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Implied volatility is the level of dispersion of asset price changes that is embedded in the market prices of option 
contracts written on that asset. As such, it represents market participants’ consensus on the expected volatility, or 
uncertainty regarding future returns, over the remaining life of the options. A proxy for aggregate stock market 
implied volatility is given by Chicago Board Options Exchange’s volatility index, the VIX, which is a practical 
implementation of the concept of model-free implied volatility that allows for extracting implied volatility directly from 
observed option prices without the use of a parametric option pricing model. Two well-known features of implied 
volatility and the VIX in particular are its mean reversion – it tends towards its mean level over time – and a 
significant negative contemporaneous correlation with returns on the underlying stock index. In this thesis, the time-
varying dynamics of the relationship between stock market returns and implied volatility are examined empirically.  
 
Theoretical background and the construction methodology of the VIX are thoroughly discussed in order to give the 
reader an understanding of model-free implied volatility and the VIX. Structural stability of the time series data of the 
VIX daily levels ranging from January 2004 to December 2011 is tested using the method developed by Bai and 
Perron (1998;2003a;b;2004) for testing for structural breaks at a priori unknown times. The results suggest that 
statistically significant structural breaks are present in the data sample, that is, the mean level to which the VIX 
reverts is found to shift over time. This allows for determining distinct volatility regimes in the sample. The 
relationship between daily changes in the VIX and the corresponding daily stock index returns during these distinct 
regimes is studied by examining their cross-correlations and testing for any Granger causality that might exist. A 
more elaborate study is conducted on the strongly negative contemporaneous relationship by examining the effect of 
return shocks on volatility as well as by looking for asymmetries in volatility using linear regression.  
 
The results strongly suggest the presence of a single statistically significant structural break that coincides 
approximately with the outbreak of the global financial crisis in late 2007. The sample data is therefore divided into a 
pre-breakpoint low volatility regime and a post-breakpoint high volatility regime. No statistically significant Granger 
causality is found in the data, which suggests that VIX changes have no predictive power over stock index returns or 
vice versa. Closer scrutiny of the contemporaneous volatility-return relationship reveals asymmetries in volatility – 
increases in the VIX associated with negative stock market returns are found to be higher than decreases associated 
with positive returns of similar size. The overall inverse relationship appears to be stronger in the high volatility 
regime. However, the degree of asymmetry in that relationship is in turn stronger in the low volatility regime, i.e. the 
difference between increases and decreases in the VIX in response to negative and positive returns, respectively, 
turns out to be higher than in the high volatility regime.  
 
The study of structural stability of the VIX mean level provides and update to the study of Guo and Wohar (2006), 
whose sample period predates that of this thesis. The findings on the asymmetry of the relationship between implied 
volatility and stock market returns lend further support to the notion that the VIX is rather a measure of investor fear 
in falling markets than of investor positive sentiment in rising markets, which has earned it the moniker “investor fear 
gauge”. In a low volatility regime, investors are more sensitive to any decreases in the stock markets, whereas in a 
high volatility regime the effects of return shocks are more pronounced regardless of their sign. The VIX constitutes a 
powerful indicator of investor sentiment, i.e. the expected level of volatility perceived by market participants at any 
given time.   
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Chapter 1

Introduction

Volatility is undoubtedly one of the key variables in finance. It is defined conventionally

as the variability or dispersion of asset price changes over time – as a statistical measure,

it corresponds to the standard deviation (square root of variance) of asset returns and is

therefore usually denoted by σ(·). In the context of pricing financial derivatives, volatil-

ity is perhaps the most important variable; to price an option contract, for example, one

must estimate the volatility of the asset on which the option is written, over a future pe-

riod from now until the expiry of the option contract. Conversely, the value of volatility

derived from market prices of traded derivatives yields a measure that reflects future ex-

pectations of all market participants. This implied volatility constitutes a forward-looking

estimate for the dispersion of returns on the underlying asset. On an aggregate market

level, the implied volatility of e.g. an equity index that is viewed as a proxy of general

market conditions could then be thought of as a measure of perceived uncertainty in that

market.

Volatility is readily estimated from historical data using sample standard deviation,

but defining implied volatility can prove to be trickier. Traditionally, it is estimated by

inverting some option pricing formula, but more recent research has led to the develop-

ment of an informationally superior method that allows extracting volatility from option

prices without the need to specify an option pricing model. A practical implementation

of this model-free measure of implied volatility is found in the Chicago Board Options

Exchange’s VIX volatility index that aims to capture the market’s expectation of future

volatility over the next 30 calendar days. The VIX is often informally referred to as the

”investor fear gauge”, a term coined by Whaley (2000) to underline the observation that
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the volatility index increases in times of declining markets, thus reflecting market stress

and investors’ fear of market crashes. More formally, there is a strong inverse relationship

between changes in the volatility index level and corresponding returns on the underly-

ing stock index.

A well-known feature of market volatility is that it is a mean-reverting process, which

essentially means it will tend to its average level, increasing (decreasing) from low (high)

levels over time. However, the mean level to which market volatility reverts is likely to

shift over time, reflecting a transition from a regime of high or low volatility to another.

Indeed, graphical inspection of VIX daily time series data reveals infrequent, but signifi-

cant shifts in its mean level. In recent years, market conditions have alternated from rela-

tively calm rising markets to extremely volatile, at times even chaotic periods witnessed

after the global financial crisis first began in late 2007. Obviously, the market turbulence

is quantified in not only the observed level of market volatility but also stock market re-

turns. As such, the degree and dynamics of their interrelationship is expected to vary

accordingly. For example, during favorable market conditions investors might be more

wary of any negative asset returns, amplifying their reactions and thus causing height-

ened levels of implied volatility compared to a murkier market environment. We are

therefore interested in ascertaining statistically whether there have been any significant

structural breaks in the VIX mean level and in identifying the dates of their occurrence.

These breakpoints can then be used in defining the boundaries between different volatil-

ity regimes, or distinct subperiods during which the supposedly changing dynamics of

the relationship between market volatility and asset returns can be examined.

This thesis contributes to the existing market volatility literature in at least two ways.

First, we provide a thorough, yet concise synthesis of the theoretical framework underly-

ing the VIX index. This should be sufficient for the unacquainted reader to get a grasp on

what the VIX is and how it is constructed. The new calculation methodology no longer

relies on the widely-used Black-Scholes (1973) model. Instead, it is based on the con-

cept of fair value of future variance developed by Demeterfi, Derman, Kamal, and Zou

(1999) and calculated directly from option prices independent of any model. The theory

is closely linked to the pricing of variance swaps, whose fair strike price is shown to be

identical to the separately developed concept of model-free implied variance, or squared

volatility (Britten-Jones and Neuberger 2000).

Second, we examine the empirical properties of the VIX, namely structural stability
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and the relationship with stock market returns, over a sample period that covers the times

of extraordinary market turbulence experienced in recent years. We extend the study of

Guo and Wohar (2006) on structural changes in market volatility by examining more re-

cent data and find a regime shift that coincides with the outbreak of the global financial

crisis in late 2007. This leads to the division of the sample data into two volatility regimes

with a significant difference between their mean levels of volatility. Moreover, we aim to

provide an update to existing studies covering the relationship between implied volatil-

ity, as measured by the VIX, and the corresponding asset returns. Historically, the VIX

exhibits a strong negative correlation with returns on its underlying stock index, the S&P

500. This inverse relationship has merited the VIX its nickname, the ”fear gauge”: The

index value tends to increase during times of financial stress, which are often accompa-

nied by market decline, i.e. negative asset returns. Conversely, in a rising market the VIX

usually goes down. Our findings give strong evidence of an inverse relationship and of

asymmetries between negative and positive changes in volatility vis-à-vis corresponding

asset returns. Interestingly, the strength of the inverse relationship as well as the degree

of asymmetry therein are found to vary between the two volatility regimes.

The remainder of this paper is organized as follows. Chapter 2 presents the termi-

nology, concepts and key results in mathematical finance and option pricing insofar as

they are necessary for understading model-free implied volatility introduced in the next

chapter. The first section of Chapter 3 begins with a brief discussion on financial volatil-

ity before moving on to examine the theory of model-free implied volatility in the next

section. The practical implementation and construction of the VIX volatility index is then

presented in the third section. Chapters 4 and 5 constitute the empirical part of this

study. In Chapter 4, we look for structural breaks in the VIX time series and, based on

the results, divide the sample period into two volatility regimes. Chapter 5 studies the

dynamics between contemporaneous changes in the VIX and the underlying stock index

returns in the context of the newly defined volatility regimes. Chapter 6 concludes. Some

auxiliary mathematical proofs are contained in the Appendix.
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Chapter 2

Pricing of financial derivatives

In this chapter we introduce the concepts, terminology and mathematical foundations of

pricing contingent claims, insofar as they are relevant for the scope of this thesis. Our

presentation draws partly from Hull (2009), Tsay (2005) and Øksendal (1998) and is in-

tended to give the reader the tools necessary for understanding the concept of financial

volatility in the context introduced later on. For a more rigorous treatment of stochastic

calculus and the underlying theories, the interested reader is referred to e.g. Neftci (2000)

and Øksendal (1998).

2.1 Definitions

In financial markets, a derivative is an instrument whose value is contingent on another

variable known as the underlying asset. Such assets can be e.g. stocks, currency exchange

rates or commodities.

Perhaps the most simple derivative is a forward contract. It is an agreement between

two parties to buy or sell an underlying asset at a future time specified today and at a

price agreed upon today. The party who buys the underlying asset is said to assume a

long position, whereas the seller assumes a short position. The price agreed upon is called

the delivery or (especially in conjunction with options) strike price and denotedK, and the

future trade date is called the expiry or maturity date T . At expiry, the forward contract

gives a payoff of ST −K for a long position and K − ST for a short position, where ST is

the price of the underlying asset at time T .

An option is a contract which gives the holder the right, but not the obligation, to
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buy or sell an underlying asset at a later time for a strike price that is fixed when the

option is written. If the holder has the right to buy the underlying asset, the option is a

call, whereas an option that gives its holder a right to sell the underlying asset is a put.

The use of this right is called exercise of the option. If an option can only be exercised at

the expiry date T it is called European, while exercising an American option is allowed at

any time before the expiry date. Rational investors will exercise an option only when it

is profitable for them; in the case of a call option, this happens when the market price

of the underlying asset at any given time t is greater than the strike price, i.e. St > K.

Correspondingly, a put option is only exercised when St > K. The difference between

the two prices gives the payoff of the option. Denoting the payoff function of a call and a

put option at time t with Ct and Pt, respectively, gives

Ct = max(St −K, 0) ≡ (St −K)+ (2.1)

Pt = max(K − St, 0) ≡ (K − St)+. (2.2)

2.2 Asset price processes

A variable whose value changes over time in an uncertain way is said to follow a stochastic

process. The process can be discrete or continuous in time, depending on whether the

changes in value take place at fixed points in time or at any given time, as well as in

”space”, depending on whether the variables of the process can take only certain values,

or all values within a given range. The birth of modern mathematical finance can be

attributed to Bachelier (1900), who proposed modeling the price process {St}t≥0 of a

financial asset as a stochastic process in order to develop a theory of option pricing. In

spite of the fact that in financial markets the prices follow processes that are discrete in

time and have discrete variables, since the prices are quoted in fixed ticks and trading can

only take place when the marketplace is open for business, continuous-time processes are

still useful for understanding the pricing of options.

A (first-order) Markov process is a certain stochastic process where only the present

value of a stochastic variable is relevant when considering the next value. This implies

that any past information Wj with j < t is irrelevant when forecasting the future values.

A Wiener process1 is a particular Markov process with mean 0 and variance 1. Denote such

1Also referred to as Brownian motion, particularly in physics. A discrete-time analogue would be a white
noise process.
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a process with Wt. Its changes dW = Wt+dt −Wt, where d is an infinitesimal change, are

then given by

dWt = ε
√
dt. (2.3)

Here, ε is a random drawing from a standardized normal probability distribution; there-

fore, dW ∼ N(0, dt). The Wiener process Wt with W0 = 0 is further characterized by

Wt −Ws ∼ N(0, t− s) ∀ 0 ≤ s ≤ t and

Wt1 −Ws1 ⊥⊥Wt2 −Ws2 ∀ s1 ≤ t1 ≤ s2 ≤ t2,

where the latter condition implied that two non-overlapping time intervals are indepen-

dent. From the former condition it is evident that E[Wt] = 0 and Var[Wt] = t, i.e. the

variance increases linearly with the time interval. A generalized Wiener process is a gen-

eralization where the rates of change of its mean and variance are allowed to differ, so

that

dxt = µdt+ σdWt, (2.4)

where µ is the drift rate (change in mean) and σ is the rate of change in the standard devi-

ation (square root of variance), henceforth referred to as volatility2. Thus, dxt is normally

distributed with mean µt and variance σ2t.

A further extension known as the Itō process3, is one where the drift µ and volatility σ

are functions of the stochastic process itself, that is,

dxt = µ(xt, t)dt+ σ(xt, t)dWt, (2.5)

meaning that both the drift and volatility parameters are allowed to vary through time.4

The prices of financial assets are generally assumed to follow this process, which makes

it essential for financial modeling. For example, let St be an asset whose price process

{St}t≥0 is characterized by an Itō process with µ(xt, t) = µSt and σ(xt, t) = σSt:

dSt = µStdt+ σStdWt ⇔
dSt
St

= µdt+ σdWt. (2.6)

This particular model specification is known as geometric Brownian motion. The latter

2Financial volatility is discussed with more detail in the following chapter.
3Named after Kiyoshi Itō for his work on stochastic calculus (see e.g. Itō 1951).
4Note that the Wiener process derived above is simply an Itō process with µ(xt, t) = 0 and σ(xt, t) = 1.
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expression states that the underlying asset’s price return process follows a generalized

Wiener process, which allows for some convenient properties on the evolution of the

return process.

