regulation
of cognitive functions such as memory, reasoning, learning, problem-solving,
and thinking strategies. The motivation/a↵ect dimension consists of regu-

2.4 Students’ Actions in a Learning Environment 25

lation of self-e�cacy, beliefs, perceptions of task challenge, and task value
beliefs, and the activation and utilization of di↵erent coping strategies for
example in relation to dealing with negative a↵ect such as fear and anxiety.

The behavior dimension includes management and planning of time and
e↵ort. This includes allocating time, making schedules, capability to control
e↵ort and persistence, and help-seeking behaviors. The context dimension
includes activities for modifying the context. The context is often restricted
by the learning environment, but for example in some student-centered
classrooms students are encouraged to gain more control for example by
designing their own learning tasks (Pintrich, 2004).

In this study the SRL framework is operationalized by looking at stu-
dents’ reports on coping strategies, metacognitive knowledge, positive and
negative a↵ects, and time and e↵ort regulation. This was done because
self-regulation behaviors have been studied to have an impact on learning
outcomes.

2.4.1 Properties of the Learner

A certain kind of behavior (deep or surface learning approach, coping strat-
egy, self-regulation mechanism, motivational state) is a combined result
from the interaction process between the student and the learning envi-
ronment, and a more general tendency to behave in a certain manner.
For example, deep and surface learning approaches are seen as resulting
from the interaction between the learner and the environment (Marton
and Säljö, 1976). However, more stable tendencies of behavior will have
their own influence for the learning activities performed by the student.
Those properties may include learning orientations, conceptions, previous
skills, personal interests, and personality variables.

The direction and domain of the orientation may vary, for example
students may have certain orientations towards their studies in full, but may
have di↵erent kind of orientations towards specific study topics, courses,
study methods, or learning situations. The orientations may develop and
change during studies, and they can be seen acting as mediators between
contextual background factors (see section 2.4.2), and the actual study
approaches (see previous section 2.4).

Learning Orientations

Learning orientations are more stable tendencies to act in certain ways,
and may provide explanations to, for example, which kind of course or
topic preferences the students have. Study orientations can indicate how

26 2 THEORETICAL BACKGROUND

students attribute the basic meaning of their studies, which will influence
essentially setting of goals, planning, organizing, and approaches to learning
in di↵erent learning tasks (Lonka et al., 2004).

Students’ general study orientations have been categorized for example
into three dimensions: the utilizing, internalizing, and achieving orienta-
tions (Biggs, 1979). The utilizing orientation is well resonated with surface
approaches to learning, and it is characterized by extrinsic motivation in
terms of avoiding failure, minimum e↵ort, and syllabus-boundedness. The
internalizing orientation is well resonated with deep approaches to learning,
and it is intrinsically motivated and syllabus-free; student studies beyond
the requirements and beyond the topic. The achieving orientation revolves
around winning, and it utilizes a systematic approach for gaining highest
possible grades using both deep and surface approaches, whenever appro-
priate (Biggs, 1979).

Other studies, which were based on inventories to look at university
students’ more general approaches to learning are for example the Ap-
proaches to Studying Inventory (API), Revised Approaches to Study In-
ventory (RASI), Approaches and Study Skills Inventory for Students (AS-
SIST), the Inventory of Learning Strategies (ILS), Inventory of General
Study Orientations (IGSO), and the Reflections on Learning Inventory
(RoLI) (Lonka et al., 2004). All the inventories of student’s approaches
to learning are more or less based on Marton and Saljo’s (Marton and
Säljö, 1976) original distinction between surface and deep approaches. For
example the IGSO (Inventory of General Study Orientations) (Mäkinen
et al., 2004) has repeatedly produced the following scales representing
students di↵erent orientations towards their studies: the deep-, anxious
surface-, achievement-, systematic-, work-life-, practical-, social-, and lack
of interest-, orientations (Lonka et al., 2004). Another study categorized
study orientations to academic, work-life, and non-committed (Mäkinen
et al., 2004).

Ylijoki (2000) identified one main disciplinary “tribe” within computer
science students of a certain department. That “tribe” was described as
professionally or industrially oriented, emphasizing hard expertise and re-
spect for pragmatic skills. That orientation was seen to be influenced by
an institutional moral order and culture (Ylijoki, 2000). In this thesis, stu-
dents’ learning orientations were looked “directly“ by looking at students’
views on their larger goals in relation to their studies, as well as through
students’ reports on their failure avoidance, adherence to syllabus, amount
of e↵ort, and emphasis of achievement. This was done, because learning
orientations have been studied to have an impact on learning outcomes.

2.4 Students’ Actions in a Learning Environment 27

Conceptions of Learning and Intellectual Development

Conceptions of learning started as a topic of study based on an assumption,
according to which the students’ perceptions of learning tasks reflect their
past experiences of similar situations, and in that way mirror the di↵er-
ences in students’ preconceived ideas about what it takes to learn (Marton,
2005). Marton et al. (1993) found the following six qualitatively di↵erent
conceptions of learning: increasing the quantity of information, memoriz-
ing, acquisition of facts and methods, abstraction of meaning, interpretive
process aimed at understanding reality, and changing as a person. Simi-
lar conceptions of learning have been confirmed to exist by a number of
research studies worldwide (Richardson, 1999).

The students’ general conceptions of learning have been suggested to
represent a time-ordered developmental hierarchy, although there is not yet
strong evidence to support this claim (Marton, 2005). However, this hy-
pothesis has received support from comments of informants who did men-
tion a process of transition between the conceptions (Marton, 2005), as
well as observed similarities between the conceptions of learning with Perry
(1970)’s longitudinal study of students’ intellectual development. Students
conceptions of learning have been found to correlate strongly with students’
deep or surface approaches to learning (Van Rossum and Schenk, 1984).

In addition to general conceptions of learning, research studies have
confirmed that situation-specific conception about learning a↵ects students’
approaches to learning (Marton and Säljö, 1976). Those studies have re-
sulted in quite strong evidence, which indicates that the type of testing
a↵ects students’ approach to learning. This can also be called the “back-
wash e↵ect”, which means that students adopt an approach, which is de-
termined by their expectations of how their learning will be tested (Marton
and Säljö, 1976). For example, in the context of problem solving, students
who concentrated more on what is expected of them were more likely to
adopt surface approaches to learning (Laurillard, 2005).

This study analyzed students’ conceptions of intellectual development
through the six conceptions of learning described by Marton et al. (1993),
as well as through their notions of the backwash e↵ect (students learn what
they think they will be tested on). This was done, because conceptions of
learning were, based on earlier research, assumed to have an impact on
students’ motivation, which in turn has been studied to impact learning
outcomes.

28 2 THEORETICAL BACKGROUND

2.4.2 Background Factors

Background factors may include complex factors related to a country’s ed-
ucational system, sociocultural variables, and a wide range of other factors,
which may indirectly or directly have an influence on students’ learning.
The curricula sets quite much demands for a student. In addition, there
are a whole lot of informal and implicit demands regarding studies, the so
called hidden curricula of a university or a faculty, an ethos of the depart-
ment which is often not visible (for example: Bergenhenegouwen, 1987).
A student’s study goals and the hidden or visible institutional demands
may collide, which may result in the generation of attitudes. There is a
line of research on study cultures in di↵erent academic disciplines (for one
example, see: (Ylijoki, 2000)).

Social forces may influence the situational learning approaches through
mediating learning orientations, or according to some studies, also directly:
social forces form a very important aspect of fixation and negative transfer
(Pretz et al., 2003). Peers, culture, and language play a major role in all
phases of the problem-solving process (Pretz et al., 2003). In addition,
group’s standard practices may have become entrenched so deeply that
they impede changes in the group members’ ways of thinking (Pretz et al.,
2003). For example the familiarity or unfamiliarity to solve a certain type
of problem, or to work in a certain kind of learning environment is a↵ected
by previous education, culture, language, and group work issues. These,
in turn, may influence the learning process through mechanisms such as
fixation and negative transfer.

Complex socialization processes include the generation of social norms,
attitudes and values, which may later be internalized to one’s personality
system. They may further form the basis for interests, preferences, motiva-
tional orientations, conceptions, learning approaches, and other properties
of the learner (Lonka et al., 2004). Other background variables, which have
at least been shown to indirectly influence students’ study orientations in-
clude parents’ educational background, cultural capital, and family inter-
action in childhood (Lonka et al., 2004). Background variables may also
include “rules” for interaction, such as the power distance between teachers
and students, cultural norms for classroom interaction, and individualistic
versus collectivistic study habits, and culturally acceptable dress-codes.

