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Productivity is an important aspect of any software development project as it has direct
implications on both the cost of software and the time taken to produce it. Though software
development as a field has evolved significantly during the last few decades in terms of
development processes, best practices and the emphasis thereon, the way in which the
productivity of software developers is measured has remained comparatively stagnant. Some
established metrics focus on a sole activity, such as programming, which paints an incomplete
picture of productivity given the multitude of different activities that a software project consists
of. Others are more process-oriented — purporting to measure all types of development
activities — but require the use of estimation, a technique that is both time-consuming
and prone to inaccuracy. A metric that is comprehensive, accurate and suitable in today’s
development landscape is needed.

In this thesis, we examine productivity measurement in software engineering from both
theoretical and pragmatic perspectives in order to determine if a proposed metric, implicitly
estimated velocity, could be a viable alternative for productivity measurement in Agile and
Lean software teams. First, the theory behind measurement — terminology, data types
and levels of measurement — is presented. The definition of the term productivity is then
examined from a software engineering perspective. Based on this definition and the IEEE
standard for validating software quality metrics, a set of criteria for validating productivity
metrics is proposed. The motivations for measuring productivity and the factors that may
impact it are then discussed and the benefits and drawbacks of established metrics — chief
amongst which is productivity based on lines of code written — explored.

To assess the accuracy and overall viability of implicitly estimated velocity, a case
study comparing the metric to LoC-based productivity measurement was carried out at the
University of Helsinki’s Software Factory. Two development projects were studied, both
adopting Agile and Lean methodologies. Following a linear-analytical approach, quantitative
data from both project artefacts and developer surveys indicated that implicitly estimated
velocity is a metric more valid than LoC-based measurement in situations where the overall
productivity of an individual or team is of more importance than programming productivity.
In addition, implicitly estimated velocity was found to be more consistent and predictable
than LoC-based measurement in most configurations, lending credence to the theory that
implicitly estimated velocity can indeed replace LoC-based measurement in Agile and Lean
software development environments.
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1 Introduction

Productivity is an important factor when considering the cost of developing
software [Boe87]. Striving to produce software in shorter periods of time
results in fewer person-months spent, which in turn reduces financial cost.

Improving productivity can be seen to consist of three main strategies: au-
tomating what can be automated, to speed up development; avoiding work of
little value, to work in a smarter fashion; and reusing software components to
reduce unnecessary work [Boe99]. In order to determine if productivity is at
an acceptable level or even improved compared to prior efforts, it must be
measured.

Productivity is typically defined as the ratio of what is produced (output) to
the amount of time required to produce it (effort or input). In the field of
software development, measuring productivity has proven to be a challenge,
mainly due to the individual nature of any given software project and the
abstract nature of software itself. Established productivity metrics reflect this
challenge: some metrics are only intended to measure one specific activity of
a software development project (such as programming), whereas others are
capable measuring productivity across all conceivable activities but require
the use of time-consuming estimation.

Ideally, the productivity of a software team or its members should be measured
using a metric that is flexible enough to take all possible nuances and types
of activities in a software project into account whilst still being at least
as accurate as the metrics established to date. The data needed to assess
productivity should be simple to collect yet minimally obtrusive so that it
does not impede the day-to-day work of a software development team.

Software engineering as a field has seen significant changes since its origins.
Since the first international conference on the subject in 1968 [Mah04], pro-
cesses, models and best practices have evolved considerably. In contemporary
software engineering, it is universally accepted that high quality software
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routinely results from high quality development processes [MAKS12]. As such,
a productivity metric should not only fulfill the aforementioned requirements,
but also be suitable for use in the development processes adopted today.

Given the proliferation of Agile and Lean methodologies, it is relevant to
examine not only how established productivity metrics fare in such a environ-
ment, but also if it is possible to develop a new metric that suitable for use
in such methodologies. In this thesis, we propose a new metric — implicitly
estimated velocity — and compare its usefulness and accuracy to that of
arguably the most well-known productivity metric, productivity based on
lines of code. In particular, we discuss the following three questions:

1. Is productivity based on lines of code a valid metric for productivity in
Agile and Lean software development?

2. Is the proposed concept of implicitly estimated velocity a valid metric
for productivity in Agile and Lean software development?

3. If productivity based on lines of code is unsuitable in an Agile and
Lean environment, could implicitly estimated velocity serve as a viable
replacement?

In order to address the aforementioned questions, the results of a case study
of two software projects have been analysed and interpreted. The projects
were carried out at The University of Helsinki’s Software Factory [Sof13], a
workplace-like environment in which small teams of students create software
applications during a span of approximately seven weeks. The Factory allows
researchers to perform experiments and collect data to study almost any
aspect of a software project.

