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1 Introduction

In the econometric literature, various regime switching models with different regime

switching mechanisms have been considered during the past few decades. In this study,

the focus is on regime switching vector autoregressive (RS-VAR) models. The previous

literature on RS-VAR models includes the models of Sola and Driffill (1994), Krolzig

(1997), Ang and Bekaert (2002a,b), Guidolin and Timmermann (2006) and Henkel et

al. (2011), among others. In these models, the employed regime switching mechanisms

have typically been based on a latent state variable and possibly time-varying regime

probabilities that have often been specified as logistic functions of lagged endogenous

variables.

In this study, our aim is to present a new regime switching VAR model based on

the novel idea that the regime is determined by an observed qualitative response (QR)

variable modeled simultaneously within the model. The joint model is referred to the

QR-VAR model. We restrict ourselves to the case where the qualitative variable is binary

(i.e. two regimes), such as the state of the business cycle considered in our application.

When considering the nonlinear regime switching patterns in economic time series, we

are often, eventually, interested in understanding which economic forces drive the regime

switches. In contrast to the observable binary variable determining the regime, the former

regime switching models involve unobserved regimes whose probabilities are determined

within the model. The regimes are often interpreted to reflect, for example, business cycle

fluctuations (see, e.g., Ang and Bekaert 2002a; Henkel et al. 2011), asset return regimes

(Guidolin and Timmermann 2006) or policy changes (Sims and Zha 2006). However, many

other latent factors than the ones assumed may also affect the extracted regimes and their

probabilities. In the QR-VAR model, the regime switching mechanism is fully specified via

an observable binary time series without a need to interpret regime switches themselves.

The resulting conditional probabilities of the regimes can be constructed with a binary

response model, simplifying parameter estimation carried out straightforwardly with the

method of maximum likelihood (cf. difficulties reported in the parameter estimation of
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the previous models (see, e.g., Gray 1996; Ang and Bekaert 2002a,b)).

In addition to the regime switching perspective emphasized above, the QR-VAR model

adds to the very scant literature on models where continuous real-valued and qualitative

dependent time series are modeled simultaneously within one model. Dueker (2005) and

Fornari and Lemke (2010) are two rare exceptions where the VAR model is augmented

with a latent variable determining the values of the considered binary time series. The

QR-VAR model differs from those previous models in various ways. In particular, Dueker

(2005) and Fornari and Lemke (2010) do not allow a regime switching structure in their

VAR models, and the latter also employ a commonly used static model for the binary

variable. In line with the univariate models of Rydberg and Shephard (2003), Benjamin,

Rigby and Stasinopoulos (2003), Kauppi and Saikkonen (2008) and Startz (2008), we

employ a dynamic binary response model as a part of the QR-VAR model leading to

the model specification where parameter estimation and forecasting is easier than in the

dynamic model of Dueker (2005). Overall, the structure of the QR-VAR model has some

similarities to the regime switching GARCH-in-mean model of Nyberg (2012).

In general, if the values of a binary variable, such as the state of the business cycle,

are predictable, then so are the regime switches in the QR-VAR model. This should, in

principle, lead to superior forecast performance compared with the single-regime VAR

model (provided there are regime switches in the VAR process). The QR-VAR model is

designed to produce dynamic iterative forecasts constructed sequentially for the binary

and continuous variables. Simulation methods are needed to obtain multiperiod forecasts

as closed-form forecasting formulae are generally not available. The examined simulation

experiments show that the proposed Monte Carlo forecasting method is not, however,

computationally burdensome.

We apply the QR-VAR model to explore the bidirectional linkages between the U.S.

interest rates and the state of the business cycle. As an example, Ang and Piazzesi (2003),

Bansal et al. (2004) and Huse (2011) have shown that macroeconomic factors measuring

real economic activity can help to predict future movements in the yield curve. In contrast,

Estrella and Mishkin (1998) and Rudebusch and Williams (2009), among others, have
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found that the term spread between the long-term and short-term interest rates is the

main leading indicator of the future state of the business cycle. Interestingly, almost all

previous studies have concentrated on these one-way linkages while, e.g., Estrella (2005)

and Diebold, Rudebusch and Aruoba (2006) have been supportive for a bidirectional

relationship. In the QR-VAR model, instead of using ex post observations of the U.S.

business cycle regimes, the regimes are modeled simultaneously with the interest rate

variables revealing hence partly the real-time expectations on the state of the business

cycle. To the best of our knowledge, this type of simultaneous regime switching modeling

approach has not been considered before in the literature.

Our empirical results provide several interesting insights. In particular, strong ev-

idence of business cycle-specific effects in the bivariate system of the U.S. short-term

interest rate and the term spread is obtained. The dynamics of the short rate are closely

dependent on the expansion and recession periods of the U.S. economy whereas the lags

of interest rate variables predict the state of the business cycle. Furthermore, and most

importantly, due to the obtained predictability of business cycle turning points, the out-

of-sample forecasts of the QR-VAR model outperform those of the single-regime VAR

model for the term spread and, especially, the short-term interest rate.

The rest of the paper is organized as follows. Section 2 introduces the QR-VAR model.

Parameter estimation and computation of forecasts, including the proposed Monte Carlo

forecasting method, are considered in Section 3. The empirical results on the bidirectional

linkages and feedback mechanisms between the interest rates and the state of the business

cycle are reported in Section 4. Finally, Section 5 concludes.

2 QR-VAR Model

Consider the time series st and yt, t = 1, 2, ..., T , where st is a qualitative response

variable and yt = [y1t, . . . , yKt]
′

is a K × 1 random vector of real-valued continuous

variables. In this study, we concentrate on the case where st is binary taking values 0 or
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1. For notational convenience, the variables are collected to the vector

zt = [st y
′

t]
′

. (1)

The novel idea is to construct a regime switching VAR model where the regimes are

determined by the observable binary variable st. We refer this model to as the Qualitative

Response-Vector AutoRegressive (QR-VAR) model.

