
Date of acceptance Grade

Instructor

Large-scale Experiments on Cluster

Liang Wang

Helsinki October 27, 2010

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14928267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Liang Wang

Large-scale Experiments on Cluster

Computer Science

October 27, 2010 75 pages + 0 appendices

Peer-to-peer, overlay network, high performance cluster, large-scale experiment, BitTorrent

Evaluation of large-scale network systems and applications is usually done in one of three ways:
simulations, real deployment on Internet, or on an emulated network testbed such as a cluster.
Simulations can study very large systems but often abstract out many practical details, whereas
real world tests are often quite small, on the order of a few hundred nodes at most, but have
very realistic conditions. Clusters and other dedicated testbeds offer a middle ground between the
two: large systems with real application code. They also typically allow configuring the testbed to
enable repeatable experiments. In this paper we explore how to run large BitTorrent experiments
in a cluster setup. We have chosen BitTorrent because the source code is available and it has been
a popular target for research.

In this thesis, we first give a detailed anatomy on BiTorrent system, such as its basic components,
logical architecture, key data structures, internal mechanisms and implementations. We illustrate
how this system works by splitting the whole distribution process into small scenarios. Then we
performed a series of experiments on our cluster with different combination of parameters in order
to gain a better understanding of the system performance. We made our initial try in discussing
"How to design a rational experiment" formally. This issue did not receive as much attention as it
should in the previous research work.

Our contribution is two-fold. First, we show how to tweak and configure the BitTorrent client to
allow for a maximum number of clients to be run on a single machine, without running into any
physical limits of the machine. Second, our results show that the behavior of BitTorrent can be very
sensitive to the configuration and we re-visit some existing BitTorrent research and consider the
implications of our findings on previously published results. As we show in this paper, BitTorrent
can change its behavior in subtle ways which are sometimes ignored in published works.

ACM Computing Classification System (CCS):
A.1 [Introductory and Survey],
I.7.m [Document and text processing]

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

1.1 Why we need large-scale experiment? 3

1.2 Why on clusters? . 3

1.3 Popular testbeds . 5

1.4 Further discussions . 7

2 Related Work 9

2.1 Research based on analytical models 9

2.2 Research based on experiments . 12

3 BitTorrent Basics 15

3.1 A brief introduction . 15

3.2 Peer arrival process . 16

3.3 Basic Components . 17

3.4 Tracker Protocol . 20

3.5 Peer Protocol . 23

3.6 Internal implementation and mechanisms 24

4 Methodology 41

4.1 Terminology . 41

4.2 General principle . 42

4.3 Specific methods . 42

5 Preparing Experiment Platform 44

5.1 Experiment environment . 44

5.2 Enlarge experiment scale . 44

5.3 Data collection . 46

5.4 Bypass hard-disk I/O . 46

5.5 Tune BitTorrent’s parameters . 47

iii

5.6 Improved result . 50

5.7 Other restrictions from OS and BitTorrent 54

6 Capacity Planning 55

6.1 Naive capacity planning for single node 55

6.2 Naive capacity planning for more nodes 58

6.3 Capacity planning formulas . 58

7 Clustering and Analysis 62

7.1 Clustering in upload-constrained experiments 62

7.2 Clustering in download-constrained experiments 63

7.3 Example: Case of 2 Nodes . 68

7.4 Example: Case of 3 Nodes . 69

7.5 Experiment conclusion . 70

8 Conclusion 71

References 73

Appendices

A Terminology 0

1

1 Introduction

Internet applications and services have greatly changed our life style. Most of these
popular applications can be viewed as large-scale distributed systems. They have
tens of thousands of simultaneous on-line users, and are deployed on huge amount of
machines, which are usually geographically distributed. Peer-to-peer(P2P) overlay
network is a typical example.

The emergence of P2P network is mainly because of the impasse that traditional
Client/Server architecture has to confront due to the fast grow of internet. Espe-
cially when content distribution is concerned, the centralized content distribution
paradigm imposes great burden on the server. It is very common that a server is
quickly overloaded when the arriving requests are beyond its processing capacity.
The traditional solution for centralized architecture is to upgrade physical resources
to increase the system capacity, which is very expensive and impossible for many
individual content distributors.

P2P systems address this issue well. The system’s workload is amortized to all
participants. The system capacity increases as the number of peers increase, so P2P
system is very scalable. From the emergence of Napster till the newest DHT, we have
experienced four generations of P2P systems. Their structures vary from centralized
to purely distributed architectures; from unstructured to structured overlays [SW05].
P2P systems have become a part of everyday life on the internet.

The great success of P2P paradigm not only give rise to a bunch of different P2P
systems in the industry, but also arise the academy’s interest. As one of the most
successful P2P systems, BitTorrent receives much attention these years. Different
analytical models were built and various experiments were performed to measure
BitTorrent’s performance or validate the models. However, the issue is most exper-
iments are performed under the inexplicit assumption that they are rationally de-
signed. Different experiment settings are used in the papers by different researchers.
For example, the upload rate varies from several kilobytes per second to megabytes
per second; and the distribution file size from dozens of megabytes to several gi-
gabytes. What’s more, someone uses one peer per node configuration, and some
deploy multiple peers on one node.

Arbitrarily choosing experiment settings not only makes it difficult to compare the
experiment (data) in different papers, but also may endanger the accuracy and the
rationality of experiments. In fact, many researchers have already been aware of

2

this issue, thus carefully and conservatively choose low transfer rates and large file
in their experiments, in order to guarantee the experiments be performed within the
system capacity and achieve better accuracy.

However, the rationality of an experiment design still hasn’t received as much at-
tention as it should. Even though everyone knows BitTorrent’s performance and
behaviors are heavily influenced by the experiment settings(parameters), few seri-
ous discussions are made on these issues, and there is no clear boundary about the
"safe region" for an experiment design.

In this thesis, we solved the following practical issues and answered some related
questions:

1. We first demonstrate how to tweak BitTorrent in order to run multiple peers
on one physical node. We show how system performance is impacted by several
BitTorrent’s key parameters, and how to tune them to gain the best system
performance. The work in this part is trying to push the experiments to
large-scale even with limited physical resources.

2. By reading through the code carefully, we give a detailed anatomy on Bit-
Torrent system, such as the basic components, logical architecture, key data
structures, internal mechanisms and implementations. The documents in sec-
tion 3 can be used as references in future research.

3. We show how to do the capacity planning in one-node case with naive method,
and also claim naive method will not work if more nodes are used for deploying
peers. We proposed a more elaborated but simple analytical method to esti-
mate the system capacity, and performed various experiments with different
settings to validate our method.

4. By running the experiments around the system capacity limit, we show how
the two core mechanisms(peer selection strategy and piece selection strategy)
affect BitTorrent’s behaviors. We not only observed BitTorrent’s clustering
property from its peer selection strategy, but also observed another kind of
clustering from its piece selection strategy, which has not been discussed in the
previous papers yet.

We claim BitTorrent’s behavior is the results from the combined-effects from
both peer selection strategy and piece selection strategy. Limiting the upload
bandwidth weakens influence from piece selection strategy on BitTorrent’s be-
haviors, and makes it difficult to be observed in the experiments.

3

The thesis is organized in the following sections: First, we start our discussion from
the necessity of large-scale experiments, and the reason why we choose cluster as
our experiment platform. In section 2, we revisit some previous work done by other
researchers and enumerate some relevant papers. Then we introduce the background
knowledge about BitTorrent in great details in section 3.

In section 4, we explain the terms, the general methodology and specific methods
used in this thesis. In section 5, we introduce our experiment environment, discuss
some practical issues we have to face, and their corresponding solutions, and how var-
ious parameters impact BitTorrent’s performance on cluster. Then we show how to
do capacity planning for the experiments on cluster in section 6. We performed var-
ious experiments in section 7, and show two different clustering properties. What’s
more, we also give detailed behavior analysis in section 7 to explain why these two
clustering properties happen. Finally, we conclude our paper in section 8.

1.1 Why we need large-scale experiment?

The most important reason is that an application may exhibit quite different char-
acteristics in a large-scale experiment. Some application’s behaviors may become
even unpredictable when experiment scale is large enough. So, every P2P system
should undertake thorough and intensive tests before we put them into real use.

Secondly, large-scale experiments can also generate abundant statistical informa-
tion. By studying these data, we can analyze the system’s behaviors, evaluate its
performance, test the quality of a service. Then we are able to locate the bottlenecks
of performance and further improve the system.

1.2 Why on clusters?

As far as large-scale experiments are concerned, among the options are simulation,
emulation, clusters and real internet. Each of them has its own features.

1. Simulation: Simulations are a common way to move from the analytical models
towards a more realistic setting. However, they are limited by the accuracy of
the simulator, but generally allow to evaluate systems of thousands of nodes,
possibly even up to a few million. Simulators typically have to abstract out
many details about the actual network between nodes, but are able to capture
many details of application aspects.

4

2. Internet: Real internet offers of course the most realistic setting, by requiring
real, running code and using a real network. However, real world tests are
often very limited in scale, with system sizes of a few tens of nodes being
common and maximum sizes of a few hundred being more or less the upper
practical limit (e.g., on testbeds like PlanetLab).

3. Cluster: Running the experiment on a cluster attempts to strike the middle
ground between these two. It requires writing the real programs, so that all
aspects of the application are included. Also, a cluster environment allows for a
fine-grained setting of the network parameters, so as to model a real network
between the nodes. Furthermore, the experiments are typically repeatable,
allowing for more control in setting the experiments.

Cluster provides us a closed and exclusive environment for the experiments, so the
irrelevant interferences can be minimized to the lowest level. There are some ar-
guments that the experiments on the cluster do not take the following things into
account, such as heterogeneity in the platforms, bandwidth, RTT, packet loss rate
and so on. However, just because of this reasonable simplification in the experiment
environment, it is much easier for us to figure out the true causes for a problem.
Furthermore, such heterogeneous factors can be added to the experiments manually
to make it closer to the real-world environment.

Another advantage that we can benefit from a cluster is the data collection. For
example, in the study of BitTorrrent, it is impossible to collect all the data from
every peer in the real-world swarm. Without the complete information, the thorough
study on the system is difficult to perform. One solution is resorting to the tracker’s
log file, as the method used in [IUKB+04]. But this information is too coarse-
grained to do the detailed study on peer level. Another popular solution is using
instrumented client. Many researchers inject instrumented BitTorrent client into the
real-world swarms, then collect data from itself and its buddies. However the data
collected is only the partial information of the whole swarm. The research in [RR07]
shows this approach cannot provide a representative view of BitTorrent’s behaviors.
Since the configurations of the instrumented client has already determined what
kinds of data it will collect.

5

1.3 Popular testbeds

Considering the difficulties in testing and evaluating distributed systems and internet
applications, various testbeds are built to provide researchers with an ideal experi-
ment environment. In this section, we will introduce three widely-used testbeds in
research area briefly.

1.3.1 PlanetLab

PlanetLab[Pla10] is an overlay testbed initiated by Prof. Larry L. Peterson in
Princeton University in 20021. It aims at building a global research network for
computer networking and distributed systems. Currently(Sept. 2010), PlanetLab
consists of 1130 nodes at 511 sites. The sites spread from North America, South
America, Europe to Asia, and most of them are located in the U.S.A and Europe.

Any academic organizations or research institutes can join in PlanetLab by con-
tributing some nodes to it, but the hardware of contributed nodes must comply with
permitted configurations in order to minimize heterogeneity headaches. An individ-
ual cannot take part in under personal names. Each site should have a PI (Principal
Investigator) responsible for the credentials for each account. And each account will
be given some simple quotas on storage and CPU usage. People can build their
own "private PlanetLab" with the standalone package – MyPLC, which is offered
at [Pla10].

With PlanetLab, researchers have access to large set of geographically distributed
nodes. The traffic will go through the realistic network substrate and experience
congestion, packet loss and various realistic network conditions. PlantLab is not
only an overlay testbed, but also a deployment platform supporting seamless mi-
gration of an application from early prototype[PACR03]. The direct consequence of
PlanetLab’s dual use paradigm is the nodes have to be shared by different experi-
mental services. As L. Peterson et al. indicated in [PACR03], the dual use paradigm
leads to an obvious tension between the needs of "test & measure" researchers for
reproducible results, and those interested in the system as a deployment platform.
That is the key reason why we did not choose PlanetLab as our experiment platform.

In PlanetLab, multiple VMs(Virtual Machines) run on a node. A service is set of
distributed and cooperating programs running within multiple VMs. A user has
access to his corresponding VMs, but without root privilege. The resources are

1also with other researchers from Princeton, UC Berkeley, MIT etc

6

shared in terms of slices, which is a horizontal cut of global PlanetLab resources
allocated to a given service. Each service corresponds to a slice. In a nutshell,
a slice is a collection of VMs. From node perspective, the resources allocation is
realized in terms of ticket, which is issued by a node and specifies the resource
amounts allocated to a service.

The detailed specifications about PlanetLab can be found in various PDNs(PlanetLab
Design Notes) on [Pla10].

1.3.2 Emulab

Emulab[Emu10] is a widely-used network testbed for the researchers in the fields
of networking and distributed systems. It is developed at the University of Utah,
aims at making the networking experiments easier to design and perform. There
are a bunch of Emulab in operation today, each of them has its own objectives and
limitations. So an experimenter should carefully choose those matching his goals as
experiment platform. Considering the hardware price keeps dropping and Emulab
software keeps improving, it is feasible to build one’s own private Emulab as W.
Laverell et al. suggested in [LFG08].

Emulab provides a powerful GUI tool to create network topology for experiments.
Then Emulab server will create the corresponding VLANs and emulate the link prop-
erties by adding delays, packet loss and limiting the bandwidth artificially according
to the experiment configurations. In order to control various system parameters, the
user is usually given root privilege in the system. Based on previous experience, the
root access may also cause some problems if a user does not have enough adminis-
tration skills, he may mess up an experiment completely. The lucky thing is every
user’s behaviors are isolated and can not interfere other’s experiments.

Another useful feature in Emulab is virtual node, which is just lightweight virtual
machines running on top of a host system. Virtual node is based on either FreeBSD’s
jail mechanism, or OpenVZ container-based virtualization on Linux. Since the phys-
ical node can be multiplexed by running multiple virtual nodes on it. The direct
benefit is we can easily enlarge experiment scale without adding new physical re-
sources. But the capacity planning should be taken into account when designing
the experiments.

7

1.3.3 Grid5000

Grid5000[gri10] is a high performance computer cluster, which is designed to sup-
port experiment-driven research in large-scale parallel and distributed systems. The
infrastructure is provided by INRIA, and geographically distributed in 9 sites in
France. The sites are interconnected with the network provided by RENATER2.
The nodes within a sites are interconnected with high performance network. The
detailed specification about the node and the network can be found on [gri10].

As we have mentioned in 1.3.1, PlanetLab is not an ideal platform for "test &
measure" researchers, since the competition for the physical resources may cause
unpredictable turbulence on system performance and further lead to inaccurate ex-
periment results. What’s more, measurement experiments are usually performed
with different combinations of various parameters, which are usually not under the
control of an experimenter in PlanetLab. Compared with PlanetLab, Grid5000 pro-
vides a dedicated and exclusive environment which enables us to control various key
system parameters.

Thus the experiments on Grid5000 are reproducible, which makes Grid5000 an ideal
testbed for measuring and evaluating large-scale distributed systems. However, not
like PlanetLab and Emulab, which provide some kinds of all-in-one solutions for a
complete experiment environment; in Grid5000, an experimenter has to choose his
own suitable tools to help him manage the whole experiments. Luckily, most of such
tools can be found on the official website[gri10].

1.4 Further discussions

As far as testing and evaluating large-scale distributed system is concerned, besides
the options mentioned above, Choffnes et al. proposed another option in [CB10]
- Edge-measurement3. Even though there are still arguments on these options, we
can foresee an end for such arguments in the near future. Since the boundaries
among simulation-, cluster-, testbed- and edge-measurement are becoming clearer
and clearer.