This remainder of this work is organised as follows. Chapters 2 and 3
provide information on measurement theory and productivity measurement
in software engineering, respectively. Chapter 4 describes the motivations
and practicalities of measuring productivity. Chapter 5 presents established
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metrics, whilst Chapter 6 defines the proposed metric of implicitly estimated
velocity. Chapters 7 to 9 describe the design and execution of the Software
Factory case study. The study results are presented in Chapter 10. Chapter
11 summarises the work with conclusions and discussion.

2 Measurement theory

In order to successfully measure an entity and correctly interpret the results
of a measurement, knowledge of measurement theory, terminology and data
types are prerequisite. Measurement theory can be broken down into two
related concepts: attributes and metrics.

2.1 Attributes

An attribute can be defined as “a measurable physical or abstract property
of an entity” [iee98]. Intuitively, an attribute is a property of a software
product, such as reliability. An attribute may also describe some property
of a software development process, such as team member productivity. To
successfully measure an attribute, one must derive a suitable metric for it.

2.2 Metrics

Ametric — occasionally referred to as ameasure —describes what information
should be collected to measure a particular attribute, and how this information
can be calculated to yield a meaningful result. For example, a metric for
software size could simply be the total number of source lines of code (LoC).
Such a metric tells us that to determine the size of an application, we must
obtain the application source code and total the number of code lines it
comprises.
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Metrics can be used for both direct measurement and indirect measurement. A
direct metric is a metric that is only dependent on a single variable; LoC as a
metric of size is an example of a direct metric. An indirect metric is dependent
on two or more variables. Indirect metrics are commonly used to measure
more complex attributes such as productivity, whose generic definition is the
amount of input or effort required to produce a unit of output — the ratio of
two variables.

2.3 Data types

After recognising a set of attributes for measurement and deriving a cor-
responding set of valid metrics, the data subject to measurement must be
collected. The applicable methods for data collection vary depending on the
data type (qualitative or quantitative) as well as its level of measurement
(nominal, ordinal, interval or ratio).

Qualitative data is non-numerical data that can be categorised using a nominal
scale. Using a nominal scale, the only permitted empirical operation is the
determination of equality [Ste46]. Typical examples of such data include
binary data (yes or no, good or bad) and categorical data (belonging to one
particular category). Qualitative data is generally collected using methods
such as surveys and interviews.

Quantitative data is numerical data that follows an ordinal, interval or ratio
scale. Compared to a nominal scale, an ordinal scale allows for one additional
operation: the determination of greater or less [Ste46]. Data of this form can
thus be ordered. A example of an ordinal scale is the Mohs scale of mineral
hardness [MSBD04].

Using an interval scale, the following operations are permitted:

• Determination of equality.

• Determination of greater or less.
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• Determination of equality of intervals or differences.

Intuitively, data following an interval scale is data that lacks a true zero point.
A common example of such a scale is the scale of temperature in degrees
Centigrade, in which the zero point is a point that has been agreed upon —
zero degrees Centigrade does not imply “no temperature”.

A ratio scale is the most powerful in terms of applicable statistical methods.
Using a ratio scale, the following operations are permitted [Ste46]:

• Determination of equality.

• Determination of greater or less.

• Determination of equality of intervals or differences.

• Determination of equality of ratios.

One example of quantitative data using a ratio scale is LoC. Though quan-
titative data can be collected using the same methods described above, it
is often possible to automate the entire collection process. For the case
study presented in this thesis, only quantitative data is analysed; the level of
measurement is mentioned beforehand for each of the quantitative data sets
used.

Qualitative and quantitative data are not to be confused with qualitative
and quantitative research. Qualitative research is a research method that
focuses less on numbers and more on the human elements of a topic [KM86];
quantitative research is more focused on numbers analysed using mathematical,
statistical and other computational techniques [Giv08].
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3 Productivity measurement in software en-
gineering

In this thesis, productivity is defined as a measurable attribute of a software
development team or its members that describes the total output produced
during a given span of time. As such, its core focus not on software itself, but
rather the people who produce it. As with any other metric, a productivity
metric should not only be well-defined, but also validated before use.

3.1 Definition

Figure 1 presents a generic linear function for productivity — the ratio
between the output o of a software team (or software team member) and
their effort i.

f(o, i) = o

i

Figure 1: A generic productivity function.

The aforementioned function is by far the most widely used model for produc-
tivity in software engineering [BSVW96, BEEB98, JRW01, BBM96], and the
basis upon which the most common productivity metrics have been developed.

3.2 Validating productivity metrics

In order to ensure that a given metric measures what it is intended to measure,
it must be validated. A metric can be seen as a mathematical function; as
such, any metric can be validated mathematically. In software engineering,
a metric can be defined as a function whose inputs is software or software
process data and whose output is a single numeric value [iee98].
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For attributes pertaining to software quality, a direct metric can be considered
valid if and only if it satisfies the following criteria [KMB04, iee98]. Here,
attribute values are values calculated from a different metric acknowledged to
indicate software quality.

