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Abstract

A knowledge base is considered a system that is told information about
an external world and that answers questions about this world. Our goal
here is to outline knowledge bases that involve both knowledge and beliefs.
In previous studies, various kinds of belief change have been studied in
isolation, but we want to tie them together. We aim at knowledge bases
that could carry the epistemic states of agents, that is, the knowledge and
the beliefs that an agent has at any one moment in time.

The difference between knowledge and belief is that while knowledge
increases monotonically with time, beliefs may at some later point in time
turn out to be false. Beliefs may change for various reasons: in belief
revision, beliefs are changed when receiving new information about a
world that has not changed, while in belief update a change in the world
is to be recorded. Different types of change call for different treatments.
In belief-change studies, various change types have been characterized by
rationality criteria set on each type. The main principles in these criteria
are maintaining consistency of beliefs and minimality of change.

When dealing with belief change, our approach is to take knowledge as
an integrity constraint that should always hold, and we describe how
the rationality criteria should be modified accordingly. In our refined
rationality criteria, beliefs that are inconsistent with the knowledge of the
knowledge base will never be allowed to enter into the knowledge base.
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In the rationality criteria, a common assumption is that the most recent
information is the most reliable, and it has therefore been prioritized over
the old beliefs. However, this may not be the case in all circumstances.
In order to complete the collection of belief-change types, we propose a
new, commutative type of change for entering competing evidence into
the knowledge base.

The representation theorems that have been given for belief revision in-
dicate that belief revision involves an ordering of disbelief on possible
alternative situations, or equivalently, an epistemic entrenchment on log-
ical formulas. A formula less entrenched is more easily given up when
eliminating inconsistancies. In view of the changes in the rationality crite-
ria, we also refine the representation theorems.

We introduce two finite representations for knowledge bases, one with a
finite ordered set of propositional formulas that are satisfiable but pairwise
inconsistent with each other, and the other with a finite list of pairwise in-
consistent propositional formulas. Both representations involve dynamic
orderings of disbelief that have arisen out of the previous change opera-
tions.

We show that for the knowledge base to satisfy the rationality criteria given
for belief revision, the dynamic ordering of disbelief in the knowledge base
is vital. The representations and the operators that we introduce in this
thesis demonstrate how this ordering of disbelief could be dealt with in
various operations.

Computing Reviews (1998) Categories and Subject
Descriptors:

1.2.3 Deduction and Theorem Proving

1.2.4 Knowledge Representation Formalisms and Methods

General Terms:
theory

Additional Key Words and Phrases:
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Chapter 1

Introduction

A knowledge base can be viewed as an object that is given information about
an external world and that answers queries about that world. The problem
is that some of the information may later turn out to be false. Such pieces
of information are actually called beliefs, not knowledge [Hin62, chapter 2].

If one wants to accept a new piece of information that is inconsistent
with the old beliefs, some of the old beliefs ought to be given up in order
to maintain consistency of beliefs. Furthermore, one may have different
choices for performing the removal, in other words the change may be
ambiguous [FUV83]. Let us exemplify these problems in a context, where
a collection of logical formulas represents the set of beliefs.

Example 1.1. Let T denote a set of formulas T = {a, b,a Ab — c}. The
propositional formula c is logically entailed by T, thus adding the formula
—c to T makes the set of formulas inconsistent. How should one remove
from T the formula ¢, which is not one of the formulas in T, but can be
derived from them, that is, the formula is contained in the closure of T?
Removing any of the formulas from T results in removing the formula c
from the closure. Thus each of thesets T; = {a, b}, T, = {a, aAb — ¢}, and
T3 ={b, a A b — c}is a candidate for the result of the removal.

Beliefs may change for various reasons, and different types of input
[AbGS85] call for different treatments [KeW85]. When new information is
obtained about a static world, the beliefs are revised. When a change in the
external world is to be recorded, the beliefs are updated. Let us exemplify
the difference.

Example 1.2. Imagine you are walking in a park. There are two kiosks in
the park, say A and B. When you come across a person eating ice cream,
you then believe that at least one of the kiosks is open. Your information

1



2 1 INTRODUCTION

is incomplete and that is why you consider three alternatives as plausible:
both the kiosks are open, only A is open, or only B is open. When you
arrive at kiosk A and learn that it has been closed all day, you revise your
beliefs. You discard the two alternatives having kiosk A open. In the only
alternative left, kiosk B is open, thus you now believe that kiosk B is open.

Had you found out that kiosk A was closed just a moment ago, you
would have updated your beliefs. Then you would have considered chang-
ing each of the alternatives separately. If both kiosks were open, then B
would still be open, otherwise both kiosks would be closed. After the
update you would have believed that kiosk A was closed, but you would
have had no information about whether kiosk B is open or not!.

Belief change has been studied in database theory [FUV83], in phi-
losophy [AGMS85], and in artificial intelligence [McC87]. In databases,
view updates cause problems in choosing an unambiguous operation that,
when applied to the underlying relations, produces the desired change in
the view [BaS81]. Other problems are the validation of integrity constraints
[ToA91] and updating incomplete information [Gra91b].

Belief change is an essential component in many applications in artifi-
cial intelligence. One is problem-solving agents, which reason and modify
their beliefs as a result of messages sent by their perceptors or other agents.
Another application is detecting errors in a system, whose behaviour is in-
consistent with its specification. The theory then contains the specification
and the observations of the system behaviour. The goal is to find out
which are the components responsible for the misbehaviour of the system
[Rei87]. An early application of theory change was Doyle’s Truth Mainte-
nance System (TMS) [Doy79], a problem solving subsystem in the field of
design.

Hypothetical “what if” queries are practical in many applications in
artificial intelligence [Gin86]. Conditionals formalize hypothetic reason-
ing. The truth value of a conditional “if A then B” can be determined by
the Ramsey test: “if A then B” is true in a knowledge base T, if and only
if inserting A into T results in a knowledge base in which B is believed
[Lew?73].

The philosophers Alchourrén, Gardenfors, and Makinson [AGMS85]
have proposed a set of rationality criteria for belief revision; these crite-
ria are known as the AGM-postulates. Every belief-revision operator that
satisfies the AGM-postulates is associated with an ordering, called epis-
temic entrenchment, upon the beliefs [GAMS88]. A belief more entrenched is

'We do not always know whether there is a change in the world or not. In our example
that could be the situation, if there were no opening hours at hand.



less willingly given up. An additional set of postulates for belief revision
[DaP94, DaP97] has been proposed in order to rule out operators that give
unintuitive results in iterated revisions. Belief update [KaM91a] has its
own, slightly different set of postulates. The main principles in these sets
of postulates are maintaining consistency of the beliefs and minimality of
change.

The original AGM-postulates involve revising closed sets of formulas in
an arbitrary language with few restrictions. The language may or may not
contain conditionals. However, if the language contains both conditionals
and a revision operator that satisfies the AGM-postulates, then using the
operator in the Ramsey test results in triviality of the logic [Gdr88, chapter
7], that is, it is impossible to have three satisfiable formulas such that their
pairwise conjunctions are unsatisfiable.

The AGM-postulates consider the input as the most recent and the
most reliable piece of information. As such, the input is always accepted.
This type of belief revision is called prioritized belief revision. However,
the knowledge base may have some information that it will refuse to give
up at any situation. In computer science this information might be called
integrity constraints, in philosophy knowledge [Hin62]. In belief revision
literature the term core beliefs has also been used [Han99]. Because of
these core beliefs or knowledge, the input could sometimes be rejected
[Mak97]. This framework is called non-prioritized belief revision (see [Han99]
for a survey). In this study the term knowledge is used for irrefusable
information.

Let us now turn to the major three questions that motivated this thesis.
First of all, the earliest formulation of the postulates for iterated belief revi-
sion [DaP94] assumed that knowledge bases could be represented by single
propositional formulas. This assumption caused the AGM-postulates and
the postulates for iterated belief revision to be inconsistent with each other
[FrL94, Elo95, Elo97] and resulted in triviality of logic. The problem has
been fixed [DaP97] since then, but we will discuss it and show that ruling
out contradictive input is not enough to make the early formulations of
the postulates consistent.

The second question pertains to the AGM-postulates accepting beliefs
known to be false, or even self-contradictory beliefs. Should not knowl-
edge affect belief change? In this thesis, the postulates are refined to reject
beliefs known to be false.

The third question is due to belief revision and update having been

discussed in isolation. What if we had a series of changes including both
revisions and updates? What is the effect of an update on the epistemic



4 1 INTRODUCTION

entrenchment in a knowledge base? We propose update operators that
deal with the epistemic entrenchment.

In this thesis, the knowledge base is considered as a component of an
independent agent recording the epistemic state of the agent, which [G&r88,
chapter 1] contains the beliefs (and knowledge) of the agent at any one
moment. The knowledge base itself has no intentionality. The knowledge
base is told propositional formulas; we will leave the classification of the
input to the agent as well as the communication with other agents.

Our goal is to define an abstract data type called “knowledge base”.
Our contribution includes

e modifications to the rationality criteria for belief and knowledge
change, including a new type of commutative change called “com-
peting evidence”,

e new representations of knowledge bases along with their change
operators, and

e refined representation theorems for belief revision, knowledge ex-
pansion, and belief update.

The rest of the thesis is organized as follows. In the preliminaries
in Chapter 2, our assumptions on the knowledge base are fixed. These
hypotheses allow both belief and knowledge change, revision and update,
finite and infinite languages.

In Chapter 3, various belief-change policies are reviewed. In Chapter 4
we review the rationality criteria proposed for belief change and discuss
the first one of the motivating questions, how to avoid the inconsistency
between the AGM-postulates and the postulates for iterated belief revision.

In Chapter 5 the second one of the motivating questions is addressed
and the rationality criteria for belief change are refined to include the
effect of knowledge on belief change. The classification of change is also
discussed and a new, commutative type of commutative belief change is
proposed.

In Chapter 6 we will address the third question and propose two imple-
mentations of the knowledge base: two different sets of change operators
along with suitable finite representations of knowledge bases. These sets
of operators cover various change types and they satisfy our rationality
criteria for the change types in question.

In Chapter 7 refined representation theorems for belief revision and
knowledge change are proved. The epistemic entrenchment is consid-
ered as part of the knowledge base, and the finiteness of the ordering is
analyzed.



In Chapter 8 we will prove our refined representation theorem for belief
update. In the final chapter, Chapter 9, a conclusion of the thesis is given
along with some directions for further work.
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Chapter 2

Preliminaries

We will start this chapter by recalling propositional logic and its set seman-
tics. We will then recall our definition of the knowledge base as an object
that the agent can use to record its epistemic state. We will next shortly
review epistemic states and classify their change operators. At the end of
the chapter we shall sum up our assumptions.

2.1 Propositional logics

Let us first recall propositional logic. Propositional formulas are built of
atomic formulas using connectives = (not), Vv (or), A (and), — (material
implication), and < (equivalence). No assumptions are made about the
atomic formulas. Propositional symbols are abstractions of atomic formulas.

The meaning of the formulas can be provided by fixing a context in
which each atomic formula can be interpreted as true or false. Such con-
texts are called interpretations. The partition of the atomic formulas into
true formulas and false formulas is called a truth distribution. Formally,
a truth distribution v is a function that maps every propositional symbol to
a truth value ¢ (true) or f (false). In propositional logic it is sufficient to
consider truth distributions instead of interpretations. We use the symbol
1 as a constant in the language to denote a contradiction, a formula that is
not true in any truth distribution, and the symbol T to denote a tautology,
a formula that is true in every truth distribution.

If a formula A is valued true in a truth distribution assigned by an
interpretation w, we say that w is a model of A, w = A. Given a set of
formulas S, then w = S, if and only if w = A forall A € S. A formula A is
logically entailed by a set of formulas S, S A, if and only if for every truth
distribution w such that w E S holds, also w | A holds.

7



8 2 PRELIMINARIES

In a propositional deduction system a formula A is a consequence of
a set of formulas S, denoted by S + A, if and only if it can be deduced
from S using the axioms and the rules of the system. Axioms are theory-
independent, universally true formulas. An example of a rule is modus
ponens. Modus ponens states that, given formulas A and A — B, we can
deduce the formula B. Propositional deduction systems are sound, that is,
S + A implies S | A, and complete, that is, S E A implies S + A [RyS92].
The closure of a set S, denoted Cn(S), is defined Cn(S) = {A € L| S+ A}
A set S is called closed, if S = Cn(S), otherwise it is called open.

2.2 Model set semantics

Given a propositional language, let us construct model set semantics for
the language.

Let L denote a propositional language, and let Voc(£) denote the set
of all the atomic propositional formulas of £. We say that the language
is infinite, if the set Voc(L) is infinite. We construct a set of all truth
distributions for Las W = P(Voc(L)), the power set of Voc(L). The elements
in W can be taken as interpretations by defining for each p € Voc(£) and
w € W, w E pif and only if p € w. Thus the power set W has one element
for each possible truth distribution of the language L. Given the set of all
logically possible models W, the elements of the power set P(W) are called
propositions.

In model set semantics the meaning of each formula is identified by a
corresponding proposition. We may define for all atomic formulas p € P

[pll = {we Wlpew},
and for all nonatomic formulas A, B € L [Gar88, chapter 2],

[-Al = W\ AL

[A A Bl = [Al N [BI,

[A v Bl = [A] U [BI,

[A — Bl = (W\[A]) VU [BI,
[Th=w,

[L] =0.

Then forall A € Land w € W, w E A if and only if w € [[A]. Thus
A E B if and only if [A] € [B]. If [A]l = W, then A is a tautology. If
[A] = 0, then A is a contradiction.

For any (possibly infinite) set of formulas S, the model set of S can be
defined [S] = M{[A] | A € S}. Thus [S]] maps the theory to an element in



2.3 The concept of the knowledge base 9

the power set P(W). A formula B is then entailed by S, that is, S | B, if
and only if [S] C [B].

Example 2.1. Let us formalize our kiosk example. Let a denote an ab-
straction of the sentence “kiosk A is open”, and let b denote an ab-
straction of the sentence “kiosk B is open”. Let T = {a V b, —a} be our
theory. If a and b are the atomic formulas in the language, then W =
P(a,b) = {0,{b},{a}, {a,b}}. Let wy, wr,w,, and w3 denote the sets accord-
ingly. Thus [[a]] = {w,, ws} and [[b]] = {w1, ws}. The set [T]] can be calculated
[T1 = [avbln-al = (TalVIbD)N(W\all) = {w1, w2, ws} N {wo, w1} = {w1}.
Because [T] = {w1} C {wy, w3} = [b]l, T E b holds.

Let W denote the set of all logically possible models. The members of
the power set P(W) are called propositions. A complete field of propositions is
a non-empty set of subsets of W closed under complementation and arbi-
trary union and intersection [Spo88]. Let # denote a field of propositions.
A proposition is an atom of ¥, if it is a minimal nonempty element of 7.
Formally, X is an atom of ¥, if and only if X € ¥, X # 0, and there is no
YeF withdcYcX

Example 2.2. Let us consider a language Lp with P = {g,b}, and let W =
P(a,b) denote the set of all logically possible models. We write W =
{wo, wy, wy, w3}, where wy = 0, wy = {b}, wr = {a}, and w3 = {a, b}. The set
P(W) itself is one example of a proposition field, another example of a field
of propositions is its subset 1 = {0, {wo, w1}, {wo, w3}, {wp, w1, wo, w3}}. The
atoms of 7 are propositions {wg, w1} and {w>, w3}, the atoms of P(W) are
propositions {wo}, {w1}, {wz} and {ws}.

Let n = |Voc(£)| denote the cardinality of the set of the atomic formulas
in the language. Then the cardinality |W| = 2", and |P(W)| = 22" Note
that if n is infinite, then none of the elements in W can be addressed by the
language. However, we can address some of the elements in P(W).

2.3 The concept of the knowledge base

Recall that we will consider the knowledge base as an object that is given
information about the external world and that answers queries about that
world. We do not consider knowledge base as an autonomous agent.
Instead, the knowledge base is taken as an object that the agent can use to
record its epistemic state.

When communicating with the knowledge base, various methods can
be used. The methods of the object include accessories to answer questions
as well as methods to change the epistemic state.
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The knowledge base is given information using propositional formulas.
Itis the agent that performs the classification of a change required and then
selects the appropriate method to perform the change. The methods used
to change the epistemic state are hereafter called operators.

Because the knowledge base is an object, its implementation is hidden.
It can be accessed only by using its methods.

2.4 Epistemic states

According to Gardenfors [Gar88, chapter 1], the epistemic state contains
pieces of information, called epistemic elements. Each element is associ-
ated with an epistemic attitude that expresses how reliable that particular
piece of information is considered to be.

There are two paradigms for representing epistemic states [HaV91].
When the epistemic state of an agent is a collection of logicals formulas, a
fact is considered to be known by the agent, if it can be proved using the
formulas. The problems encountered in this case are the representation of
the knowledge in an applicable language and theorem proving. Another
way is to represent the epistemic state by some information structure that
represents some semantical model. In this paradigm theorem proving is
replaced by verifying the truth of the formula in the model [HaV91].

Example 2.3. Let us consider again our kiosk example T = {a V b, —a} with
a denoting the sentence “kiosk A is open”, and b denoting the sentence
“kiosk B is open”. Then by using the resolution rule, we can derive b from
the two formulas in T.

When the information in an epistemic state is incomplete, several states
of affairs are considered possible. In the case of knowledge, these alterna-
tives are called epistemic alternatives, in the case of beliefs, doxastic alterna-
tives [Hin62, chapter 3].

Let X denote a subset of the set of all logically possible alternatives
(models) W. We say that X is the set of possible models, if it is the smallest
subset of W that is known to contain the true situation of the external
world, that is, it is the set of the epistemic alternatives. We say that a set Y
is the set of the most plausible models, if it is the smallest subset of W that is
believed to contain the true situation of the external world, that is, it is the
set of the doxastic alternatives of the knowledge base.

Example 2.4. Let us recall our kiosk example 2.1 with T = {a vV b, —a},
W = P(a,b) = {0,{b}, {a}, {a, b}, and [T] = {{b}}. Because no knowledge is
involved here, all the logically possible models are epistemic alternatives,
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thus the set W equals the set of possible models. There is only one doxastic
alternative, {b}, thus the beliefs are complete.

In an epistemic state, a formula is known, if and only if it is true in all the
epistemic alternatives of the state, and believed, if and only if it is true in all of
the doxastic alternatives of the state. A formula is considered possible, if and
only if it is true in at least one of the epistemic alternatives, and compatible,
if and only if it is true in at least one of the doxastic alternatives. If the
information in an epistemic state is incomplete, a propositional formula,
say A, is either considered true, or its negation —A is considered true, or
neither of the two formulas is considered true.

A knowledge base is called competent, if it is logically omniscient
[Lev84]. Full logical omniscience means that knowledge is closed under log-
ical entailment and full logical omnibelievance means that beliefs are closed
under logical entailment. In the presence of logical omniscience, a propo-
sitional formula A is not known, if and only if its negation —A is considered
possible, that is, consistent with the knowledge of the knowledge base. In
the presence of logical omnibelievance, a formula is not believed if and
only if its negation is considered compatible [Hin62, chapter 3], that is,
consistent with the beliefs of the knowledge base. It is reasonable to as-
sume that the knowledge base is competent, because the AGM-postulates
explicitly insist on having full logical omnibelievance anyway.

Given a knowledge base T, we will usually use Tk to denote the col-
lection of all propositional formulas known in T and Tg to denote the
collection of all propositional formulas believed in T at any one moment.
Thus we assume that that these set are closed, that is, cn(Tx) = Tk and
cn(Tg) = T. The set Tk is called the knowledge set of the knowledge base T,
and T3 is called the belief set of the knowledge base T. Because according to
Hintikka [Hin62, chapter 3] one believes what one knows, we will assume
that Tx € Tp, thatis, [Tg]l € [Tx]. We will later make this assumption a
static constraint on epistemic states.

2.5 Types of epistemic change

When an epistemic input is received, it is first classified.

For those cases in which new information is received about a static
world, Alchurrén, Gardenfors and Makinson [AGMS85] have named three
types of change: expansion, revision, and contraction. An expansion is a
monotonic, consistent insertion to a theory. A revision is an insertion of
a formula to a theory inconsistent with the formula, with the result of a
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consistent theory. A contraction is a retraction of a formula from the closure
of the theory.

For those cases in which a change in the world is to be recorded, two
types of change have been named [KaM91a]: an update is an insertion of
a formula to a theory, and an erasure is a deletion of a formula from the
closure of the theory.

We will reserve the term expansion for knowledge expansion, because it
is knowledge that (due to its definition) increases monotonously. We will
consider belief revision, contraction, update, and erasure as mentioned
above, but we will also consider a new type of belief revision, namely
competing evidence, which is non-prioritized, commutative belief revision.
We will introduce competing evidence in detail later.

2.6 Conditionals

Although we do not consider learning conditional formulas, we may have
conditionals in epistemic states, and maybe even accessories for quering
them. The truth values of conditional formulas are determined by the
Ramsey test. A conditional “if A, then B is true in an epistemic state T, if
inserting A to T results in an epistemic state T, in which B is believed.

Those conditionals whose semantics is tied to a revision operator in
the Ramsey test will here be called doxastic conditionals. An example of a
doxastic conditional might be “if I were to believe that John didn’t break
the window, I would believe that Mary did”.

In counterfactuals the change takes place in the external world. A coun-
terfactual is a conditional “would B be true, if A were true” in a situation
where A is false. The sentence “if I had a pair of oars, I could cross the
river” in a situation where one has a boat but no oars at hand exempli-
fies a counterfactual [Gra9la]. Counterfactuals should be evaluated by
using update operators in the Ramsey test, therefore the triviality result
by Gdrdenfors cannot be applied to counterfactuals [Gra91a]. Counterfac-
tuals say “should the world change”; doxastic conditionals say “should
the beliefs change”. In doxastic conditionals the change takes place at the
epistemic level.

2.7 Summary of the assumptions on the knowledge
base

We will sum up our assumptions about the knowledge base as follows:
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1.

Aknowledgebase is considered as an object that is given information
about an external world and that answers queries about that world.
The knowledge base is a component of an agent, containing the
epistemic state of the agent along with a collection of methods to
change and access the state.

The knowledge base that is told propositional formulas; the set of
the atomic formulas in the language may be infinite.

The knowledge base is competent but possibly incomplete and inac-
curate.

. There may be several tellers, some with, some without complete

information about the world. The agent chooses one out of several
various operators to change the epistemic state of the knowledge
base.

There is no initial knowledge or belief about the external world, or
about what the knowledge base will be told.

The external world may change at any moment without the knowl-
edge base noticing it.

The epistemic state of the knowledge base depends only on the series
of propositional formulas told to the base and the operators used
when doing so. The epistemic state of the knowledge base does not
change by itself as time passes or when changes take place in the
external world. The epistemic state of the knowledge base changes
only when the knowledge base is told something.

What is known in the epistemic state is believed in the epistemic
state.

Because the series of formulas told to the knowledge base is finite,
there is a point of time, when the knowledge base receives its first piece of
information. We will use 7 to denote the epistemic state of the knowledge
base before that moment. Then due to our assumptions, we then have
TK=ETB=T.
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Chapter 3

Examples of belief-change policies

In this chapter we shall review some examples of belief-change policies
and belief-change operators. The operators involve only belief change,
no knowledge is involved in these considerations. The main principles
is these operators are maintaining consistency of beliefs and minimality
of change. They are all examples of prioritized belief change, that is, the
input is always prioritized over the old beliefs.

All the operators try to minimize the change in the epistemic state,
but there are various policies as to what exactly is being minimized: the
change in the set of formulas describing the world, the change in the set of
doxastic alternatives, or the change in the epistemic entrenchment.

When trying to change the original theory as little as possible,
syntactically-oriented operators minimize the change in the set of formu-
las, that is, in the description of the world. More semantical versions of
these policies concern changing deductively closed sets of formulas, closed
theories. Semantically-oriented operators minimize the change in the models
of the theory. Some operators work on epistemic states with orderings
or gradings of possible models and produce a new ordering or grading
as a result of change. We will call such operators ordering-oriented and
grading-oriented operators, correspondingly.

3.1 Syntactically-oriented belief-revision policies

Let us consider syntactically-oriented operators working on epistemic
states represented by open sets of propositional formulas, that is, the sets
of formulas that need not contain all formulas logically entailed by them.
A formula is then believed, if it is logically entailed by the set of formu-
las, that is, given an epistemic state T, we have Tg = cn(T). The state is

15
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inconsistent, if the set of formulas is inconsistent.

Given a consistent (open) set of formulas, a theory T, and a satisfiable
and nontautological formula A, a theory S accomplishes the addition of A
toT,if A € S, and it accomplishes the deletion of the formula A from the
theory T, if S £ A. A theory accomplishes the addition or the deletion of a
formula minimally, if there is no theory, which accomplishes it with fewer
changes. If T U {A} is consistent, then it accomplishes the addition of A and
is a solution. If T }£ A, then T need not be changed when deleting A.

There may be several theories that minimally accomplish an addition
or a deletion. If T | A, then the minimal solutions to contracting T with
A can be found among the theories that have been contracted with one
formula from each proof of A. Let us define

TI|A={BCT|BlFAandforall CCT,if BcC C,then C | A}.

The set T | A consists of those maximal subsets of T that do not entail A.
Each of these is a solution to contracting the formula A from the theory
T. If A is not a tautology, then the set T | A is nonempty. The minimal
solutions to adding a satisfiable formula A to T can be found among the
theories {SU{A} |S e T | -A}

There are various ways to deal with the ambiquity of having several
minimal solutions. Disjunctive and intersective methods produce a new
theory out of alternative solutions, while flock policy keeps all the alter-
natives separate. One policy uses priorization of formulas as a basis of
selection.

Let Sy1,..., S, be the theories that minimally accomplish an addition to
a theory T or a deletion from a theory T. We then believe that the real
world is represented by one of the truth distributions in the set [J!; [S:].
Thus a theory T’ is a result of the addition, if [T'] = U/, [S:] [FUV83].
This property can be achieved by using the disjuction of the alternative
theories [FUV83]. The disjunction of a finite set of theories Sy,...,S, is
defined [FUV83] /1L, S; = {s1 V... Vs, | s; € S;, 1 < i < n}. In the disjunctive
method the result of contracting A from T, T e; A, and the result of revising
Tby A, T o5 A could be defined

Te;A=\(T|A),
TosA=\{SUIA}|SeT ]| -Al.

The method produces theories with long formulas hard to handle. The
proposal is not meant to be a practical solution, but a solution with the
ideal model set.

A conservative way to solve the problem of ambiquity is to define the
result to be the intersection of the alternatives [Gin86, Rei87], that is
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Te. A=(\T]A),
To.A=(SU{A}|SeT | -Al

Intersection of theories loses all information that is not certain. Such an
operator may be suited for some applications, such as diagnosis [Rei87].

The idea of a flock of theories is to keep all the alternatives separate, so
that the result of an addition or a deletion is the set of all the alternatives
[Fag86]. In a singleton flock, after an addition or a deletion the model set
is the same as that in a disjunctive method [Fag86]. The model sets may,
however, differ in the long run as shown in the following example.

Example 3.1. [Fag86] Let us delete from the theory {a, b} the formulaa A b,
which is in the closure of the theory. Both theories {a} and {b} accomplish
the deletion with minimal changes. The intersection of these is an empty
theory, whereas the disjunctive method produces the theory {a Vv b}. If the
formula a A b is deleted from a flock {{a, b}}, the new flock is {{a}, {b}}. If we
delete from the flock {{a}, {b}} first the formula a2 and then the formula b, we
get the flock {{}}. We then believe nothing but tautologies. Deleting first
the formula a and then the formula b does not change the theory {a V b}.

Fagin, Ullman, and Vardi [FUV83] have considered representing the
beliefs in a knowledge base by a set of priorized formulas. Each formula
is assigned a rank. The rank zero is reserved for the integrity constraints.
Alternative solutions that change formulas of higher priority are not con-
sidered minimal. In the proposal the priorization of formulas is static and
is left to the knowledge base administrator.

Example 3.2. Let T = {(0,a Ab — ¢),(1,b),(2,a)}. The formula c is deleted
from the theory. The new theoryis T’ = {(0,a A b — ¢), (1, b)}.

Then even though priorization cuts off some alternatives, it does not
completely solve the problem of ambiquity. We will later consider dynamic
priorization.

Filosofers [AGMS85] have considered revising deductively closed sets
of formulas, that is, given a theory T, we have T = cn(T) = Tg. The theory
may be inconsistent. There is only one inconsistent belief set: it contains
all formulas of the language.

Let T o A denote the contraction of a theory T with a propositional
formula A. Alchurrén, Giardenfors and Makinson [AGMS85] characterize
contraction operators e as follows:

[N LAY, TLA%0
T'A‘{T, ifT1A=0,
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where g is a selection function that selects only the most ‘important” theo-
ries from the set T | A. In full-meet contraction all the theories of the set are
chosen, in maxichoice only one of them, otherwise we have a partial-meet
contraction determined by g.

