
A Platform for Teaching Applied Distributed
Software Development

The Ongoing Journey of the Helsinki Software Factory

Fabian Fagerholm⇤, Nilay Oza†, Jürgen Münch‡
Department of Computer Science, University of Helsinki

P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014, Finland

⇤fabian.fagerholm@helsinki.fi, †nilay.oza@cs.helsinki.fi, ‡juergen.muench@cs.helsinki.fi

Abstract—Teaching distributed software development (DSD)
in project courses where student teams are geographically dis-
tributed promises several benefits. One main benefit is that in
contrast to traditional classroom courses, students can experi-
ence the effects of distribution and the mechanisms for coping
with distribution by themselves, therefore understanding their
relevance for software development. They can thus learn to take
more care of distribution challenges and risks when starting to
develop software in industry. However, providing a sustainable
environment for such project courses is difficult. A development
environment is needed that can connect to different distributed
teams and an ongoing routine to conduct such courses needs to
be established. This article sketches a picture of the Software
Factory, a platform that supports teaching distributed student
projects and that has now been operational for more than three
years. We describe the basic steps of conducting Software Factory
projects, and portray experiences from past factory projects. In
addition, we provide a short overview of related approaches and
future activities.

Index Terms—Global software development, distributed soft-
ware development, education, Software Factory.

I. INTRODUCTION

The Software Factory is an experimental laboratory that
provides an environment for research and education in software
engineering, and that was established by the Department of
Computer Science at the University of Helsinki [1]. Since
the first project in 2010, the Software Factory has been used
as a platform for teaching software engineering in close
collaboration with industry. The goal is to provide students
with a realistic environment in which to integrate previous
knowledge of computer science and software engineering with
experiential insights about conducting real software projects.
Close customer involvement, intensive teamwork, and the use of
modern software development tools and processes add realism
and working life relevance for the students.

The Software Factory’s particular educational focus is
teaching global software engineering. Students benefit by
learning particular skills that are relevant to globally distributed
software development. The Software Factory concept can and
has been replicated in other locations, forming a growing
network for research and education.

Although the Software Factory concept started initially with
collocated projects, the Software Factory aims to conduct
mainly distributed projects. Today, several companies and
universities have established the Software Factory concept
on their premises and several distributed projects have been
performed (e.g., a pilot project among Finnish universities,
a project with Spain-based Indra Sistemas and Technical
University of Madrid on intelligent power grids, and a large-
scale open source collaboration project with Stanford University,
Facebook, and other academic partners worldwide).

II. EXPERIENTIAL AND PROJECT-BASED LEARNING IN
SOFTWARE ENGINEERING

Teaching DSD can be done in many different ways. Classical
classroom teaching is usually limited to transferring knowl-
edge about methods or techniques and conducting exercises.
Typically, the exercise examples are unrealistically small, and
it is difficult to show the complexity of distributed projects
in such settings. In the context of real software development
projects, students can experience the effects of such methods
and techniques (e.g., the risk of making wrong assumptions
without appropriately documented code) and see their practical
relevance. Studies have shown that such experiences can also
lead to performance improvements on the individual as well as
the team level [2]. Involving students as subjects in experiments
(e.g., [3]) or using simulators for teaching are other alternatives
that allow students to experience or explore the effects of
software development techniques.

In the area of DSD, several efforts have been made to provide
realistic project environments for distributed student projects:

The Siemens Global Studio Project [4] was one of the first
projects that aimed at learning from the collaborative devel-
opment of student teams in a distributed project environment.
In contrast to the Software Factory, the focus of the Global
Studio Project was on conducting the project itself, whereas the
Software Factory focuses on the development environment and
the respective processes needed to operate the environment.
The Software Factory has shorter project cycles and faster
iterations than the Global Studio Project.