1. Correlation: a metric M should be linearly related to the attribute it is
supposed to measure, as measured by the statistical correlation between
the metric values and corresponding attribute values.

2. Consistency: if values of the attribute A under study are monotonic
(i.e., A1 > A2 > ... > An), then the corresponding metric values
M1, M2, ..., Mn should also be monotonic (M1 > M2 > ... > Mn).
Intuitively, this criterion describes if the metric can accurately rank a
set of products or processes by quality.

3. Tracking: if a metric M is related to the attribute A it it supposed
to measure, then if the attribute value changes from A1 to A2, the
metric value should also change from M1 to M2 in the same direction
(i.e., if A1 > A2, then M1 > M2). As such, this criterion describes to
which extent the metric in question is capable of tracking changes in a
product’s quality at different points in time.

4. Predictability: if the result of the metric’s function F is known at any
given point in time, one should be able to predict the result of F for
any given time in the future.

5. Discriminative power : a metric should clearly discriminate between
good results and poor results. For example, if a metric measures software
reliability, a highly reliable application should yield a result significantly
higher than an application with low reliability.

6. Reliability: a metric should satisfy criteria 1-5 for at least N per cent
of the times it is applied. Intuitively, this means that the higher the
percent of times all validation criteria are satisfied when applying the
metric, the higher the reliability of the metric itself.
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The criteria presented above are designed for direct software quality metrics.
They can, however, be adapted to assess productivity, an indirect construct.
Using the generic productivity function f(o, i) = o

i
as a base, we propose the

following validity criteria:

(i) Correlation: a productivity metric M should be linearly related to
the attribute it is supposed to measure, as measured by the statistical
correlation between the metric values and corresponding attribute values.

(ii) Consistency: given a sequence P of attribute values P1, P2, ..., Pn for a
software project, the corresponding metric values M1, M2, ..., Mn should
be monotonic — M1 > M2 > ... > Mn — if P1 > P2 > ... > Pn .
Intuitively, this criterion describes if a productivity metric can accurately
rank the productivity of members of a software project.

(iii) Tracking: if a productivity metric M is indeed related to the attribute of
productivity P , then if productivity changes from P1 to P2, the metric
value should also change from M1 to M2 in the same direction (i.e., if
P1 > P2, then M1 > M2). As such, this criterion describes to which
extent the productivity metric in question is capable of tracking changes
in productivity at different points in time.

(iv) Predictability: if the result of the productivity metric’s function F is
known at any given point in time, one should be able to predict the
result of F for any given time in the future.

(v) Discriminative power : a productivity metric should clearly discriminate
between good results and poor results.

(vi) Reliability: a productivity metric should satisfy criteria i)-v) for at least
N per cent of the times it is applied. Intuitively, this means that the
higher the percent of times all validation criteria are satisfied when
applying the metric, the higher the reliability of the metric itself.
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For the aforementioned criteria, results from a generally accepted productivity
metric other than the one under inspection can be used as attribute values.
This, however, is not a requirement: if the validity of established metrics
themselves are under inspection, one may use an alternative data source
such as expert opinion or assessment by one of more of a software project’s
stakeholders. The case study in this work uses peer-assessment by project
team members to constitute such a data source (see Chapter 7.3).

As with the criteria for direct software metrics, we require that all of the
aforementioned criteria are satisfied for a productivity metric to be considered
valid. The following mathematical and statistical methods can be used to
determine if a criterion is satisfied:

(i) Correlation: to measure the linear dependence between two variables
of a different scale, the Pearson product-moment correlation coefficient
can be used.

(ii) Consistency: in order to determine the degree to which a metric is con-
sistent, one can calculate Spearman’s rank correlation between attribute
values and their corresponding metric values.

(iii) Tracking: in order to determine the degree to which a metric fulfills the
tracking criterion, one can calculate Spearman’s rank correlation over n

attribute and metric value pairs (Pi, Mi), where Pi and Mi have been
measured at the same point in time.

(iv) Predictability: standard deviation can be used to determine to which
extent values vary in a mathematical sequence. The lower the variation,
the easier it becomes to predict the value vn in a series given the
preceding values v0, ..., vn−1. To be able to compare the deviations of
multiple series with differing units, one must first normalise the deviation
results by diving the mean of a series by its standard deviation. Such
a normalised standard deviation of often referred to as a coefficient of
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variation [Bro98]. The lower the unbiased1 coefficient of variation, the
higher the predictability of the metric under evaluation.