In closed theories, all information has been made explicit. Then partial-
meet contraction is necessary, otherwise A € T would imply To A =
Cn({A}). Thus the original theory would be lost completely. This defect
is known as the full meet contraction symptom [AGM85, FUV83]. Maxi-
choice has also its drawbacks. If we had a maxichoice operator, then
revising a theory by a formula that is inconsistent with it always results in
a complete theory [AGMS5].

Example 3.3. Consider a theory T = Cn({a,b}), where a and b are not
tautologies, and full-meet contraction. Contracting the formula b from the
theory gives a theory Cn(0), that is, a is lost. The reason for this is that T
includes the formula —a Vv b that is in the closure of b. The formula together
with a implies b. Thus the set T | b includes one theory with the formula a
but without the formula —a Vv b, and another theory with —a v b but without
a. Thus a is not included in the intersection of the theories.

3.2 Semantically-oriented belief-revision policies

The semantically-oriented operators assume that the beliefs in the epis-
temic state can be represented by a propositional formula. The opera-
tors search for a new belief set whose models are those models of the
new formula that are ‘closest” to the models of the old belief set. The
semantically-oriented operators we shall consider have been defined in
various languages and environments, but we shall consider them in clas-
sical propositional logic.

Let T denote the propositional formula representing the belief set of
the epistemic state. Given the set of all logically possible models W, let
[T] € W denote the models of T, that is, the set of the most plausible
models. For each logically possible model w and w’, we define the difference
w A w as the set of the atomic formulas having a different truth value in
w and w’, thatis w A w’ = (w\ w’) U (w’ \ w). These sets are compared
either by using the subset relation or the cardinalities of the sets. In the first
case the difference w A wy is strictly smaller than the difference w A wy, if
w Aw; C w Awy. In the second case the difference w A wy is strictly smaller
than the difference w A wy, if |[w A w1| < |w A ws|, that is, if the set w A wq has
less elements than the set w A w».
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Let us review some definitions for minimal difference. Within a set
X C Y, an element x is minimal according to the ordering <on Y, if x € X
and there is no x’ € X such that ¥’ < x. We define

min(X,<)={xe X| forallx’ € X, x’ £ x}.

Let A and T denote propositional formulas and let w and w’ denote
logically possible models. The following denotations will be used later on
to find the "closest” models of A:

dif(T,A) = min(
dist(T, A) min(
p-diff(w, A) = min(
p-dist(w, A) = min(

waw we[T],w €[Al}, 9),
lwaw|:we[T],w €[A]}, =),
waw :w €[A]},Q),
lw A w|:w €A} <).

—_—— —— ——

When determining the minimal difference, diff and p_diff use the subset
relation in comparison, dist and p_dist compare the cardinalities of the sets.
The first two of the functions search for the minimal differences between
two model sets, while the last two functions pointwise compare one model
to a set of models.

We shall look into four semantically-oriented belief-revision operators:
Dalal’s [Dal88] operator op, Satoh’s [Sat88] operator o5, Weber’s [Web85]
operator oy, and Borgida’s [Bor85] operator og. For all the operators,
we define [T o A]] = [A]]l whenever [T] = 0, otherwise the operators are
defined as follows [KaM91b]:

[Top Al ={w e [A]l : Fw’ € [T], lw & w'| = dist(T, A)},
[Tos Al ={we[A]:Jw € [T],w s w" €dif(T,A)},
[T ow Al = {w e [A]l : Fw’ € [T], w2 w" € U dif(T, A)},
[Tos A] = { [T A A]l, if T A A is satisfiable,

Uweprplw’ € [A] : w & w' € p_diff(w, A)} otherwise.

The operators define rules to produce the new set of models, but they
do not define the outcome of the addition as a formula. A formula T" may
be the result of the revision T o A, if [T']] = [[T o A]].

Let us compare the operators in the next examples.

Example 3.4. Let us revise a theory —a A =b A —~c by the formula (2 Ab) V c.
Let W = P({a,b,c}), that is, W = {wg, w1, ..., w;} with wy = 0, wy; = {c},
wy = {b}, w3z = {b,c}, wy = {a}, ws = {a,c}, we = {a, b}, and w; = {a,b,c}. Thus
[—a A —=bA=c]l = {wo}, and [(a A D)V o)]| = {w1, w3, ws, we, w7}. We calculate:
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dist(ma A=bA-c,(aNb)Vc)=|wgAwi| =1,
[(=a A =b A =c)op ((@Ab) Vel = {wi).

diff(ma A =b A —c,(a A b) V c) = {wo & wy, wo A we) = {{c}, {a, b}},
[(=a A =b A =c) os ((a Ab) V)] = {wr, we}.

Udiff(ma A =b A =c,(a Ab)Vc)=1{a,b,c},
[(=a A =b A =c) ow ((a A b) V o) = {wr, w3, ws, we, w7}

Example 3.5. To compare the operators of Satoh and Borgida, let us con-
sider a theory —a A —b. We will add to the theory the formula (2 Ab) V (bAc).
Given the set W = P ({a, b, c}) of possible models as before, [-a A —b] =
{wo, w1} and [[(@ A b) V (b A 0)]] = {ws, we, wy}. We calculate the revision as
follows:

diff(=a A =b, (@ AD) V (b A ) = {wy & ws} = {{b}},
[(=a A =b) os ((a Ab) V (b A )] = {ws).

p-difftwo, (a Ab) V (b A ¢)) = {wo A ws, wo A we} = {{b, c}, {a, b}},
p-diff(wy, (@ Ab) V (b A ¢)) = {wy A ws} = {{b}},
[(ma A =b) o ((@a Ab) V (b A )] = {ws, we} U {ws} = {ws, we}.

When Satoh’s operator is used, the new theory can be expressed by a
formula —a A b A ¢, when Borgida’s operator is used, the resultis (-a A b A
c)V(aAbA=c).

Belief-change operators can be compared using their permissiveness.
An operator o; is more permissive [Win88a] than an operator oy, if for
all propositional formulas T and A, [T o, A]l C [T o1 A]l [Win88a]. The
more permissive the operator is, the larger is the set of the most plausible
models of the result. Semantically-oriented operators that use the subset
relation are more permissive than those using cardinalities to determine
orderings among models. Thus Satoh’s operator is more permissive than
Dalal’s operator. The operators that determine distances pointwise are
more permissive than corresponding operators that do not; that is why
Borgida’s operator is more permissive than the operator by Satoh. Weber’s
operator is also more permissive than Satoh’s operator.

3.3 Semantically-oriented belief-update policies

We shall now review some semantically-oriented belief-update operators.
Again, the operators define the rules to produce the new set of models, but
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do not define the outcome of the addition as a formula. We shall look into
the following semantically-oriented belief-update operators: The operator
o defined by Forbus [For89], Winslett’s [Win86] minimal-change update
operator ow, Winslett’s [Win90, chapter 3] standard update operator o5, and
its version ¢,| defined by by Herzig and Rifi [HeR98].

Let A and T denote propositional formulas, and Voc(A) the set of the
atomic formulas of A. The operators are defined as follows [KaM91b]:

[T or Al = Uyeprpie” € [AL : [w & w'| = p_dist(w, A)},
[T ow Al = Uweprpie” € [A] : w A w” € pdiff(w, A)},
[T os Al = Upeprpie” € [Al: w & w” C Voc(A)}, and
IT o, Al = Uegrylat’ € [A] : w A w’ € U diff(=4, A)).

A formula T’ can serve as the result of an update To A, if [T']] = [T o A].
The theory may be expressed by a formula in disjunctive normal form.
Del Val [DVa92] among others have given algorithms to accomplish the
update using the Winslett minimal-change update operator and disjunctive
normal forms.

Example 3.6. Let us update the theory —a A =b by the formula (a A b) V c.
Let W = % ({a, b, c}) denote the set of all logically possible models as before.
Given formulas —a A =b and (a A b) V ¢, we have [[-a A =b] = {wp, w1} and
[(@ A D)V c] = {w1, ws, ws, we, wy7}. We calculate:

p-dist(wp, (@ Ab) V) =|wy rwq| =1,
p-dist(wy, (@ Ab) V) =lw Aw| =0,
[(=a A =b) of ((a A b) V o) = {wi} U {w1} = {wy}.

p-diff(wo, (a A D) V ¢) = {wo A wy, wo & we} = {{c}, {a, b}},
p-diff(wy, (a AD) V ¢) = {wy & w1} = {0},
[(—ma A =b) ow ((a A b) Vo) = {wr, we} U {w1} = {wq, we).

When using p_dist, the model w; was incidentally closest to both wy and
w1.

Example 3.7. Let us consider updating the theory —a A —b by equivalent
formulas a V (c A (b vV =b)) and a vV c. Let W = P({a,b,c}) denote the
set of possible models as before. Then [[aVv (cA(bV =b))]| = [aV ] =
{wq, w3, ws, ws, we, w7}. We calculate as follows:

Voc(aV (c A (bV b)) ={a,b,c},

[(—a A =b)os (av (c A bV -D) = {wi, w3, wa, ws, we, w7},
Voc(a Vv c) = {a,c},

[(—a A =b) o5 (a v )] = {w1, wa, ws}.
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Thus even thoughaVvec=aVv (cA bV b)), [(-ma A=b)os(aVo)] # [(-aA
=b)os @V (cABV-b))I.

Example 3.8. Both ordering- and grading-oriented operators dynamically
construct a new ordering for the new epistemic state. Let us update the
theory —a A —b by the formula a V (c A (b V —b)) using the operator defined
by Herzig and Rifi. Given the set W = P ({a,b,c}) of possible models as
before, we calculate:

Udiff(aV (c A (bV =b)),=(aV (c A (bV b)) = {a,cl,
[(ma A =b) og) (aV (c A (bV =b)] = {wr, wy, ws},
[(=a A =b) o) (a V o) = {w1, wy, ws}.

Winslett’s minimal-change update-operator is more permissive than
the operator by Forbus, because it uses the subset relation for comparison.
Winslett’s standard update operator is the most permissive update opera-
tor. Also the version by Herzig and Rifi is permissive: it is aimed to allow
to enter disjunctive input into the knowledge base.

3.4 Ordering-oriented belief-revision policies

Ordering-oriented belief-revision operators work on epistemic states that
carry a total pre-order on the set of all logically possible models. A pre-
order < on a set Y is a reflexive and transitive relation, a subset of Y X Y.
It is total, if for all x, y € Y, either x < y or y < x holds. A partial pre-order
is a pre-order that need not be total. Forall x,y € Y, if x < ybuty £ x,
wesay x < y. If x < yand y < x, we say x ~ y. Recall that we defined
min(X,<) = {x € X | forallx’ € X, x’ £ x} This definition can be applied
even to partial pre-orders.

The set of the most plausible models of an epistemic state is the set of
the models minimal in the ordering. As a result of revising an epistemic
state, the ordering-oriented belief-revision operators produce the ordering
for the new epistemic state. These operators are called memory operators
because of the ordering carrying some ‘memory’ in the epistemic state.
This memory is not contained in the belief set of the epistemic state, but
can be expressed by doxastic conditionals. We assume that in the initial
state 1, we have <,= W x W.

Let W denote the set of all logically possible models, and let <r denote
the ordering in an epistemic state T. Then [T] = min(W, <r) whenever
[T] # 0. There are two orderings involved in these two memory opera-
tors: a dominating ordering <4 determined by the new formula, and the
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complementing ordering <r contained in the epistemic state. The opera-
tors differ in the way the dominating ordering is created. In any case, the
ordering in the state T o A is defined as follows:

W <7oa W’ if and only if w <4 w’, orw ~4 w’ and w < w'.

The basic memory revision operator oy, [KoP01] has a straightforward
way to determine the ordering for a propositional formula A. A total
pre-order SZ on W is defined as follows [KoP01]:

wa’q w’ if and only if w = A or w’ | A.

The Dalal memory operator circg,, [KoP01] uses pointwise distance p_dist
to create the ordering for a propositional formula A: [KoP01]:

w <? w’ if and only if p_dist(w, A) < pdist(w’, A).

Example 3.9. Let us revise the theory —a A =b A =c by the formula (2 Ab) V c.
Given the set of all logically possible models W = {wy, wy, ..., w7} with
lall = {ws, ws, we, w7}, [b] = {w2, w3, ws, w7}, and [c]] = {w1, w3, ws, wy} as
before, we have [[-a A =b A —=c]| = {wo} and [[(a A b) V c]| = {w, w3, ws,
we, wy7}. We will consider state T = T oy, (—ma A =b A —¢), where T denotes
the initial state with <;= W x W. Thus in the orderings Sia AbAoc and
<r, the model w; is minimal, while wq,...,w; are maximal. We write
wo <T W1, W, W3, W4, W5, We, w7 for short. Orderings sfa ABve and <t for the
state T’ = T oy, ((a A b) V ¢) are calculated as follows:

b
w1, W3, Ws, We, W7 <

(anb)ve wWo, W2, Wy,

w1, W3, Ws, We, W7 <77 Wo <77 W2, W4.
Thus [T opy, (a A b) V ]| = {wr, w3, ws, we, w7} = [(a Ab) V]

Example 3.10. Given the set W = £ ({1, ), c}) as in the previous examples,
let us revise the state T = 7 o4, 7a A =b A =c by the formula (@ A b) V c. Let
T’ denote the state T oy, (2 A b) V c. We calculate the orderings as follows:

wo <17 W1, W2, Wy <T W3, W5, We <T W7,

w1, w3, Ws, We, W7 < Wo, W2, Wy,

d
(anb)ve
w1 <1 W3, Ws, We <77 W7 <77 Wo <77 W2, W4.

Weget[[T oy, (aAb) V] ={wi}=[-an-bAc].



24 3 EXAMPLES OF BELIEF-CHANGE POLICIES

3.5 Grading-oriented belief-revision policies

Spohn [Spo88] has considered epistemic states as mappings from a set of
possible models to the class of ordinals. The ordinal assigned to a possible
model expresses the disbelief grade of the model.

Spohn [Spo88] introduces his ordinal conditional functions in the con-
text of complete fields of propositions on logically possible models. A
complete field of propositions is a non-empty set of subsets of W closed un-
der complementation and arbitrary union and intersection [Spo88]. Let
¥ denote a field of propositions. A proposition is an atom of ¥, if it is a
minimal nonempty element of 7.

Let W denote the set of all logically possible models and let ¥ be a
complete field of propositions on W. Let x denote a function from W into
the class of ordinals. Spohn [Spo88] calls k a F -measurable ordinal conditional
function, if and only if {w € W | x(w) = 0} # 0 and for all atoms X € F and
allw,w’ € X, x(w) = x(w’). Thatis, the set of models mapped to the ordinal
zero must be nonempty, and all models in a same atom of the proposition
field must always be mapped to the same ordinal. The set of the most
plausible models in the state « is the set x™1(0) = {w € W | x(w) = 0}. A
propositional formula A is then believed in state «, if x™1(0) C [A].

In Spohn’s epistemic state the disbelief grade of a collection of models is
the smallest disbelief grade of the models in it, that is, for any X € ¥ \ {0},
k(X) = min{xk(w) | w € X}. Then, for any X € F \ {0, W}, x(X) = 0 or
K(W\X) = 0orboth, and forall X, Y € ¥ \{0, W}, «(XUY) = min{x(X), k(Y)}.
A formula A is more plausible than a formula B, if x([A]]) < x([B]l) or
k(WA AT > w(W \ [BI)-

To keep things simple, we restrict our functions x to mappings from
possible models to natural numbers and call them ranking functions [Spo99].
Then correspondigly, grades are called ranks.

Spohn [Spo88] has defined a-conditionalization for changing the epis-
temic state represented by ordinal conditional functions. Let A denote a
formula that is not a contradiction nor a tautology. In a-conditionalization
KA, the ranking function « is changed so that the rank of the set [[A] is set
to zero and the rank of the set [-A]] is set to a:

K (w) _ K(w) - K([[A]]) if w e [[A]]/

AT k() — k([-A]D) + a ifw ¢ [A].
In the new epistemic state the ordering among the models in [[A] has
not changed, neither has the ordering among the models that are not in

the set [[A]], but these two collections of models have been shifted in the
ordering compared to each other.
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The change may be cancelled, if the previous rank of the proposition is
known [Spo88]. When the rank of a proposition is set to zero, we have a
case of contraction.

Ranking functions resemble probabilistic modelling. In probability
theory, epistemic attitudes are modelled by probabilities or probability
ranges. The total probability mass does not vary; it only gets redistributed
when changes occur. The probability of a set of models is the sum of the
probabilities of the models in it, whereas when ranking functions are used,
the rank of a set of models is the best rank of the models in the proposition
[Spo88].

Darwiche and Pearl [DaP94] have defined a belief-revision operator
using Spohn’s a-conditionalization: if the formula A is believed in the
state T, then there is no change, otherwise the rank of —A is set to 1. Let o,
denote the revision operator by Darwiche and Pearl. Thus, if x represents
the state T, and «’ represents the state T o, A, then

, [k ifx([-A]) >0,
kar if x([-A]) = 0.

The set of the most plausible models of the revised state is {w € W |
«’(w) = 0}.

Revision may be irreversible when using the operator by Darwiche and
Pearl, because the plausibility grade is always set to 1.

The following example shows us that the operator distinguishes be-
tween the states (T oa) o b and 7 o (a A b) as the syntactically oriented
operators distinguish between the theories {a,b} and {a A b}. Here 7 de-
notes the initial state, the state of total ignorance. The function x; maps all
possible models to the rank 0.

Example 3.11. Let us consider revising epistemic states (7 o, a) o, b and
T oy (a A b) by a formula —a. Let W = {wo, wq, wp, w3} with [[a]l = {w,, w3}
and [b]] = {wy, w3}. The ranks are calculated as follows:

Wy w1 Wy w3

T 0 0 0 O
T0,0a 1 1 0 O
(toya)o,b 2 1 1 0
((t oy a) o, b) o, —a 1 0 2 1
T 0 0 0 O
To,(aAD) 1 1 1 0

(T oy (@aADb))o, —a 0 0 2 1
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The set of most plausible models in ((7 o, a) o, b) o, —a is {w1}. The set of
most plausible models in (7o, (a A D)) o, —a is {wo, w1 }. Thus ((to,a)o,b)o,—a
and (7 o, (a2 A b)) o, ~a are not equivalent, even though the sets of most
plausible models of the states (7 o, a) o, b and 7 o, (a A b) are identical.

3.6 Comparison of belief-change policies

Let us review the characteristics of the belief-change policies.

When revising open theories, the change depends on whether a formula
is explicitly in the theory or implied by it [Win88a]. The formulas implied
by the theory are always automatically revised. The result of the revision
may depend on the syntax. The results of contracting theories {a, b} and
{a A b} with a differ: in the latter case we no longer believe that b. Having
the formula a A b in the theory expresses dependence of a and b on each
other.

When using semantically-oriented operators, the effect of a rule is tran-
sient. In order to make a rule persist, integrity constraints are needed,
but then again, they are completely persistent. The semantically-oriented
belief-revision operators have been criticized [Bre91] for treating in the
same way the formulas explicitly told to the knowledge base and the for-
mulas implied by them. On one hand, what we deduced based on false
beliefs should be revised along the false beliefs. On the other hand, that
may not be the case in update: what we deduced may still hold even if
changes had taken place. That explains why the operators for update are
semantically oriented.

Both ordering- and grading-oriented operators dynamically construct
a new ordering for the new epistemic state. Example 3.11 showed that
the grading-oriented belief-revision operator by Darwiche and Pearl dis-
tinguishes between the states (7 0 a) o b and 7 o (a A b) as the syntactically-
oriented operators distinguish between the theories {a,b} and {a A b}. Let
us next exemplify how this grading-oriented operator after having revised
the state 7o (a A b) by the formulas —a and a reaches the original state unlike
the syntactically-oriented operators when adding the formulas —a and a to
the theory {a A b}.

Example 3.12. Let W = {wy, w1, wp, w3} denote the set of all logically pos-
sible models with [[a]] = {w,, w3} and [[b]] = {w1, w3}. Let us revise the state
T o, (a A b) by the formulas —a and a:

Wy w1 Wy wWs
To,(aAD) 1 1 1 0
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(T or(@aADb))o, na 0 0 2 1

((t oy (@ A b)) oy ma)o,a 1 1 1 0

The resulting state is identical to the state 7 o (@ A b). The result can
be obtained by using any of the semantically oriented operators, but the
syntactically oriented operators cannot regain the state.

Let us now exemplify how the operator by Darwiche and Pearl after
having revised the state 7 o (a vV b) by the formulas 2 and —a results in
believing b. This is a “memory property” that the semantically-oriented
revision operators lack but the syntactically-oriented operators usually
have.

Example 3.13. Assume W, [[a] and [0] as in the previous example. Let us
revise the state 7 o (a Vv b) by the formulas a2 and —a:

Wy w1 Wy W3

T o, (aVb) 1 0 0 O
(to,(@aVb))o,a 2 1 0 0
((t oy (aV b)) opa) o, —a 1 0 1 1

Because w; € [b]], the result logically entails the formula b.

In his work on ordinal conditional functions, Spohn [Spo88] considered
belief revision policies such as the basic memory operator. He found,
however, many defects in ordering-oriented revision-operators. First, in
these proposals epistemic changes are not reversible. For reversibility,
gaps in the ordering, that is, ranking functions are needed. Secondly, the
firmness of the new belief cannot be chosen as in a-conditionalization.
Thirdly, epistemic changes are not commutative even in case of learning
new atomic formulas.

Example 3.14. Let W = {wy, w1, wy, w3} denote the set of all logically possi-
ble models with [[a]] = {w,, w3} and [b]] = {w1, w3}. Let us revise the initial
state T by formulas a and b.

a) If we use the operator by Darwiche and Pearl, the change is commu-
tative:

Wy w1 Wy w3

T0,0a 1 1 0 O
(toya)o,b 2 1 1 0
To,b 1 0 1 0
(Toyb)o,a 2 1 1 0
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Here in both cases, the models of a A —b are as plausible as the models of
—a Ab.

b) If we would use the basic memory operator, the change would not
be commutative. Let us here express the orderings in the states as ranking
functions to make the comparison easier:

Wy w1 Wy wWs

T Opy 1 1 0 O
(T op a) opy b 31 2 0
Topm b 1 0 1 0O
(T Obm b) Opm A 3 2 1 0

In the state (7 oy, a) oy, b the models of —a A b are considered more plausible
than any model of a A —b, in the state (T oy, b) oy, a the models of a A =b
are considered more plausible than any model of —a A b.

However, commutativity and reversibility are not considered to be
necessary characteristics of a belief-revision operator, as we shall see, when
we next look into the rationality criteria for belief change.



Chapter 4

Rationality criteria for belief revision
and update

We shall next take a look at the rationality criteria that have been pro-
posed on belief change. The rationality criteria act as dynamic integrity
constraints on the behaviour of the knowledge base.

The criteria depend on the type of change. We shall look into five
sets of postulates: the AGM-postulates for belief revision and contraction
[AGMS5], the DP-postulates for iterated belief revisions [DaP94, DaP97],
and the KM-postulates for belief update and erasure [KaM91a]. We will
also take a look at representation theorems for some sets of postulates. The
representation theorems are concrete constructions or modellings for the
prosesses guarded by those postulates.

There are n No knowledge sets of the epistemic states are involved in
these postulates. When formalizing the postulates, we will nevertheless
make the distinction between an epistemic state and its belief set explicit.
We will analyze the postulates for belief revision to show the importance
of making such a distinction.

At the end of this chapter we shall discuss incorporating integrity
constraints into belief change and some related work.

4.1 Postulates for belief revision

In belief revision new information is obtained about a static world. Let
o denote a belief-revision operator, T an epistemic state with a belief set
Tg and let A and B denote propositional formulas. The AGM-postulates

29
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[AGMS5] for belief revision are phrased here as follows!:

(R1): (ToA)E A.

(R2): 1If Tl —A, then (To A)g = Tg U {A}.

(R3): 1If A is satisfiable, then (T o A)g is consistent.

(R4): 1f A=B,then(ToA)g = (T o B)g.

(R5): (ToA)gU({B}E (T o (A A B))g.

(R6): 1f (T o A)g £ —B, then (T o (AAB))g = (T o A)g U {B}.

Postulate (R1) says that the new piece of information is accepted, thatis, the
insertion succeeds. Postulate (R2) says that if the new piece of information
is compatible with the old beliefs, neither is any of them discarded nor is
anything not entailed by the old beliefs and the new information added to
the belief set. Postulate (R3) says that adding a satisfiable formula to the
belief set must not make it inconsistent. Postulate (R4) calls for irrelevance
of syntax.

According to Alchurrén, Gardenfors and Makinson, an operator may
be called a revision operator if it satisfies postulates of (R1)-(R4); postulates
(R5) and (R6) are considered supplementary. Postulates (R5) and (R6) may
be thought to guard iterated change. Together they say that if learning A
does not contradict B, then learning first A and then B gives the same belief
set than learning A A B in the first place.

Example 4.1. The disjunctive belief-revision method (page 16) is not de-
fined in the case where the original theory is inconsistent or in the case
where the formula to be added or deleted is a tautology or a contradic-
tion. But in other cases, it is easy to see that it satisfies postulates (R1)-(R4)
by definition. In order to see that postulate (R5) is also satisfied, assume
a consistent theory T and a nontautological, satisfiable formula A. Let
T | -A=1{S51,5,,...,5,} betheset of those maximal subsets of T that do not
entail —A. Because we assumed that A is consistent, this set is nonempty.
The definition says that T o A = \//_;(S; U{A}). Letw € [T o A] N [B]
for some propositional formula B. Then w € [S;]] N [A] N [B] for some
i =1,...,n. Because S; is a maximal subset of T such that S; £ —A, and
because S; it =B, S; is a maximal subset of T such that S; £ —(A A B). Thus
w € [[T o (A A B)]] and (R5) holds.

Example 4.2. The disjunctive belief-revision method does not satisfy pos-
tulate (R6). Given T = {a,b,c}, we get To (-a < b) = {a,c,—a & b} V

!Note that given epistemic states T and T’ we apply the equivalence and the logical
entailment in the criteria only to the belief sets of the epistemic states, that is, to the sets of
propositional formulas believed in the states. Thus T = T does not mean the equivalence
of the states T and T”, but the equivalence of the respective belief sets.
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{b,c,(—ma < b} and T o ((-a & b) A(=b < ¢) = {a,c,(-a & b) A (-b &
o)} Vib,(ma < b) A (b & c)}. Although T o (ma < b) £ =(=b < o),
To((ma e b)A(=b < ) T o (—a < b). Postulate (R6) does not therefore
hold.

Because postulate (R1) always gives priority to the input, these postu-
lates determine what is called prioritized belief revision. So even if the input
formula is unsatisfiable, it will be accepted.

In order to rule out operators that give unintuitive results in interated
belief revisions, Darwiche and Pearl [DaP94, DaP97] proposed the follow-
ing additional postulates (DP-postulates) for iterated belief revision:

(RR1): IfBE A, then (T o A) o B)g = (T o B)g.
(RR2): If B —A, then (T o A) o B)g = (T o B)g.
(RR3): If (ToB)g E A, then (T o A) o B)g [ A.
(RR4): If (T o B)g }£ —A, then (T o A) o B)g i -A.

The motivation for these postulates is as follows. According torule (RR1), if
we obtain two pieces of information with the latter being more accurate, the
resulting belief set should be the same as if we had learned only the latter
piece of information. If we receive two opposite pieces of information,
then according to rule (RR2), the resulting belief set should again be the
same as having received only the latter piece of information. According to
postulate (RR3), believing A should not be prevented by learning A, if A
were othervise believed, and (RR4) says that an insertion should not cause
its own negation. Postulates (R5) and (R6) may be thought as special cases
of postulate (RR1).

4.2 Representation theorems for belief revision

Grove [Gro88] has shown how belief revision can be modelled by using
a system of spheres on the logically possible models, or equivalently, by
using a total preorder on the logically possible models. These modellings
resemble the spheres semantics [Lew73] on counterfactuals with the dis-
tinction of having, instead of a single model, the set of the most plausi-
ble models in the center of the system of spheres. Darwiche and Pearl
[DaP94, DaP97] shown how the DP-postulates relate to changing that or-
dering in belief revision. We will here use the formulation by Darwiche
and Pearl [DaP97] for both representation theorems.

Let W denote the set of all logically possible models of a propositional
language L and let [T] denote the set of the most plausible models of the
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state T. A function that maps each epistemic state T to a total pre-order <r
on W is called faithful, if the following conditions hold [DaP97]:

1. If w,w’ € [T], then w ~7 w'.
2. lfw e [[T]] and w’ ¢ [[T]], then w <t w’.
3.1f T =T, then <p=<r.

Thus min(W, <r) = [[T] holds whenever [T] # 0.