In this study, background factors were inspected through looking at
group work issues, students’ background education, and variables of the
sociocultural context. These variables were selected, because they are hy-
pothesized to have an impact to students’ learning outcomes.

Chapter 3

METHODS AND DATA

Educational research can roughly be divided into two categories: research
about education, and research for education (Juuti and Lavonen, 2006).
While the former (sometimes denoted as basic education research) has an
intellectual objective, the latter (sometimes denoted as applied education
research) has a more pragmatic objective to improve learning and teaching
praxis. This study utilizes a combination of basic and applied education
research.

The aims of this study were of two kind: to design new learning environ-
ments, and to explore how they work: i.e. to gain insight and understanding
about students’ learning in two new (as compared to typical learning en-
vironments in the corresponding contexts) types of learning environments.
Similar to educational design-research, the project started from a situation
where one recognizes that there is something problematic in the learning
environment, and neither researchers nor teachers know exactly how to act
in the prevalent circumstances (Juuti and Lavonen, 2006).

Two di↵erent educational contexts were selected, because teaching is
context-dependent by nature (see for example (Wiliam, 2008)), and the
inclusion of two di↵erent kind of contexts was presumed to richen and widen
the scope and the results of the study. There exists a low amount of studies
in developing country contexts related to computer science and information
technology education, which led to the selection of the developing country
context as the second context for the study.

In this study, one of the challenges was that the contexts of research and
the phenomena under study (student learning, and the learning environ-
ment) are very much intertwined. Those characteristics led this study to
be designed as an action research (No↵ke and Somekh, 2009) study. More
specifically, the study utilized a mixture of research approaches typical in
educational research including case study procedures, qualitative content

29

30 3 METHODS AND DATA

analysis, mixed-method studies, as well as a controlled experimental re-
search setup.

Case study principles were selected, because they are seen to fit situa-
tions where the boundaries between the phenomenon and context are not
clearly evident (Yin, 2003, pp. 13), where the aim is in-depth exploration
of, e.g. an educational program (Creswell, 2009, pp. 13), and where the
meta-question is “what can be learned from a single case?” (cf. Ran-
dolph, 2008, pp. 53). The case study strategy is commonly seen to suite
education research well (Stake, 1995, ch.10). Qualitative content analysis,
mixed-method studies, and controlled experimental setups are widely used
tools in multiple situations of educational research.

This thesis contributes to the following research tasks:

1. To increase the understanding of supporting the learning of creativ-
ity (including intrinsic motivation and deep approaches to learning)
in tertiary level computer programming and software development
education

“Creativity is a topic of wide scope that is important at
both the individual and societal levels for a wide range
of task domains (Sternberg and Lubart, 1999)”. This ap-
plies also to higher computing education, where there is a
need for research about creativity and innovation friendly
instructional approaches. In many contexts of higher com-
puting education, there is a lack of research about interven-
tions to support students’ learning of creative processes.

2. To increase the understanding of contextual factors, which influence
the design of learning environments of computer programming

Pedagogical literature shows that educational design should
account for di↵erences in the ways of learning and teaching
between industrialized and developing countries, and be-
tween di↵erent educational contexts in general. In educa-
tional research, both contextual understanding and knowl-
edge in educational theories are necessary preconditions
(Wiliam, 2008). However, little e↵ort has been put on un-
derstanding cultural and contextual di↵erences in teaching
programming and software development.

The activities included in this research consisted of working as a teacher and
educational researcher in two one-semester experimental courses at the Uni-

31

Table 3.1: Collected Data

Study (Paper) I II III IV V Total

Individual interviews 144 144
Group interviews 2*5 2
Classroom observation yes yes yes yes yes
Homework observation yes yes
Surveys 30 25 55
Controlled research setup yes yes
Study transcripts yes yes

versity of Helsinki, Finland (context CUH), where a data consisting of 144
hours of transcribed interviews, combined together with observation notes
was collected. The second case included a 1,5 year period working as an as-
sistant lecturer at Tumaini University’s Iringa College in Iringa, Tanzania
(context CTU), being in charge of a number of programming courses in-
cluding introductory programming, advanced programming, programming
projects, artificial intelligence, and programming in C. The second case
included collecting of a variety of data through surveys, interviews, obser-
vations, and an experimental research setup.

Data

The bulk of collected data included in this research is listed in Table 3.
For the purposes of Papers I and II, a qualitative data containing 144
student interviews (1 hour each), combined with classroom observations
was collected. Additionally, for the purposes of Paper II, students’ study
transcripts were inspected. For the purposes of Paper III and IV, a data
consisting of two group interviews (5 students each) was collected, amplified
with classroom observations, and a survey data with 30 participants. For
the purposes of Paper V, classroom observations, homework observations, a
survey data with 25 participants, and data from a controlled experimental
research setup were collected.

To be more specific, Papers I and II included three di↵erent data col-
lection methods to collect three sets of data: semi-structured interviews,
observation notes made by the researchers during and after each learning
session, and students’ study transcripts. Sampling for interview data was
a comprehensive sample, and it consisted of 72 initial interviews and 72
concluding interviews. All dropped-out students were reached for the con-
cluding interviews, too. The interviews were semi-structured, and in the

32 3 METHODS AND DATA

initial interviews students were asked to broadly describe their studies, in-
cluding their personal interests. In the concluding interviews students were
asked to describe, in detail, their learning process throughout the course.
The interview protocol was tested with two randomly selected computer sci-
ence students before the actual interviews. Interviews were tape-recorded
and transcribed, and for the purposes of this study, quotes were translated
from Finnish to English.

Data saturation point was met roughly halfway the interview data after
which no new theoretical constructs were encountered. However, as some
theoretical constructs described in Papers I and II that were looked for
were not encountered at all, the full data set was analyzed. A number of
phenomena outside the theoretical constructs were also identified: those
are described in more detail in Papers I and II. The same procedure was
done on the observation notes. Study transcripts were analyzed by look-
ing at students’ phase of studies, grade point averages (GPA), and course
preferences (previous courses taken).

Papers III and IV included three di↵erent data collection methods to
collect three sets of data: semi-structured interviews for teachers, semi-
structured group interviews for students, and a survey for students. Six
previous teachers of programming were interviewed either face-to-face or
electronically. The students’ data were collected through conducting two
group interviews consisting of the best five students from the programming
class from the semester, which started in autumn 2010, and five other
randomly chosen students from the same course. The first group of students
consisted of four males and one female, and the second group consisted of
three males and two females. The interviews were conducted at an o�ce
at the university campus. Each interview took approximately 2 hours of
time. All interviews were built around the themes “Biggest obstacles for
learning programming”, and “Ways to improve teaching of programming”.

For the purposes of Paper IV, the central themes arising from the in-
terviews and research literature were combined, and from those themes
a structured survey was generated. The survey contained 59 items on a
seven-point Likert scale (1=not at all true, 2=very little true, 3=slightly
true, 4=moderately true, 5=quite true, 6=very true, 7=completely true).
The survey was administered to N = 50 second year IT students, with a
response rate of 60% (n = 30). As for demographic data, the gender of the
sample distributed over 19 males (63.3%) and 11 females (36.7%), with an
average age of 29.9 years (min 20, max 45). As previous education, 63.3%
(19 students) had received secondary school education, 23.3% (seven stu-
dents) had received a diploma in education, while 6.7% (two students) held

33

a diploma in some other field than education.
The interviews and the following survey were designed to be applica-

ble to all computer programming courses, although the answers reflected
especially the experiences from the Programming II course, which the in-
terviewed students had just completed. The interview data were analyzed
by two researchers (the authors of Paper IV) independently by identifying
the central themes raised by the students during the interviews.

Paper V included three types of data: observation data, which was
collected by the participating teacher-researchers by writing detailed notes
during guided practices sessions. Secondly, a survey study was conducted
among the students. The survey asked 12 questions, which measured the
students’ perceived utility of the di↵erent components of the provided learn-
ing environment (course materials, classroom interaction, unguided prac-
tice, and guided practice). The survey also collected demographic data.
The impact of guidance in the homework environment was inspected by
utilizing a controlled pretest-posttest research setting.

