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1. INTRODUCTION 

1.1 OCCURRENCE OF WIND AND SNOW DAMAGES 

Wind and snow climate have significant influence on the forest ecosystems in central 

and northern Europe. Recurrent damages by strong winds (Fig. 1) and heavy snow 

loads (see Ulbrich et al. 2001; Dobbertin 2002; Schönenberger 2002; Brüdl and 

Rickli 2002; Alexandersson 2005; Matulla et al. 2007) cause large economic losses 

in managed forests (see e.g., Nilsson et al. 2004; Bengtsson and Nilsson 2007) due to 

reduced yields of recoverable timber and increased costs of unscheduled harvesting. 

Damages caused by strong winds and heavy snow loads also lead to deviations from 

the original forest management plans. 

 

  

Fig. 1. Losses of timber in forests due to storms in Europe in 1960-2010 based on the 

primary damages reported in the EFIATLANTIC storm catalogue.  
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Because the growing stocks of the European forests are increasing (Schelhaas et al. 

2003) and the storm tracks and impacts are changing due to ongoing global warming 

(Leckebusch and Ulbrich 2004; Bengtsson et al. 2006, 2009; Pinto et al. 2007; 

Leckebusch et al. 2008; Ulbrich et al. 2008, 2009; Harvey et al. 2012), the necessity 

arises to consider the vulnerability of forests to wind- and snow-induced damage, 

especially in the regions at highest risk of damage. However, as shown by Blennow 

et al. (2010) and Pinto et al. (2012), the estimates of wind risks may differ greatly, 

depending on the climate model and greenhouse gas scenario used as well as the 

storm time series studied. This uncertainty thus has to be taken into consideration 

when the results are interpreted and strategies for adaptation for such risks are 

created. 

The susceptibility of tree stands to wind and snow damage is affected by forest 

structure, site conditions, forest management, and wind and snow extremes. 

Important factors are the tree and stand characteristics such as tree species, tree 

height, diameter at breast height, crown area, rooting depth and width, and soil type 

and topography (see, e.g., Peltola 2006). The potential of wind- and snow-induced 

damage is often highest if sudden changes happen in the exposure of trees. New 

forest edges with trees that have not been acclimatized to strong winds are very 

vulnerable, as are unthinned dense stands with large snow loads (see Neustein 1965; 

Lohmander and Helles 1987; Peltola 1996; Gardiner and Stacey 1995; Peltola et al. 

1997, 1999a; Talkkari et al. 2000; Dupont and Brunet 2008; Nicoll et al. 2008).  

Trees that suffer from these damages are also often targets for insect attacks (see 

Nykänen et al. 1997; Valinger and Fridman 1997; Schönenberger 2002; Jönsson et 

al. 2009; Jönsson and Bärring 2011).  

Until now, the strongest winds and largest wind damage events in Finland have 

usually occurred in the windiest season, from late autumn to early spring 

(September-April) (Gregow et al. 2008). Fortunately, during this period, the soil is 

often frozen (Soveri and Varjo 1977; Huttunen and Soveri 1993; Solantie 1998), 

anchoring the trees solidly in the ground and making them less vulnerable to 
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uprooting. On the other hand, the risk for snow damage in terms of stem breakage is 

common in winter. Strong winds are possible also during the warmest season. For 

example, in July-August 2010, Finland experienced four fierce summer storms in the 

warmest summer in 100 years, which caused about as much vast destruction (8 Mm3) 

as the storms “Pyry” and “Janika” (7,3 Mm3) in October-November of 2001.  

 

1.2 DAMAGE TYPES AND FUTURE RISKS 

 

Wind effects on individual trees are caused by average wind speed and its direction, 

duration, and gustiness. In Finland, even relatively low mean (10 minutes) wind 

speeds of 9-13 ms-1 can cause damage, especially if they are related to additional 

snow loading (Talkkari et al. 2000; Pellikka and Järvenpää 2003; Gregow et al. 

2008). Wind damage often occurs near the sea and large lakes, too. In these 

locations, the wind speeds are typically higher compared to other areas due to the 

lower surface roughness compared to the surrounding forested areas (e.g., Gregow et 

al. 2008). Stem breakage may be even more likely than uprooting if the wind loading 

to the crown area increases suddenly due to either strong wind gusts or moderate 

winds with concurrent snow loads on tree crowns such as > 20 kg m-2 (Ancelin et al. 

2004; Peltola et al. 2006).  

Norway spruce (Picea abies) has usually been considered the most vulnerable tree 

species to wind-induced damage in Finnish conditions because of its relatively 

shallow roots (see Laiho 1987; Peltola et al. 1999a; Ihalainen and Ahola 2003). On 

the other hand, forests dominated by Scots pine (Pinus sylvestris) and silver and 

downy birch (Betula pendula and Betula pubescens) are usually more vulnerable to 

snow-induced damage such as stem bending or breakage when the soil is frozen 

(Valinger et al. 1993; Valinger and Lundqvist 1994; Solantie 1994). If the soil is not 

frozen, trees can also be uprooted.  
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Snow loading is most likely when the air temperature is between -3 and +1 °C, the 

winds are light, and there is precipitation (snowfall, sleet, freezing rain). In such 

conditions, snowfall can effectively stick to tree trunks and branches (Solantie 1983, 

1994; Valinger and Lundqvist 1994; Quine 2000). In Finland, large snow loads are 

common, especially in the eastern and northern parts of the country and at higher 

altitudes (Gregow et al. 2008). 

By the end of this century, the projections of future climate based on global climate 

models (GCM) and regional climate models (RCM) run under the different 

greenhouse gas scenarios (Fig. 2) indicate that the annual temperature will increase 

2-7 ºC and annual precipitation will increase concurrently by 6-37% in Finland 

(Jylhä et al. 2004, 2009; Ruosteenoja et al. 2005).  