Simulation −→ Cluster −→ Testbed −→ Edge Measurement

As we can see from above, from left to right, the coverage becomes larger and larger,
2French National Telecommunication Network for Technology, Education and Research.
3Section 2 has more discussions on Edge-measurement.

8

the environment becomes more and more realistic, and the data becomes more and
more representative accordingly. Which is the best option for distributed system
evaluation is always researcher’s concern.

The key point is there is no such "BEST" option. As we have known, a sound and
full-featured system can only be achieved under many iterations. Our opinion is
different option plays a different role in the whole process of developing, deploying
and evaluating a distributed system.

How to make choice depends on "how are we going to use the measurement data?",
in other words, "what purpose are the measurements for?" Simulation is suitable for
modelling the system in design phase before development, or before real-world de-
ployment. Cluster is suitable for figuring out the bottleneck and measuring certain
mechanisms in improving phase before real-world deployment. Edge-measurement
provides us representative view of our internet, thus can be used to tune the sys-
tem/model parameters.

We also think simulation should be used to provide the theoretical performance for
a system. The study of peer-level behavior should be done on cluster. The study of
user-level behavior should be done in edge-measurement. Finally, the whole system
should be shaped into real-world environment (by tuning parameters or policies)
based on edge-measurement.

Our current bewilderment revolves around testbeds - "Is testbed still a useful op-
tion?". Take PlanetLab as an example, L. Peterson mentioned in [PACR03] that
testbed is not suitable for "test & measure" evaluation because of the dual-use
paradigm. Physical resources are shared, thus the experiments are not reproducible,
the data measured is not accurate. So people supposed testbeds can provide us a
representative view of internet, such that we can modify our system/model based
on the real-world parameters. However, [CB10] claims that testbeds can neither
provide the representative view. All the implications from the recent work lead us
to a very practical question - what else can testbeds be used for?

PlanetLab just builds us an environment more realistic than cluster, but not as
good as edge-measurement. If edge-measurement finally becomes feasible, does it
imply the PlanetLab will become useless in evaluating distributed system? Or will
it evolve to a pure deployment platform, or an infrastructure for public services in
the end.

All these guesses will be testified in the future.

9

2 Related Work

BitTorrent has been a popular target for research over the past several years, almost
every aspect of BitTorrent is well discussed and lots of work are done. Most of the
research work can be divided into two categories: model-based and experiment-
based. However, there is no strict boundary, and some work are a mixture of both.
Section 2.1 gives a summary on analytical model-based research by introducing two
widely-used analytical models of BitTorrent. Section 2.2 discusses the related work
in experiment-based research, which our work mainly revolves around.

2.1 Research based on analytical models

Basically, there are two kinds of analytical models for analyzing P2P systems. One
is Fluid-based model, and the other is Chunk-based model. The most essential
difference is how they treat the data, whether the data is infinitely divisible or not.

In fluid-model, since data can be divided into arbitrarily small pieces, a peer can
distribute the data to others as soon as it receives the first bit of the data. There
is no delay between these two operations. However, in chunk-model, a file consists
of many chunks with certain length. A peer can distribute a chunk to other peers
if and only if it receives the complete chunk. The delay between the two operations
are taken into account in the model. An informal but more vivid analogy is, in
fluid model, the process of content distribution is just like water flowing through the
pipes; while in chunk-model, it is like carrying bricks to different peers.

Each of the models has its own pros and cons. Generally speaking, chunk-model is
more realistic, and can be approximated by fluid-model very well in some occasions.
However, fluid-model is more widely used in research area, since the formulas derived
from the fluid-model are much simpler than those from chunk-model. So fluid-
model is a very good way to describe the overall characteristics of a system in most
occasions, and chunk-model can be used as reference model to provide upper and
lower bound of the system.

2.1.1 Chunk-Based Model

Biersack et al. studied three topologies in chunk-based model in [BRF04], which are
Linear topology, Treek topology and PTreek topology in table 1. (k is the outdegree
of the node)

10

Table 1: Three topologies in chunk-based model
Topology Indegree Outdegree
Linear 1 1
Treek 1 k
PTreek k k

Besides deriving the closed-form formula to calculate the download completion time,
they also made several important conclusions. Let N be the number of peers and
C be the number of chunks. In chunk-based model, peer to chunk ratio N/C plays
an important role. If N/C > 10−1, the PTreek outperforms Linear significantly. If
the transmission time for one chunk is negligible compared to the transmission time
of the whole file, the benefits of PTreek diminishes.

If we don’t consider the overheads in communication introduced by each chunk
during the transmission, these conclusions imply the file should be divided into many
small chunks to keep the N/C value at a low level. And the system performance
improves exponentially as the C increases.

In real internet, since the nodes keep joining and leaving the system, the topology
cannot remain stable. When the peer selection and piece selection strategies are
adopted in the system to live with the changing topology, the PTreek evolves into
mesh-based topology.

2.1.2 Fluid-Based Model

Qiu and Srikant proposed their fluid-based model in [QS04], and derived very neat
formulas to describe the system performance. Their model exposes the character-
istics of P2P system well, the useful conclusions are: 1) the system scales well in
terms of the number of peers in the system; the average download time is indepen-
dent from the peer’s arrival process. 2) The data distribution in BitTorrent is very
effective and efficient in terms of the probability of locating the fresh data. There
are also some other works [KR06, MPES09] based on their fluid model.

The basic starting point of their model is data is infinitely divisible, a peer can
forward the data to its buddies immediately whenever it receives the data. There
is no delay between receiving and forwarding. Every time one bit is injected into
the network, all the nodes can obtain it at once(if physical bandwidth permits).
Apparently, this starting point is not realistic. However, it can be a very good

11

approximation for chunk-model if the the number of chunks is larger enough than
the swarm size. Another criterion is the file is large enough and the piece is small
enough, which means the time for transferring one chunck is negligible compared
with the total transmission time, then the fluid-model can be applied. They also
made some unrealistic assumptions to simplify the the real-world complexity, such
as symmetric homogeneous bandwidth, Poisson arrival pattern(which we will discuss
in section 3.2), etc.

Another implication is that linear topology is meaningless in fluid-based model.
Since whenever the head node receives a bit, the tail node obtains it immediately.
Whenever the distributor finish uploading the complete file, all the nodes finish
downloading at the same time. So the queue can grow arbitrarily long without
degrading the performance.

2.1.3 Effectiveness of Connection - η

In fluid-model, there is a very important parameter η, which represents the effec-
tiveness of the connections. In other words, it represents the probability that a peer
can get fresh data from its buddies. High η means a healthy and effective system.
So it should be thought as an important indicator for system performance. η is first
introduced by Veciana and Yang et al. in [VY03], [QS04] gives the explicit formula
to calculate its value.

To some degree, η is a bridge between the traditional C/S architecture and P2P
architecture. In C/S architecture, η is zero, since there is no data exchange among
the peers(clients), and the seed(server) has to upload data to all its clients. As η

increases, the system transforms from C/S architecture to P2P architecture. The
more η increases, the less workload needed from the seed.

Theoretically, if a peer has global information of a swarm, η is able to reach 1.
Namely, a peer must be able to connect all the others to construct a complete
graph. However, it is only possible for very small swarms in real world. For a swarm
consisting of tens of thousands of peers, there will be unacceptable overheads in
maintaining these connections. Some research investigated DHT module in BitTor-
rent, which is adopted to support trackless work mode, and point out that DHT’s
maintenance is responsible for 80% of communication overheads. It shows the ex-
pensive cost in maintaining excessive connections in a large distributed system.

Furthermore, other factors may also affect η. For example, a seed should avoid

12

uploading duplicated pieces to leechers before a complete file is injected into a swarm.
The duplicated pieces will increase the probability that two connected peers have
the same data, thus further reduce the uplink utilization and increase the seed’s
burden. In [BHP06], Bharambe et al. proposed a modified piece selection strategy
for seeds, with which a seed only upload distinct pieces before a complete file is
injected. The number of buddies also affects η. The more buddies a peer has, the
more likely it can find the data it wants.

η is dynamic and keeps changing during the lifespan of a swarm. As more and more
leechers become seeds, the other leechers will have higher η. Even for a single peer,
η will not remain static. For example, as more and more pieces a peer gets, it will
be more difficult for it to locate fresh data. Actually, the "last block" problem is
the result of small η at the end of downloading. That’s why End Game strategy is
introduced.

2.2 Research based on experiments

In some previous work, e.g., [MPES09, KR06, SHRY07, LLKZ07, LUKM05], re-
searchers use a real BitTorrent client in experiments to validate their models and
conclusions. However, less papers have concerned themselves with the accuracy of
their experiments and possible bias in their methodologies.

Legout et al. [LUKM05, LUKM06] conducted a thorough measurement-based re-
search on the two core mechanisms of BitTorrent, piece and peer selection. However,
the influences from these two mechanisms are discussed separately. The authors
showed that the rarest first algorithm guarantees a close to ideal entropy, while the
choke algorithm guarantees the fairness in the system. None of the results presented
in the papers investigate the combined effects of both mechanisms, which as we have
shown, also occurs and can have significant effects on BitTorrent’s behavior.

Antoniu et al. [ABJM04] discuss the difficulties in validating large-scale peer-to-
peer systems. The authors also proposed a framework for performing large-scale
experiments based on grid services. However, how the experiments are affected by
the underlying details and the experiment settings are not touched.

Only a few papers, e.g., [RR07, ZIea10, RLD10] concern the accuracy of experi-
ments and the bias of measurements. Work in [ZIea10] investigated the sampling
bias in BitTorrent experiments. Even though the discussion merely focuses on the
approach of using instrumented client to obtain data from real-world swarm, the

13

recommendations proposed in this paper are simple heuristics and guidelines. We
have followed their recommendations and have designed our Logger module to fol-
low them. Our Logger module takes a snapshot for the peer every second during its
whole life span. This strategy yields very reliable experiment data.

On the other hand, Rasti and Rejaie [RR07] claim that the data obtained with this
approach (injecting an instrumented client into real-world swarm) is not representa-
tive and has already been biased in the beginning. The main reason for their claim
is that BitTorrent clients tend to cluster with other clients having similar upload
bandwidths. This observation is definitely valid for measuring a real-world swarm
on the Internet, but as our experiments are performed on a cluster where all peers
are instrumented to provide logging information, such a bias does not exist in our
experimental setup.

A lot of analytical work has also studied the clustering properties of BitTorrent.
Based on the analysis of the choking algorithm, [LLKZ07] provides empirical evi-
dence of BitTorrent’s clustering and show that peers with similar bandwidths tend
to get clustered.

Meulpolder et al. [MPES09] extend an earlier analytical model from [QS04] and
propose a new model for analytical investigation of BitTorrent’s clustering. Their
model only takes into account peer selection in BitTorrent and ignores the effects
of piece selection. They observe similar clustering behavior as we have observed.
However, their model and measurements exhibit a small discrepancy which they
conjecture is the result of probabilistic effects from too small experiments. Our
results show that clustering in BitTorrent is actually an interplay of both peer and
piece selection algorithms, and we believe that their observed discrepancies are a
result of their model ignoring piece selection. Although the effects of piece selection
on clustering are small and hard to observe, our work, in particular on the download-
constrained experiments, has shown that it cannot be ignored. Both [MPES09] and
our work find the same effect of upload connections going to foreign peers while the
majority of data comes from native peers.

The work by Rao et al. [RLD10] is the closest work to ours. The authors discuss
the rationality of performing BitTorrent experiments on a cluster. However, the
discussions focus on the marginal influences on the average download rate from
various RTT and packet loss rates and conclude that the effects from changing RTTs
and packet loss rates are so small that they can be discounted in the evaluation.
Our work focuses on how to design an experiment on a cluster properly, i.e., what

14

is the ’safe region’ for a correct experiment and how BitTorrent behaves when the
experiments are performed around the system capacity limit.

The experiment setup in [RLD10] is very similar to the case discussed in our paper.
The authors used 3 nodes for deploying leechers (100 leechers on each node) and
performed a homogeneous upload-constrained experiment. The maximum upload
rate was set to 100 KB/s. They did not consider possible bottlenecks in their
experiment setup. Using our capacity planning method from Section 6.3, we can see
that their experiments require only on the order of 3 MB/s of bandwidth between
nodes and on the loopback. Given that they were using modern computers on the
Grid 5000 testbed, they should be well below the system capacity limit. Our work
therefore validates their experiment setting as being correct.

Choffnes and Bustamante et al. claimed in [CB10] that the data measured through
testbed’s vantages can not give us a representative view at internet scale because of
the limited coverage. The authors argued from the following aspects:

1) A large part of links are invisible in testbed-measurement, especially at lower tier;

2) Latencies measured in edge-measurement are higher than testbed-measurement;

3) TIV(Triangle-Inequality Violation) is much higher in edge-measurement than in
testbed-measurement;

4) Capacities are overestimated in testbed-measurement, which is much lower in
edge-measurement.

Thus, the authors of [CB10] claim it is not proper to infer the system performance
by using the data from testbed-measurement. What’s more, they proposed an inde-
pendent edge-measurement-based services, which can be integrated into the existing
distributed system or providing certain incentives to encourage people installing it
on their machines.

The idea of edge-measurement looks beautiful. Nonetheless, it also has to confront
the same problem as testbeds do – the coverage(or scale). The larger scale, the
better. But how to "control" so many nodes, in other words, how to collect data
from the edge node, is the most difficult issue to handle. Our biggest concern is
user’s privacy. What’s more, according to the information on [edg09], most ONO
users are from Europe and the United States. But there are also great number of
BitTorrent users in other countries not being taken into account, such as China. So
the coverage is still limited, even it is much larger than PlanetLab.

The second issue is edge-measurement cannot be performed "arbitrarily". Com-

15

pared with the evaluation on cluster, edge-measurement-based evaluation is sort of
"passive". Since we cannot design and perform arbitrary experiments to measure
certain mechanisms of a system as we like. The evaluation of overall system in
edge-measurement is based on mining the collected data.

3 BitTorrent Basics

3.1 A brief introduction

In this section, we will give a brief introduction on BitTorrent and its core mecha-
nisms based on [Coh03]. The content here is closely related with the experiments
and analysis in our thesis. The detailed anatomy on BitTorrent’s internals is given
in section 3.6. Since there are many BitTorrent implementations, the same terms
sometimes may have different meanings. In order to avoid confusion, we restrict
the discussions on the official implementation(Mainline ver4/5), and use terms by
widely-accepted conventions in P2P research area.

BitTorrent is a popular P2P content distribution software, which can be categorized
into the third generation P2P systems. The most significant feature of BitTorrent
is its scalability. The content can be distributed efficiently among large amount of
peers. There is a broad range of discussions about its scalability.

To join a swarm, a peer first need to obtain the corresponding meta file, which is
usually referred as a torrent file. Then the peer will contact the tracker by extracting
its url address from the torrent file. The tracker will make a peer-list by randomly
selecting 40 peers in the swarm and return it to the requesting peer. With the peer-
list, the peer can connect to those already in the swarm and join the distribution
process. By default, a peer will keep connecting others until it has 40 buddies. After
that, it will stop initiating new connections, however it can still accept connections
from others. When a peer has 80 buddies, it stops accepting new ones, any more in-
coming connections will be dropped immediately. If the number of buddies dropped
below a certain threshold, it will re-request a new peer-list from the tracker. So,
during the life span of a peer, it usually maintains 40 to 80 buddies.

In BitTorrent, a distribution file is cut into pieces. The usual size of a piece can
range from 256KB to 1MB4, but it must be power of 2. Larger piece size can reduce

4In ver5, piece size is a function of file size, detailed discussion is in section 3.3.5

16

the torrent size. When exchanging data, a piece will be further divided into smaller
units, which are referred as slices or chunks. In such a way, the uploads can be
pipelined to improve the performance. So slice is the basic transmission unit.

As one of the core mechanisms, BitTorrent’s piece selection strategy is widely known
as rarest-first. More precisely, it should be called local rarest-first since the decision
is made based on local information. By requesting those rare pieces, a peer can
attract more buddies to download from it. As a result of tit-for-tat, it will be more
likely to be served by others.