(v) Discriminative power : the discriminative power of a metric can be
assessed by calculating the unbiased coefficient of variation of a mathe-
matical sequence. Unlike when assessing predictability, the higher the
value of the coefficient, the greater the discriminative power.

(vi) Reliability: to assess the reliability of a metric, one may simply divide
the times the metric satisfies criteria i)-vi) by the total number of times
the metric is applied.

The methods for checking the validity criteria produce a numeric result. This
requires determining suitable threshold values which much be either achieved
or exceeded for the criterion in question to be satisfied. This allows for a
degree of customisation: in some contexts, the discriminative power of a
metric may be of more importance than its predictability, for instance. In
such cases, threshold values can adjusted accordingly.

4 Productivity measurement in practice

To successfully assess the productivity of a software team or its members, one
must not only check the validity of the applied metric, but also understand
why and for what purpose such measurements can be carried out. In addition,
one must be able to correctly interpret the results, which entails understanding
what can impact productivity and to which extent.

1Coefficients of variation are typically computed on samples that estimate an underlying
population. Such biased coefficients can be converted into unbiased coefficients using the
formula (1 + 1

4N )C, where N is the sample size and C the biased coefficient [Bro98].

10



4.1 Reasons for measuring productivity

Productivity data is collected and analysed for a variety of different reasons;
these reasons typically differ depending on who functions as the stakeholder, i.e.
from whose viewpoint productivity is being examined. Collecting productivity
data pertaining to software engineering is beneficial to any given organisation,
and can be motivated with a basic example.

Table 1 presents some possible benefits of productivity measurement in a
scenario where data related to the productivity of a development team and its
members has been collected and analysed against to a given metric. Assuming
a valid metric, the results are meaningful to different stakeholders in different
ways.

Stakeholder Possible benefit(s)

Development team member personal benchmark; validation of individ-
ual effort

Development team lead leadership benchmark; validation of man-
agerial skills; baseline for improvement

Software development lead comparison point; leadership benchmark;
validation of managerial skills; baseline for
improvement

Business lead comparison point; cost analysis; compari-
son point; baseline for improvement

Table 1: Possible benefits of team productivity measurement.

For a development team member, his or her personal productivity data could
be used as a benchmark to validate current effort, or seen as an encouragement
to heighten productivity.

For the team lead, the the combined productivity of the team could be used to
assess his or her managerial and leadership skills. The individual productivity
of team members could be analysed to improve the combined productivity in
future projects, for example by introducing a different software development
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process or reassigning specific development work to different persons.

For the software development lead, productivity data for different teams could
be compared and used for improvement: intensive projects can be assigned to
proven highly productive teams and software projects in a particular domain
to teams with a proven track record in that domain.

For the business lead, the main motivator for measuring software engineering
productivity is that it has a direct impact on cost: a highly productive team
can produce results faster, reducing overall costs in terms of man hours needed
to complete a project.

In a software development project, there may exist several stakeholders other
than those mentioned above. For the results of productivity measurement to
be interpreted correctly, knowledge of the factors that impact productivity is
needed regardless.

4.2 Factors that impact productivity

Given a productivity metric, the interpretation of its results for the purpose
of cross-team or cross-context comparison requires comprehensive knowledge
of the impact factors present in that scenario. When discussing productivity
metrics, an impact factor is a factor that in some form impacts how productive
development team members are when working on a project. Impact factors
contribute either positively or negatively to productivity ratings, and often
vary between projects of different nature.

The sheer amount of different impact factors in software engineering neces-
sitates some form of abstraction or simplification. Vosburgh et al. suggest
separating productivity factors into project-related factors and product-related
factors [VCW+84]. Project-related factors describe how an application is
developed; such factors can be controlled by management personnel. Product-
related factors, on the other hand, cannot be controlled by management
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staff. As such, product-related factors can be regarded as constant over
project-related variables [VCW+84]. Intuitively, this means that given a set
of product-related factors, the set would not change even if the values of
project-related variables were to change. Table 2 presents some key project-
and product-related impact factors.

Trendowicz et al. present a different abstraction where factors influencing
productivity are separated into context factors and influence factors [TM09].
A context factor is a factor pertaining to the context or environment of a
given software engineering project, whereas an influence factor is a factor
impacting productivity within a given context.

Table 3 presents some notable impact factors found during a study of 126
publications, 13 industrial projects, eight surveys and four workshops [TM09].
In most cases, it is clear that influence factors are determined by context
factors: for a given project, its significant impact factors may vary depending
on the overall context.

4.3 Comparing productivity across projects

Due to the vast amount of factors that can impact productivity, comparing
measurement results across projects may be highly misleading if done without
properly adjusting the results to take such factors into account. Given two
projects, one of two scenarios may occur [TM09]:

• The set of impact factors for each project may overlap significantly.
Intuitively, this means that the impact factors are similar. However,
this does not mean that the effect of these factors — either positive or
negative — is equal in both projects.