 

Fig. 2. Emissions and concentrations of CO2 during this century depending on the 

materializing of the SRES scenarios A2, A1B, and B1 (drawn based on Nakićenović 

et al. 2000). 

The increases in temperature and precipitation will be accompanied by a decrease in 

snow cover, especially in November and March-April (Jylhä et al. 2004; Carter et al. 

2005; Ruosteenoja et al. 2005). On the other hand, based on various recent climate 

model simulations (see, e.g., Räisänen and Joelsson 2001; Räisänen et al. 2003, 

2004, 2008, 2012), warming of the climate can result in larger daily snowfall 
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amounts. Additionally, conditions in which the attachment of snow and the 

accumulation of snow on tree crowns are concurrently enhanced may even increase. 

This implies that Scots pine and birch may be at greatest risk to snow-induced 

damage in the near future (Kellomäki et al. 2005).  

Trends and changes in storm winds have been investigated by employing long time 

series of observed wind speeds, wind speeds based on reanalyzed meteorological 

datasets (e.g., Uppala et al. 2005; Dee et al. 2011), and climate model simulations. 

Because wind measurements are dependent on the conditions of the measurement 

site, the measuring instruments, and the measurement height, a wind speed time 

series can very seldom be regarded as homogeneous. Therefore, it is difficult to make 

comprehensive and reliable studies based on in situ data. Thus, it is not surprising 

that past changes in wind speeds may indicate decreasing or increasing trends, 

depending on the location. When studying historical trends, reanalysis can be 

beneficial because it is built on observed weather parameters and numerical weather 

prediction models. The reanalyzed weather data sets also form a homogenous dataset 

for wind speeds. The longest meteorological reanalysis to date covers the years 1871-

2008 and indicates that storminess has been trending upward in northwestern Europe 

(Donat et al. 2011a). However, understanding of climate change impacts on winds in 

Europe is still uncertain (Räisänen et al. 2004; Ruosteenoja et al. 2005; Bärring and 

Fortuniak 2009; Nikulin et al. 2011; Donat et al. 2011b and references therein).  

Many recent analyses project an increase in storm winds in northwestern and eastern 

Europe, not including Finland. The projected changes are usually rather small. The 

results are uncertain since many of the investigations have only used a few models or 

the models have not been independent. To gain more certainty in extreme wind 

investigations, one should have a large set of data that can be statistically analyzed to 

obtain information about change and its certainty.  

As the climate warms, the duration of the soil frost season is projected to shorten and 

the soil frost depths to decrease in Finland (Peltola et al. 1999a; Venäläinen et al. 
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2001a, b; Kellomäki et al. 2010; Gregow et al. 2011). However, sudden short mild 

and rainy periods during winter may result in an increase in soil frost depths. If the 

mild and wet period lasts for several days, it is more likely that the frozen soil will 

melt even in midwinter (Gregow et al. 2011). This indicates that despite changes in 

windiness, a risk of uprooting of trees, especially of Norway spruce, may increase in 

the future between late autumn and early spring.  

1.3 AIMS OF THE WORK 

  
The main aim of this work was to analyze the potential impacts of occurrence of 

strong winds, heavy snow loads, and soil frost conditions on the risks to forests in 

Northern Europe and to test how these may be changing due to ongoing 

anthropogenic global warming. More specifically the analyses concentrated on:  

 

i) changes in the combined occurrence of strong winds, heavy snow loads, 

and unfrozen soil conditions in Finland (Paper I);  

ii) regional risks to Finnish forests from heavy snow loads (Paper II) and 

strong winds (Paper III);  

iii) the mean and extreme geostrophic wind speeds in Northern Europe, 

based on nine global climate models (Paper IV); and  

iv) estimation of windstorm-related timber losses in Europe in 1960-2011 

by using the geostrophic and ageostrophic isallobaric winds as a basis 

for the analyses (Paper V). 

 

2. MATERIAL AND METHODS 

2.1 DESCRIPTION OF THE METEOROLOGICAL DATASETS 

Outlines for the datasets used  
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Various sources of data were used in Papers I-V. Table 1 shows the main 

meteorological and forest-related data sets that were investigated. The various GCMs 

employed in Papers I-IV originated from the subset of the 23 models used in the 

Intergovernmental Panel on Climate Change 4th Assessment Report in 2007 (IPCC 

2007).  

Table 1. Summary of the main data used in the calculations. T2m (°C) means 

temperature at 2-meter height above surface, SLP (hPa) is the sea level pressure, V 

10min (ms-1) is the 10-minute mean wind speed, Prec (mm) stands for precipitation, 

primary forest damage means the storm-induced timber losses (Mm3), and NFI 

stands for National Forest Inventory data. 

Summary 
of data  

Current 
climate 

Observations 
or reanalyses 

Parameters Forest 
data 

No. of 
GCMs 

Scenario 
(Fig. 2)   

Future 
climate 

Paper I 1971-2000, 
1980-2009 

FMI archive T2m, SLP, 
V 10 min, 

Prec 

  10+ 19 A1B 2046-2065, 
2081-2100 

Paper II 1961-1990 FMI archive T2m, SLP, 
V 10 min, 

Prec 

NFI 8 19 A2 1991-2020, 
2021-2050, 
2070-2099 

Paper III 1961-1990 FMI archive T2m, SLP, 
V 10 min, 

Prec 

NFI 9 19 A1B 2001-2020. 
2021-2050. 
2070-2099 

Paper IV 1971-2000 ERA-40 T2m, SLP   9 A1B, 
A2, B1 

2046-2065, 
2081-2100 

Paper V 1960-2002, 
1979-2011, 
1960-2011 

ERA-40,      
ERA-Interim, 

EFI-
ATLANTIC 

T2m, SLP Primary 
forest 

damage  

      