The regime switching VAR model can be written as

yt = st

(
w1 +

p1∑

i=1

Ai,1yt−i + e1t

)
+

(
1 − st

)(
w0 +

p0∑

i=1

Ai,0yt−1 + e0t

)
, (2)

where depending on whether st takes the value 0 or 1, yt follows a different VAR model. In

other words, if st = 1, we are in the regime 1 and otherwise (st = 0) in the regime 0. The

intercepts wj , coefficient matrices Ai,j, i = 1, . . . , pj , and the error terms ejt, j = 0, 1,

are all regime-specific allowing for flexible and different dynamics in two regimes. Model

(2) encompasses the conventional VAR(p) model when p0 = p1, e0t = e1t and all the

corresponding parameters are the same irrespective of the regime st.

In model (2), the error terms e0t and e1t are assumed to follow multivariate nor-

mal distributions with zero means and possibly different covariance matrices Σ0 and Σ1

depending on the regime. Thus, we write

ejt = Σ
1/2
j et, j = 0, 1, et ∼ NID(0, IK), (3)

and assume that et and Ωt−1 are independent with Ωt−1 = {zt−1, zt−2, . . . , z1} denoting

the information set containing the lags of yt and st (see (1)) at time t− 1. Furthermore,

et and st are assumed to be independent conditional on Ωt−1.

Throughout this paper, we assume that in (2) the contemporaneous value of st has

an effect on yt, but not vice versa (cf. the model of Nyberg 2012). Although the main

interest is in the regime switching VAR model (2), a model for the binary variable st is also

needed, for example, in forecasting yt (see Section 3.2). Conditional on the information

set Ωt−1, st follows a Bernoulli distribution

st|Ωt−1 ∼ B(pt). (4)
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In this expression, pt is the conditional expectation of st (denoted by Et−1(st)) or equiv-

alently the conditional probability of the outcome st = 1 (denoted by Pt−1(st = 1))

pt = Et−1(st) = Pt−1(st = 1) = Φ(πt), (5)

where Φ(·) is a standard normal cumulative distribution function leading to the probit

model and πt is a linear function of variables included in the information set Ωt−1. An

alternative to the probit model, a logit model, is obtained by replacing Φ(·) in (5) with

the logistic function.

To complete the model for the binary variable st, we specify

πt = ν + aπt−1 + x
′

t−1b, (6)

where |a| < 1 and ν is an intercept term. This model was suggested by Kauppi and

Saikkonen (2008) in the context of univariate binary time series models (see also Rydberg

and Shephard (2003) and Benjamin et al. (2003)). For simplicity, we restrict ourselves

to the case where the predictors included in the vector xt−1 are the lagged values of yt.

For example, if K = 2, then we can set xt−1 = [y1,t−k1
y2,t−k2

]
′

with k1 and k2 ≥ 1. By

recursive substitutions, it can be seen that πt will depend on the whole lagged history of

variables included in xt−1. In Section 4, we compare the autoregressive model (6) to the

commonly used static alternative obtained by setting a = 0 in (6):

πt = ν + x
′

t−1b. (7)

The univariate probit model is obtained when the predictors xt−1 are treated as exoge-

nous variables. In the previous business cycle recession forecasting literature, dynamic

univariate models, such as model (6), have been found to outperform the static model

(7) (see, e.g., Kauppi and Saikkonen 2008; Nyberg 2010).

The expressions (2), (3), (5) and (6) define together the QR-VAR(p0, p1) model, where

p0 and p1 denote the lag lengths of yt in the regimes of model (2). Equation (2) shows

the regime switching mechanism of the QR-VAR model but in forecast computation in
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Section 3.2, we need the conditional expectation of yt given Ωt−1. This results in

Et−1(yt) = Et−1

[
st

(
w1 +

p1∑

i=1

Ai,1yt−i + e1t

)
+

(
1 − st

)(
w0 +

p0∑

i=1

Ai,0yt−1 + e0t

)]

= ptµ1t +
(
1 − pt

)
µ0t, (8)

where µjt = wj +
∑pj

i=1 Ai,jyt−i, j = 0, 1, and the law of iterated expectations and the

assumptions made in (3) imply

Et−1(stejt) = Et−1[E(stejt|st, Ωt−1)] = Et−1[stE(ejt|st, Ωt−1)] = 0, j = 0, 1.

Thus, the conditional expectation of yt is a weighted average of the conditional expec-

tations of the VAR regimes where the weight pt = Et−1(st) is given in (5). Furthermore,

the conditional variance of yt can be written as

Vart−1(yt) = ptΣ1 + (1 − pt)Σ0 + pt(1 − pt)(µ1t − µ0t)(µ1t − µ0t)
′

. (9)

The conditional variance is hence nonconstant depending on the conditional probability

pt as well as the conditional means of the regimes of yt.

3 Estimation and Forecasting

3.1 ML Estimation

In the QR-VAR model, the parameters can conveniently be estimated by the method of

maximum likelihood (ML). The difficulties in the estimation of many previously consid-

ered (univariate and multivariate) regime switching models are typically related to the

determination of the (unobserved) regimes and their conditional probabilities (see, e.g.,

Gray 1996; Ang and Bekaert 2002a,b). In our approach, parameter estimation greatly

simplifies because an observable binary time series determines the regime.

Conditional on the information set Ωt−1, the density function of zt (see (1)) is char-

acterized by

gt−1(zt; θ) = f(yt|st, Ωt−1; θ)P (st|Ωt−1; θ), (10)

6



where f(yt|st, Ωt−1; θ) is the conditional density function of the random vector yt condi-

tional on the value of the binary variable st and P (st|Ωt−1; θ) is the conditional proba-

bility mass function of st. The vector of parameters θ contains all the parameters of the

model. Assume that θ = (θ
′

1 θ
′

2)
′

where θ1 and θ2 contain the parameters related to the

regime switching VAR model (2) and to the model for the binary variable, respectively.