According to the representation theorem for single belief revisions, the
most plausible models of the revised state are those models of the new
formula that are minimal in the ordering.

Proposition 4.1. A revision operator o satisfies postulates (R1)—(R6), if and only
if there is a faithful function that maps each epistemic state T to a total pre-order
<t on the logically possible models of the language and the following condition
holds:

(BR): [T o A] = min([A]l, <7).

Example 4.3. For Dalal’s operator (page 19), let us define a faithful function
that maps a theory T to a total preorder <t by defining w; <t w», if and
only if p_dist(wy, T) < p_dist(wy, T). Dalal’s operator may then be defined
[T op All = min([A]l, <) [KaM91b].

The following representation theorem shows how the ordering among
possible models is affected by belief revision.

Proposition 4.2. [DaP94] A revision operator o satisfies postulates (RR1)-
(RR4), if and only if there is a faithful function that maps each epistemic state T
to a total pre-order <t on the logically possible models of the language and the
following conditions hold:

(01): Ifwy = Aand wy = A, then wy <1 wy iff w1 <Top Wo.

(02):  Ifwy E —Aand wy E —A, then wy <t wy iff W1 <Top W2.
(03):  Ifwy E Aand wy = —A, then wy <t wy only if w1 <Toa Wo.
(04): Ifwy = Aand wy = —A, then wy <1 wy only if w1 <Top Wy.

According to the first condition, the revision should not change the
ordering among the worlds that model the new formula. The second
postulate says that the revision should not change the ordering among
the worlds that do not model the new formula. The third condition says
that if a world that models the new formula was more plausible than a
world that does not model the new formula, it should remain so after the
revision. According to the last condition, if a world that models the new
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formula was not less disbelieved than a world that does not model the
new formula, it should remain so after the revision. Thus the only way the
ordering can change is that the models of the input formula can be shifted
downwards in the ordering compared to other logically possible models.

Example 4.4. The basic memory operator oy, (page 23) satisfies postulates
(R1)~(R6) and (RR1)-(RR4) [KoP01]. By definition, [To,,A]] = min([A], <r
), thus it satisfies postulates (R1)-(R6). Clearly the ordering among the
models of the new formula remains unchanged, and so does the ordering
among the possible models that do not model the new formula. Also
w1 <Toa Wy holds for all w; E A and w, = —A. Thus the operator satisfies
postulates (R1)-(R6) and (RR1)-(RR4).

4.3 Postulates for belief contraction

In belief contraction some belief concerning a static world is given up. Let
e denote a belief-contraction operator, and let A and B denote proposi-
tional formulas. We will phrase the AGM-postulates for belief contraction
[AGMS85] as follows:

(C1): If Aisnot a tautology, then (T @ A)g £ A, else (T ® A)g = T.
(C2): IfTg A, then (T e A)p = Ts.

(CS) TB |= (T [ ] A)B

(C4): If A=B,then(T e A)g = (T e B)p.

(C5): (TeApU{A}E Ts.

According to postulate (C1) the operation is successful, if the formula to
be deleted is not a tautology. Postulate (C2) says that if the formula to
be deleted is not believed in the epistemic state, then the belief set of the
state remains unchanged. Postulate (C4) demands irrelevance of syntax.
According to postulates (C3) and (C5), the most plausible models of state
T e A are the the most plausible models of state T accompanied by some
models of —A.

According to postulates (C1)-(C5), if we know whether or not contract-
ing a state T with a formula A was effective, we can withdraw the contrac-
tion. If T | A, then according to postulates (C3) and (C5) (TeA)gU{A} = T5.
If Tg ¢ A, then the beliefs have remained unchanged according to postulate
(C2).

Belief revision involves epistemic entrenchment, a pre-order defined
on the formulas of the propositional language [GaM88]. Given formulas A
and B, let A < B denote that the formula A is less or equally entrenched to the
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formula B. We say A < B, if A < B but not B < A. Epistemic entrenchment
must satisfy the following conditions [GaMS88]:

(EE1): fA<BandB=<C,thenA <C (transitivity)
(EE2): If AEB,then A <B (dominance)
(EE3): ForallAand B_A<AABorB<AAB (conjunctivity)
(EE4): If T is consistent, then A ¢ T, iff A < Bfor all B (minimality)
(EE5): If B < A for all B, then A is a tautology (maximality)

The second condition says that if A logically entails B and one of them
has to be given up, then the change is smaller, if only A is abandoned.
The third condition says that in order to give up the formula A A B, one
has to give up either the formula A or the formula B. According to the
fourth condition, the formulas not included in the theory are minimally
entrenched, according to the fifth, tautologies are maximally entrenched.

Assume an epistemic entrenchment defined on all the formulas of the
language. In revision, formulas less entrenched are those chosen to be
given up when necessary. Then the entrenchment defines a unique revision
operator and vice versa as follows:

(Ce): BeTeA,iff Be T and either A < (A V B) or A is a tautology,
(C2): A<B,iff A¢ T e (A AB)orAA B is a tautology.

Assume that epistemic states are represented by propositional formu-
las. Now, if a revision operator o satisfies postulates (R1)-(R4) and we
define a contraction operator e by the so-called Harper identity

TeA =def TV (T o=A),

then the operator e satisfies postulates (C1)-(C5). A corresponding depen-
dency can be defined in the other direction. If the contraction operator
satisfies postulates (C1)-(C4), and if the revision operator is defined by the
Levi identity

ToA =def (TO —|A) ANA,

then the revision operator o satisfies postulates (R1)-(R4) [Gdr88, chapter
3]. However, when epistemic states are not representable by propositional
formulas, Harper and Levi identities are not sufficient to define operators.

When changing closed theories, if the epistemic entrenchment < satis-
fies conditions (EE1)—(EE5), then the operator defined by rule (Ce) satisfies
the AGM-postulates and condition (C=<). If the contraction operator e sat-
isfies the AGM-postulates, then the ordering defined by rule (C<) satisfies
conditions (EE1)—-(EE5) and (Ce) [GGMS8S8].
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4.4 Postulates for belief update

In belief update, a formula that records a change in the world is inserted
into a theory. Katsuno and Mendelzon [KaM91a] have proposed their
KM-postulates for belief update assuming that the epistemic state T can be
represented by a propositional formula. In this context, we have rephrased
the postulates so that we only assume that the belief set T of the state can
be represented by a propositional formula.

Let ¢ denote a belief-update operator, and and let Ty denote the belief
set of the epistemic state T. Let A and B denote propositional formulas.
We phrase the rationality criteria for belief update [KaM91a] as follows:

(U1): (T oA E A.

(U2): IfTg E A, then (T ¢ A)g = Tp.

(U3): If Tg and A are satisfiable, then also (T ¢ A)g is satisfiable.
(U4): 1f Tg = Ty and A = B, then (T ¢ A)g = (T” © B)g.

(U5): (ToA)g ABE (T < (AAB))s.

(U6): If (ToA)pkEBand (T B)g E A, then (T ¢ A)g = (T ¢ B)g.
(U7): 1If Tp is complete, then (T ¢ A)g A (T ¢ B)g = (T ¢ (A V B))g.
(Us): IfTg =Ty Vv Ty, then(T o A)g = (T" o A)p vV (T” ¢ A)p.

Postulate (U1) says that the new piece of information should be accepted.
According to postulate (U2), if the formula A is already believed in T, then
the update by A has no effect on the belief set. According to postulate (U3),
the result of the update should be consistent whenever postulates (U1) and
(U2) permit it. Postulate (U4) calls for irrelevance of syntax. Postulate (LI5)
is analogous to postulate (R5).

Postulates (U1)—(Ub) for belief update correspond to postulates (R1)-
(R5) for belief revision. Postulate (LI6) says that if updating T by a formula
A entails B and vice versa, the results of the updates should be equivalent.
Postulate (U7) is applied only to complete belief sets. It says that if a model
is considered as one of the most plausible models both after updating the
set by a formula A and after updating it by a formula B, then the model
should be among the most plausible models after updating the belief set by
a formula A V B. Katsuno and Mendelzon [KaM91a] need this postulate to
prove their representation theorem for belief update, but because belief sets
are seldom complete, the postulate does not seem to have much motivation
otherwise [HeR99].

Postulate (U8) describes the most characteristic property of belief up-
date: we consider the change to alternative states of affairs separately.
This postulate causes the monotony of update: if Tg = T%,, then (T ¢ A)g =
(I” o A)p. Belief revision is nonmonotonic even in that respect.
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4.5 A representation theorem for belief update

Also belief update involves orderings on the truth distributions of the
interpretations of the language [KaM9la]. According to the definition
by Katsuno and Mendelzon [KaM91a], a function that maps a logically
possible model w € W to a ordering <, on the logically possible models W
of the language L is faithful, if w <, w’ whenever w # w’. In other words,
min(W, <y) = {w}.

Each model of the old epistemic state will be assigned an ordering, and
the models of the new state will be the models of the new formula that
are minimal in at least one of the orderings, as formalized in the following
condition:

(BP): [T o Al = Uyepry min([A], <w)-

The representation theorem for belief update says that the set of the
most plausible models of the updated state can be obtained by using partial
pre-orders or partial orders on the models of the new formula.

Proposition 4.3. [KaM91a] Given an operator ¢, the following conditions are
equivalent:

1. The operator o satisfies the postulates (U1)—-(U8).

2. There is a faithful function that maps each model w of Tg to a partial
pre-order <, on W such that condition (BP) holds.

3. There is a faithful function that maps each model w of Tg to a partial order
<w on W such that condition (BP) holds.

It is not necessary for the ordering involved in belief update to be total.
A partial pre-order or a partial order are both sufficient.

Example 4.5. For Forbus’s operator or (page 21), a faithful function can
be defined to map each model w € [T] to a total preorder <, such that
w1 <y wy, if and only if [w A wq| < |w A wy|. The operator can then be
defined [T or Al = Uyepry min([A], <w).

4.6 Postulates for belief erasure

In belief erasure, a formula is deleted from a theory as a result of a change
in the world. Let ¢ denote a belief-erasure operator, and let T¢A denote
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the epistemic state with a formula A erased from state T. The postulates
for erasure have been defined [KaM91a] as follows?:

(E1): If Tpis satisfiable and A is not a tautology, then (T+A)g £ A.
(E2): If Tg E —A, then (T¢A)g = T;.

(E3): Tk (TeA)s.

(E4): 1f Tg = T; and A = B, then (T+A)p = (T"#B)g.

(E5): (TQA)B ANA IZ TB.

(E8): IfTp =Ty V Ty, then (TeA)p = (T'¢A)p V (T ¢A)p.

According to (E1), the erasure T4A is successful whenever A is not a
tautology and the epistemic state T is consistent. Postulate (E2) says that
if the formula to be erased is not considered compatible, then the erasure
has no effect. Postulates (E4) and (E8) correspond to postulates (U4) and
(U8). According to postulates (E3) and (E5), the most plausible models of
state T#A are the most plausible models of state T accompanied by some
models of —A.

Postulates (E3) and (E5) correspond to postulates (C3) and (C5) respec-
tively. Postulate (E2) differs from postulate (C2), because the contraction of
a theory T with a formula A is effective in the case T | A, but the erasure
of the formula A is effective if Tg ¢ —~A. In both cases the most plausible
models of the new epistemic state are the the most plausible models of state
T accompanied by some models of —A. Postulate (EI) differs from postu-
late (C1) in the case T is inconsistent: inconsistency cannot be eliminated
by the means of belief erasure or belief update.

In case the epistemic state is represented by a propositional formula
and the update operator ¢ satisfies postulates (U1)—-(U4) and (U§), then the
erasure operator 4 can be defined as T¢A =4 T V (T ¢ -A) [KaM91a]. A
symmetric erasure [INin90] of a formula A expresses that we have no beliefs
concerning A. The result of the symmetric erasure can be defined using
the formula (T ¢ A) V (T ¢ =A), when the epistemic state T is representable
by a logical formula.

4.7 Analysis of the postulates for belief revision

The first formulation of the postulates for iterated belief revision [DaP94]
assumed that epistemic states could be represented by single propositional
formulas, causing thereby triviality of logic. To avoid triviality of logic,

Labels (E1) and (E3) have been swapped here for the consistency of labelling. In this
way postulates (U1) and (E1) both express the conditions on the success of the operation.



38 4 RATIONALITY CRITERIA FOR BELIEF REVISION AND UPDATE

we have used in the AGM-postulates the original formulation of postu-
late (R4) by Alchurrén, Gardenfors and Makinson [AGMS85] instead of the
following postulate (R4’) thet formalizes the version used by Kazuno and
Mendelzon [KaM91a] for epistemic states represented by single proposi-
tional formulas:

(R€'): 1fTp =Ty and A = B, then (T o A)g = (T” o B).

The use of version (R4’) instead of postulate (R4) makes the joined set
of the AGM- and the DP-postulates inconsistent, if we assume that the
logic is not trivial. In other words, if any operator satisfies the two sets of
postulates, then the logic must be trivial. A logic is trivial, if there are not
four satisfiable formulas such that three of them are pairwise inconsistent
with each other, and the fourth one is consistent with each of them.

Example 4.6. a) Assume a language L with Voc(£) = {a,b}. Then formulas
aAb,aA-b,and —a A b are satisfiable but pairwise inconsistent with each
other and they are all consistent with a v b. The language is not trivial.

b) Assume a language L’ with Voc(L’) = {a}. The only satisfiable
formulas that are inconsistent with each other are 4 and —a. The language
is trivial.

Theorem 4.1. [El095, El097] If the language is nontrivial, then postulates (R1),
(R2), (R3), and (R4’) are inconsistent with postulate (RR2).

Proof. Assume a nontrivial language, and let o denote a revision operator
that satisfies postulates (R1), (R2), (R3), (R4'), and (RR2). Because the
language is nontrivial, then by definition satisfiable formulas A, B, C, and
D exist such that formulas A, B, and C are consistent with D but pairwise
inconsistent with each other. Let T denote an epistemic state with a belief
setTg = D.

By (R2), (T o A)g = Tg U {A} and (T o B)g = Tg U {B}. Because A A C
and B A C are unsatisfiable, then by (RR2), (T o A) o C)g = (T o C)g and
((ToB)oC)g = (T oC)g. Thus ((T 0cA)o C)g = ((T o B) o C)g and by (R4’),
((ToA)oC)o(AVB))g =(((ToB)oC)o(AV B))g. Because C is inconsistent
with A Vv B, then by (RR2) ((ToA)oC)o(AVB)g=(ToA)o(AVB))p
and ((ToB)oC)o(AVB))p = ((ToB)o(AV B))g. Because by (R1) and
(R3) (T o A)s U{A V B} and (T o B)g U {A V B} are consistent, then, by (R2),
((ToA)o(AVB))g = (ToA)gU{AVB}and ((ToB)o(AVB))g = (ToB)gU{AVB}.
Thus ((ToA)o(AVB))plEAand (ToB)o(AV B))s E B.

Because (ToA)oC)o(AV B))g = (((ToB)oC)o(AV B))g we have
((ToA)oC)o(AVB))g = B. Because the formulas A and B were assumed to
be inconsistent with each other, and by (R3) the state (((T 0o A)oC)o (A V B))
is consistent, we have a contradiction. m]
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We will next prove that using postulate (R4’) instead of (R4) has also
an other defect, namely, if the new formula is inconsistent with the belief
set of the epistemic state, then the belief set of the new epistemic state will
not be affected by the original epistemic state.

Theorem 4.2. [El095, Elo97] If a belief-revision operator satisfies postulates
(R1), (R2), (R3), (R4’) and (RR1), and the proposition to be added to the current
epistemic state is inconsistent with it, then the revised epistemic state does not
depend on the current state.

Proof. Let o denote a revision operator that satisfies postulates (R1), (R2),
(R3), (R4’) and (RR1). Let A, B, and C denote satisfiable formulas, and let T
denote an epistemic state that is consistent with A and B but inconsistent
with C. Postulates (R1)-(R3) imply that (T o A)o(AVC)g = (ToA) =
(To(AvO)pand (ToB)o(BVC)g=(ToB)g=(To(BVC))s. Because
CEAvCandC E BVC, (RR1) implies that (To(AVC))oC)p = (ToC)pgand
((To(BVC))oC)p = (ToC)p. Thus, by (R4),((ToA)oC)g = ((T'oB)oC)g. O

Let us consider different formulations for the DP-postulates (RR1) and
(RR2):

(RR1’): IfBEA,then(ToA)oB=ToB,
(RR2’): If BE-A,then(ToA)oB=ToB.

Using identity of epistemic states instead of equivalence of the belief
sets in postulates (RR1) or (RR2) would again cause triviality.

Theorem 4.3. If the language is nontrivial, then postulates (R2) and (RR2) are
inconsistent with postulate (RR1’).

Proof. Assume a nontrivial language, and let o denote a revision operator
that satisfies postulates (R2), (RR1’), and (RR2). Because the language is
nontrivial, then by definition satisfiable formulas A, B, C, and D exist such
that formulas A, B, and C are consistent with D but pairwise inconsistent
with each other. Let T denote an epistemic state with a belief set Tg = D.
By (R2),(To(AVB))g =TgU{AVB}and (ToA)g = Tg U{A}. By (RR1’),
(T'o(AVB))oA=ToA. Thenby (RR2),((To(AVB))o-A)g =((To(AVB))o
A)o—=A)g=(ToA)o-A)p = (T o-A)p. By (R2), (T o (AV B))o-A))p =
TgU{AVB}U{=A} E B,and (T o —-A)g = Tg U {=A} £ B, a contradiction. 0O

Theorem 4.4. If the language is nontrivial, then postulates (R1)—(R4) are incon-
sistent with postulate (RR2’).
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Proof. Assume a nontrivial language, and let o denote a revision operator
that satisfies postulates (R1)-(R4), and (RR2’). Because the language is
nontrivial, then by definition satisfiable formulas A, B, C, and D exist such
that formulas A, B, and C are consistent with D but pairwise inconsistent
with each other. Let T denote an epistemic state with a belief set Tg = D.
By (R2),(ToA)g = Tg U{A}and (T o B)g = T U {B}. Because A A C and
BAC are unsatisfiable, then by (RR2’), (ToA)oC = ToCand (ToB)oC = ToC.
Thus (ToA)oC)o(AVB)=((ToB)oC)o(AV B). Because C is inconsistent
with A V B, then by (RR2") (ToA)oC)o(AVB) = (ToA)o(AVB)and
((ToB)oC)o(AVB)=(ToB)o(AVB). Thenby (R2), TgU{A}U{AV B} =
((ToA)o(AVB))g=(ToB)o(AVB))g =TpU{B}U{AV B}, acontradiction
with (R3). m]

According to these theorems, if the revision operator is to satisfy the
postulates for iterated belief revision, it must act upon epistemic states that
contain more information than mere belief sets. The epistemic states must
contain doxastic conditionals.

To avoid triviality of logic with epistemic states that contain doxastic
conditionals, we have restricted the postulates to guide changing only
the belief sets of epistemic states. The change of doxastic conditionals is
indirectly guided by the postulates for iterated belief change by means of
guiding the change in the belief sets in series of revisions.

4.8 Analysis of some operators

Let us see how our sample operators satisfy the postulates for belief change.
We have already seen that the syntactically-oriented operators on open
theories do not satisfy postulate (R4’) demanding irrelevance of syntax.
In Examples 4.1 and 4.2 (page 30) we saw that the disjunctive method
(page 16) for revising open theories satisfies (R1)-(R5), but not postulate
(R6). Analogously to the disjunctive method, the intersective method
satifies postulates (R1)-(R5). The following example will demonstrate that
it does not satisfy postulate (R6).

Example 4.7. Given T = {a,b,c}, we get To (-a < b) = {a,c,~a < b} N
{b,c,ma & b} ={c,—a o byand To ((—a & b) A (=b < ¢) = {a,¢,(-a &
by A(=b & c)yni{b,(—~a & b) A(=b & c)} = {(-ma & b) A(=b < c)}. Although
To(-raeb)E-(-bec), To((maeo b)A(-b e ) ETo(-a e b), and
postulate (R6) does not therefore hold.

The revision policy on flocks of theories (page 17) does not satisfy
postulate (R2), as we can see in the following example.
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Example 4.8. Let T denote the flock {{a, ~a < b}, {b, ~a < b}}, which may
be obtained by adding a formula (—a < b) to the flock {{g, b}}. If we add
the formula a to the flock T, we get the flock T” = {{a, ~a < b}, {a, b}}. Even
though T £ —a, T’ £ T, thus postulate (R2) does not hold.

The flock method resembles update in the sense that the changes are
made in the alternatives independently. The revision operator might
be modified for conflict situations to choose only those members of the
flock, which are not contradictory to the change, if such alternatives exist
[Win88a].

According to the representation theorem for belief revision, a revision
operator o satisfies postulates (R1)-(R6), if and only if there is a faithful
function that to each epistemic state T assigns a total pre-order <r such
that [T o A]l = Min([A]l, <r). A revision operator fails to satisfy postulate
(R6), if it uses a partial preorder, or if the ordering also depends on the new
formula, or if the revision is carried out pointwise [KaM91b].

Dalal’s semantically-oriented belief-revision operator (page 19) uses
total preorder. Borgida’s operator may search closest models pointwise.
The operator by Satoh uses a partial order [KaM91b]. Dalal’s operator
op satisfies postulates (R1)-(R6) [KaM91b]. If the theory T is consistent,
operators og and op satisfy postulates (R1)-(R5), but not postulate (R6)
[KaM91b]. If the theory T is consistent and the formula A is satisfiable, the
operator oy satisfies postulates (R1)-(R4), but not postulates (R5) nor (R6)
[KaM91b]. Because all these operators also satisfy postulate (R4’), then by
Theorem 4.1, they do not satisfy postulate (RR2).

The revision operator by Darwiche and Pearl (page 25) satisfies pos-
tulates (R1)«(R6) and (RR1)-(RR4), but not postulate R4’, as we saw in
Example 3.11. The basic memory operator (page 23) satisfies postulates
(R1)~(R6) and (RR1)~(RR4) [KoP01]. The Dalal memory operator (page 23)
satisfies postulates (R1)-(R6), (RR1), (RR3), and (RR4) [KoP01], but not
postulate (RR2), as the following example shows.

Example 4.9. Let us consider revising state 7 by formulas a A b, =a A b,
anda vV b. Let W = {wq, wq, wo, w3}, [a]l = {wy, w3}, [b]] = {w1, w3}. Then

d
w3 <Zl/\
Wo <—|Ll/\—|b i
w1, Wy, W3 <avb wg.

d
p W1, W2 <, Wo,

w1, Wy <‘im\ ws, and

-b

Inrevisions T =t o4, (@aAb), T =T oy, (ma A=b),and T =T o4, (a V D),
we get
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w3 <1 W1, W2 <1 Wy,
wo <17 W1, Wy <11 W3, and
Wy, wa < w3 <77 Wy,

even though when revising T o4, (a V b), we would get an ordering equal
to <r.

If the theory is satisfiable, the minimal-change update operator oy
(page 21) satisfies postulates (R1) and (R3)~(R5), but not postulates (R2)
and (R6) [KaM91b]. The fact that the operator does not satisfy postulate
(R2) implies that the operator is not a revision operator. The operator is
an update operator satisfying postulates (U1)-(U8) as the operator ¢r by
Forbus [Fit93]. For the minimal-change update operator ¢, a faithful
function can be defined to map each model w € [[T] to a partial order <,
such that wy <, wy, if and only if w A wqy € w A w,. The operator may
then be defined by [T ow A]l = Uyepry min([All, <u). The operator oy also
satisfies postulate (RR4) for iterated belief revision.

Theorem 4.5. The minimal-change update-operator by Winslett satisfies postu-
late (RR4).

Proof. Assume o = oy and (T'oB)g ¢ —A. Weshall prove that (T©A)oB)g
—-A.

Because (T ¢ B)g £ —A, a model m exists such that mg € [T ¢ B] N [A]
Because mg € [T ¢ B]l, a model m; € [T] exists such that for all w € [[B]],
my Aw ¢ my Amgholds. If on one hand my € [T A]|, thenmg € [(ToA)B].
Because mg F A, (T o A) ¢ B)g £ —A. Assume on the other hand that
mg & [T o A]l. The assumption implies that for all w € [T] thereis w’ € [A]
such that w A w’ C w A my. In particular there is my € [T ¢ A] such that
my1 A my Cmqp Amg.

Iftmg e [(ToA)oB], then ((T¢A)oB)g t —A. Assumemg ¢ [(ToA)<B].
The assumption implies that for all w € [T o A] there is w’ € [B] such that
wAw C wAmg. In particular, there is mz € [(T ¢ A) ¢ B] such that
my A msz C my A my.

Because m; A w ¢ my A mg holds for all w € [B]], my A ms ¢ mq A mg. If
my Ams = my Amyg, then ms = my, a contradiction, thus my Amz ¢ my Amg. In
this case there is an atomic formula x such that x € m Amgs, but x ¢ m; Amy.
Because x ¢ my Amgand mq Amy C mq Amg, x & my Amy. Thus x € my Amy,
which implies that x ¢ my A mj3, because my A m3 C my A mp. Because
x ¢ myAmpand x ¢ my Ams, x ¢ my Amsholds. This gives us a contradiction
x € my A m3, thus the assumption mg ¢ [(T ¢ A) o B]] was false. O
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The standard update operator o5 (page 21) satisfies postulates (U1),
(U3), (U7), and (U8) [HeR99]. The version o satisfies postulates (U1),
(U3), (U4), and (U8) [HeR99].

4.9 On integrity constraints

Integrity constraints are used to express those properties of a knowledge
base that should always hold. Let IC denote a formula that represents
the intergrity constraints. Two alternative ways to determine whether
or not the epistemic state satisfies the intergrity constraints have been
proposed [Rei88]. According to one definition, it is sufficient to have
Ty U {IC} satisfiable. According to the other definition, it is required that
Tg E IC. Katsuno and Mendelzon [KaM91b] have used the latter version
when defining the effect that the integrity constraints have on belief change
using the condition:

T o'C A =4 T o (A A IC). (4.1)

The corresponding effect on belief contraction is defined [KaM91b] by
T o'C A=y T o (IC > A). (4.2)

The definition implies that if a formula is entailed by the integrity con-
straints, it is impossible to contract it from the epistemic state [KaM91b].
We may analogously define the effect of integrity constraints on belief
update.

According to Poole [Poo88], integrity constraints are rules used to de-
termine whether or not the epistemic state is consistent, but they do not
participate in deduction. However, postulate (R3) calls for consistency of
beliefs. If we use the conjunction of the input and the integrity constraints
A AIC in the revision, the integrity constraints actively take part in deduc-
tion. Poole’s default logic [Poo88] can maintain consistency of epistemic
states with integrity constraints only under special conditions.

410 Related work

We will conclude our discussion of the AGM, DP-, and KM-postulates
by reviewing some related work concerning the classification of change,
critics on the postulates, and the relation between theory change and non-
monotonous logic.
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On the classification of change

Grahne [Gra91b] has studied the change of incomplete databases. He clas-
sifies the changes into insertions, changes and deletions. He furthermore
classifies the insertions and deletions into absolute or positive. Absolute
insertions and deletions are revisions, positive insertions and deletions
are updates. The naming is based on the intuition that, in revision, the
absolute amount of information increases, while in positive insertions and
deletions the changes take place in the amounts of positive information.
A database contains only positive information. In a positive deletion, a
formula that was believed to be true becomes a formula that is believed to
be false.

Revesz [Rev93] has suggested arbitration as a type of revision. In
arbitration, the latest piece of evidence is not considered to be the most
reliable. Revesz uses a trial as an example to justify the new type of revision.
In arbitration old and new beliefs weigh the same. Revesz introduces eight
postulates for arbitration and he gives a definition of an operator by forcing
the change to be commutative. The definition does not, however, manage
to avoid the unbalance between old and new information. In arbitration
the new formula weighs as much as the formula representing the old
epistemic state. To cure the unbalance he suggests weighted changes, but
that does not solve the problem. In fact there seems to be a more severe
argument against arbitration: it may fail to find a consistent solution. If
we consider the example of a trial, would it not be intuitive to choose
a consistent solution, when such a solution exists? Arbitration therefore
does not satisfy postulate (R2), which is the very postulate that, together
with the corresponding characteristic postulate for arbitration, classifies
the revision operators and the arbitration operators as two disjoint sets of
operators. Yet postulate (R2) would have been needed in the example to
give intuitive results.

Critics on the postulates for belief revision

We have restricted the postulates for belief revision to guide changing
only the belief sets of epistemic states. This restriction is consistent with
the result of Grahne, Mendelzon, and Reiter [GMR92] saying that belief
revision is update at the epistemic level. Their result thus shows that the
AGM-postulates must not be used at the epistemic level. In doxastic con-
ditionals the change takes place at the epistemic level, therefore changing
conditionals such as “should I believe A, I would believe B” cannot be
guided by those postulates.
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The inconsistency of the AGM-postulates and the DP-postulate (RR2)
has been proved independently by Freund and Lehmann [FrL94], and
Eloranta [Elo95, El097]. The proof by Freund and Lehmann implicitly
assumes that epistemic states contain only propositional beliefs. The proof
is based on the existence of a single inconsistent epistemic state: recovery
from such a state is impossible without total amnesia. To replace the
DP-postulates, Freund and Lehmann [FrL94] suggest their own postulate

(R7): IfTE-Aand T E -A,thenTo A =T oA.