Another result that is employed widely in mathematical finance and also carries Itō’s

name is Itō’s lemma. More generally, it is often perceived as one of the cornerstones of

stochastic calculus – it is the stochastic counterpart of the chain rule.5 In its simplest

(one-dimensional) form it states that for an Itō process given by equation (2.5) and for

any contingent twice differentiable function f(xt, t) one has

df =
(
∂f

∂t
+ ∂f

∂x
µ(xt, t) + 1

2
∂2f

∂x2σ
2(xt, t)

)
dt+ ∂f

∂x
σ(xt, t)dWt. (2.7)

A useful application is to consider Itō’s lemma with the logarithm of the asset price St
that follows a geometric Brownian motion in order to arrive at an analytical solution for

St. Let xt = St and f(xt, t) = lnSt, so that equation (2.7) becomes

d lnSt =
( 1
St
µSt −

1
2

1
S2
t

σ2S2
t

)
dt+ 1

St
σStdWt

=
(
µ− σ2

2

)
dt+ σdWt,

(2.8)

By integrating equation (2.8), we have

lnSt − lnS0 =
(
µ− σ2

2

)
t+ σWt

St = S0 exp
[(
µ− σ2

2

)
t+ σWt

]
. (2.9)

Moreover, using the expected value of a Gaussian (normally distributed) random vari-

5For a composite function f ◦ g, the chain rule is given by

df

dx
= df

dg

dg

dx
.
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able, E[eX ] = exp(µ+ σ2

2 ), the expected asset price can be shown to equal

E[St] = E

[
S0e

(
µ−σ

2
2

)
t+σWt

]
= S0e

(
µ−σ

2
2

)
t
E
[
eσWt

]
⇔ E[St] = S0e

µt, (2.10)

i.e. the asset price is expected to grow with a continuously compounded interest rate.6

2.3 Risk-neutral valuation of contingent claims

We now define a two-security world where the first security is a riskless bond, whose

price evolves at a constant risk-free interest rate7 r from its initial value B0 = 1 according

to the differential equation

dBt = rBtdt. (2.11)

Its price at time t is thus equal to the continuously compounded risk-free interest rate:

Bt = ert. The second security is a risky asset, whose price evolves from its initial value

S0 following an Itō process

dSt = µStdt+ σStdW
P, (2.12)

where µ and σ are drift and volatility. W P is a Wiener process under the probability

measure P for which P(ω) > 0 ∀ω ∈ Ω and
∑
ω∈Ω P(ω) = 1, where Ω is a nonempty

space denoting all possible states ω of the world: Ω = {ω1, ω2, . . . }. By Itō’s lemma and

equations (2.11) and (2.12), the discounted asset price process Zt = St/Bt = Ste
−rt is

shown to equal

dZt = (µ− r)Ztdt+ σZtdW
P. (2.13)

Define the drift process of the above equation as (µ− r)Zt = σλZt, so that λ = (µ− r)/σ.

Rearranging shows that the unknown drift parameter of the risky asset’s price process is

equal to the risk-free interest rate plus its volatility weighted by λ. This weighting factor

6Continuous compounding is the limit when the assumed compounding interval becomes infinitesimal.
In the context above, if µ is assumed to equal the interest rate per annum and t measures time in years, the
future value of the asset price would be equal to S0(1 + µ

n
)nt when compounding takes place n times per

annum. Continuous compounding is then given by limn→∞ S0
(
1 + µ

n

)nt = S0e
µt.

7In theory, the risk-free rate is the price of riskless money, i.e. the rate at which money can be borrowed (or
lent) without credit risk, so that it is certain to be repaid. The Treasury rate (the rate at which a government
borrows in its own currency) is often thought as risk-free. Practitioners, however, usually set the risk-free
rate equal to an Interbank Offer Rate, such as the Libor or the Euribor. (Hull 2009.)
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then represents the market price of risk of the risky asset St: the excess return required as

compensation for an additional unit of standard deviation. Clearly, for a riskless asset

such as bond Bt we have λ = 0 and thus µ = r. By applying the Girsanov theorem8,

we can define a new probability measure under which the market price of risk is always

zero and all asset prices thus grow at a constant (risk-free) interest rate. This implies that

investors’ risk preferences have no impact on their investment decisions; under this new

probability measure, the world is risk-neutral.

To this end, let W̃Q be defined by dW̃Q = λdt + dW P. The Girsanov theorem then

states that Q is an equivalent probability measure such that W̃Q is a Wiener process.

Under this new measure, the discounted price return process (2.13) can be represented as

a zero drift process and the asset price process has a drift parameter equal to the risk-free

interest rate:

dZt
Zt

= σλdt+ σdW P = σdW̃Q

⇔ dSt
St

= rdt+ σdW̃Q. (2.14)

From the above formulation it is easy to see that in a risk-neutral world (under the prob-

ability measure Q) the volatility parameter represents the only source of uncertainty in

the asset price process.

The fundamental theorem of asset pricing (see e.g. Harrison and Pliska 1981, Delbaen

and Schachermayer 1994) states that the existence of Q implies the absence of arbitrage

opportunities. An arbitrage is defined as the opportunity to make a risk-free profit at

zero cost, i.e. there is no probability of loss, the probability of gain is positive and no net

investment of capital is required. Formally, an arbitrage opportunity is said to exist if the

value of a portfolio Π at time t satisfies Π0 = 0, P(Πt ≥ 0) = 1 and P(Πt > 0) > 0.
The absence of arbitrage implies that all assets with identical future cash flows have

an identical price.9 Therefore, the future values of all asset prices are defined by the

8The theorem attributed to Girsanov (1960) allows to express the dynamics of a stochastic process under
a new, equivalent probability measure denoted here by Q. Equivalency requires that P(ω) > 0 ⇔ Q(ω) >
0 ∀ω ∈ Ω. Essentially, the Girsanov theorem links the probability measures using a Radon-Nikodym
derivative (see Nikodym 1930):

EQ[Xt] = EP
[
dQ
dP

Xt

]
,

where Xt is a Wiener process.
9This can be seen by considering a situation where arbitrage opportunities existed due to e.g. discrep-

ancies between different markets: An investor willing to benefit from the arbitrage could buy the cheaper
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continuously compounded risk-free interest rate (recall equation (2.10)): EQ[St] = S0e
rt.

For the return of the risky asset St over a time period τ = T − t, this translates to

EQ
[
ST
St

∣∣∣St] = er(T−t), (2.15)

as was first noted by Cox and Ross (1976).

The theory of rational option pricing (Merton 1973) states that the price of a derivative

must equal its risk-neutral expected payoff at maturity. A forward price Ft can thus be

deduced directly from above and is given by

Ft = EQ [ST ] = Ste
r(T−t). (2.16)

Arbitrage considerations show that if Ft > Ste
r(T−t), profit could be made by buying the

asset S and shorting the forward contract F on that asset. Conversely, if Ft < Ste
r(T−t), an

opposite strategy would be profitable. Therefore, under the assumption of no arbitrage,

the equality must hold.

For option valuation using risk-neutral pricing, the expected payoffs at maturity are

discounted by the continuously compounded risk-free interest rate. At any time t be-

fore the expiry date T the theoretical European call and put option prices Ct(K,T ) and

Pt(K,T ) written on asset S are equal to these discounted payoffs, i.e.

Ct(T,K) = e−r(T−t)EQ (ST −K)+

= e−r(T−t)
∫ ∞

0
(ST −K)+f(ST , T |St, t)dST

(2.17)

and
Pt(T,K) = e−r(T−t)EQ (K − ST )+

= e−r(T−t)
∫ ∞

0
(K − ST )+f(ST , T |St, t)dST ,

(2.18)

where f(ST , T |St, t) is the conditional probability distribution function or the risk-neutral

density (RND) of the underlying asset price at expiry, ST , given its price at time t. Equa-

tions (2.17) and (2.18), together with equation (2.15), provide the solution to the option

valuation problem (Ross 1976, Cox and Ross 1976; see also Harrison and Pliska 1981).

asset (with identical future cash flows) and sell it on another market at a higher price. But other investors
would then quickly notice and take advantage of these opportunities, which would lead to them disappear-
ing. Therefore, in the long run it is reasonable to assume that an equilibrium with a single price for all assets
would arise.
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The RND is unknown and needs to be estimated. An extensive array of parametric

estimation methods exist for this purpose, probably the most famous among them being

the model by Black and Scholes (1973) (see also Merton 1973), who give an analytical

solution for European option prices under certain restrictive and perhaps somewhat sim-

plistic assumptions on the asset price process and market environment. The power of the

model, however, lies in its robustness and ease-of-use: All parameters save for one are

readily available from market quote providers, and the formula normally gives a theo-

retical price close enough to the actual value of the option. The original article of Black

and Scholes (1973) sparked a boom of interest in option pricing problems, and several

extensions and alternative estimation methods have been developed in the succeeding

years. For up-to-date guides to option pricing models and their implementation, see e.g.

Haug (2007) and Rouah and Vainberg (2007).

The following chapter discusses the concept of financial volatility. As a measure of

the uncertainty of the realized price return of an asset (recall that it represents the only

source of risk in an asset return process under the risk-neutral measure), it is an integral

component of option pricing. Conversely, volatility can be obtained from (observed)

option prices since it is embedded in them, which dismisses the need for an option pricing

model.
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Chapter 3

Gauging volatility

Financial market volatility refers to the variability or dispersion of price changes over

time. It is not therefore a measure of how much prices are changing; an asset whose price

is consistently increasing or decreasing by a large but similar amount each period would

have low price volatility. Instead, volatility measures how price movements themselves

vary over time – it is a gauge of the uncertainty of an asset’s returns. The higher the

volatility, the riskier the security, since heightened volatility translates to a larger spec-

trum of potential prices. This also increases the value of options written on the asset.

When defining volatility, an important distinction is between historic and implied volatil-

ity. Historic volatility is a statistical measure of the dispersion of asset returns. It is

backward-looking by definition, since it is calculated from past (historical) data, usually

a set of daily observations drawn from a period such as one calendar month or, 22 trad-

ing days. As a statistical measure, volatility corresponds to standard deviation and is

consequently commonly denoted by σ. A consistent estimator of σ is the sample stan-

dard deviation of asset returns (see e.g. Hull 2009). It has prevailed as the most common

measure for historical volatility largely because it is consistent regardless of the data dis-

tribution, i.e. it converges to σ as the number of observations tends to infinity.1

In contrast, implied volatility can be perceived as the value of volatility that, when

1An alternative volatility measure is given by the mean absolute deviation (MAD), which in its unad-
justed form is biased and needs to be scaled according to the observed data distribution, rendering it consid-
erably more inconvenient. However, Ederington and Guan (2006) found their adjusted MAD to be a better
volatility estimate than the historical standard deviation when working with normally distributed data.
Goldstein and Taleb (2007), for their part, argue that finance professionals often confuse mean absolute de-
viation with standard deviation when talking about volatility, which leads to a significant underestimation
of the actual (realized) volatility.
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inserted into an option pricing formula, equates the theoretical price of the option to its

market price. It is the level of volatility that is implied by the current market price of the

option together with all other determinants affecting the value of an option in an option

pricing framework. Therefore, assuming that the markets process information efficiently,

implied volatility can be thought of as the expected level of volatility over the remaining

life of the option (its time to expiry). As opposed to historical volatility, it is inherently

a forward-looking measure and provides a consensus forecast of the expected level of

volatility in a future time period.

Implied volatility is, on average, higher than historic volatility (see e.g. Carr and Wu

2006; 2009). This can be explained by the volatility risk premium, which is essentially the

compensation paid to option sellers for bearing the risk of losses during periods in which

actual volatility increases suddenly, without being incorporated into implied volatility

through option prices. Implied volatility is generally found to be negatively correlated

with asset returns, even though volatility as a measure does not reveal anything of the

direction of price changes. The relationship between volatility and asset returns is delved

into more deeply in the next chapter.

Recent research has showed that implied volatility can be derived from observed mar-

ket option prices independently of any option pricing model. This is favorable since

economic models are by definition simplified representations of complex processes and

often posit structural parameters, they are subject to misspecification errors. Tests based

on a model-free measure of implied volatility are direct tests of market efficiency rather

than joint tests of market efficiency and the assumed option pricing model (Jiang and

Tian 2005). In the next section we examine the concept of model-free implied volatility

more closely.

3.1 Model-free implied volatility

Unlike the traditional concept of implied volatility, where the implied volatility is es-

timated numerically from an option pricing model, the model-free implied volatility

(MFIV) does not rely on any particular parametric model – instead, it can be calculated

directly from the market prices of a cross section of call and put options with the same

expiry. The concept was originally proposed by Dupire (1993) and Neuberger (1994)2

2See also Carr and Madan (1998) and Demeterfi et al. (1999).
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and was comprehensively formulated first in Britten-Jones and Neuberger (2000). The

authors demonstrate that the set of call and put option prices (defined exogenously in

the markets) having the same maturity is sufficient to derive the risk-neutral expected

sum of the squared returns of the asset between the current date and the option matu-

rity. In their original derivation they assume zero interest rates and consider an asset that

pays no dividend. They make no further assumptions regarding the underlying stochas-

tic process of the asset except the fact that both the asset and the volatility exhibit no

jumps. Jiang and Tian (2005) further refine the original result by showing how to imple-

ment the concept of model-free implied volatility in the more real-world-like setting of

dividends and non-zero interest rates. They also prove that the restriction of no jumps

in the asset prices can be relaxed as well. In their derivation of a closely related measure

referred to as the corridor implied volatility, Andersen and Bondarenko (2007) allow for

jump discontinuities in the volatility process by defining it as a càdlàg function3.

Britten-Jones and Neuberger (2000) derive their result based on earlier results pro-

posed in Ross (1976), Banz and Miller (1978) and Breeden and Litzenberger (1978), who

discovered that the RND can be recovered from a set of European option prices. The rela-

tionship suggests that the RND is simply the second partial derivative of the call (or put)

pricing function with respect to the strike price, and it allows expressing the risk-neutral

expected sum of squared returns via the RND using only observed option prices and thus

without the need to specify a pricing function for the options. In their original derivation,

Britten-Jones and Neuberger (2000) assume that the price return process is fully defined

by the instantaneous volatility:
dSt
St

= σ(t, ·)dz. (3.1)

The risk-neutral expected sum of squared returns between dates t1 and t2 is then4

E

[∫ t2

t1

(
dSt
St

)2
dt

]
= 2

∫ ∞
0

C(t2,K)− C(t1,K)
K2 dK. (3.2)

The subscript Q is omitted from the expectation operator above for simplicity. Through-

out the rest of this thesis, the expectation operator will refer specifically to risk-neutral

expectation, unless stated otherwise. A model-free measure of volatility is then given as

the square root of the above expression. Notice that this formulation makes use of the en-

3"Continue à droite, limite à gauche", meaning "continuous on (the) right, limit on (the) left”.
4For details on the derivation, see Britten-Jones and Neuberger (2000, appendix A).
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tire range of strike prices (theoretically from zero to infinity), and therefore presumably

captures all information within the options of a given expiry.

Jiang and Tian (2005) derive an expression of the MFIV that is valid for a more general

class of asset price processes (e.g. ones that contain jumps). Dividends can be accounted

for by considering an asset price S∗t = St − PVt(D), where the present value PVt of total

dividends paid D is removed from the initial asset price. To relax the assumption of zero

interest rates, the authors employ a forward asset Ft = S∗t e
rT , which has a zero drift rate

in a risk-neutral world. Setting t1 = 0 and t2 = T in Equation (3.2) above yields the

realized asset return variance between now and some future expiry date. As Jiang and

Tian (2005) demonstrate, the risk-neutral expected sum of squared returns for a forward

asset Ft is then given by

E

[∫ T

0

(
dFt
Ft

)2
dt

]
= 2

∫ ∞
0

CF (T,KerT )− (F0 −K)+

K2 dK, (3.3)

where CF (T,K) = erTC(T,K), the forward option price, and (F0−K)+ = CF (0,K), the

time-zero value of the forward call option. By redefining St = S∗t , Equation (3.2) can then

be stated as

E

[∫ T

0

(
dSt
St

)2
dt

]
= 2

∫ ∞
0

erTC(T,K)− (S0e
rT −K)+

K2 dK. (3.4)

As shown in Appendix A.1, this can further be modified to yield a more compact expres-

sion for the MFIV:

σ2
MFIV = 2erT

[∫ F0

0

P (T,K)
K2 dK +

∫ ∞
F0

C(T,K)
K2 dK

]
. (3.5)

The MFIV can thus theoretically be computed by taking a cross section of call and put

option prices over an infinite range of strike prices. In practice, the computation requires

some approximation owing to the discrete nature of financial markets and the finite range

of observable market option prices for any given security. The VIX volatility index in-

troduced in Section 3.3 is a practical implementation of MFIV, although its theoretical

foundations lay in the pricing of variance swaps, which is discussed in the next section.
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3.2 Variance swap as model-free implied volatility

The VIX volatility index introduced in Section 3.3 is based on the theory of variance

swaps. Therefore, in spite of its similarities with the concept of model-free implied

volatility, the theoretical pricing of variance swaps merits a closer look. A variance swap

is a forward contract on the future realized variance of an underlying asset. At expiry,

it has a payoff equal to σ2
R − KVar times the notional value of the swap. σ2

R is the real-

ized asset variance quoted in annual terms over the life of the contract and KVar is the

strike price. Demeterfi et al. (1999) define the fair delivery value of future realized vari-

ance (henceforth referred to as FVFV) as the strike price that is equal to the risk-neutral

expected value of average future variance. The concept of the FVFV is closely related to

the MFIV – alas, their theoretical equivalence was is proven by Jiang and Tian (2007). Its

derivation is based on a log contract (see Neuberger 1994), which can be perfectly repli-

cated and hence priced using a portfolio of call and put options. This makes it easier to

implement in practice.