Another core mechanism is peer selection strategy. Leechers and seeds have different
peer selection strategies. A leecher will upload to those who can provide it better
download rate, while a seed will upload to those who can download from it fast. The
leecher’s strategy is rate-based tit-for-tat, the purpose is to guarantee the fairness
in the system. And seed’s strategy tries to make sure the new replicas can be
generated fast. Every 30 seconds, a peer selects the buddies to upload to based on
these strategies, the others will be choked.

3.2 Peer arrival process

In order to simulate a realistic environment, we try to make every aspect of our
system close enough to the real-world swarm. So we studied the peer arrival pattern
carefully.

In general queueing system, the clients’ arrival process is usually modelled as Pois-
son process for analysis. If we consider the ’BIG’ BitTorrent system consisting of
thousands of swarms(torrents), Poisson process might be applied. But for a single
swarm(torrent), the Poisson process is not a very suitable approximation. Because
it assumes a constant arrival rate, which cannot reflect the initial flash-crowd, death
of a swarm and other typical characteristics of BitTorrent system.[IUKB+04]

The Poisson process was first introduced to study BitTorrent system by Qiu et al.
in [QS04], in which the authors assumed the system will reach its equilibrium and
remain stable. However, in real world, the system seldom reaches stable state; only
in the latter phase of a swarm’s lifespan, when newcomers become fewer and fewer,
the arrival rate will stay at a stable but low level. Usually, at this moment, a swarm
is close to its death. Without any long-stay seeds, a swarm will die out quickly. And
this is the common situation in real world. So the constant arrival rate assumed in
Poisson process doesn’t hold in real BitTorrent system.

17

source (original seed) through a back-off algorithm. Results are promising since
Slurpie is able to outperform BitTorrent in a controlled environment. Still, the
actual performance of Slurpie in case of flash crowds and for a large number of
clients is unknown.

4 Tracker Log Analysis

The tracker log covers a period of 5 months from April to August 2003. The
corresponding torrent has as content the 1.77 GB Linux Redhat 9 distribution.
180, 000 clients participated to this torrent with a peak of 51, 000 clients during
the first five days (see Figures 4 and 4). These first five days clearly exhibits
a flash-crowd. As clients periodically report to the tracker their current state,
along with the amount of bytes they have uploaded and downloaded, the tracker
log allows us to observe the global evolution of the file replication process among
peers.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

31/03
24:00

01/05
12:00

01/06
24:00

01/07
12:00

01/08
24:00

01/09
06:00

N
um

be
r o

f p
ee

rs

Time

All peers
SEEDS

LEECHERS

(a) Complete trace

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

30/03
24:00

31/03
24:00

01/04
24:00

02/04
24:00

03/04
24:00

N
um

be
r o

f p
ee

rs

Time

All peers
SEEDS

LEECHERS

(b) Zoom on the first five days

Fig. 1. Number of active peers over time

4.1 Global Performance

Analyzing the tracker log, our first finding is that BitTorrent clients are altruistic
in the sense that they actively send data to other clients, both as leechers and as
seeds. Altruism is enforced during the download phase by the tit-for-tat policy,
as a selfish client will be served with a very low priority. Once they become
seed, the peers remain connected for another six and a half hours on average.
This “social” behavior can be explained by two factors: first, the client must
be explicitly terminated after completion of the download, which might well
happen while the user is not at his computer, e.g., overnight; second, as the

Figure 1: Number of active peers over time [IUKB+04]

Actually, the figure 1, which is plotted based on statistics from real-world swarm,
exposes actual peer’s arrival process very well. In [GCX+07], Lei Guo, Songqing
Chen and et al. proposed a formula to simulate this process, which is λ(t) = λ0e−

t
τ .

In their model, λ(t) is peers’ instant arrival rate at time t, λ0 is initial arrival
rate. Lei Guo et al. introduced an attenuation parameter of peer arrival rate τ .
So the instant arrival rate will decrease exponentially as time goes by. To some
extent, Poisson and other specific distributions are just faster and cheaper (but
mathematically tractable) alternatives when lacking of real-world statistics.

In our experiment, we did not use any formulas to generate arrival process on the fly.
On the contrary, we used pre-defined arrival process based on the data in [IUKB+04].
This strategy not only makes the system close enough to the real world, but also
makes the experiment reproducible.

3.3 Basic Components

In BitTorrrent system, every peer is supposed to follow the standard protocol to
guarantee the efficiency and fairness during the content distribution. To distribute
a file, firstly, the distributor needs to make a torrent file for the file. Then he must
make this torrent available to the people who are interested in the content. This can
be done in many ways (e.g email, website, IM), usually the torrents are uploaded to
a website.

In a typical BitTorrent system, there are four basic components – web server, tracker,
seed and leecher. The image below shows the basic components and their relation-

18

ship. Ryan: miss a figure here!

3.3.1 Web Server

Web server is a machine where people can search and download the torrents that
they are interested in. But it is not indispensable. Since BitTorrent is the third
generation of P2P system. In its design principle, it does not rely on any central
server responsible for indexing the files. The central indexing server used to be
the strategy adopted in Napster, and was also the key factor finally brought down
Napster. However, in BitTorrent system, in order to download a file, people only
need to obtain the torrent file, no matter with what means. For example, the torrent
can be obtained from search engine, from forums, from IM software etc. A web server
just provides people some convenience in locating interested file.

3.3.2 Tracker

Tracker is an obligatory component. It provides the service to other peers such
that they can get involved into the distribution process. The tracker’s address(URL
or IP) and service port number are embedded into a torrent file. So the leechers
can contact the tracker by extracting these information from the torrent. All the
peers register themselves to the tracker and get a peer-list from it, then they can
communicate with each other. Multiple trackers may be embedded into a single
torrent file to increase the robustness of the system and prevent single point failure.

What’s more, tracker is also used to collect statistical information for the torrents
it hosts. Those statistical data are very valuable, since it is not easy to collect such
data in large-scale distributed systems in the real world. The tracker’s special role
in the swarm makes it possible to perform this task. Many research work are based
on these data, such as the peers’ behavior, swarm’s evolution and lifespan, peers’
arrival pattern and so on.

3.3.3 Seed

A seed is the peer who holds the complete file in a swarm. A seed uploads the file
to other leechers but download nothing. It acts like a server and is responsible for
distributing the content. The number of seeds is a very important indicator for the
availability. Usually, there are only very limited number of seeds(maybe the only

19

Table 2: Native Data Types Used In Bencode
Data Type Representation Example
integer i<decimal number>e i3e; i17e; i-51e
string <length>:<content> 8:Helsinki
list l<content>e li100e8:studentsee
dictionary d<content>e d6:animal5:fruit5:tiger6:orangee

initial one) in the beginning of distribution. As more and more leechers complete
their downloads, they will become the seeds and serve the others.

3.3.4 Leecher

A leecher is a peer who does not hold the complete file. It downloads from other
peers and uploads at the same time. People call such leecher a free-rider, if a leecher
only downloads but uploads nothing, or uploads very limited data compared with its
downloads. Generally, free-riders have impacts on the topology of overlay network,
and are considered harmful to the system since it bring down the overall perfor-
mance. However, Kangasharju, J. pointed out in [Kan09] that freeriding should not
be always considered as harmful to system performance.

3.3.5 Torrent File

Torrent file is the glue that connects every component, make it possible to form a
swarm. It contains the metadata for a distribution task. For example, the file list,
the size of files and information about the tracker. These information is formatted
with Bencode, which is dedicated encoding schema used in BitTorrent.

Bencode is a straightforward schema. It only supports limited native data types,
including integer, string, list and dictionary in the Table 2. However, like other data
languages such as JASON, Bencode is flexible and capable of storing complex yet
loosely structured data. For the complex data objects, they can be first serialized,
then be Bencoded and stored in the torrent file. (e.g. The pickle module in Python
provides very good supports for object serialization)

The original specification of Bencode does not deal with other code sets except
ASCII, so different implementations use their own way. The content in list and
dictionary can be any Bencodeable data types. But the keys in a dictionary must

20

be organized in lexicographical order.

Since BitTorrent is expected to run on multiple platforms, the first consideration is
platform-independence but not efficiency. That’s why Bencode does not adopt pure
binary encoding. Even though Bencode uses ASCII characters to represent basic
data types, it is not thought as human readable, because the encoded data usually
contains binary code, such as complex data object.

Another important information stored in the torrent file is the digest for each piece
in a file. In official implementation, Ver4 uses 256KB as default piece size. However,
Ver5 decides the piece size according to the content size. Ver5 guarantees the content
will be cut into no more than 212 pieces. So, for very large files, the piece size can
reach 2MB or even more. As a result, the torrent file generated by Ver5 is usually
several dozens of kilobytes. For example, for a 5000MB file, Ver5 generates a 50KB
torrent file, while Ver4 generates a 391KB torrent file. Ver5 cuts it into 2500 2MB-
pieces, Ver4 cuts it into 20000 256KB-pieces.

The change in Mainline Ver5 reflects the truth that more and more large files are
being distributed on the internet. And the bandwidth keeps improving. In order to
easily distribute torrents, Ver5 guarantees the torrent size won’t become too large
even for large files.

Then each piece will be hashed (SHA-1) and the digest will be stored in the tor-
rent file. This processing mechanism also applies to the torrent including multiple
files(usually called a batch torrent). Because BitTorrent treats multiple files as a
single block of data, there is no difference between a single file and multiple files.
The only thing needs to be pointed out is that piece boundary may overlap the file
boundary.

3.4 Tracker Protocol

Within BitTorrent system, as far as communications are concerned, the protocol
can be subdivided into peer protocol and tracker protocol. Tracker protocol defines
how the peers communicate with the tracker; while peer protocol defines how the
peers communicate with each other in the system.

The tracker protocol is built upon HTTP/HTTPS. Usually, we refer the communica-
tion from a peer to a tracker as requests ; and the communication in reverse direction
as responses. All the requests must be translated into HTTP GET method with URL
encoding, then submitted to a tracker. Multiple request parameters can be embed-

21

Table 3: Request Parameters (Peer−→Tracker)
Type Name Usage
info_hash SHA-1 value used to identify a torrent
peer_id SHA-1 value used by a peer as its id, to register in a tracker
ip Used to tell the tracker the ip address of a peer <optional>
port Port number that a peer is listening on
uploaded The amount of data a peer has uploaded
downloaded The amount of data a peer has downloaded
left The amount of data a peer still need to download
compact Indicate in what form a peer-list will be sent back. ’0’ for dictionary

model and ’1’ for binary model.
numwant Number of peers that a peer requests from the tracker.
event If value is specified, it must be one of ’started’, ’stopped’ or ’com-

pleted’; if not, used as regular(KEEP_ALIVE) request.

Table 4: Responses (Tracker−→Peer)
Type Name Usage
interval Interval a peer must wait before sending next regular request
complete The number of peers with complete file (seeds)
incomplete The number of peers with incomplete file (leechers)
peers The peer-list sent back to a peer, can be a binary string or a dic-

tionary, depending on ’compact’ request type.

ded in one request by separating them with "&". The response from a tracker is
normal ’text/plain’ HTTP document containing a Bencoded dictionary. And each
piece of information corresponds to a key in this dictionary.

The Table 3 and Table 4 summarize some important request parameters and re-
sponses respectively. When a peer joins in a swarm, the first request sent to a
tracker must contain "event" parameter and the value must be set to "started".
And when it completes the download, it must inform the tracker with "event" pa-
rameter and set the value to "complete". What’s more, a peer will regularly send
request containing only "event" parameter to the tracker without any specified val-
ues. This kind of non-value events serves as KEEP_ALIVE messages, which is a
widely-used mechanism in a distributed system.

There is another request named "scrape", which does not appear in the table above.

22

Since it is not supported by every implementation of tracker. If "scrape" is sup-
ported, tracker will report simple statistical information about all the torrents it
hosts. By specifying a torrent id explicitly, the corresponding information of that
torrent will be returned.

3.4.1 Peer-list – Ticket for the entrance

Not like other P2P systems(e.g emule), BitTorrent constructs one overlay for one
torrent, which is usually referred as swarm. From a peer’s point of view, a tracker
is the middleman who can introduce it to a swarm by returning a peer-list.

Tracker will return certain amount of active peers in this swarm to a requesting
peer. The requesting peer can specify the number of peers it wants in a peer-
list with "numwant" request parameter (in Table 3). The actual amount of peers
returned is calculated with the formula min(numwant,max_give). 5 If no value is
specified, 50 peers will be returned by default.

In a typical swarm, it is common that new peers keep joining and old peers keep
leaving. An active peer may leave the swarm for good after some time. To guarantee
the download efficiency, A peer must maintain the number of its buddies above
certain level. If the number drops below this level, the peer will request a new
peer-list from the tracker to compensate the loss of buddies.

In official implementations, _check function will be called regularly (every 60 sec-
onds) to check its internal states and variables. If it finds the current buddies are less
than the threshold defined in the config, it will request for more peers if it hasn’t
requested any peers within 5 minutes. Usually, BitTorrent keeps 20 to 80 buddies.6

After having 40 buddies, a peer stops initiating new connections to others, but it
still can accept incoming connection. After having 80 buddies, it stops accepting
incoming connections either. Any more incoming connections will be closed imme-
diately.

5max_give is a parameter defined in the tracker, indicating the maximum number of peers
that a tracker can return

6Actually, three parameters - min_peers, max_initiate and maxallowin decide the range of
buddy number together.

23

3.5 Peer Protocol

In BitTorrent system, Peer Protocol is an application layer protocol. It is used
to guarantee every peer can understand each other in the communication. Peer
Protocol operates upon TCP protocol. To make our introduction simple and clear,
we assume two peers, which are peer A and peer B in our scenario. In this section,
we only introduce the messages used in Peer Protocol, the details about how the
behaviors are defined upon these messages will be discussed in the section 3.6.

3.5.1 Message formats

There are two kinds of messages used in Peer Protocol. The first is handshake
message, which is used to establish the communication between two peers. The
other one is normal message, which is used to carry control messages and exchange
data. Their structures are shown in figure 2.

Protocol IdentifierLength of Protocol
Identifier Reserved info_hash peer_id

Message Length Message Type Message Payload

(a) handshake message

(b) normal message

Figure 2: Two kinds of messages used in Peer Protocol

3.5.2 Handshake message

Very similar to TCP’s 3-way handshake, handshake mechanism is also used in Bit-
Torrent. The establishment of TCP connection between peer A and B doesn’t mean
the communication between them is established successfully. They should also fin-
ish another 3-way handshake in application layer. We refer the handshake message
from A to B as initiator’s handshake; and B to A as recipient’s handshake. The
difference is that peer_id is omitted in initiator’s handshake message, since A will
send it separately after it receives the recipient’s handshake.

From the figure 2 (a), we can see how handshake message is organized. The first
section indicates the length of the second section. The second section indicates the

24

protocol’s name, and the usual value is "BitTorrent protocol". The third section
carries a 20-byte torrent id, which can be used to group peers into different swarms.
The fourth section carries 20-byte long peer_id, which is used to identify a peer
uniquely. Different implementations use different way to generate this peer_id.

3.5.3 Normal message

From figure 2 (b), we can see the normal message is divided into three sections. The
first section, which is four-byte big-endian value, indicates the length of the latter
two sections(type section plus payload section). The message type section is very
important, since it not only decides the first and third section, but also reflects how
the peers communicate with each other. The table 5 lists some important message
types. (Suppose A sends message to B)

Table 5: Message Types Used In Normal Messages (A−→B)
Type ID Type Name Usage
none KEEP_ALIVE A informs B that A is alive
0 CHOKE A informs B that B is choked by A
1 UNCHOKE A informs B that B is unchoked by A
2 INTERESTED A informs B that A is interested in B
3 NOT-INTERESTED A informs B that A is not interested in B
4 HAVE A informs B that A has a new piece of data
5 BITFIELD A sends its bitfield information to B
6 REQUEST A requests a slice from B
7 PIECE A sends a slice of a piece to B
8 CANCEL A informs B that A wants to cancel a slice

request A sends before
9 PORT A informs B which DHT port A is listening

Since these normal messages are closely related with peers’ behaviors defined in
Peer Protocol and internal implementation. We will explain them in details in the
following section 3.6.