However, we have considered this feature to be a defect. Our proof (Theo-
rem 4.1) does not involve revisions by contradictions. It is therefore valid
even if the postulates were changed so that no contradiction would be
accepted.

There have been critics on postulate (RR2) on iterated belief revision,
and it has been considered counterintuitive by some [KoP01]. Lehmann
[Leh95] has given a theorem stating that the AGM-postulates together with
postulate (RR1) imply postulates (RR3) and (RR4). He does not, however,
provide a proof for the theorem, which is contradictory to the motivating
examples [DaP97, page 20] given by Darwiche and Pearl. We have merged
the two examples as follows.

Example 4.10. Assume W = {wy, w1, wp, w3} with [A]] = {w2, w3} and [B] =
{w1, w3}. Assume we have an epistemic state T with <r: wy < wp < W3 <T
wq and T o A with SToA: W2 <Top Wy <Toa W1 <Toa W3. Then [[T o B]] = {ZU3}
and [(ToA)oB]l = {w;}. (ToB)g E A, but ((I' 0o A)o B)g E —~A. The operator
satisfies postulates (R1)—(R6), (RR1), and (RR2), but not postulates (RR3)
and (RR4).

Critics on the postulates of belief update

Update treats disjunction in the new formula and in the old formula in
different ways. Postulate (U8) says that (T VT') oA =(ToA)V (T' ¢ A),
but it is not possible to define an update operator that satisfies the KM-
postulates such that T o (A V B) = (T © A) V (T ¢ B). The operator would not
satify the postulate (LI2).

The KM-postulates cause the problem of disjunctive input: updates
by inclusive formulas behave just as updates by exclusive disjunctions
[HeR99]. Herzig and Rifi [HeR99] have analyzed the problem, and they
have proposed their own set of postulates. They totally omit postulates
(U5)—(U7) and accept postulates (U1), (U4), and (U8). They weaken pos-
tulate (U2), they modify postulate (U3) to take into count integrity con-
straints, and they add postulate (U0) for integrity constraints as follows:
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(uo): (ToA)g EIC.

(uz’): Tg ANAE (TOA)B

(uz2”): (ToT)g=Ts.

(U3’): If Tg and A are consistent with IC, then
(T o A)p is consistent with IC.

Postulate (U6) with postulate (U2”) would imply (U2). According to
Herzig and Rifi [HeR99], postulate (U7) is without importance, and postu-
late (U5) is harmful causing the problem of disjunctive input.

Theory change and nonmonotonic logic

Makinson and Gardenfors [MaG91] have compared belief revision and
nonmonotonic reasoning. In their comparison they used fixed background
theories: “a formula x nonmonotonicly entails (with regard to a theory
T) a formula y”, more formally x 1 y, corresponds to T ox E y in
theory revision. By using this translation, we can compare the principles
of nonmonotonic reasoning and theory revision. However, we have to
restrict ourselves to those principles concerning only single background
theories. Thus, we cannot translate the principles that compare revisions
T ox and T’ o x, neither can we translate the principles of iterated theory
revision.

Makinson and Géardenfors showed that the postulates of theory revision
translated to nonmonotonic reasoning either directly correspond to the
deduction rules of nonmonotonic reasoning or can be derived from them.
The connection can be exemplified by the postulate (T'1) corresponding to
A b A. Also by translating the deduction rules of nonmonotonic reasoning
into theory revision we get principles entailed by the AGM-postulates. The
translation of the Supraclassicality rule “if x  y, then x b y” is “if x + y,
then T o x = y”, which is directly entailed by the postulate (R1). The
Unit Reciprocity rule is “if x b vy and y  x, then C(x) = C(y)”, where
C(x) ={y | x  y}. The translation “if Tox Fyand Toy E x,thenTox =
T o y” is the postulate (U6), which is a less strict version of the postulate
(R6), thus every revision operator that satisfies the postulates (R1)—(R6)
satisfies the principle. Makinson and Géardefors [MaG91] showed that
the only postulate lacking a corresponding rule in most techniques of
nonmonotonic reasoning is postulate (R3) which says that the resulting
theory is consistent.

In artificial intelligence, reasoning about action [GiS87, Win88b] is ap-
plied when reasoning how the world is changed as a result of an action
performed by a robot. In such applications we have a number of frame
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problems: what remains unchanged (the frame problem), what are the
ramifications (the ramification problem) and when an action can be per-
formed (the qualification problem).

Del Val and Shoham [DVS92] have compared theory update and the
theory of action. They showed that neither the KM-postulates nor the
way to handle integrity constraints need to be represented as postulates,
instead they can be derived from the theory of action.

Del Val and Shoham considered deterministic actions in situation cal-
culus. Situation calculus is based on predicate logic having terms of three
types: situations, actions, and fluents. Properties are propositional functions
from the set of situations to truth values true and false. A property func-
tion expresses whether or not in a certain situation a property holds. As
an example, in the situation calculus of the blocks world, some situations
have the property “the block is on the table”, some do not. Situation cal-
culus also contains the functions result and hold. The function result takes
action and situation as arguments giving the new situation. The predicate
holds takes a situation and a property as arguments. The predicate gives
the truth value of the property in the situation.

The effects of the actions are given as axioms. Let A denote an action,
C denote the integrity constraints and let P; ... P,, denote the intermediate
consequences of the action given preconditions R; ...R;,. The theory thus
contains the causal axioms

Vs(R;(s) — holds(P;, result(A, s)))

that give the consequences of the actions, and the integrity constraints
VsC(s).

The rules above let us know what is changed when an action takes
place. In order to define the facts that do not change, a frame axiom is
defined and used in circumscription. For this technique we need unique
names axioms for fluents and situations.

In the frame axiom we choose a set of properties as an extension of a
frame predicate. Choosing the properties right is important. If the frame
is too large, defining the actions becomes complicated. If the frame is too
small, the causal axioms become too weak [Lif90]. As an example, if we,
in the blocks world, where blocks are being moved and painted, omit the
colour of a block from the frame, we will not be able to reason that moving
a block does not change its colour. Ramifications may cause problems, if
the frame contains properties that depend on each other.

Example 4.11. Consider a room with two vents. According to the integrity
constraints, the room is stuffy, if both of the vents are covered. The property
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“the room is stuffy” may be omitted from the frame, because it is totally
determined by the other properties in the frame, namely by the locations of
the objects in the room. If the property were in the frame, the ramification
would have to be defined in causal axioms or we would not be able to
reason an intuitive result of the action moving an object on a vent.

An update may be interpreted as situation calculus as follows. Let
Sop denote the situation that describes the state of the knowledge base Ty
before the update takes place. The new formula p is considered to cause
an action A§° (Ag0 is an action that in the situation Sy causes p). The result

of the update is described by result(AiO, S). If TS denotes the theory and

Comp(TS) denotes the complete theory obtained by the circumscription
technique, then [DVS94]

To o p [ x, if Comp(TS) [ holds(Ty, So) — holds(x, result(ASO,So)).
p p p

Different frame actions result in different operators.

Del Val and Shoham have, using the method of translation described
above, derived the KM-postulates and the way to handle integrity con-
straints from the theory of actions. In addition, postulate (U2) needs the
frame completeness condition, according to which the properties in the
frame must always uniquely identify the state, that is, the truth of all the
properties.

A word on notation

We shall later modify these postulates further. The postulates introduced
in this chapter will throughout this work be referred by using italics font,
the modified postulates will be referred by using roman font.



Chapter 5

Revised rationality criteria for belief
and knowledge change

In this thesis, we will refine! the rationality criteria for knowledge and
belief change. Our aim is to (1) reject contradictive input and (2) take into
account the effect of knowledge on belief change. Throughout this chapter
the effect of knowledge on belief change is considered the same as the effect
of integrity constraints (equations 4.1 and 4.2 on page 43) as defined by
Katsuno and Mendelson [KaM91b].

We have interpreted some of the rationality criteria as static integrity
constraints. We will then consider change operators as functions from
propositional formulas and epistemic states satisfying these static integrity
constraints to epistemic states satisfying the constraints. The rationality
criteria for knowledge and belief change limit the variety of such functions.

The rationality criteria depend on the type of the change. We will
start by proposing two static integrity constraints, then we will refine the
postulates for belief revision and contraction. Some postulates will turn out
to be redundant. We then interpret the rationality criteria for expansions
as guarding knowledge expansion. By defining a small set of postulates,
we will introduce a new type of change, competing evidence. Competing
evidence is a commutative version of belief revision, where the latest piece
of information is not considered to be the most reliable. We will refine the
postulates for belief update and erasure, and finally we will discuss some
related work.

IThis proposal was given already in the preliminary version [Elo04, chapter 5] of this
thesis.
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5.1 Static rationality criteria on epistemic states

Some of the assumptions on the knowledge base we made in Chapter 2
may be considered as static integrity constraints on the knowledge base
because they involve only one state at a time. Let T denote the epistemic
state of the knowledge base with a belief set Ty and a knowledge set Tx.
We propose the following two static rationality criteria on epistemic states:

(Sl) TB IZ TK.
(52): Tg is consistent.

The first constraint is motivated by Hintikka [Hin62, chapter 3], who says
that what one knows, one believes. The second constraint is motivated
by the AGM-postulates [AGM85]. We are going to refine the rationality
criteria for belief and knowledge change in such a way that information
inconsistent with the knowledge in the state will not be accepted. Together
with the other rationality criteria, this makes it impossible to turn the set
T inconsistent. Therefore, we find it reasonable to make the consistency
of the beliefs in the set Ty a static integrity constraint.

5.2 Refined postulates for belief revision

Let us first consider the cases where new information is obtained about a
static world. Let o denote a belief-revision operator, T an epistemic state
satisfying conditions (S1) and (52), and let A and B denote propositional
formulas. We refine the joined set of postulates for belief revision (page
30) and iterated belief revision (page 31) as follows:

(KO) (T o A)K = TK.

(K1) (ToA) E (ToA).

(RO): If Tx E —A, then (T o A)g = T5.

(R1): If Tx £ —A, then (T o A)g E A.

(R2): If Tg £ —A, then (T o A)g = Tg U {A}.

(R3): (T o A)g is consistent.

(RR1): If BE Aand Tk F —B, then ((T o A) o B)g = (T o B)g.
(RR2): 1If BE —Aand Tk £ —B, then ((T o A) o B)g = (T o B)g.
(RR3): If(ToB)gE A, then((ToA)oB)s [ A.

(RR4): 1If (T o B)g [~ —A, then ((T o A) o B)g [~ -A.

(RR5): If Tg £ A and (T o B)g [£ —A, then ((T o A) o B)g  A.

We propose a new postulate (K0). According to the postulate, belief
revision does not affect knowledge. Postulates (K1) and (R3) say that
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the static integrity constraints (51) and (52) must be satisfied after the
revision. In postulates (RO) and (R1), an input that is inconsistent with
the knowledge is rejected, even though it is the latest piece of information
and would therefore be otherwise acceptable. Because the original AGM-
postulates assume that we detect inconsistencies between the old and the
new beliefs, we may assume that we are able to detect inconsistencies
between the knowledge and the new beliefs as well. Postulate (R2) has not
been changed. In postulates (RR1) and (RR2) we rule out those formulas
that are inconsistent with the knowledge in the state. Postulate (RR5) is
new. It says that if learning B does not contradict A, then learning A will
result in an epistemic state where learning B does not make us give up
believing A.

If a belief-revision operator satisfies the above-mentioned collection of
postulates, it also satisfies the following postulates:

(R4): If A=B,then (T o A)g = (T o B)g.
(R5):  (ToA)U{B}E(To(AAB))s.
(R6): If (ToA)slE—(AAB),then(To(AAB))gkE(ToA)sU {B}.

Postulates (R4) and (R5) have not been changed, only postulate (R6) has
been refined. These postulates are not included in our proposal because
their redundancy.

Theorem 5.1. If a belief-revision operator satisfies postulates (R0)-(R3), and
(RR1), then it satisfies postulate (R4).

Proof. Let o be a revision operator that satisfies postulates (R0)-(R3) and
(RR1). Let T denote an epistemic state that satisfies integrity constraints
(S1) and (S2), and let A and B denote propositional formulas such that
A=B.

If Tk E —A, then Tk E —B and (RO) gives us (' o A)g = Tg = (T o B)g. If
Tk ¢ —A, then Tx ¢ —B and (R1) givesus (T o A)g E A. Thus (T o A)g E B
and (T o A)g = (T o A)gp U {B}. By (R3), (T o A)g ¥ —B, and (R2) gives us
((ToA)oB)g = (ToA)gU{B}. (RR1) finally givesus ((ToA)oB)g = (ToB)g. O

Theorem 5.2. If a belief-revision operator o satisfies postulates (K0), (K1) (R0)-
(R2), and (RR1), then it satisfies postulates (R5) and (R6).

Proof. Let o denote a revision operator that satisfies postulates (K0), (K1),
(R0)-(R2), and (RR1). Let T denote an epistemic state that satisfies integrity
constraints (51) and (S2), and let A and B denote propositional formulas.
If (T o A)g E =B, then (R5) and (R6) hold trivially.
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Assume (T o A)g ¥ —B. Then by (K1), (T o A)x ¥ —B, and by (KO0),
Tk = —B.

If Tx & —A, then (RO) gives us (T o A)g = Tg = (T o (A A B))g. By (51),
Tg E —A, thus (ToA)g E —~A and (R6) holds trivially. Finally, (ToA)gU{B} =
TgU{B} E Tg = (T o (A A B))g. Thus, (R5) holds.

Assume Tk ¢ —~A. Postulate (R1) then says that (T o A)g F A, thus
(ToA)s E "(AAB)and (ToA)g U {B} = (T 0 A)g U{A A B}. Then (R2) gives
us ((ToA)o(AAB))g = (ToA)gU{A A B}. Because (T o A)g I~ =(A A B),
(K1) gives us (T o A)x ¢ =(A A B), and by (KO), Tk ¢ =(A A B). (RR1) then
gives us ((T'oA) o (A A B))g = (T o (A AB))g, thatis, (R5) and (R6) hold. O

Let us next motivate our new postulate (RR5) by the following example.

Example 5.1. Assume a situation, in which a new family has moved next
door. You have not seen them yet, but you have learned that they have
three daughters, Eleanor, Marianne, and Margaret, born in that order.
You therefore believe that Eleanor is taller than Marianne. You have no
beliefs concerning whether or not Margaret has blue eyes, and should you
learn that Marianne is taller than Eleanor, you would still have no beliefs
concerning the colour of Margaret’s eyes. You then first see Margaret and
learn that she has got brown eyes, and after that you meet the two older
daughters and see that Marianne is taller than Eleanor. Would it not be
unintuitive to lose then one’s belief concerning Margaret?

Our postulates for belief revision suggest that we may express knowl-
edge using doxastic conditionals.

Theorem 5.3. Given an epistemic state T that satisfies constraints (S1) and
(S2), a revision operator o that satisfies postulates (R0)—(R3), and a propositional
formula A, then Tx = A if and only if (T o =A)p E A.

Proof. Assume an epistemic state T that satisfies constraints (S1) and (52), a
revision operator o that satisfies postulates (R0)-(R3), and a propositional
formula A.

If Tx = A, thenby (S1), T E A, and by (RO), (T o =A)p E A. If Tk ¢ A,
then by (R1), (T o =A)p | =A, and by (R3), (T o =A)p £ A. O

5.3 Refined postulates for belief contraction

Next we will refine the postulates for contraction, and we will also propose
anew set of postulates for the interaction between contraction and revision.

Let o denote a belief-revision operator, T an epistemic state satisfying
conditions (S1) and (S2), and let A and B denote propositional formulas.
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Let us consider a contraction T e A, where the beliefs in an epistemic state
T satisfying constraints (S1) and (S2) are contracted with a formula A by
using an operator . For contractions (page 33), we propose the follow-
ing collection of rationality criteria, which also involve a belief revision
operator o:

(KO) (T e A)k = Tk.

(K1):  (Te Ak (Te Ak

(CO)::  IfTx E A, then (T e A)g = Tg.
(C1):  If T i A, then (T o A) I A.
(C2):  IfTg b A, then (T o A)g = Th.

(C3):  Tpk (T oA

(CR1): If BE Aand Tx £ —B, then ((T e A) o B)g = (T o B)g.
(CR2): If BE —A and Tk { =B, then ((T ® A) o B)g = (T o B)g.
(CR3): If (T o B)g E —A, then ((T ® A) o B)g E —-A.

(CR4): If(ToB)glE A, then ((TeA)oB)g - A.

Postulate (K0) says that belief contraction does not affect knowledge. Pos-
tulate (K1) says that constraint (51) should hold after revision. If constraint
(S2) is satisfied before a contraction, then by (C3) it remains so after the
contraction. By postulates (C0) and (C1), the contraction succeeds only
if the input is not knowledge. Postulates (C2) and (C3) have not been
changed. Postulates (CR1)-(CR4) correspond to postulates (RR1)—(RR4)
for iterated revisions, and their motivation is analogous to those.

If a belief-contraction operator satisfies the above-mentioned collection
of postulates, it also satisfies the following postulates:

(C4): If A=B,then (T e A)g = (T e B)g.
(C5):  (TeApU{A}ETs.

Theorem 5.4. If operator e satisfies postulates (C1)—(C3), (CR1), and (CR2),
then it satisfies postulate (C4).

Proof. Let o denote a contraction operator that satisfies postulates (C1)-
(C3), (CR1), and (CR2), and let o denote a revision operator that satisfies
postulates (R2) and (R4). Let T denote an epistemic state that satisfies
integrity constraints (S1) and (S2), and let A and B denote propositional
formulas such that A = B.

If Tx E A, then by (C0), the case is trivial. If T ¢ A, then by (C2), the
case is trivial.

Assume Tx ¢ A and Tg E A. Then by (S2), Tg ¥ —A, and by (51),
Tk FE —A.
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Postulate (C1) gives us (T @ A)g ¢ A, and by (C3), (T ® A)g ¢ —~A. Then
postulates (R2) and (CR1) give us (TeA)gU{A} = ((T®eA)oA)g = (ToA)gand
postulates (R4), (CR1), and (R2) giveus (ToA)g = (ToB)g = ((I'eB)oB)g =
(T e B)g U {B} = (T ® B)p U {A}. Postulates (R2), (CR2), and (R4) give us
(TeA)pU{=A}l=((TeA)o-A)g=(To-A)g=(To-B)g=((TeB)o-B)g =
(TeB)gU{—B}=(TeB)gU{—=A}. Thus (T e A)g = (T e B)g. O

Theorem 5.5. If operator e satisfies postulates (C2), (C3), (CR1) and (CR2),
then it satisfies postulate (C5).

Proof. Let o denotea revision operator that satisfies postulate (R2), and let o
denote a contraction operator that satisfies postulates (C2), (C3), (CR1), and
(CR2). Let T denote an epistemic state that satisfies integrity constraints
(S1) and (52), and let A denote a propositional formula.

If Tg £ A, then by (C2), (T @ A)g = Tp and (C5) holds.

Assume Tg = A. Then by (S2), T £ —A, and by (C3), (T @ A)p ¥ -A.
Then by (R2), (T @ A)g U{A} = ((T @ A) o A)g. By (S1), Tk ¢ —A, and by
(CR1), (T ® A)o A)g = (T o A)p. Then by (R2), (To A)g = T U {A} = Ts.
Thus (C5) holds. m|

5.4 Rationality criteria for knowledge expansion

According to Hintikka [Hin62, chapter 2], knowledge is something we
are ready to defend no matter what we might learn. In addition to that,
knowledge is always true. Thus the only change we may have concerning
knowledge is monotonous expansion.

Let @ denote a knowledge-expansion operator, T an epistemic state
satisfying conditions (S1) and (52), and let A and B denote propositional
formulas that are consistent with Tx. We propose the following postulates
as rationality criteria for knowledge expansion:

(K1): (ToAp E(ToA).

(K2): If Tk £ —A, then (T® A)x = Tx U {A}.

(R2): If Tg £ —A, then (T® A)g = T U {A}.

(R3): (T ® A)p is consistent.

(RR1): If BE Aand T~ —B, then (T ® A) ® B)g = (T @ B)g.

Note that we have assumed that here we only consider input that is
consistent with the old knowledge. Postulate (K2) is analogous to postulate
(R2). Postulates (K1) and (R3) say that (S1) and (52) should be satisfied
after the expansion.
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Postulate (K1) together with postulate (K2) suggests that beliefs may
have to be changed when knowledge changes. Therefore any knowledge-
expansion operator must also satisfy the postulates for belief revision. Itis,
however, sufficient to have only postulates (R2), (R3), and (RR1). Together
postulates (K1) and (K2) imply (R1). Postulate (RR2) is not applicable here,
and in those cases when (RR3), (RR4), or (RR5) could be applicable, they
are implied by (K2) together with (K1) and (R3).

5.5 Rationality criteria for competing evidence

We will now give a set of postulates for a new type of belief change that we
call competing evidence. It relates to belief revision: in both cases we get
new information about a static world. The difference lies in the epistemic
attitude towards the new piece of evidence: in competing evidence the
input has no priority over the old beliefs.

Let T denote an epistemic state that satisfies constraints (51) and (52), *a
competing-evidence operator, o a revision operator, A and B propositional
formulas. We propose the following postulates for competing evidence:

(K1): (T+A)p E (T Ak

(RO) If TK |= —|A, then (T * A)B = TB-

(R2): If Tg £ —A, then (T +* A)g = Ty U {A}.

(R3): (T = A)p is consistent.

(NP1): (T =A)*B)g = ((T*B)*A)s,

(NR1): If BE Aand Tk £ —B, then ((T * A) o B)g = (T o B)g.
(NR2): If BE —A and T £ —B, then ((T * A) o B)g = (T o B)g.
(NR3): If (T o B)g I~ —A, then (T * A) o B)g F A.

Postulate (KO) states that competing evidence does not affect knowledge,
and according to postulate (R0), input that is contradictory to knowledge
will not be accepted. The belief-revision postulate (R2) is needed also in
competing-evidence change: a consistent solution is strived for, whenever
such a solution exists. Postulates (K1) and (R3) say that the static integrity
constraints (S1) and (52) must be satisfied in the resulting epistemic state.
Postulate (NP1) calls for commutativity. Postulates (NR1)-(NR3) corre-
spond to postulates (RR1), (RR2), and (RR6).
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5.6 Refined postulates for belief update and erasure

Let us consider belief updates, that is, inserting to a theory a formula that
records a change in the world. We will refine the KM-postulates to reject
beliefs known to be false.

Let ¢ denote a belief-update operator, T, T’ and T” epistemic states
satisfying constraints (51) and (S2), and let A and B denote propositional
formulas. We do not assume that epistemic states are represented by
single propositional formulas, but we do assume that their knowledge sets
and belief sets can be represented by propositional formulas, and thus they
denote here propositional formulas. The postulates for belief update (page
35) are refined as follows:

(KO0): (ToAx = Tk.
(K1): (ToA)gE (T A)k.
(U0): If Tx E —A, then (T ¢ A)g = Tp.

(Ul): I Tg ¥ —A, then (T o A)g E A.

(U2) If Tg E A, then (T ¢ A)g = Tp.

(U3) (T ¢ A)p is consistent.

(U4): If Tx =Ty, Ts = Ty, and A = B, then (T o A)g = (T’ © B).
(U5): (ToA)pU{B}E(T<(AAB))E.

(Us6) If (ToA)gEBand (T ¢ B)g E A, then (T ¢ A)g = (T ¢ B)g.
(U7) If Tg is complete, then (T o A)g U (T ¢ B)g = (T ¢ (A V B)).
(U8) If Tx =Ty =Ty and T = (T V Tg), then

(T o A)g = (T o A V (T o A)g.

Postulate (K0) says that belief change does not affect the knowledge in the
state. In (U0) and (U1) we refuse to accept beliefs that are inconsistent
with the knowledge in the state; that is why we do not get inconsistent
beliefs into our epistemic state. In (U4) and (U8) we have again taken the
knowledge into account. Postulates (K1) and (U3) say that constraints (51)
and (S2) must be satisfied after the update.

Let us next consider an update T¢A, where a formula A is erased from
a theory T. We refine the KM-postulates [KaM91a] for belief update (page
37) as follows:

(KO): Ty = (TeAX.

(K1):  (TeA)s £ (ToA).

(E0):  If Ty k= A, then (T+A)g = Tp.
(E1):  If Tx I A, then (ToA)g i A.
(E2):  If Tg k —A, then (ToA)s = T,
(E3): Tg E (T4A)g.
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(E4): If Tx = Ty, Tp = Ty, and A = B, then (T4A)p = (T'#B)g.
(E5): (T*A) U {A} E Tp.
(E8): It Tk =Ty =T and T = (T V Tf),

then (T¢A)g = (T"¢A)g V (T" ¢A)g.

We have added postulate (K0) saying that belief change does not affect the
knowledge in the state. In (E1) we refuse to erase beliefs that are known in
the state. In (E4) and (E8) we have again taken the knowledge into account.
Postulates (K1) and (E3) guarantee that the static integrity constraints (51)
and (52) are satisfied after the erasure.

5.7 Related work

In the former studies it has not always been made explicit whether belief or
knowledge change has been considered [FrH96]. We have taken the AGM-
postulates [AGMS85] and the DP-postulates [DaP97] as rationality criteria
for belief revision. According to our interpretation, the set of postulates
suggested by Gardenfors [Gar88, chapter 3] for monotonous expansions
guard knowledge change, while the KM-postulates [KaM91a] guard belief
change.

We have modified the AGM-, DP-, and KM-postulates to reject beliefs
known to be false, and we have strengthened postulates (R3) and (U3) by
introducing constraint (S2). Unsatisfiable beliefs have also been rejected or
omitted in the studies of Friedman and Halpern [FrH94], Spohn [Spo88],
and Fagin et al. [FUV83].

Inbelief revision, our postulate (RR5) resembles the following postulate
of independence by Yi and Thielscher [YiT07]:

(RR6):  If (T o B)g b —A, then (T o A) 0 B)s E A.

In the case T E A, postulate (RR5) does not imply (RR3) nor (RR4), so
it is complementary to them, whereas postulate (RR6) implies postulates
(RR3), (RR4), and (RR5). We will consider postulate (RR6) only optional,
because it prevents idempotency.

Our Theorem 5.3, saying Tk | A if and only if (T o —~A)p = A, resembles
the theorem Ka < B™a by Lamarre and Shoham [LaS94]. The theorem
can be read “knowing a is equivalent to believing « given evidence ~a”.
However, Lamarre and Shoham, unlike us, accept inconsistent beliefs.
Then B™*a says that beliefs under the hypothesis —« are not consistent.

In knowledge expansion, if we were to give up the assumption of
knowledge always being true, we would have something we might call
certainty [LaS94] or convictions [Nyk11] instead of knowledge. Then the
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issue of inconsistency of input might arise. To deal with the possible in-
consistency, we might alter the postulates so that input that is inconsistent
with the old convictions would result in the state of total ignorance:

(KO0): Tk E-A thenT®A =1.

For the motivation of this rationality criterion, imagine a person has just
been convinced that some piece of information he has considered as irre-
vocable might not be true after all. He would then utter: “I no longer know
what to believe in”.

In competing evidence, if we want the new formula to be believed
after the change (postulate (R1)), or even if we only want the formula
to be considered compatible, we cannot expect commutativity of change.
Therefore, if we call for commutativity, postulate (R1) has to be given
up. Our rationality criteria on competing evidence differ from those on
arbitration introduced by Revesz [Rev93], because we have chosen to keep
postulate (R2), not postulate (R1).

Those variations of belief revision in which postulate (R1) does not hold
due to rejecting some unbelievable input have been called 'non-prioritized
belief revision” [Han99]. In those studies, however, believable inputs have
still been prioritized over the old beliefs. We would rather call these
variations (including that of ours) as "prioritized belief revision’, because
it is our competing evidence, which is truly non-prioritized.



Chapter 6

New operator collections

In this chapter we will now introduce two sets of operators for knowl-
edge and belief change. The aim is to demonstrate that finite, concrete
implementations of knowledge bases exist such that the rationality criteria
proposed for belief and knowledge change are satisfied.

We shall consider operators on two different representations of epis-
temic states. One is a finite ordered nonempty set of satisfiable proposi-
tional formulas, which we will call an epistemic base. The other is a finite
set of ranked formulas, which we will call an epistemic function. Epis-
temic bases are syntactic versions of Spohn’s [Spo88] simple conditional
functions, epistemic functions are syntactic versions of Spohn’s ranking
functions (page 24). Both simple conditional functions and ranking func-
tions carry the ordering of disbelief, but unlike ranking functions, simple
conditional functions (and our epistemic bases) cannot carry gaps in the
ordering.