Following Demeterfi et al. (1999) (see also Bossu, Strasser, and Guichard 2005), we

begin by assuming that the evolution of the underlying price St is given by the following

Itō process:

dSt = µtStdt+ σtStdWt ⇔
dSt
St

= µtdt+ σtdWt (3.6)

with time-varying mean and volatility parameters µt and σt. Notice that the underlying

asset’s price evolution given above is a more general version of the geometric Brownian

motion discussed in Section 2.2.

By taking logarithms and applying Itō’s lemma with f(S, t) = lnSt to (3.6) we obtain

d(lnSt) =
(
Stµt

1
St
− 1

2S
2
t σ

2
t

1
S2
t

)
dt+ Stσt

1
St
dWt

=
(
µt −

1
2σ

2
t

)
dt+ σtdWt (3.7)

⇔ 1
2σ

2
t dt = dSt

St
− d(lnSt) (3.8)

where σ2
t is the (instantaneous) variance at time t. Setting the current time at t = 0, the

average variance over a continuous sample between now and a future time T is then
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given by the continuous integral

VarT = 1
T

∫ T

0
σ2
t dt. (3.9)

From Equation (3.7),

VarT = 2
T

(∫ T

0

dSt
St
−
∫ T

0
d(lnSt)

)
= 2
T

[∫ T

0

dSt
St
− ln

(
ST
S0

)]
. (3.10)

The FVFV is defined as the expected value of the average variance under the risk-neutral

measure: KVar = E[VarT ]. Recall that in a risk-neutral world the drift rate µt in equation

(3.6) equals a constant risk-free interest rate r, so that the rate of return of the underlying

asset equals the risk-neutral expected return over [0, T ], viz. rT . Thus, we obtain

KVar = E[VarT ] = E

[
1
T

∫ T

0
σ2
t dt

]

= 2
T
E

[∫ T

0

dSt
St
− ln

(
ST
S0

)]

= 2
T

(
rT − E

[
ln
(
ST
S0

)])
(3.11)

The final term in the last identity, E
[
ln
(
ST
S0

)]
, represents the expectation of the payoff

function of a log contract, which can be replicated using a forward contract and a set

of put and call options, all with a common expiration date.5 To this end, the log-payoff

function is first decomposed using an arbitrary parameter S∗ defining the boundary, or

cutoff point, between calls and puts:

ln
(
ST
S0

)
= ln

(
ST
S∗

)
+ ln

(
S∗
S0

)
(3.13)

where the second term on the right-hand-side (RHS) is a constant. Therefore, only the

5The replication argument derived by Carr and Madan (1998) states that any twice continuously differ-
entiable function f(S) defined in R can be replicated as

f(S) = f(κ) + f ′(κ)(S − κ) +
∫ κ

0
f ′′(K)(K − S)+dK +

∫ ∞
κ

f ′′(K)(S −K)+dK (3.12)

for some threshold κ and strike price K (see Appendix A.2 for proof).
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first term on the RHS has to be replicated. The replication is given by

ln
(
ST
S∗

)
= ST − S∗

S∗
−
∫ S∗

0

(K − ST )+

K2 dK −
∫ ∞
S∗

(ST −K)+

K2 dK. (3.14)

This formulation can be interpreted as holding a portfolio consisting of a short position

in 1/S∗ forward contracts with strike S∗ and short positions in 1/K2 put options for all

strikes K ∈ [0, S∗] and another 1/K2 in call options for all strikes K ∈ [S∗,∞[. Recalling

the theoretical prices of forward and option contracts defined in Section 2.3, the final term

of equation (3.11) can then be stated as

−E
[
ln
(
ST
S0

)]
= − ln

(
S∗
S0

)
− E

[
ln
(
ST
S∗

)]
= − ln

(
S∗
S0

)
− E[ST ]− S∗

S∗
+
∫ S∗

0

E[(K − ST )+]
K2 dK +

∫ ∞
S∗

E[(ST −K)+]
K2 dK

= − ln
(
S∗
S0

)
−
(
S0
S∗
erT − 1

)
+ erT

(∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK

)
(3.15)

Substituting the above expression for−E
[
ln
(
ST
S0

)]
in equation (3.11) gives the fair value

of future variance:

KVar = 2
T

[
rT −

(
S0
S∗
erT − 1

)
− ln

(
S∗
S0

)
+ erT

(∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK

)]
.

(3.16)

This is Equation (26) of Demeterfi et al. (1999). As shown by Jiang and Tian (2007), the

theoretical equivalence of this formulation with the concept of model-free implied is ob-

tained by setting the integral cutoff point to equal to the forward price, i.e. S∗ = FT =
S0e

rT (see Appendix A.1 for details on the calculation).

The concepts of MFIV and FVFV derived above make precise the perhaps intuitive

notion that implied volatilities can be regarded as the market’s expectation of future re-

alized volatilities. They establish a connection between market prices of options and the

risk-neutral expected realized variance (squared volatility), but their practical implemen-

tation requires some approximations, as can be seen from e.g. the continuous integrals

on strike prices in Equation (3.16). In the next section we examine how the FVFV is ap-
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proximated and implemented in practice in the VIX volatility index.

3.3 The VIX volatility index

This section introduces the current computation methodology of the VIX volatility index

first implemented by the Chicago Board Options Exchange (CBOE) in 1993. A volatility

index for measuring the aggregate level of stock market volatility was first proposed by

Gastineau (1977), shortly after the first option contracts began trading on the CBOE in

April 1973. Gastineau (1977) used an average of at-the-money options on 14 stocks com-

bined with a measure of historical volatility, and Cox and Rubinstein (1985) refined this

procedure by including multiple calls on each stock and by weighting the volatilities in

such a way that the index is always at-the-money and has a constant time to expiration.

(Fleming, Ostdiek, and Whaley 1995). Brenner and Galai (1989) constructed volatility

indices for equity, bond and foreign exchange markets and Whaley (1993) introduced

the computation methodology that was later implemented by the CBOE as the first ex-

change to disseminate an official volatility index on a regular basis. The success of this

index sparked interest in other exchanges around the world, who then developed their

own respective indices. Effectively all introduced indices tracking market volatility on

different markets make use of the original methodologies.6

Initially, the VIX was based on the implied volatilities of the S&P 100 stock index,

which at the time possessed the most actively traded stocks on the US market and was

therefore considered its foremost benchmark. After the introduction of the new VIX,

the CBOE has continued disseminating the original volatility index under a new ticker

symbol, VXO. This first implementation is based on the implied volatilities of four pairs

of near-the-money7 call and put options of the nearest and second-nearest maturity on

the S&P 100 stock index options. The implied volatilities are derived from the popular

Black and Scholes (1973)/Merton (1973) option valuation model. Since these options are

American and since the underlying OEX index portfolio pays discrete cash dividends,

6For reviews on volatility indices in different markets, see Aboura and Villa (1999) and Siriopoulos and
Fassas (2009).

7From the payoff functions of (European) call and put options it is clear that the owner has the possibility
to accrue unlimited profit at a limited risk of loss, and the option has intrinsic value relative to its moneyness.
An option is said to be in-the-money (ITM) if it has some intrinsic value, that is, if K < St for a call and
K > St for a put. An option is out-of-the-money (OTM) if it has no intrinsic value, and at-the-money (ATM),
if K = St. The somewhat vaguer term near-the-money means simply that the strike price is close to the
underlying’s current market price.
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the implied volatilities need to be estimated numerically. The method of choice is the

binomial method of Cox, Ross, and Rubinstein (1979) adjusted for cash dividends, as

described in Harvey and Whaley (1992). The implied volatilities are weighted in such

a manner that the volatility index represents a measure of the market consensus of the

expected volatility over the next 30 calendar days. Moreover, since the implied volatilities

used in the index calculation are stated in trading days8, an artificial trading-day adjust-

ment is introduced to correctly calibrate the index value (for details on the calculation,

see Whaley (1993; 2000) and Fleming et al. (1995)).

The trading day adjustment of the original computation methodology leads to an

upward bias in the volatility index value. It has drawn criticism from both academia

and industry and was one of the main reasons behind the CBOE’s decision in 2003 to

introduce a new volatility index with revamped computation methodology (Carr and Wu

2006). The new VIX is based on the work of Demeterfi et al. (1999) and is closely related

to the concept of model-free implied volatility. It approximates the 30-day variance swap

rate and accommodates a broader range of options, thus capturing information from the

entire volatility smile rather than the implied volatilities of only at-the-money options

(CBOE 2009). Moreover, the index is computed directly from observable option prices

and therefore does not rely on any specific option model. The calculation methodology

allows for replicating implied volatility with a static portfolio of options, which has led

to the creation of tradable products on the VIX. Lastly, the new VIX uses options data

on the S&P 500 index, the current core index of US equities that is considered the best

representation of the market as a whole. Historical data for the original index is available

from 1986 to the present, whereas the new VIX has been backdated to 1990 to facilitate

comparison between the two indices.

In the new specification introduced in 2003 the index values are calculated directly

from market prices of the underlying index options instead of using Black-Scholes im-

plied volatilities. This new calculation method is consistent with the theory of model-free

implied volatility, although the methodology relies on the concept of fair value of future

variance. More precisely, the VIX is calculated as a discretized approximation of the fair

strike of a variance swap (KVar in Section 3.2 above) with a fixed 30-day maturity on the

S&P 500 stock index.

In the VIX calculation procedure CBOE uses several approximations in order for the

8There are approximately 252 trading days in a year.
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VIX to correctly represent the market’s volatility expectation over the next 30 calendar

days. These approximations are given below following Jiang and Tian (2007). We begin

with the formulation of FVFV derived in Section 3.2 and restated here for convenience.

KVar = 2
T

[
rT −

(
S0
S∗
erT − 1

)
− ln

(
S∗
S0

)
+ erT

(∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK

)]
.

(3.17)

First, as can be seen from the integrals in the expression, the variance calculation re-

quires an infinite range of strike prices for the put and call options. However, in financial

markets there is, of course, only a finite range of strike prices available for trading on any

given underlying with any given maturity. Therefore, the infinite range of strike prices

has to be replaced with a range from the lowest available strike price, KL, to the highest

available strike KH for a given maturity.

The integral cutoff point is set at S∗ = K0, where K0 is the first available price below

the forward index level F0 defined in the usual way by equation (2.16).9 This leads to the

following approximation:

∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK ≈

∫ K0

KL

P (T,K)
K2 dK +

∫ KH

K0

C(T,K)
K2 dK. (3.19)

To account for the discrete nature of the financial markets, the continuous integrals need

to be replaced with a discrete approximation using option prices quoted for trading (there

is only a finite range of strike prices at given increments to choose from between KL and

KH ). The numerical method used by the CBOE to approximate the continuous integrals

is described as ∫ K0

KL

P (T,K)
K2 dK +

∫ KH

K0

C(T,K)
K2 dK ≈

∑
i

∆Ki

K2
i

Q(T,Ki), (3.20)

where Q(T,Ki) is the midpoint of bid and ask price quotes for the option and ∆Ki is the

9In practice, the CBOE determines the forward index level by choosing call and put options with prices
that are closest to each other. The forward price is then derived via a convenient relation known as the
put-call parity: C(K,T )− P (K,T ) = S0 −Ke−rT . Therefore,

F0 = S0e
rT = erT (C(T,K)− P (T,K)) +K. (3.18)

(Carr and Wu 2006).
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strike price increment given by

∆Ki = Ki+1 −Ki−1
2

and Ki is the strike price of the i-th option (a call if Ki > F0, a put otherwise). This

price increment is modified at KH and KL and redefined as the difference between the

two highest and the two lowest strike prices, respectively. Another adjustment is made

at strike K0, where Q(T,Ki) is redefined as the average price of a call and a put.

The final approximation is due to a Taylor series expansion10 the CBOE uses in its

calculation procedure to estimate the log function in (3.17) in terms of the forward index

level F0 and strike prices. Notice that the terms preceding the sum of integrals in (3.17)

can be expressed as

2
T

[
rT −

(
S0
S∗
erT − 1

)
− ln S∗

S0

]
= 2
T

[
rT − F0

K0
− 1− lnK0 + ln

(
F0
erT

)]
= 2
T

[
ln
(
F0
K0

)
−
(
F0
K0
− 1

)]
.

(3.21)

Applying the Taylor series expansion on the log function and ignoring all but the first

and second order terms gives the following approximation

ln
(
F0
K0

)
≈
(
F0
K0
− 1

)
− 1

2

(
F0
K0
− 1

)2
(3.22)

Substituting the RHS of the above approximation for ln
(
F0
K0

)
in the second row of equa-

tion (3.21) yields

2
T

[
rT −

(
S0
S∗
erT − 1

)
− ln

(
S∗
S0

)]
≈ − 1

T

(
F0
K0
− 1

)2
. (3.23)

Andersen, Bondarenko, and Gonzalez-Perez (2011) point out that this final approxima-

tion acts as a (negative) correction term for the discrete approximation. The final form

of the CBOE model-free implied variance measure, from which the VIX index value is

derived, is obtained by substituting the approximations (3.19), (3.20) and (3.23) into the

10A one-dimensional Taylor series expansion of a real function f(x) around a point x = a is given by

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + f (3)(a)

3! (x− a)3 + · · ·+ f (n)(a)
n! (x− a)n + . . .
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FVFV in equation (3.17). Therefore, as explained in CBOE (2009), the formula for calcu-

lating the VIX index value is given by

σ̂2
VIX = 2

T

∑
i

∆Ki

K2
i

erTQ(Ki)−
1
T

(
F0
K0
− 1

)2
, (3.24)

where σ̂2
VIX is the VIX variance measure. The VIX index itself is defined for a fixed calen-

dar maturity of TM = 30
365 , or thirty days – however, at any given time there are generally

no options that expire in exactly 30 days. The CBOE’s solution is linear interpolation

from two maturities, T1 and T2, that are closest to the required 30 days:

σ̂2
VIX(TM ) = 1

TM

[
ωT1σ

2
vix(T1) + (1− ω)T2σ

2
vix(T2)

]
, ω = T2 − TM

T2 − T1
. (3.25)

Options with less than seven days to expiry are excluded to minimize pricing anomalies

that might occur close to expiration.11 Finally, the VIX index value is obtained as the

annualized quantity of the above interpolation, multiplied by 100 to yield a quote in

volatility units (percentage points):

VIX = 100
√

30
365 σ̂

2
VIX(TM ). (3.26)

Jiang and Tian (2005) find in their study of the information content of model-free im-

plied volatility that it subsumes all information contained in historical volatility as well as

in the Black-Scholes implied volatility on which the VIX was previously based. This ren-

ders the new model-free VIX a more efficient forecast for future volatility at least in the-

ory and lends further support to the new calculation methodology. However, Jiang and

Tian (2007) assess the nature and significance of the measurement errors caused by the

overall approximation scheme in the CBOE procedure decomposed above. They classify

the errors as (i) truncation errors – the minimum and maximum available strike prices,

KL and KH , are far from zero and infinity required by theory; (ii) discretization errors

– the continuous integrals are approximated by piecewise linear functions; (iii) expan-

sion errors – a log function is approximated using only the first and second order terms

of a Taylor series expansion; and (iv) interpolation errors arising from the fixed 30-day

maturity requirement. The authors find that these errors can lead to substantial and eco-

nomically significant biases in the calculated VIX index value (see also Carr and Wu 2009)

11See the white paper by CBOE (2009) for details and practical examples on the calculation.
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and propose a simple ”smoothing method” to overcome the implemention issues. Any

corrections to the VIX methodology are yet to be implemented by the CBOE.