Chapter 4

RESULTS

4.1 Overview of the Articles

Paper I (context CUH) answers the research questions “How creativity can
be supported by opening the learning environment”, “How does the stu-
dents’ experience of the provided learning environment reflect the provided
theoretical base”, and “How does a robotics kit work as a vehicle for stu-
dents’ learning in the provided learning environment”. The paper studies a
contextually unique configuration of the learning environment (see Figure
2.1), which is based on the theoretical framework for creativity (see Table
2.1), and where the learning environment is generally set as very open.
In that learning environment the classroom interaction is mostly construc-
tivistic and inclusive of peer-interaction, and the overall problem control
is open, and aimed towards inventions. The paper looks at the collected
data through it’s theoretical base of creativity including aspects of intrinsic
motivation, cognitive processes and working styles, and domain relevant
skills. The paper also looks at the data for implications of the e↵ects of the
robotics kit to motivation and learning approaches.

Paper II (context CUH) broadens the research conducted in the learn-
ing environment described in Paper I by answering the research questions
“Which kind of learning approaches do students undertake in an open
learning environment”, and “Which factors of the learning environment
support, and which undermine di↵erent choices between students’ learning
approaches”. The paper looks at the collected qualitative data through a
number of central learning theories.

Firstly, the study analyzes students’ approaches to learning through
students’ conceptions of four things: learning in general, the specific learn-

35

36 4 RESULTS

ing tasks they were given, what is required of them, and openness of their
learning environment. Secondly, the study analyzes intrinsic motivation
(as defined by the self-determination theory SDT) through looking at stu-
dents’ reports on their conceived level of autonomy, their feelings of com-
petence, and their reports on collaborational (relatedness) aspects of their
study work. The study analyzes students’ conceptions of intellectual de-
velopment through their conceptions of learning, as well as their notions
of the backwash e↵ect (students learn what they think they will be tested
on). Students’ learning orientations are looked through students’ reports
on their failure avoidance, adherence to syllabus, amount of e↵ort, and
emphasis on achievement.

Paper III (context CTU) studies practical approaches based on the the-
oretical framework of creativity (see Table 2.1) for improving the learning
environment of programming courses. Firstly, the learning environment
was opened (see Figure 2.1) by reducing the amount of instructivist lectur-
ing, and by adding class time dedicated to practice, in which the role of
the teacher was changed to that of a coach or a facilitator. Secondly, a↵ec-
tive support for students was promoted. Thirdly, coding-while-lecturing, a
contextual adaptation of a pedagogical method was developed, where the
process of writing and desk-testing programs is constantly demonstrated
by programming on-the-fly, while at the same time reflecting on the pro-
cess and encouraging the students to reflect also. While desk-testing the
program, students were repeatedly queried about the state of the program
and about the values of the variables. Fourthly, the role of exercises and
practice was pressed.

The collected qualitative data is analyzed through looking at students’
reactions and opinions towards the positive aspects as well as the downsides
of each of the interventions in relation to learning.

Paper IV (context CTU) utilizes group interviews and quantitative sur-
veys, and studies several crucial elements, which may a↵ect the learning and
teaching of computer programming in context CTU . The paper answers the
following research questions: “What are the students’ and teachers’ per-
ceptions about improving programming education” and “How do students
view themselves as learners.” The paper analyzes the data through issues
related to intrinsic motivation, deep versus surface approaches to learning,
self-regulation, study-orientations, and background factors.

4.2 Results (Context CUH) 37

Paper V (context CTU) centers around the amount of guidance given
by the learning environment. The focus of study in this paper is in the
e↵ect of granting more guidance to the students’ homework environment
(see Figure 2.1). The study reports on developing and testing of a model
where students work on their homework under guidance, facilitated by ac-
tive student-teacher collaboration, continuous feedback, and student sup-
port. The research methods included observations, student feedback, and
a controlled pretest-posttest experimental research setup. The research
questions for the study are “What are the main factors that influence a
student’s problem-solving process when working with practical exercises”
and “What is the impact of guided exercise sessions to learning outcomes.”
The results revealed issues related to intrinsic motivation, approaches to
learning, self-regulation, study-orientations, and background factors.

4.2 Results (Context CUH)

This section provides an overview of the main results in Papers I and II.
In general, the studied learning environment was found to be di↵erent

compared to learning environments typically provided for learning software
development in context CUH . The data shows, that the learning environ-
ment directed students towards an experimental learning approach, and
that the learning environment was in many cases supportive of intrinsic
motivation. The learning approaches were found to connect with students’
orientations towards their studies, and to students’ conceptions of learning
as well as students’ previously learned problem-solving as well as problem
management approaches. For example, some students were not completely
ready to assume the increased amount of control o↵ered by the learning en-
vironment, but would have wanted to give the control back to the teacher.
In other words, they were unable to cope with the openness and criticized
the lack of definitive objectives and technical guidelines. The students’ so-
cial interaction and reflection patterns were new compared to other courses.

The research data shows, that the toolkit utilized as the platform for
students’ work (LEGO R�Mindstorms) a↵ected students’ motivation in a
couple of ways. Firstly, students’ initial motivations to enter the course
were attributed to the novelty value of the robotics kit, as well as to a
mental association with playfulness and freedom connected to the robotics
kit. In addition, students attributed the motivating e↵ects of the robotics
kit to it’s tangible aspects: the e↵ect of a program code can be perceived
with one’s own senses, the robot actualizing in “real life”, communicating
and moving within it’s environment. When working with the robotics kit,

38 4 RESULTS

motivation was found to be a↵ected by the robotic kit’s good suitability
for an explorative working approach, and it’s provision of multiple kinds of
computing problems with varying challenge levels. Overall, the projects as
well as their subproblems were often more challenging than students had
first anticipated. Students’ sense of ownership was increased by the fact
that they were lent their own robotics kits, and they were given freedom in
all phases of their work.

In relation to learning orientations, the results show that students have
topic orientations among the various computing topics. In relation to their
present studies, the data indicated topic orientations of students’ towards
three main classes: theoretical and scientific topics, such as algorithms,
mathematics, physics, and theory of computing; pragmatic topics, such as
software engineering and interaction design; and applied topics with interest
towards arts, humanities, and social sciences. Variation was found in how
fixed the orientation was, and whether the orientation was distinctly in one
class, or spread among the classes. In other words, some students had a
clear view of their topic orientation, while some showed interest towards
topics across the three classes.

The data also revealed traces of motivational components as properties
of students’ orientations. For example, most students reported an extrinsic
component in studying, involving motives such as growing as a professional
and obtaining qualifications for the labor market. The intrinsic compo-
nent involved interest in the actual computer science-related study topics,
and interest in working on own extra-curricular projects. Characteristics
of both deep and surface approaches to learning arose from the research
data, which confirmed that both approaches are adopted in the provided
learning environment. Deep approaches to learning were found to connect
with intrinsic sources of motivation, while surface learning approaches did
connect with extrinsic motivation.

This learning environment required the students to search and select
the problems, which they wanted to work with. The required problem dis-
covery process was found to include a number of challenges. The challenges
included, for example, how to circumscribe the problem, how to update the
task’s problem space, and how to continuously evaluate the appropriate-
ness of one’s problem solving strategy to the problem at hand. Many times,
these activities were found to require additional self-regulation activities in
comparison to those required in other courses. Another issue was connected
with the perceived di�culty of problems. In many cases, students found
that problems, which they had selected turned out to be more complex
than they had prima facie looked like.

4.2 Results (Context CUH) 39

Table 4.1: Two Identified Problem Management Approaches (Paper II)
Serialistic Approach Exploratory Approach

Linear and iterative Cyclic and free-moving
Serialistic Holistic
Risk-averse Open to risks
Industrial by nature Hobbyist by nature
Closed-ended Open-ended
Outcome-oriented Experiment-oriented

On one hand, these aspects of students’ actions in the learning environ-
ment seemed to facilitate deep approaches to learning, and they seemed to
push learners towards the zone of proximal development (ZPD) (Vygotsky,
1978). On the other hand, cases where students were not able to update
their problem spaces accordingly, or were in general unable to cope with
the openness, often resulted in decreased intrinsic motivation. This in turn
resulted in increased surface learning approaches.