978-1-4673-6294-8/13

c� 2013 IEEE

CTGDSD 2013, San Francisco, CA, USA

Accepted for publication by IEEE.

c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14928678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The DOSE course [5] embeds a distributed project in an
overall course on teaching distributed development. Compared
to the Software Factory, DOSE puts less emphasis on the
laboratory setting but has a stronger focus on teaching specific
techniques, such as API design.

Several other approaches and frameworks for teaching DSD
via student project settings have been reported in the literature.
Damian, for instance, describes a framework that uses Scrum
practices to teach distributed development [6]. Fortaleza et
al. provide a comparison of 19 global software engineering
courses [7]. Student and teacher experiences with distributed
development courses have been reported in many different
ways (see, for instance, [8]). All these reports have influenced
the design of the Software Factory approach, as described
subsequently.

III. THE SOFTWARE FACTORY APPROACH

A Software Factory project is an advanced master’s-level
capstone project course at the Department of Computer Science,
University of Helsinki. Student participants work in the
Software Factory facility for an average of six hours per
working day, and can choose between four or five working
days per week. Projects last seven weeks and use agile software
development methodology to rapidly produce a functionally
complete software prototype in cooperation with an external
customer. Software Factory projects are conducted in a manner
that simulates, as closely as possible, the reality of software
development in new product development organizations. The
model is either a small software development company or a
division of a large corporation. Some projects, however, may
include continued development of existing software, and code
reuse, e.g., through open source components, is encouraged
where applicable. The projects are conducted in a laboratory
setting: a standardized but customizable development environ-
ment with a specified physical design (i.e., an interior design
pattern with specific furniture and equipment, and different
activity-related zones), a defined technical infrastructure, and
a comprehensive experimental infrastructure that includes
instrumentation for performing empirical studies.

From an educational perspective, the Software Factory
provides students with a realistic experience that serves to
integrate their previous theoretical and practical knowledge
with working life relevance in order to develop higher-
order skills. Students are expected to take responsibility for
the entire project, including project management, customer
communication, iterative requirements solicitation, continuous
development process improvement, and, naturally, the software
development itself. The approach also allows teachers to
supplement the Software Factory projects with other courses
on top of the Software Factory activities; examples include
courses on software project leadership, project management,
group dynamics, software architecture, and software processes,
as well as intensive courses on technical topics, such as version
control, programming languages, and testing.

While Software Factory projects include much of the
uncertainty and open-endedness of real software projects, an

Screening

Selection

Enrollment

Administrative

START

Fig. 1. Process for pre-project activities.

established driving process is always in place to provide a
frame within which the projects are conducted and learning
can occur. The process can be divided into pre-project, per-
project, and post-project stages. The different stages of this
process are described subsequently.

A. Pre-project Activities

The pre-project activities aim to reach a defined state in
which the project can be handed over to the implementation
team. The project’s prerequisites must be fulfilled, but only
to the extent necessary for the implementation team to take
over. In distributed projects, pre-project activities are especially
important. Once a project has started, it is often not feasible to
make major changes to schedules and allocation of personnel
resources. At the same time, the exact details often depend on
experiences gained during the start of the project. An overview
of the pre-project process is shown in Figure 1.

1) Project Screening and Selection: From the project
perspective, the most important pre-project activity is the
selection of a project idea and the initial work that prepares
the customer to interact with the implementation team. This
activity can be considered as a project portfolio management
task. Proposals may arrive through multiple means, including
direct contact with the Software Factory staff or through an
online project proposal form on the Software Factory web site1.
The first step is screening, where the minimum prerequisites
are evaluated and feedback is given directly to the potential
partner. This step is continuously carried out as proposals
arrive. Selection proceeds by considering project proposals that
have passed the screening stage. Here, the Software Factory
works much as a large software development organization:
projects are considered in terms of their feasibility, maturity,
and contribution to organizational goals, which in this case
stem from both educational and research needs. Proposals
are either accepted or postponed. In the case of acceptance,
the partner is asked to produce more detailed material to be
used as the first high-level requirements description. Postponed
projects are reconsidered for the following cycle, and the
partners may update or withdraw their proposals. A particular
challenge in this phase is how to screen project proposals where
customers are remotely located. The ability of the customer to
communicate in such an environment is of critical importance.