 

The model-simulated data were downloaded from the Coupled Model 

Intergovernmental Project 3 (CMIP3) archive (Meehl et al. 2007). The models used 

in the analyses were chosen so that their spatial resolution was 300 km or better. The 

time periods were constructed for the GCMs considering the SRES A1B, A2, and B1 

scenarios (Nakićenović et al. 2000) (Fig. 2).  
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In Papers I-IV, the investigations that were related to the observed weather 

concentrated on seven locations in Finland: Helsinki, Kauhava, Jyväskylä, Joensuu, 

Kajaani, Rovaniemi, and Sodankylä (Table 2). In Paper IV the changes in the 

occurrence of the extreme wind speeds were additionally compared between 

southern part of the Baltic Sea (55 °N; 15 °E) and eastern Finland (Joensuu) (Paper 

IV, Table 2).  

Table 2. Main locations studied. “OBS station” refers to the coordinates of the 

measurement site and “Grid point” to the closest nearby grid point of the GCMs. 

Location OBS station Grid point 
Helsinki 60,372 °N ; 24,960 °E 60,0 °N ; 25,0 °E 
Joensuu  62,660 °N ; 29,615 °E 62,5 °N ; 30,0 °E 
Jyväskylä 62.402 °N ; 25.679 °E 62.5 °N ; 25.0 °E 
Kajaani 64,281 °N ; 27,679 °E 65,0 °N ; 27,5 °E 
Kauhava 63,120 °N ; 23,047 °E 62,5 °N ; 22,5 °E 
Rovaniemi 66,558 °N ; 25,835 °E 65,0 °N ; 25,0 °E 
Sodankylä 67,366 °N ; 26,633 °E 67,5 °N ; 25,0 °E 

 

  

2.2 OUTLINES FOR THE ECOSYSTEM MODEL AND THE 

MECHANISTIC WIND DAMAGE MODEL USED  

The ecosystem model SIMA (Papers II and III) 

The ecosystem model SIMA (Kellomäki et al. 1992a) was employed in Papers II and 

III to simulate the growth and dynamics of managed forests based on the Finnish 

national forest inventory (NFI 8 and 9) data throughout Finland with implications for 

timber production and the snow- and wind-induced risks to forests. In the SIMA 

model, the dynamics of tree stand are determined by the number and mass (including 

foliage, branches, stem, and roots) of trees. The diameter growth of each tree is 

limited by the temperature sum (degree days), within-stand light conditions, soil 
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moisture, soil nitrogen availability, and atmospheric CO2 level, which all have a 

direct effect on birth and growth and an indirect effect on the death of trees 

(Kellomäki et al. 1992a, b, 2005, 2008). The management applied in model 

simulations included regeneration, thinning, and final cut, following the 

recommendations for forest management in Finland (see details in Papers II and III). 

However, the proportions of tree species were not controlled in management (see 

details in Paper III).   

A description of the SIMA model with inputs needed and its validation have been 

presented in detail previously, for example, by Kellomäki et al. (1992a, 2005, 2008), 

Kellomäki and Kolström (1994), and Kolström (1998), and are also discussed in 

Papers II and III. Based on the earlier findings, the SIMA model is expected to 

simulate the volume growth of managed stands with good agreement with i) the 

measured values of volume growth on the permanent sample plots of the National 

Forest Inventory throughout Finland, and ii) the statistical growth and yield model 

MOTTI of the Finnish Forest Research Institute (see Kellomäki et al. 1992a, b; 

Kolström 1998; Talkkari et al. 1999; Routa et al. 2011a, b, 2012). The model is 

parameterized for the main tree species such as Scots pine, Norway spruce, and silver 

and downy birch between latitudes N 60° and N 70° and longitudes E 20° and E 32° 

within Finland (Kellomäki et al. 1992a, b; Kolström 1998). The SIMA-model is run 

on an annual basis, and the computations are based on an area of 100 square meters.  

 

The mechanistic wind damage model HWIND (Paper III)  

The mechanistic wind damage model HWIND (Peltola et al. 1999a) was used in 

Paper III to estimate the critical wind speed needed to uproot trees (a 10-minute 

average wind speed at 10 m height above ground). The effects of climate change on 

the risk of wind-induced damage was analyzed based on average critical wind 

speeds calculated for uprooting trees on forest inventory plots, percentages of forest 

area in each critical wind speed class (<14, 14-17, 17-20, >20 m s-1), and concurrent 



17 

 

probabilities of such wind speeds to occur in each regional unit of the Forest Centre 

of Finland (13 Finnish forest centers were merged in 2012). The limits for these 

wind speed classes were built based on the fact that in Finland over the sea areas, 

wind speeds ≥ 14 m s-1 are classified as strong winds and winds ≥ 21 m s-1 as 

storms. When the 10-minute mean wind speed is ≥ 21 m s-1 over the sea areas, the 

risk for stormy wind gusts on land is assumed to be likely. Still, mean wind speeds 

≥ 21 m s-1 on land areas occur only in Lapland, where there are hills and canyons 

and the surface roughness is smaller. In the forested areas in Finland, the critical 

wind speeds 11-17 m s-1 in particular have caused uprooting or stem breakage in 

tree stands in unfrozen soil conditions in summer and autumn. 

The critical wind speeds were calculated annually (2001-2100) for each forest 

inventory plot having height ≥ 10 m. When considering the risks of wind-induced 

damage in simulations for either summer or autumn, the soil was presumed to be 

unfrozen. Furthermore, birches were expected to have no risk in autumn without 

leaves, the opposite of summer with leaves. The tree stands with the average height 

< 10 m were classified as no-risk stands, similar to birch without leaves.  