This chapter concludes our discussion of the theories and methodology that consti-

tutes the VIX volatility index in its current specification. In the remaining chapters we

examine the empirical properties of the VIX index time series, the regime shifts therein

as well as the relationship between implied volatility and stock index returns.
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Chapter 4

Volatility regimes: Identifying

structural breaks in the VIX time

series

The currently used, revised calculation methodology for the VIX was introduced in Septem-

ber 22, 2003. Upon introducing the updated methodology, CBOE created a historical

record for the new VIX dating back to 1990 to facilitate comparison with its predecessor

now denoted the VXO. In this thesis, however, we consider only the quotes that have

been disseminated in real time and hence our daily data series, obtained from Yahoo!

Finance, extends from January 2, 2004 to December 31, 2011 and consists of the daily

closing levels for 2015 trading days. The choice of sample period also coincides with the

introduction of the first exchange-traded derivative instruments on volatility (VIX fu-

tures in early 2004; VIX options were subsequently launched in 2006), for which the new

calculation methodology provided a basis. The sample period ranges from the years of

relative calm (pre-2007) to the recent times of market turbulence covering the outbreak of

the financial crisis in 2007-2008 and the subsequent global recession.

The time series sample is graphed in Figure 4.1. Clearly, the VIX movement was en-

capsuled in a relatively tight range until 2007 and the outbreak of the global financial

crisis. Thereafter, and especially from 2008 onwards, the VIX seems to have shifted to

a regime with higher mean level and more pronounced movements, and with notable

spikes to the upside. Visual inspection of the time series suggests structural breaks in the

data – we are interested in ascertaining whether there are distinctive regimes in volatility,

29



e.g. a low-volatility state or a high-volatility state characterized by calm or even com-

placency and financial stress, respectively. An antecedent is given by Guo and Wohar

(2006), who studied the VIX and its predecessor, the VXO, for the time periods 1990-2003

and 1986-2003, respectively. They find evidence of three distinctive regimes in both series

with the breaks occurring in circa 1992 and 1997. This chapter thus provides an update

using more recent data spanning periods of abnormal levels of volatility evident in Fig-

ure 4.1. Identifying distinct regimes in volatility allows us to gain insight on volatility

dynamics. What’s more, it permits the study of the relationship between stock market

volatility and price returns in differing market environments.
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Figure 4.1: VIX daily time series from January 2004 to December 2011.
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4.1 Normal ranges

Before examining the regime changes in volatility in a more rigorous manner, we attempt

to characterize the behavior of the stock market volatility in a probabilistic sense. Follow-

ing the approach of Whaley (2000; 2009), the normal ranges of the VIX are given in Table

4.1. The percentiles represent the boundaries below which the given percentages of ob-

servations fall. For example, the 50th percentile separates the lower half of observations

from the higher half, i.e. it is the sample median within each time interval, while the 5th

and 95th percentiles mark the boundaries for the most extreme values observed.

Table 4.1: Yearly percentile ranges for VIX daily closing levels from January 2,
2004 to December 31, 2011.

Percentiles

Year # of obs. 5 % 10 % 25 % 50 % 75 % 90 % 95 %

2004 252 12.70 13.09 14.30 15.33 16.55 18.13 18.91
2005 252 10.79 11.10 11.68 12.52 13.64 14.84 15.59
2006 251 10.55 10.79 11.36 12.00 13.62 16.21 17.73
2007 251 10.37 11.10 13.13 16.43 21.66 25.25 26.49
2008 253 18.61 19.66 21.58 25.10 40.00 60.86 67.70
2009 252 21.14 22.11 24.28 28.57 39.31 45.43 47.41
2010 252 16.47 17.29 18.34 21.72 25.20 29.63 29.63
2011 252 15.82 16.06 17.40 20.72 31.57 36.20 39.01

All 2015 10.85 11.46 13.53 17.79 24.86 34.21 43.81

Over the entire sample, the median of the VIX falls slightly short of 18 volatility (per-

centage) points, and 50% of the time the indices closed in a range of roughly 11 points (be-

tween 13.52 and 24.86), whereas excluding the extremely high and extremely low values,

90% of the observations of the VIX are found in a range of roughly 33 points. The table

reveals great variation in the year-to-year normal ranges. The period of lower volatility in

2004–2007 is characterized by tighter ranges, although in 2007 the wider range speaks of

the beginning of the financial crisis and the increase in volatility it entailed. In 2004–2006,

the VIX closed below or slightly above the full sample median at least 95% of the time.

Even during this calmer period, however, VIX levels below 10 points are unlikely. At the

other end of the spectrum, the financial crisis and the market turbulence that ensued are

reflected in the substantially wider ranges of 2008–2009. In 2008 in particular, even the

lowest percentile is nearly twice that of the full sample. The largest year-on-year change
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in the percentiles occurs in 2007–2008, which would suggest a regime change in the level

of volatility. Overall, the normal ranges give evidence of amplified volatility movements

in times of deteriorating market conditions and of changes in the average levels of market

volatility expressed by the VIX.

4.2 Econometric methodology

We use the Bai and Perron (1998; 2003a;b; 2004) (henceforth: B&P) structural break method

to test for multiple breaks in the VIX series at a priori unknown times. This method has

been applied to identifying regime changes in market volatility by Guo and Wohar (2006)

in their study of the old and new VIX indices. The remainder of this section presents the

econometric model and the method developed by B&P for testing for multiple shifts at

unknown times in the mean of a time series.

As suggested by B&P, consider the following multiple linear regression model with

m breaks (corresponding to m+ 1 regimes)

yt = x′tβ + z′tδ1 + ut, t = 1, . . . , T1,

yt = x′tβ + z′tδ2 + ut, t = T1 + 1, . . . , T2,

...

yt = x′tβ + z′tδm+1 + ut, t = Tm + 1, . . . , T.

(4.1)

where, at time t, yt is the observed dependent variable, xt is a p×1 vector of regressors, zt
is a q×1 vector of regressors and β and δj(j = 1, . . . ,m+1) are the correspoding vectors of

regression coefficients. ut is the error term. The regime index, also called the m-partition,

(T1, . . . , Tm) represents the set of breakpoints for the different regimes, and T0 = 0 and

Tm+1 = T by convention. All breakpoints are explicitly treated as unknown, and for

i = 1, . . . ,m, we have break factions defined as λi = Ti/T with 0 < λ1 < · · · < λm < 1.
The possible breakpoints are restricted to be asymptotically distinct and bounded from

the boundaries of the sample. To this effect, B&P define the following set,

Λε = {(λ1, . . . , λm); |λi+1 − λi| ≥ ε, λ1 ≥ ε, λm ≤ 1− ε}, (4.2)

for some arbitrary positive number ε = h/T , which acts as a trimming parameter by

imposing a minimum number of observations h for a regime. The B&P method for iden-
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tifying structural breaks is convenient in that it allows for quite general specifications in

the regression model. No restrictions are imposed on the variance of the error term ut,

which allows for accommodating autocorrelation and heteroskedasticity in the residuals.

Moreover, structural breaks in variance are also permitted if they occur on the same dates

as the breaks in the regression parameters.

The multiple linear regression system given above is the most general version of the

model considered by B&P. It is a partial structural change model since the parameter

vector β is not subject to shifts over time, but is estimated using the entire sample. A

special case is when p = 0 and the terms x′tβ disappear. This is a pure structural change

model, since all the (remaining) coefficients are subject to change. Here, we follow Bai

and Perron (2003a) and Guo and Wohar (2006) in regressing the VIX time series on a

constant only and test for structural breaks in that constant. Such a regression model

with m breaks (m+ 1 regimes) is given by

VIXt = δj + ut, t = Tj−1 + 1, . . . , Tj , j = 1, . . . ,m+ 1, (4.3)

where VIXt is the VIX index level on day t and δj is the VIX mean level in the jth regime.

The objective is to estimate the breakpoints (T1, . . . , Tm) together with the unknown re-

gression coefficients when T observations on VIXt are available. The method of estima-

tion, as proposed by B&P, is based on the ordinary least squares (OLS) principle. For each

m-partition (T1, . . . , Tm), denoted {Tj}, the associated OLS estimates of δj are obtained

by minimizing the sum of squared residuals

ST (T1, . . . , Tm) =
m+1∑
i=1

T1∑
t=Ti−1+1

(VIXt − δi)2 (4.4)

under the constraint that δi 6= δi+1(1 ≤ i ≤ m). Denote the resulting estimates as δ̂({Tj}).

Substituting these into the objective function (4.4) gives an expression for the estimated

breakpoints (T̂1, . . . , T̂m) such that

(T̂1, . . . , T̂m) = arg min
(T1,...,Tm)

ST (T1, . . . , Tm), (4.5)

where the minimization is taken over all partitions (T1, . . . , Tm) such that Ti − Ti−1 ≥
int(Tε) ≥ q. Therefore, the breakpoint estimators (estimated dates on which the breaks
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occur) are obtained as the global minimum of the sum of squared residuals. The final

regression parameters are then the OLS estimates associated with the m-partition {T̄j},
i.e. δ̂ = δ̂ ({Tj}). An efficient algorithm for solving the minimization problem is given in

Bai and Perron (2004).

In order to identify the number of structural breaks m in the regression model (4.3),

B&P consider certain testing procedures. The starting point is testing the hypothesis of

no structural breaks, i.e. the case where the regression coefficients remain constant over

time,

H0 : δj = δ0, j = 1, . . . ,m+ 1, (4.6)

against the alternative hypothesis of a known number m of breakpoints, where the re-

gression coefficients shift from one stable relationship to a different one. To this end, B&P

employ a supF type test (see Andrews 1993) of structural stability (m = 0) versus m = k

breakpoints. Let (T1, . . . , Tk) be a partition such that Ti = int(Tλi) with i = 1, . . . , k. For

this partition, the F -statistic for testing δ1 = · · · = δk+1 against δi 6= δi+1 is given by

F ∗T (λ1, . . . , λk; q) = 1
T

(
T − (k + 1)q − p

kq

)
δ̂′R′(RV̂ (δ̂)R′)−1Rδ̂, (4.7)

where R is a matrix such that

(Rδ)′ = (δ′1 − δ′2, . . . , δ′k − δ′k+1)

and V̂ (δ̂) is an estimate of the variance-covariance matrix of δ̂ that is robust to serial

correlation and heteroskedasticity. The supF type test statistic is then defined as

supF ∗T (k; q) = sup
(λ1,...,λk)∈Λε

F ∗T (λ1, . . . , λk; q). (4.8)

An asymptotically equivalent, yet computationally simpler version is given by

supFT (k; q) = F ∗T (λ̂1, . . . , λ̂k; q), (4.9)

where the break faction estimates λ̂i = T̂i/T, i = 1, . . . , k minimize the global sum of

squared residuals in Equation (4.4). (Bai and Perron 2003a).

Notice that the supF test presented above requires pre-specifying the number of

structural breaks k in the hypothesis against which the null hypothesis of structural
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stability is tested. To allow for testing the null hypothesis against a more vague alter-

native hypothesis of an unknown number of breakpoints m given an upper bound M ,

B&P develop two tests, referred to as the double maximum tests. For some fixed weights

{a1, . . . , am}, the tests are given by

DmaxF ∗T (M, q, a1, . . . , am) = max
1≤m≤M

am sup
(λ1,...,λm)∈Λε

F ∗T (λ1, . . . , λm; q) (4.10)

Again, an asymptotically equivalent and computationally simpler version exists and is

given by

DmaxFT (M, q, a1, . . . , am) = max
1≤m≤M

amFT (λ̂1, . . . , λ̂m; q). (4.11)

The version of the test, labeled UDmaxFT (M, q), is where all weights are equal to unity,

a1 = · · · = am = 1. For the second test, denoted WDmaxFT (M, q) the set of weights

is such that the marginal p-values are equal across numbers of breakpoints, i.e. different

values of m. The weights are defined as a1 = 1 and am = c(q, α, 2)/c(q, α,m) for m > 1,

where α is the significance level of the test and c(q, α,m) is the asymptotical critical value

of the sup F test in (4.8).1 Thus, we have

UDmaxFT (M, q) = max
1≤m≤M

FT (λ̂1, . . . , λ̂m; q) (4.12)

and

WDmaxFT (M, q) = max
1≤m≤M

c(q, α, 1)
c(q, α,m)FT (λ̂1, . . . , λ̂m; q). (4.13)

It should be noted that unlike theUDmaxFT (M, q) test, the value of theWDmaxFT (M, q)
depends on the level of significance chosen by the researcher. An estimated test statistic

above the specified critical values in of these tests suggests rejection of the null hypothesis

of no structural breaks in favor of at least one, but no more than M breaks.

In order to determine the exact number of breakpoints in the data, B&P discuss the use

of the well-known Bayesian Information Criterion (BIC) and, as an alternative, a modified

Schwarz’ criterion (Liu, Wu, and Zidek 1997) in estimating the number of breakpoints.

Based on a simulation study by Perron (1997), they conclude on a number of shortcom-

ings related to the information criteria’s performance in the presence of serial correlation

and a lagged dependent variable in the error term ut, which can lead to biased estimates

1Critical values for differents values of M and the trimming value ε are provided in Bai and Perron
(2003b).
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for the number of breaks.