• The set of impact factors themselves do not overlap significantly between
projects.
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Product-related factors

Resource constraints

– Timing

– Memory utilisation

– CPU occupancy

– Number of resource constraints

Program complexity

Client interface

– Experience

– Participation

Size of programming product

Project-related factors

Hardware development concurrent with programming

Development computer size

Requirements specification

– Client vs. ITT-written specification

– Amount of requirements rewritten

Modern programming practices usage

Personnel experience

Table 2: Factors that impact productivity (adapted from [VCW+84]).
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Influence factors, team capabilities and experience

Programming language experience

Application experience and familiarity

Project manager experience and skills

Influence factors, software complexity

Database size and complexity

Architecture complexity

Complexity of interface to other systems

Influence factors, project constraints

Schedule pressure

Decentralized/multi-site development

Influence factors, tool usage and quality/effectiveness

CASE tools

Testing tools

Context factors

Programming language

Domain

Development type

Table 3: Factors that impact productivity [TM09].
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If impact factors for a given project are known, it is possible to artificially
increase or dampen productivity ratings using coefficients, making cross-
project comparisons possible. Let us consider a theoretical scenario where two
software engineering projects have the exact same context factors and influence
factors. Let us further assume that one of these influence factors is the degree
of customer participation in the project: the customer for project A does not
participate directly in the project, but the customer for project B is highly
involved in the decision-making process. The impact of all other influence
factors and context factors is the same across projects. After calculating
productivity ratings for both projects using LoC-based measurement, project
A is found to have written 20 per cent more code during the same time
as project B. Thus, customer participation has accounted for a 20 per cent
increase in productivity. This degree of impact can be factored out either by
decreasing the average productivity rating of project A by multiplying by a
coefficient of 1

1.2 , or increasing the average productivity rating of project B
by multiplying by a coefficient of 1.20.

The ability to devise appropriate coefficients entails not only knowing the
impact factors for a given project, but also how much a given factor has
impacted productivity inside the project. This can be achieved, for example,
by asking personnel to identify impact factors for a project and assign a rating
for each one. Another, decidedly more accurate approach is estimation based
on a large sample of historical software projects. The Experience database,
developed by Maxwell and Forselius, is a database containing function point-
based productivity data for 206 software projects from 26 Finnish companies,
divided into five major business sectors (banking, insurance, manufacturing,
wholesale-retail and public administration) [MF00]. For all 206 submitted
projects, key productivity factors have been identified and assigned an impact
rating (very low to very high) based on a set of criteria developed for each
factor. Thus, it is possible to extract estimated coefficients for any key
factor in any of the five aforementioned business sectors, making cross-project
comparisons easier. Additionally, such a database can be used to estimate the
productivity in a new project and to improve productivity identifying which
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impact factors typically have a negative affect on productivity (depending on
a project’s business sector).

Even when done with care, cross-project productivity analysis is based on
estimates in the sense that establishing all of the impact factors of a project
is not possible in practice. Ideally, cross-projects comparisons should only be
carried out for projects in which not only notable impact factors are similar,
but also their effect.

5 Established productivity metrics in software
engineering

All software engineering — choice of development process notwithstanding —
is made up of different activities. Such activities include elicitation of system
requirements, elicitation of software requirements, analysis, program design,
coding, testing and operations [Roy70]. These activities exist regardless of
the chosen software development process. Due to the different nature of
these activities, the output of a software project does not consist of only one
type of unit, but several. Some established productivity metrics focus on
one particular activity and thus one type of output unit, whereas others are
designed to be applicable for all activities.

5.1 Productivity based on lines of code

Measurement based on lines of code is currently one of the most popular ways
to gauge coding activity. In this model, source lines of code serves as the
output and time spent programming (typically presented as person-months,
pm) as the input or effort. Figure 2 presents a mathematical notation for the
model.
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f(sloc, pm) = sloc

pm
, sloc ∈ N ∧ pm ∈ R+

Figure 2: A model for productivity measurement based on LoC and person-
months.

The primary benefits of this model are easy to identify. Firstly, the data
required to use this model is easy to collect. Program code is typically stored
in a code repository, from which it is simple to extract the lines of code
written by a given team member, allowing the assessment of not only the
entire programming team, but also individuals. Programming time is also
easily collected, and can be approximated based on the length of of a project
and known working hours. The simplicity of data collection is perhaps the
main reason why LoC-based productivity measurement has managed to gain
such a foothold in the software engineering industry.