The operators have been presented in the preliminary version of this
thesis [Elo04].

6.1 Operators on epistemic bases

We shall first give a formal definition of an epistemic base and then
introduce a small collection of change operators on epistemic bases: a
knowledge-expansion operator @, a belief-revision operator o, a belief-
contraction operator e, and belief-update operators ¢ and o’.

Epistemic bases

Definition 6.1. An epistemic base T is a linearly ordered structure T =
(5,R), where S C L is a finite nonempty set of satisfiable propositional
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formulas that are pairwise inconsistent with each other,and RC S x Sisa
linear ordering on S.

Because R is a linear ordering, R is transitive, and for all s,s” € S, exactly
one of the three alternatives sRs’, s = s’, and s’Rs holds [End77]. Because S
is finite, any of its subsets has a minimal element in any linear ordering on
S. Thus R is a well-ordering and min(S, R) is the minimal element in S.

The intuition behind epistemic bases goes like this. The ordering R is
an ordering of disbelief. The minimal element in the ordering is the most
plausible one of all the formulas in S, and so on. A propositional formula A
is then believed in the epistemic state, if it is entailed by the most plausible
formula in S, and it is known in the epistemic state, if it is entailed by all
the formulas in S. Thus the minimal element in S represents the belief set,
whereas the disjunction of all the elements in S represents the knowledge
set, that is,

Tg = min(S, R) (6.1)

and
Tk =V S. (6.2)

Then by definition, both Tg F Tx and T L hold, which means that
every epistemic base satisfies constraints (51) and (S2). The state of total
ignorance can be represented by an epistemic base T = ({T}, 0).

Given an epistemic base T = (S, R), then we define for each s € S

ord(s) =g l{s" € S: (s, 5) € R}. (6.3)
If |S| = n, then we may equivalently refer to T by using a list formulation
T=[1°T',...,7"], (6.4)

where each T/, 0 < i < 1, is a formula s € S such that ord(s) = i. At the
top of the list is the most plausible formula and so on. Thus T = T and
Tk = V' T'. By definition, (T?, T/) € R, T' L, T/ L, and T A T/ =1 for
all0<i<j<n.

Example 6.1. Let us consider an epistemicbase T = ({aAb, aA—b, maAc}, {(aA
b,a A —b),(aANb,—aAc)(aN-b,—aAc)}), or equivalently, T = [T° T, T2,
where T = aAb, T' =aA-b, and T> = ~a Ac. Then Tg = a A b and
Tk=@Abyv@An-b)V(~aAc)=aVec.

Epistemic bases T = [T°, TY,...,T" ] and U = [UO, U?,..., um1] are
defined to be equivalent, if and only if n = m and T" = U’ holds for all i,
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0 <i < n. Itis easy to see that this relation on epistemic bases is reflexive,
symmetric, and transitive, that is, an equivalence relation.

Epistemic bases (as well as epistemic functions) carry the epistemic
entrenchment involved in belief revision. A formula A is less or equally
entrenched compared to a formula B, if either Tx | B, or —A is consistent
with some formula T?, 0 < i < n and —B is inconsistent with all formulas
T,0<j<i.

A knowledge-expansion operator

Our knowledge-expansion operator @ is used to insert propositional for-
mulas of knowledge into epistemic bases. When the input is consistent
with Tk, the operator cuts down the number of possible models by rejecting
those possible models that do not model the new formula.

Definition 6.2 (Operator ®). Given an epistemic base T = [T°, T,...,T" 1]
and a propositional formula A, then T & A =4, ({T},0), if Tk = —A. Other-
wise, we define for all i, 0 < i < n, formulas U’ = T! A A. Finally, we define
T® A =4¢ (S, R") where

S’ ={U'|0<i<n U L) (6.5)

and o
R ={U,U)|0<i<j<nin(§ xS). (6.6)

Example 6.2. Let us consider expanding the epistemicbase T = [aAb,aA—b,
—a A c] by a formula b. We calculate the new formulas as follows:

UW=T'Ab=@AbAb =aAb
Ul=T'Ab=@A-b)Ab =1L
U>=T>Ab=(-aAc)Ab =-aAbAc.

The result is the structure T®@b=({aAb,—aAbAc}, {aAb—-aAbAC)),
or equivalently, T®b = [a Ab,~aAbAc]. Thus (T®b)g =aAband
(Tebx=@Ab)V(—aAbAc)=(@Vc)ADb.

By definition, the operator maps equivalent epistemic bases to equiva-
lent epistemic bases. It also satisfies our postulates for knowledge expan-
sion.

Theorem 6.1. The operator @ is a function from epistemic bases and propositional
formulas to epistemic bases and it satisfies postulates (K1), (K2), (R2), (R3), and
(RR1).
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Proof. Let T = [T, TY,..., T" 1] (or equivalently, T = (S,R)) denote an
epistemic base, let A denote a propositional formula, and let @ denote the
knowledge-expansion operator defined above. If Tx | —A, then the claim
holds trivially. Assume Tx = —A.

Because (V) T)) A A = VI (T! A A), postulate (K2) is satisfied, and
because Tk AA L, thesetS = {T'AA|0<i<n,T'ANAKL)is nonempty.
By definition the set S” is also finite and all elements in the set are satisfiable.
Lets,s’ € S’. Thens = T'AAands’ = T/AA for somei, ,0<i,j<nlIfs#¢,
theni # j, T' AT/ 1L and thus (T' A A) A (T/ A A) L. Equation i = j holds
if and only if s = s’. Equationi < j holds if and only if (T AA, T/ AA) € R/,
equation j < i holds if and only if (Tf AA, T A A) € R’. Thus eithers = ¢/,
s<s ors <s. If(s,8),(s,s") € R/, thens = T'ANA, s’ = T/ A A, and
s” =TFAAforsome0 <i< j <k < n. Because i <k, (s,s””) € R’. Thus
the relation R’ is a linear ordering and the structure T® A = (S’,R’) is an
epistemic base and, as such, satisfies (K1) and (R3) by definition.

If Tg £ —A, then (T ® A)° = T° A A. Postulate (R2) is satisfied.

To prove (RR1), assume B = A and Tk ¢ —B. For the forward direction,
assume w = (T ®A)® B)g. Thenw = (T ® A) ® B)° = (T A A) A B for
some k,0 <k <nwithT"AAE -Bforall0 <i<k. Then T!  —B for all
0 <i<kandw E (T®B)". For the converse direction, assume w [ (T ®B)g.
Then w k= (TX A B) for some 0 < k < n with T £ =B for all 0 < i < k. Then
T'AAE -Bforall0 <i<kand w [ (T ®A)® B)°. Thus postulate (RR1)
is satisfied. O

A Belief-revision operator

Even though ranking is not used in epistemic bases, it is used in the process
of belief change. Our belief-revision operator o is a variant of the belief-
revision operator (page 25) by Darwiche and Pearl [DaP94], applied on
epistemic bases.

Definition 6.3 (Operator o). Given an epistemic base T = [T° T1,...,T" 1]
and a propositional formula A, we define T o A as follows. If Tx E —A or
TgE A, thenTo A =4 T. Otherwise, let m = min({i |0 <i<n, T! ¥ =A)).
We define formulas U°, U?, ..., U":

T A A ifi=0,
Ui = (Tm+f AA)v(Tf-1 /\—|A) if0<i<mn—m, and (6.7)
T1 A=A ifn—-m<i<n.

Finally, we define T o A =4 (5, R’), where §’ = {U'10<i<n, UKL
and R’ = {(U}, W) |0<i<j<nn(S xS).
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If the input is already believed or if it is unbelievable, the operator
leaves the epistemic base unchanged. Otherwise, the operator splits each
formula of the epistemic base into two formulas: one with a conjunction
with the input and the other with a conjunction with the negation of the
input. These formulas are then separately shifted in the ordering making
the formulas with the negation of the new formula more disbelieved in the
ordering compared to the others as shown in Table 6.1 (page 77).

Example 6.3. Let us consider revising an epistemicbase T = t® (a V ¢) =
({a Vv c},0) first by a and then by a A b. The base T and the new formulas are
calculated as follows:

(Toa=T'Aa=(@Vc)Aa=a
(Toa)' =T'A-a=@Veo)A—-a=-aAc

((Toa)o(@Ab)’=(Toa) A(@Ab)
=aAN(@AD)
=aAb

((Toa)o(@Ab) = (Toa) A@Ab)V (Toa) A=(aAb))
=((maAc)A@ADb)V(aA-(aAb))
=aA-b

((Toa)o(@aAb))?=(Toa)l A=(aAb)
=(-aAc)A=(aAb)
=-aANc.

WegetToa=[a,—~aAcland (Toa)o(aAb) =[aAbaA—-b—-aAc]. The
result is the epistemic base introduced in Example 6.1.
Example 6.4. Let us consider revising an epistemic base T =70 (a Ab) =
[a Ab,—a Vv —b] by a formula —a. The epistemic bases are calculated as
follows:
(To-a)=T'A-a =(-aV-b)A—-a=-a
(To-a)!=T°A—=—a=@Ab)Aa =aAb
(To-a)?)=T'A=—a=(-aV-b)Aa =aA-b
We then revise the base T o —a by a formula a:

U= (To-a) Aa =aAb

Ul=((To-a)2Aa)V({(To-a)lA-a)=-aV-b
U2 = (T o —|a)1 A —ad =1
U =(To-a)A—a =1.
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The result [a Ab, ~aV —b] is equivalent to the result in Example 3.12. We can
see that here T is recovered as when using semantically-oriented operators.

Example 6.5. Let us revise an epistemicbase T = to(aVb) = [aV b, ~a A —b]
by a formula a. The new epistemic base is calculated as follows:

(Toa)=TAa =q
(Toa)l =(T'Aa)V(TOA—a) =-aAb
(Toa’>=T' A -a =-aA-b

We then revise the base (T o a) by a formula —a:

U= (Toa)l A—a =-aAb
Ul=(Toa*A-a)V(Toa)P A-—a)=aV b
U= (Toa)l A—a =1
us = (Toa)z A ——q =1.

The result [-a Ab,a Vv —b] is equivalent to the result in Example 3.13. As
when using syntactically-oriented operators, b is believed in the resulting
epistemic base.

By definition, the operator maps equivalent epistemic bases to equiva-
lent epistemic bases.

Lemma 6.1. The operator o is a function from epistemic bases and propositional
formulas to epistemic bases.

Proof. LetT = [T°, T,...,T" 1] denotean epistemic base, A a propositional
formula, and o the belief-revision operator defined above. If Tx F —A or
Tg | A, then by definition T o A = T. Thus T o A is an epistemic base.

Let us from now on assume that Tx ¥ —-A and Tg ¢ A. Thus m =
min({i | 0 < i < n,T' = -A}) exists. Then U° = T" A A }1, thus S’ =
{Ut10<i<nU L is nonempty. By definition it is also finite and all
elements in S’ are satisfiable. Lets,s’ € S’. Thens = U’ and s’ = U/ for
somei,j,0<i,j<n Because T AT' L forall0 <k <I<n U AU EL
foralli # j, and s = s’ if and only if i = j. Moreover, (s,s") = u',uly e R,
if and only if i < j. Thus eithers = s/, s <5’ ors’ <s. If (s,5),(s",5”) € R/,
then forsome0<i<j<k<mn,s= Ui,s’ = U/ and s”” = U*. But theni < k
and (s,s”’) € R’. Thus the relation R’ is a linear ordering and the structure
T oA =(S, R’)is an epistemic base. m|

The operator also satisfies our postulates for belief revision.

Theorem 6.2. The operator o is a function from epistemic bases and propositional
formulas to epistemic bases, and it satisfies postulates (K0), (K1), (R0)-(R3), and
(RR1)~(RR5).
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Proof. LetT = [T°, T!,..., T""!] denote an epistemic base, A a propositional
formula, and o the belief-revision operator defined above. By Lemma 6.1,
T o A is an epistemic base. If Tx F —A or Tg E A, then by definition
T o A =T. Thus the claim holds trivially.

Let us from now on assume that Tx £ =A and Tg ¢ A. Thus m =
min({i |0 <i<mn,T' ¥ -A}) exists.

Postulate (K0) is satisfied, because /!, U’ = \/Z'-:ni(Ti ANAYV V(T A
—A) = VIENT AA) v VIH(TE A =A) = VI T

Postulate (R0) holds trivially. By definition U° = T" A A, thus postulates
(R1) and (R3) hold. If Ty ¢ —A, thenm = 0 and (T 0 A)? = TY A A. Postulate
(R2) is satisfied.

To prove that (RR1) holds, assume a formula Bwith B = A and Tk ¥ —B.
Then k = min({i | 0 < i < n, T ¢ —B}) exists, and m < k. Thus U’ =B for
alli,0 <i<k—-m,and U™ {£ —=B.

Because B = A and Tg ¢ A, we have Ty ¢ B, thus by definition
(ToB)g = T* AB. If (T o A)g £ B, then Then ((T o A) o B)? = (U™ A B) =
(TF A A) A B = TF A B = (T o B)?, thus postulate (RR1) holds.

Now assume (T o A)g [ B, in which case we have m = k. By definition
(ToA)oB = ToA,thus((ToA)oB)? = T"AA=T"AAAB = T*AB = (ToB)".
Postulate (RR1) is satisfied.

To prove that (RR2) holds, assume a formula B with B  —A and
Tk ¥ —B. Thus k = min({i | 0 < i < n, T' ¢ —B}) exists. Then by definition
U E —-Bforalli, 0 <i<k and U*! [£ —B. It follows ((T o A) o B)? =
U4TAB=T*A-AAB=TAB.

If T | B, by definition ToB = Tand k = 0, thus (ToB)? = T® = TFAB =
((ToA)oB)?. If Tg - B, then (ToB)? = T AB = ((T 0 A) 0 B)’. In both cases
(RR2) holds.

To prove that postulates (RR3), (RR4), and (RR5) are satisfied, assume
a formula B with (T o B)g £ —A. If (T o A)x E =B or (T o A)g E B, then
((T o A) o B)g = A, because by definition (I c A) o B = T o A and by (R1),
(ToA)g E A.

Assume (T o A)x ¢ =B and (T o A)g ¢ B. Then by (KO0), Tk ¢ —B, thus
k =min({i | 0 <i < n,T" £ —B}) exists. By definition (T o B)® = TX A B.
Because TX A B £ -A, we have m < k. Then U’ |z =B forall 0 <i <k —m,
and U™ £ —B. Tt follows that (T o A)oB)? = U AB = (T*AA)AB E A.
Thus postulate (RR5) is satisfied. Because by (R3), (T o B)g = A implies
(ToB)p lt —A, and ((T o A) o B)g E A implies ((T o A) o B)g ¢ —A, (RR3)
and (RR4) are satisfied as well. O

Operator o is not equivalent to the operator by Darwiche and Pearl
[DaP94], not even in the case where no knowledge is involved. This can
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be seen in the following example.

Example 6.6. Let us revise an epistemic base T = [-a,a A b,a A —b] by a
formulaa A b:

U=T'Aanb =aAb
Ul=(T?A@Ab) V(TP A=(@aAb) =-a
U2 =T' A =(aAb) =1
U3 =T?A—=(aAb) =aA-b

Because U? is omitted, T o (a A b) = [a A b, —a,a A =b]. The absence of
U? can be seen in further revisions:

(To(aAb))o—(aAb) = [-a,a],
(T o(aAb))o—(aAnb))oa=][a —al.

The result would have been different, if we had not omitted U? (see Exam-
ple 6.12).

A belief-contraction operator

Our belief-contraction operator e is used to contract beliefs from epistemic
bases. Again, the operator splits the formulas and then shifts the new
formulas in the ordering, in this case making the formula with the negation
of the input less disbelieved as shown in Table 6.2 (page 77).

Definition 6.4 (Operator ®). Given an epistemic base T = [T° T1,...,T" 1]
and a propositional formula A, we define T e A as follows. If Tx E A, we
define Te A =4, T. Otherwiseletm = min({i |0 <i<n, T! = A}). We define
formulas U°, UY, ..., U™

) i m+i A ; ; _
uzz{(T ANA)V (T A=A) if0<i<n—m, and 68)

T'ANA ifn-m<i<n.
Finally, we define T e A =4 (S, R"), where §’ = {U'0<i<n U FLand
R ={U,U)|0<i<j<n}n(SXS).

Example 6.7. Let us consider contracting a formula a Ab from the epistemic
baseT=((t®aVc)oa)o(@aAb)=[aAb,an—=b-aAc]

U=(T'AaAb)V(T'A=(@aAb)=a
Ul=(T'AaAb)V(T?A—~(@aAb)=-aAic
U>=T>Aanb=L1.

We get T  (a A b) = [a,—~a A c]. We then contract a from the new base and
calculate new formulas:
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ZO
Zl

(Te(@Ab)AaVv(Te@Ab)' A—a=aVec
(Te(@aAb) Aa=L.

We get the result (t@aVc)oa)o(@aAb)e(anb))ea=][aVc]

By definition, the operator maps equivalent epistemic bases to equiv-
alent epistemic bases. It also satisfies the postulates for belief contraction.
In addition, it has the following property that corresponds to postulate
(RR5):

(CR5): If Tg E Aand (T o B)g {£ A, then ((T ® A) o B)g = —A.
If Tg E A, then (CR5) implies (CR3) and (CR4).

Theorem 6.3. The operator e is a function from epistemic bases and propositional
formulas to epistemic bases, and it satisfies postulates (K0), (K1), (C0)—~(C3), and
(CR1)—(CR5).

Proof. Let T = [T°, T, ..., T 1] denote an epistemic base, let A denote a
propositional formula, o denote the belief-revision operator defined in the
previous section, and let @ denote the belief-contraction operator defined
above. If Tx | A, then by definition T e A = T, and if T ¢ A, then by
definition T ® A = T. Thus in those cases, T ® A is an epistemic base and
the claim holds trivially.

Let us from now on assume that Tx - A and Tg = A. Thus m = min({i |
0<i<nT W A)) exists, and m > 0. By definition T e A is an epistemic
base, and as such, postulate (K1) is satisfied.

Because by definition \/7") U’ = /12 (TH A A) v /N (T A =A) =
VI T, (KO) is satisfied. By definition (T e A)g = U® = (TO A A) V (T™ A
-A) ¥ A, thus postulate (C1) holds. Postulates (C0) and (C2) hold trivially.
Because Tj k= A, by definition wehave T =T = TOAA E U% = (Te A)° =
(T o A)g. Thus postulate (C3) is satisfied.

Assume a formula Bwith B F Aand Tk [ —B. Because B A, it follows
T'A-AE -Bforalli,0<i<n Letk=min({i| 0 <i<mn, T} —B}). Then
min({i |0 <i<n, U = —B)) =k,and (TeA)oB)? = UAB = TKAB = (ToB)°.
Thus postulate (CR1) holds.

Assume a formula B with B E =A and Tx ¢ =B. Then Ty [ B,
and (T e A)g ¥ B. Because B = —A, we have T' A A = —B for all i,
0<i<mn Lethk=min({i|0<i<nT £ -B}). Then k > m, and
((T® A)o B)? = U*" A B =Tk A B = (T o B)’. Thus postulate (CR2) holds.

Assume a formula B with (T o B)g ¢ A. If Tx E =B or Tg E B, then
by definition T o B = T, and thus Tp ¢ A, a contradiction. It follows
Tk = —Band Tg £ B. Thenk = min({i | 0 < i < n,T' ¢ —B)) exists
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and (T o B)’ = Tk A B. Because T" A B £ A, we have 0 < m < k. Then
U E -Bforalli,0 <i<k—-m<kand U™ [ —B. Because TX A B £ A,
((TeA)oB)? = UF"AB = (T AA)V(T*A=A)) AB = (T A—A)AB = —A.
Thus postulate (CR5) holds and by (C3), postulates (CR3) and (CR4) hold
as well. O

Belief-update operators

Our belief-update operators ¢ and o’ are used to insert into epistemic
states propositional formulas that record changes in the external world.
The operators use the minimal-change update operator oy (page 21) by
Winslett [Win86]. The idea is to use ow to update each one of the formulas
in the list [T?, ... T""!]. The operator o gives the new piece of information
only little plausibility while ¢’ gives the new formula maximal plausibility.

Definition 6.5 (Operator ¢). Given a propositional formula A and an epis-
temicbase T = [T?, T!,..., T""!], let K denote a propositional formula such
that K = \/Z’-ZZ_O1 T If Tx £ -A, then T o A =4 T. Otherwise we use the
minimal-change update operator oy to define for all , 0 < i < n, formulas

S'=T oy (AAK), (6.9)
and for all i, 0 < i < n, formulas
7l = /\3;5 -/ (6.10)

We then define formulas U°, U?, ..., U" as follows:

S0 ifi=0,
Ui = (si A zi) v (Ti—l A ﬁA) if0 <i<n,and (6.11)
Tn_l A=A lfl =n.

Finally, we define T ¢ A =4 (§',R’), where S’ = {U10<i<mn U L),
and R’ = {(U}, U)) | 0 <i<j<nin(S xS).

In the definition above, formula A is used in conjuction with a formula
representing the knowledge in the epistemic base. Formulas S/, 0 <i < n
denote the results of the updates of formulas T' using the operator by
Winslett. Then for each S/, S' | A and S’ | Tk for all 0 < i < n, but it is
possible that the formulas are not pairwise inconsistent. Formulas U’ are
then used to construct the resulting epistemic base by taking into account
those possible situations in which the formula A is not true, and by impos-
ing the formulas in the new epistemic base to be pairwise inconsistent by
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using formulas Z'. The new ranks of the subformulas are shown in Table
6.3 (page 77).

The operator of Winslett is, however, semantically oriented and we
have no syntactic formulation for the part of update where oy is applied.
Instead, we rely on converting the formulas into equivalent formulas in
disjunctive normal form, interpreting the disjuncts as truth distributions
and performing the update on these model sets as defined by Winslett. The
result can then be interpreted as a formula in disjunctive normal form. If
the formulas involved in the update have together n distinct propositional
symbols, then we need to operate on n-ary disjuncts.

Example 6.8. Let us consider updating a formula T = —a A =bby a formula
p = (a A D) V c using the operator ow. The formulas have together three
propositional symbols, a, b and c. We convert T into (maA—-bAc)V(—aA-bA
—¢) and pinto (aAbAc)V(aAbA—=C)V(aA=bAc)V(maAbAc)V(—aA—bAc). Then
Towp =(maN—-bAc)V(—maA-bAc)V(@aAbA-c) = (—maA-bAc)V(@anbA-c).

Example 6.9. a) Let us consider updating an epistemic base T = [-a A
—b,aV b] by a formula (a Ab) V c. Then the new epistemic base is calculated
as follows:

SO=Tow@Ab)Vec=(-aA-bAC)V(@aAbA-c)
St=Tlow@Ab)Vec=(@Ab)V(@anc)V(bAc)

ul=so =(-aA-bAc)V(@aAbA-c)
U = (ST A =SO)v

(T°A=((@aAb)Vc) =@Arc)V(bAc)V (-aA-bA-c)
UW=T'A=((@aAb)Vvc) =(@A-bA-c)V(-aAbA-c).

Weget To((anb)Vvc)) = [(maA—=bAc)V(aAbA=cC), (aAc)V(bAC)V(~aA=bA=C),
(@A =bA-=c)V(—aAbA=c)]. The formula U° is equivalent to the result
when using operator o in Example 3.6 (21).

b) Let us add to T a formula (a A b) V (b A ¢). The formulas for the new
epistemic base are calculated as follows:

SO=TOow(@Ab)V(bAC)=(—aAbAC)V(@aAbA-C)
St=T ow(@Ab)V(bAC)=(—aAbAc)V(@AbA—c)V(@aAbAc)

U= (-aAbAc)V(@AbA—c)
Ul=@AbAc)V (-aA -b)
U?=(aA-b)V (-aAbA -c).

By definition, the operator maps equivalent epistemic bases to equiva-
lent epistemic bases. It also satisfies the postulates for belief update.
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Theorem 6.4. The operator ¢ is a function from epistemic bases and propositional
formulas to epistemic bases, and it satisfies postulates (K0), (K1), (U0)~(U8) and
(RR4).

Proof. LetT = [T° T, ..., T" 1] denotean epistemic base, A a propositional
formula, and ¢ the belief-update operator defined above. The operator o
(page 35) used in the definition satisfies postulates (U1)-(U8) and (RR4).

If Tx E A, then by definition T ¢ A = T. Thus T ¢ A is an epistemic
base and postulates (K0), (K1), (U0)-(U4), and (U8) hold trivially.

Let us for a while assume that T £ —=A. Then by definition, U° =
S% = TO o1y (A A K) for some K = Tk. Because oy satisfies postulate (U3)
and A A K is satisfiable, U is satisfiable, thus (U3) holds and the set S’ is
nonempty. By definition, relation R’ is a well-ordering, and U AU 1L for
all0 <i<j<n ThusT ¢ A is an epistemic base and by definition (K1) is
satisfied.

Because Tx ¢ —A, postulate (U0) holds trivially. By postulate (U1),
U E A A K, thus (U1) holds. Postulate (U2) holds by (U2), postulate (U4)
by (U4), and postulate (U8) by (U8).

By (U1), (T'ow (AANK) EAAKforalli=0,...,n, thus by definition
(T o A) E Tk. By (U2), (T'AA)ow (AAK) =T AAforalli=0,...,n,
thus by (U8), T'AAE (ToA) foralli =0,...,n. Then by definition,
Tk E (T o A)x. Thus (KO0) is satisfied.

Now we are left to prove that postulates (U5)—-(U7) and (RR4) hold.

If (T ¢ A)g = =B, (U5) holds trivially. If Tx | —A, then (T ¢ A)g = T =
(T ¢ A A B)g, thus (U5) holds. Assume T = —A and (T ¢ A)g = —B. Then
by (Ul), (T ¢ A)g ¢ —(A A B), by (K1), (T ¢ A)x ¢ —(A A B), and by (KO0),
Tk I —(A A B). Thenby (U5) and (U4), (ToA)g AB = (TP o (AAK) AB E
T? oy (AAK) AB) =T oy ((A A B) AK) = (T ¢ (A A B))g, thus (U5) holds.

To prove that (U6) holds, assume (T ¢ A)g = B and (T ¢ B)g  A. Then
by (U3), (K1), and (KO0), Tx ¥ —A and Tx ¥ —-B. By (U6), (T o A)g =
TO ow (A AK) = T oy (B A K) = (T © B)g, thus (U6) holds.

To prove that (U7) holds, assume that T is complete. If Tx = —A and
Tx E —B, then (U?) is trivially satisfied.

If Tx ¥ -A and Tx ¢ —B, then Tx ¥ —(A VvV B). By (U7) and (U4),
(ToA)gA(ToB)g = TP oW (AANK)AT oy (BAK) E T o (AAK)V (BAK)) =
TO o ((AV B) AK)) = (T o (A V B))s.

If (ToA)pA(ToB)p EL, then (U7) holds trivially. Now assume Tk £ —A,
Tx E —B, and (T « A)g A (T © B)g £L. Because Tg is complete and by (U1)
(ToA)g EA,itfollows Tg E A. Thenby (U2), ToA)g=Tg =T o (AV B).
Thus (U7) holds.

To prove (RR4), assume (T o B)g £ —A. Thus by (K1) and (KO), Tk ¥ -4,
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by (Ul), (T¢A)g E A, and by (U3), (T o A)g £ -A. If (T o A)x E —B, then by
definition (ToA)¢B = To A, thus (RR4) is satisfied. Now assume (T ¢ A)k
—B. Then by (K0), Tk ¥ —B, and by definition (T o B)g = T o1y (B A K) and
((T o A) ¢ B)g = (T? oy (A AK)) o (B A K). Then T oy (B A K) = ~(A AK),
and (RR4) is satisfied by (RR4). O

We also define an update operator that gives the new formula maximal
plausibility.

Definition 6.6 (Operator ¢’). Given a propositional formula A and an
epistemic base T = [T?, TY,...,T" 1], let K denote a propositional formula
such that K = \/?:_O1 T If Tk | A, thenTo A =4 T. Otherwise we use the
minimal-change update operator ow to define for all 7, 0 < i < n, formulas
S'=T ow (AAK),and forall i, 0 <i < n, formulas Z = ;;%) —SJ.

We then define formulas U°, U, ..., U1

(S ifi =0,
U={SnZ if0<i<mn, and (6.12)
T " A=A ifn<i<2n.

Finally, we define T o’ A =4 (S’,R’), where §’ = Ut 0<i<2n U L),
and R’ = (U, U/) |0 <i<j<2n}n (S xS).

The new ranks of the subformulas are shown in Table 6.4 (page 77).
By definition, the operator maps equivalent epistemic bases to equivalent
epistemic bases. It also satisfies the postulates for belief update.