As an alternative to convenational information criteria, B&P develop a test for the

null hypothesis of ` breaks versus the alternative hypothesis of ` + 1 breaks in order to

ascertain whether an additional break leads to a statistically significant reduction in the

sum of squared residuals, i.e. whether an additional break exists or not. This test is

labelled supFT (`+ 1|`). It is a sequantial test inasmuch as it applies `+ 1 tests of the null

hypothesis of structural stability against the alternative hypothesis of a single structural

change on a model with ` breakpoints. The test is applied to each of the ` + 1 regimes

containing the observations T̂i−1 + 1, . . . , T̂i for i = 1, . . . , ` + 1 and remembering that

again T̂0 = 0 and T̂`+1 = T by convention. The null hypothesis is rejected in favor of a

model with ` + 1 breaks if the overall minimal value of the sum of squared residuals is

sufficiently smaller than that of the model with ` breaks. The additional breakpoint is the

one associated with this overall minimal value. Formally, we have

FT (`+ 1|`) = 1
σ̂2

{
ST
(
T̂1, . . . , T̂`

)
− min

1≤i≤`+1
inf

τ∈Λi,η
ST
(
T̂1, . . . , T̂i−1, τ, T̂i, . . . , T̂`

)}
,

(4.14)

where

Λi,η =
{
τ ; T̂i−1 +

(
T̂ − T̂i−1

)
η ≤ τ ≤ T̂i −

(
T̂ − T̂i−1

)
η
}

and σ̂2 is a consistent estimate of the model’s sample variance σ2 under the null hy-

pothesis. The sequential application of this testing procedure begins obviously with the

supFT (1|0) statistic. However, Bai and Perron (2004) argue that this initial statistic can

have low power in the presence of multiple breaks. Therefore, they recommend first ex-

amining the double maximum test statistics to determine whether any structural breaks

are present. In case the statistics are statistically significant, the researcher should then

examine the higher order supFT (`+1|`) statistics to decide on the exact number of breaks,

by choosing the highest value of ` for which the statistic is rejected. When allowing for

heteroskedasticity and serial correlation in the data series under scrutiny, the authors rec-

ommend using a trimming parameter of at least ε = 0.15, which corresponds to an upper

bound on the number of structural breaks M = 5.

In our application below, we follow these guidelines and allow for heteroskedasticity

and serial correlation in the regression residuals (using the notation of Bai and Perron

(2004), we set cor_u = 1, het_u = 1). Since our sample period consists of T = 2015 obser-

vations (trading days), the trimming parameter ε = 0.15 imposes a maximum length of
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h = Tε = 302 trading days on each regime. The estimation procedure is carried out using

a MATLAB version of B&P’s original GAUSS code developed by Yohei Yamamoto.2

4.3 Results

The results for B&P statistics for tests of structural change in the mean value of the VIX

series are given in Table 4.2. The table also displays the break locations obtained from

the global optimization of models with m = 1, . . . , 5 breaks. Both double maximum

test statistics (UDmax and WDmax) are clearly statistically significant at all levels of

significance, which strongly suggests the presence of one or more structural breaks in the

mean level of the VIX. The initial supF (` + 1|`) test of zero structural breaks against a

single break rejects the null hypothesis, supporting the evidence presented by the double

maximum tests. Such is the case also with the supF (3|2) test statistic, which also clearly

points to rejection of the null hypothesis of two breaks against the alternative hypothesis

of three breaks. However, for the supF (2|1) test, the estimated statistic is not statistically

significant, which gives further evidence of only one structural break in the data. This

leads to the conclusion that there is a single structural break which divides the VIX time

series into two regimes.

Table 4.2 also gives the breakpoint locations estimated by global optimization of model

(4.5) with m = 1, . . . , 5. For the model with a single structural break, the breakpoint is

placed on July 24, 2007. This coincides approximately with the time when the conse-

quences of the U.S. subprime mortgage crisis began to unfold and spread into the rest

of the world. Note that the bankruptcy of Lehman Brothers, which triggered levels of

volatility second only to the stock market crash of October 1987 (the "Black Monday"),

is visible in the estimated break dates of the models with 2, 3 and 4 breaks, all of which

place one break to early September, 2008.

Based on the break date estimate, the VIX time series can be separated into two differ-

ent volatility regimes. Regime 1 extends from 1 January 2004 to 24 July 2007 and Regime

2 spans the latter part from 25 July 2007 to 31 December 2011. Figure 4.2 gives a visual

depiction of the regime change in the VIX time series. Indeed, the latter part of the sam-

ple period exhibits notably higher levels of volatility, and the volatility of volatility itself

seems higher as well. The mean level of the VIX is 13.67, and any deviations thereof

2Both versions are available at http://people.bu.edu/perron.
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Table 4.2: Bai and Perron structural break test results for the VIX series, sample period
02/01/2004–31/12/2011.

Test statistic Break dates

T̂1 T̂2 T̂3 T̂4 T̂5

UDmaxa 39.89***
WDmax(5%)b57.42***
F (1|0)c 19.27*** 24/07/2007
F (2|1)f 8.10 02/09/2008 11/11/2009
F (3|2)e 87.74*** 26/06/2007 05/09/2008 16/11/2009
F (4|3)f 9.39 16/05/2005 26/06/2007 05/09/2008 16/11/2009
F (5|4)g - 16/05/2005 09/03/2007 28/05/2008 07/08/2009 19/10/2010

a Test of the null hypothesis of 0 breaks against the alternative hypothesis of an unknown num-
ber of breaks given an upper bound of m = 5. The 10%, 5% and 1% critical values equal 7.46,
8.88 and 12.37, respectively.

b Test of the null hypothesis of 0 breaks against the alternative hypothesis of an unknown num-
ber of breaks given an upper bound of m = 5. The 5% critical value equals 9.91.

c Test of the null hypothesis of ` = 0 breaks against the alternative hypothesis of `+1 = 1 break.
The 10%, 5% and 1% critical values equal 7.04, 8.58 and 12.29, respectively.

d The 10%, 5% and 1% critical values equal 8.51, 10.13 and 13.89, respectively.
e The 10%, 5% and 1% critical values equal 9.41, 11.14 and 14.80, respectively.
f The 10%, 5% and 1% critical values equal 10.04, 11.83 and 15.28, respectively.
g The 10%, 5% and 1% critical values equal 10.58, 12.25 and 15.76, respectively.

***, ** and * represent statistical significance at the 10%, 5% and 1% levels of confidence.
- indicates that given the location of the breaks there was no more place to insert an additional
break that would satisfy the minimal length requirement (here h = Tε = 302).

are relatively small. The mean level of volatility in the second regime is 27.24, which is

more than twice that of the first regime, largely as a result of the several volatility peaks

from late 2008 onwards. Standard deviation is found to be 2.28 in Regime 1 and 11.00

in Regime 2; again, the increase is considerable and speaks of higher dispersion in the

volatility itself. Overall, the estimated breakpoint marks a transition from a calm period

into one with higher uncertainty, and divides the VIX time series into a period of low

volatility (Regime 1) and a period of high volatility (Regime 2).

In light of the results obtained above, we move on to the study of the relationship

between volatility and stock market returns in and across the two volatility regimes.
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Figure 4.2: Volatility regimes and their mean levels in the VIX daily time series from
January 2004 to December 2011.
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Chapter 5

Relationships between implied

volatility and stock market returns

In what follows we examine the interactions between daily returns on the underlying

stock index and daily changes in their implied volatility, as measured by daily differences

in the VIX. In particular, we try to model their contemporaneous relationship and look for

any evidence of asymmetries therein. Furthermore, we examine the direction of causality

in the relationship, and attempt to quantify the predictive abilities of the VIX and the S&P

500 on each other.

The S&P 500 is a stock market index that is calculated from the market capitalizations

of 500 leading, publicly traded companies in the United States stock market. It is one

of the most commonly followed equity indices even internationally, and is widely con-

sidered as the best indicator of market sentiment and a bellwether for the United States

economy. As an index calculated from the options on the S&P 500, the VIX is often con-

sidered the foremost measure of the market’s expectation of stock market volatility. The

VIX has earned the moniker ”fear index” or ”fear gauge”, since it tends to react more

strongly to bearish events, i.e. events that have a negative impact on stock markets. Such

events are associated with deteriorating investor sentiment and increasing risk, of which

the VIX can be considered a metric.

The daily closing values for the VIX and its underlying stock index, the S&P 500

(henceforth referred to as the SPX, according to its ticker symbol), are obtained from

Yahoo! Finance for a period from January 2, 2004 to December 30, 2011, spanning 2015

trading days. We calculate the SPX returns in the standard way as the log (continuously
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compounded) return rather than arithmetic return1 given by

Rt = 100 ln SPXt

SPXt−1
, (5.1)

where SPXt denotes the SPX index level on day t. The log ratio is multiplied by 100 to

give the return an interpretation as percentages and thereby to facilitate comparison with

the VIX index values, which are given in volatility units (percentage points).

5.1 Summary statistics

Table 5.1 presents the summary statistics of daily VIX and SPX levels as well as VIX

changes and SPX returns for the entire sample period 2004-2011 and the two previously

identified volatility regimes. Also included are the test statistics for testing whether the

data are normally distributed as well as for testing for the presence of unit roots in the

time series. The VIX ranges from a minimum of 9.89 % to a maximum of 80.86 %, its high-

est value on November 2, 2008. Some time thereafter, the SPX tumbled to its in-sample

minimum of less than 700 points, a far cry from the highest level reached in the beginning

of Regime 2. The VIX levels and especially VIX changes as well as SPX returns exhibit

sizeable excess kurtosis, and the VIX levels and changes are both positively skewed. The

VIX and SPX levels both show highly persistent first-order autocorrelation (given by the

coefficient ρ1), which is not removed by transforming the series into first differences and

first log differences, respectively.

JB stands for the Jarque and Bera (1987) test statistic and is given by

JB = n

6

(
Skewness2 + 1

4(Kurtosis− 3)2
)
, (5.2)

where n is the sample size. It is a goodness-of-fit test of whether the sample skewness and
1Arithmetic return, the conventional definition of the rate of change, is given by Rt,arithm = (St −

St−1)/St−1. Therefore, the return from holding an asset for one period from time t − 1 to time t is 1 +
Rt,arithm = St/St−1. This return becomes logarithmic under continuous compounding:

lim
m→∞

(1 +Rt,arithm)
1
m = ln(1 +Rt) = ln

(
St
St−1

)
= lnSt − lnSt−1.

Provided that the daily changes remain small, logarithmic return is approximately equal to arithmetic return:

ln(1 +Rt,arithm) ≈ Rt,arithm, Rt,arithm � 1,

and thus it can be used as a proxy for rate of change over one period.
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kurtosis match those from a normal distribution; a statistically significant value leads to

rejection of this null hypothesis in favor of an alternative probability distribution. Clearly,

the null hypothesis of normally distributed data is strongly rejected for the VIX and SPX

levels as well as VIX changes and SPX returns.

The non-normality of observed asset price returns is contradictory to the theoretical

asset price processes discussed in Chapter 2. For example, if an asset price process St is

assumed to follow a geometric Brownian motion, Equations (2.8) and (2.9) show its log-

arithmic returns (defined analogously to Equation (5.1)) are normally distributed. How-

ever, empirical evidence against the assumption of normally distributed asset returns

has been mounting ever since the studies of Mandelbrot (1963), Fama (1965) and Clark

(1973). Instead, stock returns tend to have leptokurtic distributions, i.e. distributions that

are more peaked around the mean and have fatter tails2 than a normal distribution. This

implies that extremely unlikely observations, i.e. extremely high returns of either signs,

are more likely than a normal distribution suggests.3 More recent findings argue in fa-

vor of a (scaled) Student’s t-distribution; see e.g. Peiró (1994), Egan (2007) and Platen

and Rendek (2008). Note that the concept of model-free implied volatility is valid with

non-normal asset returns, as the theory makes no assumptions on the specific process

governing the underlying asset returns (see e.g. Britten-Jones and Neuberger 2000).

Looking again at Table 5.1, ADF stands for the Augmented Dickey-Fuller test4, which

is a test for a unit root in a time series sample. The null hypothesis is that there is a unit

root in the sample, while the alternative hypothesis suggests that the series is station-

ary. The KPSS (Kwiatkowski, Phillips, Schmidt, and Shin 1992) is an alternative test for

stationarity. It is included here in order to complement the results of the ADF test. The

KPSS test tests a null hypothesis of stationarity around a deterministic trend against an

alternative hypothesis of a unit root in the sample. According to the results, both tests

give strong evidence of a unit root in both the VIX and the SPX level time series, however,

VIX changes and SPX returns appear to be stationary.

2Fat tails in a probability distribution mean that extreme values have higher probability density and are
thus more likely to occur. An asset whose returns are characterized by a leptokurtic distribution is therefore
more risky than an asset with normally distributed returns would be.

3Extremely unlikely events that are highly unpredictable and fall beyond ”regular” expectations are
sometimes referred to as Black Swans (see Taleb 2001).

4An augmented version of the original test developed by Dickey and Fuller (1979).
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Table 5.1: Descriptive statistics of the VIX and the S&P 500 levels
and returns for the full sample period and Regimes 1 and 2.

VIX S&P 500
Levels Changes Levels Returns (%)

Full sample (02/01/2004–31/12/2011), N=2015

Mean 21.21 0.00 1212.48 0.01
Std. dev. 1.99 1.99 168.84 1.39
Min. 9.89 -17.36 676.53 -9.47
Max. 80.86 16.54 1553.08 10.96
Kurtosis 8.18 20.25 3.16 12.85
Skewness 2.03 0.55 -0.37 -0.30
ρ(1) 0.98*** -0.16*** 0.99*** -0.12***
JB 3634.34*** 25082.55*** 50.49*** 8167.04***
ADF -3.04 -13.16*** -1.72 -12.17***
KPSS 5.68*** 0.03 2.14*** 0.09

Regime 1 (02/01/2004–24/07/2007), N=896

Mean 13.67 -0.00 1255.97 0.04
Std. dev. 2.28 0.87 121.52 0.67
Min. 9.89 -5.66 1063.23 -3.53
Max. 23.81 7.16 1553.08 2.13
Kurtosis 3.35 12.05 2.56 4.06
Skewness 0.75 0.73 0.70 -0.25
ρ(1) 0.92*** -0.10*** 0.99*** -0.05
JB 89.59*** 3132.87*** 79.88*** 51.01***
ADF -2.88 -11.24*** -2.57 -10.49***
KPSS 2.78*** 0.09 11.38*** 0.06

Regime 2 (25/07/2007–31/12/2011), N=1119

Mean 27.24 0.00 1177.65 -0.02
Std. dev. 11.00 9.84 191.84 1.76
Min. 14.62 -17.36 676.53 -9.47
Max. 80.86 16.54 1565.15 10.96
Kurtosis 7.00 13.34 2.45 8.82
Skewness 1.89 0.45 -0.29 -0.22
ρ(1) 0.97*** -0.16*** 0.99*** -0.13***
JB 1415.17*** 5030.09*** 1177.96*** 1591.73***
ADF -2.54 -10.31*** -1.55 -10.36***
KPSS 1.54*** 0.04 2.60*** 0.24

This table reports descriptive statistics for VIX daily levels and
changes (first differences) as well as for S&P 500 daily levels and re-
turns. ρ(k) denotes the k-th order autocorrelation. *, ** and *** denote
statistical significance at the 10%, 5% and 1% levels, respectively. Sta-
tistical significance of the Jarque-Bera (JB) test leads to rejection of the
null hypothesis that the observed skewness and kurtosis match those
of a normal distribution. Statistical significance of the ADF test statis-
tic suggests rejection of a null hypothesis of a unit root in the time
series, whereas statistical significance of the KPSS test statistic sug-
gests rejection of a null hypothesis that the time series is stationary
around a deterministic trend.
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The summary statistics are particularly revealing when examined in the two volatility

regimes. As was already demonstrated in Figure 4.2, the mean and standard deviation

of VIX levels are significantly higher in the high-volatility Regime 2 than in Regime 1, a

period of lower volatility; the average VIX level in Regime 2 is approximately double the

mean in Regime 1, whereas the standard deviation increases to nearly fivefold in Regime

2. The ranges of VIX values were 66.24 percentage points in Regime 2 and a mere 13.92

percentage points in Regime 1, and the most extreme movements in the VIX in either

direction occurred during Regime 2. This is also the case with SPX returns, where the

extreme observations amount to approximately one tenth of the index value. The mean

of SPX returns shifted from marginally positive in Regime 1 to marginally negative in

Regime 2, while the mean of VIX changes eked to positive territory in Regime 2. Note that

in Regime 1, the first-order autocorrelation in SPX returns is not statistically significant.