Secondly, even without taking into account the validity criteria outlined in
Chapter 3.2, it is clear the LoC-based productivity measurement does, to
some extent, serve as an indicator of how productive a team member has been
when programming: a programmer who has produced one thousand lines of
code during one person-month is — from a programming perspective — more
productive than a programmer who fails to produce any code at all during
one person-month. It is when both programmers have produced some code
during a given amount of time that such a distinction is difficult to make due
to a host of major drawbacks with the model.

The primary drawback with LoC-based measurement is that since the metric
is based solely on produced source code, it places no value in activities that
do not result in code. In software projects, significant time can be spent on
non-programming work. Such work, though not resulting in code, may still
constitute a significant project contribution — forgoing the measurement of
these types of contributions can be misleading.
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Another issue inherent to using source code for productivity measurement
is that programming languages differ from one another, both in terms of
syntax and overall design. In a theoretical scenario where one programmer
implements N features in one person month using the Ruby programming
language, his or her LoC per person-month ration is likely to be lower than
a programmer in the exact same scenario and context who implements N

features in one person-month using the Java programming language, because
Java is typically regarded as more verbose language than Ruby. This can
result in erroneous values when using LoC-based metrics.

The lack of differentiation between levels of complexity is another — albeit
less significant — problem with LoC-based measurement. Implementing a
simple feature may well result in more lines of code than when implementing
a complex one, despite the fact that both require the same amount of effort.
Such circumstances may yield misleading results, interpretations, or both.

Given its dependence on programming language, LoC-based measurement
must also contend with potential issues caused by language idioms. Idioms
are encouraged ways to express popular language constructs; these idioms
typically vary from language to language. Using idioms to implement an
algorithm may require less code than implementing the same algorithm
without the use of idioms. In such cases, using LoC-based measurement
will result in higher productivity ratings for individuals who ignore language
idioms, which is likely not a desired result.

In addition to using language idioms, different coding styles used within the
same project may result in misleading productivity ratings. A developer who
pays attention to code readability and understandability may write more
verbose code than others, but may take a longer time to do so. Consider
a scenario in which two developers, A and B, implement the same piece of
application functionality. The code written by A is highly understandable,
whereas the code written by B is equal in length yet much harder to grasp. If
B produced his or her code faster than A, he or she would be considered more
productive than A even though A placed more thought on proper code style.
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Enforcing a common code style within a development project may mitigate
the effects such scenarios have on LoC-based productivity measurement, but
are unlikely to eliminate them entirely.

If one chooses to apply the LoC model despite the drawbacks presented above,
deciding which parts of code should be used in counting a productivity rating
is important and can lead to the incomparability of results when not clearly
defined [Pet11]. Code that should generally not be counted includes the code
found in third-party frameworks and libraries, as these may include vast
amounts of functions or methods never actually used in the application-under-
development. Failing to factor out framework or library code results, yet
again, in misleading productivity ratings. Conversely, though framework and
library code should not be counted, the use of such resources promotes reuse
and may reduce the amount of defects found in application code [MCKS04].
A programmer unfamiliar with a library may spend more time implementing
an algorithm using it and producing less own code than a programmer who
writes the algorithm without the use of libraries. In such cases, LoC-based
measurement always favours the individual who does not make use of external
resources.

Lastly, the LoC productivity model — as well as all other productivity
models — may be subject to intentional abuse by individuals subject to
measurement. If programmers are aware that their productivity is being
gauged based on lines of code written per time, it is possible to arbitrarily
increase one’s productivity rating by purposely writing more verbose code,
adding unnecessary comments and inserting more line breaks. Such situations
are, however, more a matter of professional integrity than an inherent flaw in
the model.

The LoC model is still a popular productivity model today, even though many
of the faults with the model are recognised. It is assumed that although
flawed, there exists no better alternative [vV00].
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5.2 Productivity based on function points

The concept of Function Point Analysis (FPA) was first introduced by Albrecht
in 1979, primarily as a response to the fact that code length is subject to widely
different values depending on the programming language used [Alb79] and as
such unsuitable for determining the amount of functionality a piece of software
comprises [FP98]. FPA can be used to estimate or measure the functional size
of a given application and, by extension, be used to gauge the productivity of
the team implementing it. According to Longstreet, function point analysis
can be applied to an entire development project (including phases such as
requirements analysis), to an entire enhancement project (where an existing
application is expanded) and to existing applications (where effort is spent
on maintenance) [Lon04].

The main result of applying function point analysis is a so-called function
point count — a numeric value describing the amount of functionality an
application provides its user. Function point counts are typically calculated
by focusing on the following five entities [vV00]:

• Number of input types (I). An input type refers to user input that
changes underlying data structures of an application.

• Number of output types (O). An output type refers to data output by
an application.

• Number of inquiry types (E). An inquiry type refers to forms of user
input that control the execution of an application, but do not change
the underlying data structures of the application.