1http://www.softwarefactory.cc/

2



2) Enrollment: An enrollment stage is used to screen
students before admission. During this stage, minimum ad-
mission requirements are checked. Students are assessed so
that a selection can be made in case the number of eligible
applicants exceeds the project’s capacity. Another objective
of this assessment is to match the students’ skills to the
project’s known needs. Consequently, a skilled, motivated, and
competitive team of 5-15 students is formed. In some cases,
where multiple projects has been selected for simultaneous
implementation, students may be divided into multiple teams.

3) Administrative Issues: Once the team composition is
known, several administrative issues must be handled. These
vary for different universities, but may include things like
ordering keys for the Software Factory facility, setting up user
accounts for the technical infrastructure. In a global setting, this
phase is particularly challenging, with varying processes among
university IT departments. These departments are often not
prepared to provide services to parties outside their university.
Also, local policies may interfere, and student teams must
spend time on working around technical and policy issues.
A standardized lab environment overcomes many of these
problems as remote students and customers can be granted
access rights to the systems in a uniform way.

4) Start: Project Kickoff: We have developed specific project
kickoff activities for getting the project team up to the speed
and style of real-life software development. We emphasize
self-directed learning practices, which help students to realize
that they are expected to take initiative and engage in the
project. This requires changing the students’ mind-set away
from the familiar lecturing style, where the initiative is teacher-
driven and based on presentations and instructions. Rather, we
present the project as an open-ended learning problem where
the students must seek the information they need to solve the
problem and its parts. Understanding the problem itself and
evaluating the solution are parts of the goal. Another aim of
the kickoff is to direct the students’ attention to the needs of
the customer, and the customer’s attention to the students as
the primary point of contact for getting things done in the
project. This ensures that communication between the team
and the customer is direct, and that it is initiated spontaneously
when either party observes a need.

With multiple teams in different locations, there are a number
of options available for conducting the kickoff. In practice,
we have had the most positive experiences by arranging a
co-located event at the start of the project. This is also an
important lesson to learn: meeting in person can reduce the
barriers for continued communication online. When this is not
possible, teachers may want to carry out the activities using
online tools. In this case, it is important that each site has a
local instructor who facilitates communication and encourages
students to engage with their remote team mates and not only
with the co-located ones.

In practice, the exact implementation of the kickoff activity
can vary, but it always has the following three elements,
which are based on the Extreme Apprenticeship (XA) method
and its three stages of modeling, scaffolding, and fading [9].

Modeling is grounded in material that the customer brings
to the project. This includes verbal descriptions, diagrams,
written documents, and any other material that the customer
chooses. Administrative material provides the organizational
constraints for the project. The teacher provides the necessary
scaffolding by directing how the material is processed. The
activity proceeds from individuals to the whole group. Tasks
are given first to individuals or pairs, and then gradually, larger
subgroups work on larger parts of the problem space. Finally,
the team and customer representatives work as a single group
to define a first sketch of the whole project. The teacher’s
involvement decreases during the process. In the beginning,
explicit instructions are given. Gradually, the teacher fades

into the background until he or she only provides support
and instruction when asked. At the very end of the activity,
the teacher encourages the students to work in a similar way
throughout the project. The teacher also solidifies all of the
participants’ beliefs that they can reach a meaningful outcome
for the project. Perhaps most importantly, the teacher explicitly
transfers responsibility of the project to students and customer
representatives. The teacher then assumes a supporting role
and is available on demand, but can intervene if necessary.

Another common element is the use of agile software
development methodology, specifically, the so-called Scrumban
process [10], [11]. This process combines many of the Scrum
practices with the visual Kanban planning board. The use of
this method is gradually introduced, first through an example.
However, the value of this method for a project is only visible
once there are actual tasks to perform. The process is linked
to the previous exercise in order to introduce a systematic
element to the cycle of discovery, requirements specification,
implementation, and evaluation. In global projects, the physical
Kanban board can be replaced by online variants or omitted.
A local board may be used to facilitate local work, but some
additional effort is then required to synchronize information
to remote teams.