3.6 Internal implementation and mechanisms

Compared with Tracker Protocol, Peer Protocol is more complicated and important.
Since Peer Protocol directly decides the peers’ behaviors in a swarm, which will fur-

25

ther affect the overall performance of the system. Illustrating how a distributed
system works is always considered as a very challenging job. It is easy to get over-
whelmed by technical details at peer level and lose the overall understanding of the
whole system. However, as a typical complex system, BitTorrent system’s behaviors
are indeed composed of many individual’s behaviors. Without the exact knowledge
of peer-level mechanisms, we can not study the system at all.

To solve the dilemma above, we use a different way to illustrate how BitTorrent
system works. Since peer-level communications compose the core of the system, we
explain the Peer Protocol by explaining how two peers cooperate in a file distri-
bution process. What’s more, to make our illustration more orderly, we split the
whole communication process into small scenarios. The relevant message types and
mechanisms will be explained in those scenarios.

3.6.1 Logical Architecture

Figure 3 shows the logical architecture for BitTorrent Mainline ver4. It is called
"logical architecture" since the interactions and relations among these objects are
more complicated in the actual implementation. In order to make the application’s
logic clear and easy to understand, some simplifications are made.

For example, SingleDownload object is actually created by Downloader object for
each successful connection. However, it is more logically reasonable to connect
SingleDownload object with Connection object. Since each Connection object has a
corresponding (SingleDownload, upload) tuple, which are responsible for download
and upload job of this connection respectively.

Furthermore, the Config object is created in MainApp. But almost every object in
BitTorrent uses it, and keeps a reference to it.

Another thing worth mentioning is the BitField object. The one in StorageWrapper

object is local peer’s bitfield, while the one in Upload object is its buddy’s bitfield
on the other end of this connection.

Multitorrent: this object manages multiple torrents’ download jobs, responsible
for creating _SingleTorrent object for each torrent; maintain a RawServer object
internally, which all the BitTorrent’s traffic will go through.

Config: this object stores all the parameters of a BitTorrent client. Many of them
have great influence on system performance, so they should be tuned carefully. The
parameters reflect the essences of the BitTorrent Protocol.

26

Multitorrent

1 .. n

_SingleTorrent

SingleDownload

RawServer1 .. 11 .. 1Config

Downloader

1 .. 1

Encoder

1 .. 1

Upload

Connection

1 .. n

1 .. 1 1 .. 1

BitField

1 .. 1

StorageWrapper

1 .. 1

BitField

1 .. 1

Choker 1 .. 1

Main App

1 .. 1

PiecePicker1 .. 1

Figure 3: Logical architecture of official BitTorrent implementation – Mainline Ver4

27

RawServer: this object is responsible for sending and receiving data for all the
torrents, there is only one RawServer in the application. So all the internet traffic
will go through this object.

_SingleTorrent: this object manages single torrent’s download job, every torrent
has a corresponding _SingleTorrent, every _SingleTorrent has one Encoder, one
Downloader, one PiecePicker, and one Choker object.

PiecePicker: this object realizes piece selection strategy.

Choker: this object performs peer selection strategy periodically.

Encoder: this object manages all the incoming and out connections of a _Single-
Torrent; every Encoder objects has multiple connections.

Connection: every connection object represents a logical connection between two
peers, and every connection has one SingleDownload and one Upload object.

Downloader: this object does some necessary work for _SingleTorrent, such as
creating SingleDownload object for each connection.

StorageWrapper: this object stores a peer’s own BitFileld object; while the Sin-
gleDownload in Connection stores its buddy’s bitfield.

SingleDownload: this object represents the download job in one connection.

Upload: this object represents the upload job in one connection.

3.6.2 Connection Management

BitTorrent utilizes two dictionaries to maintain all connections, connections dictio-
nary and complete_connections dictionary. The difference is complete_connections

dictionary only includes the connections with successful 3-way handshake, which
means every peer in it is a buddy. connection dictionary is the superset of com-

plete_dictionary, it also includes the connections that have not finished handshake
procedure yet.

3.6.3 HANDSHAKE - Let’s start talking

Suppose peer A is the initiator of the communication. First, A obtains a peer-list
from the tracker, from which A can choose a peer it wishes to connect, suppose it
is peer B. After extracting B ’s IP address from the peer list, A will try to establish
TCP connection to B. The very first message sent to B must be the handshake

28

message to establish the application layer communication.

Figure 4 shows the logical processes in both A and B, and figure 5 shows the cor-
responding message flow during handshake. As the initiator, A is supposed to send
the initiator’s handshake message immediately after TCP connection is established.
As soon as B receives the info_hash part, B will check whether there is a match
among the torrents it hosts. If there is not, B will drop the connection immedi-
ately. If there exists a torrent matching the info_hash B has just received, B will
response A by sending the recipient’s handshake message, which contains the same
info_hash and B ’s peer_id. After receiving B ’s recipient handshake, A will send
back its peer_id. If B successfully receives A’s peer_id, then the application layer
communication is established.

In official implementation, the call of function connection_completed(self, c) means
the successful establishment of the communication, then this function will create
corresponding Upload and SingleDownload objects for this connection.

3.6.4 BITFIELD & HAVE - What can I share?

The most charming feature of BitTorrent system is that peers can exchange data
among themselves, not like in C/S architecture, all the downloaders have to compete
for the limited server’s bandwidth. This feature rise an obvious issue - how does
a peer locate a piece it wants? In other words, how can a peer know what data is
offered by its buddies?

To inform the others about what pieces a peer has, two message types can be used
- BITFIELD message and HAVE message. In short, the BITFIELD message is
used in the beginning of a connection between two peers, and will be send only
once during the lifespan of this connection. However, HAVE message will be send
multiple times.

After the application layer handshake, the immediate message exchanged between
peer A and B is the BITFIELD message. The only exception is for a newcomer who
has no pieces at all, then there is no need for this newcomer sending BITFIELD
message. The BITFIELD message carries a peer’s bitfield indicating what pieces a
peer possesses currently. Because bitmap size of a file correlates with the file size,
the payload of this message is variable. We need to indicate explicitly the length of
the payload. The receiver B will check the bitfield from A with the metainfo in the
corresponding torrent file. If there is any error in the bitfield from A, B will drop

29

Accept TCP connection

Wait for the initiator's
handshake from A

Check whether the info_hash
matches one of the torrents

B hosts

Match?

Send recipient's handshake
to A

Drop the connection

Communication established

Yes

No

B (Recipient)

Choose B from peer-list

Setup TCP connection

Succeed?

Send initiator's handshake to
B

Wait for the recipiet's
handshake from B

Send back A's peer_id

Communication established

A (initiator)

Yes

Figure 4: Flowchart for handshake process

30

A (initiator) B (Recipient)

protocol name
info_hash

send initiator's
handshake

send recipient's
handshake

protocol name
info_hash
B's peer_id

A's peer_id

Communicaion
established

Communicaion
established

finalize the
handshake

Figure 5: Message flow for handshake process

31

the connection, and vice versa.

Since the download process of a pees is always running, peer A may download a new
piece after exchanging its bitfiled with B. At this time, A will use HAVE message
to inform B about this event. More precisely, all A’s buddies will receive a HAVE
message from A, telling them that A has a new piece and they can request this piece
from A if they need it. HAVE message is much shorter than BITFIELD message,
the payload section only carries the piece index.

However, this mechanism may change a little in different real world implementations.
One example is so-called lazy bitfield. With lazy bitfield, the bitfield A sends to B

does not coincide with the pieces A actually possesses, there might be some bits are
cleared by A on purpose. A will use HAVE message to complete the missing piece
later. The purpose of this modification is said to be useful in against ISP’s filtering.
However, the true effects are not formally investigated.

Another example is, in some implementations, A will not send HAVE messages to
all its buddies, since some of them have already possessed that piece and will never
request for it. A can obtain the necessary information from its buddies’ bitfields and
their succeeding HAVE messages. By suppressing HAVE messages, the overheads in
the communication can be reduced. But it also introduces another problem, rarest

first strategy will not work properly without enough information about the piece
distribution. Since it cannot calculate the exact number of HAVE messages for each
piece any more.

3.6.5 State information for a connection

Peer A and B become buddies after they successfully established the communication.
The connection between them is not stateless, both A and B have to maintain some
state information. By storing buddies’ state information, the management tasks
become easier in BitTorrent.

We define two functions to represent two kinds of relationship between A and B.
For interest relation from A to B, we write:

interest(A,B) =





0 If A is not interested in B

1 If A is interested in B
(3.1)

32

For choke relation from A to B, we write:

choke(A,B) =





0 If A is not choking B

1 If A is choking B
(3.2)

Because interest and choke relations are not symmetric7, A should not only store
the relations from itself to B, but also store the corresponding relation from its
buddy to itself. So each peer at the both ends of a connection has to maintain the
same pair of 2-tuple state information, which are (interest(A,B), choke(A,B)) and
(interest(B,A), choke(B,A)).

By default, the initial values for both choke(A,B) and choke(B,A) are "1"; and
for interest(A,B) and interest(B,A), the initial value are "0". It means two peers
are not interested in each other, and will block each other in the beginning. The
CHOKE and UNCHOKE messages from A to B will change the value of choke(A,B).
Similarly, the INTEREST and NOT-INTERESTED messages will change the value
of interest(A,B). And no matter how they change the value, this pair of 2-tuples
at both ends should always remain the same during a connection’s lifespan.

Besides the 2-tuples mentioned above, a peer also stores its buddy’s bitfield, down-
load and upload rate and some other information. We have mentioned the two
objects, which are Upload and SingleDownload are created for each connection.
These two objects store the state information for the link. Figure 6 shows how these
state information are organized in real implementation.

3.6.6 INTERESTED & REQUEST - I want some data from you

By default, a peer can have maximum 80 buddies. From each buddy, it receives
a corresponding bitfield. Then the peer will store the buddy’s bitfield into have[]

list in SingleDownload object, and check whether its buddy can provide any fresh
data. If the buddy can, the peer will inform the buddy its interest by sending
INTERESTED message. If the buddy is not choked, whenever a peer receives an
INTERESTED or NOT-INTERESTED message, a new round of peer selection will
be triggered.

After sending INTERESTED message, the peer will wait until it is unchoked by its
buddy. As soon as the peer receives the UNCHOKE message, it will re-check the

7i.e choke(B,A) = 0 doesn’t imply choke(A,B) = 0, vice versa. And the same for interest

relation.

33

Peer A

SingleDownload
choke(B, A)

interest(A, B)
BitField of B

......

Upload
choke(A, B)

interest(B, A)
......

Peer B

SingleDownload
choke(A, B)

interest(B, A)
BitField of A

......

Upload
choke(B, A)

interest(A, B)
......

StorageWrapper
BitField of A

......

StorageWrapper
BitField of B

......

Figure 6: State information of a connection in actual implementation

state information interested(A,B). If it is still interested in its buddy, it will send
REQUEST messages for the slices it wants and start downloading. The re-check
for interested(A,B) is necessary. Because the slices A wanted from B might have
already been downloaded from other buddies during the period A was choked by B.
In this case, B possibly cannot provide any more fresh data to A.

none list list list list 1 1 ...

0

1

4 2

3

3

Piece

Slice

2

..
.

..
.

..
.

50 1 2 3 4 6 7

..
.

4

54

5

6

Figure 7: inactive_request list in BitTorrent

34

BitTorrent generates a REQUEST for each slice. Internally, it maintains a list as
the one in Figure 7. Each element in inactive_request corresponds to a piece, if the
value is 1, it means the requests for the slices in this piece are not generated yet. If
it contains a sub-list, then each element in this sub-list corresponds to a REQUEST
message for one slice. Every time a REQUEST message is sent out, the correspond-
ing element will be removed from the sub-list. Till all the REQUEST messages for
one piece are sent, the sub-list will become empty, then the corresponding element
in inactive_request will be set to None.

We must point out, none value in the element of inactive_request only means all
the slices in this piece have been requested, it does not say anything about whether
the slices are received or not. Furthermore, since data exchange is based on slice, it
implies the slices in one piece may be downloaded from different peers.

BitTorrent limits the maximum number of REQUEST that can be sent to a buddy.8

So a peer will keep sending REQUEST to its buddy until it reaches this threshold
or its buddy cannot provide any more fresh pieces. In the latter case, the peer will
send a NOT-INTERESTED message to its buddy.

To avoid sending duplicated REQUEST for the same slice, BitTorrent checks the
other buddies, and send NOT-INTERESTED messages to those who can only pro-
vide the slices that have already been requested. However, in EndGame mode,
things would be different, and we will discuss it in section 3.6.11.

People may ask why we don’t reduce the piece size to the slice size directly, such
that there is no need to use this two-level mechanism. The reason is small piece size
will lead to large torrent file, since more digest information has to be stored in it.
However, large slice size is not good for the efficient transmission on the internet,
since the whole slice needs to be retransmitted if it is corrupted. Usually, small slice
pieces are more reliable and can be pipelined to improve the download performance.

3.6.7 Peer Selection

As we have introduced in section 3.4.1, a peer usually maintains 40 to 80 buddies
during the download process. However, it can only upload data to some of them, the
others will be temporarily choked. The decision about "uploading to which buddy"
is called Peer Selection Strategy.

A leecher and a seed have different peer selection strategies, which can be summa-
8The parameter limits this number is _backlog.

35

rized in Table 6

Table 6: Peer Selection Strategy
Role Strategy
Seed uploads to the peers with fastest download rate
Leecher uploads to the peers with fastest upload rate

By uploading to the peers with fastest download rate, a seed can speed up the
process of "replicating". However, a leecher only chooses those peers who provide
it with better download rates, then upload data to them. The reason is to keep the
system as fair as possible, the tit-for-tat strategy is adopted. Besides, a leecher also
reserves one upload slot for optimistic unchoking. We will discuss it separately in
section 3.6.9.

In official implementation, _rechoke(self) function is invoked every 10 seconds to
perform peer selection. And the actual concurrent uploads can be specified explic-
itly with the parameter max_uploads. If max_uploads is set to negative, then the
concurrent uploads is calculated on the upload bandwidth a peer is willing to share,
which is set by max_upload_rate. The higher the upload bandwidth, the more
concurrent uploads a peer can have.

Let uploads denote the number of concurrent uploads, rate denote the max upload
rate, the equation (3.3) shows the calculation.

uploads =






2 if 0 < rate < 9,

3 if 9 � rate < 15,

4 if 15 � rate < 42,
√
rate× 0.6 if rate � 42,

7 if rate � 0.

(3.3)

3.6.8 Piece Selection

When peer A is unblocked by B, A can then request data from B. The A’s decision
on which piece to request is called Piece Selection Strategy. Two main strategies are
used in different phases of downloading, which are Random and Rarest-First.

The decision tree in Figure 8 illustrates how BitTorrent chooses its piece selection
strategy.

In the beginning of download, when A has no data at all, it will use Random strategy.

36

Check how many pieces are
possessed currently

Yes

Random Strategy

No

Any
unfinished

pieces?

less than 4
pieces?

Yes

Strict Priority

No

Rarest-First Strategy

Strategy
Selection

Figure 8: Decision tree for piece selection strategy

37

A will choose a piece randomly and then request the piece from one of its buddies.
After A successfully downloads several pieces, it will switch to Rarest-First strategy.
In official implementation, the threshold value for switching from Random to Rarest-

First is defined by rarest_first_cutoff, whose default value is 4. So a peer will not
use Random piece selection for long time.

Bharambe et al. compared the system performance by using different piece selection
strategies in [BHP06].9 Their work indicates Rarest-First can outperform Random

greatly when the seeds’ aggregate upload bandwidth is low. However, if the seeds’
aggregate bandwidth is high, then Random can perform as good as Rarest-First.