The HWIND model assumes that a tree is uprooted if the applied bending moment 

(due to forces by wind and gravity) of a tree exceeds the maximum resistive moment 

of the root anchorage. Stem breakage is assumed to take place if the breaking stress 

exceeds the critical value of the modulus of rupture (Petty and Worrel 1981; Peltola 

et al. 1999a). The HWIND model requires as inputs the tree species, average tree 

height and diameter at breast height (DBH), stand density (i.e., SIMA outputs), 

distance from the upwind forest edge, and upwind gap size (in terms of perimeter 

length in tree heights).  

The properties and details of the HWIND model and the validity of its predictions for 

Finnish and Swedish conditions have been discussed in detail previously by Peltola 

et al. (1999b), Gardiner et al. (2000), Talkkari et al. (2000), Blennow and Sallnäss 

(2004), and Zeng et al. (2004, 2006, 2007), for example. Based on earlier validation 
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work carried out for HWIND, and comparison against corresponding predictions by 

other mechanistic models (e.g., ForestGales and FOREOLE; see Gardiner et al. 

2000, 2008; Ancelin et al. 2004), it is expected that the predicted critical wind speeds 

of this work will provide results with an accuracy typical for these kinds of models. 

Zeng et al. (2006) have also previously evaluated in detail the validity of the 

integrated use of SIMA and HWIND simulations and how possible errors of any 

input data (for SIMA and/or HWIND) may propagate and affect the accuracy of risk 

assessment. Based on these previous studies, it is expected that the integrated use of 

SIMA and HWIND model simulations will provide useful results for risk 

assessment.  

 

2.3 CALCULATION OF WEATHER RISKS TO FORESTS  

Winds (Papers I, III-V) 

The observed wind speeds were translated to a common 10-meter height according 

to the logarithmic wind profile (Paper I, Eq. 1). The roughness values describing the 

site vegetation were adopted from Tammelin (1991). In Papers I, IV, and V, the 

geostrophic wind speeds (e.g., Holton, 1992) (see schematics in Fig. 3) of the 

GCMs and reanalyses were used instead of the parameterized surface wind speeds 

because the surface pressure gradients and therefore the geostrophic winds (Paper I, 

Eq. 2, and Paper IV, Eq. 1) are more comparable between the models than the 

parameterized surface (true) winds. 

The geostrophic wind speed describes the speed of air flowing without any 

influence of surface friction. It is calculated from the pressure difference, also 

taking into account the surface temperature and rotation of the Earth (Coriolis 

force). The observation based data ERA-40 (Uppala et al. 2005) were applied for 

evaluation of the GCM data when the suitability of the GCMs for geostrophic wind 

speed analyses was assessed.  
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Fig. 3. Schematics of winds around a storm center marked with L955 (955 hPa 

deep).  

The daily GCM geostrophic wind speeds were also translated to correspond to the 

wind speeds at 10-meter height (Paper I, Eq. 3) by applying the method of Cressman 

(1960) with some modifications. The daily average of these modified wind speeds 

and a daily average of temperature and precipitation of 19 GCMs were employed in 

the snow load (Paper I, Eqs. 4-6) and uprooting/stem breakage risk calculations in 

Paper I.  

In Paper V, ageostrophic isallobaric wind speeds (Fig. 4) were also calculated. These 

describe the effect of the movement of the whole low-pressure area on storm winds. 

In the northern hemisphere, ageostrophic isallobaric wind speeds increase the mean 

wind flow on the right-hand side of the low pressure center in regard to the direction 

of propagation and decrease the wind speeds on the left-hand side (e.g., Lim et al. 

1991 and references therein). The impacts of intense, rapidly moving storms are 

better localized in the analyses when ageostrophic isallobaric wind speed is included 

in the calculations. 
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Fig. 4. Schematics of the ageostrophic isallobaric wind field. The plusses indicate 

rapid pressure rises and the minuses rapid pressure drops.  

 

Soil frost depth (Papers I, III) 

Soil frost depths (Paper I, Eq. 7) were calculated according to an approach used by 

Venäläinen et al. (2001b), in which they assumed that the ground is free of snow. 

This method is based on the negative of the sum of the daily average temperature 

from October 1 to when the frost sum accumulation ends in the spring. The soil 

properties are described by two parameters. The largest value for the sum of the 

cumulative daily temperature was limited to 10°C to avoid unrealistic values.  

The snow-free soil frost depth was classified into the following categories: 1) 0–20 

cm, 2) 20–40 cm, 3) 40–60 cm, and 4) >60 cm (Papers I and III). These classes 

correspond to about double of that of actual forest soil (see Paper I). Therefore, soil 

frost categories 1–3 represent a risk of trees for uprooting, in line with previous 

work by Peltola et al. (1999a). Class 4 provided sufficient support for the anchorage 

of trees, but includes a risk for stem breakage if there was concurrent heavy snow 

and wind loading (Paper I, Table 6). 
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Snow loads (Papers I and III) 

Snow accumulation was considered to be continuous. Cumulative precipitation and 

the wearing effects of air temperature and wind speed were used in the snow-load 

calculation as input variables. The loss of snow load by melting (%) was calculated 

by assuming that melting starts when the 2m air temperature (T) is higher than 0°C 

and that also snow has melted when the temperature reaches 2.3°C. Loss of snow 

load by wind removal (%) was calculated by assuming that when the 10-minute 

average wind speed U increases to 10 m s-1, 20% of the snow will fall from the tree 

(stem and branches) during the next 3 hours (Gregow et al. 2008), and when U 

reaches approximately 16 ms-1, all the snow is removed. In this model, unlike in the 

models of Li and Pomeroy (1997), the wearing of wind starts directly if there is any 

wind. In addition, the increase in snow load by precipitation was calculated so that 

precipitation measured in mm per time step at each station was directly converted to 

mass per unit area (kg m-2). The snow loading was, therefore, calculated for every 

time step. The snow loads of at least 20 kg m-2 (i.e., equivalent for 20 mm of 

precipitation) were analysed as representing a risk to forests (Papers I-II).  