B. Per-project Activities

Since each project varies considerably in the project team,
customer, topic, and technology choices, the common per-
project activities are fairly general. We have found it beneficial
to maintain a regular cycle with weekly customer meetings
where the team demonstrates the current state of the software
and the customer gives direct feedback to steer the next cycle.
Online demonstrations should be well prepared. Screen sharing
or other technical means to give the customer an opportunity
to conduct interactive demonstrations.

In addition to weekly meetings, we follow the Scrum
practice of daily meetings. Team members shortly answer three
questions: 1) “What have you done since the last meeting?”
2) “What are you planning to do until the next meeting?” and
3) “Are there any obstacles preventing you from carrying out
your work?” However, we also acknowledge that for some
project stages and some kinds of tasks, daily reporting may
be too frequent, and in these cases, the meetings do not have
to follow this exact format as long as it fulfills the spirit of

3



efficient information-sharing. Special care should be taken
when holding weekly meetings online. Varying image and
audio quality may introduce communication overhead. In our
experience, successful online meetings require both a meeting
moderator who keeps the pace and structure of the meeting,
and on-site technical support to ensure that each participant
can hear and see each other. In many cases, it may prove more
effective to conduct such meetings over text chat. In any case,
our experience shows that a separate local meeting is often
needed to discuss more intricate details.

Finally, in order to provide the team with access to relevant
information, we invite the customer to be available frequently
for free-form discussions with the team. This must be balanced
with enough time for the team to focus on actual implemen-
tation. Through these interactions, the team can access the
customer directly for key decisions, and can learn the skill of
iteratively soliciting requirements. Encouraging the customer
to be available online regularly is a good way of enabling this
free-form communication.

C. Post-project Activities

Apart from administrative tasks, such as closing accounts,
returning room keys, and other such matters, what remains
from the educational perspective is to properly debrief project
participants in order to engage the whole group in reflection.
A summative assessment of the students is also performed.

The debriefing session is conducted differently depending on
the events during the project and its outcome. Generally, a good
approach is to analyze the project through a time-line, where
the students and customer representatives recall the phases
of the project chronologically. The teacher asks open-ended
questions to encourage the participants to reflect deeply on
causes and effects and different interpretations. As with the
daily meetings, we find that subtle, but important details may
be lost in online communication. Therefore, we always arrange
a local debriefing session for our students. Ideally, this event
would be co-located, but we have so far not explored this in
practice. Finally, summative assessment of experiential learning
is a challenge in itself, and is outside the scope of this paper.
We note that peer assessment can provide students with an
opportunity to reflect on their role in and performance on the
project.

IV. EXPERIENCE AND RESULTS

While there are several challenges involved in conducting
Software Factory projects, we find the overall results to be
encouraging. By employing a systematic driving process, we
have been able to reduce the administrative burden, and have
allowed the teachers to focus on the educational aspects of the
projects. In this section, we report on particular experiences
with specific projects.

A. Sustainability

One of the important aspects of an endeavor such as Software
Factory is sustainability. Our initial investment in properly
planning the overall setup and consulting with all relevant

stakeholders, including companies, students, and researchers,
helped us to develop a course that has minimal overhead and
maximum support from all stakeholders. A particular challenge
is how to sustain continued development. This requires strong
support from the department as well as funding for personnel
and equipment maintenance. We believe that our adaptive
approach has been a key factor in both gaining support and
utilizing existing funding effectively. Our results with making
the environment systematic without making it static show that
the financial requirements can be scaled up and down while
still keeping the educational value intact.

B. Globally Distributed Projects With Remote Teams, Cus-

tomers and Technology

We have worked with distributed partners including off-site
customers, development teams from other factory nodes, and
also distributed and remotely located technology infrastructure.
Software Factory has helped students and researchers under-
stand new levels of complexity in distribution – in relation to
people, technology and processes.