From figure 8, we can see a subtle issue. Actually, peer A will check whether there are
any unfinished pieces first. If there are, A will request the missing slices for those
unfinished pieces, then Rarest-First will take effects. This extra step is usually
referred as strict priority. Because slice is the basic unit for data exchange among
peers, it is possible that A’s buddy will choke A before it can download a complete
piece. However, A cannot forward any data in a piece unless it has a complete one.
The strict priority guarantees that A can get a complete piece quickly and will not
be suffered from many unfinished ones.

From system perspective, Rarest-First strategy tries to maximize the diversity of
the content; from peer level, it tries to make a peer as attractive as possible in a tit-
for-tat system. If A possesses some rare data, it will attract more buddies requesting
for it from A. In such a way, A will get more chances to download fresh data from
them.

How does a peer decide a piece is rare? It is impossible for a peer to have the global
piece distribution in the swarm, so the decision for the rarest piece must be made
on the local information.10 The solution is HAVE message. We have known that a
peer will use HAVE message to inform its buddies whenever it receives a new piece
completely. In such a way, a peer is able to keep track of the number of HAVE
messages for each piece. The piece with the least HAVE messages from the buddies
is the rarest.

As we can see in Figure 9, three important lists are used to implement rarest-first

strategy.
9The benchmark used here is ’uplink utilization’, which is the ratio of aggregate bandwidth of

all peers to aggregate capacity of the system.
10That’s why some people also refer it as Local Rarest-First.

38

0 2 2 1 3 0 6 5numinterests

0 0 0 0 0 0 0 0interests

0 0 1 0 0 1 0 0pos_in_interests

0

5

50 1 2 3 4 6 7

50 1 2 3 4 6 7

3 1

2

50 1 2 3 4 6 7

4 7 6

Figure 9: Three important lists used to implement Rarest-First

- numinterests list: index of each element corresponds to the piece index, value of
each element corresponds to the number of HAVE messages received for this
piece. In Figure 9, we can see piece 0 and piece 5 get no HAVE messages,
piece 1 and piece 2 get two HAVE messages, and piece 3 get one.

- interests list: index of each element corresponds to the number of HAVE messages,
value of each element is another list consisting of the pieces with the same
HAVE message number. For example, interests[0] stores the pieces which
have not any HAVE messages, namely, piece 0 and piece 5; interests[3] stores
the pieces which have three HAVE messages, namely, piece 4.

- pos_in_interests list: index of each element corresponds to the piece index, value
of each element corresponds to the piece’s position in the sub-list stored in
interests list. For example, pos_in_interests[5] is 1, which means piece 5 is
in the position 1 in the sub-list stored in interests[0].

39

If we consider interests list as a two-dimensional matrix, then for each piece i,
tuple (numinterests[i], pos_in_interests[i]) indicates the exact position of piece i

in the matrix. With the help of this matrix, the Rarest-First strategy can be easily
achieved.

3.6.9 Optimistic Unchoking

As we have mentioned in section 3.6.7, BitTorrent performs a peer selection every
10 seconds. Besides those unchoked by the normal peer selection strategy, a peer
will randomly unchoke one buddy in every third round of unchoke, which means
every 30 seconds. This mechanism is referred as optimistic unchoking in [Coh03].

The optimistic unchoking serves two purposes. The first is to help a peer explore
the network, the second is to help a newcomer bootstrap quickly.

As we have seen, a peer cannot connect to all the peers in a swarm, and the tracker
only returns certain amount of peers every time. So a peer only has partial infor-
mation of the swarm. In order to find the peers who can provide better upload
bandwidth, a peer has to periodically perform optimistic unchoking. Optimistic
unchoking is also very important for a newcomer, since it has nothing for exchange
when it first join in a swarm. If tit-for-tat strategy is performed strictly, the system
is impossible to bootstrap at all.

From another angle, optimistic unchoking means a peer is willing to upload to
a buddy altruistically even it cannot download anything from that buddy for 30
seconds. However, as a side effect, this mechanism gives a chance to free-riders.

3.6.10 Tit-for-Tat

Tit-for-Tat(TfT) is the application of Game Theory in BitTorrent. TfT in BitTor-
rent is based on the upload rate but not on the data volume. This results in the the
positive correlation between a peer’s download rate and its upload rate. Izal et al.
point out in [IUKB+04], rate-based TfT also means a peer may upload more data
than it actually downloads. Especially for those with higher upload bandwidth,
if they are connected with many low-bandwidth buddies, the asymmetry in data
exchange is almost inevitable in terms of amount of date.

The essential reason for the asymmetric data exchange is peers’ heterogeneous up-
load bandwidths. What’s more, with rate-based TfT, people found that peers will

40

cluster based on their upload bandwidth in the long run. With optimistic unchok-
ing, a fast peer can find more and more peers with the similar upload bandwidth.
Since it can get better download rates from them, the peer also tends to upload data
to them in return. For a slow peer, it is very difficult to join in fast peer’s game.
The only thing that slow peers can count on is optimistic unchoking.

Bharambe et al. thought this asymmetric data exchange is unfair and proposed a
"Pairwise Block-Level Tit-for-Tat" strategy in [BHP06]. The proposed strategy is
based on the amount of data exchanged between two peers and more strict. A peer
only uploads one or two blocks more than the amount of data it downloads from one
buddy. As a consequence, the asymmetry in rate-based TfT is eliminated. However,
this strategy may cause a peer cannot fully utilize its upload bandwidth, since the
upload rate of a fast peer may be throttled by a slow peer. From system perspec-
tive, Block-Level TfT degrades the system’s overall performance by decreasing the
replication speed.

In [BHP06], Bharambe et al. also proposed a new tracker protocol which provides a
fast peer with a peer-list containing more peers with similar upload bandwidth. In
such a way, the effects of asymmetric data exchange is weakened by helping a faster
peer find more fast ones. In other words, the new tracker protocol encourages and
speeds up the clustering process.

It is known that BitTorrent makes up a peer-list by choosing peers randomly. This
algorithm leads to a random graph when constructing swarm in the initial phase11,
which has high connectivity and is resilient to attacks. However, the proposed
tracker in [BHP06] will change the initial topology of a swarm, the cliques will
appear earlier and more.

3.6.11 End Game Strategy

People observed that the download speed of BitTorrent usually dropped significantly
at the end of downloading, especially when there are only a few pieces left to com-
plete the download. The reason is it becomes more and more difficult for a peer to
locate fresh data when it has almost all the pieces, since it does not know the global
piece distribution. This issue is often referred as "last piece problem".

For example, if peer B is not a seed, it is highly possible that B cannot offer A

any fresh data when A almost finishes its download task. Even if B is a seed,
11We use "initial phase" here, because rate-based TfT makes the peers cluster in the later phase.

41

choke(B,A) might be 0 at that moment, which also makes A not able to download
anything from B. In order to solve this issue, people introduced End Game Strategy

into BitTorrent.

The End Game strategy is supposed to start working automatically in the final
phase of downloading. The exact time when End Game will be triggered depends
on the threshold value set in the applications. In official implementation, BitTorrent
enters into End Game mode when there are no inactive requests left, which means
all the slices have been requested. There are many discussions about the suitable
time to enter into End Game mode, and some people think this threshold should be
based on the complete percentage or on pieces. In our opinion, threshold based on
percentage is not a good idea. Since when distributing a large file, even 1% of the
file is still quite a lot of data. Entering into End Game mode too early also makes
BitTorrent become very inefficient, unless this percentage is a function of file size
and can be adjusted automatically.

In normal mode, if a slice has been requested, BitTorrent will not request it again
unless the request is lost or the slice is corrupted. However, when BitTorrent enters
into End Game mode, it will request all the missing slices from all its buddies, even
those have been requested. When it successfully receives a slice from a buddy, it
will send CANCEL messages to the other buddies to invalidate the previous request
for this slice. This will prevent BitTorrent system from becoming inefficient, since
sending a CANCEL message only cause very little overhead, much less than re-
downloading the slice from the and then abandon it.

4 Methodology

4.1 Terminology

Besides those commonly used terms, in this thesis, we also use the following terms
to simplify the discussion.

We refer two connected peers as buddies. If a peer’s buddy is on the same node
with this peer, we refer it as a native buddy ; otherwise a foreign buddy. Aggregated

bandwidth represents the total traffic generated by a group of peers in every sec-
ond. It can be further divided into aggregated download bandwidth and aggregated

upload bandwidth. In this thesis, we only concern the average value, not the instan-
taneous one, so the aggregated download bandwidth is calculated as the product of

42

average download rate and the number of peers. Likewise for the aggregated upload

bandwidth.

All the experiments we performed can be divided into two categories, in one of which,
we set a limit on the leecher’s max upload rate, the download rate is unconstrained,
we call this kind of experiments upload-constrained experiments ; in another kind, we
set a limit on the leecher’s max download rate, but the upload rate is unconstrained,
and call them download-constrained experiments. In all of our experiments, two
distinct nodes are used for deploying the tracker and the seed respectively. There is
only one seed in every experiment and its max upload rate is always constrained.

Since every peer will register itself to the tracker before joining into a swarm. Our
experiment scripts query the tracker periodically to monitor the number of peers in
the swarm. That’s the way how we calculate the start-up peers. So if a peer cannot
register itself successfully to the tracker, even the BitTorrent instance is running, we
don’t consider it as a successfully start-up peer.

4.2 General principle

Our general principle will partly be based on the theories and approaches in the
research area of complex systems. In a complex sytem, the individuals usually have
very simple mechanisms, but the whole system can exhibit very complicated behav-
iors. Undoubtedly, P2P system is a complex system. Despite its complexity, [GK99]
shows it is still feasible to study such systems and proposed three modes for investi-
gation, which we are going to apply in our research – experimental, computational,
and theoretical.

Adaptability represents how the systems respond to external conditions. It is the
key characteristic of various complex systems [AO04] and also our principal concern.
Basically, BitTorrent’s adaptability is determined by its peer selection strategy and
piece selection strategy. The clustering property is a representation of adaptability.

4.3 Specific methods

Our basic method is using aggregated bandwidth to probe the system capacity. We
believe the experiments should be performed within the system capacity. If the
workload generated by an experiment is beyond this capacity limit, the data will be
biased.

43

There are several things need to be clarified here. One is the system capacity is
determined by the minimum capacity of CPU, memory, network or any other factors
that may restrict the experiment scale, in other words, restrict the number of peers
can be run on one node. The bottlenecks from the CPU, memory and storage are
easy to detect. But the bottleneck from the network is difficult to handle, especially
when running multiple peers on one node.

Average download rate is an important indicator for system performance in the study
of P2P system. It also plays an important role in our experiments. Intuitively,
the average download rate should start dropping after the experiments reach the
system capacity limit. However, our research shows the average download rate
and the corresponding aggregated bandwidth cannot reflect the system capacity
correctly. The average download rate still remains at a stable level even though the
network has already been saturated. The reason originates from BitTorrent’s innate
characteristic.

In many previous research papers, the researchers usually perform upload-constrained
experiments, and set the max upload rate to a relatively low value. The main reason
is most BitTorrent users connect to the internet with ADSL whose upload band-
width is much smaller than the download bandwidth. Another reason is the official
BitTorrent client (Mainline Ver.4) is a popular target in research area, because it is
open source, simple and includes all the core functionalities. The biggest problem
is there is no download rate limiter in Mainline Ver.4. It is ok with homogeneous
experiments, since the upload rate is usually the bottleneck of the whole system.
But for heterogeneous experiments, especially when we take peers’ arrival pattern
into account, download rate must be constrained.

The most significant difference in our experiments is that we set max upload rate
to a relatively high value, 5000KB/s. This decision is based on two considerations.
The first is the bandwidth keeps improving during these years, more people connect
to the internet using Fibre/LAN with symmetric upload and download bandwidth.
According to the reports on [oec], in Korea, 16.4 of every 100 inhabitants use Fi-
bre/LAN connections.

The second consideration is it is easier to probe the system capacity by using high
upload rate. As we have mentioned, there are various bottlenecks restricting running
multiple peers on one physical node. Using high upload rate guarantees the network
will become the first bottleneck, thus simplified our problem. Another benefit is we
can easily observe how BitTorrent reacts to the network changes.

44

What’s more, we also performed download-constrained experiments. Because in such
experiments, BitTorrent exhibits very interesting changes in its behaviors. And we
cannot find better example than the data from download-constrained experiments
to show how the piece selection and peer selection affect the clustering property.

5 Preparing Experiment Platform

5.1 Experiment environment

Our experiments are performed on a cluster consisting of 30 nodes. Each node is
equipped with a 8-core 2.8GHz CPU, 32GB memory and connected to a Gigbit
Ethernet. The underlying operating system is Ubuntu smp with linux 2.6 kernel.
The TCP congestion control used in the network between the nodes is CUBIC TCP.
The parameters net.ipv4.tcp_wmem (controls the sending buffer – size of cwnd)
and net.ipv4.tcp_rmem (controls the receive buffer – size of rwnd) are set to "4096,
16384, 4194304" and "4096, 87380, 4194304" respectively (minimum, default, and
maximum).

For the BitTorrrent client used in our experiment, we considered several ready-made
clients. However, they are not full-fledged, and cannot satisfy our requirements. For
example, the max download rate cannot be set, data logged is not comprehensive
enough. What’s more, all of them are only for the small-scale experiments, are not
qualified for the use in large-scale and heterogeneous experiments. So, we modified
client by ourself, the target client is official version - BitTorrent Mainline Ver.4

Our instrumented BitTorrent supports various useful features such as bypassing the
disk I/O, controlling the buffer size, setting different log level. It is also able to
mimic the peers behind a firewall or the free-rider’s behaviours by setting different
switches such as firewalled, free_rider and so on.

5.2 Enlarge experiment scale

The original design of BitTorrent only allows only one instance running on one node.
Considering the configuration of the nodes in our cluster, one peer per node scheme
is really a waste of our resources! What’s more, even we have hundreds of machines,
they are still not enough if we want to enlarge the scale to thousands and even ten
thousands of peers. So running multiple peers on one physical node is an attractive

45

solution. With the capability of running multiple instances on one node, it is possible
to deploy large-scale experiments with limited nodes. If there are abundant available
physical nodes, as we are going to show in the following sections, the experiment
scale can be easily enlarged without even considering the effects from the loopback
interface, and the capacity planning is easier to handle.

We also considered virtual machines like VServer and KVM. One advantage of vir-
tual machine is they can provide strong isolation at very low level. Some low-level
parameters such as IP address, physical upload and download bandwidth can be
configured for each peer respectively. This is a very attractive feature when deploy-
ing heterogeneous experiments. However, virtual machines are relatively resources-
consuming. The system performance degrades fast if we try to run hundreds of
instances on a physical machine. Virtual machine can be a good choice if and only if
very few peers are going to be deployed on one machine such that the experimenter
can guarantee the system performance will not degrade.

In our work, different instances are isolated on the application layer. More peers
can be supported compared with the virtual machine scheme. In order to support
multiple instances, we modified the code and added some helper functions such as
creating working and configuration directories on the fly to avoid conflicts among
different instances. The resident memory for each instance is 10MB to 14MB, so
the memory won’t be our bottleneck.

We must point out one side-effect introduced by running multiple peers on one node,
even though it is not a problem in our research. In BitTorrent, a peer uses a 20-byte
long peer-id to identify itself uniquely. A ’greedy’ peer may try to make multiple
connections to another peer by using different peer-ids. In such a way, it can obtain
better download performance. To prevent such things, BitTorrent allows only one
connection from one ip by default.

In order to run multiple instances on one machine, an ip address is shared among
different instances, this feature has to be disabled. Since all the clients running on
the cluster are under our control, this feature is not useful to us. But if it is an
important factor in some other’s experiments, it is better to know how it affects
BitTorrent’s behaviours.

46

5.3 Data collection

High-quality experiment data plays an important role in the analyzing peer-level
behaviors. Zhang et al. in [ZIea10] gave very valuable guidelines to avoid the
sampling bias in BitTorrent experiments. We followed their recommendations in
designing our data collection scheme.