The data exposed a continuum of approaches related to students’ gen-
eral problem management processes; the way the students treat the man-
agement of a set of problems. The students’ problem management ap-
proaches were found to form a continuum from serialistic to exploratory.
The serialistic problem management approach treats the set of problems
with a fixed set of linear steps to be followed, with similarities for example
with the waterfall software engineering model. To contrast the serialistic
approach, the exploratory problem management approach was found to be
a more organic, flexible, exploratory, and iterative process. In practice,
students made prototypes, they flexibly jumped back and forth between
designs, constantly switching prototypes, and models, making comparisons
of di↵erent solutions, and performing scientific experiments.

In Table 4.1, central characteristics of the identified two problem man-
agement approaches are presented. The problem management approaches
were found to be attached to students’ problem discovery, problem selec-
tion, as well as their problem solving approaches. Since the learning en-
vironment is built upon open problem discovery, problem selection, and
problem solving, in this environment the exploratory approach arguably
worked better compared to the serialistic approach. The two problem man-
agement approaches have clear parallels with deep and surface approaches
to learning, and it seems that although the serialistic approach is extremely
well suited for the industry, it does not seem to be well suited for learning.
This is because the serialistic approach does not promote deep approaches
to computer science related problem solving, problem management, and
problem discovery, and it does not invite the student to break deep into

40 4 RESULTS

the ZPD (Vygotsky, 1978). In contrast, in the exploratory problem man-
agement approach the learner drifts away from pre-determined models and
solutions into the development of one’s own problems, approaches, models,
prototypes, and solutions.

The factors, which influenced students’ selections of problem manage-
ment approaches were, based on the data, unclear. One hypothesis is, that
the problem management approach is related to the backwash e↵ect, which
has been studied to influence students’ learning approaches (see section
2.4). The backwash e↵ect means that students choose such approaches,
which they think they will be rewarded for, often based on their experi-
ences from other learning environments. However, conclusive traces of the
backwash e↵ect were not found in the data.

It was also found, that students’ conceptions of the learning environ-
ment were found together with a student’s topic orientation to influence
motivation. In this case, the learning environment did not restrict the types
of problems, but welcomed all problems if they were related to computer
science. Even though, some learners perceived the learning environment
for example to be exclusively a hands-on, time-intensive engineering work-
shop. Indeed, such topics were found to be popular. However, in the case
of some students, their conceptions of the learning environment restricted
them from choosing a topic of their own preference. For example, a theo-
retically oriented student might have dropped out of the course, caused by
a perception that the course could not o↵er a platform for problems of her
preference.

Finally, the results confirmed that the theory, which states that creativ-
ity requires the simultaneous presence of three broad components (intrinsic
motivation, domain relevant skills, and certain cognitive working styles),
is useful in supporting creativity also in this educational context. The re-
sults also confirmed, that creativity theory can be successfully turned into
practical teaching arrangements by opening the learning environment and
by utilizing creativity supporting games and plays in the learning sessions
(see Figure 2.1). The resulting configuration of the learning environment
is given the name learning-by-inventing.

4.3 Results (Context CTU)

This section provides an overview of main results in Papers III, IV and V.
The pedagogical approaches described in Paper III were built upon a

number of central theoretical notions of intrinsic motivation and cogni-
tive processes (see Table 2.1.) In concert with the central components for

4.3 Results (Context CTU) 41

intrinsic motivation (autonomy, competence, and relatedness) the pedagog-
ical approach was designed to provide social interaction, introduce optimal
challenges, cut down evaluation, and move students away from beliefs that
good or bad performance is caused by students’ internal properties, and by
providing opportunities for self-directed learning.

Conjointly with central notions of cognitive processes (deep learning,
experimental learning, reflection, and contextual relativist views of knowl-
edge), the pedagogical approaches were designed to employ constructivist
models and experiments, support of reflection, and demonstration of per-
sistent problem solving. The approach utilized ideas of open learning envi-
ronments in the classroom, where students were free to work on a number
of learning tasks. A↵ective support was designed in line with the self-
determination theory by promoting competence and empowerment, and
marketing the relevance of programming to multiple applications and career
opportunities, drawing connection with IT-work, and emphasizing careers,
which students presumably find interesting, such as web-development.

As the cognitive development levels, as well as multiple other character-
istics of students in a group may vary greatly in context CTU , it was found
to be important to have multiple kinds of support structures for di↵ering
students. Therefore, to address the challenge of supporting the requisite
cognitive development of students, a large set of practical exercises was
designed. The exercises were aimed at providing intellectually challenging
tasks for students at varying stages of development. The exercises ranged
from extremely easy to slightly more di�cult to very challenging. The data
shows, that at the beginning many students reported that they had to work
and struggle a lot doing the exercises, which is not a negative thing at all.
The data shows, that while working with the exercises, there was a specific
point when some of the students started to learn programming.

Based on theories of cognitive development, a contextual adaptation
of a pedagogical tool was developed (coding while lecturing), where the
process of writing programs is constantly demonstrated by programming
on-the-fly, while at the same time reflecting on the process with the stu-
dents. The results show, that the approach discouraged the students from
taking surface approaches to learning. An additional benefit of coding while
lecturing was that the teacher was able to keep aware of students’ cognitive
development. The results show, that students reacted to the coding-while-
lecturing approach in various ways. On the one hand, the data shows, that
students did enjoy the approach and were interested, often active, and in-
tensively observant of the class. On the other hand, this kind of approach
was new students, which led to some confusion for example in relation to

42 4 RESULTS

note-taking habits. Some students considered the coding-while-lecturing
approach good but the di�culty too high.

The results of Paper IV reveal, that a lack of support for feelings of
competence and students’ perceived relevance of programming a↵ects mo-
tivation, which leads to generation of negative emotions. Repeatedly failed
attempts to solve programming exercises were reported to decrease one’s
feelings of competence and increase the perception of programming as ex-
tremely di�cult. On the other hand, feelings of success were reported to
quickly increase perceived feelings of competence, resulting in increased
intrinsic motivation, inclusive of flow experiences. Lack in prerequisite
knowledge and background skills were considered as important challenges.

Experimenting (deep) and memorizing (surface) learning approaches
were both found, but they were not found to be associated. Instead, stu-
dents were switching between their old and new learning styles when con-
ducting their studies in introductory programming. Also, a connection
between a perceived poorness of one’s programming skills, and a surface
learning strategy was found, as well as a connection between a surface learn-
ing strategy and positive attitudes towards plagiarizing. The data shows,
that the students as well as previous teachers were well aware of a need to
supplement deep learning and problem-solving skills.

In addition, language problems were identified as an important issue by
students and teachers. Also, habits of working in groups were found to cause
challenges in cases, where the group work is manifested in unproductive
ways. Students were found to be well aware of issues regarding group work
dynamics, yet students were found to hold a protective attitude towards
their own group and themselves. The results also revealed issues related to
di↵ering patterns of classroom interaction between teachers from varying
educational contexts.

The results show, that many of the underlying issues (motivation, group
work dynamics, need for deep learning approach, need for interaction in the
classroom) are partly of the same kind in other contexts, continents, and
cultures. However, the means for supporting each component may vary a
lot in ways, which will in context CTU partly remain to be discovered. The
data confirms, that like many other things, pedagogy cannot be imported
from foreign practices and ideas alone, but it is crucial to understand the
local practices of teaching and learning.

The data confirmed, in this particular context CTU , the argument that
problem-solving skills and learning of programming are very much con-
nected with each other. In this context, the acquisition of well-functioning
learning strategies and skills seems to be a↵ected by group work strategies,

4.3 Results (Context CTU) 43

motivational profile, and issues related to study approaches. It was found,
that one important aspect in learning programming seems to be the work
that students are required to do on their own time, outside the instructed
learning sessions. For one reason or another, in too many cases students
are not able to find e↵ective ways of working, they lose motivation, and
they resort to rote-memorizing, or even plagiarism.

The results show, that a major part of the challenge can be attributed to
lack of e↵ective learning skills required in learning programming, and thus,
to unfamiliarity with applicable problem-solving skills. Those students who
lack applicable problem-solving skills are in risk of resorting to unproductive
learning strategies, such as rote memorizing. When that method fails, some
students utilize extrinsically motivated strategies, such as free riding in
group work, copying from other students, and plagiarizing. It is important
to note, that none of these issues are particular to this context, but can
probably be found all over the world in one form or another.

Paper V reports results from an experiment, where guidance was added
to students’ “homework” environment. Survey data, observation data, and
quantitative data from a controlled pretest-posttest experimental research
setup was collected. A class of students was randomly split to half. The
first group conducted their homework exercises under guidance, while the
second group worked on their own. The experimental and control groups
were switched half-way the study, so that everyone received equal amount of
guidance during the course. The learning outcomes were frequently mea-
sured by giving both groups quizzes after the completion of each set of
exercises.