The density function (10) can therefore be written as

gt−1(zt; θ) = f(yt|st, Ωt−1; θ1)P (st|Ωt−1; θ2). (11)

Under the normality assumption of ejt, j = 0, 1 (see (3)), the conditional density function

of model (2) is

f(yt|st, Ωt−1; θ1) = (2π)−K/2 det(Σst
)−1/2 exp

(
−

1

2
e

′

st,tΣ
−1
st

est,t

)
, st = 0, 1. (12)

In the case of binary variable st, the conditional probability mass function is

P (st|Ωt−1; θ2) =
(
Φ(πt)

)st
(
1 − Φ(πt)

)1−st

, st = 0, 1, (13)

where πt is specified as in (6) or (7).

Assume that we have observed the time series yt and st, t = 1, 2, ..., T , with the initial

values treated as fixed constants. Based on the conditional density function (11) of zt,

the log-likelihood function over the whole sample, given the initial values, is

lT (θ) =

T∑

t=1

lt(θ) =

T∑

t=1

log f(yt|st, Ωt−1; θ1) +

T∑

t=1

log P (st|Ωt−1; θ2), (14)

where the two factors of gt−1(zt; θ) in (11) are defined in (12) and (13). Thus, θ1 and

θ2 can be estimated separately and the maximum likelihood estimate θ̂ is obtained by

maximizing (14) by numerical methods.

At the moment, no formal proof of the stationarity conditions or the consistency and

asymptotic normality of the maximum likelihood estimator θ̂ is available for the QR-VAR

model. Nevertheless, under some regularity conditions, such as the stationarity of yt, st

and πt, it is reasonable to assume that the ML estimator θ̂ is asymptotically normally

distributed and that a consistent estimator of the asymptotic covariance matrix can be
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based on the Hessian of the log-likelihood function. Standard errors of the parameter

estimators as well as the conventional likelihood-based statistical tests, such as the Wald

and the likelihood ratio (LR) tests, for the components of the parameter vector θ can

then be obtained in the usual way.

3.2 Computing Forecasts

After an adequate description of the joint dynamics of the variables st and yt has been

obtained, the QR-VAR model can be used to forecast future values of the time series. An

advantage of the QR-VAR model over the forecast horizon-specific univariate binary re-

sponse models (see, e.g., Estrella and Mishkin 1998; Kauppi and Saikkonen 2008; Nyberg

2010) is that this leads to the dynamic iterative multiperiod forecasting approach (cf.

the conventional VAR model and the models of Dueker (2005) and Fornari and Lemke

(2010)) without a need to specify a new model for every forecast horizon h.

Based on the information set at time T , the optimal h-period-ahead forecast of zT+h

(in the mean-square sense) is the conditional expectation

ET (zT+h) = E(zT+h|ΩT ) =
[
ET (sT+h) ET (yT+h)

]′

, (15)

where the information set ΩT includes the history of the time series zt up to time T . Due

to the recursive structure of the QR-VAR model, forecasts for the binary variable st are

constructed first.

The one-period forecast of sT+1 (cf. (5)) is given by

pT+1 = ET (sT+1) = PT (sT+1 = 1) = Φ(πT+1). (16)

In the case of model (6), the linear function πT+1 = ν + aπT + y
′

T b depends only on

information available at time T and, thus, the forecast (16) can be constructed straight-

forwardly. Following (8), the one-period forecast of yT+1 is the conditional expectation

ET (yT+1) = pT+1 µ1,T+1 +
(
1 − pT+1

)
µ0,T+1, (17)

where µj,T+1 = wj +
∑pj

i=1 Ai,jyT−i+1, j = 0, 1 and pT+1 is the one-period forecast of

sT+1 given in (16).
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When the forecast horizon is longer than one period (h > 1), forecast computation

becomes much more complicated. As an example, let us consider two-period forecasts

(h = 2). As in (16), the forecast of sT+2 is the conditional expectation

pT+2 = ET (sT+2) = PT (sT+2 = 1) = ET

(
Φ(πT+2)

)
, (18)

where πT+2 = ν + aπT+1 + y
′

T+1b = ν + a2πT + a
(
ν + y

′

T b
)

+ y
′

T+1b. Thus, it depends

nonlinearly, via the function Φ(·), on the value yT+1 which is unknown at time T . In

particular, the conditional expectation (18) is not, in general, equal to the conditional

probability of outcome sT+2 = 1 evaluated at the expected value of yT+1 given in (17).

Decomposing yT+1 into an expected component ET (yT+1) and the innovation yT+1 −

ET (yT+1)
def
= e+

j,T+1, the conditional expectation (18) can be expressed as

pT+2 =

∫
∞

−∞

Φ
(
ν + a2πT + a(ν + y

′

T b) + (ET (yT+1) + (e+
j,T+1)

′

b
)
ϕ(e+

j,T+1) de+
j,T+1,

where ϕ(e+
j,T+1) is the density function of e+

j,T+1. As this density function is intractable

and the integral above does not have a closed form solution, we cannot construct the

forecast for st+2 using an explicit formula (cf. the one-period forecast (16)).

The two-period forecast of yT+2 can be expressed as

ET (yT+2) = ET

[
sT+2

(
w1 + A1,1yT+1 + . . . + Ap1,1yT−p1+2 + e1,T+2

)
+

(1 − sT+2)
(
w0 + A1,0yT+1 + . . . + Ap0,0yT−p0+2 + e0,T+2

)]
. (19)

In comparison to (17), as ET (sT+2yT+1) 6= ET (sT+2)ET (yT+1), we cannot take the con-

ditional expectations of sT+2 and the VAR regimes separately. The situation is similar

when the forecast horizon h lengthens. Thus, the expressions (18) and (19) demonstrate

that there are no closed-form forecasting formulae (cf. the conventional VAR model) to

construct multiperiod forecasts for yT+h, h ≥ 2, and we have to resort to simulation-based

forecasting techniques. The Monte Carlo forecasting procedure described below is, how-

ever, quite easy to implement and computationally feasible. It has some similarities to

the forecasting methods employed for other (mainly univariate) regime switching models

(see, e.g., Teräsvirta et al. 2010, chap. 14).
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The essential idea is to simulate recursively a large number of independent realizations

of the variables sT+1,yT+1, sT+2,yT+2, . . . Forecasts of sT+h and yT+h for a given forecast

horizon h are then obtained as averages of the independently simulated realizations s
(i)
T+h

and y
(i)
T+h, i = 1, . . . , N . The forecast horizon h varies between 1 and h̄ with h̄ the maxi-

mum forecast horizon considered. Furthermore, for h ≥ 2, let z
(i)
T+h−1 (cf. (1)) signify the

vector containing the ith the simulated realizations s
(i)
T+1,y

(i)
T+1, . . . , s

(i)
T+h−1,y

(i)
T+h−1 up to

the forecast horizon h − 1. Throughout it is assumed that the unknown values of the

parameters, which in practice are replaced by their estimates, are known.