We implemented a Logger module and embedded it into BitTorrent Client. The
Logger module is used to collect important information during the lifespan of a peer
in the system. It will record the important events happening within the client, such
as the timestamps for starting the client, joining the swarm, finishing downloads,
leaving the system and so on. Besides that, the Logger module also takes a snapshot
for the peer every second. The snapshot includes the information such as, the current
upload and download rate, share ratio, transferred data size, and the connections
maintained by the client at the moment.

Since the Logger module records almost all the important information, it gives us a
good chance to study the BitTorrent behaviors in details. Especially the ability of
connection tracking, which proves to be helpful in study of peer selection strategies.

5.4 Bypass hard-disk I/O

Our first experiment was performed in the simplest setting, one seed and one leecher.
Since we didn’t limit the upload and download rate, the transfer rate should reach
the network bandwidth, which is around 125MB/s. However, the stable transfer
rate in our experiment is only 70MB/s, far below the value it is supposed to be.

By monitoring the system resources carefully, we found the bottleneck is I/O oper-
ations to the hard disk. The speed of writing data to the hard disk cannot keep up
with the speed at which BitTorrent receives data. Lots of CPU resources are wasted
on I/O wait. To solve this issue, we must prevent BitTorrent from writing data to
the disk. Another good reason for doing so is because of the limitation on storage
capacity. In our experiment, we use large-size(2-GB) file as distribution content.
The reason is we can amortize the system’s "warm-up" time to the long distribution
time, the data will be more accurate. However, the hard disk cannot provide us
enough space if all the peers really write data to the disk.

We considered two methods to bypass write operations:

1. Method 1: simply discarding all the data received can eliminate all the write

47

operations. However, a peer is both a client and a server in a P2P system. It
is uploading to others while it is downloading at the same time. If it discards
all the received data, then what can it do if someone else requests those data
later?

2. Method 2: manipulating the file in the memory. The advantage is it can
improve both read and write operations greatly. However, we don’t have that
large memory if hundreds of peers keep their own copy of the file of several
GB in memory.

Our solution is a combination of these two methods. We intercept the read and
write operations within a peer. We let BitTorrent do nothing in write operation
requests, just drops the received data. At the same time, all the read operations
from different instances are redirected to the same file. Since there is only one copy
of the distribution file, the storage space is saved and issues above are solved.

Considering all the nodes are equipped with large memory, we let the operating
system cached the complete file in an experiment. We also adopt memory-mapped
file mechanism in the instrumented client, and make the cached file shared by all
the peers on the same node. In order to eliminate the major page-faults caused
by the first access to the file, we pre-load the file into the memory before every
experiment. With these methods, overheads caused by page-faults and system-calls
can be reduced. The CPU resources spent on I/O wait is almost zero even hundreds
of peers run on the same node.

Then we repeated the experiment with the simplest setting above, the transfer rate
increased from 70MB/s to more than 115MB/s. The improvement can be seen in
the table 7.

Table 7: Average download rate with and without I/O to hard disk
I/O bypass Transmission rate CPU on I/O wait
NO 70MB/s 85%
YES 115MB/s almost 0%

5.5 Tune BitTorrent’s parameters

BitTorrent has several dozens of parameters can be tuned, some of which have great
influence on the performance. Many developers spend quite amount lot of time

48

on tuning and testing those parameters to gain better performance. And these
parameters are set to different values in different implementations. Even in the
official implementation, same parameters are changed in different versions. These
changes on the parameters reflect the changes in the network environment, at least
from the developer’s perspective.

Basically, the BitTorrent is designed for low speed internet. Some parameters which
give BitTorrent good performance on the internet may not be suitable in a high per-
formance cluster. What’s more, the impacts from these parameters can be amplified
when we run multiple peers on one node. By carefully tuning them, we can deploy
more peers on a node. We investigated the impacts from various parameters, and
below, we will explain 3 important parameters we discovered.

5.5.1 Sending buffer

The first parameter can be tuned to improve the performance is upload_unit_size.
It controls the sending buffer in the application layer. When BitTorrent sends data,
it writes 1380 bytes into TCP layer every time by default. As a result, it generates
huge amount of I/O operations in our experiment setting(high transfer rate, multiple
peers on one node, etc.). However, when BitTorrent receives data, it will try to fetch
up to 100 KB from TCP buffer every time.

By increasing this upload_unit_size, more data can be passed to TCP layer in a
single write operation. So the number of I/O operations can be reduced given the
same amount of data. In our experiments, we increased this number to 64 KB. Then
we repeated the upload-constrained experiment and observed obvious improvements.

5.5.2 Slice size

As we have introduced in section 3, slice is the basic transmission unit. If data in
a slice is corrupted, the whole slice needs to be re-transmitted. So in a unreliable
network, large slice size may make the transmission inefficient.

In Mainline ver4, there are two parameters controlling the slice size. The first one
is download_slice_size, which decides how many bytes this peer will request from
others (as a slice). The second one is max_slice_length, which decides the maximum
length of a slice can be send to other peers, the connection will be closed if a larger
request is received. max_slice_length should be no less than download_slice_size.
In ver4, download_slice_size is 16 KB, and max_slice_length is also 16 KB by

49

default.

In Mainline ver5, Bram Cohen changed download_slice_size to download_chunk_size,
and max_slice_length to max_chunk_length. Names are changed, but their func-
tionalities remain the same. The default value of download_chunk_size is still
16 KB, but the default value of max_slice_length is increased to 32 KB. One reason
is network condition keeps improving, 16 KB is really small, compared with the
huge files being distributed on the internet. Another reason is some other BitTor-
rent implementations have already adopted larger sizes, in order to exchange data
with other implementations, official version has to enlarge the max_chunk_length

a little bit. Or the requests from others with larger download_chunk_size will be
dropped.

In our experiment, We experimented with various slice sizes and observed signifi-
cant improvements in performance when the slice size was increased from 16 KB
to 32 KB. And further increasing to 64 KB resulted in a clear improvement over
32 KB. However, beyond 64 KB, further increase on slice size cannot bring any more
significant improvements on the performance.

5.5.3 Concurrent uploads

The number of concurrent uploads12 plays an important role in BitTorrent’s cluster-
ing property. The larger this value, the more difficult for the peers to get clustered.
In the extreme situation, when a peer uploads to all its buddies, then it is impos-
sible to observe any clustering at all. As we have introduced in section 3.6.7, the
concurrent uploads can be calculated according to the equation (3.3). We can see,
when the max upload rate is set to unlimited, 7 concurrent uploads will be used,
which is quite a conservative number. This can be viewed as an implication that
BitTorrent is designed for low-speed network.

Concurrent uploads also has strong influence on the system capacity. The larger the
concurrent uploads, the smaller the system capacity. Because too many concurrent
uploads also cause excessive I/O operations.

12also referred as upload slots

50

5.5.4 Peer Set Cardinality

"What is the minimum peers we should use in an experiment?" – is an issue worth
discussion. In many previous papers about BitTorrent, the researchers ignored the
issue about the minimum peers they should use in an experiment, while they try their
best to enlarge the experiment scale. However, our research shows the minimum peer
set cardinality can also affect the experiment data.

We found that as the swarm size grows from 0 upwards, the average download rate
keeps decreasing until there are 40 peers in the swarm. Then the average download
rate will remain roughly constant until we hit the system capacity limit. The reason
for this behavior is that the peer-list that a peer gets from the tracker contains 40
peers. Hence, when the swarm has less than 40 peers in total, every peer knows
every other peer and the connection graph between them is a full mesh. This means
that every peer has to maintain more buddies and thus the overhead of maintaining
the connections increases as more peers join in (but less than 40). In large swarms,
peers only maintain connections to about 40 peers, so the overhead remains stable
after that point, until we reach the system capacity.

The important lesson we learned is the swarm size in any experiment should be
larger than the peer-list.

5.6 Improved result

In order to check the effects of the parameters described in section 5.5 on the system
capacity, we carefully tuned these parameters and performed download-constrained
and upload-constrained experiments respectively. Then we compared the data with
those in the untuned case. The results are shown as below.

The figure 10 shows how many peers we can deploy on a single node with or without
tuning BitTorrent parameters in a download-constrained experiments. In these ex-
periments, we had only one seed on a node and set its max upload rate to 5 MB/s.
All the leechers were deployed on a different node and all their max download rates
were constrained to 5 MB/s, the concurrent uploads is set to 7. The blue solid
line in figure 10(a) shows the average download rate as a function of peers per
node in untuned case. We can see the average download rate enters into the stable
stage at 40 peers/node 13 , and remains stable till it reaches 80 peers/node. After

13recall that the peer list has 40 peers, as discussed in section 5.5.4

51

0 50 100 150 200
2500

3000

3500

4000

4500

5000

Peers/Node

Av
er

ag
e

do
w

nl
oa

d
ra

te
 (K

B/
s)

untuned
tuned

(a) Average download rate

0 50 100 150 200
0

1

2

3

4

5

6

7
x 105

Peers/Node

Ag
gr

eg
at

ed
 d

l b
an

dw
id

th
(K

B/
s)

untuned
tuned

(b) Aggregated download bandwidth

Figure 10: Effects of tuning BitTorrent parameters on average download rate and
aggregated bandwidth as a function of peers per node in download-constrained ex-
periments. The bars show 99% confidence intervals.

80 peers/node, the average download rate drops sharply. This change can also be
observed clearly on the corresponding aggregated bandwidth in figure 10(b) . Before
reaching the system capacity at 80 peers/node, the aggregated bandwidth keeps in-

52

0 50 100 150 200
2500

3000

3500

4000

4500

5000

Peers/Node

Av
er

ag
e

do
w

nl
oa

d
ra

te
(K

B/
s)

untuned
tuned

(a) Average download rate

0 50 100 150 200
0

1

2

3

4

5

6

7
x 105

Peers/Node

Ag
gr

eg
at

ed
 d

l b
an

dw
id

th
(K

B/
s)

untuned
tuned

(b) Aggregated download bandwidth

Figure 11: Effects of tuning BitTorrent parameters on average download rate and
aggregated bandwidth as a function of peers per node in upload-constrained exper-
iments.

53

creasing linearly to 350 MB/s. Without tuning the parameters, we can only deploy
maximum 80 peers on a node with the experiment configurations described above.

The red dashed line in figure 10(a) shows the average download rate as a function
of peers per node in tuned case. From figure 10(a), we see the average download
rate can remain stable in the interval from 40 peers/node to 140 peers/node, which
is almost doubled compared with untuned case. And the corresponding aggregated
bandwidth can reach almost 600 MB/s. With tuned parameters, we can deploy 140
peers on a node maximum.

The figure 11 shows the results from upload-constrained experiments, which are
similar to those in download-constrained experiments. In upload-constrained exper-
iments, the seed’s settings remained the same as in the previous experiment; the
leecher’s max upload rates were constrained to 5 MB/s and max download rates
were unlimited.

In figure 11(a), the average download rate in untuned case(blue line) never entered
into the stable phase. It kept decreasing after 40 peers/node. Even the aggregated
bandwidth increased to 260 MB/s at 100 peers/node, the increase is not linear any
more. The significant drop in average download rates also indicated the system was
already overloaded. So we don’t consider the experiments are performed "safely".

In tuned case, the system showed almost the same capacity limit as that in download-
constrained experiments. The average download rate remained stable from 40 peers/node
to 140 peers/node, and the corresponding aggregated bandwidth was able to reach
600 MB/s.

There are two things worth noticing. The first is in tuned case, the curves have
almost the same shape no matter in upload-constrained or download-constrained
experiments(compare the red lines in figure 10 and 11). However, in untuned case,
the shapes of the curves are quite different in these two kinds of experiments. The
reason is in untuned case, the concurrent uploads is set to 7 explicitly in both kinds
of experiments. In untuned case, BitTorrent will calculate concurrent uploads by
itself according to the equation (3.3) in section 3.6.7. So in upload-constrained
experiments for untuned case, BitTorrent will set concurrent uploads to 54, which
is much higher than 7. This resulted in large amount of I/O operations, can cause
system’s instability.

The second is that figures 10(a) and 11(a) show that the average download rate
for the tuned case is slightly lower than untuned case before reaching the system

54

capacity limit. This is because the tuned case uses a larger slice size, hence a piece
will be divided into a smaller number of slices. Request pipelining which allows
efficient parallel downloads is not as efficient as before in this case, hence the average
download rate suffers slightly. But the benefit we have is less I/O overhead.

So, the important lesson we learned here is, to maximize the resources utilization,
the BitTorrent’s parameters should be carefully tuned.

5.7 Other restrictions from OS and BitTorrent

If an experimenter decides to run multiple peers on one node, most probably, he will
be overwhelmed by tons of underlying details and parameters. Knowing these issues
enables us to control the experiment completely, even though it is very difficult. In
this section, we will talk about some other restrictions either from the operating
system or from the BitTorrent itself.

The first restriction is from BitTorrent itself. By default, BitTorrent tries to listen
on port 6881 for incoming connections. If port 6881 is occupied, it will try the
others in the range 6881–6999 sequentially. This means we can only start 119 peers
maximum. After that, BitTorrent will report error of unavailable ports. So we set
this range to 6881–9999 to guarantee there are enough ports to listen on.

We also observed an unexplained limit on the number of BitTorrent clients we were
able to start (quasi) simultaneously. After starting 700 clients, the speed of starting
new processes slowed down and after 800 clients it practically stopped. We were not
able to get more than 835 clients started in this manner. We investigated several
possibilities, but were not able to find a cause for this behavior. It was not an OS
limit on starting processes, file handles, available local ports, nor the tracker. The
behavior is repeatable, but so far we have not been able to find the cause.

In practical terms, this means that we have a hard limit on the number of peers
that can start ’simultaneously’. In our experiment setting, we were able to start 500
clients on a single node within 15 seconds.

Besides the above restrictions, there are also some others from the kernel and TCP,
such as the maximum processes a user can start, maximum sockets, queue length
for loopback interface, tcp_max_syn_backlog and so on. All these parameters have
influences on the experiments and system performance. We did experiments with
tuning the kernel and TCP and did observe small potential performance gains, but
none were significant enough to merit the added trouble of tweaking them.

55

6 Capacity Planning

After intensive study on how to tune the parameters to achieve the best system
performance, we started our investigation in capacity planning. Capacity planning
is very crucial for large-scale experiments on the cluster. Our goal is to determine
general rules of thumb which a system designer can use to evaluate the performance
of the system and to guide the experiment design.

We start from a very simple experiment setting in section 6.1. We will show how
to decide the system capacity with a naive method. In the section 6.2, we show the
safe region found with naive method is not safe any more in two nodes setup. In
section 6.3, we will show a more elaborate method to estimate the system capacity
and claim the method used in section 6.1 is immature. The actual experiment scale
is much smaller than the naive method predicts. The average download rate is not
sufficient in estimating the system capacity.

6.1 Naive capacity planning for single node

In the naive method, we only take average download rate into account. If there is
no significant drop in average download rate, then the experiment is considered to
be reasonable.

First we experimented with placing all the leechers on a single node. We increased
the number of leechers until the average download rate was no longer stable, and
the corresponding aggregated bandwidth cannot increase linearly. All leechers were
upload-constrained and we used different values for upload bandwidths: 10, 20, 40,
and 100 Mbps.

We investigated whether we can use the simple formula y = a
x to roughly estimate

how many peers we can put on a single node.(y is the maximum peers we can put
on a single node. x is the max upload or download rate we set. a is a constant
constant related to the aggregated bandwidth). If the transmission rate and max
number of peers on a node have this simple relation, then we need not redo the
capacity probing every time we change the experiment settings.