The results show, that students’ problem-solving processes were a↵ected
by the multiple problem types, which students faced during their work with
the exercises. Examples of common problem types revealed by the study
were di�culties with understanding the task description, challenges in for-
mulating a plan for solving the problem, and syntax problems such as
missing commas in the source code. The data shows, that the continuous
feedback loop provided by the learning environment was e↵ective and a
necessary sca↵old to overcome the above-mentioned problems that the stu-
dents faced. The results also show, that the guided exercise sessions were
motivating and were appreciated by the students. The results also show,
that the students considered programming to be a di�cult, but also an
interesting topic.

The survey results show, that while students considered the guided
learning sessions as very valuable, still they perceived unguided exercises
to be slightly more useful for learning compared to guided exercises. Thus,

44 4 RESULTS

it seems, that there is a role for both activities. Time management and
self-regulation issues were brought out by the study. Students reported
issues related to task-switching, time management and prioritizing when
they work with homework from multiple courses, which a↵ects their choices
between deep and surface approaches to programming tasks. The results
show, that the guided environment could directly address some of the learn-
ing barriers related to self-regulation issues, and also issues of group work
dynamics by restricting the study topic to programming and by setting the
group dynamics rules. However, externally given rules might have also in-
hibited some positive aspects of students’ group work and work dynamics,
which makes it unclear whether the outcomes were solely positive.

The results of the controlled research setup were found to contradict
the positive observations during the guided exercise sessions. All learning
tasks in the pretest condition and both posttest conditions resulted in no
statistically significant di↵erence between the performance of the two ran-
domly assigned groups. The results show, that in the workshop situation
many students started to understand certain learning tasks and perform
well in them. Despite their apparent mastery of the concept and skill, in
the exam, the same students failed to solve similar tasks that they had
successfully completed in the workshop sessions. This might result from an
imbalance in constructive alignment between the learning environment and
the assessment tasks (Biggs and Tang, 2011, pp. 95). One explanation is
that students indeed do learn equally e↵ectively under guidance and outside
of guided environments, and that the qualitative results from participant
observation and student feedback were misleading. Further experiments
are however needed to confirm either of the alternative hypotheses.

4.4 Contributions of the Present Author

For Paper I, the present author designed the research setting including the
educational intervention together with the two other authors of Paper I.
The present author conducted all data collection required for the study, as
well as approximately 90% of surveying the literature, data-analysis as well
as the writing.

Paper II utilized mostly the data collected for Paper I. The research
design was done completely by the present author. The data analysis and
writing was done in a co-operation between the authors of Paper II, in a
way where the present author was responsible for approximately 90% of
the work.

In Paper III, the present author contributed on designing the educa-

4.4 Contributions of the Present Author 45

tional interventions and designing the research. In data collection, co-
operation was received from the second author of Paper III. Data-analysis,
literature survey, as well as writing the paper was conducted by the present
author approximately by 75%.

In Paper IV, the second author provided valuable co-operation in most
phases of conducting the research including research design, data collection,
data analysis, and writing. Most part of the work, with an overall rate
beyond 80%, was conducted by the present author.

In Paper V, research design, and data collection was conducted approx-
imately 60% by the present author. Data collection included co-validation
of course learning outcomes between the authors of Paper V, and collect-
ing survey results as well as observation notes, and arrangements related to
the controlled research setup. Data analysis, literature survey, and writing
was done by the present author with an overall workload of 80%, leaving
approximately 20% for the second and third authors.

Chapter 5

DISCUSSION AND
CONCLUSIONS

In context CUH , the research and design of a learning environment, based
on a theoretical framework of creativity, intrinsic motivation and deep ap-
proaches to learning, combined with robotics as a learning tool, yielded a
number of interesting insights into students’ learning in an opened learning
environment. A couple of findings, however, rise above the others.

Firstly, the learning environment together with the robotics toolkit did
o↵er students a rich assortment of computer science related problems, which
did attract a number of students of varying personal interests. Partly based
on it’s novelty value, the robotics toolkit also o↵ered a powerful trigger for
motivation to enter the course. Secondly, the learning environment made it
possible for students to choose such project management approaches, and
to focus their e↵orts on their preferred specific sub-problems of a project
in ways, which are not always supported in typical university courses in
context CUH .

Several phenomena were connected to the free selection of project man-
agement, problem management, problem discovery, and problem solving
approaches. From the learning environment’s part, the above factors were
found to have an impact on students’ intrinsic motivation. On the other
hand, intrinsic motivation was a↵ected by students’ conceptions of learn-
ing in computing, which confirmed results from previous research. In the
best cases a student learned to deal with the extended autonomy by self-
regulating the problem parameters, or by switching into an alternative
problem altogether, when faced with a challenge of too high level. Thus, in
this learning environment, students’ were required to take deep and surface
approaches to learning and problem solving, and also to problem manage-
ment.

47

48 5 DISCUSSION AND CONCLUSIONS

Finally, it was found that the theoretical framework of creativity (see
Table 2.1) could be successfully applied into a university course by making
modifications to the learning environment (see Figure 2.1), and according
to the results, the model suits such purpose well. This configuration of
the learning environment, which is called learning-by-inventing, stood in
direct contrast to the usual practices where the teacher gives either a list
of homework problems to solve, or a larger assignment at the beginning of
the semester.

In context CTU of this study, turning creativity theory into practice by
supporting intrinsic motivation and deep approaches to learning was ap-
proached from a number of perspectives. First, a shift to an open environ-
ment was promoted by ridding a traditional model of instructivist lecturing
and adding of student-centered classroom practices. Since students of con-
text CTU were used to more closed environments where the teacher is in full
control, the changes in mindsets did not happen overnight. Second, chang-
ing the group work dynamics without destroying well-functioning group
work spirit proved not to be an easy task. The results showed that cultural
ways of working in groups o↵er benefits when the help, which students
are willing to give each other is manifested in productive ways. However,
group work strategies may also hinder learning of some group members, if a
group focuses on utilizing the skills of the most competent group members
to complete assignments.

Thirdly, classroom practices such as development of coding-while-lecturing
practices worked well in forcing students out of rote memorizing learning
approaches. However, again it was found that students need time and space
to become more active and reflective in the classroom, since they are used to
di↵erent modes of teaching and learning. Fourthly, an adaptable model of
exercises ensured students’ experiences of feelings of success. Each student
was able to go hands-on and get the sense of competence and grounds for
cognitive development. Fifthly, selecting the proper amount of guidance to
students’ homework environment proved to be an important variable, which
a↵ects the students’ learning. However, although the observation notes, as
well as the opinions of researchers, teachers, and students all spoke exclu-
sively in the favor of guided learning, the quantitative results showed no
statistically significant di↵erence in the learning outcomes between guided
and unguided groups.

In addition to results from practical teaching approaches, a number
of contextually relevant variables, which a↵ect students’ learning were re-
vealed by this study. Firstly, the results show, that need for supplementary
teaching in deep learning and problem solving skills is an important addi-

5.1 Future Suggestions 49

tional learning objective in this learning environment. The issue is partly
caused by background factors, such as a lack of proper science and math
teaching in primary and secondary education in Tanzania. During their
programming studies, students were found to be switching between their
new (deep processing) and old (surface processing) approaches to learning.

Secondly, the need to increase the support on intrinsic motivation was
recognized by the study. It was also revealed that the underlying factors
impacting the motivation may be more complicated than a proposed dual-
component model consisting of the lack of feelings of competence and a
low perceived value of programming. Thirdly, group work dynamics issues
were recognized as important both by the students and by previous teach-
ers. However, students were found to hold protective attitudes towards
their own group and themselves. Fourthly, language problems were identi-
fied as an important issue. Fifthly, cultural di↵erences regarding classroom
pedagogy and other teaching arrangements especially concerning foreign
teachers was identified as an important issue. Sixthly, additional factors
include a serious lack in availability of computers, other facilities, and re-
sources in general.