Daily levels for the VIX and the underlying SPX are shown in Figure 5.1. The graph

suggests that the changes in implied volatility and the stock index returns are negatively

correlated at least to some degree: increases in the stock index level would appear to

correspond to decreases in implied volatility, and vice versa. This inverse relation is

perhaps somewhat more clearly visible in the latter volatility regime, where the overall

movement is higher in magnitude. However, the relationship would seem to persist

throughout the sample period.

Note that the VIX is characterized by higher fluctuations and notable upward spikes

compared to SPX returns. Most of these spikes are coincident with spikes in the opposite

direction for the underlying stock indices at times when potentially risky events have

taken place – volatility increases more when stocks decline than it decreases when stocks

go up. The SPX trended up over most of Regime 1, whereas the corresponding down-

trend in the VIX is notably milder or nearly nonexistent. Infact, it is as if the VIX has a

strong support level at around 10 volatility points. In Regime 2, particularly noteworthy

is the beginning of the subprime crisis and subsequent global financial crisis in late 2008,

when implied volatility skyrocketed to its all-time highest level, while the stock indices

plummeted to their lowest levels in more than a decade. More recently, the worrying

turns of events resulting in the ever-ongoing European sovereign debt crisis are repre-

sented by spikes in volatility.

The upward spikes relating to worriesome events and market turmoil are the reason

why the VIX is sometimes dubbed an ”investor fear gauge”. As Whaley (2009) points
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out, a more elaborate explanation arises from the fact that the demand for options in-

creases when investors become concerned about a drop in the stock market and seek to

hedge risk. The increased demand of options then raises their prices, which in turn are

transferred to the volatility indices resulting in higher levels of volatility. As investor fear

subsides, option prices tend to decline, causing in turn the VIX to decline – however, the

decreases in volatility relating to favorable market conditions are visibly milder, as can

be seen from Figure 5.1 below.
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Figure 5.1: Daily closing values of the VIX volatility index (left scale) and the S&P 500
stock index (right scale) from January 2004 to December 2011.

5.2 Intertemporal cross-correlations

In order to more accurately analyze the inverse relationship between VIX changes and

SPX returns, we estimate the intertemporal cross-correlations between lags and leads on

asset returns and changes in implied volatility by using the standard definition of sample
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cross-correlation between two time series Xt and Yt both consisting of n observations xi
and yi:

ρXY (k) = γXY (k)
sXsY

, (5.3)

where k is the number of lags, sX =
√
γXX(0) and sY =

√
γY Y (0) are the sample stan-

dard deviations. The sample cross-covariance γXY (k) is given by

γXY (k) =


1
n

∑n−k
i=1 (xi − x̄)(yi+k − ȳ), k = 0, 1, 2, . . .

1
n

∑n+k
i=1 (xi − x̄)(yi−k − ȳ), k = 0,−1,−2, . . .

(5.4)

where x̄ =
∑n
i=1 xi and ȳ =

∑n
i=1 yi are the sample means. Figure 5.2 plots the cross-

correlation estimates between SPX returns at different positive and negative lags k against

changes in the VIX in regimes 1 and 2. The two dashed lines denoting the 95% confidence

interval in both graphs. Indeed, the contemporaneous correlations on any given day t are

strongly negative at −0.80 and −0.85 in regimes 1 and 2, respectively. The strongly neg-

ative contemporaneous correlations are evidence of the leverage effect, as proposed by

Black (1976) and Christie (1982), who argued that given a fixed debt level, a decline in the

equity level increases the leverage of a company (market) and hence the risk for its stock

(index). The increased risk translates to an increase in stock (index) volatility.5

At other lags (k 6= 0) the correlations are notably smaller. In Regime 1, the first two

negatively lagged returns (k = −1,−2) show marginally significant positive correlations

with changes in the VIX, indicating that SPX returns have some predictive power over

future movements in the VIX. In Regime 2 also the correlations of the first two positively

lagged returns become statistically significantly positive, which suggests that movements

in the VIX would have some predictive power over future SPX returns and vice versa.

Our findings on the correlations for Regime 1 are consistent with Carr and Wu (2006) –

however, in Regime 2 the intertemporal correlations seem to run both ways: The SPX

returns with both positive and negative lags and leads show (marginally) statistically

significant correlations with VIX changes.

The study of cross correlations undertaken above suggests changes in the relation-

ship between stock market returns and volatility relative to the observed mean shift in

volatility. The latter volatility regime represents a period of abnormal market conditions

5The degree of correlation is generally found to be much larger for stock indices than individual stocks
(see. e.g. Figlewski and Wang 2000).
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Figure 5.2: Sample cross correlations between lagged SPX returns and changes in the VIX
in Regimes 1 and 2.

with unforeseen levels of and changes in volatility and could therefore be a source of

obscurity. What’s more, the intertemporal cross-correlations give mixed evidence on the

possible predictive power of changes in volatility over future asset returns and vice versa.

In what follows, we examine the possible causal links in their relationship more closely.

5.3 Granger causality tests

One way to test whether implied volatility foreshadows returns (or vice versa) is to per-

form Granger (1969) causality tests. A time series Y is said to Granger cause X if it can

be shown that lagged values of Y provide statistically significant information about fu-

ture values of X . The notion of Granger causality thus refers to a narrower interpretation

than what is commonly understood by causality: If a more accurate forecast of the fu-

ture values of X can be obtained using information from the lagged values of Y along

with lagged values of X than using only the lagged values of X , then Y contains useful

information in forecasting future values of X or, in other words, Y Granger causes X .

Conversely, Y fails to Granger cause X if for all s > 0 the mean squared error6 of a fore-

6Mean squared error (MSE) is a common measure of the difference between values implied by an estima-
tor and the true values being estimated. It is defined as 1

n

∑n

i=1(Ŷi − Yi)2, where Ŷi are predictions and Yi
represent the true values (i = 1, . . . , n).
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cast xt+s based on (xt, xt−1, . . . ) is equal to the mean squared error of a forecast xt+s that

uses both (xt, xt−1, . . . ) and (yt, yt−1, . . . ) (Hamilton 1994).

The standard Granger test for causality, then, consists of running bivariate regressions

of the form

xt =
k∑
i=1

αixt−i +
k∑
i=1

βiyt−i + ut (5.5)

where αi and βi are regression coefficients, ut is the random error term and t = 1, . . . , T .

The lag length k is chosen more or less arbitrarily, although it can be determined using

model selection criteria. Under the null hypothesis H0 : β1 = · · · = βk = 0, Y fails

to Granger cause X . The hypothesis is tested by conducting an F -test, where the un-

restricted regression is defined by equation (5.5), whereas the restricted regression will

only include lags of the dependent variable:

xt =
k∑
i=1

γixt−i + vt, (5.6)

where γi (i = 1, . . . , T ) are regression coefficients and vt is the error term. Under the null

hypothesis, the F -statistic

F =
∑T
t=1 v̂

2
t −

∑T
t=1 û

2
t∑T

t=1 û
2
t

T − 2k − 1
k

, (5.7)

where ût and ût are the residuals from the regressions, has an asymptotic F (k, T −2k−1)
distribution as T → ∞. Values of F exceeding the critical value of the F -distribution for

a specified confidence level lead to rejection of the null hypothesis.

He and Maekawa (2001) assert that testing for Granger causality between two time

series in the conventional way often leads to spurious causality if one or both of the time

series is non-stationary. This problem can be addressed using an ”augmented Granger

test” developed by Toda and Yamamoto (1995) that allows for testing the causality of

(co-)integrated time series. However, stationarity can often be achieved by time series

transformation and since we are working with logarithmized and or differenced time

series, the results from Table 5.1 confirm that the stationarity condition holds. Therefore,

we test for the existence of Granger causality in either direction by running the following
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unrestricted regressions

∆V IXt =
3∑
i=1

αi∆V IXt−i +
3∑
i=1

βiRt−i + ut (5.8)

Rt =
3∑
i=1

αiRt−i +
3∑
i=1

βi∆V IXt−i + ut (5.9)

where ∆V IXt is the daily change in the VIX on day t and rt is the SPX daily return on day

t. The lag length k = 3 is determined using the Bayesian information criterion (BIC; see

Schwarz 1978). Before running the F -tests against the restricted counterparts of the above

equations, we test for heteroskedasticity and serial correlation in the residuals of the un-

restricted regressions. The Breusch and Pagan (1979) test statistics for heteroskedasticity

in the squared residuals of both regressions (5.8) and (5.9) (not printed here) are highly

statistically significant for the entire sample period from January 2004 to December 2011

as well as for the two volatility regimes defined above, which leads to rejection of the

null hypothesis of no heteroskedasticity. Similarly, the Breusch (1978)/Godfrey (1978)

test statistics suggest rejection of the null hypothesis of no serial correlation in the resid-

uals.

Since the residual diagnostics suggest the presence of both heteroskedasticity and

serial correlation, we employ Newey and West (1987) heteroskedasticity and autocorre-

lation consistent (HAC) standard errors7 in the Granger (1969) causality tests. Results are

given below in Table 5.2. They do not give evidence of Granger causality in either direc-

tion – SPX returns don’t seem to Granger cause changes in the VIX, nor is the reverse true.

There is, however, some variation in the F -test statistics between the volatility regimes.

The absence of Granger causality could imply that the positive correlations between pos-

itively and negatively lagged values of SPX returns and VIX changes are caused by a

common third factor that drives the two variables.

Our findings contradict the results obtained by Malz (2000), who studied several

measures of volatility in different markets and found statistical evidence indicating that

implied volatility contains information regarding future large-magnitude returns on the

underlying asset prices. In his study of a volatility index on Greek equity markets, Ski-

adopoulos (2004) found in turn that underlying asset returns Granger cause changes in

7Here, as well as in all subsequent instances where HAC standard errors are employed, the number of
lags is chosen automatically using Schwarz’s information criterion.
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Table 5.2: Results of Granger causality tests for SPX returns and VIX changes.

Null hypothesis F -statistic p-value

Full sample (02/01/2004–31/12/2011), N=2015

R does not Granger cause ∆V IX 1.61 0.184
∆V IX does not Granger cause R 1.08 0.358

Regime 1 (02/01/2004–24/07/2007), N=896

R does not Granger cause ∆V IX 1.52 0.201
∆V IX does not Granger cause R 1.88 0.131

Regime 2 (25/07/2004–31/12/2011), N=1119

R does not Granger cause ∆V IX 1.58 0.191
∆V IX does not Granger cause R 2.91 0.406

This table reports the results for the Granger (1969) causality test for the full sample
period as well as for regimes 1 and 2. *, ** and *** denote statistical significance
at the 10%, 5% and 1% levels, respectively. Statistical significance of the F -statistic
suggests rejection of a null hypothesis of no Granger causality.

volatility, not vice versa. Neither author mentions accounting for the assumed presence

of heteroskedasticity and autocorrelation in their data. This appears to be a crucial obser-

vation – without accounting for heteroskedasticity and serial correlation by applying the

Newey and West (1987) heteroskedasticity and autocorrelation consistent (HAC) stan-

dard errors, our Granger tests give results similar to those obtained by Malz (2000) (VIX

changes Granger cause SPX returns). However, our final conclusion from this study re-

mains that no evidence of statistically significant Granger causality is found.

5.4 Asymmetries in volatility

In the absence of statistically significant Granger causalities we move on to study the

contemporaneous relationships between volatility and stock index returns more closely.

Visual inspection of the data as well as the correlation study in Section 5.2 suggest an

inverse relationship between the two, with perhaps some degree of asymmetry related to

positive vis-à-vis negative changes in volatility.

The negative relationship between stock market returns and volatility has been well

established by previous studies. In earlier literature, the relationship between stock in-

dex returns and corresponding changes in volatility has been found to be negative among
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others by Schwert (1989; 1990) and Fleming, Ostdiek, and Whaley (1995); the latter find

a large negative contemporaneous correlation between VXO changes and OEX returns,

suggesting an inverse relation between implied volatility and asset prices. They also re-

port evidence of asymmetry in the relationship. Whaley (2000; 2009), Simon (2003) and

Giot (2005) present similar findings in the U.S. equity markets. In Europe, analoguous

relationships have been documented by e.g. González and Novales (2009) on German

and Swiss stock markets and by González and Novales (2011) and Skiadopoulos (2004),

who constructed artificial volatility indices for Spanish and Greek stock markets, respec-

tively. Other studies include Dowling and Muthuswamy (2005) and Frijns, Tallau, and

Tourani-Rad (2010) for evidence from Australia, Ting (2007) and Kumar (2012) for Ko-

rean and Indian markets, respectively, and finally Siriopoulos and Fassas (2009), who

review twelve implied volatility indices and give results suggesting the universality of

an asymmetric, negative relationship between implied volatility and asset returns.

We begin by examining the impact of ”news” on implied volatility by considering the

effect of a return shock on day t on same-day changes in the VIX. As the VIX represents

the market’s expectation of realized volatility over a 22 trading day period, ∆V IXt can

be interpreted as the expected change in market volatility over the future time period

from t + 1 to t + 22. Table 5.3 reports the SPX returns partitioned into twelve strata in

0.5 percentage point intervals. For each interval, the number of observations, the mean

SPX return and the corresponding mean VIX change is reported. What is of note is the

considerably wider spread of observations in Regime 2. There is a visibly greater number

of observations with high absolute returns in Regime 2 compared to Regime 1. Also, the

mean returns are higher. This is an illustration of fat-tailed distributions; the likelihood

of extreme or unlikely observations is higher, which is consistent with the overall higher

level of volatility that distinguishes the two regimes from each other in the first place.

Clearly, the relationship between implied volatility and stock market returns is in-

verse; volatility increases in response to negative daily returns, and increases more the

larger the negative return shock. Correspondingly, volatility decreases along with pos-

itive returns and decreases more the larger the positive return shock. The mean levels

of ∆V IX for each SPX return interval suggest that the relationship is not entirely sym-

metric – volatility increases more in response to negative return shocks than it decreases

when returns are positive. This feature is most clearly visible when comparing the inter-

vals with highest absolute returns. In idle markets, when absolute returns remain small,

51



volatility remains little changed as well. Ederington and Guan (2010) point out that this

is contrary to what conventional time-series models for volatility would predict: a de-

cline in volatility associated with stagnant markets. What’s more, the findings discussed

above seem to partly contradict the notion of volatility clustering, i.e. the assertion that

volatile markets are followed by volatile markets and stable markets are followed by sta-

ble markets. Persistence in volatility would require that changes in volatility increase

along with increases in absolute asset returns, regardless of whether the returns are posi-

tive or negative. According to our findings, implied volatility increases only when asset

returns are negative – with positive returns, volatility tends to decrease, stabilizing the

market.