The forecast recursion for forecast horizons h = 1, 2, . . . , h̄ proceeds as follows:

Step 1: Initialize π
(i)
T ≡ πT and y

(i)
T−j ≡ yT−j , j ≥ 0. Start the recursion with one-

period forecast horizon i.e. set h = 1 in Steps 2–5.

Step 2: Compute
(
π

(i)
T+h

∣∣∣ΩT , z
(i)
T+h−1

)
= ν + aπ

(i)
T+h−1 + x

(i)
T+h−1b, where, e.g., if K = 2

then x
(i)
T+h−1 =

[
y

(i)
1,T+h−k1

y
(i)
2,T+h−k2

]′

for some k1 and k2.

Step 3: Draw
(
s
(i)
T+h

∣∣∣ΩT , z
(i)
T+h−1

)
∼ B(Φ(π

(i)
T+h)), where B(·) denotes the Bernoulli

distribution and π
(i)
T+h is given in Step 2.

Step 4: Draw (e
(i)
j,T+h|s

(i)
T+h = j) ∼ N(0,Σj), j = 0, 1.

Step 5: Compute
(
y

(i)
T+h

∣∣∣ΩT , z
(i)
T+h−1, s

(i)
t+h

)
= s

(i)
T+h

(
w1 + A1,1y

(i)
T+h−1 + . . .

+Ap1,1y
(i)
T+h−p1

)
+ (1 − s

(i)
T+h)

(
w0 + A1,0y

(i)
T+h−1 + . . . + Ap0,0y

(i)
T+h−p0

)
+ e

(i)
j,T+h.

Step 6: Go to Step 2 and repeat Steps 3–5 starting from h = 2 up to h = h̄.

Step 7: Repeat Steps 2–6 independently N times (i = 1, . . . , N).

The idea in the above recursion is first to use the horizon h = 1 to obtain realizations

π
(1)
T+1, s

(1)
T+1,y

(1)
T+1. Next, the recursion is repeated for h = 2, conditional on z

(i)
T+h−1, to

obtain π
(2)
T+2, s

(2)
T+2,y

(2)
T+2. This is continued up to h = h̄. Finally, forecasts for sT+h and

yT+h, h = 1, . . . , h̄, are obtained by computing the averages (cf. equation (15))

p̂T+h = ET (sT+h) = PT (sT+h = 1) =
1

N

N∑

i=1

s
(i)
T+h (20)

and

ŷT+h = ET (yT+h) =
1

N

N∑

i=1

y
(i)
T+h, (21)
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where N is large. Note that the one-period forecasts (h = 1) obtained with (20) and (21)

will be asymptotically equivalent to (16) and (17) but the above forecast recursion should

accommodate also this horizon to start the recursion. Similarly, the conditional variance

of yT+1, given ΩT , can be obtained with expression (9) but in the case of multiperiod

forecasts we have to resort to the simulation method described above. In addition to

point forecasts, the expressions (20) and (21) can straightforwardly be used to construct

possibly asymmetric interval and density forecasts.

The accuracy of the proposed MC forecasting method depends on the choice of the

number of replications N . For a good approximation, N should be large enough. On the

other hand, the larger the number of replications the more computationally burdensome

the method is although simulation in Steps 3–4 is straightforward and not time consum-

ing. The simulation results obtained in the Appendix suggest that the proposed method

is accurate even for relative small values of N (such as N=10 000).

4 Linkages between U.S. Interest Rates and Business

Cycle

4.1 Background and Data Set

In this section, we examine the bidirectional predictive linkages between the U.S. interest

rates and the state of the business cycle measured in terms of recession and expansion

periods. We are, in particular, interested in whether superior forecasts can be obtained

with the QR-VAR model over the single-regime VAR and univariate probit models.

We consider a monthly U.S. data set from January 1972 to December 2010. The

starting point of the sample (i.e. the beginning of the 1970s) is consistent with many

previous studies (see, e.g., Ang and Bekaert 2002a,b; Huse 2011). The state of the economy

st is determined by the National Bureau of Economic Research (NBER) business cycle

turning points where st = 1 indicates a recession and st = 0 denotes an expansion. The

term spread (TSt) is the difference between the long-term (10-year government bond)
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and the short-term it (three-month Treasury Bill rate) interest rates. The source of all

data is the Federal Reserve Bank of St. Louis databank (FRED).

Following the expectations hypothesis of the term structure of interest rates (hereafter

EH), the dynamics of the interest rates can be considered by using a bivariate model of yt

containing the term spread (TSt) and the first-difference of the short rate (∆it) (see, e.g,

Campbell and Shiller 1991; Sola and Driffill 1994). Although most of the empirical studies

have rejected the EH, we are interested in knowing whether the term spread predicts the

changes in the short rate (see, e.g., Ang and Bekeart 2002a; Bansal et al. 2004) when the

business cycle regime is taken into account. The short-term interest rate is of particular

interest in our analysis as it is a fundamental building block of many macroeconomic

and financial models (see, e.g., the term structure (yield curve) models of Ang and Pi-

azzesi (2003), Bansal et al. (2004), Diebold et al. (2006) and Huse (2011) incorporating

macroeconomic variables or constructed factors). Furthermore, Filardo (1994), Sola and

Driffill (1994) and Ang and Bekaert (2002a,b), among others, have examined econometric

regime switching models for the short rate where the obtained regime probabilities are

often interpreted to describe regimes in real economic activity.