Theorem 6.5. The operator o’ is a function from epistemic structures and propo-
sitional formulas to epistemic structures, and it satisfies postulates (K0), (K1),
(U0)—(U8) and (RR4).

Proof. The proof is analogous to the proof of Theorem 6.4. a

6.2 Operators on epistemic functions

We shall first give a formal definition of an epistemic function and then in-
troduce a collection of operators that map epistemic functions and propo-
sitional formulas to epistemic functions. All but the new operator for
inserting competetive evidence are analogous to the operators we intro-
duced in the previous section. The only difference is that they work on
epistemic functions instead of epistemic bases, that is, the gaps that may
arise in the orderings will not be dispensed with.
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Epistemic functions

If we give up the restriction that all the formulas in the epistemic base must
be satisfiable, we get a representation that resembles an ordinal conditional
function. Unsatisfiable formulas mark gaps in the ordering of disbelief.
We define epistemic functions as follows.

Definition 6.7. An epistemic function T, n € N, is a function {0,...,n —
1} — L such that T,,(0) L and T,,(i) A T(j) EL forall0 <i < j<mn.

Analogously to the definitions on epistemic bases, we may equivalently
refer to T = T}, by using a list formulation T = [T°, TY,..., T" ] where T' =
T,(i) for all i, 0 < i < n. Again we define T = T,,(0) and T = /o T,(i).
The state of ignorance 7 can be represented by the function 7 = {(0, T)}.

Example 6.10. Let us consider an epistemic function T = {(0,a A b),(1,a A
=b),(2,—a A c)}, or equivalently, a list of formulas T = [T(0), T(1), T(2)],
where T(0) =a A b, T(1) =a A =b,and T(2) = —a Ac. Then Tg =a A b and
Tk=@Ab)vV@A-b)V(ranc)=aVc.

The models of the formula Tk = \/?:_01 T(i) are the possible models in
the epistemic state represented by the knowledge base. The models of the
formula T(0) are the most plausible models in the state. The models of the
formula T(i) are less disbelieved than the models of the formula T¢(j), for
al0<i<j<n.

Epistemic functions T, and T, are defined to be equivalent, if either

1. n<m,and foralli,j,0<i<n<j<m,
Ty(i) = T,,(i) and T,,(j) =L, or

2. m<mn,andforalli,j0<i<m<j<n,
Tn(i) = T;,(i) and T},(j) =L.

The equivalence of epistemic functions is an equivalence relation, also
denoted by =.

Assume T = T, isanepistemic function. Then again forallw, w’ € [Tk],
w € [T(@®)] holds for exactly one 0 <i < nand w’ € [T(j)] holds for exactly
one 0 < j < n. We define w <r, w’ if and only if i < j. Then <r, is an
ordering of disbelief on possible models.

Epistemic functions resemble priorized theories, which were reviewed
in Chapter 3. However, in epistemic functions priorization is developed
dynamically by the system.
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A knowledge-expansion operator

The knowledge-expansion operator @ is defined only in the cases in which
the new formula is consistent with the knowledge set of the epistemic state.

Definition 6.8 (Operator ®). Assume an epistemic function T = T, and a
propositional formula A that is consistent with Tx. Let m = min({i | 0 <i <
n, T(i) £ —A}). We then define a function (T & A) from {0, ...,n —m — 1} into
L as follows:

(T®A)G) =T +m)AA, forall0 <i<n—m. (6.13)

The operator is analogous to the corresponding operator on epistemic
bases. The new ranks of the subformulas are shown in Table 6.5 (page 77).
A formula A is consistent with the knowledge set Tx = \/Z’-ZZ_O1 T,(@i), if

and only if T(i) ¢ —A for some i, 0 < i < n. Thus the minimum m is well
defined.

Example 6.11. Let us consider expanding the epistemicbase T = [a Ab,a A
—b, ~a A c] by a formula b:

TO)=aAb
T(l)=an—-b
T(2) = —aAc

(T®a)0)=aAb
(Te®a)(l)=aNn-bAb=L
(T®a)(2)=-aAcAb.

Theresult T®b =[aAb, L,~aAbAc]isnotequivalentto[aAb,~aAbAc].
The knowledge set (T@b)x = (@ Ab)V L V(-aAbAc)=(aVc)Abisnot
affected by the unsatisfiable formula (T ® a)(1), but in further revisions the

difference can become visible in the belief set as can be seen in Example
6.12 (page 74).

Theorem 6.6. The operator @ is a function from epistemic functions and proposi-
tional formulas to epistemic functions, and it satisfies postulates (K2), (K1), (R2),
(R3), and (RR1).

Proof. The proof is analogous to the proof of Theorem 6.1. m|
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A belief-revision operator

Our belief revision operator differs from the operator by Darwiche and
Pearl [DaP94] only in the case the new information is inconsistent with the
knowledge in the state.

Definition 6.9 (Operator o). Given an epistemic function T = T,, and a
propositional formula A, we define T o A as follows. If Tx = ~Aor Tg E A,
we define T o A =4 T. Otherwise let m = min({i | 0 < i < n,T(i) ¢ -A}).
We then define

Tm)AA ifi=0,
(ToA)(i) =S (Tm+i)ANA)V(TG—1) A=-A) if0<i<n-—m,and
TE-1) A=A ifn-m<i<n.

(6.14)

The operator is analogous to the corresponding operator on epistemic
bases. Examples 6.3-6.5 are also valid for this operator. However, Example
6.6 is not valid, because when using this operator, unsatisfiable formulas
will not be excluded from the resulting list of formulas. In the long run,
this will affect the result of belief change.

Example 6.12. Let us revise an epistemic function T = [-a,a A b,a A =b] by
a formula a A b:

T(0) = —a

T1)=aAb

T(2)=aA -b

(To(@ADb)O)=T(A)AaAb =aAb
(To@ADb)1)=(TQR)A@AD)V(TO)A-(@aADb)=-a
(To(@ADb)(2)=T@A)A—(aAb) =1
(To(aAb)B) =T(2)A—(aAb) =aA-b

Thus To(aAb) =[aAb,—a, L,aA —b]. The effect of having the formula L
in the list can be seen in further revisions:
(T o(aAb))o—(anb) =[-a,a Ab,a A =b],
(To(@Ab))o=(@aAb))oa=[aAb, —-aV —b].
The result is different from the result [4, —a] in Example 6.6 (page 66), in
which epistemic bases were used.

Theorem 6.7. The operator o is a function from epistemic functions and propo-
sitional formulas to epistemic functions, and it satisfies postulates (K0), (K1),
(RO)—(R3), and (RR1)—(RR5).

Proof. The proof is analogous to the proof of Theorem 6.2. m]
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A belief-contraction operator

Definition 6.10 (Operator o). Given an epistemic function T = T, and a
propositional formula A, if Tx F A or Tp ¢ A, we define T @ A =4 T.
Otherwise let m = min({i | 0 < i < n, T(i) £ A}). We then define

N _ | TGO ANA)V(T(m+i)A-A) if0<i<n-m, and

(T'e A)i) = { T() A A ifn—m<i<n (6.15)

The operator is analogous to the corresponding operator on epistemic
bases. Example 6.7 is also valid for this operator.

Theorem 6.8. The operator e is a function from epistemic functions and propo-
sitional formulas to epistemic functions, and it satisfies postulates (K0), (K1),
(C0)—(C3), and (CR1)-(CR5).

Proof. The proof is analogous to the proof of Theorem 6.3. a

A belief-update operator

Definition 6.11 (Operator ¢). Given a propositional formula A and an
epistemic function T = T}, let K denote a propositional formula such that
K= \/Z’-ZZ_O1 T(@@). It Tk F —A, thenToA =4 T. Otherwise we use the minimal-
change update operator ow (page 21) by Winslet [Win86] to define for all
i,0 <i<n, formulas S’ = T(i) ow (A A K), and for all 7, 0 < i < n, formulas
7= ']-_:10 —S/. We then define

S0 ifi =0,
(ToA)@i) = (Si A Zi) V(TGi—-1)A-A) if0<i<n,and (6.16)
T(n—1)A-A ifi =n.

The operator is analogous to the corresponding operator on epistemic
bases. Example 6.9 is also valid for this operator.

Theorem 6.9. The operator o is a function from epistemic functions and propo-
sitional formulas to epistemic functions, and it satisfies postulates (KO0), (K1),
(U0)—~(U8) and (RR4).

Proof. The proof is analogous to the proof of Theorem 6.4. m|
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A competing-evidence operator

We introduce an operator for entering competetive information into the
knowledge base. The competing evidence operator * also splits the formu-
las and performs shiftings. If the new formula is considered plausible in
the epistemic state, then its negation is made more disbelieved, otherwise
the new formula is made less disbelieved as shown in tables 6.6 and 6.7

(page 77).

Definition 6.12 (Operator *). Given a propositional formula A and an
epistemic function T = Ty, if Tx F —A, we define T * A =4, T. Otherwise,
if Tg £ —A, then we define a function T+ A : {0, ...,n} — L as follows:

T@) A A ifi=0,
(T+A)i) = (TG AA)V (T(i—1) A=A) if0<i<n, and (6.17)
TG —1) A -A ifi =n.

If Tg E —A, then we define a function T * A: {0,...,n — 1} —» L as follows:

(T A)(i):{ (TT(Z(_;')AAx)v(T(iH)AA) H0<i<n-Land g

Example 6.13. Let us change an epistemic function T = 7 * a by formulas
aV band —a. T and the new formulas are calculated as follows:

T0)=a
T(1) = —a

(T+*avb)0)=a
(T+avb)(l)=—-aAb
(T*aVb)2)=-aA-b

(T*avb)+—-a)0)=aVvbd
((T+aVb)*-a)l) = —aA -b.

At the beginning, the result of 7 * a is the same as when revising 7 by a.

The previous example shows that in the absence of competition the
result of inserting competing evidence is the same as that of revision.
It also shows that competing evidence has effects even if it was already
entailed by the epistemic state.
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Table 6.1: New ranks of subformulas in belief revision T o A (6.7, 6.14).

| R R R
T'ANA - - - 0 1 n—-m-1
TiA-A | 1 2 m+1|m+2 n

Table 6.2: New ranks of subformulas in belief contraction T e A (6.8, 6.15).

| R NN R
T'ANA 0 1] m |m+1]--- n-—1
TiA-A | - - - 0 1 n—-m-1

Table 6.3: New ranks of subformulas in belief update T ¢ A (6.11, 6.16).

| BN
Sazi o1 ]n=-1
T'A-A| 1|2 n

Table 6.4: New ranks of subformulas in belief update T o” A (6.12).

| ([t
SSAZE |0 1 n—1
T'A-A| n |n+1 2n—1

Table 6.5: New ranks of subformulas in knowledge expansion T® A (6.13).

Tn—l ‘

T'ANA
Ti/\—|A

0

[T [T T

1

n—-m-1

Table 6.6: New ranks of subformulas in T * A when Tp £ —A (6.17).

| ([T [T
TAA O 1|2 |n-1
TiAn-A| 1|23 n

Table 6.7: New ranks of subformulas in T * A when Tp | —A (6.18).

| ([T [T
TAA | -0 ]1] - |n-2
TiA-A|0|1]2 n-1
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Theorem 6.10. The operator * is a function from epistemic functions and propo-
sitional formulas to epistemic functions, and it satisfies the postulates (KO0), (K1),
(R0), (R2), (R3), (NP1), and (NR1)-(NR3).

Proof. Let T = [T(0),T(1),...,T(n — 1)] denote an epistemic function, let
A and B denote propositional formulas, and let * denote the competing-
evidence operator defined above. It is easy to see that by definition, (T * A)
is an epistemic function that satisfies postulates (K0), (K1), (R0), (R2), and
(R3).

To prove (NR1), assume propositional formulas A and B such that
B E A and Tk £ —B. Then also Tk { —A, and (T o B)(0) = T(m) A B, where
m=min({i | 0 <i<nT £ -B)). Then ((T+A)oB)g=Tm AAAB =
T(m) A B = (T o B)g.

To prove (NR2), assume propositional formulas A and B such that
B E —A and Tk £ —B. Then (T o B)(0) = T(m) A B, where m = min({i | 0 <
i<n, Tt —B)). Weget (T+A)oB)g = T(m)A—=AAB=T(m)AB = (ToB)g.

To prove (NR3), assume (ToB)g £ —A. Thenby (K0) and (K1), Tk ¥ —A.
If Tx = —B, thenby (RO), (ToB)g = Tg. Thus (T+A)oB)p = TO)ANA E A. If
Tk ¥ —B, then (T o B)(0) = T(m) A B, where m = min({i | 0 < i < n, T' }- =B}).
Then (T * A) o B)g = T(m) ANAABE A. Thus (PR3) holds.

We are left to prove that postulate (PP1) is satisfied.

If Tx E —A or Tk = —B, then by definition T+A = Tor T * B = T, thus
the claim holds trivially. Let us from now on assume that Tx ¢ —A and
Tx ¥ —B.

Let us name the rules used in the process. When inserting A, let A+
denote the rule 6.17 applied when A is compatible with the belief set of
the epistemic state, and let A— denote the rule 6.18 applied when A is not
compatible with the belief set of the epistemic state. Rules B+ and B— are
defined analogously. When calculating both (T * A) * B or (T * B) * A, four
different combinations of rules are possible, and combined we have the
following six disjoint cases:

1. Assume T(0) ¢ —(A AB). Then (T +A)*B is calculated by rules A+/B+
and (T * B) * A by rules B+/A+. It is easy to see that (T * A) * B)(0) =
T(0) AA A B = ((T = B)  A)(0).

2. Assume T(0) E ~(AAB), T(0) ¢t ~A and T(0) j£ =B. Then (T +*A)=*B is
calculated by rules A+/B—, whereas (T*B)*A by rules B+/A—. If n =1,
then ((T+A)*B)(0) = (T(0O)AAA-B)V(T(0)A—=AAB) = ((T+B)+A)0).
Ifn>1,then ((T*A)*B)(0) = (TO)AAA=B)V(T(1)ANAAB)V (T@0)A
-A A B) = (T * B) + A)(0).
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3. Assume T(0) ¢ —A and T(0) E —=B. Then rules A+/B— and B—/A+
are used, and n > 1. Because T(0) E —B, we get ((T + A) * B)(0) =
(T(0) ANAA=B)V (T(1) AA A B) = (T * B) * A)(0).

4. Assume T(0) F —A and T(0) ¢ =B. Then rules A—/B+ and B+/A—
are used, and n > 1. Because T(0) F —A, we get (T » A) * B)(0) =
(TO) A=A AB)V(T(1) ANA AB) = ((T = B) = A)(0).

5. Assume T(0) E =A A =B and T(1) £ =(A A B). Then rules A—/B+
and B—/A+ are used and n > 1. Because T(0) F A A —B, we get
((T = A) = B)(0) = (T(1) AA A B) = ((T = B) * A)(0).

6. Assume T(0) E -A A =B and T(1) E —(A A B). Then rules A—/B—
and B—/A— are used and n > 1. If n = 2, then ((T * A) = B)(0) =
(TO)A=AA=B)V(TA)ANA)A=B)V(T(1) A=A AB) = ((T*B)*A)).
If n > 2, then (T + A) *B)(0) = (T(0O) A=A A=B)V(I'(1) N\AAN-B)V
(TW) A=A AB)V(T(2) ANA AB) = ((T * B) = A)(0).

Thus in all cases, ((T * A) * B)(0) = ((T * B) * A)(0) and postulate (PP1) is
satisfied. O

6.3 Discussion

We have given two finite, concrete representations of knowledge bases
along with collections of change operators. Our operator collections in-
clude basic operations with some variation. We believe that the agent
can use these operators along with the accessories to build more elaborate
behaviour when necessary.

Even though our operators reject unbelievable input, the agent need
not do so. For example, the agent could start a conversation with the
source of the input in order to solve the inconsistencies, as suggested by
Nykénen et al. [Nyk11]. Otherwise, the agent might wish to manipulate
the input in order to make it believable, as is done in accommodative belief
revision [Elo08]. In accommodative belief revision the input is first revised
by the knowledge of the agent to make it acceptable. The idea is to try
to quess what the source of the input might have believed, had it known
what the agent does.

We have not studied the computational complexity of our proposals.
In the end the proposals have been an attempt to sketch an overall picture
of the knowledge base. In this chapter, two concrete structures have been
given, and the corresponding abstract structures have been proved to have
the desired properties.



80 6 NEW OPERATOR COLLECTIONS

The space requirements of our proposals are severe: the lengths of the
formulas double at each step. In order to reduce the space requirements,
the epistemic state might be represented by a collection of lists of formulas,
“local epistemic states”, instead of a single list of formulas. The idea would
then be to have separate domains in separate lists, that is, if there are groups
of atomic formulas with no dependencies between the groups, we might
have an epistemic base or an epistemic function separetely for each of
them. Queries might then be answered by using subqueries to these local
epistemic states.

Changing the knowledge base with a formula that involves several local
states and creates dependencies between the groups would then require
combining those local states before the change. Epistemic functions T,, and
U,, with separate sets of atomic formulas could combined into a function
S=T,xUy:0,...,n+m—-2— Lby defining foreachi =0,...,n+m—-2
formulas

(T X U) () = V{Tj AU [0S j<n, 0<k<m, j+k=i}. (619

Then S(0) = T(0) A U(0) would be satisfiable, and we would have Sg =
Tg U Ug and Sk = Tx U Uk.



Chapter 7

Modelling knowledge expansion and
belief revision

In this chapter we see how the postulates of belief revision imply the
existence of ordering of disbelief. We show this by constructing such an
ordering by applying Grove’s construction [Gro88] to create a system of
spheres. We see how the ordering of disbelief is modified in belief revision
and knowledge expansion.

7.1 Knowledge change

We consider all knowledge-change and belief-change operators as func-
tions from epistemic states and propositional formulas to epistemic states
such that the epistemic states satisfy constraints (S1) and (S2). As before,
let T denote an epistemic state, and let Tx denote the set of propositional
formulas known in the state. We assume that Tk is deductively closed.

We assume that knowledge-expansion operators satisfy postulate (K2)
and that all other operators satisfy postulate (K0), thus in all circumstances,
changing the epistemic state always satisfies either one of those postulates.
We can express postulate (KO) by the following equivalent condition (KN)
and postulate (K2) by the following equivalent condition (KE):

(KN): [(T o A)x] = [Tk,
(KE): (T e A)x] = [Tkl N [A]

Both conditions (KN) and (KE) imply the following condition (KX):
KX): [Tkl N IAD € (T o A)xll < [Tk

Condition (KX) expresses a condition shared by both knowledge expansion
and belief change.

81
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If we assume that in the beginning Tx = T and that the knowledge base
has evolved through a finite series of change, then Tk is actually finitely
axiomatizable by the conjunction of the formulas that have appeared in the
knowledge expansion steps in the series. We will discuss finitarity issues
later in this chapter.

7.2 Orderings of disbelief

To see how it is necessary to have an ordering among the elements of [Tk ]
whenever the belief-change operator is to satisfy our postulates for belief
revision, we first define an ordering of disbelief, and then we construct
such an ordering.

Let Tp denote the set of propositional formulas believed in the state.
We assume that T3 is deductively closed. To enhance readability, we in
this chapter usually write [T] short for [Tg]l. Thus [T] is the set of the
doxastic alternatives in state T, whereas [Tx] is the set of the epistemic
alternatives in the state.

Definition 7.1. For a given epistemic state T, a total pre-order <r on [Tx]
is an ordering of disbelief, if it satisfies the following conditions:

(D1):  min([A] N [Tk, <) # 0 for all A € £ s.th. [Tx] N [A] # 0,
(D2):  min([Tk], <7) = [T] # 0.

Thus by definition, having an ordering of disbelief in an epistemic state
guarantees that the static constraints (S51) and (S2) are satisfied in the state.

7.3 Grove’s system of spheres

We now construct an ordering of disbelief by applying Grove’s construc-
tion [Gro88] to create a system of spheres. We first give a definition of the
construction, then we prove that it has the properties that make it a system
of shperes.

Definition 7.2. Given a belief-revision operator o and an epistemic state
T satisfying constraints (51) and (S2), we define for all A € £ such that
Tk £ A,

2T, 0,A) =a U{IT o Bl | B € £ [A] C [BI}. (7.1)

We then define

Z(T,0) =gof {z(T,0,A) | A € L, Tx £ -A}, (7.2)
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and finally, we define a system
S(T, o) =aer Z(T, 0) U{II Tk} - (7.3)
The elements of the construction S(T, o) are called spheres.

As we shall see in the next lemma (Lemma 7.1), the system S(T, o) is a
set of subsets of [Tx]]. The elements of the set S(T, o) are totally ordered
by set inclusion. The smallest element is the set [T]], the largest element is
the set [Tkx]. For each possible model w € [Tk] we define the sphere of
the model as

Zw =def S € S(T,0) |w € S}. (7.4)

Thus after proving the lemma, we are able to define a total ordering upon
the possible models by using set inclusion on their spheres. Before proving
these properties, let us look at some examples.

Example 7.1. Let us consider an epistemic base T = [a A b,a A =b, ~a A b]
and our revision operator o on epistemic bases. The system of spheres
then contains the sets [a A b]|, [a AbJJU [a A =b]] = [[a]l, and [a A B U [la A
=b] U [[-a A b]] = [la v b]]. We have S(T,0) = Z(T,o) and [T]] = [[a A b]] C
[a]l € [la v 6] = [T

The second example is more elaborate.

Example 7.2. Let us consider an epistemic base T = [T°, T%,..., T 1] with
the revision operator o defined on epistemic bases. Recall that we then
have T = T? and Tx = V5, T'. Let A denote any propositional formula
such that Tx ¢ ~A. What can we say about z(T, 0, A)?

Let m denote the smallest index such that T™ (£ —A. Because Tk £ —A,
such a formula T exists for some 0 < m < n. We show that z(T,0,A) =
UL IT.

Assume k such that 0 < k < m. Because [[A] C [T* V A], by definition
[T o (T* v A)] C z(T,0,A). Because T* [ —~(T* v A) and T' = =(T* v A)
for all i, 0 < i < k, by the definition of our revision operator we have
(To(TFv A)g = TF A (TF vV A) = TK. Thus [T*] € z(T,0,A) for all k,
0 < k < m, and therefore U, [T'] C z(T, o, A).

To prove that actually U?io [T = z(T, o, A), let B denote a formula such
that [A]] C [B]l. Then by definition of the revision operator, (I'oB)p = T/IAB
for some j, 0 < j < m. Thus z(T, 0, A) € U, [T'].

We have now seen, that for all the formulas A € £ such that Tk £ —A,
only n different elements z(T, o, A) exist, namely

Z(T,0) = {ULL T I m=0,...,n -1},
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This formula shows how the elements are contained in each other. The
innermost element is [T°]), the next one is [T°] U [T']], and so on.

Because Tx = \/Z'-Z:_O1 T!, we have [Tx] = Uf-’:_(}[[Ti]]. Our system is
therefore S(T, o) = Z(T, o).

In the next lemma we prove nine properties of the construction S(T, o),
most of which are based on properties defined by Grove [Gro88]. Some of
the properties constitute that the construction S(T, o) is a system of spheres
centered on [[T], that is:

e the elements of the construction are totally ordered by set inclusion
(property 6),

o the set [T] is the smallest element of the construction (properties
1+2),

e the set [Tx] is the largest element of the construction (property 4).

Property 3 of the lemma characterizes all possible models in |JZ(T, o)
saying that they can be reached in single revisions. By property 5 of the
lemma, if a sphere contains any model of A, it contains all the models in
[T o A]l. By property 7, the set [T o A]l actually is the set of all the models of
A that are in the sphere z(T, o, A). By property 8, the sphere z(T, o, A) is the
smallest sphere containing any model of A. By property 9 of the lemma
each z; is an element of the construction S(T, o). We can therefore refer to
zy as the sphere of the possible model w. Together these properties help
us later to characterize the set [T o A] as the set of those possible models
that are minimal models of A in the ordering based on their spheres.

Lemma 7.1. For any given epistemic state T that satisfies constraints (S1) and
(S2), if a belief-revision operator o satisfies condition (KX) and postulates (K1)
and (R1)—(R6), then the system of spheres S(T, o) has the following properties:

1. 0 # [T] € Z(T, o).
2. IfSeS(T,o0), then [T] € S.

3. Foreachw € S € Z(T,0), a formula A € L exists such that Tx ¢ —A and
w e [T o A] C[A]

4. |JZ(T, o) C [T].
5. IfSe S(T,0)and SN [[A] # 0, then [T o A C S.
6. If Sand S" are in S(T, o), then S € S’ or S’ C S.
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7. If Tx = —A, then z(T, 0, A) N [A]l = [T o A]l
8. IfSeS(T,0)and S € z(T, 0, A), then S N [[A] = 0.

9. Foreach w € [Tx]l, zw € S(T, o).

Proof. Assume an epistemic state T satisfying constraints (51) and (S2), and
a belief-change operator o satisfying condition (KX) and postulates (K1)
and (R1)—(R6).

1. By constraint (S2), [T]] # 0. Then by constraint (S1), [Tx]l # 0, thus
Tx KL and by definition z(T,o, T) = (J{[To B | B€ Land [T] €
[BI}. Then by postulate (R4), z(T, o, T) = [T o T]. Postulate (R2) says
that [To T =[TINMT] = [T]. Thus [T] = z(T, o, T) € Z(T, o).

2. If S =[[Tk], then [T] € S by constraint (S1).

In case S € Z(T, o), by definition S = z(T, o, A) for some A € L such
that Tk ¢ —A. Because [A] € [T], by definition [T o T]| € z(T, o, A).
Thus [T]=[ToT] Cz(T,0,A)=S.

3. Assume w € S € Z(T,0). Then by definition, w € z(T, o, B) for some
B € L such that Tx ¥ —B. By definition, for some A € L such that
BE A, w e [T o A]. Because Tk |~ =B and B E A, we have Tx £ —A,
and hence postulate (R1) gives [T o A] C [A]].

4. If w € |J Z(T, o), then by property 3, A € L exists such that T ¢ A
and w € [T oA]. Postulate (K1) and condition (KX) say that [ToA] C
[(T o A)x]l € [Tx]. Thus w € [Tx]l.

5. Assume S € S(T,0)and A € Lsuchthat SN[[A] # 0. If S = [[Tx]|, then
postulate (K1) and condition (KX) give us [ToA] € [(ToA)x] € [Tk].

If S e Z(T,0),then S = z(T, o, C) for some C € L. Because SN[[A] # 0,
then by definition, there exists B € £ such that Tx ¢ —B, [ToB] C S,
[CT <B], and [T o Bl N [[A] # 0.

Because [B]] € [AVB], thenby definition [To(AVB)] € S. If [AIN[To
(AV B)] = 0, then postulates (R1) and (R3) giveus 0 # [To(AV B)] €
[B]. Thus by postulates (R4) and (R6), [T oB] = [To((AVB)AB)]
[BINITo(AVB)]l = [To(AVB)]. Because we assumed [ToB[N[A] # 0
and [AJN[T o (AV B)] = 0, equation [T o B]] = [T o (A V B)] gives
us a contradiction. Thus [A] N [T o (A V B)]] # 0. Then by postulates
(R4) and (R6), [To A =[[To((AVB)AA) C[AIN[To(AVB)] CS.
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6. If either S = [Tk]l or " = [Tk]l, then property 4 gives the answer.

Otherwise both S and S’ are in Z(T, o), and for showing the converse,
assume thatw € S\ S’ and w’ € S’ \ S exist.

By property 3, w € [T o A]] € [[A] and w” € [T o B]] € [[B] for some
A,B € L such that Tx £ A and Tk ¢ —B. Because [AV B NS =0
and [AV B NS # 0, property 5 gives us [T o (AV B)] € S and
[To(AVB)]cS.

On one hand, if [T o (A vV B) N [A] # 0, then by postulates (R4) and
(R6), [To(AVBINTALI 2 [To ((AV B)AA)] = [T oA]. Thus
we[[To(AVB)] CS’,acontradiction.

On the other hand, if [T o (A Vv B)] N [A] = 0, then by postulates
(R3) and (R1), @ # [T o (AV B)] C [B]l. Then [B] NS # 0, and by
property 5, [T o B] € S, a contradiction. Thus either S € S" or S’ C S.

. Assume A € L such that Tx £ —A. By definition z(T, 0, A) N [A] =

[T o B | Be Land [A] € [[BI} N [TA] = ULIT o Bl N [[A] | [A] €
[BI}. By postulates (R4), (R5) and (R6), if [T o B] N [A] # 0, then
[ToBIN[MALl = [To(AAB)]| =[[ToA] for each B such that [[A] < [B].
Thus z(T, 0, A) N [A] = [T o A].

. Assume S € S(T,o0) and S C z(T,o,A), thus w € z(T,0,A) \ S exists.