 

 

Storm severity, timber losses, and impact of spatial and temporal resolution on the 

analyses (Paper V) 

In Paper V, the main aim was to test the possibility of assessing the losses of timber 

due to storm winds by employing the ERA-40 and ERA-Interim datasets and 

different temporal and spatial resolutions. The ERA-40 spatial resolution is 1.125° 

and that of ERA-Interim is roughly 0.7°. Fifty-four storms that had caused at least 2 

Mm3 primary damage to forests in Europe in 1960-2011 were chosen for closer 

analyses from Finland and the EFIATLANTIC storm catalogue. The regression 
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analyses were performed using the sum of the geostrophic and ageostrophic 

isallobaric wind speeds.  

The sum of the geostrophic and ageostrophic isallobaric wind speed was named 

“SWIND.” The timber loss estimate (TILT) was calculated based on the rule that the 

highest storm wind speed SWIND has to occur at two time steps on the path of the 

storm on land (duration criteria 6-12 hours):  
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For the current climate, an approach (TILES) that takes into account the spatial 

extent of the storm over land was estimated. Each country was assessed separately, 

and the highest SWIND on forested areas on land was used in the equation:  

hahaAREAmsmsSWINDMmTILES MAX
61-.1-3 10/)()/()(018.0 ���   (2) 

The size of the areas with SWIND above 40 ms-1 were estimated for 11 of the well-

known storms, i.e., storms on 17.10.1967, 22.9.1969, 29.9.1969, 1.11.1969, “Janika”, 

and “Mauri”, in addition to storms causing moderate to extreme damage when 

moving (mostly) over forested regions, such as “Lothar”, “Martin”, “Per”, and 

“Gudrun”. These storms formed the basis for testing the regressions.  

 

2.4 APPLIED EXTREME VALUE ANALYSING TECHNIQUES 

The Generalized Extreme Value (GEV) theory (Coles 2001; Castillo et al. 2004) was 

used when the return periods of the calculated maximum wind speeds and snow 

loads were assessed (Papers I, III, and IV). In this context, the Extremes Toolkit 
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software package, developed by the National Center for Atmospheric Research 

(NCAR) (e.g., Katz et al. 2005), was employed. The maximum annual snow loads 

and maximum annual geostrophic winds speeds during the windy season (September 

1-April 30) were analysed using the block maxima method (Papers I and IV) and the 

peak over threshold method (POT) (Paper III). According to Naess and Clause 

(2000), the POT method is a good alternative to the block maxima method for 

estimating extreme values when the return periods are much longer than the periods 

of data acquisition. For optimization purposes, the Nelder-Mead-method was applied 

in Paper III. In Papers I and IV, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970) was used 

instead.  

To provide a larger dataset of wind speeds for estimating the return periods (RP) of 

5, 10, 50, and 100 years, future projections of the GCMs (see Paper IV, Table 2) for 

the various scenarios were combined (A2:A1B:B1). The changes were also estimated 

by employing the scenarios separately to gain understanding of the uncertainty 

related to the choice of scenarios and GCMs. The calculations were performed using 

the whole gridded dataset and a new simplified method (Paper IV, section 2.4.2).  

 

 

3. RESULTS 

3.1 STRONG WINDS, SNOW LOADS, AND SOIL FROST UNDER THE 

CURRENT AND CHANGING CLIMATE (PAPERS I-IV) 

 

The future projections made using 9 GCMs (Paper IV) indicate that mean and 

extreme wind speeds are projected to increase by 2-4% in the southern and eastern 

parts of Northern Europe and decrease by 2-5% over the Norwegian Sea by the end 

of this century (Paper IV, Fig. 3 and Figs. 5-7). The result is statistically significant 
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at the 95% level. The smallest change is projected under the B1 and the largest under 

the A1B and A2 scenarios (Fig. 2). The changes in wind speeds projected for Finland 

show that by 2046-65, there are nearly no changes, but by 2081-2100, the increase is 

seen, especially in northern Finland (Paper IV, Figs. 5-7). An example of the changes 

that are projected to occur by 2081-2100 in southern Finland (Helsinki) is depicted in 

Fig. 5.  

Under the current climate, the return levels of wind speeds occurring once every 10 

years correspond to maximum 10-minute wind speeds of 17-18 m s-1 (Papers I, III-

IV) in the southern and western parts of the country (Helsinki, Kauhava, and 

Rovaniemi). In the east (Joensuu) and further north (Sodankylä), the corresponding 

wind speed is 14 m s-1. Based on Paper IV, the wind speeds that occur during 

September-April once in 10 or 50 years appear to be approximately 13% ± 2% and 

22% ± 5% stronger than the 30-year averages.  

 

 

Fig. 5. The projected changes of the daily mean wind speeds of 10 GCMs in 

September-May from 1971-2000 to 2081-2100 at grid point 60°N, 25°E that 

represents Helsinki (drawn based on the data of Paper I). 
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Based on the observed wind speeds ≥ 8 m s-1 in 1971-2000 in September-May in 

Lapland (Rovaniemi, Sodankylä) and southern coastal Finland (Helsinki), the main 

wind direction is also from the south or southwest (Paper I, Fig. 4). Altogether, 50-

56% of the winds blow from these directions. In the western coastal zone (Kauhava), 

the corresponding winds main blow from southwest, south, and southeast. In the 

central part of Finland, westerly to northwesterly and southerly winds dominate.  