5.1 Future Suggestions

In context CUH , one important question for further exploration is related
to learning objectives. This research showed, that students’ skills in coping
in a more open environment varied. All students are professionals in passing
computer science courses, where problems are given by someone, they are
clearly articulated, there are supportive materials available, and there is
often at least one correct solution for each problem. Some students were
able to cope well in a more open environment and learned to set and revise
their own problems, while some students considered something to be wrong.
In the future, a number of new configurations for a learning environment
could be designed and researched. Those learning environments would—in
the best case—encourage students to invent, to follow their own interests,
and teach them to set their own learning objectives, and assessment tasks.

Teaching software development by utilizing the software engineering
model is optimized to minimize risk. However, teaching to avoid risk-taking
may prevent the development of creativity, since inventing involves taking
risks. In addition, students often possess their own ideas and approaches
to solving certain computing problems, which the learning environment
should update. If the learning environment does not promote and require
risk-taking with new ideas, conceptual change is not likely to happen.

50 5 DISCUSSION AND CONCLUSIONS

In programming, this can become highly tangible. If a programmer has
learned to avoid risks and knows that one’s existing habits can be used to
solve a certain problem, one may not be open for learning more power-
ful approaches. While mastering the industry standard models is a must
for information technology professionals, additional learning environments
could also be provided, which would give more room for the creation of
novelties. That would also require that students learn more capabilities of
handling uncertain situations, and that they learn more abilities to deal
with the related negative a↵ects, such as frustration.

This study has challenged the utilization of an industry-oriented soft-
ware engineering model (for example: Dugan (2011)) for learning software
development. Creativity does not take place only by accident but it can be
supported with existing theoretical knowledge and practical models. Fol-
lowing a software engineering model teaches one way of managing a set of
problems, which the student is supposed to solve when designing and writ-
ing computer software. In a very open learning environment, a student has
the freedom to either choose a problem management approach, which he is
already familiar with, or then to invent a completely new way of working.
Assuming the students to find new working strategies for themselves is a
lot to ask. Thus, a more rigorous introduction and hands-on training of a
creative working style should be given in the future.

The approach presented in this study is related to a number of com-
monly known approaches such as Problem Based Learning (PBL), Project
Based Learning, and Progressive Inquiry (see for example: (Hmelo-Silver,
2004, Jonassen, 2000, Hakkarainen, 2003, Barron et al., 1998)). The com-
mon denominator of these approaches is the upgraded role of the teacher.
Instead of giving direct instruction and knowledge the teacher facilitates,
and coaches the learning process. Realistic, open-ended cases and project
goals are emphasized in the abovementioned approaches. In the context of
computing education, the learning-by-inventing approach provided in this
study has extended other common student-centered approaches by granting
students freedom in setting their own learning objectives, and by focusing
explicitly on inventing and creativity.

In context CUH , this thesis proposes several options for further studies.
First, better support structures for teaching of a creative working process
should be explored. Second, the reasons why some students performed bet-
ter and felt more comfortable in the open learning environment compared
to other students poses many important research questions. The inter-
play between creative problem solving, a student’s success in other studies
(GPA), and psychological characteristics, combined with phenomena of so-

5.1 Future Suggestions 51

cial interaction together form a complex construction with many possible
hypotheses and research questions for further investigations.

In context CTU , this thesis has focused on researching the development
of introductory programming education.

During the short history of developing teaching of computer program-
ming in context CTU , teaching of programming has predominately been
the responsibility of foreign visiting experts. The foreigners have brought
in their own pedagogical approaches and teaching techniques, as well as
their pedagogical biases. While many of their teaching e↵orts have shown
positive signs, still the present approaches have not worked very well for
students of context CTU . Some intentional revisions to the learning environ-
ment have been made. However, generally speaking, the current approaches
have not resulted in satisfactory learning outcomes in programming courses.

Several suggestions for facing the challenges in teaching and learning
programming can be made. Firstly, research e↵orts should be put on de-
signing learning materials and exercise tasks, which would be aligned prop-
erly with the needs of the students. Secondly, emphasis should be put on
design and research of other possible support structures and sca↵olds in the
learning environment. In this track of research and development acts, one
important direction is the search for e�cient guided environments, such as
instructed exercise sessions. Such exercise sessions should utilize the top
performing programming students from previous classes as teaching and
research assistants, which is a widely utilized and well approved practice in
universities worldwide. Other directions include studying of visualization
platforms, automatic assessment, and MOOC-based interventions.

Thirdly, it is important that all development, teaching, and research
acts are not isolated to programming courses only, but they must be sys-
tematically aligned with other courses of the BSc in IT graduate program.
All development and research acts must be planned in co-operation with
the university administration, which for example needs to accredit the steep
increment of allocated practice hours in certain courses, as well as the uti-
lization of grading methods and other arrangements, which may di↵er from
the standard regulations of the university.

Finally, maybe the most important thing is, that the teaching acts in
relation to programming courses are not su�cient alone, but must be ex-
tended with increased amount of research acts, also. This means, that ba-
sic education research is required for better understanding the educational
context, as well as the students. Equally important is to add applied edu-
cation research, which is essential for gaining better understanding of best

52 5 DISCUSSION AND CONCLUSIONS

practices in programming education by systematically testing the impact
of di↵erent educational interventions with scientific methods.

References

Abran, A., Bourque, P., Dupuis, R., Moore, J., and Tripp, L. (2004). Guide
to the Software Engineering Body of Knowledge (SWEBOK). IEEE
Press.

ACM Information Technology Curriculum Committee (2005). Computing
Curricula: Information Technology Volume.

Almstrum, V. L., Hazzan, O., Guzdial, M., and Petre, M. (2005).
Challenges to Computer Science Education Research. SIGCSE Bull.,
37(1):191–192.

Amabile, T. M. (1983). Social Psychology of Creativity: A Componen-
tial Conceptualization. Journal of Personality and Social Psychology,
45(2):357–376.

Amabile, T. M. (1987). The Motivation to Be Creative. In Isaksen, S., edi-
tor, Frontiers of Creativity Research: Beyond the Basics. Bearly Limited,
Bu↵alo, N.Y.

Amabile, T. M. and Collins, M. (1999). Motivation and Creativity. In
Sternberg, R. R. and Lubart, R., editors, Handbook of Creativity. Cam-
bridge University Press.

Ambrosio, A. P. and Costa, F. M. (2010). Evaluating the Impact of PBL
and Tablet PCs in an Algorithms and Computer Programming Course.
In Lewandowski, G., Wolfman, S. A., Cortina, T. J., and Walker, E. L.,
editors, SIGCSE, pages 495–499. ACM.

Apiola, M., Tedre, M., Pasanen, T. A., and Lattu, M. (2012). Towards a
Framework for Designing and Analyzing CS Learning Environments. In
Proceedings of FIE’12 Frontiers in Education Conference, Seattle, WA,
USA.

53

54 References

Armarego, J. (2008). Constructive Alignment in SE Education: Aligning
to What? In Ellis, H., Demurjian, S., and Naveda, J., editors, Software
Engineering: E↵ective Teaching and Learning Approaches and Practices,
pages 15–37. IGI Global.

Bakar, M. S. and Shaikh Ab Rahman, S. N. (2005). A Kick Start in Imple-
mentation of PBL in Computer Programming. In Regional Conference
on Engineering Education RCEE 2005, Johor, Malaysia.

Baker, A., Navarro, E. O., and van der Hoek, A. (2003). An Experimental
Card Game for Teaching Software Engineering Processes. Journal of
Systems and Software, 75(1–2):3–16.

Barron, B. J. S., Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A.,
Zech, L., Bransford, J. D., Cognition, T., and at Vanderbilt, T. G.
(1998). Doing With Understanding: Lessons From Research on Problem-
and Project-Based Learning. The Journal of the Learning Sciences,
7(3&4):271–311.

Beaumont, C. and Fox, C. (2003). Learning Programming: Enhancing
Quality Through Problem-Based Learning. In Proceedings of 4th Annual
LTSN-ICS Conference (LTSN-ICS’03).

Ben-Ari, M., Bednarik, R., Levy, R. B.-B., Ebel, G., Moreno, A., Myller,
N., and Sutinen, E. (2011). A Decade of Research and Development on
Program Animation: The Jeliot Experience. Journal of Visual Languages
& Computing, 22(5):375 – 384.

Bergenhenegouwen, G. (1987). Hidden Curriculum in the University.
Higher Education, 16:535–543.

Biggs, J. (2001). Enhancing learning: A matter of style or approach? In
Sternberg, R. and Zhang, L., editors, Perspectives on Thinking, Learning,
and Cognitive Styles, pages 77–102. Elrbaum.