Based on the structure of the QR-VAR model, the lags of yt (i.e., the lags of the

term spread and short rate) are used to predict the state of the business cycle st. Much

of the previous research lends support, especially, to the term spread being the main

leading indicator of future real activity (see, e.g., Estrella and Mishkin 1998; Estrella

2005; Rudebusch and Williams 2009). Ang, Piazzesi and Wei (2006) and Wright (2006)

find that the short rate has also some additional predictive power.

Figure 1 lends support to the regime switching approach as the U.S. interest rate

dynamics appears to be closely dependent on the state of the U.S. economy. The short

rate has typically been increasing (decreasing) during the expansion (recession) periods

while during the recessions (expansions) the yield curve is generally upward (downward)

sloping. All of the recession periods are preceded by a low, or even negative, value of the

term spread, explaining why it has been found a useful leading indicator of the recession

periods. Recession periods have also been characterized by a high short rate compared
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with its recent past just before the beginning of recession.

4.2 Estimation and Model Selection Results

In this section, we report the estimation results of the QR-VAR model and examine

the possible two-way linkage between the variables st and yt. A subsample period up to

1992:12 is used to select the models which are subsequently employed in out-of-sample

forecasting in Section 4.3 for the period 1993:1–2010:12. Due to the recursive structure

of the QR-VAR model, a model for the U.S. business cycle is specified first and treated

independently of the regime switching VAR component (2).

Table 1 (Panel A) presents the model selection results of the autoregressive (6) and

static (7) models where the term spread is employed as a single leading indicator of the

business cycle. Following the findings of Kauppi and Saikkonen (2008) and Nyberg (2010,

2012), instead of the first lag (k1 = 1) of the term spread (i.e. TSt−1), an optimal selection

in terms of in-sample predictive power appears to be three (TSt−3) or four in model (6)

and nine in the static model (7). Overall, with the exception of the longest lags, model

(6) clearly outperforms the static model (7) including the case of TSt−9.

Panel B of Table 1 shows that the first difference of the short rate (∆it), and especially

its first lag (∆it−1), have substantial additional predictive power over and above the term

spread (TSt−3). In accordance with the findings of Ang et al. (2006) and Wright (2006),

the level of the short rate has some predictive power in the static model (7). However, the

level of the short rate is throughout an inferior predictor compared with its first difference

and the autoregressive model (6) generally outperforms the static model (7), yielding the

best in-sample predictions. Thus, we continue our analysis with model (6) with the term

spread (TSt−3) and the first difference of the short rate (∆it−1) as the predictors of

the state of the economy (i.e. xt−1 = [TSt−3 ∆it−1]
′

). As a robustness check, we also

estimated the models with data from the full sample period (1972:1–2010:12). The results

were essentially the same strengthening the selection of TSt−3.

The detailed estimation results of model (6) based on the entire sample period are

presented in Table 2. Due to the negative and statistically significant coefficients, a low
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value of the term spread and decreasing short rate increase the probability of recession.

The values of the statistical goodness-of-fit measures, such as the pseudo-R2 of Estrella

(1998), and the probability of recession (st = 1) depicted in Figure 2 show that the

selected model predicts the state of the U.S. business cycle accurately. The recession

probability is high during the recessions and close to zero in the expansion periods except

for a few short exceptions. Hence, the model matches the U.S. business cycle regimes

accurately which has not always been the case in the previous alternative regime switching

models. In fact, the obtained transition probabilities for the unobserved regimes have

not been found to necessarily describe business cycle recession and expansion periods.

Instead, Filardo (1994) and Henkel et al. (2011), among others, interpret the transition

probabilities to describe low and high growth rate regimes in the real GDP which describe

more general contraction and expansion periods in real activity than the NBER business

cycle periods.

Next we turn our interest to the estimation results of the regime switching VAR model

(2). At first, it is worth recalling that the VAR part of the QR-VAR model does not have

an effect on st. Thus, the results of Table 2 apply to any specification of model (2).

So far, we have assumed that the lag lengths p0 and p1 in the QR-VAR(p0, p1) model

are known. In the previous research on the RS-VAR models, Ang and Bekaert (2002a,b)

and Henkel et al. (2011) have restricted themselves to the parsimonious first-order models

(p0 = p1 = 1). This is also a reasonable benchmark in this study. According to our

estimation sample period 1972:1–1992:12, the Schwarz information criterion favors the

QR-VAR(1,1) and VAR(1) models while the Akaike criterion suggests the maximum

sixth-order models. A sequential testing procedure, where the Likelihood ratio (LR) test

is applied sequentially when the order of the model increases until the first non-rejection,

selects the QR-VAR(4,4) and VAR(3) models. To gain efficiency, the order of the recession

regime can be reduced to three (the p-value 0.590 in the LR test). Irrespective of the

selected QR-VAR or VAR models, there is some evidence of remaining autocorrelation in

the equation of the short rate and conditional heteroskedasticity in both variables, but

among the examined specifications, the QR-VAR(4,3) model seems the best selection also
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in terms of the diagnostic checks.

In Table 3, we present, for simplicity, the estimation results of the parsimonious QR-

VAR(1,1) and VAR(1) models. The results of the QR-VAR(4,3) and VAR(4) models are

available upon request. In the QR-VAR(1,1) model, the parameter estimates, especially

the intercept terms, are different across the business cycle regimes and from the ones of

the VAR(1) model. In line with Figure 1, the intercept term for the first-difference of

the short rate is negative in the recession regime. Overall, irrespective of the lag length

selection (results not reported), the QR-VAR model outperforms the VAR model as we

can strongly reject the hypothesis of equal parameter coefficients in the expansion and

recession regimes at all traditional significance levels. Thus, there appears to exist a bidi-

rectional in-sample predictive linkage between the variables: The lags of the term spread

and short rate predict the state of the business cycle (see Table 2). On the other hand,

the VAR dynamics are strongly dependent on the business cycle regime. The estimated

covariance matrices Σ0 and Σ1 are also different in two business cycle regimes. In par-

ticular, the diagonal elements are clearly higher in the recession regime implying higher

volatility. Ang and Bekaert (2002b) found similar evidence in their RS-VAR model where

they interpreted the regimes as high and low inflation regimes.