 

The 10-year return level averages of snow loads vary under the current climate 

between 23 kg m-2 (Helsinki, Kauhava) and 31-33 kg m-2 (Joensuu, Sodankylä), 

respectively. Independent of the snow load amount, the observed wind speeds are 

mostly below 8 ms-1 (Paper I, Fig. 8). Concurrent heavy snow loads and low soil 

frost depths (< 60 cm in snow-free road conditions, corresponding <30 cm in forest 

soil) typically occur in northern and eastern Finland.  

 

The future projections of the occurrence of days having snow damage risk show a 

decline from the current climatic conditions toward the end of this century. Averaged 

over the whole country (Paper II, Fig. 2), the mean number of days with snow 

loads>20 kg m-2 per year will, in general, decrease by 11%, 23%, and 56% in 1991-

2020, 2020-2050, and 2070-2099, compared to the baseline period, 1961-1990. In 

Paper III, the overall decline in the occurrence of snow loading regardless of its 

amount, assuming the SRES scenario A1B, varied from 5% (north) to 50% (south) 

until 2100 (paper I, Table 4). This was caused especially by the decrease in the 

lighter snow loads < 20 kg m-2 (paper I, Table 5). Nevertheless, the occurrence of 

snow loads above 20 kg m-2 (heavy ones) showed an increase by 22-45% in Helsinki, 

Joensuu, and Rovaniemi from the current 1971-2000 toward 2046-2065. This means 

that in the near future, although there will be fewer days with heavy snow loads, the 

snow loads during the days when it snows much may be larger than under the current 

climate.  
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A comparison between the soil frost depths in 1971-2000 and 1980-2009 shows that 

the soil frost depth in autumn (by December) has already decreased by 5-10% in 

southern and central Finland, while in the north, the change is not so clear (paper I, 

Fig. 5). Toward the end of this century, the soil frost depths and their support to the 

anchorage of trees will decrease, especially in southern and central Finland (paper I, 

Fig. 9). In the north, the annual duration of the soil frost in class 4, corresponding 

approximately to >60 cm on snow-free ground (30 cm of actual forest soil), will 

decrease on average by 50 days and, thus, by 25%. In the east, the corresponding 

decreases are 100 days and 75%, respectively.  

The projected changes in the concurrent occurrence of strong winds, heavy snow 

loads, and soil frost depths indicate that the risks for conditions favorable for either 

uprooting or stem breakage in the forests are increasing (paper I, Table 6). The 

conditions making trees liable to uprooting (i.e., decreased soil frost, heavy snow 

loads, strong winds) increase at least in southern, central, and eastern Finland. The 

risks for conditions favorable for stem breakage increase in northern Finland.  

  

3.2 WEATHER RISKS IN MANAGED FORESTS IN FINLAND (PAPERS I-

III) 

 

Regarding wind-induced risks to forests, the differences under the current and 

changing climate in percentages of areas in each regional unit of Forest Centre were 

very small in different critical wind speed classes in the first period (2001-2020) 

(Paper III, Fig. 6). In general, the most southern regional units (1-4) had the highest 

share (ranging between 23% and 47%) of forest area exposed to wind risk (critical 

wind speed < 17 m s-1) in autumn. In the second and third periods, the corresponding 

shares of forest areas at risk in these regional units decreased. In other parts of 

Finland and especially in northern Finland, the risk was low regardless of the period 

or climate scenario applied. These drastic changes in southern-most Finland, when 
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the proportions of tree species in forest stands were not actively controlled, are due to 

the decrease of the dominance of Norway spruce and concurrent increase in birch, 

especially in southern Finland. Norway spruce needs approximately 20% lower 

critical wind speeds in HWIND simulations compared to Scots pine and birch (in 

leaf) of similar size. However, in autumn, birch was also expected to be leafless and 

not suffer wind damage, unlike during summer, which also can be seen from these 

results.  

The temporal and spatial variability of the risk of snow-induced damage (with snow 

loading>20 kg m-2) to forests is also affected by changes of the growing stock 

(Papers II, III) under the changing climate. The highest mean amount of annual 

growing stock at risk was found in central Finland, northern parts of Kainuu and 

Pohjois-Pohjanmaa, and in northwestern Finland in the second 30-year period (Paper 

II, Fig. 5). Until the end of this century, the amount of growing stock at risk, 

however, decreased in the majority of the country (Paper II, Fig. 5).  

 

3.3 POSSIBILITIES IN ASSESSING TIMBER LOSSES DUE TO STORMS 

(PAPER V) 

 

In Paper V, the sum of the geostrophic and ageostrophic isallobaric wind speeds 

correlated with the reported losses of timber in forests due to storms. An example of 

how well the regression equations TILT and TILES can estimate timber losses is 

depicted for five storms in Fig. 6.  

The 54 European storms (1961-2010) were divided into 5 categories based on the 

primary damage to forests : 1) minor storms causing minor damage, 2-10 Mm3; 2) 

moderate storms causing moderate damage, 11-30 Mm3; 3) severe storms causing 

high damage, 31-70 Mm3; 4) very severe storms causing very high damage, 71-110 

Mm3; and 5) extreme storms causing extreme damage,>110 Mm3. These classes 
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correspond to maximum wind gust estimates of 1) 31-32 ms-1, 2) 33-36 ms-1, 3) 36-

40 ms-1, 4) 41-46 ms-1, and 5) ≥ 47 ms-1. Finnish storms belong to class minor 

because they have only caused timber losses of 2-10 Mm3 in magnitude. The worst 

storms influencing Sweden have been moderate, severe, or very severe 

(Alexandersson 2005; Skogsstryrelsen 2006; Bengtsson and Nilsson 2007; Valinger 

and Fridman 2011).  

 

 

 

 Fig. 6. Comparison of regression-based estimates for timber losses given by TILT 

and TILES (Eq. 1 and 2) for five well-known storms from Paper V. The total primary 

damage losses of storm “Per” are incomplete in the EFIATLANTIC.  