As an example we recently conducted a joint project between
Helsinki and Madrid teams (from Technical University of
Madrid and Indra Software labs) where the Helsinki team joined
an ongoing software product development project. Students
gained a unique experience of working with a completely
unknown team. They also developed hands-on experience on
how to deal with cloud infrastructure, both from a technical
perspective and an operational perspective: deciding on access
controls, and using a shared code base. Students also gained
experience with keeping to a development process. Just
deciding to use Kanban was not enough; students had to work
quite a lot to better understand, negotiate and fine-tune their
approach to task assignment, allocation and commitment.

From our experiences, we can identify a number of chal-
lenges with conducting distributed educational projects with
other universities. These often stem from the same underlying
reasons that make professional distributed projects difficult: dis-
tances in time, location, and culture. Complete synchronization
of teaching schedules is often impossible. We have attempted to
turn this into a learning experience: it is common for distributed
projects to have staged starts, with different locations starting
at different times. Another challenge is in student selection:
each university applies their own prerequisites and standards
in student selection, and therefore, there may be differing
levels of skill in the different locations. We have chosen to
accept this risk and attempt to mitigate it for our students
by keeping our own selection baseline high and including
handling the overhead of differing skills levels in the project
scope. Grading poses a final challenge to overcome, again with
different standards at different universities. We have chosen to
be inclusive in the grading, utilizing the perspective of several
project participants as material for grading.

C. Team and Student Considerations

Our projects have relied heavily on our approach to building
self-organized teams [12]. Being able to operate in such a team

4



is a learning goal in itself. Relying on self-directed students has
also helped us a great deal in coordinating the whole course
and keeping stakeholder communication efficient.

A large number of our master’s-level students have past in-
dustry work experience, which helps in conducting professional
software projects. We carefully match the students’ technical
skills and experience with the needs of the project.

D. Project Considerations

All projects in the Software Factory undergo the highly
iterative, Scrumban development process in a cross-functional,
self-organized team environment. We do not provide a project
manager for the students. Instead, as previously noted, the
teacher supervises the project, is available on demand, but
can intervene if needed. In addition, a resident coach actively
mentors the team and makes sure that the project lives up to its
expected outcomes for the customer. The coach also frequently
engages with the customers to help them interact with the team
and focus on the underlying reasons for their wishes and on
their choices regarding the next step towards the project goals.

We have to be quite selective regarding which ideas we work
on. We tend to select projects that add concrete value to the
customer’s offerings and try to avoid developing “unusable”
prototypes with dubious value. This also encourages our
customers to be quite active in their involvement during the
project. In our experience, close customer participation is a
critical success factor for producing a software product in
seven weeks with a newly composed software team. This is a
particular challenge when the customer is not collocated with
the team. Extra effort is needed to ensure that the customer
actively participates in the team’s work and provides the
feedback necessary for rapid prototyping.

E. Involving Students in Research

Several researchers have utilized the Software Factory
platform. Specific lines of inquiry have ranged from examining
sources of waste in Scrumban to psychometric analysis of
team behavior. We have found that these ongoing research
efforts are also interesting for student participants, as they are
keen to see results concerning their own projects. In some
cases, researchers have been able to provide the project with
empirically based real-time feedback on different aspects of
the project performance. Also, some students have utilized
the platform for empirical studies in their Master’s theses. We
believe there are many opportunities for teaching empirical
research skills in the context of the Software Factory.

V. NEXT STEPS

There are several ongoing developments to evolve the
Software Factory concept. One is to use cloud services for
development, management, and coordination of the projects.
This concept is referred to as the “Cloud Software Factory”
and has been partly implemented in Helsinki.

Several organizations have networked and already established
or are establishing Software Factories. Current sites are in
Helsinki, Oulu, and Joensuu (Finland), Bolzano (Italy), and

two in Madrid (Spain). Sites are planned in Ostrava (Czech
Republic) and Novi Sad (Serbia). There are also prospects
for sites in China, and collaboration with other European and
North American universities.