Biggs, J. and Tang, C. (2011). Teaching for Quality Learning at University:
What the Student Does. McGraw-Hill Education, 4th edition edition.

Biggs, J. B. (1979). Individual Di↵erences in Study Processes and the
Quality of Learning Outcomes. Higher Education, 8(4):381–394.

Brodie, L., Zhou, H., and Gibbons, A. (2008). Steps in Developing an
Advanced Software Engineering Course Using Problem Based Learning.
Engineering Education, 3(1):2–12.

References 55

Buzan, T. (1991). Use both sides of your brain: New Mind Mapping Tech-
niques. Plume Books, New York.

Chimalakonda, S. and Nori, K. V. (2011). Can we Make Software Engi-
neering Education Better by Applying Learning Theories? In Software
Engineering Education and Training (CSEE&T), 2011 24th IEEE-CS
Conference on, page 561.

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. Sage Publications, Thousand Oaks, CA,
USA, 3rd edition.

Csikszentmihalyi, M. (1996). Creativity: Flow and the Psychology of Dis-
covery and Invention. Harper Perennial, New York.

Davis, M. (2009). Understanding the Relationship Between Mood and Cre-
ativity: A meta-analysis. Organizational Behavior and Human Decision
Processes, 108(1):25–38.

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner,
A. J., and Young, P. R. (1989). Computing as a Discipline. Communi-
cations of the ACM, 32(1):9–23.

dos Santos, S. C., da Conceicao Moraes Batista, M., Cavalcanti, A. P. C.,
Albuquerque, J. O., and Meira, S. R. (2009). Applying PBL in Software
Engineering Education. Software Engineering Education and Training,
Conference on, 0:182–189.

Dron, J. (2007). Control and Constraint in E-Learning: Choosing When to
Choose. Idea Group, Hershey, PA, USA.

Dugan, R. F. (2011). A Survey of Computer Science Capstone Course
Literature. Computer Science Education, 21(3):201–267.

Duke, R., Salzman, E., Burmeister, J., Poon, J., and Murray, L. (2000).
Teaching Programming to Beginners – Choosing the Language is just the
first step. In Proceedings of the Australasian conference on Computing
education, ACSE ’00, pages 79–86, New York, NY, USA. ACM.

Duveskog, M., Sutinen, E., and Cronje, J. (2013). Design Milieux for Learn-
ing Environments in African Contexts. British Journal of Educational
Technology, page n/a. In press.

Eberle, R. (2008). Scamper: Creative games and activities for imagination
development. Prufrock Press Inc., Waco, TX.

56 References

Entwistle, N. (2007). Research into Student Learning and University Teach-
ing. In Entwistle, N. and Tomlinson, P., editors, Student Learning
and University Teaching, volume Psychological Aspects of Education–
Current Trends of Monograph Series II, pages 1–18. The British Psycho-
logical Society.

Fransson, A. (1977). On Qualitative Di↵erences in Learning: IV — Ef-
fects of Intrinsic Motivation and Extrinsic Test Anxiety on Process and
Outcome. British Journal of Educational Psychology, 47(3):244–257.

Hakkarainen, K. (2003). Emergence of Progressive-Inquiry Culture in
Computer-Supported Collaborative Learning. Learning Environments
Research, 6(2):199–220.

Hannula, M. (2004). A↵ect in Mathematical Thinking and Learning. PhD
thesis, University of Turku.

Herrmann, N. (1996). The Whole Brain Business Book. Mc Graw-Hill,
New York.

Higgins, J. M. (1994). 101 creative problem solving techniques: The Hand-
book of New Ideas for Business. New Management Publishing Co, Winter
Park, FL.

Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and How Do
Students Learn? Educational Psychology Review, 16(3):235–266.

Hoskins, S. L. and Newstead, S. E. (2009). Encouraging Student Motiva-
tion. In Fry, H., Ketteridge, S., and Marshall, S., editors, A Handbook
for Teaching and Learning in Higher Education, pages 27–39. Routledge,
New York, NY, USA, 3rd edition.

Jackson, N. and Shaw, M. (2006). Developing Subject Perspectives on
Creativity in Higher Education. In Jackson, N., Oliver, M., Shaw, M.,
and Wisdom, J., editors, Developing Creativity in Higher Education. An
imaginative curriculum. Routledge.

Jonassen, D. H. (2000). Toward a Design Theory of Problem Solving.
Educational Technology Research and Development, 48(4):63–85.

Joy, M., Sinclair, J., Sun, S., Sitthiworachart, J., and López-González, J.
(2009). Categorising Computer Science Education Research. Education
and Information Technologies, 14:105–126.

References 57

Juuti, K. and Lavonen, J. (2006). Design-based research in science educa-
tion: One step towards methodology. Nordic Studies in Science Educa-
tion (NorDiNa), 4:54–68.

Kelleher, C. and Pausch, R. (2005). Lowering the Barriers to Programming:
A Taxonomy of Programming Environments and Languages for Novice
Programmers. ACM Comput. Surv., 37(2):83–137.

Kirschner, P. A., Sweller, J., and Clark, R. E. (2006). Why Minimal Guid-
ance During Instruction Does Not Work: An Analysis of the Failure
of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-
Based Teaching. Educational Psychologist, 41(2):75–86.

Kotovsky, K. (2003). Problem Solving—Large/Small, Hard/Easy, Con-
scious/Nonconscious, Problem-Space/Problem-Solver: The Issue of Di-
chotomization. In Davidson, J. E. and Sternberg, R. J., editors, The Psy-
chology of Problem Solving, pages 373–384. Cambridge University Press,
Cambridge, UK.

Kurhila, J. and Vihavainen, A. (2011). Management, Structures and Tools
to Scale Up Personal Advising in Large Programming Courses. In Pro-
ceedings of the 2011 Conference on Information Technology Education,
SIGITE ’11, pages 3–8, New York, NY, USA. ACM.

Laurillard, D. (2005). Styles and Approaches in Problem-solving. In Mar-
ton, F., Hounsell, D., and Entwistle, N., editors, The Experience of
Learning: Implications for teaching and studying in higher education.
3rd ed., pages 126–144. University of Edinburgh, Centre for Teaching,
Learning and Assessment, Edinburgh, UK.

Lavonen, J. and Meisalo, V. (2009). Creative Problem Solving — University
of Helsinki Teacher Training Materials.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm,
M., McCartney, R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B.,
and Thomas, L. (2004). A Multi-national Study of Reading and Tracing
Skills in Novice Programmers. SIGCSE Bull., 36(4):119–150.

Lonka, K. and Ahola, K. (1995). Activating Instruction: How to Foster
Study and Thinking Skills in Higher Education. European Journal of
Psychology of Education, 10:351–368. 10.1007/BF03172926.

Lonka, K., Olkinuora, E., and Mäkinen, J. (2004). Aspects and Prospects
of Measuring Studying and Learning in Higher Education. Educational
Psychology Review, 16:301–323.

58 References

Mäkinen, J., Olkinuora, E., and Lonka, K. (2004). Students at Risk:
Students’ General Study Orientations and Abandoning/prolonging the
Course of Studies. Higher Education, 48:173–188.

Marton, F. (2005). Approaches to learning. In Marton, F., Hounsell, D.,
and Entwistle, N., editors, The Experience of Learning: Implications for
teaching and studying in higher education. 3rd ed., pages 39–58. Uni-
versity of Edinburgh, Centre for Teaching, Learning and Assessment,
Edinburgh, UK.

Marton, F., Beaty, E., and Dall’Alba, G. (1993). Conceptions of Learning.
International Journal of Educational Research, 19(1):277–300.

Marton, F. and Säljö, R. (1976). On Qualitative Di↵erences in Learning
– 2: Outcome as a Function of the Learner’s Conception of the Task.
British Journal of Educational Psychology, 46(2):115–127.

Mazur, E. (1998). Peer Instruction: A User’s Manual. Prentice Hall,
Englewood Cli↵s, NJ, USA.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant,
Y. B.-D., Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A
Multi-national, Multi-institutional Study of Assessment of Programming
Skills of First-year CS Students. In Working group reports from ITiCSE
on Innovation and technology in computer science education, ITiCSE-
WGR ’01, pages 125–180, New York, NY, USA. ACM.

Meisalo, V. and Lavonen, J. (2000). Bits and processes on markets and
webs: An analysis of virtuality, reality and metaphors in a modern learn-
ing environment. Tietoa ja toimintaa: Journal of Teacher Researcher,
6(2):10–27.