 

TILT appears to be suitable for describing the severity of rapidly moving large scale 

storms. TILES can be used for estimating regional damages, but it has a tendency to 

overestimate the volume of primary damage. The primary damage recorded of storm 

Kyrill (Pinto 2009; Fink et al. 2009) in the EFIATLANTIC storm catalogue is 

around 52 Mm3, and it is the sum of primary damage reported from Germany, 

Poland, and Czech Republic. Reports from other affected countries are not presented. 

Still, the estimate 110 Mm3 (Fig. 6) based on TILES appears to be too large. 
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Based on TILT (Fig. 6), the storm “Gudrun” could have damaged 70-80 Mm3 of 

timber over the whole domain it influenced. However, based on TILES, the loss of 

timber in Sweden would have been only 24 Mm3 (Paper V, Table 4). For storm 

“Per”, the losses based on TILES were estimated at around 18 Mm3 in southern 

Sweden, whereas the real loss was 12 Mm3. For storms “Lothar” and “Martin”, the 

TILT and TILES give rather similar numbers for primary damage. The known 

overall damage due to these storms was around 230 Mm3 based on the 

EFIATLANTIC storm catalogue.  

 

In addition to the damage analyses, Paper V demonstrated that the temporal and 

spatial resolution of the meteorological data received either from the reanalyzed data 

or from the climate model is important in the storm impact analyses. By using too 

low a temporal resolution, the storm risk signal may be shifted hundreds of 

kilometers along the path of the storm. By using too low a spatial resolution, the 

wind speeds decrease, but the signal location is still approximately the same as when 

using higher spatial resolution.  

 

4. DISCUSSION AND CONCLUSIONS  

4.1 EVALUATION OF THE APPROACHES AND RESULTS  

The most reliable results in climate research are based on large model ensembles. It 

is clear that the results of the average changes and uncertainties presented in Papers 

I-IV are a good starting point for risk analyses. However, rather than utilizing only 

ensembles and then making ensemble mean projections it is also good to look at the 

changes model by model and then form the projections. By doing so, uncertainty 

analyses can also be made. This was done in Paper IV with geostrophic winds.  
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The snow load model succeeded in giving a rather realistic picture of the spatial and 

temporal differences in the snow loads (Papers I-III). However, in future work and 

further development of this snow load model, it would be essential to consider 

aspects such as i) the effect of drifting snow (e.g., Degaetano and O’Rourke 2003), 

ii) the impact of humidity that can cause ice loadings or otherwise make the snow 

heavier, iii) the effect of ageing of snow (Yong and Metaxas 1985), iv) the effect of 

snow pack properties on starting point for snow loss (Li and Pomeroy 1997), and v) 

swaying of trees (Peltola et al. 1996).  

In this work, the soil frost depths were simulated for snow-free ground (road soil) 

applying the previous work of Venäläinen et al. (2001b). As a result, the frost depths 

simulated corresponded to approximately double the corresponding soil frost depths 

of the actual forest soils measured by the Finnish Environmental Institute. A further 

development of this approach could be to utilize, in addition to temperature and soil 

properties, changes in snow cover caused by rainfall as well as melting and freezing 

(Gregow et al. 2011). Such a set of variables could still be used to analyze when 

employing the GCM or the RCM data.  

The dynamics of forest stands were simulated in this work by the ecosystem model 

SIMA. The average results for tree and stand characteristics of the SIMA simulations 

were further used as an input in the mechanistic wind damage model HWIND. Based 

on earlier findings, the SIMA model is expected to simulate the volume growth of 

managed stands in good agreement with the measured volume growth on the 

permanent sample plots of the National Forest Inventory throughout Finland and the 

statistical growth and yield model MOTTI in main tree species. Earlier critical wind 

speed predictions of the HWIND model have also been in line with corresponding 

predictions of other mechanistic models (e.g., ForestGales and FOREOLE). 

However, any inaccuracies in the input of tree characteristics for HWIND and 

parameters that control the magnitude of wind loading or resistive bending moments 

of trees can have significantly affect the predicted critical wind speeds for uprooting 
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and stem breakage (see Peltola et al. 1999b). Thus, errors of input data used for the 

SIMA model (e.g., DBH) may propagate (e.g., effects on height) and affect the 

accuracy of the wind damage assessment in terms of the classification of stands 

(height ≥10 m) in stands with a possible risk of damage by the integrated models 

(see, e.g., Talkkari et al. 2000; Blennow and Sallnäs 2004; Zeng et al. 2004, 2006, 

2007). However, based on the earlier validation work for these component models 

(SIMA, HWIND), it is expected that the simulations of this work provide results with 

an accuracy typical for these kinds of models. 

The regression-based timber loss estimates TILT and TILES (Paper V) gave rather 

similar results for the primary timber losses due to strong winds when considering 

the whole area influenced by the storm. Using TILES is practical when country-

specific primary losses are assessed. However, these methods could still be 

developed further by including information about tree volumes as well as tree species 

distribution in forests.  

  

Projected changes in the potential risks for wind- and snow-induced damage 

The projections concerning the occurrence of different wind speeds show that there 

will be rather small changes in windiness during this century (Papers III-IV). The 

increase in mean and extreme geostrophic wind speeds by 2-4% in the southern and 

eastern parts of Northern Europe, including Finland, and the decrease by 2-5% over 

the Norwegian Sea is, nonetheless, statistically significant at the 95% level. 

Qualitatively similar trends have been found in the investigations of Bengtsson et al. 

(2006, 2009) and Nikulin et al. (2011). By employing six GCMs, Nikulin et al. 

(2011) showed that wind speeds will increase in the Baltic Sea region, southern and 

eastern Finland, and the northwestern part of Russia.  