• Number of logical internal files (L). A logical internal file is a file used
and maintained internally by an application.

• Number of interfaces (F ). Interfaces are mechanisms by which data can
be output to — or shared with — another application.
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Figure 3 presents a mathematical notation for measuring programmer pro-
ductivity with function point analysis. Here, fp is the function point count.
The unit of effort is person-months (pm), the same as when using LoC-based
productivity measurement.

f(fp, pm) = fp

pm
, fp ∈ Z ∧ pm ∈ R+

Figure 3: A model for productivity measurement based on function points
and person-months.

The primary benefit of function point analysis for productivity measurement
is its independence of chosen programming language and thus also the amount
of source code produced. Assuming the same context and assumptions, an
application written in Java should have the same amount of function points
as the same application written in Ruby, for example. The second largest
benefit of FPA is that function points can be counted before implementation
has begun, since documentation produced during the design and requirements
elicitation phases of a project should contain enough information about
the application-under-development to identify transactions, files and general
system characteristics.

The reliance on documentation enables the estimation of function points
before implementation, but when measuring productivity using FPA, this
benefit is lost: as such a measurement entails calculating how many function
points were implemented during a period of time, the source code itself must
be used as the basis for analysis.

This, in turn, leads to another issue: currently, function point analysis is
best carried out manually. Though methods for automatic function point
analysis exist [FTB06, HA99], counting function points requires the ability
to recognise many different forms of inputs, outputs and patterns. Deciding
when to award a function point is often subjective, and thus difficult behaviour
for a machine to mimic. As a result, function point analysis software often
requires interaction from the user when deciding when to award function
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points. According to the International Function Point Users Group (IFPUG),
such applications can be certified as Type 2 FPA software [ifp13]. The lack of
Type 3 (fully automated) software is perhaps the most significant drawback
that function point analysis has against the easily automated process of
LoC-based productivity measurement.

5.3 Miscellaneous artefact-based productivity metrics

To measure productivity for development phases other than implementation,
one must use artefacts other than source code as the basis for analysis.
Such artefacts include requirements documentation, design documentation,
test cases and user stories. A naïve approach to evaluating productivity
for non-implementation phases would be to simply total the number of
appropriate artefacts produced during a given period of time, e.g. the number
of requirements documented per person-month as a metric for productivity
during the requirements elicitation phase. Why such metrics are not commonly
used is evident: not all projects produce the same types of artefacts and, even
if many artefacts are present in most software engineering projects, they can
differ wildly in scope and structure.

The challenge in devising metrics for non-implementation phases of software
projects has proven so difficult that LoC-based measurement is often applied
to entire projects, further compounding the metric’s known issues. A metric
model that is independent of produced artefacts, programming languages and
phases of development is needed.

5.4 Productivity based on project velocity

Though the notion of a task is present in most forms of software development,
it is an integral and systematic part of Agile software processes such as
eXtreme Programming (XP) [Bec99], Scrum [Sza13] and scheduling systems

23



such as Kanban [IPF+11]. The exact definition of a task varies from one
methodology to another, but in basic terms, a task can be defined as an
assignment that is undertaken by one or more team members and marked as
done when it is completed. In the Scrum process, for example, tasks manifest
themselves as items in the Sprint backlog — a collection of planned work
for the current Sprint2 — and are decompositions of larger units of work
known as Product Backlog Items [Sza07]. When using Kanban, tasks manifest
themselves as tickets (index cards) on the Kanban Board.

Velocity can be determined for projects in which tasks are tracked and their
effort estimated. Effort can be denoted using a common unit of measurement
such as ideal engineering hours or days, or an abstract unit such as story
points or t-shirt sizes. Given a set S of tasks and their total estimated effort
e during an interval of time t, velocity is calculated by dividing the effort e

with the interval t (Figure 4). In both XP and Scrum, it is recommended
that t be set to the length of one development iteration [Wel12, Sza07].

f(e, t) = e

t
, e ∈ N ∧ t ∈ R+

Figure 4: A model for productivity measurement based on velocity.

Though commonly used as a mechanism to plan projects by determining how
much work a development team can handle in a given iteration [Wel12, Sza07],
velocity does serve as an indicator of productivity as it adheres to the definition
of productivity (the ratio between what is produced and to the time required
to produce it). In theory, velocity combines the benefits of LoC- and function
point-based productivity metrics into a single model without also incorporating
the drawbacks of these metrics. The primary benefit of velocity is that, like
function point analysis but unlike LoC-based measurement, the model is
independent of chosen programming language in the sense that source code is
not an used as the model’s input. The multitude of issues with lines of code
as a basis for measurement are thus avoided.