Following the lines of the EH, the estimation results show that in the QR-VAR(4,3)

model the lags of the term spread are useful predictors of the short rate in both business

cycle regimes (the p-values in the LR tests (H0: no predictive power) were smaller than

the 5% significance level). Similarly the changes of the short rate help to predict the term

spread irrespective of the regime. These results hold also for other lag length selections p0

and p1, except the QR-VAR(1,1) model. In contrast to these findings, Ang and Bekaert

(2002a) find that the lagged term spread predicts the short rate only in the high variance

(recession) regime of their RS-VAR model (sample period 1972–1996) while the short rate

is a useful predictor for the term spread only in the low variance (expansion) regime. In

their another RS-VAR model, Ang and Bekaert (2002b) show that the lagged short rate

and term spread have predictive power to each other only in the low inflation regime.
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4.3 Out-of-Sample Forecasting

In this section, the MC forecasting method introduced in Section 3.2 is used to construct

out-of-sample forecasts for the period 1993:1–2010:12. Forecasts are computed using an

expansive window approach where the estimation sample period increases in each time

when the parameters are re-estimated until the end of the sample. Because the state

of the business cycle is uncertain in real time, parameters are re-estimated only when

a complete business cycle from trough month to the next trough has been completed.

Therefore, the out-of-sample forecasting period starts after the announcement of the

business cycle trough for March 1991 made by the NBER in December 1992. Based on

the Appendix, the number of simulated realizations N in the MC forecasting method is

fixed to 10 000.

In Table 4, following the previous literature on the RS-VAR models, we report the

results of the first-order QR-VAR(1,1) model along with the QR-VAR(4,3) model. The

relative MSFE and QPS statistics are obtained relative to the VAR(1) and VAR(4) models

and the univariate autoregressive probit (6) model. The VAR(4) model is used as a single-

regime counterpart of the QR-VAR(4,3) model instead of the VAR(3) model (suggested

by the sequential model selection procedure) as the former leads to inferior out-of-sample

forecast performance compared with the VAR(4). The forecast evaluation for the short

rate is executed for its level which is of interest in many applications and can easily

be computed from the forecasts of the first-difference of it. Under the hypothesis of no

business cycle-specific regimes the QR-VAR model nests the VAR model as a special case.

Thus, the test of Clark and West (2007) is used to test the equal predictive performance

between the QR-VAR and VAR models. The QR-VAR and univariate forecast horizon-

specific models for the binary variable are not (generally) nested and, thus, the Diebold-

Mariano (1995) test is employed in that case.

Many interesting findings emerge. Let us first consider forecasts for the short rate

which are of most interest in this analysis. It can be seen that the QR-VAR(1,1) and

QR-VAR(4,3) models clearly outperform their corresponding single-regime VAR(1) and

VAR(4) models. Depending on the forecast horizon, the relative differences in the forecast
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accuracy typically range from 5% to even 20%. The first-order model seems to yield

better forecasts than the QR-VAR(4,3) model. Based on the test of Clark and West

(2007), the differences between the QR-VAR and VAR models are statistically significant

at all conventional significance levels showing the superior predictive performance of the

QR-VAR model.

The results for the term spread are basically the same as for the short rate. In this

case, the QR-VAR(4,3) model produces somewhat better forecasts than the QR-VAR(1,1)

model. However, in both cases, the QR-VAR models outperform the VAR models by a

clear margin. The relative MSFEs are throughout below unity and the p-values of the

Clark and West (2007) test are essentially zero.

As in Kauppi and Saikkonen (2008) and Nyberg (2010), the univariate autoregressive

probit model (6) yields good forecasts for the state of the U.S. business cycle when the

forecast horizon is relatively short. However, as expected and consistent with simula-

tion results presented in the Appendix, when the forecast horizon lengthens towards the

maximum 12-month horizon, the dynamic iterative forecasting approach employed in the

QR-VAR model outperforms the forecast horizon-specific univariate model. According to

the Diebold-Mariano (1995) test the differences are not, however, statistically significant.

All in all, in possible future applications, such as construction of impulse response func-

tions within the QR-VAR model (cf. Dueker 2005; Fornari and Lemke 2010), the dynamic

iterative forecasting approach proposed in this study seems more appropriate.

As a whole, we conclude that superior forecasts for the interest rate variables can be

obtained by allowing for the business cycle-specific regimes in the QR-VAR model. In the

previous studies the relative differences between the single-regime and regime switching

models have typically been smaller than in this study (see, e.g., Filardo 1994; Ang and

Bekaert 2002a). In this respect, the QR-VAR model turns out to perform really well.

17



5 Conclusions

Regime switching models provide an attractive class of econometric models to capture

regime changes in the stochastic behavior of interest rates. In this study, we suggested a

new regime switching VAR model which can also be seen as a joint model between real-

valued continuous variables and qualitative dependent variables. The QR-VAR model is

easier to estimate than some previously considered multivariate regime switching mod-

els where the latent regimes are determined within the econometric model. Although a

simulation-based forecasting method is required to construct multiperiod forecasts in the

QR-VAR model the proposed MC method is not computationally burdensome.

The QR-VAR model is applied to describe the joint regime switching dynamics of the

interest rates and the state of the business cycle where the latter explicitly determines the

regime. The empirical results show that in the QR-VAR model there is a strong bidirec-

tional linkage between the U.S. business cycle measured in terms of the NBER expansion

and recession periods and the bivariate system of the U.S. term spread and the changes

in the U.S. short-term interest rate. The results can be interpreted as positive evidence

for a reduced-form model for the short rate incorporating business cycle shifts as the

term spread and the short rate help to predict the future business cycle regimes while

the state of the business cycle has also feedback effects back to them. Most importantly,

the ability of the QR-VAR model to forecast business cycle turning points leads to supe-

rior out-of-sample forecast performance for the interest rate variables compared with the

conventional single-regime VAR model.