The individual GCMs in Paper IV as well as in the work of Nikulin et al. (2011) 

indicate that depending on the model, the impact is shifted more or less over Finland. 
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In Nikulin et al. (2011), the gust wind speeds occurring once in 20 years differ quite 

a bit between the models. Three of the models indicate up to 10-20% increase in 

wind gusts over Finland, whereas two of the models indicate almost no change and 

one model shows a similar decrease. Also, the individual 9 GCMs employed in Paper 

IV showed both local increases and decreases. In addition to the differences in the 

results between the GCM-based damage analyses, Paper V demonstrated that the 

temporal and spatial resolution of the meteorological model is important and may 

affect the results. For instance, when the temporal resolution is low, the storm risk 

signal may be located hundreds of kilometers away from the real risk area. 

Additionally, the low spatial resolution in the calculations decreases the wind speeds 

and, therefore the extremes are not captured properly. However, using low spatial 

resolution with high temporal resolution places the high wind speeds of the storms 

nearly as well as when using both high spatial and temporal resolution.  

Future projections of snow damage risk show a decline from the current climatic 

conditions. Averaged over the whole country (Paper II, Fig. 2), the mean number of 

days with snow loads>20 kg m-2 per year will, in general, decrease by 11%, 23%, 

and 56% in the 1991-2020, 2020-2050, and 2070-2099 periods, respectively, 

compared to the baseline period 1961-1990. However, in Paper III, the occurrence of 

heavier snow loads of >20 kg m-2 showed an increase by 22-45% in the Helsinki, 

Joensuu, and Rovaniemi regions around 2046-2065. This kind of a possibility for a 

temporal increase in heavy snow loads was assumed in Paper I as well. Also Carter 

et al. (2005) and Räisänen (2008) have found that climate warming will at first result 

in larger daily snowfall amounts.   

Toward the end of this century, the deeper soil frost classes (e.g., road, snow-free, 

soil frost>60 cm, corresponding >30 cm depth in forest soil) will nearly disappear in 

southern and central Finland (Paper I, Fig. 9), decreasing also the anchorage of trees 

from late autumn to early spring, i.e., during the windiest season of the year. In 2046-

2065, some winters can already lack sufficient soil frost depths, which support tree 
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anchorage. In 2081-2100, this could be happening annually throughout southern and 

central Finland and possibly even in eastern Finland. Peltola et al. (1999b) and 

Kellomäki et al. (2010) showed the same kinds of results.  

 

Projected risks to forests due to the changes in forest dynamics  

In Paper III, it was shown that in some of the most southern regional units of Forest 

Center of Finland, the dominance of Norway spruce (with shallow rooting) is 

projected to decrease under the changing climate toward 2100, which is the opposite 

of birches, but also true of Scots pine. This result was partly due to the fact that under 

the changing climate, Norway spruce is the most susceptible to drought risk, which 

increased its mortality in model simulations, too. However, tree species proportions 

were not actively controlled by thinning, which affected the success of birch in 

particular. Since Norway spruce with its shallow anchorage is the most vulnerable 

tree species to uprooting in Finnish conditions, the risk of wind damage could 

theoretically to some extent be prohibited in autumn (and winter) when birch without 

leaves does not suffer damage. On the other hand, decrease in soil frost from late 

autumn to early spring will concurrently increase the risk of damage, especially in 

Norway spruce and Scots pine. But in summer, when birch is in leaf, the risk will be 

considerable, regardless of tree species. This will be particularly so if severe weather 

events such as were experienced after the record warm summer of 2010 in Finland 

occur more often in the future. Furthermore, projected increases in both stocking 

(Paper III) and extreme winds (Paper IV, Figs. 5-7) may change wind-induced risks 

to forests. 

The highest risk for snow-induced damage to forests will be in central Finland, 

northern parts of Kainuu, Pohjois-Pohjanmaa, and northwestern Finland by the 

middle of this century (Paper II, Fig. 5). The risk for snow damage will be highest in 

young and medium age stands in Scots pine and birch, as has also been shown in 
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previous studies (Valinger et al. 1993; Valinger and Lundqvist 1994). In these parts 

of Finland, the snow loads were also found to have the highest return levels of 31-33 

kg m-2 once in 10 years under the current climate in Papers I and II.  

 

4.2 CONCLUSIONS  

Under the current climate, large-scale storms that have caused significant forest 

damage have typically approached Northern Europe from the Atlantic. The main 

storm tracks have been directed over southern and central Scandinavia toward 

Finland, Russia, and the Baltic countries (Paper V, Fig. 1). The strongest storms tend 

to appear over the Northern Atlantic and near the coasts.  

The risk for uprooting and stem breakage of trees in the managed Finnish forests is 

caused by combinations of strong winds, heavy snow loads, and unfrozen soil 

(Papers I-III). The concurrent increase in the occurrence of strong winds and heavy 

snow loads under unfrozen soil conditions indicate that the risk for uprooting may 

increase significantly in southern, central, and even eastern Finland in the next few 

decades. In the north, climatic conditions favorable for snow-induced damage show 

an increasing trend, too. These threats should be taken into account in forest 

management, if possible, especially in the riskiest areas. The decrease of soil frost 

with the projected increase in liquid precipitation will also negatively affect the 

carrying capacity of forest soils from late autumn to early spring and thus 

implementation of forest harvesting operations, too.   

Overall, the results of this work provide valuable information for the Finnish 

forestry. However, one should keep in mind that estimating future changes is always 

challenging because the different global climate models (GCM) and climate change 

scenarios provide very different projections, and the uncertainties increase the farther 

out the projections are extended. Furthermore, in addition to climate, forest structure 

and management also affect future risks to forests (see Kellomäki et al. 2005, 2008). 
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These factors should be kept in mind when trying to generalize the findings of this 

work. 
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