Assume for the converse that S N [[A] # 0. By definition w € [T o B]
for some B € £ such that [A] C [B]. But then S N [B]] # 0, in which
case property 5 gives us [T o B]] C S, a contradiction.

. If w € UZ(T, o), then by property 3, there exists A € L such that

Tk B ~Aand w € [T o A]] C [A]. Property 7 then says that [T o
A]l = z(T,0,A) N [[A]l. By property 8, S C z(T,0,A) implies w ¢ S.
Property 6 then gives us z,, = ({S € S(T,0) | w € S} = z(T, 0, A), and
by definition, z(T, o, A) € Z(T, o) C S(T, o).

Ifwe [Txll \ UZ(T, o), then z, = ({S € S(T,0) | w € S} = [Tx]l, and
by definition, [Tk] € S(T, o).

O

Let us now construct an ordering based on a system of spheres S(T, o)

on [Tx]l. By property 9 of Lemma 7.1, each z, is an element in S(T, o).
Then by property 6 of Lemma 7.1, we have z,, C zy or zyy C z for all
w,w’ € [Tx]l. An ordering on the possible models is defined by using the
set inclusion relation of the spheres as follows.
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Definition 7.3. Given a system of spheres S(T, o) on [Tk],
<s(T0)=def (W, W) € [Tx] X [Tx] | zw S zur} - (7.5)

The following proposition tells us a property that is shared by both
knowledge expansion and belief revision.

Theorem 7.1. Given a belief-revision operator o and an epistemic state T sat-
isfying constraints (S1) and (S2), then if the operator satisfies condition (KX),
postulates (K1), and (R1)~(R6), the relation <g(t,c) is an ordering of disbelief and
foreach A € L, if T ¢ —A, then [T o A]l = min([A] N [Tx1l, <s(1,0))-

Proof. Let < denote the relation <g(r,.). Because the relation < is based on
set inclusion, the relation is reflexive and transitive. Because by property 9
of Lemma 7.1, z,, is an element in S(T, o) for each possible model w, prop-
erty 6 of Lemma 7.1 then says that for all possible models w and w’, z,, C zy
or zy C zy, thus the preorder is total.

Properties 1 and 2 of Lemma 7.1 give us min([Tx],<) = [T] # 0,
condition (D2). For proving condition (D1), let A be a propositional for-
mula such that [A] N [Tx]l # 0. By postulate (R3), a model w € [T o A]
exists. By definition, w € z(T,o, A). By postulate (R1), w € [A]l and
by postulate (K1) and condition (KX), w € [(T o A)x]] € [Tx]. For any
w’ € [Tx]l, property 8 of Lemma 7.1 implies w’ < w, only if w" ¢ [A]l,
therefore w € min([AIN [Tk, <). Thus condition (D1) holds and [T o A]| C
min([A] N [Tk]l, <).

For proving condition min([A]] N [Tx], <) € [T o A], assume w €
min([A]l N [Tk], <). Then properties 5, 7, and 8 of Lemma 7.1 give us
zw = 2(T,0,A),and w € [T o A]. m]

We can construct a system S(T o A, o) and an ordering <g(roa,0) corre-
spondingly. For further use, we shall next prove a property relating these
constructions S(T, o) and S(T oA, o) in cases when the operator also satisfies
some postulates for iterated belief revision.

Lemma 7.2. If an epistemic state T satisfies constraints (S1) and (S2), and a
belief-revision operator o satisfies condition (KX) and postulates (K1), (R1)—(R6),
and (RR1), then |JZ(T o A, o) N [A] = U Z(T, o) N [A]l.

Proof. Assume an epistemic state T satisfying constraints (S1) and (S2), and
abelief-revision operator o that satisfies condition (KX) and postulates (K1),
(R1)-(R6), and (RR1). Assume A € L.

To prove |J Z(T, o) N [[Al € U Z(T o A, o), assume w € |J Z(T, o) N [A]l.
By property 4 of Lemma 7.1, w € [Tk |N[A]. Property 3 of Lemma 7.1 says
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that some B € L exists such that w € [T o B]] C [B]]. Thus Tk ¢ =(A A B).
By postulate (R5), w € [T o (A A B))]l, and postulate (RR1) gives us w €
[(T o A) o (A A B)]l. Thus by definition, w € |J Z(T o A, o).

To prove |J Z(ToA, o)N[[A] € U Z(T, o), assume w € | J Z(ToA, o)N[A].
Then, by property 4 of Lemma 7.1, w € [(ToA)x]l, thus condition (KX) gives
us w € [Tx]l. Property 3 of Lemma 7.1 says that w € [(T o A) o B]] € [B] for
some B € L. Thus Tx ¢ —(A A B) and (T o A)x ¢ —(A A B). By postulate
(R6), w € [(T 0o A) o (A AB)]|, and postulate (RR1) givesus w € [T o (A AB)].
Thus w € |J Z(T, o). O

Lemma 7.3. If an epistemic state T satisfies constraints (S1) and (S2), and a
belief-revision operator o satisfies postulates (K0), (K1), (R1)-(R6), and (RR2),
then | JZ(T o A, o) N [[-A]l = U Z(T, o) N [-A]l.

Proof. Tho proof is analogous to the proof of Lemma 7.2. m]

The Following lemma is a corollary of lemmas 7.2 and 7.3: among
the possible models of the new state, those models reachable before belief
revision remain reachable after the revision and those unreachable remain
so after the revision.

Lemma 7.4. If an epistemic state T satisfies constraints (S1) and (S2), and a
belief-revision operator o satisfies postulates (K0), (K1), (R1)-(R6), (RR1), and
(RR2), then |J Z(T o A, 0) = |J Z(T, o).

Because knowledge expansion also carries out belief revision, we can
prove a property corresponding to the previous lemma for knowledge-
expansion operators.

Lemma 7.5. If an epistemic state T satisfies constraints (S1) and (S2), and a
knowledge expansion-operator & satisfies postulates (K1), (K2), (R1)—~(R6), and
(RR1), then U Z(T® A, ®) = U Z(T, ®) N [A]l

Proof. Postulate (K2) implies condition (KX), thus by Lemma 7.2, |J Z(T @
A,@)N[A] = U Z(T, ®)N[[A]l. By property 4 of Lemma 7.1, | JZ(T®A,®) C
[(T ® A)x]l, by postulate (K2), [(T ® A)x]l € [A]. Thus UZ(T & A, ®)
UZ(TeA ) Nn[A] = UZT,®) N [A].

oo

Notice that for any belief-revision operator o satisfying the postulates
in question, these lemmas imply that [(T o A)x]l € Z(T o A, o) if and only
if [Tkl € Z(T, o), and for any A € L such that Tx ¢ —A, [(T ® A)] €
Z(T® A,0)if and only if [Tk] € Z(T, ®).

The following theorems show how the orderings of disbelief relate in
iterative revisions.
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Theorem 7.2. Given a propositional formula A, an epistemic state T satisfying
constraints (S1) and S2), and a belief-revision operator o that satisfies condition
(KX) and postulates (K1), (RO)-(R6), and (RR1), then for each w,w’ € [(T o
A NA] w <s(1,0) W’ if and only if w <g(Toa,0) W'

Proof. Assume an epistemic state T satisfying constraints (S1) and (S2), and
abelief-revision operator o that satisfies condition (KX) and postulates (K1),
(RO)-(R6), and (RR1).

Let <7 and <r.4 denote relations <gr,c) and <g(r.a,.) based on respec-
tive systems of spheres on [Tx]. By Theorem 7.1, relations <r and <r.a
are orderings of disbelief.

By Lemma 7.2, | Z(T, o)N[A] = U Z(ToA, o)) N[A]. Ifw € [(ToA)x]N
AT\ UZ(T o A, o), thenw’ <r wand w’ <t.a w for all w’ € [(T o A)x].

Thus we only need to prove the condition in the case w,w’ € |JZ(T o
A, 0)N[(T o A)x]IN[A]. By condition (KX), w,w’ € |J Z(T, o) N [Tkl N [A]
Then by property 3 of Lemma 7.1, there exist B,C € £ such that w €
[ToBlC[Blland w’ € [ToC] C[C]. Thusw,w’ e [AABVOINITk]
andw,w’ € [AANBVOINI(ToA)x]. Thenby Theorem 7.1, w € min([B]N
[Tk, <7), w’ € min([CINITx], <1), w € [To(AAB)],and w’ € [To(AAC)].

Because [AA(BVC)] € [A]], postulate (RR1) implies that [(ToA)o(AA
BVO)=[To(AA(BVC))]. Because Tk £ “(AA(BVC))and (T o A)x I~
=(AA(BVC))and Theorem 7.1 then gives us min(JAAN(BVCO)[N[Tk], <r) =
[To(AANBVO)=1(ToA)o(AAN(BVO)] =min(TJAABVCOINI(ToA)],
STOA)'

Ifw <7 w,thenw € min([JAABYVOIN[Tk, <1) = min(JAA BV C)]IN
[(T o A)xll, <10a). Thus w <7op w'.

If w £r w’, then w’ € min([A A (BV O] N [Tk]l, <r) = min(JA A (B V
OINM(T o Ak, £7104) but w ¢ min([JA A BV OIN [Tk, <r) = min([A A
(BVOINIT o A1, <10a). Thus w Lroa w'. ]

Theorem 7.3. Given a propositional formula A, an epistemic state T satisfying
constraints (S1) and S2), and a belief-revision operator o that satisfies condition
(KX) and postulates (K1), (R0)-(R6), and (RR2), then for each w,w’ € [(T o
AN\ [A] w <g(1,0) W’ if and only if w <g(Top,0) W'

Proof. The proof is analogous to that of Theorem 7.2. Because [-A A (B V
Ol N [MAI = 0, postulate (RR2) implies that [(T o A) o (A A (BV Q)] =
[To(-=AABVOI. |

Theorem 7.4. Given a propositional formula A, an epistemic state T satisfying
constraints (S1) and S2), and a belief-revision operator o that satisfies postulates
(K0), (K1), (RO)~(R6), and (RR1), then
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1. if the operator o satisfies postulate (RR3), then
foreachw € [(T o A)x]l N [A]l and w’ € [(T o A)x] \ [AIL
W <g(T,0) W' implies W <g(Top,0) W'

2. if the operator o satisfies postulate (RR4), then
for each w € [(T o A)x] N [All and w” € [(T o A)x] \ [A]
W <g(T,0) W implies W <g(roa,o) W'

Proof. Assume a belief-revision operator o that satisfies postulates (K0),
(K1), (RO)=(R6), and (RR1). Postulate (K0) implies condition (KX).

Given a propositional formula A and an epistemic state T that satis-
fies constraints (S1) and (S2), let <r and <7.4 denote relations <g(r,c) and
<s(ToA,0) based on respective systems of spheres on [Tx]. By Theorem 7.1,
<r and <r.4 are orderings of disbelief.

By Lemma7.4, |JZ(T,0) = | JZ(ToA,o). Ifw € [(ToA)xI\U Z(ToA, o),
then w’ <r wand w’ <7.4 w for all w’ € [[(T o A)x]. Thus we only need to
prove the claims in the case w, w’ € | J Z(T 0 A, o) N[(T o A)x]. By postulate
(K0), UZ(T o A,o)N[(T o Al = UZ(T, o) N [Tk].

Assumew € [AINUZ(ToA,o)N[[(T o A)x]l = [AINUZ(T, o) N [Tk]
and w’ € [FAINUZ(To A, o) N[(T o A)k] = [-AI N U Z(T, o) N [Tk]. By
property 3 of Lemma 7.1, there exist B, C € £ such that w € [T o B] C [[B]
and w’ € [ToC]| C [C]l. Theorem 7.1 gives us w € min([B]N[Tk], <r) and
w’ € min([CI N [Tk, <7), thenw € [T o (AAB)and w’ € [T o (=A A QO)].

Thusw,w’ € [(AAB)V(mAAC)IN[Tk] = [(AAB)V(mAAC)INI(ToA)k]-
Because Tk £ ~((AAB)V (A AC))and (T o A)x £ =((AAB)V (=AAQ)),
Theorem 7.1 then gives us min([(A A B) V (mA AC) N [(T o A)x]l, <T0a) =
[(ToA)o((AAB)V (=AAC)] and min([(AAB)V (mAACO)N [Tk, <r) =
[To((AAB)V (=AAQO)].

E[(ToA)o((AAB)V(mAAC)IN[LA] # @ were the case, then we would
have by postulate (R1), [(T 0o A) o ((AAB)V (=AAC)HIN[A AB] # 0, by
postulates (R4), (R5), and (R6), [(ToA)o ((AAB)V(mAAC)INTAAB] =
[(ToA)o(AAB)], and by postulate (RR1), [(ToA)o(AAB)] = [(To(AAB)].

Assume that w <7 w’ and the operator o satisfies postulate (RR3). Then
min([(A A B) V (mA A O N [Tx], <1) = min([A A Bl N [Tx], <1) € [A].
By postulate (RR3), [(T o A) o (A AB)V (=A A Q)] C [A], thus w’ ¢
min([(AAB)V (mAAC)IN(T o A)x]l, <Toa). Because w <t w’, it follows
w € min([(AAB)V (mAAC)IN[Tx], <r). By postulate (R3), [(T o A)o ((AA
B)V(=AAC)INIA] # 0, thusw € min([(AAB)V(=AAC)INI(ToA)k], <Ton)
and w <r.4 w’ holds.

Assume that w <t w’ and the operator o satisfies postulate (RR4).
Because w <t w’, it follows w € min([[(A A B) V (=A A O) N [Tk, <7)-
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By postulate (RR4), [(T o A) o (A AB)V (mAAC)IN[A] # 0, thus w €
min(JLAAB)V (mAAC)INI(T o A, €104) and w <1o4 w’ holds. O

7.4 Modelling belief revision

When characterizing the effect of belief revision on the set of the most
plausible models of an epistemic state, we can use the following conditions:

(BN):  If [A] N [Tx] = 0, then [T o A] = [T].
(BR):  If[Al N [Tk # 0, then [T o A]l = min([A] N [Txl, <7)-

The following theorem for single belief revisions says how the set of
propositional formulas known in the state and how the set of propositional
formulas believed in the state change in belief revision.

Theorem 7.5. If a belief-revision operator o satisfies postulates (K0), (K1), and
(RO)—(R6), then there is a function that maps each epistemic state T that satisfies
constraints (S1) and (S2) to an ordering of disbelief <t such that conditions (KN),
(BN), and (BR) are satisfied.

Proof. Assume that a belief-revision operator o satisfies postulates (KO0),
(K1), and (R0O)-(R6). Given an epistemic state T satisfying constraints (S1)
and (52), let <g(r,c) denote the ordering based on the system of spheres
S(T, o) on [[Tk].

Condition (KN) holds by postulate (K0), condition (BN) by postulate
(RO). Because postulate (K0) implies condition (KX), Theorem 7.1 says that
<s(T,0) is an ordering of disbelief and that condition (BR) holds. m|

We phrase the conditions characterizing the effect of belief revision on
orderings of disbelief as follows:

(O1): Ifw,w € [[(ToAx]NIAIL
then w <r w’ if and only if w <7.4 w'.

(02): Tfw,w € [(T oA\ [Al
then w <r w’ if and only if w <74 w'.

(03): Ifwe[(ToAxINIAland w’ € [(T o A)x] \ [A],
then w <7 w’ implies w <7.4 W’

(O4): Ifwe[(ToAxINIAland w’ € [(T o A)x] \ [A],
then w <r w’ implies w <7.4 W’.

The next theorem characterizes (prioritized) belief revision, and gives
us the intuition on which our belief-revision operators are based: the order-
ing among the possible models of the input formula remains unchanged,
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the ordering among the possible models not modelling the input formula
remains the same, but the two sets of possible models may get shifted in the
ordering compared to each other so that the models of the input formula
get less disbelieved.

Theorem 7.6. A belief-revision operator o satisfies postulates (K0), (K1), (R0)-
(R3) and (RR1)—(RR4), if and only if there is a function that maps each epistemic
state that satisfies constraints (S1) and (52) to an ordering of disbelief such that
conditions (KN), (BN), (BR), and (O1)—(04) hold.

Proof. (=) Assume a belief-revision operator o that satisfies postulates
(K0), (K1), (R0)~(R3), and (RR1)-(RR4). By theorems 5.1 and 5.2, postu-
lates (R4)—(R6) are also satisfied. Given a propositional formula A and an
epistemic state T that satisfies constraints (S51) and (S2), let <r and <74
denote relations <g(r,.) and <g(t.4,0) based on respective systems of spheres
on [Tk]. Condition (KN) holds by postulate (K0), condition (BN) by pos-
tulate (R0O). Because postulate (K0O) implies condition (KX), Theorem 7.1
says that <g(7,c) and <g(roa,0) are orderings of disbelief and that condition
(BR) holds. By theorems 7.2, 7.3, and 7.4, orderings <g(r,0) and <g(roA,0)
satisfy conditions (O1)-(O4).

(&) Assume a belief-revision operator o, propositional formulas A and
B, and assume epistemic states T and T o A with orderings of disbelief satis-
fying conditions (KN), (BN), (BR), and (O1)-(O4). By definition, condition
(KN) implies postulate (KO0).

If Tx E —A, condition (BN) implies postulate (R0). If Tx ¢ —A, then
condition (BR) gives [T o A]] = min([A] N [Tk, <r) € [A]l. Postulate (R1)
is satisfied. If T £ —A, then conditions (D2) and (BR) give us [T N [A]l =
min([Txll, <7) N [A]l = min([Al N [Tk, <r) = [T o A]l. Postulate (R2) is
satisfied.

To prove postulate (RR1), assume Tk ¢ =B and B £ A. Then conditions
(BR), (KN), and (O1) give us [(T o A) o B]] = min([B]] N [(T o A)x]l, <1oa) =
min([B] N [Tk, <t) = [T o B]l.

To prove postulate (RR2), assume propositional formulas A and B such
that B = =A and Tk ¢ —B. Then conditions (BR), (KN), and (O2) give us
[(ToA)oB] = min(IBIN(T 0 A)x1l, <10a) = min(IBIN [Tk, <) = [T o B].

To prove postulate (RR3), assume (T o B)g = A. Then by condition
(D2), Tk ¥ —A. If Tx ¢ —B, then by conditions (BR) and (D1), for every
w € [[-A A B] there is w’ € [[A A B] such that w’ <7 w. Condition (O3) then
gives us w’ <r.a4 w. Thus by conditions (BR) and (KN), [(T o A) o B] =
min([BINI(T o A)xll, <1oa) = min(IBINITk, <1oa) € [AI. IE[BINTTk] =
0 # [Al N [Tx], then by condition (BN), [T o B]] € [[A]l implies [T] < [A].
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Thus by conditions (BN) and (BR), [(ToA)oB] = [ToA]l = min(JAINITk]l,
<r) € [A].

To prove postulate (RR4), assume (T o B)g ¢ ~A. Then by condition
(D2), Tk ¥ —A. If [B]l N [Tx] # 0, then a model w € [A A B] exists such
that for all w” € [B], w <r w’. Condition (O4) then says that w <r.4 w’.
Thus by condition (BR), [(T o A) o Bl = min([B]l N [(T o A)xIl, <1oa) =
min([Bl N [Tk, <1oa) € [-Al. If [B] N [Tx] = 0, then condition (BN)
gives us [T o B] = [T] € [—-Al. Then by postulate (R2), [T o A] =
[T1 N [A] # 0. By condition (KN), [B N [(T o A)x]l = 0, thus by condition
(BN), [(T o A) o Bl = [T o Al € [-A]l O

7.5 Modelling knowledge expansion

Expansion of knowledge means deleting possible models. The possible
models that do not model the new formula become impossible. In addition
to this, knowledge expansion carries out belief revision, which means that
the ordering of disbelief among the possible models does not change.
These properties are formally characterized by conditions (KE), (BR), and
(O1).

Example 7.3. Let us consider our knowledge-expanding operator © on
epistemic functions. Assume that T}, is an epistemic function, let A denote
a propositional formula with Tx ¢ —=A. Then by definition, m = min({i |
0 <i<nT(@) ¥ —A}) exists and T @ A is an epistemic function from
0,...,n—m-—1into L.

We have (T @ A)x = Vi5,(T() A A) = (Vi T()) A A = Tx U(A). Ttis
easy to see that for all w, w’ € [(T ® A)x]l, relation w <rgs w’ holds if and
only if w <t w’. Conditions (KE) and (O1) hold.

Our knowledge-expanding operators are based on the intuition given
by the following theorem.

Theorem 7.7. A knowledge-expansion operator @ satisfies postulates (K1), (K2),
(R2), (R3), and (RR1), if and only if there is a function that maps each epistemic
state to an ordering of disbelief such that conditions (KE), (BR), and (O1) hold.

Proof. (=) Given an epistemic state T that satisfies constraints (51) and (S2)
and a propositional formula A such that Tk ¢ —A, let us assume we have a
knowledge-expansion operator @ that satisfies postulates (K1), (K2), (R2),
(R3), and (RR1).

Condition (KE) is satisfied by postulate (K2). Postulate (K2) implies
(KX), and because the state T @ A satisfies postulate (K1), postulate (K2)
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also implies (R1). Postulate (RR2) holds trivially. Then by theorems 5.1
and 5.2, postulates (R4)—(R6) are also satisfied.

Let <t and <rga denote relations <g(r,) and <g(rea,.) based on corre-
sponding systems of spheres on [Tx] and [(T ® A)x]. By Theorem 7.1,
<r and <tga are orderings of disbelief and condition (BR) is satisfied. By
Theorem 7.2, condition (O1) holds.

(&) Assume there is a function that maps each epistemic state to an
ordering of disbelief such that conditions (KE), (BR), and (O1) hold. As-
sume epistemic states T and T ® A. By definition, condition (KE) implies
postulate (K2). To prove postulate (R2), assume Tp ¢ —A. By condition
(D1), min([(T ® A)x]l, <rea) exists, and by conditions (D2), (KE), and (O1),
[T & Al = min(I(T & A, <rea) = min([Txll N [Al, <7) = min([Tx], <r
)N [A] = [T] N A. Thus postulate (R2) holds.

To prove postulate (RR1), let B denote a formula such that B F A and
Tx ¥ —B. Then also Tx ¥ —A. By condition (KE), [((T ® A) @ B)x] =
[TxINTAIN[BI = [TxkINIBI = [(T ® B)x]l. By condition (D1), min([((T ®
A)®B)x], <(teaye) # 0, and thus by conditions (D2) and (O1), [(T®A)®B] =
min([(T ® A) @ B)xl, <reajes) = min([Txl N [Bl, <r) = [T ® B]. Thus
postulate (RR1) holds. |

7.6 Elementary epistemic states

Because of the principles we have adopted in our assumptions about the
knowledge base, we actually do not have arbitrary sets of possible models
nor arbitrary orderings of disbelief.

Let us, however, consider arbitrary sets of possible models. Given a set
X of arbitrary logically possible models, let us define

th(X) =af 1A € L] X C [A} (7.6)

Then we have th([T]) = T for any logically closed set T of formulas.
However, [th(X)]] € X does not hold as a rule.

Example 7.4. [PST96] Assume that the set of atomic formulas in £ is
infinite, and assume some logically possible model w € W = [T]. Let
X =W\ {w}. Then [th(X)] = W # X.

Now let us take into account our assumption that in the beginning
nothing except tautologies is known nor believed. Let T denote the initial
state. We thus assume that as a collection of possible models in state To we
have W and as the ordering of disbelief in the state we have W x W. Thus
in the case T = T), the set Tk is finitely axiomatizable.
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Theorem 7.8. If an epistemic state results from the initial state Ty through
a finite chain of change such that at each step, condition (KN) or condition
(KE) holds, then the knowledge set of the state is finitely axiomatizable.

Proof. By induction. m|

Let us introduce a concept of elementary ordering of disbelief to char-
acterize those epistemic states that result from a finite chain of change such
that it starts at the initial state Ty and at each step, conditions (KX), (O1),
and (O2) hold.

Definition 7.4. An ordering of disbelief <r is elementary, if it satisfies the
following conditions:

(D3): each equivalence class imposed by <r is finitely axiomatizable,
(D4): the number of the equivalence classes imposed by <7 is finite.

We call an epistemic state elementary, if it has an elementary ordering
of disbelief.

Theorem 7.9. If an epistemic state results from the initial state T through a
finite chain of change such that at each step, conditions (O1), (O2), and (KN) or
(KE) hold, then the state is elementary.

Proof. By Theorem 7.8, the knowledge set of the initial state T} is finitely
axiomatized. In the inital state, the number of equivalence classes imposed
by <r, is 1, and the equivalence class is finitely axiomatized.

Now assume an elementary epistemic state T. Let us consider epistemic
state T o A such that conditions (O1), (O2), and (KN) or (KE) hold.

By Theorem 7.8, the knowledge set (T o A)x is finitely axiomatized.

LetTy, Ty, ... T, denote the formulas representing the equivalence classes
imposed by the ordering of disbelief <r. Then for all i,1 < i < n, all the
models of T; A A are in the same equivalence class imposed by <7,4, as well
as the all models of T; A —A are in the same class. Thus each equivalence
class in the state T o A is axiomatizable, and the number of equivalence
classes can at most double. m|

Thus to prove that our epistemic state is elementary, it is enough to
prove that all the change operators used in the series of change satisfy the
conditions in question.

Because of our assumptions, even though the language may be infinite,
the set of formulas implied by the epistemic state is infinite, and the set of
logically possible models may be infinite, in belief revision the size of the
well-ordered partition representing the ordering of disbelief is finite.



96 7 MODELLING KNOWLEDGE EXPANSION AND BELIEF REVISION

7.7 Discussion

New motivation for the postulates for belief revision

We wish to give new motivation for the postulates for belief revision. Ac-
cording to Niiniluoto [Nii99], the concept of truth should not be neglected
in belief revision. He argues that from Plato to Hintikka, knowledge is not
just well justified belief. We therefore bear in mind that one of the possible
states of affairs is the true one.

In belief revision, it has been the postulates that have been given mo-
tivation for, and orderings on possible models have been used just to
characterize their effects. But instead of characterizing the effect of belief
revision on the ordering of disbelief with conditions (O1), (O3), and (O4),
we might have used the following, equivalent condition:

(O1): Forall w,w’ € [(T o A)]l, if w € [A]], then
w <t w’ only if w <7.4 w’ and w <7 w’ only if w <.4 W'.

Condition (O1’) carries out the following principle:

When learning a true formula, the epistemic alternative representing
the true state of affairs should never become less plausible compared
to any other epistemic alternative.

We believe that this principle could have been used as fundamental
motivation when deriving postulates for belief revision. Then again, we
do not necessarily know whether a formula is true or not. That is why we
must treat the two cases symmetrically: condition (O1’) is used whether
the input is true or not.

Modelling belief contraction and competing evidence

As well as our belief-revision operators, our belief contraction operators
and our competing-evidence operator are based on keeping the ordering
of disbelief unchanged within the two subsets of possible models: those
modelling the input formula, and those not. The only difference between
various types of belief revision is how the two sets of possible models may
get shifted in the ordering compared to each other. In belief revision, the
models of the input formula get less disbelieved up to the point that all
the least disbelieved models are models of the input formula. In belief
contraction, the models of the input formula get more disbelieved up to
the point that not all of the least disbelieved models are models of the input
formula.
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Let e denote a belief-contraction operator. When characterizing the
effect of belief contraction, we could use the following condition (BC):

(BC): [Te Al =TTV min([Tx]\ [AL, <7).

The intuition behind our competing-evidence operator is the follow-
ing: if possible, the epistemic alternatives modelling the input are shifted
up one step, othervise the epistemic alternatives not modelling the input
formula are shifted down one step. Here shifting up means becoming less
disbelieved, and shifting down means becoming more disbelieved.

Let us exemplify the differences by using our epistemic functions. Fig-
ure 7.1 shows various cases before receiving input A. In each case, within
the outermost circle are the possible models of the epistemic state, within
the innermost circle are the least disbelieved possible models of the epis-
temic state. In the first case, A is believed in the state, in the third case A
is disbelieved in the state, and in the second case A is neither believed nor
disbelieved.

Figures 7.2, 7.4, and 7.3 illustrate shifting the orderings of disbelief in
various types of belief change:

e in belief revision, possible models in [A] are shifted upwards, if
possible (case 3), and models in [Tk] \ [A]l are shifted downwards,
when necessary (cases 2 and 3),

e in competing evidence, possible models in [[A] are shifted upwards, if
possible (case 3), or else models in [Tk ]\ [A]] are shifted downwards
(cases 1 and 2),

e in contraction, possible models in [Tx]| \ [A]l are shifted upwards, if
possible (case 1).

Avoiding triviality of logic

Even when the belief set and the knowledge set of an epistemic state are
finitely axiomatizable, the epistemic state cannot be represented by the pair
of them, because in that case, by Theorem 4.1, the logic would be trivial.

By Theorem 7.6, belief revision changes the ordering of disbelief of
a state, and the ordering of disbelief and the input formula completely
determine the beliefs in the revised state.