The QR-VAR model can be extended various ways. One possibility is to replace the

binary variable with other qualitative response variable, such as a multinomial variable

allowing for more than two regimes. Another interesting extension could be to use the

QR-VAR model in structural macroeconomic analysis. The impulse response functions

implied by the QR-VAR model may lead to different conclusions than the VAR or, e.g.,

Markov switching models employed in the previous literature. To facilitate impulse re-

sponse analysis, forecasts for the future values of the variables are required and, therefore,
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the proposed simulation-based iterative forecasting method is also of interest.

Appendix: Monte Carlo Forecasting Experiment

As discussed in Section 3.2, a simulation-based forecasting procedure is generally required

to construct multiperiod forecasts in the QR-VAR model. In the proposed MC simulation

method, the essential task is to specify the number of simulation replications N that

affects the approximation error coming from the numerical integration. Thus, we consider

a small-scale MC simulation experiment in order to specify the number of replications

N and illustrate the properties of the forecasting method. The data generating process

(DGP) is based on the QR-VAR(1,1) model presented in Tables 2–3.

We simulate 5 000 realizations of length T +12 observations from the above-mentioned

DGP. Using the first T observations in each realization, we estimate the univariate probit

model (6) and the VAR model along with the true QR-VAR model. Forecasts are com-

puted for the forecast horizons from 1 to 12 periods. The mean-squared forecast errors

(MSFE) and the QPS statistics (see Diebold and Rudebusch 1989) for the continuous

and binary dependent variables are constructed, respectively. We experiment with two

sample sizes (T=200 and T=500) and three choices of N (1 000, 10 000 and 50 000).

Table 5 presents the MSFE and QPS statistics of the QR-VAR model for different

forecast horizons. The accuracy of forecasts for the binary variable appears to increase

with the sample size T while this effect is not so clear for the continuous variables. As

far as the number of replications is concerned, there is a slight improvement when N

increases from 1 000 to 10 000, but basically no changes when N increases from 10 000

to 50 000. Thus, in conclusion, N=10 000 appears to be a sufficient selection.

The relative MSFE and QPS statistics in Table 6 are obtained by dividing the MSFE

and the QPS statistics of the QR-VAR model reported in Table 5 by those of the corre-

sponding VAR(1) and univariate probit (6) models. Most of entries are below unity for

the variables y1t and y2t indicating the superiority of the true QR-VAR specification over

the VAR model. The relative MSFEs in Table 5 are essentially the same with different
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selections of N . The relative QPS statistics for the binary variable show that the QR-

VAR model designed to construct dynamic iterative multiperiod forecasts outperforms

the forecast horizon-specific univariate model when the forecast horizon lengthens. As

pointed out in Section 3.2, the one-period forecasts from the QR-VAR and the univariate

autoregressive probit models are asymptotically equal.
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Tables and Figures

Table 1: Model selection results for the state of the business cycle st.

TSt−k1 ∆it−k2 it−k2 Autoregressive model (6) Static model (7)

k1 k2 k2 psR2 QPS AIC BIC psR2 QPS AIC BIC

Panel A: Term spread as a single predictor

1 0.435 0.180 68.406 73.627 0.061 0.290 111.951 115.432

2 0.459 0.173 65.524 70.745 0.110 0.273 106.086 109.567

3 0.474 0.170 63.729 68.950 0.179 0.249 97.781 101.261

4 0.475 0.171 63.668 68.889 0.224 0.239 92.523 96.004

5 0.470 0.173 64.252 69.473 0.247 0.232 89.775 93.255

6 0.464 0.175 64.904 70.125 0.286 0.216 85.116 88.596

7 0.453 0.177 66.219 71.440 0.317 0.205 81.427 84.908

8 0.438 0.181 68.035 73.256 0.337 0.200 78.979 82.460

9 0.420 0.186 70.163 75.384 0.354 0.192 77.028 80.508

10 0.396 0.194 72.953 78.174 0.341 0.198 78.515 81.996

11 0.376 0.202 75.362 80.583 0.338 0.204 78.905 82.386

12 0.355 0.208 77.839 83.060 0.335 0.210 79.258 82.739

Panel B: The term spread and the short-term interest rate as predictors

3 1 0.532 0.146 57.865 64.826 0.212 0.243 94.935 100.156

3 9 0.482 0.168 63.865 70.826 0.356 0.210 77.710 82.931

9 1 0.531 0.141 58.038 64.999 0.464 0.163 64.935 70.156

9 4 0.451 0.177 67.502 74.463 0.431 0.181 68.804 74.025

Notes: Different lags of the predictors are denoted by k1 and k2. The pseudo-R2 of Estrella (1998) (denoted by psR2) and

the QPS statistic (see Diebold and Rudebusch 1989) are the counterparts of the coefficient of determination and the

mean-square prediction error used in linear models. AIC and BIC are the Akaike and Schwarz information criteria,

respectively. In Panel B, only the best models in terms of the psR2 and QPS are presented.
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Table 2: Estimation results of the autoregressive binary response model (6).

πt ν πt−1 TSt−3 ∆it−1

0.066 0.935 -0.119 -0.319

(0.014) (0.009) (0.015) (0.074)

psR2 0.419 QPS 0.152

AIC 110.701 BIC 118.946

CR50% 0.893 CR25% 0.849

Notes: The estimated coefficients are based on the full sample period (1972:1–2010:12). TSt−3 and

∆it−1 denotes the employed lags of the term spread and the first difference of the short rate. The

standard errors of the estimated coefficients are given in the parentheses. CR50% and CR25% denote the

percentages of correct recession and expansion signal forecasts when the 50% and 25% thresholds are

used to construct signal forecasts from the probability of recession (see (5)). See also the notes to Table

1.
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Table 3: Estimation results of the QR-VAR(1,1) and VAR(1) models.