Figure 5.3 graphs the mean SPX returns against corresponding VIX changes, which

allows for a clearer picture of the relationship described above. Note that the deviation

in the tails of the curve of Regime 1 is likely due to the scarce number of observations

in those extreme intervals. Thus, they can be treated as outliers. Figure 5.3 also shows

relatively little differences between the two volatility regimes and the full sample. The

change in volatility associated with moderate positive returns (less than 1%) would ap-

pear to be somewhat less pronounced in Regime 1 than in Regime 2. However, the overall

differences in the effect of return shocks on implied volatility appear negligible.
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Figure 5.3: News impact curves for the VIX in the full sample and in Regimes 1 and 2.
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Table 5.3: Impact of return shocks on implied volatility.

Rt (%) # of obs. Mean Rt (%) Mean ∆V IXt

Full sample (02/01/2004–31/12/2011)

< −2.5 75 -3.97 5.31
≥ −2.5 and < −2.0 37 -2.24 2.27
≥ −2.0 and < −1.5 63 -1.72 2.23
≥ −1.5 and < −1.0 128 -1.21 1.51
≥ −1.0 and < −0.5 206 -0.74 0.68
≥ −0.5 and < 0 397 -0.22 0.10
≥ 0 and < 0.5 538 0.23 -0.30
≥ 0.5 and < 1.0 283 0.71 -0.72
≥ 1.0 and < 1.5 132 1.22 -1.34
≥ 1.5 and < 2.0 63 1.68 -1.63
≥ 2.0 and < 2.5 34 2.32 -2.23
≥ 2.5 58 3.95 -4.68

Regime 1 (02/01/2004–24/07/2007)

< −2.5 1 -3.53 7.16
≥ −2.5 and < −2.0 2 -2.03 2.94
≥ −2.0 and < −1.5 11 -1.66 2.42
≥ −1.5 and < −1.0 50 -1.20 1.48
≥ −1.0 and < −0.5 106 -0.74 0.62
≥ −0.5 and < 0 223 -0.22 0.17
≥ 0 and < 0.5 305 0.22 -0.19
≥ 0.5 and < 1.0 139 0.72 -0.62
≥ 1.0 and < 1.5 39 1.20 -0.97
≥ 1.5 and < 2.0 16 1.66 -1.64
≥ 2.0 and < 2.5 2 2.12 -4.16
≥ 2.5 0 – –

Regime 2 (25/07/2004–31/12/2011)

< −2.5 74 -3.98 5.28
≥ −2.5 and < −2.0 35 -2.25 2.23
≥ −2.0 and < −1.5 52 -1.73 2.20
≥ −1.5 and < −1.0 78 -1.22 1.54
≥ −1.0 and < −0.5 100 -0.73 0.74
≥ −0.5 and < 0 174 -0.23 0.01
≥ 0 and < 0.5 233 0.24 -0.43
≥ 0.5 and < 1.0 144 0.70 -0.82
≥ 1.0 and < 1.5 93 1.23 -1.50
≥ 1.5 and < 2.0 47 1.69 -1.62
≥ 2.0 and < 2.5 32 2.24 -2.11
≥ 2.5 58 3.95 -4.68

In this table the data are partitioned by the SPX returns into twelve strata
by 0.5 percentage point intervals. For each partition the number of obser-
vations and the mean levels of SPX returns as well as the corresponding
mean VIX changes are reported.
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Next, we further elaborate our study by exploring the above issues in a regression

format. Thereby we attempt to quantify the inverse relationship between SPX returns

and VIX changes and, more importantly, the degree of asymmetry in favor of volatility

increases in falling markets vis-à-vis volatility decreases in rising markets. To this end,

we run the following linear regressions:

∆V IXt = α0 + α1Rt + ut (5.10)

∆V IXt = α0 + α1Rt + α2R
−
t + α3∆V IXt−1 + ut, (5.11)

whereR−t = Rt ifRt < 0 and zero otherwise. Model (5.10) therefore measures simply the

strength of the already observed negative relationship between returns and volatility. It is

to be expected that α1 is consistently negative and highly statistically significant. Model

(5.11) adds R−t as a regressor to measure the level of asymmetry in the relationship; it

captures the effect of negative SPX returns only. Statistical significance of the regression

coefficient α2 would be interpreted as evidence of this asymmetry. Moreover, we expect

α2 to be of the same sign as α1, which would indicate that implied volatility increases

more with respect to negative returns than it decreases with respect to positive returns.

Finally, lagged VIX changes are included to check for serial correlation.

The results are reported in Table 5.4. The Newey and West (1987) heteroskedasticity

and autocorrelation consistent standard errors are presented in parantheses. The inter-

cept term (coefficient α0) is mostly negative and significant, which suggests that if the

SPX remains unchanged over the day, the VIX is expected go down, albeit only slightly.

This is, of course, intuitively plausible – one would expect a measure of volatility to de-

crease in stagnant markets, although the observed decreased is negligible, in accordance

with our earlier findings. The estimated α0 is higher in Regime 2, reflecting the higher

levels of and fluctuations in volatility during that time period. As expected, Rt is nega-

tive and highly significant as well, accounting for most of the predictive power of both

models. The estimated coefficients of Model (5.10) suggest that over the full sample pe-

riod, one percentage point increase (decrease) in the VIX is associated with a decrease

(increase) of approximately 1.21% in the underlying SPX. In Regime 1, the SPX decreases

by 1.04% for every one percentage point increase in the VIX, whereas in Regime 2 the

associated daily return is approximately 1.23%. This indicates a stronger relationship in

a high volatility environment. Note also that the adjusted R2 is higher for the regressions

conducted in Regime 2 than in Regime 1 – that is, SPX returns explain more of the change
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in implied volatility.

The estimated coefficients for R−t in Model (5.11) give evidence of significant asym-

metry in both volatility regimes. The coefficient for ∆V IXt−1 is negative and statistically

significant throughout, which is a sign of autocorrelation in the VIX series. The esti-

mates for α2 are negative, indicating that negative returns associated with positive VIX

changes are higher than positive returns associated with negative VIX changes: Over

the full sample period, every one percentage point increase in the VIX is followed by a

−1.0750 − 0.2360 ≈ −1.31% return on the SPX, whereas one percentage point decrease

in the VIX translates to only a 1.075% decrease in returns. Interestingly, the coefficient

α2 measuring the degree of asymmetry is considerably higher in Regime 1, when the

average level of volatility was lower. The estimated α2 suggests a 0.47 percentage point

difference in the reaction of SPX returns to positive vis-à-vis negative VIX changes; one

percentage point increase in the VIX is associated with a decrease of approximately 1.27%

in the SPX, while an equal decrease in the VIX is coupled with only a 0.8% increase in SPX

returns. In Regime 2, the difference is only about 0.25 percentage points – however, the

overall magnitude of the relationship is higher, as was already noted above in examin-

ing Model (5.10). In Regime 2, one percentage point increase in the VIX yields a 1.34%

negative return on the SPX, which is somewhat higher than in Regime 1. The positive

return associated with one percentage point decrease in the VIX is now 1.08%, indicating

a stronger reaction than in Regime 1. This is perhaps partly explained by the strong mean

reversion of the VIX, which is clearly visible in e.g. Figure 5.1: While considerably higher,

the spikes in volatility are still relatively short-lived and the VIX reverts to its mean level

every time, even though the SPX does not fully recover from the steep fall of 2008 over

the sample period.

Our findings on the degree of asymmetry being higher during a period of lower

volatility, namely Regime 1, are consistent with the results documented for the S&P 500

index returns and implied volatility by Giot (2005), who studied the relationships be-

tween the VXO (i.e. the old VIX) and its underlying stock index, the S&P 100, as well

as the Nasdaq 100 stock index and its own volatility index, the VXN. Giot (2005) di-

vided his sample period into three subperiods: one with low volatility and a bull (rising)

market, one with high volatility and a bull market, and one with high volatility and a

bear (falling) market. His findings indicated, similarly to ours, that volatility asymmetry

was strongest during the low-volatility market environment. A possible explanation for
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this phenomenon is that in a regime of low volatility, investors and option traders are

more sensitive to any decreases in the stock markets (negative returns) and thus more

prone to hedge themselves by buying options. The increased demand for options trans-

lates to higher option prices and thereby higher implied volatility. Conversely, in a high-

volatility state, option prices are already high and investors are less willing to bid them

higher when the stock market falls.

Table 5.4: Regression results for Models (5.10) and (5.11).

α0 α1 α2 α3 α4 R̄2

Full sample (02/01/2004–31/12/2011), N=2015

Model (5.10) -0.0101 -1.2110*** 0.712
(0.02) (0.07)

Model (5.11) -0.0939** -1.0750*** -0.2360** -0.0769 -0.1028*** 0.719
(0.04) (0.10) (0.10) (0.06) (0.04)

Regime 1 (02/01/2004–24/07/2007), N=896

Model (5.10) -0.0365*** -1.0422*** 0.638
(0.01) (0.07)

Model (5.11) -0.0837** -0.8051*** -0.4666*** -0.0017 -0.1071*** 0.660
(0.03) (0.09) (0.14) (0.05) (0.04)

Regime 2 (25/07/2007–31/12/2011), N=1119

Model (5.10) -0.0158 -1.2310*** 0.721
(0.03) (0.07)

Model (5.11) -0.1695*** -1.0820*** -0.2589** -0.0870 -0.1031** 0.727
(0.07) (0.10) (0.11) (0.07) (0.05)

Newey and West (1987) heteroskedasticity and autocorrelation (HAC) consistent
standard errors are given in parantheses. *, ** and *** denote statistical significance
at the 10%, 5% and 1% levels, respectively.

The results documented above strongly suggest that the VIX, a measure of expected

market volatility, responds more aggressively to negative changes in stock market return

than to positive changes in returns of similar size. This result is consistent with the pop-

ular notion that VIX is more of a gauge of investor fear than investor positive sentiment.

As Whaley (2000) puts it, the VIX therefore is rather a barometer of investors’ fear of the

downside than a barometer of investors’ excitement in a market rally.
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Chapter 6

Conclusions

In this thesis we studied the theoretical foundation, construction methodology and em-

pirical properties of the VIX volatility index, with emphasis on identifying structural

breaks in the time series data as well as their impact on the interrelationships between

stock market returns and corresponding changes in implied volatility. We first presented

the theoretical framework for deriving a model-free measure for volatility from option

prices, and showed how the theory is implemented in the VIX index. We concentrated

in the revamped calculation methodology that was introduced by the Chicago Board

Options Exhange in 2003. The new calculation methodology is advantageous over its

predecessor in that it is independent of any option pricing model. It extracts informa-

tion from options across all available strike prices, which should make it informationally

more efficient than the previous specification. Furthermore, the new methodology allows

for replicating volatility as a portfolio of readily available derivative contracts, which has

given way for the development of tradable products on VIX-based volatility.

In the latter part of the thesis we focused on the empirical aspects of daily VIX time

series. Visual inspection of the VIX time series data suggested infrequent, but notable

shifts in its mean level and the study of normal ranges of the VIX gives further reason

to suspect at least one regime change in the data. We therefore used the Bai and Perron

(1998; 2003a;b; 2004) method to test for structural breaks in the VIX time series. Our

findings gave evidence that market volatility, as proxied by the VIX, underwent a single,

significant regime shift that coincides chronologically approximately with the outbreak

of the global financial crisis in late 2007. The sample time period was thereby divided

into two volatility regimes corresponding to a pre-2007 period and a post 2007 period
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(the exact break date was found to be on 24 July, 2007), where the former regime exhibits

considerably lower mean levels of volatility than the latter regime.

The study of cross-correlations confirmed the strong contemporaneous negative cor-

relation between changes in implied volatility and stock market returns. The relation-

ship between changes in volatility with positively and negatively lagged stock returns

is somewhat vaguer, but marginally significantly positive for the nearest lags and leads.

This relationship varies between the two volatility regimes. However, Granger causal-

ity tests show that no changes in volatility contain no statistically significant predictive

power over future asset returns or vice versa, a result that contradicts some earlier stud-

ies. We therefore conclude that changes in volatility do not constitute a leading indicator

for the stock market, nor do stock index returns hold statistically significant predictive

abilities over future changes in volatility.

Upon closer examination of the contemporaneous volatility-returns relationship, the

degree of the overall inverse relationship is found to be higher in Regime 2, i.e. a state

of higher average volatility: positive (negative) returns associated with a unit decrease

(increase) in the VIX are higher in Regime 2 than in Regime 1, and the regression models’

explanatory power is higher in Regime 2. What’s more, the observed inverse relationship

is asymmetric: stock market implied volatility, as measured by the VIX, increases more

in relation to negative stock price returns (falling markets) than it decreases in relation

to positive returns (rising markets). Contrary to intuition, volatility remains roughly

unchanged when returns are close to zero. Interestingly, the degree of asymmetry turns

out to be higher in Regime 1, the low-volatility state, where the degree of the overall

inverse relationship is lower. In summary, our findings lend further support to the VIX

being an investor fear gauge.

A possible extension to this thesis would be to examine the information content and

forecast quality of the VIX in the context of different volatility regimes. There exists a

vast literature on forecasting volatility (see e.g. Figlewski (1997) and Poon and Granger

(2003) for overviews on the subject), and of all the methods developed for this purpose,

implied volatility performs generally quite well, as demonstrated by e.g. Jiang and Tian

(2005). Whether this performance varies with respect to the prevalent average level of

market volatility in the same manner as the degree of volatility asymmetry does, is a

subject worthy of investigation. That being said, the main purpose of the VIX is not to

accurately forecast the future realized volatility, but rather, it is a gauge of the expected
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volatility or risk currently perceived by market. As such, it is a powerful indicator of

investor sentiment and provides valuable information to all market participants, which

explains its popularity and the widespread use of the original VIX methodology in other

markets. Furthermore, with the introduction of the new VIX methodology, volatility has

become a tradable asset. The VIX offers a platform for options and futures on volatility,

which provide an obvious diversification benefit owing to the strong negative correlation

between stock market returns and changes in volatility.

60



References

S. Aboura and C. Villa. International market volatility indexes: A study on VX1, VDAX

and VIX. Available at SSRN, 1999. URL http://ssrn.com/abstract=394420.

T. G. Andersen and O. Bondarenko. Construction and interpretation of model-free im-

plied volatility. Technical report, National Bureau of Economic Research, 2007.

T. G. Andersen, O. Bondarenko, and M. T. Gonzalez-Perez. Coherent model-free implied

volatility: A corridor fix for high-frequency VIX. CREATES Research Papers 2011-49,

School of Economics and Management, University of Aarhus, November 2011. URL

http://ideas.repec.org/p/aah/create/2011-49.html.

D. W. K. Andrews. Tests for parameter instability and structural change with unknown

change point. Econometrica: Journal of the Econometric Society, pages 821–856, 1993.

L. Bachelier. Théorie de la spéculation. Gauthier-Villars, 1900.

J. Bai and P. Perron. Estimating and testing linear models with multiple structural

changes. Econometrica, pages 47–78, 1998.