Mills, C. W. (1956). The Sociological Imagination. Oxford University Press,
New York, USA.

Moneta, G. B. and Cśıkszentmihályi, M. (1999). Models of Concentration
in Natural Environments: A Comparative Approach Based on Streams
of Experiential Data. Social Behavior and Personality: An International
Journal, 27(6):603–637.

Mumford, M. D. (2003). Where Have We Been, Where Are We Go-
ing? Taking Stock in Creativity Research. Creativity Research Journal,
15(2/3):107.

References 59

Navarro, E. and van der Hoek, A. (2008). On the Role of Learning Theories
in Furthering Software Engineering Education. In Ellis, H., Demurjian,
S., and Naveda, J., editors, Software Engineering: E↵ective Teaching and
Learning Approaches and Practices, pages 38–59. IGI Global.

Niemiec, C. P. and Ryan, R. M. (2009). Autonomy, Competence, and
Relatedness in the Classroom: Applying Self-Determination Theory to
Educational Practice. Theory and Research in Education, 7(2):133–144.

No↵ke, S. E. and Somekh, B. (2009). Introduction. In No↵ke, S. E. and
Somekh, B., editors, The SAGE Handbook of Educational Action Re-
search. SAGE Publications.

Nuutila, E., Törmä, S., and Malmi, L. (2005). PBL and Computer Pro-
gramming — The Seven Steps Method with Adaptations. Computer
Science Education, 15(2):123–142.

O’Grady, M. J. (2012). Practical Problem-Based Learning in Comput-
ing Education. ACM Transactions on Computing Education, 12(3):10:1–
10:16.

Osborn, A. (1963). Applied Imagination; Principles and Procedures of Cre-
ative Problem-solving. Scribner, New York.

Palumbo, D. B. (1990). Programming Language/Problem-Solving Re-
search: A Review of Relevant Issues. Review of Educational Research,
60(1):65–89.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen,
J., Devlin, M., and Paterson, J. (2007). A Survey of Literature on the
Teaching of Introductory Programming. SIGCSE Bulletin, 39:204–223.

Pekrun, R. (2006). The Control-Value Theory of Achievement Emotions:
Assumptions, Corollaries, and Implications for Educational Research and
Practice. Educational Psychology Review, 18(4):315–341.

Peng, W. (2010). Practice and Experience in the Application of Problem-
based Learning in Computer Programming Course. In Educational and
Information Technology (ICEIT), 2010 International Conference on, vol-
ume 1, pages V1–170 –V1–172.

Perry, Jr., W. G. (1970). Forms of Intellectual and Ethical Development in
the College Years: A Scheme. Holt, Rinehart and Winston, New York,
NY, USA.

60 References

Pintrich, P. (2004). A Conceptual Framework for Assessing Motivation
and Self-Regulated Learning in College Students. Educational Psychology
Review, 16:385–407.

Pretz, J. E., Adams, N. J., and Sternberg, R. (2003). Recognizing, Defin-
ing, and Representing Problems. In Davidson, J. E. and Sternberg, R. J.,
editors, The Psychology of Problem Solving, pages 3–30. Cambridge Uni-
versity Press, Cambridge, UK.

Qiu, M. and Chen, L. (2010). A Problem-Based Learning Approach to
Teaching an Advanced Software Engineering Course. In Education Tech-
nology and Computer Science (ETCS), 2010 Second International Work-
shop on.

Randolph, J., Bednarik, R., Silander, P., Gonzalez, J., Myller, N., and
Sutinen, E. (2005). A Critical Analysis of the Research Methodologies
Reported in the Full Papers of the Proceedings of ICALT 2004. Advanced
Learning Technologies, IEEE International Conference on, 0:10–14.

Randolph, J. J. (2008). Multidisciplinary Methods in Educational Technol-
ogy Research and Development. HAMK University of Applied Sciences,
Hämeenlinna, Finland.

Richardson, J. T. E. (1999). The Concepts and Methods of Phenomeno-
graphic Research. Review of Educational Research, 69(1):53–82.

Richardson, J. T. E. (2005). Students’ Approaches to Learning and Teach-
ers’ Approaches to Teaching in Higher Education. Educational Psychol-
ogy, 25(6):673–680.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and Teaching
Programming: A Review and Discussion. Computer Science Education,
13(2):137–172.

Ryan, R. M. and Deci, E. L. (2000a). Intrinsic and Extrinsic Motivations:
Classic Definitions and New Directions. Contemporary Educational Psy-
chology, 25(1):54–67.

Ryan, R. M. and Deci, E. L. (2000b). Self-Determination Theory and the
Facilitation of Intrinsic Motivation, Social Development, and Well-Being.
American Psychologist, 55(1):68–78.

Ryan, R. M. and Deci, E. L. (2001). On Happiness and Human Potentials:
A Review of Research on Hedonic and Eudaimonic Well-Being. Annual
Review of Psychology, 52:141–166.

References 61

Schmidt, H. G., Loyens, S. M. M., van Gog, T., and Paas, F. (2007).
Problem-Based Learning is Compatible with Human Cognitive Architec-
ture: Commentary on Kirschner, Sweller, and Clark (2006). Educational
Psychologist, 42(2):91–97.

Schneider, G. M. (2002). A New Model for a Required Senior Research
Experience. SIGCSE Bull., 34(4):48–51.

Sio, U. and Ormerod, T. (2009). Does Incubation Enhance Problem Solv-
ing? A Meta-analytic Review. Psychological Bulletin, 135(1):94–120.

Smith, G. F. (1998). Idea-Generation Techniques: A Formulary of Active
Ingredients. Journal of Creative Behavior, 32(2):107–133.

Soloway, E. (1986). Learning to Program = Learning to Construct Mech-
anisms and Explanations. Communications of the ACM, 29(9):850–858.

Soloway, E. and Ehrlich, K. (1984). Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering, SE-10(5):595–
609.

Stake, R. E. (1995). The Art of Case Study Research. Sage Publications,
Thousand Oaks, CA, USA.

Sternberg, R. and Lubart, T. (1999). The Concept of Creativity: Prospects
and Paradigms. In Sternberg, R. and Lubart, T., editors, Handbook of
Creativity. Cambridge University Press.

Sutinen, E. and Tarhio, J. (2001). Teaching to Identify Problems in a
Creative Way. In Proceedings of the FIE’01 Frontiers in Education Con-
ference, volume T1D, pages 8–13, Reno, NV, USA.

Tedre, M., Apiola, M., and Oroma, J. (2011). Developing IT education in
Tanzania: Empowering students. In Proceedings of the FIE’11 Frontiers
in Education Conference, Rapid City, SD, USA.

Tedre, M. and Kamppuri, M. (2009). Students’ Perspectives on Challenges
of IT Education in Rural Tanzania. In Cunningham, P. and Cunning-
ham, M., editors, Proceedings of IST-Africa 2009 Conference, Kampala,
Uganda.

Tedre, M. and Sutinen, E. (2008). Three Traditions of Computing: What
Educators Should Know. Computer Science Education, 18(3):153–170.

62 References

Trigwell, K., Prosser, M., and Waterhouse, F. (1999). Relations Between
Teachers’ Approaches to Teaching and Students’ Approaches to Learning.
Higher Education, 37(1):57–70.

Van Rossum, E. J. and Schenk, S. M. (1984). The Relationship between
Learning Conception, Study Strategy and Learning Outcome. British
Journal of Educational Psychology, 54(1):73–83.

Vermunt, J. D. and Verloop, N. (1999). Congruence and Friction Between
Learning and Teaching. Learning and Instruction, 9(3):257–280.

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psy-
chological Processes. Harvard University Press, Cambridge, Mass., USA.

Wiliam, D. (2008). Comments on Bulterman-Bos: What Should Educa-
tion Research Do, and How Should It Do It? Educational Researcher,
37(7):432–438.

Winslow, L. E. (1996). Programming Pedagogy–A Psychological Overview.
SIGCSE Bull., 28:17–22.

Yin, R. K. (2003). Case Study Research: Design and Methods. Sage Pub-
lications, Thousand Oaks, CA, USA, 3rd edition.

Ylijoki, O.-H. (2000). Disciplinary Cultures and the Moral Order of Study-
ing - A Case-study of Four Finnish University Departments. Higher
Education, 39(3):339–362.