Figure 12 plots the average download rate against the number of peers. Even though
the max upload rates are set to different values, the shapes of those curves are similar.
The average download rate decreases gradually before reaching 40 peers/node, then
it enters into a relatively stable stage. After reaching the system capacity, the

56

0 100 200 300 400 500 600
800

900

1000

1100

1200

1300

Peers/Node

Av
g.

 d
l r

at
e

(K
B/

s)

ul: 10Mbps

(a) Upload bandwidth 10 Mbps

0 100 200 300 400
1000

1500

2000

2500

 Peers/Node

Av
g.

 d
l r

at
e

(K
B/

s)

ul: 20Mbps

(b) Upload bandwidth 20 Mbps

0 50 100 150 200
2500

3000

3500

4000

4500

5000

 Peers/Node

Av
g.

 d
l r

at
e

(K
B/

s)

ul: 40Mbps

(c) Upload bandwidth 40 Mbps

0 20 40 60 80 100
6000

7000

8000

9000

10000

11000

12000

 Peers/Node

Av
g.

 d
l r

at
e

(K
B/

s)

ul: 100Mbps

(d) Upload bandwidth 100 Mbps

Figure 12: Average download rate as function of peers per node for different upload
bandwidths for case of 1 node being used.

average download rate drops sharply.

Figure 13(a) plots the corresponding aggregated download bandwidth based on the
same experiment, with the curves from the different cases combined. As the fig-
ure shows, the aggregated download bandwidth can increase at least to 500 MB/s,
and the corresponding average download rates remain stable. Thus we can define
500 MB/s of aggregated download bandwidth as the system capacity, and any value
below that is considered safe. Since the curves in the safe region are basically straight
lines, it is easy to fit a curve and find the corresponding x when y = 500 for each
line. Then we can obtain the relation between the number of peers per node, x, and
maximum upload rate per peer, y, as follows

y =
560

x
. (6.1)

Figure 13(b) shows the curve for equation (6.1) and our data points. This curve can
be used to set the values for upload bandwidth and number of peers in an experiment

57

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8
x 105

Peers/Node

Ag
gr

eg
at

ed
 B

an
dw

id
th

 (K
B/

s)

ul: 10Mbps
ul: 20Mbps
ul: 40Mbps
ul: 100Mbps

(a) The corresponding aggregated download bandwidth for the cases shown in
Figure 12.

2 4 6 8 10 12
50

100

150

200

250

300

350

400

450

upload rate (MB/s)

Pe
er

s/
N

od
e

max peers
y=560/x

(b) Number of peers/node vs. per-peer upload rate.

Figure 13: Aggregated download bandwidth with different upload rate and the
corresponding capacity plan curve.

when all leechers are placed on a single node. In download-constrained experiments,
we get similar results as in the upload-constrained experiments.

58

6.2 Naive capacity planning for more nodes

In this round of experiments, we move a step forward from the simplest setup in
single node capacity planning. We try to answer the question: if we use more nodes
in the experiment, will the naive method still work?

We deployed the leechers on two nodes(cln008 and cln018) equally, starting from
20 peers/node, and increased 20 peers on each node in every succeeding experi-
ment until it reached 200 peers per node. The max upload rate of each leecher
is constrained to 5 MB/s, the download rate is unconstrained. Results for aver-
age download rate and aggregated bandwidth are shown in Figure 14. At the first
glance, the results are quite similar to the ones obtained for the single node case (Fig-
ure 12(c) and 40 Mbps line in Figure 13(a)). In a download-constrained experiment,
we obtained similar curves.

As the figure 14 shows, when we deployed the leechers on 2 nodes, the whole system
still exhibit a capacity of more than 500MB/s. And before 120 peers/node, the
average download rate remained stable. The results led us to the conclusion that
we can deploy 120 leechers on each of the two nodes. However, by inspecting the
actual network traffic and connections made by the peers, we noticed that already
at 60 peers per node, the network between the nodes had been saturated (see details
below). Figure 14 cannot exhibit the change in BitTorrent behaviors. That’s the
reason why we call this method naive and average download rate cannot be used as
the only benchmark when we design the experiment.

However, from another angle, we consider the lack of observed change in the average
download rate in changing network conditions as excellent evidence of BitTorrent’s
ability to adapt to varying conditions.

In section 6.3, we will introduce a better method to estimate the capacity. The
behavior change will be discussed in details in section 7.1 and 7.2.

6.3 Capacity planning formulas

In this section, We will present a simple analytical means of determining whether
a planned experiment falls within the system capacity limits or not. Table 8 lists
the notation used in the following. Let i, j, k ∈ {1, 2, 3...n}. Since we only use one
seed on a separate node in every experiment, compared with the traffic among the
leechers, the traffic from the seed is negligible and we have excluded it for reasons

59

0 50 100 150 200
2500

3000

3500

4000

4500

 Peers/Node

Av
er

ag
e

do
w

nl
oa

d
ra

te
 (K

B/
s)

cln008, cln018

(a) Average download rate

0 50 100 150 200
0

1

2

3

4

5

6

7
x 105

Peers/Node

Ag
gr

eg
at

ed
 d

l b
an

dw
id

th
 (K

B/
s)

cln008, cln018

(b) Aggregated download bandwidth

Figure 14: Leechers deployed equally on two nodes; upload-constrained experiment

60

n number of nodes in an experiment
mi number of peers on node i

Ui aggregated upload bandwidth generated by the peers on node i

Di aggregated download bandwidth generated by the peers on node i

Li physical capacity of loopback device on node i

Cul
i physical upload capacity of network card on node i

Cdl
i physical download capacity of network card on node i

Pij probability that a peer on node i will connect to peers on node j

Table 8: variables used in the discussion

of simplicity. The discussions here can still be applied to multiple seeds setup after
minor modification.

When we deploy multiple peers on one node, a peer will not only try to connect and
upload to the native peers, but also to the foreign peers. Pij is the probability that
a peer on node i will connect to peers on node j, and assume all the peers on node
i have the same probability. Then we have

Pij =






mi−1�n
k=1 mk−1 if i = j,

mj�n
k=1 mk−1 if i �= j.

(6.2)

When i = j, Pii actually denotes the probability that a peer will connect to the
native peers.

Ui and Di denote the aggregated upload and download bandwidth on node i respec-
tively. Obviously, Ui equals the sum of all peers’ upload bandwidth on node i and
Di equals the sum of all peers’ download bandwidth on node i. Then the traffic
from node i to node j is14

Tij = Pij ×min(Ui, Dj) (6.3)
14We have made the assumption that all peers on a node have the same limits on upload and

download bandwidths.

61

We can construct a matrix to show the traffic flows between the nodes:

T =





T11 T12 T13 . . . T1n

T21 T22 T23 . . . T2n

...
...

...
Tn1 Tn2 Tn3 . . . Tnn




(6.4)

In matrix T , row i represents the distribution of the traffic flowing out of node i, and
column i represents the distribution of the traffic flowing into node i. The elements
on the diagonal represent the traffic going through the loopback interface of a node.
This traffic in T must be constrained by the physical capacity of a node. Then for
each i, j we have:

i=n�

i=1,i �=j

Tij � Cdl
j (6.5)

j=n�

j=1,i �=j

Tij � Cul
i (6.6)

Tii �
Li

2
(6.7)

Now, consider an extreme situation, when all the traffic goes through loopback
interface or the network card, then we have the following constraints:

Ui � Cul
i (6.8)

Di � Cdl
i (6.9)

min(Ui, Di) �
Li

2
(6.10)

To some extent, (6.5), (6.6) and (6.7) define the upper bound of the experiment,
while the (6.8), (6.9) and (6.10) define the lower bound. The upper and lower bound
will converge at two points. The first is when only one node is used for deploying
leechers. Then there is only one element T11 in the matrix. The (6.7) and (6.10)
will be the same, since all the traffic will go through the loopback interface.

The second is when an infinite number of nodes is used. Considering that we can
only deploy a limited number of peers on a node, the probability that a peer will

62

connect to native peers decreases to zero. As a result, all the traffic will go through
network card. Then (6.5) and (6.6) will be the same as (6.8) and (6.9). Tii will be
zero since no traffic will go through the loopback interface.

Furthermore, we need to clarify several things to make our method sound. Our
analysis above is under the assumption that all the peers are started up ’simultane-
ously’. The upper bound applies to the beginning of an experiment. Since at that
time, peer selection strategy has not taken effects yet, the traffic will be distributed
only based on the probability we have calculated above. As time goes by, the traffic
may shift among the nodes. How the traffic shift depends on the specific experiment
configurations. However, the shift will always be constrained in the range defined
by the equations (6.5), (6.6), (6.7), (6.8), (6.9) and (6.10).

From the discussion above, we can conclude when running multiple peers on a single
node, it would be better to include as many nodes as possible into the experiments.
Then the experiment scale will mainly be decided by the lower bound formulas, and
the capacity planning becomes easy to handle.

7 Clustering and Analysis

As we claimed in section 6.2, if two nodes or more are used for deploying peers, naive
method cannot be used for capacity planning any more. In this section, we will
substantiate our above claim that BitTorrent’s behavior has changed and that the
average download is not an accurate indicator of a correct experiment in two ways.
First, we will experimentally investigate how the connections between the peers are
formed in the above experiment. Second, we will use the analytical methods derived
in section in 6.3 to demonstrate that the above experiment with two nodes violates
these intuitive conditions.

7.1 Clustering in upload-constrained experiments

We ran the experiment with two nodes as above, i.e., start with 20 peers per node,
increasing it by 20 peers per node until we reach 200 peers per node. Upload rates
were constrained to 5 MB/s and download rates were unlimited. In every experiment
we kept track of all the connections maintained by all the peers and identified which
connections are native (to peers on same node) and which are foreign (to peers on
the other node). Every experiment was repeated 3 times and we present the averages

63

and the standard deviations in the figures.

Figure 15(a) shows the fraction of native buddies in the peer list given by the
tracker. As we can see, the value hovers around 50% which is to be expected since
two node are used for deploying peers equally, and the tracker picks the peers for
the peer list uniformly at random. Investigating the fraction of native buddies (and
consequently foreign buddies) allows us to determine how BitTorrent is choosing
where to download from.

Figure 15(b) shows the fraction of upload connections to native buddies in an upload-
constrained experiment. We used two nodes, cln008 and cln018 and show the
values for both of them, as a function of the number of peers per node. As we can
see, from 60 peers per node onwards, the peers tend to favor native buddies and
the fraction of connections to native buddies keeps on increasing throughout the
experiment. At 200 peers/node, more than 80% upload connections were made to
native buddies.

The explanation is quite simple. Because the peers obtained in the peer list are
evenly distributed, so are the connections in the smaller tests. Because both the
native and foreign peers are able to serve data equally fast, a peer has no reason
to prefer one over the other. (Recall that BitTorrent selects the peers to upload
to or download from based on the bandwidth it obtains to/from that peer.) At
around 60 peers per node, the amount of data going between the nodes is enough
to saturate the 1 Gbps network link, whereas the local loopback device still has
a lot of unused capacity. Hence, what we are seeing in Figure 15(b) is simply the
normal BitTorrent’s peer selection algorithm at work. In other words, the peers have
clustered themselves locally but this effect is not visible in the average download
rates or aggregate bandwidth shown in Figure 14.

7.2 Clustering in download-constrained experiments

We repeated the above experiment, but this time constrained the download rate
of every leecher to 5 MB/s and left the upload rates unlimited. Seed’s maximum
upload rate was 5 MB/s as in the other experiments.

Figure 16(a) shows the results from this experiment. As with the upload-constrained
case, the network is saturated at around 60 peers per node, but the effects are
drastically different from the upload-constrained case. The peers start favoring
foreign buddies as opposed to native buddies for a longer spell and return to favoring

64

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Peers/Node

Pe
rc

en
ta

ge
 o

f n
at

iv
e

bu
dd

ie
s

in
 th

e
pe

er
 s

et

cln008
cln018

(a) Fraction of native buddies in the peer list

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Peers/Node

Pe
rc

en
ta

ge
 o

f u
l c

on
ne

ct
io

ns
 to

 th
e

na
tiv

e
bu

dd
ie

s

cln008
cln018

(b) Fraction of upload connections to native buddies in an upload-constrained
experiment with 2 nodes

Figure 15: Track connections in upload-constrained experiments, 2 nodes

native buddies only in very large experiments.

Interestingly, our analysis of the situation showed that although most of the upload
connections in the range of 60–80 peers per node were to foreign buddies, the peers
received most of the data from native buddies. For example, with 20 peers per node,

65

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Peers/Node

Pe
rc

en
ta

ge
 o

f u
l c

on
ne

ct
io

ns
 to

 th
e

na
tiv

e
bu

dd
ie

s

cln008
cln018

(a) Fraction of upload connections to native buddies in a download-constrained
experiment with 2 nodes.

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Peers/Node

Pe
rc

en
ta

ge
 o

f u
l c

on
ne

ct
io

ns
 to

 th
e

na
tiv

e
bu

dd
ie

s

cln008
cln018

(b) Fraction of upload connections to native buddies in a download-constrained
experiment with 2 nodes and random piece selection.

Figure 16: Track connections in download-constrained experiments, 2 nodes

54.4% of the traffic came from native buddies, at 60 peers per node this was 60.1%
and at 100 peers per node 77.2%. (The detailed traffic distribution on cln018 is given
in table 9.) Turns out that this behavior is a result of BitTorrent’s piece selection

strategy. Piece selection strategy in BitTorrent is based on a mechanism called

66

peers/node 20 40 60 80 100 120 140 160 180 200
Native (%) 54.4 56.9 60.1 68.4 77.2 79.0 79.3 79.4 81.6 82.8
Foreign (%) 45.6 43.1 39.9 31.6 22.8 21.0 20.7 20.6 18.4 17.2

Table 9: Percentage of traffic through the loopback interface(Native) and percentage
of traffic through eth0 interface(Foreign) as a function of peers per node on cln008,
corresponding to the figure 16(a)

peers/node 20 40 60 80 100 120 140 160 180 200
Native (%) 49.8 49.6 57.1 66.5 71.6 73.7 74.3 75.0 74.8 75.0
Foreign (%) 50.2 50.4 42.9 33.5 28.4 26.3 25.7 25.0 25.2 25.0

Table 10: Percentage of traffic through the loopback interface(Native) and percent-
age of traffic through eth0 interface(Foreign) as a function of peers per node on
cln008, corresponding to the figure 16(b)

rarest-first. The purpose is to make a peer attractive to the others by requesting the
rarest pieces first in the swarm, and quickly turn a peer into a productive member
of the swarm.

Peers make the decision on which piece they consider to be the rarest based on locally
available information from other peers. (This is why in some cases BitTorrent’s piece
selection algorithm is called local rarest first.) Peers obtain information about the
pieces other peers possess through BitTorrent’s HAVE-control messages. A peer
sends a HAVE-message to its buddies when it has completed the download of a
piece, in order to let its buddies know that they can download the piece from the
peer. Peers keep track of the HAVE-messages and use them to calculate which pieces
are the rarest among their buddies.

BitTorrent’s control messages (of which HAVE is one) have to share the network
with the actual data transfers. When the network (or loopback device) becomes
congested, both the data and control messages are slowed down. At the 60 peers
per node point, the network between the nodes starts becoming congested, but the
loopback is still far below its capacity. Hence, peers receive a lot of HAVE-messages
from the native buddies but the HAVE-messages from foreign buddies slow down.
As a result of this, the peer (correctly) considers the pieces from the foreign buddies
to be rarer than native pieces (which spread very fast within the node to many peers)
and wants to request the rarer pieces from the foreign buddies first. As the network
is only approaching the saturation point and is not yet completely congested, the

67

peer is able to provide uploads to foreign buddies so that they are willing to upload
pieces to it (recall the use of tit-for-tat).

From the results, we can conclude that BitTorrent’s piece selection algorithm is
very sensitive to changes in network conditions in the download-constrained cases.
In fact, piece selection strategy overrules peer selection strategy in the early part
of the experiment. As the network gets more and more congested, the peers are no
longer able to provide good enough upload rates to foreign buddies, so in accordance
to the tit-for-tat policy, they are choked. Hence they have to resort to the native
buddies for actually getting the data. Since there are no limits on upload rate,
the actual injection of new information is limited by the seed’s upload rate (which
was limited), but the native buddies are enough to feed new data within the node.
Eventually, we see the same kind of clustering between peers on a single node as we
saw in the upload-constrained case.