J. Bai and P. Perron. Computation and analysis of multiple structural change models.

Journal of Applied Econometrics, pages 1–22, 2003a.

J. Bai and P. Perron. Critical values for multiple structural change tests. The Econometrics

Journal, 6(1):72–78, 2003b.

J. Bai and P. Perron. Multiple structural change models: A simulation study. Econometrics

Essays, 2004.

R. W. Banz and M. H. Miller. Prices for state-contingent claims: Some estimates and

applications. Journal of Business, pages 653–672, 1978.

61

http://ssrn.com/abstract=394420
http://ideas.repec.org/p/aah/create/2011-49.html


F. Black. Studies in stock price volatility changes. In Proceedings of the 1976 meetings of the

business and economic statistics section, pages 177–181. American Statistical Association,

1976.

F. Black and M. Scholes. The pricing of options and corporate liabilities. The Journal of

Political Economy, pages 637–654, 1973.

S. Bossu, E. Strasser, and R. Guichard. Just what you need to know about variance swaps.

JPMorgan Equity Derivatives report, 2, 2005.

R. N. Bracewell. The Fourier transform and its applications. McGraw-Hill Sci-

ence/Engineering/Math, 2000.

D. T. Breeden and R. H. Litzenberger. Prices of state-contingent claims implicit in option

prices. Journal of Business, pages 621–651, 1978.

M. Brenner and D. Galai. New financial instruments for hedging changes in volatility.

Financial Analysts Journal, 45(4):61–65, 1989.

T. S. Breusch. Testing for autocorrelation in dynamic linear models. Australian Economic

Papers, 17(31):334–355, 1978.

T. S. Breusch and A. R. Pagan. A simple test for heteroscedasticity and random coefficient

variation. Econometrica: Journal of the Econometric Society, pages 1287–1294, 1979.

M. Britten-Jones and A. Neuberger. Option prices, implied price processes, and stochastic

volatility. Journal of Finance, 55(2):839–866, 2000.

P. Carr and D. Madan. Towards a theory of volatility trading. In E. Jouini, J. Cvitanic, and

M. Musiela, editors, Option Pricing, Interest Rates, and Risk Management, pages 417–427.

Cambridge University Press, 1998.

P. Carr and L. Wu. A tale of two indices. Journal of Derivatives, 13(3):13–29, 2006.

P. Carr and L. Wu. Variance risk premiums. Review of Financial Studies, 22(3):1311–1341,

2009.

CBOE. The CBOE volatility index – VIX, 2009. URL http://www.cboe.com/micro/vix/

vixwhite.pdf.

62

http://www.cboe.com/micro/vix/vixwhite.pdf
http://www.cboe.com/micro/vix/vixwhite.pdf


A. A. Christie. The stochastic behavior of common stock variances: Value, leverage and

interest rate effects. Journal of Financial Economics, 10(4):407–432, 1982.

P. K. Clark. A subordinated stochastic process model with finite variance for speculative

prices. Econometrica, 41(1):135–155, 1973.

J. C. Cox and S. A. Ross. The valuation of options for alternative stochastic processes.

Journal of financial economics, 3(1):145–166, 1976.

J. C. Cox and M. Rubinstein. Options markets. Prentice Hall, 1985.

J. C. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal

of financial Economics, 7(3):229–263, 1979.

F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset

pricing. Mathematische annalen, 300(1):463–520, 1994.

K. Demeterfi, E. Derman, M. Kamal, and J. Zou. More than you ever wanted to know

about volatility swaps. Goldman Sachs Quantitative Strategies Research Notes, 1999.

D. A. Dickey and W. A. Fuller. Distribution of the estimators for autoregressive time

series with a unit root. Journal of the American statistical association, 74(366a):427–431,

1979.

S. Dowling and J. Muthuswamy. The implied volatility of Australian index options. Avail-

able at SSRN, 2005. URL http://ssrn.com/abstract=500165.

B. Dupire. Model art. Risk, 6(9):118–124, 1993.

L. Ederington and W. Guan. Measuring historical volatility. Journal of Applied Finance, 16

(1), 2006.

L. H. Ederington and W. Guan. How asymmetric is U.S. stock market volatility? Journal

of Financial Markets, 13(2):225–248, 2010.

W. Egan. The distribution of S&P 500 index returns. Available at SSRN, 2007. URL http:

//ssrn.com/abstract=955639.

E. F. Fama. The behavior of stock-market prices. Journal of business, pages 34–105, 1965.

63

http://ssrn.com/abstract=500165
http://ssrn.com/abstract=955639
http://ssrn.com/abstract=955639


S. Figlewski and X. Wang. Is the ’leverage effect’ a leverage effect? Available at SSRN,

2000. URL http://ssrn.com/abstract=256109.

Stephen Figlewski. Forecasting volatility. Financial Markets, Institutions & Instruments, 6

(1):1–88, 1997.

J. Fleming, B. Ostdiek, and R. E.S Whaley. Predicting stock market volatility:A new mea-

sure. Journal of Futures Markets, 15(3):265–302, 1995.

B. Frijns, C. Tallau, and A. Tourani-Rad. The information content of implied volatility:

evidence from Australia. Journal of Futures Markets, 30(2):134–155, 2010.

G. L. Gastineau. An index of listed option premiums. Financial Analysts Journal, pages

70–75, 1977.

P. Giot. Relationships between implied volatility indexes and stock index returns. The

Journal of Portfolio Management, 31(3):92–100, 2005.

I. V. Girsanov. On transforming a certain class of stochastic processes by absolutely con-

tinuous substitution of measures. Theory of Probability & Its Applications, 5(3):285–301,

1960.

L. G. Godfrey. Testing against general autoregressive and moving average error models

when the regressors include lagged dependent variables. Econometrica: Journal of the

Econometric Society, pages 1293–1301, 1978.

D. Goldstein and N. Taleb. We don’t quite know what we are talking about when we talk

about volatility. Journal of Portfolio Management, 33(4), 2007.

M. T. González and A. Novales. Are volatility indices in international stock markets

forward looking? Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie

A. Matematicas, 103(2):339–352, 2009.

M. T. González and A. Novales. The information content in a volatility index for Spain.

SERIEs: Journal of the Spanish Economic Association, 2(2):185–216, 2011.

C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral

methods. Econometrica: Journal of the Econometric Society, pages 424–438, 1969.

64

http://ssrn.com/abstract=256109


W. Guo and M. E. Wohar. Identifying regime changes in market volatility. Journal of

Financial Research, 29(1):79–93, 2006.

J. D. Hamilton. Time series analysis, volume 2. Cambridge University Press, 1994.

J. M. Harrison and S. R. Pliska. Martingales and stochastic integrals in the theory of

continuous trading. Stochastic processes and their applications, 11(3):215–260, 1981.

C. R. Harvey and R. E. Whaley. Dividends and S&P 100 index option valuation. Journal

of Futures Markets, 12(2):123–137, 1992.

E. G. Haug. The complete guide to option pricing formulas, volume 2. McGraw-Hill New

York, 2007.

Z. He and K. Maekawa. On spurious Granger causality. Economics Letters, 73(3):307–313,

2001.

J. Hull. Options, futures, and other derivatives. Pearson, 2009.
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Appendix A

A.1 The equivalence of model-free implied variance and the fair

value of future variance

We establish the theoretival equivalence of model-free implied volatility and the fair

value of future variance (FVFV) following Jiang and Tian (2007). To start with, consider

the definition of FVFV in Demeterfi et al. (1999): It is the risk-neutral expected value of

the average (integrated) realized variance over a future time period from t = 0 to t = T :

E[VarT ] = 1
T

∫ T
0 σ2

t dt. Using the Jiang and Tian (2005) MFIV as described in Equation

(3.4), this can be written as

E[VarT ] = 2
T

∫ ∞
0

erTC(T,K)− (S0e
rT −K)+

K2 dK. (A.1)

Taking erT out of the integral and partitioning at F0 = S0e
rT gives

E[VarT ] = 2erT

T

[∫ S0erT

0

C(T,K)− (S0 −Ke−rT )+

K2 dK

+
∫ ∞
S0erT

C(T,K)− (S0 −Ke−rT )+

K2 dK

]
.

= 2erT

T

[∫ S0erT

0

C(T,K)− (S0 −Ke−rT )+

K2 dK +
∫ ∞
S0erT

C(T,K)
K2 dK

]
. (A.2)
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The put-call parity1 then implies that

= 2erT

T

[∫ S0erT

0

P (T,K)
K2 dK +

∫ ∞
S0erT

C(T,K)
K2 dK

]

= 2erT

T

[∫ F0

0

P (T,K)
K2 dK +

∫ ∞
F0

C(T,K)
K2 dK

]
. (A.3)

Equation (A.3) is comparable to the compact expression for the Jiang and Tian (2005)

MFIV given in Equation (3.5). Following Jiang and Tian (2007), it can be rewritten as

E[VarT ] = 2erT

T

[∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK +

∫ F0

S∗

P (T,K)− C(T,K)
K2 dK

]

= 2erT

T

[∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK +

∫ F0

S∗

Ke−rT − S0
K2 dK

]
,

(A.4)

where S∗ < F0. The third term can be integrated, so that after some lengthy manipu-

lations we arrive at an expression for the model-free variance which is exactly the same

as the formulation of the fair value of future variance given by Demeterfi et al. (1999) in

their equation (26):

E[VarT ] = 2erT

T

[∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK +

(
ln(K)e−rT + S0

K

) ∣∣∣F0

S∗

]

= 2
T

[
rT −

(
S0
S∗
erT − 1

)
− ln

(
S∗
S0

)
+ erT

(∫ S∗

0

P (T,K)
K2 dK +

∫ ∞
S∗

C(T,K)
K2 dK

)]
.

(A.5)

1Recall that for a European option the put-call parity is given by C +Ke−rT = P + S0.

69



A.2 Portfolio replication strategy

We derive the static portfolio replication argument as proposed by Carr and Madan

(1998). Recall that the argument states that any twice differentiable function f(S) can

be re-written as:

f(S) = f(κ) + f ′(κ)(S − κ) +
∫ κ

0
f ′′(K)(K − S)+dK +

∫ ∞
κ

f ′′(K)(S −K)+dK. (A.6)

To see this, first let δ(K) be an impulse symbol2 characterized by

δ(K) =

0 if K 6= 0

+∞ if K = 0
and

∫ ∞
−∞

δ(K)dK = 1. (A.7)

Moreover, it is the derivative of the Heaviside step function H(K) (see e.g. Bracewell

2000):

δ(K) = H ′(K), H(K) =

0 if K < 0

1 if K > 0
≡ 1K>0.

Note also that H(K) is the derivative of (K)+ = max(0,K). The impulse symbol has the

following sifting property

∫ +∞

−∞
f(K)δ(K − a)dK = f(a). (A.8)

This is because δ(K − a) is zero everywhere except at K = a, which allows for restricting

the range of the integral to an epsilon interval around a, so that

∫ +∞

−∞
f(K)δ(K − a)dK =

∫ a+ε

a−ε
f(K)δ(K − a)dK,

where ε > 0 is an infinitesimal number. Inside this interval f is approximately constant

and can thus be pulled out of the integral, meaning that

∫ a+ε

a−ε
f(K)δ(K − a)dK =

∫ a+ε

a−ε
f(a)δ(K − a)dK = f(a)

∫ a+ε

a−ε
δ(K − a)dK = f(a).

2Also known as the Dirac delta function after Paul Dirac, an English theoretical physicist, for his pio-
neering work on quantum mechanics. It can be considered a generalized function with infinite height, zero
width and an area of one.

70



Let f(S) be a twice-differentiable function defined in R. The sifting property and

properties of the integral now imply that

f(S) =
∫ ∞

0
f(K)δ(S −K)dK

=
∫ κ

0
f(K)δ(S −K)dK +

∫ ∞
κ

f(K)δ(S −K)dK

=
∫ κ

0
f(K)δ(K − S)dK︸ ︷︷ ︸

I1

+
∫ ∞
κ

f(K)δ(S −K)dK︸ ︷︷ ︸
I2

(A.9)

for some threshold κ > 0. Applying integration by parts3 to I1 with u = f(K), dv =
δ(K − S), du = f ′(K) and v = 1K>S gives

I1 =
∫ κ

0
f(K)δ(K − S)dK

= f(K)1K>S
∣∣∣κ
0
−
∫ κ

0
f ′(K)1K>SdK

= f(κ)1κ>S −
∫ κ

0
f ′(K)1K>SdK. (A.10)

For I2, choose u = f(K), dv = δ(S −K), du = f ′(K) and v = −1K>S , so that

I2 =
∫ ∞
κ

f(K)δ(S −K)dK

= −f(K)1S>K
∣∣∣∞
κ

+
∫ ∞
κ

f ′(K)1K<SdK

= f(κ)1S>κ +
∫ ∞
κ

f ′(K)1K<SdK. (A.11)

Substitute I1 and I2 into equation (A.9) to obtain

f(S) = f(κ)−
∫ κ

0
f ′(K)1K>SdK︸ ︷︷ ︸

I3

+
∫ ∞
κ

f ′(K)1K<SdK︸ ︷︷ ︸
I4

. (A.12)

Integrating by parts once again, we choose u = f ′(K), v = 1K>S , du = f ′′(K) and

3The conventional technique for integration by parts is given by
∫
udv = uv −

∫
vdu.

71



dv = (K − S)+. Thus

I3 =
∫ κ

0
f ′(K)1K>SdK

= f ′(K)(K − S)+
∣∣∣κ
0
−
∫ κ

0
f ′′(K)(K − S)+dK

= f ′(κ)(κ− S)+ −
∫ κ

0
f ′′(K)(K − S)+dK. (A.13)

Finally, for I4, choosing u = f ′(K), v = 1S>K , du = f ′′(K) and dv = −(S −K)+ yields

I4 =
∫ ∞
κ

f ′(K)1K<SdK

= −f ′(K)(S −K)+
∣∣∣∞
κ

+
∫ ∞
κ

f ′′(K)(S −K)+dK

= −f ′(κ)(S − κ)+ +
∫ ∞
κ

f ′′(K)(S −K)+dK. (A.14)

Substitute I3 and I4 back to equation (A.12) to obtain

f(S) = f(κ) + f ′(κ)
[
(κ− S)+ − (S − κ)+

]
+
∫ κ

0
f ′′(K)(K − S)+dK +

∫ ∞
κ

f ′′(K)(S −K)+dK. (A.15)

Since4 (κ− S)+ − (S − κ)+ = S − κ, equation (A.15) can be written

f(S) = f(κ) + f ′(κ)(S − κ) +
∫ κ

0
f ′′(K)(K − S)+dK +

∫ ∞
κ

f ′′(K)(S −K)+dK,

which is equation (A.6). As Carr and Madan (1998) point out, the first term is equal to

the payoff of a static long position on f(κ) bonds paying one currency unit at time T .

The second term corresponds to the payoff from a long position on f ′(κ) calls and a short

position on f ′(κ) puts, both with strike κ. The third term arises from f ′′(K)dK puts at

all strikes less than κ. Similarly, the fourth term represents a static position in an equal

amount of calls at all strikes greater than κ.

4This can be easily verified by examining the cases S > κ and S < κ separately.
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