A future direction is to integrate empirical studies more
systematically into Software Factory projects. The relatively
short setup times for projects in the Software Factory currently
make the planning of accompanying empirical studies difficult.
However, several longitudinal studies are currently being
conducted that are less sensitive to individual project schedules.

Finally, customers could be involved in a wider sense.
Software Factory can serve to support experimentation with
customer value. During the course of a project, prototypes
(minimally viable products) would be developed and used by
the customer to directly test value with end users. Based on
experimental results, development goals might be adjusted.

REFERENCES

[1] P. Abrahamsson, P. Kettunen, and F. Fagerholm, “The set-up of a software
engineering research infrastructure of the 2010s,” in Proceedings of the

11th International Conference on Product Focused Software. New York,
NY, USA: ACM, 2010, pp. 112–114.

[2] D. Rombach, J. Münch, A. Ocampo, W. S. Humphrey, and D. Burton,
“Teaching disciplined software development,” Journal of Systems and

Software, vol. 81, no. 5, pp. 747–763, 2008.
[3] M. Kuhrmann, D. Méndez Fernández, and J. Münch, “Teaching Software

Process Modeling,” in Proceedings of the 35th International Conference

on Software Engineering (ICSE), 2013.
[4] N. Mullick, M. Bass, Z. El Houda, D. Paulish, M. Cataldo, J. Herbsleb,

K. Bass, and R. Sangwan, “Siemens Global Studio Project: Experiences
Adopting an Integrated GSD Infrastructure,” in Proceedings of the

International Conference on Global Software Engineering, ICGSE, 2006,
pp. 203–212.

[5] M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto, G. Tamburrelli, J. Tschan-
nen, N. Aguirre, and V. Kulkarni, “Teaching software engineering
using globally distributed projects: the DOSE course,” in Collaborative

Teaching of Globally Distributed Software Development-Community

Building Workshop (CTGDSD), 2011.
[6] D. Damian, C. Lassenius, M. Paasivaara, A. Borici, and A. Schroter,

“Teaching a globally distributed project course using Scrum practices,”
in Collaborative Teaching of Globally Distributed Software Development

Workshop (CTGDSD), 2012, pp. 30–34.
[7] L. Fortaleza, T. Conte, S. Marczak, and R. Prikladnicki, “Towards a GSE

international teaching network: Mapping Global Software Engineering
courses,” in Collaborative Teaching of Globally Distributed Software

Development Workshop (CTGDSD), 2012, pp. 1–5.
[8] J. Feljan, I. Crnkovic, I. Bosnic, M. Orlic, and M. Zagar, “Distributed

Software Development course: Students’ and teachers’ perspectives,” in
Collaborative Teaching of Globally Distributed Software Development

Workshop (CTGDSD), 2012, pp. 16–20.
[9] A. Vihavainen, M. Paksula, M. Luukkainen, and J. Kurhila, “Extreme

apprenticeship method: key practices and upward scalability,” in Proceed-

ings of the 16th Annual Joint Conference on Innovation and Technology

in Computer Science Education. New York, NY, USA: ACM, 2011,
pp. 273–277.

[10] M. Ikonen, E. Pirinen, F. Fagerholm, P. Kettunen, and P. Abrahamsson,
“On the Impact of Kanban on Software Project Work: An Empirical
Case Study Investigation,” in 16th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS), 2011, pp. 305–
314.

[11] H. Kniberg and M. Skarin, Kanban and Scrum: making the most of both.
USA: C4Media Inc, 2010.

[12] H. Karhatsu, M. Ikonen, P. Kettunen, F. Fagerholm, and P. Abrahamsson,
“Building blocks for self-organizing software development teams: A
framework model and empirical pilot study,” in 2nd International

Conference on Software Technology and Engineering (ICSTE), vol. 1,
2010, pp. V1–297–V1–304.

5