To verify our claim that the behavior above is due to the piece selection algorithm,
we repeated the experiment with a random piece selection algorithm. Because peers
exhibit no preference for pieces, peer selection algorithm should be the deciding
factor. Results are shown in Figure 16(b). The results are similar to the upload-
constrained case in Figure 15(b) where peer selection is known to be the deciding
factor.

Table 10 shows the traffic distribution on cln018 corresponding to figure 16(b).
Compared with the traffic distribution in table 9, we can find another interesting
thing. Even though the figure 16(a) shows the peers with rarest first piece selection
algorithm are more clustered(higher ration of connection the native buddies) than
those with random algorithm in figure 16(b), the ratio of traffic within the node
(Native row) in table 9 is lower that in table 10.

As further evidence, we ran the download-constrained experiment with leechers
placed equally on three nodes and the fraction of connections to other nodes is
shown in Figure 17(a). The three parallel bars represent the three nodes. The low-
est section of each bar shows native connections and the two upper sections show
connections to the two other nodes. We see the same preference for foreign bud-
dies in the beginning, with connections between the other two nodes being rather
uniformly split, as is to be expected. After the network gets congested, we see the
same kind of clustering as in the case with two nodes.

68

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peers/Node

Pe
rc

en
ta

ag
e

of
 u

l c
on

ne
ct

io
ns

 to
 th

e
na

tiv
e

bu
dd

ie
s

(a) Fraction of upload connections to native buddies (lowest section of bars)
and foreign buddies (white and black sections) with 3 nodes in a download-
constrained experiment.

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peers/Node

Pe
rc

en
ta

ag
e

of
 u

l c
on

ne
ct

io
ns

 to
 th

e
na

tiv
e

bu
dd

ie
s

(b) Fraction of upload connections to native buddies (lowest section of bars)
and foreign buddies (white and black sections) with 3 nodes in a upload-
constrained experiment.

Figure 17: Track connections in upload-constrained and download-constrained ex-
periments, 3 nodes

7.3 Example: Case of 2 Nodes

We revisit the case of using two nodes in an experiment shown in Figure 14. In
the experiment, we obtained an average download rate of 4.25 MB/s and loopback

69

capacity Li = 500 MB/s. The network between the nodes is a Gigabit Ethernet, so
Cul

i = 125MB/s and Cdl
i = 125MB/s. (i ∈ {1, 2})

When there are 40 peers on each of the two nodes, we get the traffic distribution
matrix T 40 as below:

T 40 =

�
T11 T12

T21 T22

�
=

�
83.9 86.1

86.1 83.9

�
(7.1)

We can see from the equation (7.1), for node 1, T12 � Cul
1 , T21 � Cdl

1 and
T11 � L1

2 . The same applies to node 2. We can see all the equations hold, the
experiments are designed within the system capacity.

When there are 60 peers on each of the two nodes, we obtain the traffic distribution
matrix T 60 as below:

T 60 =

�
T11 T12

T21 T22

�
=

�
126.4 128.6

128.6 126.4

�
(7.2)

We can see from the equation (7.2), for node 1, T12 > Cul
1 and T21 > Cdl

1 . Both
equations (6.5) and (6.6) are violated. Since equation (6.10) still holds, then in
a upload-constrained experiment, a peer will not treat native buddies and foreign
buddies equally. They start showing preference in uploading to native buddies, and
the clustering happens. The same analysis can be applied to node 2. This analysis
yields the same result as the investigation on the actual behavior of BitTorrent
above.

7.4 Example: Case of 3 Nodes

In this section, we give another example to show the capacity planning for the
experiments shown in Figure 17(b). As in section ??, we use average download
rate of 4.25 MB/s and loopback capacity Li = 500 MB/s in the calculation. And
Cul

i = 125MB/s, Cdl
i = 125MB/s. (i ∈ {1, 2})

Since we deployed peers on 3 nodes equally, if a peer show no preference between
native buddies and foreign buddies, the upload connections to the native buddies
should be around 33.3%.

When there are 20 peers on each of the two nodes, we get the traffic distribution
matrix T 20 as below:

70

T 20 =




T11 T12 T13

T21 T22 T23

T31 T32 T33



 =




27.4 28.8 28.8

28.8 27.4 28.8

28.8 28.8 27.4



 (7.3)

We can see from the equation (7.3), for node 1, T12 + T13 � Cul
1 , T21 + T31 � Cdl

1

and T11 � L1
2 . The same applies to node 2 and node 3. All the capacity planning

formulas hold, the experiments are designed within the system capacity. The results
can be verified in figure 17(a), at 20 peers/node, the upload connections to native
buddies are about 33% on each node.

When there are 60 peers on each of the two nodes, we obtain the traffic distribution
matrix T 60 as below:

T 40 =




T11 T12 T13

T21 T22 T23

T31 T32 T33



 =




84.1 85.5 85.5

85.5 84.1 85.5

85.5 85.5 84.1



 (7.4)

We can see from the equation (7.4), for node 1, T12+T13 > Cul
1 and T21+T31 > Cdl

1 .
Both equations (6.5) and (6.6) are violated. The peers start showing preference in
uploading to native buddies, and the clustering happens. The same analysis can be
applied to node 2 and node 3.

We must point out a subtle issue here. When there are 40 peers on each of the three
nodes, the calculation shows experiments should be within the system capacity, but
very near to it. What’s more, the actual network bandwidth is usually smaller
than our assumption (125 MB/s), which the theoretical bandwidth for a Gigbit
Ethernet. So the actual workload from the experiments has already exceeded the
system capacity limit, which can be verified in the figure 17(a).

The important lesson we learned is an experimenter should be very cautious when
the experiments are performed near the system capacity limit. Even the calculations
show the experiments are reasonable, the actual workload may have exceeded the
capacity limit because of some over-optimistic assumptions.

7.5 Experiment conclusion

Piece selection heavily relies on the control messages(HAVE message), while the
peer selection relies on data messages. That’s why piece selection is more sensitive
to the network changes and states. When the network is saturated, piece selection

71

senses the change in the number of HAVE messages, thus changes the BitTorrent’s
behaviours greatly. At the same time, even though the number of data messages
also decreases, the decision of peer selection strategy is made upon the total amount
of data received within a certain period. A little change in the number of data
message won’t change the amount of data greatly. So the peer selection will not
react as drastically as piece selection, and will take effects slowly and slowly.

8 Conclusion

Experimental evaluation of large scale systems is an important topic in networking
research. Currently no ideal environment exists for such evaluations, with simula-
tions, real Internet, and cluster-based testbeds being the commonly used solutions.
In this thesis, we gave our understanding on these solutions and the suitable situa-
tions to apply them. We believe that cluster-based testbeds offer the best of both
worlds, realistic applications with a real (albeit not necessarily realistic) network in
between.

In this thesis we have shown how to design BitTorrent experiments on a cluster.
Our focus has been on identifying how the physical limits of the host machine affect
the tests and how many clients can be deployed on a node. We have shown that the
number of peers per node depends on many factors, but up to 500 peers per node
is realistic for certain values of allocated per-client bandwidth. We have shown that
the simple metric of average download rate is not sufficient for determining when
an experiment is ’safe’, but that a more complex analysis is needed. We provide a
simple set of formulas, intended to be used as rules of thumb for determining if an
experiment runs into the physical limits of the machine.

Our work has also extended previous work on BitTorrent, by showing that the
previously observed clustering behavior is actually a result of both the peer and
piece selection algorithms, and not simply the peer selection algorithm as previously
believed. Although the effect of the piece selection algorithm is small, it cannot be
ignored in all cases. By performing the pairwise experiments with different piece
selection strategies and comparing the experiment data, we are able to show how
piece selection strategy influence clustering property even it is marginal influence.

In our future work, we plan to verify our results using a 10 Gbps network between
the nodes. This is likely to change some of the details of our results, since in that
case the loopback will saturate before the network; hence the clustering behavior

72

will be different. Furthermore, we will also start our study in other P2P systems
to accumulate enough experience in evaluating various distributed systems. Our
research focus in future will be developing a systematic methodology for testing and
evaluating large-scale distributed systems.

73

References

ABJM04 Antoniu, G., Bougé, L., Jan, M. and Monnet, S., Going Large-scale
in P2P Experiments Using the JXTA Distributed Framework. Re-
search Report RR-5151, INRIA, 2004. URL http://hal.inria.fr/
inria-00071432/en/.

AH00 Adar, E. and Huberman, B. A., Free riding on gnutella. First Monday,
5,10(2000).

AO04 Amaral, L. and Ottino, J., Complex networks: Augmenting the frame-
work for the study of complex systems. The European Physical Journal

B-Condensed Matter, 38,2(2004), pages 147–162.

BHP06 Bharambe, A. R., Herley, C. and Padmanabhan, V. N., Analyzing and
improving a bittorrent networks performance mechanisms. INFOCOM

2006. 25th IEEE International Conference on Computer Communica-

tions. Proceedings, april 2006, pages 1 –12.

BRF04 Biersack, E. W., Rodriguez, P. and Felber, P., Performance analysis of
peer-to-peer networks for file distribution. In Proc. Fifth International

Workshop on Quality of Future Internet Services (QofISâ04), 2004.

CB10 Choffnes, D. R. and Bustamante, F. E., Pitfalls for testbed evaluations
of internet systems. SIGCOMM Comput. Commun. Rev., 40,2(2010),
pages 43–50.

Coh03 Cohen, B., Incentives build robustness in bittorrent, 2003.

edg09 EdgeScope Project – Sharing the view from a distributed Internet tele-
scope, 2009. URL http://tinyurl.com/2c7ykgn.

Emu10 Emulab Website, 2010. URL http://www.emulab.net/.

Fan05 Fang, Y., Modeling and performance analysis for wireless mobile
networks: a new analytical approach. IEEE/ACM Trans. Netw.,
13,5(2005), pages 989–1002.

GCX+07 Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X. and Zhang, X., A per-
formance study of bittorrent-like peer-to-peer systems. Selected Areas

in Communications, IEEE Journal on, 25,1(2007), pages 155 –169.

74

GK99 Goldenfeld, N. and Kadanoff, L. P., Simple Lessons from Complexity.
Science, 284,5411(1999), pages 87–89. URL http://www.sciencemag.
org/cgi/content/abstract/284/5411/87.

gri10 Grid5000 Website, 2010. URL https://www.grid5000.fr/.

Har68 Hardin, G., The tragedy of the commons. Science, xx, pages 1243–47.

IUKB+04 Izal, M., Uroy-Keller, G., Biersack, E., Felber, P. A., Hamra, A. A.
and Garces-Erice, L., Dissecting bittorrent: Five months in torrent’s
lifetime. 2004, pages 1–11.

Kan09 Kangasharju, J., Freeriding not (always) considered harmful. Infor-

mation Networking, 2009. ICOIN 2009. International Conference on,
21-24 2009, pages 1 –5.

KR06 Kumar, R. and Ross, K., Peer-assisted file distribution: The minimum
distribution time. nov. 2006, pages 1 –11.

LFG08 Laverell, W. D., Fei, Z. and Griffioen, J. N., Isn’t it time you had an
emulab? ACM SIGCSE Bulletin, volume 40, 2008, page 246.

LLKZ07 Legout, A., Liogkas, N., Kohler, E. and Zhang, L., Clustering and shar-
ing incentives in bittorrent systems. SIGMETRICS ’07: Proceedings

of the 2007 ACM SIGMETRICS international conference on Measure-

ment and modeling of computer systems, New York, NY, USA, 2007,
ACM, pages 301–312.

LM99 Liberzon, D. and Morse, A., Basic problems in stability and design of
switched systems. Control Systems Magazine, IEEE, 19,5(1999), pages
59 –70.

LUKM05 Legout, A., Urvoy Keller, G. and Michiardi, P., Understanding Bit-
Torrent: An Experimental Perspective. Technical Report, 2005. URL
http://hal.inria.fr/inria-00000156/en/.

LUKM06 Legout, A., Urvoy-Keller, G. and Michiardi, P., Rarest first and choke
algorithms are enough. IMC ’06: Proceedings of the 6th ACM SIG-

COMM conference on Internet measurement, New York, NY, USA,
2006, ACM, pages 203–216.

75

MH09 Minyi, K. and Huazhong, J., Cluster-based job management system
research oriented to spatial data processing. may. 2009, pages 1 –4.

MPES09 Meulpolder, M., Pouwelse, J., Epema, D. and Sips, H., Modeling and
analysis of bandwidth-inhomogeneous swarms in bittorrent. sep. 2009,
pages 232 –241.

oec Oecd – organisation for economic co-operation and development. URL
http://www.oecd.org.

PACR03 Peterson, L., Anderson, T., Culler, D. and Roscoe, T., A blueprint
for introducing disruptive technology into the internet. SIGCOMM

Comput. Commun. Rev., 33,1(2003), pages 59–64.

Pla10 PlanetLab Website, 2010. URL http://www.planet-lab.org/.

QS04 Qiu, D. and Srikant, R., Modeling and performance analysis of
bittorrent-like peer-to-peer networks. SIGCOMM ’04: Proceedings of

the 2004 conference on Applications, technologies, architectures, and

protocols for computer communications, New York, NY, USA, 2004,
ACM, pages 367–378.

RLD10 Rao, A., Legout, A. and Dabbous, W., Can Realistic BitTorrent Ex-
periments Be Performed on Clusters? Peer-to-Peer Computing (P2P),

2010 IEEE Tenth International Conference on. IEEE, 2010, pages 1–10.

RR07 Rasti, A. and Rejaie, R., Understanding peer-level performance in bit-
torrent: A measurement study. aug. 2007, pages 109 –114.

SHRY07 Sirivianos, M., Han, J., Rex, P. and Yang, C. X., Free-riding in bittor-
rent networks with the large view exploit. In IPTPS â07, 2007.

SW05 Steinmetz, R. and Wehrle, K., Peer-to-Peer systems and applications.
Springer, Berlin, cop. 2005.

VY03 Veciana, G. D. and Yang, X., Fairness, incentives and performance in
peer-to-peer networks. In the Forty-first Annual Allerton Conference

on Communication, Control and Computing, 2003.

ZIea10 Zhang, B., Iosup, A. and et al, Sampling bias in bittorrent measure-
ments. Euro-Par 2010, Ischia, Italy, 2010.

A Terminology

Mainline Ver4/Ver5: Official BitTorrent implementation. All of our discussions
and terms used are based on Mainline. Ver4 stands for Mainline Version 4, and
Ver5 stands for Mainline Version 5.

metainfo: Meta information about the distributed content, such as creation time,
announce url, file-name list and so on. metainfo is Bencoded and stored in Metainfo
file, which is widely known as ".torrent" file. We use "metainfo file" and "torrent
file" interchangeably in this paper.

batch torrent: If a distributor includes multiple files into distribution content,
the corresponding torrent file is called batch torrent. A batch torrent contains the
corresponding file-list and all the meta-information for each file.

sharing content: Since multiple files can be distributed with a batch-torrent, and
in BitTorrent system, there is no difference in distributing single or multiple files in
one swarm. We don’t care how many files are involved in one torrent, so we use the
term sharing content for both cases in this paper.

piece: BitTorrent divides the distributed content into pieces. The size of a piece
should be power of 2 and varies from 512KB to 1MB. Every piece has corresponding
hash_info in the metafile. In chunk-based model, a piece is also called a chunk. We
use them interchangeably in this paper.

slice: To make the distribution efficient, a piece is further divided into slices. The
data exchange among peers are based on the slices. The usual value is 16KB or
32KB. Small slice size will causes high overhead, while large size will introduce long
latency. Usually, value below 128KB are recommended.

bitfield: bitfield is the data structure used in BitTorrent, indicating what pieces a
peer have currently. bitfield is just a simple bitmap, in which every bit stands for a
piece of the distributed content. "0" means missing and "1" means having, and the
spare bits in the last byte are set to "0".

buddy: In this paper, we call two connected peers buddies. Buddy relation is
symmetric, but not reflexive or transitive.

native buddies: peers on the same physical node are referred as native peers; if
they are buddies, then they are referred as native buddies.

foreign buddies: peers on the different physical nodes are referred as foreign peers;
if they are buddies, then they are referred as foreign buddies.