Ordering <t on possible models corresponds to epistemic entrench-
ment on the formulas of the language. An epistemic entrenchment <, can
be constructed from an ordering <r on a set of possible models [Tk] by
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defining A <, B if and only if [Tx]| C [B]l or a model w € [Tx]l \ [A] exists
such that w <t w’ for all w’ € [Tx] \ [B].

Should we assume that an ordering of disbelief, or an epistemic en-
trenchment, is equivalent to a revision operator, we would have to con-
sider that we have a different operator at each revision. But even in that
interpretation, by Theorem 7.6, any revision affects the choice of the oper-
ator in the next revision; the epistemic state therefore needs to contain the
information for the choice. As Spohn [Spo88] has argued, the ordering of
disbelief should be part of the epistemic state, because it is acted upon in
revision.

Having an ordering of disbelief in epistemic states is sufficient for
iterated belief revision to satisfy the rationality criteria. Spohn [Spo88]
introduced ordinal conditional functions to facilitate revocability of revi-
sions, but revocability of revisions is not demanded by the postulates; some
[Wil93] have even considered such a property undesirable.

Elementary epistemic states

An error in Grove’s proof of sphere semantics satisfying the AGM-postulates
[Gro88] has been reported [PST96]. The error involves assuming in the
proof of Theorem 1 (page 161) that [th([A]l Nz(T, o, A)]l = [(T o A)g]| based
on th([AINz(T, o, A)) = (T o A)g. However, Grove later (page 163) says that
actually the system he constructed satisfies the former statement. So in
his Theorem 1, the former statement could have been used in place of the
latter, and no false deduction would have been needed. In our theorems,
we have used condition (BR) thus avoiding the error.

The authors of the report [PST96] suggest as one solution to the error the
assumtion that the spheres are elementary, that is, finitely axiomatisable.
We have shown, how conditions (KX), (O1), and (O2) together with our
assumption concerning the initial state in fact imply elementarity.
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Figure 7.2: Various cases when revising by A.

Figure 7.4: Various cases when receiving competing evidence A.
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Chapter 8

Modelling belief update

Proving a refined representation theorem for belief update is not straight-
forward. Some of the postulates for belief update involve complete the-
ories, but if the language of the input has an infinite number of atomic
formulas, it is not possible to address single valuations within the lan-
guage.

We will, however, adhere to belief update for elementary epistemic
states. That is why we will give one extra postulate for belief update.

8.1 Finite proposition fields

In this chapter we assume that the knowledge base has finitely axiomati-
zable knowledge and belief sets. Then the number of atomic formulas in
each of those formulas is finite. We shall change the representation theo-
rem so that it deals with atoms of finite proposition fields instead of single
valuations or models. Recall that a field of propositions is a non-empty
set of subsets of all logically possible truth distributions W and it is closed
under complementation and arbitrary union and intersection [Spo88]. An
atom is a minimal nonempty element of the field.
For a given finite set of atomic formulas P we define

F (P) =4er N{F S P(W) | F is a field of propositions such that
[p]l € F for all p € P}.

The intersection ¥ (P) is itself a proposition field and it is the minimal
field of propositions satisfying the conditions. Each element in # (P) can
be addressed by the language by using formulas containing only those
atomic formulas that appear in the set P.

101
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Given a propositional formula A and a field of propositions ¥ (P) such
that Voc(A) C P, we define

Mp(A) =ger {X € F(P) | X is an atom in ¥ (P) and X C [A]}.

If the proposition field is fixed in the context, we write just M(A) as a short
form of Mp(A).

8.2 Adjusting the postulates for belief update

In order to revise the representation theorem for belief update in the case
of an infinite language, we need to introduce an extra postulate (U9):

(U9): If(T o (AV B))p £ —A and A is complete,
then A E (T o (AV B))g.

Because the language may be infinite, we have to apply contextual
completeness instead of absolute completeness. A formula is complete in
a given proposition field, if and only if its model set is an atom in the field,
that is, a formula A is complete in a field, if and only if the set M(A) is a
singleton.

8.3 A representation theorem for belief update

Given a knowledge base T with finitely axiomatizable knowledge and
belief sets let D denote a formula equivalent to the belief set T and let K
denote a formula equivalent to the knowledge set Tx. The representation
theorem for update T ¢ A involves orderings upon atoms of proposition
fields 7 (P) such that all the atomic formulas in D, K, and A are in P, that
is, Voc(D) U Voc(K) U Voc(A) C P.

The orderings need to satisfy the faithfulness conditions (page 36).
Given the set M(K), we say that a function that maps each element X € M(K)
to a partial preorder <x on M(K) is faithful, if and only if for each <x, atom
X is the minimum in the ordering, that is, for all Y’ € M(K) the following
conditions hold:

(F1): X<xY,
(F2): IfY <x X, then X = Y.

In the representation theorem, conditions (KN) and (BN) are applied
to belief update also:
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(KN): [(T o A)xI = [Tk,
(BN): If [A] N [Tk] = 0, then [T o A] = [TI.

The representation theorem for belief update is refined as follows.

Theorem 8.1. Let o denote a belief-update operator that, given a propositional
formula A and a knowledge base T that satisfies the static rationality criteria and
has finitely axiomatizable knowledge and belief sets, maps them to the knowledge
base T o A. Then the following conditions are equivalent:

1. The operator < satisfies postulates (K0), (K1) and (U0)—(U09).

2. Conditions (KN) and (BN) hold, and for each formula K equivalent to the
knowledge set of T, for each formula D equivalent to the belief set of T, and
for each finite set of atomic formulas P such that it contains all the atomic
formulas in K, D, and A, a faithful function exists that maps each atom X in
Mp(K) to a partial preorder <x on Mp(K) such that the following condition
holds:

(BU): If Tk I =A, then [T o Al = U Uxem, o) min(Mp(A A K), <x).

3. Conditions (KN) and (BN) hold, and for each formula K equivalent to the
knowledge set of T for each formula D equivalent to the belief set of T,
and for each finite set of atomic formulas P such that it contains all the
atomic formulas in K, D, and A, a faithful function exists that maps each
X € Mp(K) to a partial order <x on Mp(K) such that condition (BU) holds.

Proof. Assume a belief-update operator ¢, a propositional formula A, and
a knowledge base T that satisfies constraints (S1) and (S2) and has finitely
axiomatizable sets Tx and Tg.

Because condition (3) trivially implies condition (2), it is sufficient to
prove that condition (1) implies condition (3) and condition (2) implies
condition (1).

[1=3]

Assume that the operator ¢ satisfies postulates (K0), (K1), and (U0)-
(U9).

By postulate (K0), condition (KN) holds. If Tx E —A, then by (U0),
condition (BN) holds.

To prove that (BU) holds, assume Tx £ —A. Because the sets Tx and
Tg are finitely axiomatizable, formulas K and D equivalent to Tx and Tp
exist. Then assume a proposition field # (P) with some arbitrary finite P
such that Voc(K) U Voc(D) U Voc(A) C P. Because T satisfies (S51) and (S2),
0 # M(D) € M(K).
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Foreach X € M(K), relation <x € M(K)xM(K) is constructed as follows.
Let Tx denote a knowledge base such that (I'x)x = Tk and [Tx]] = X. Thus
constraints (S1) and (52) hold for Tx, and (Tx)p and (Tx)k are finitely
axiomatizable. Then we can define for all atoms Y, Z € M(K) and formulas
x, y and z such that [x] = X, [y] = Y and [z] = Z:

Y <x Z, ifandonlyif [Tx o (yVz)] CY.

In order to prove that the relations are partial preorders, we have to
prove that they are reflexive and transitive. First we prove that <y is
reflexive. Postulates (U4) and (U1) say that [Tx ¢ (y vV y)l = [Tx oyl €Y.
Thus Y <x Y. In order to prove that the relation is transitive, assume atoms
Y,Z,and V in M(K) such that Y <x Zand Z <x V. Let S denote the theory
(Tx o (y V z Vv))g. Postulates (U5) and (U4) say that [S]N (YU Z) C Y and
[SIN(ZuV)C Z. Thus [SINZ = Pand [SINV =0,and (Txo(yVzV0))s E
yVo. Becauseby (U1), (Tx<(yVv))s E yVzVo, (U6) gives (Txo(yVzVv))p =
(Txo(y Vo). Then[Tx <o (yVvov)]NV =0and by (Ul), [Tx<o (yVvVo)] CY.
Thus Y <x V. The relation is a partial preorder.

By definition and postulate (U3), if Y <x Z and Z <x Y, then Y = Z.
Thus the relation is a partial order. Postulate (U2) says that [Tx ¢ (x V y)] =
X. Thus X <x Yand X # Y implies Y £x X. Conditions (F1) and (F2) hold.

To prove that [T ¢ A] € U Uxemp) min(M(A A K),<x), assume w €
[T o A]. Because [Tg] = UM(D), by (U8) an atom X € M(D) exists such
that w € [Ty ¢ A]l. By (KO0), (K1), and (U1), w € Y for some Y € M(A A K).
Assume for the converse that Y ¢ min(M(A A K),<x). Thus an atom Z,
Z # Y, in M(A A K) exists such that [Tx ¢ (y V z)] € Z. Because by
(US) [Tx c ANy vzl € [Tx ¢ (y V 2)]l, we have a contradiction with
w e [TxoAINY. Thusw € Y € Uxepnyp) min(M(A A K), <x).

To prove that [T ¢ Al 2 U Uxemp) min(M(A A K), <x), assume w €
U Uxemp) min(M(A A K), <x). Then w € Y for one atom Y € min(M(A A
K), <x) for some atom X € M(D). Thus by (U1) and (U3), [Txo(yVz)INY # 0
for all atoms Z € M(A AK). Because Y'is an atom in F, it is complete, and by
(U9) Y C [Txo(yVz)] forall atoms Z € M(A A K). Because Ty is complete,
postulate (U7) then gives us Y C [Tx ¢ A] and (U8) that Y € [T o A].
Condition (BU) holds.

[2=1]

Assume that conditions (KN) and (BN) hold and for each formula K
equivalent to Tk, D equivalent to T, and for each finite set of atomic
formulas P such that Voc(K) U Voc(D) U Voc(A) C P, a faithful function
exists that maps each atom X in Mp(K) to a partial preorder <x on Mp(K)
such that condition (BU) holds.
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By condition (KN), postulate (K0) holds.

Assume for a while the case that Tx = —A. Then by condition (BN)
postulate (UO) holds. Conditions (BN), (S1), and (KN) give us [T ¢ A]] =
[TT € [Tx] = (T ¢ A)x]l. Postulate (K1) holds. By (BN) [T o A]l = [T] # 0,
because T satisfies (52). Postulate (U3) holds.

Because the sets Tx and Tp are finitely axiomatizable, formulas K and
D equivalent to Tx and Tp exist. To prove that postulates (K1), (U1), (U2),
and (U3) are satisfied in case Tk ¢ —A, let us consider proposition field
F (Voc(K) U Voc(D) U Voc(A)).

Assume Tx ¥ —A. Then conditions (BU) and (KN) give us [T ¢ A] =
U Uxempy min(M(A A K), <x) € [Tkl = [(T ¢ A)x]l- Thus (K1) holds. Con-
dition (BU) gives us [T ¢ A] = U Uxemp) min(M(A A K), <x) C [A]. Thus
(T » A)g E A and postulate (U1) holds.

If [T <€ [All, then by (S1) and (S2) [A]l N [Tk] # 0, and conditions
(BU), (F1), and (F2) give us [T ¢ A] = U Uxemp) min(M(A A K),<x) =
U Uxemp) X = [T]. Thus postulate (U2) holds.

If [A]l N [T] # 0, then by (BU), [T ¢ Al = U Uxemp) min(M(A A K),
<x) and M(A A K) # 0. Because F is finite, min(M(A A K),<x) # 0 and
(T o A)g L. Postulate (U3) holds.

To prove postulates (U4), (U5), (U6), (U7), and (U9), assume a proposi-
tional formula B and proposition field ¥ (Voc(K)U Voc(D)UVoc(A)UVoc(B)).

To prove (U4), assume a knowledge base T” such that [T] = [T’],
[Tkl = [Ti ] and assume [A] = [B]. If [AIN[Tx] = 0, then [BIN[T] = 0,
and by (BN) [ToA] = [TT = [T'] = [T’ ¢B]. E[AIN[Tx] # 0, thenby (BU)
[T o Al = UUxemp) min(M(A A K), <x) = U Uxemp) min(M(B A K), <x)
= [T’ ¢ B]. Postulate (U4) holds.

If [ToAJN[B] = 0, then (U5) trivially holds. Assume [T o AN[[B] # 0.
If [Al n[Tk] = 0, then [A A B N [Tx]l = 0 and by (BN) [T ¢ AN [B] =
[TINIBI € [T] = [To(AAB)I. If [AINITk] # 0, thenby (BU) [ToAIIN[B]
= U Uxempy min(M(A A K), <x) N [B] € U Uxempy min(M(A A B A K), <x
) =1[T o (A A B)]. Thus (U5) holds.

To prove (U6), assume (T ¢ A)g = B and (T ¢ B)g E A. Then by (KO0),
(K1), and (U3) [AI N [Tx] # @ and [B] N [Tk] # 0, thus by (BU) [T ¢ A] =
U Uxemp) min(M(A AK), <x) and [T ¢ B]l = U Uxemp) min(M(B A K), <x).

Let Y € min(M(AAK), <x) for some X € M(D). Assume for the converse
that Y ¢ min(M(B A K), <x). Then Z € min(M(B A K), <x) exists such that
Z <YbutY £ Z. Because (T ¢ B)g E A, Z € M(A A K), a contradiction
with Y € min(M(A A K), <x). Thus [T o A]| € [T ¢ B], and analoguously,
[T<B] CITo Al

To prove (U7), assume that D is complete, that is, M(D) is a singleton.
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If [AINn[Tx] = 0 and [B] N [[Tk]] = 0, then [T ¢ A]] = [T ¢ B] =
[T o (AVB)] =[T] and the case is trivial.

Assume [AIN[Tx]l = 0and [B]IN[Tk] # 0. Thenby (BN)and (BU) [T ¢
AINIT ¢ Bl = [TTNU Uxemp) min(M(B A K), <x) € U Uxeppy min(M(B A
K), <x) = U Uenmoy min(M((A Vv B) AK), <x) = [T o (A V B)].

If [A] N [Tx] # @ and [B] N [Tx] # 0, then by (BU) [T ¢ AN [T ¢
B]l = U Uxemp) min(M(A A K), <x)N U Uxemp) min(M(B A K), <x). If the
intersection is empty, then the claim trivially holds. Otherwise, assume
Y € Uxempy min(M(AAK), <x) N Uxemp) min(M(BAK), <x). Then because
D is complete, Y € Uxepyp) min(M(A A K) UM(B AK), <x) = [T ¢ (A V B)].

To prove (U9), assume that A is complete and (T o (A V B))p ¢ —A. Then
by (K0) and (K1) T ¢ ~A and by (BU) [To(AVB)] = Uxen(p) min(M((AV
B)AK), <x). Because of the assumptions, [A] is an atom in the field F’. Then
U Uxempy min(M(A A K) U M(B A K), <x) N[[A] # 0 implies [A] € Uxemp)
min(M(A A K) U M(B A K), <x).

To prove (U8), assume knowledge bases T” and T” such that (T, and
T]’3’ ) are finitely axiomatizable, Tx = Tf< = T%’, and Tg = (T]’3 \Y T]’B’ ). Let
D" and D” denote formulas equivalent to Tj, and T} correspondingly. Let
P = Voc(K)U Voc(D) U Voc(D’) U Voc(D””) U Voc(A) and let F (P) denote the
proposition field under consideration.

If [AI N [Tkl = 0, then by (BN) [T o A] = [T] = [T’'T VU [T"] =
[T o AJUT” < A]l.

If [AIN[Tx] # 0, thenby (BU) [ToA] = U Uxempy min(M(AAK), <x) =
U Uxempry min(M(AAK), <x)U U Uxempr min(M(AAK), <x) = [T o AJU
[T o A]. O

The representation theorem describes how the set of the most plausible
models is changed in belief update, but it gives no hint for changing
the ordering of disbelief otherwise. In that sense the rationality criteria
are incomplete compared to those of belief revision. We cannot say that
due to the rationality criteria, belief update maps elementary knowledge
bases to elementary knowledge bases. Instead, we can say that due to the
rationality criteria, belief update maps knowledge bases that have finitely
axiomatizable belief and knowledge sets and satisfy the static rationality
criteria, to knowledge bases that have finitely axiomatizable belief and
knowledge sets and satisfy the static rationality criteria.

8.4 Modifying update operators

If the ordering of disbelief is contained in the knowledge base, updates
have to deal with it, as done by the update operators proposed in Chapter 6.
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Those operators were defined using Winslett’s update operator ¢y (page
21) as a component. However, Winslett’s operator cannot be used, if the
language is infinite. Therefore we will now propose an operator ¢; that can
be used instead of operator ¢y. Operator ¢; is a modification of ¢y such
that it uses atoms of proposition fields instead of possible models. In fact,
given an atom X of a proposition field ¥ (P), the intersection (| X can be
taken as an interpretation in the language whose set of atomic formulas is
P.

Definition 8.1 (Operator ¢;). Given a propositional formula A and a knowledge
base T that satisfies the static rationality criteria and has finitely axiomatizable
knowledge and belief sets, let K denote a formula equivalent to the knowledge set
of T, let D denote a formula equivalent to the belief set of T, and let P denote a set
of atomic formulas such that it contains all the atomic formulas in K, D, and A.
Then [(T ©; A)x]l =aer [Tk and if A is inconsistent with K, the input is rejected,
that is, [T o; Al =ger [T1. If A is consistent with K, then

[T o Al =er U Uxem, oy min(Mp(A A K), <5),
where for all atoms X, Y, and Z in Mp(K),
Y < Z ifand only if (X A NY) S (N X AN 2).

This definition recognizes only the belief and knowledge sets of the
knowledge base, not the epistemic entrenchment, but it can be used to
build operators that do recognize the ordering.

We then need to prove that the choice of P does not affect the result of
the operation.

Lemma 8.1. Given a knowledge base T that satisfies the static rationality criteria
and has finitely axiomatizable knowledge and belief sets, let K denote a formula
equivalent to the knowledge set of T, let D denote a formula equivalent to the belief
set of T. Let A denote a propositional formula that is consistent with K, and and
let P denote a set of atomic formulas such that it contains all the atomic formulas
in K, D, and A. Then given an atomic formula q such that q ¢ Pand P’ = PU {q},
the following holds:

U Uxemppy min(Mp(A A K), <$) = U Uxem,, oy min(Mp (A A K), <5).

Proof. In the proposition field ¥ (P’) each atom of the field ¥ (P) is split into
two.

If Y € Uxemppy min(Mp(A A K), <5 ), then Y € min(Mp(A A K), <§) for
some X € Mp(D). Let X1,X5,Y1, and Y, denote the atoms in 7 (P’) such
that X = X; UX; and Y = Y; U Y, with Xj and Y; containing possible
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models that model g and X; and Y containing possible models that do not
modelg. Then N XANY=NX12NY1=NX24Yo2.

Because g ¢ P, then for all atoms in ¥ (P), both of its halves are in
Mp/ (A AK) or Mp/(D) or neither of the halves is. Therefore Y € min(Mp(A A
K), <5) for some X € Mp(D) if and only if Y7 € min(Mp/(A A K), Sg(l) and
Y, € min(Mp: (A A K), Sg(z). O

Theorem 8.2. Operator o; satisfies postulates (K0), (K1), and (U0)—-(U9).

Proof. Given a propositional formula A and a knowledge base T that
satisfies conditions (S1) and (S2) and has finitely axiomatizable sets Tk
and Tg, let formulas K; and D; as well as K, and D, denote formu-
las equivalent to Tx and Ty correspondingly, and let P; and P, denote
sets of atomic formulas such that Voc(D1) U Voc(Ky) U Voc(A) € P; and
Voc(Dy) U Voc(Ky) U Voc(A) C Ps.

Let us consider proposition field #(P) such that P = P; U P,. Then
by induction, Lemma 8.1 gives us (J UXeMp1 (0 Min(Mp, (A A Ky),<5) =
U Uxempo, min(Mp(A A K1), %) = U Uxemp(p, min(Mp(A A Kp), <5) =

U XeMp, (D2) min(Mp,(A A Kz), <$). Thus by Theorem 8.1, operator o; sat-
isfies postulates (K0), (K1), and (U0)—-(U9). m|



Chapter 9

Conclusion and future work

Knowledge base as an abstract data type

In this thesis an abstract data type called knowledge base has been de-
scribed. The knowledge base has been considered as an object that can
carry the epistemic state of an independent agent. The agent can also use
further instantiations of the knowledge base to carry its estimates of the
epistemic states of other agents.

When describing the knowledge base, the emphasis has been on the
change operators while the explicit assumptions on the knowledge base
and its use implicitly define a set of access functions and a constructor for
the knowledge base.

What is essential with the knowledge base is that it contains both
knowledge and beliefs. Various change-operator types are characterized
by sets of rationality criteria for each of them. The previous rationality
criteria have been modified so that beliefs known to be false will not
be accepted. Due to the refined rationality criteria, knowledge acts as
integrity constraints actively taking part in belief change. Also a new,
commutative type of change is proposed for entering competing evidence
into the knowledge base.

Representing the knowledge base using finite struc-
tures

Two finite representations of knowledge bases were introduced to demon-
strate that even if the language is infinite, the knowledge base can be
implemented using finite structures.

109
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Both representations of knowledge bases contain a dynamic epistemic
entrenchment. It is created and modified by the change operations, not
given from outside the system. The refined representation theorems for
knowledge expansion, belief revision and iterated belief revision are con-
sistent with these results: In order to satisfy the postulates for iterated
belief revision, knowledge bases must contain orderings of disbelief on
possible models. These orderings correspond to epistemic entrenchments
on formulas.

In this thesis, elementarity of knowledge bases was defined. If the
knowledge base is elementary, it remains so in belief revision and in knowl-
edge expansion. In that sense the rationality criteria for belief revision and
knowledge expansion might be considered as complete. The representa-
tion theorem for belief update guarantees that the belief set remains finitely
axiomatizable, but it says nothing about the other elementarity aspects. In
that respect the rationality criteria for belief update (and erasure) can be
considered as incomplete. Nevertheless, the representation theorems con-
firm that the knowledge base need not know the language in advance.

Representation theorems for belief contraction, belief erasure, and com-
peting evidence as well as further elementarity proofs are left for future
work.

Further work

In this thesis the classification of input has been left to the responsibility of
the agent using the knowledge base, because it is the agent that can take
the necessary actions needed to solve the problems involved in the task.

Even though the revision operators proposed in this thesis reject beliefs
known to be false, the agents using the knowledge base are not forced to
do so. What should an agent do when it hears something it knows to be
false? Accepting some information might still be reasonable, as shown by
the following example.

Example 9.1. Imagine you hear that Sibelius violin contest winner Jaakko
Kuusistois to play in a forthcoming concert, and yet you know for sure that
it was Jaakko’s younger brother Pekka, not Jaakko, who won the contest.
However, instead of rejecting the information you might be willing to
accept that either of the two brothers is playing in the concert.

One proposal for solving the problem of unbelievable input is accom-
modative belief revision [Elo08], in which the input is first revised by the
knowledge of the agent, and the resulting formula is then taken as the new
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input. Accommodative belief revision has an implementation written by
M. Nykénen using the Haskell programming language. The implemen-
tation uses ranking functions and extends the vocabulary dynamically as
needed.

The intuition behind accommodative belief revision is to guess what
the source of the information would have said, had it had the knowledge
that the agent has. Of course, if communication is possible, the agent needs
not guess it, instead the agent can ask for it. Another proposal [Nyk11] to
solve the problem of unbelievable input is to enter into a dialog with the
source of the information to find out what the source actually would have
said had it known better.

Future work

The scope of this thesis has been mainly confined to demonstrating the
finiteness of the knowledge base. A natural question to be explored in
the extension of this study is the computational complexity analysis for
implementing the knowledge base.

Another interesting direction for future work is the study of indepen-
dence aspects. The knowledge base could be implemented by a dynamic
set of ranking functions, each of which being independent of the others.
This implementation would in a way resemble that of relational databases,
in which data is stored in a collection of relations, not in a universal relation.
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Appendix A

Rationality criteria for knowledge
base and its change

Static rationality criteria on epistemic states

(Sl) TB IZ TK.
(52): Tg is consistent.

Refined postulates for belief-revision operator o

(K0): (ToA)x = Tk.
(K1):  (ToApE(ToAk.
(RO): If Tx E —A, then (T o A)g = T.
(R1): If Tk I —A, then (T o A)p E A.
(R2): If Tg £ —A, then (T o A)g = Ty U {A}.
(R3): (T o A)g is consistent.
): If BE Aand Tk £ —B, then ((T o A) o B)g = (T o B)g.
): If BE —-Aand Tk [£ —B, then (T o A) o B)g = (T o B)g.
(RR3): If(ToB)gpEA,then((ToA)oB)s E A.
):  If (T o B)g [ —A, then ((T o A) o B)g £ -A.
): IfTgE Aand (T o B)g £ —A, then (T o A) o B)g E A.

Redundant postulates:
(R4): If A=B,then (T o A)g = (T o B)g.

(R5):  (ToA)sU{B}E (To(AAB))g.
(R6):  If (ToA)g b —(A A B), then (T o (A A B))g k= (T o A)g U {B}.
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APPENDIX A

Postulates for belief-contraction operator e

(KO0):
(K1):
(C0):
(C1):
(C2):
(C3):

(TeA) = Tk.

(TeA)g [ (TeAk.

IfTx E A, then (T e A)g = Tg.

If Tk £ A, then (T @ A)g £ A.

IfTg [ A, then (T e A)g = T.

Tg E (T ® A)p.

If BE A and Tk {= —B, then ((T ® A) o B)g = (T o B)g.
If BE —A and T £ —B, then ((T ® A) o B)g = (T o B)g.
If (T o B)g E —A, then ((T ® A) o B)g = —A.

If (T o B)g [ A, then ((T @ A) o B)g [~ A.

Redundant postulates:

(C4):
(C5):

If A=B,then (T e A)g = (T ® B)g.
(T o A)g U [A} k= Tg.

Rationality criteria for knowledge-expansion operator ®

(K1):
(K2):
(R2):
(R3):
(RR1):

(ToeApE(TeA)x.

If Tx £ —A, then (T® A)x = Tx U {A}.

If Tg £ —A, then (T® A)g = T U {A}.

(T ® A)p is consistent.

If BE Aand Tk £ —B, then (T ® A)® B)g = (T @ B)g.

Rationality criteria for competing-evidence operator *

(KO0):
(K1):
(RO):
(R2):
(R3):

(NP1):
(NR1):
(NR2):
(NR3):

(T+ A = Tk

(T=A)p E (T*A)x.

If TK |= —lA, then (T *A)B = TB-

If Tg £ —A, then (T = A)g = Tg U {A}.

(T * A)p is consistent.

((T=A)=*B)g = (T *B) * A)s,

If B A and Tk £ —B, then ((T * A) o B)g = (T o B)g.
If BE -A and Tk ¢ —B, then ((T * A) o B)g = (T o B)g.
If (T o B)g £ —A, then ((T * A) o B)g E A.
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Postulates for belief-update operator ¢

(KO): (To A =Tk.
(K1): (ToA)pE(ToA).
(U0): IfTx E —A, then (T ¢ A)g = T;.
(U1):  If Tg £ —A, then (T ¢ A)g E A.
(U2): IfTgEA,then (T ¢ A)g = Tp.
(U3): (T ¢ A)g is consistent.
(U4): If Tx =Ty, Tg = Ty, and A = B, then (T ¢ A)g = (T” © B)g.
(U5):  (ToApU{B}E (T o (A A B))g.
(Ué6): If(TeAgEBand(T¢B)gE A, then (T o A)g = (T ¢ B)g.
(U7):  If Tg is complete, then (T o A)g U (T ¢ B)g = (T ¢ (A V B))s.
(U8):  IfTx =Ty =Tg and Tp = (T, Vv T), then
(ToAp=(T' oA V(T o A)g.
(U9):  If(To(AVB))g ¥ ~Aand A is complete,
thenAE (T ¢ (AV B))s.

Postulates for belief-erasure operator ¢

(KO): Tk = (TeAX.
(K1):  (TeA)s E (TeA).

(EO If Tx E A, then (T#A)s = Tp.
(E1 If Tk I A, then (T+A)g i A.
(E2 If Ty E —A, then (T#A)g = Tg.

If Tx =Ty, Tg = Ty, and A = B, then (T¢A)g = (T’ #B).
(TeA)s U{A} = Ts.

It Tk =Ty =T¢ and T = (T, v Tf),

then (T¢A)g = (T’¢A)g V (T” +A)g.

)
)
):
(E3) Tg = (T4A)p.
)
)
)
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