QR-VAR(1,1) VAR(1)

Expansion (st = 0) Recession (st = 1)

0.974 -0.251 0.779 -0.307 0.934 -0.274

A1,0 (0.012) (0.043) A1,1 (0.054) (0.083) A1 (0.014) (0.036)

0.010 0.315 0.183 0.363 0.048 0.347

(0.013) (0.049) (0.076) (0.117) (0.017) (0.045)

w0 0.023 0.005 w1 0.418 -0.411 w 0.114 -0.091

(0.026) (0.030) (0.098) (0.138) (0.029) (0.036)

0.088 -0.064 0.377 -0.438 0.146 -0.136

Σ0 (0.006) (0.006) Σ1 (0.063) (0.081) Σ (0.010) (0.011)

-0.064 0.113 -0.438 0.750 -0.136 0.227

(0.006) (0.008) (0.081) (0.125) (0.011) (0.015)

logL 605.529 logL 496.243

AIC -587.529 AIC -487.243

BIC -550.426 BIC -468.692

Notes: In the QR-VAR model, the reported values of the log-likelihood function (logL) and the Akaike

and Schwarz information criteria (AIC and BIC) are based only on the VAR part of the model. The

whole sample period (1972:1–2010:12) is used in these estimation results although in model selection

only the subsample period (1972:1–1992:12) is employed.
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Table 4: Out-of-sample forecasts.

Model Forecast horizon (months)

1 2 3 6 9 12

MSFE, term spread (TSt)

QR-VAR(1,1) 0.059 0.151 0.239 0.515 0.761 0.982

VAR(1) 0.062 0.166 0.269 0.623 0.929 1.158

relative MSFE 0.944*** 0.909*** 0.868*** 0.826*** 0.819*** 0.848***

QR-VAR(4,3) 0.056 0.154 0.235 0.483 0.732 0.948

VAR(4) 0.061 0.172 0.267 0.592 0.894 1.138

relative MSFE 0.920*** 0.892*** 0.879*** 0.817*** 0.818*** 0.832***

MSFE, short rate (level, it)

QR-VAR(1,1) 0.033 0.094 0.166 0.493 0.891 1.375

VAR(1) 0.036 0.112 0.207 0.615 1.086 1.616

relative MSFE 0.907*** 0.842*** 0.801*** 0.801*** 0.821*** 0.851***

QR-VAR(4,3) 0.042 0.113 0.194 0.536 1.040 1.701

VAR(4) 0.051 0.143 0.236 0.628 1.154 1.770

relative MSFE 0.821*** 0.788*** 0.824*** 0.853*** 0.901*** 0.960***

QPS, business cycle (st)

Univariate model (see (6)) 0.187 0.185 0.187 0.186 0.185 0.186

QR-VAR(1,1) 0.188 0.192 0.198 0.190 0.177 0.177

relative QPS 1.001 1.039 1.054 1.025 0.957 0.950

QR-VAR(4,3) 0.188 0.189 0.192 0.182 0.171 0.171

relative QPS 1.003 1.025 1.023 0.977 0.921 0.921

Notes: The entries are the MSFE and QPS statistics of different models. Relative MSFEs (QPS) are

obtained as dividing the MSFE (QPS) of the QR-VAR model by the MSFE (QPS) of the VAR

(univariate probit) model. The number of simulation replications in the MC forecasting procedure is

N=10 000. In the table, ∗, ∗∗, ∗ ∗ ∗ denote the 10%, 5% and 1% level of significance in the test of Clark

and West (2007) for equal predictive accuracy between the QR-VAR and the VAR model.
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Table 5: MSFE and QPS statistics of the QR-VAR(1,1) model where the DGP is the

QR-VAR(1,1) given in Tables 2 and 3.

MSFE, y1t MSFE, y2t QPS, st

N 1 000 10 000 50 000 1 000 10 000 50 000 1 000 10 000 50 000

Forecast horizon T = 200

1 0.158 0.158 0.158 0.261 0.261 0.261 0.207 0.206 0.206

2 0.400 0.399 0.399 0.277 0.276 0.276 0.200 0.199 0.199

3 0.671 0.668 0.668 0.265 0.263 0.263 0.218 0.217 0.217

6 1.234 1.228 1.228 0.270 0.269 0.269 0.240 0.238 0.238

9 1.535 1.530 1.529 0.278 0.276 0.276 0.257 0.257 0.257

12 1.770 1.765 1.764 0.293 0.292 0.292 0.267 0.265 0.265

T = 500

1 0.171 0.170 0.170 0.253 0.251 0.251 0.204 0.203 0.203

2 0.444 0.442 0.442 0.277 0.276 0.276 0.205 0.204 0.204

3 0.739 0.735 0.735 0.263 0.262 0.262 0.210 0.209 0.208

6 1.455 1.447 1.447 0.264 0.262 0.262 0.219 0.217 0.217

9 2.070 2.061 2.060 0.265 0.264 0.264 0.225 0.224 0.224

12 2.723 2.710 2.709 0.283 0.282 0.282 0.236 0.235 0.235

Notes: The entries are based on 5 000 realizations. The sample size is 200 or 500 observations (T=200

or T=500) and the number of simulation replications in forecast computation is denoted by N where

N=1 000, 10 000 or 50 000. In simulations from the DGP, following the business cycle periods

determined by the NBER, an additional censoring rule is imposed guaranteeing that the sequences of

zeros and ones of the values of st are at least six-period long.
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Table 6: The relative MSFE and QPS statistics of the QR-VAR(1,1) relative to the

VAR(1) model and the univariate autoregressive probit model (6).

Forecast horizon

T 1 2 3 6 9 12

T = 200 MSFE, y1t 0.971 0.930 0.884 0.773 0.704 0.641

MSFE, y2t 0.986 0.987 0.983 0.994 1.020 1.058

QPS, st 1.000 0.939 0.940 0.906 0.941 0.915

T = 500 MSFE, y1t 0.964 0.947 0.931 0.899 0.850 0.832

MSFE, y2t 0.997 0.985 0.978 1.006 0.997 0.998

QPS, st 1.000 1.007 1.000 0.961 0.938 0.950

Notes: The number of simulated realizations is 5 000 and the number of replications in the forecast

computation of the QR-VAR model is N=10 000. See also the notes to Table 5.
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Figure 1: In the left panel, the U.S. short-term interest rate (it) and its first difference (∆it,

dashed line) are depicted with the U.S. recession (st = 1, shaded areas) and expansion

periods. The right panel shows the U.S. term spread (TSt).
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Figure 2: Estimated conditional recession probability (st = 1) of the model presented in

Table 2.
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