2A Sprint can be defined as an iteration of work during which some increment of a
product’s functionality is implemented [Sza07].
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In addition to being independent of programming language, velocity is in
fact independent of any specific software project artefact. Tasks, though
each associated with some type of software engineering activity, are counted
in the same fashion regardless of what artefact (e.g. program code, design
documentation, test cases) was produced upon completion. By performing
velocity for different types of development activities, it is possible to measure
productivity not only for programming, but also requirements elicitation,
design, documentation etcetera — a significant advantage that neither function
point analysis nor LoC-based measurement can offer. For example, a team
whose assignment is to design but not implement a piece of software can be
measured for design productivity based on how many design-related tasks they
complete during a period of time — trying to measure design productivity
using LoC-based measurement will inevitably result in a productivity rating
of zero, as no code is produced.

Another major benefit of velocity is that — like LoC-based measurement
but unlike function point analysis — data can be collected with little to
no extra effort. For all well-known Agile development processes, software
exists with which tasks (or their equivalent counterparts) can be created and
tracked, providing detailed information on who worked on a task, when the
task was finished and what type of task is in question. In effect, velocity
using appropriate software allows one to automate the entire data collection
process.

Despite not having any of the major drawbacks found in function point- or
LoC-based productivity models, velocity is at a potential disadvantage in
terms of the sizing or scoping of tasks. As tasks must be estimated in terms of
the effort required to complete them, the underlying metric is only as accurate
as the estimation itself. Estimations can be done by consulting members
of the development team using an approach such as Planning Poker3, or by
assigning the estimation solely to an experienced project lead or manager.

3Planning Poker is an estimation technique where developers individually estimate the
time it takes to implement a set of features before arriving at a consensus for the entire
group.
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6 Implicitly estimated velocity

Implicitly estimated velocity (IEV) is the model proposed in this work as a
replacement for LoC-based productivity measurement. It entails counting
the number of tasks an individual has performed during a given span of
time. Though quite similar to measuring velocity, the key difference between
velocity and implicitly estimated velocity is that the latter does not employ
estimation of any sort: as mentioned in Chapter 5.4, a model that uses
estimation is only as accurate as the estimation itself. Studies have indicated
that estimates can vary greatly, especially in the beginning of a project
[Abr03], thus lowering accuracy. For inexperienced developers, the problem
is exacerbated as estimation is a skill that improves over time [Hum95]. The
implicitly estimated velocity approach suggests that by forgoing estimates,
one will still end up with a valid model. This is based on the assumption that
even without explicit estimation, all projects that base development around
the notion of a task do, in fact, implicitly estimate tasks.

Let us consider a scenario in which Agile and Lean methodologies are used
in a development project, but no explicit estimation is done. The implicitly
estimated velocity model assumes the following:

• When any task is being defined, the overall context, domain and make-
up of the development team dictates that there is an implicit lower and
upper size or effort limit within which the task must lie before it is
accepted as a task.

• As time goes on, the team’s ways of working narrow this possible size
interval.

• The likelihood of a team member choosing or being assigned only
comparatively small tasks, thus misleadingly achieving a high task
count, is mitigated when adopting methodologies that advocate the use
of task prioritisation and work-in-progress limits.
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• The likelihood of a team member choosing or being assigned only com-
paratively small tasks is further mitigated in cases where the individual
responsible for defining a task is not the same individual who is assigned
the task.

Figure 5 describes a model for measuring productivity using implicitly esti-
mated velocity. The unit of effort pm is, as with LoC-based measurement,
person-months. The task count, tc, is defined as the total number of tasks
completed by an individual or, if one wishes to measure an entire development
team, the total number of tasks completed by the all development team
members.

f(tc, pm) = tc

pm
, tc ∈ N ∧ pm ∈ R+

Figure 5: A model for productivity measurement based on implicitly estimated
velocity and person-months

In theory, implicitly estimated velocity shares all of the benefits of produc-
tivity measurement using velocity: the model is both independent of any
programming language and easy to use in practice, especially if a develop-
ment team is using an electronic task tracking system. Even when using
physical Kanban Boards, as is sometimes the case in co-located Agile and
Lean projects, it is relatively easy to periodically collect and count completed
task notes.

Another benefit is that by forgoing the estimation of tasks, the time spent
estimating how long a task takes to complete is freed and thus be used for
other activities. This reduces waste, one of the core principles of Lean software
development [PP03]. Specifically, it reduces waste due to unnecessary delays
whilst developing software.
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7 Case study design

A case study can be characterised as method focused on investigating con-
temporary phenomena in their specific contexts [RH09]. There is no single
definition as to what constitutes a case study. According to Robson, a case
study is a research strategy that makes use of multiple sources of evidence
[Rob02]. According to Yin, it is an inquiry in which the boundary between
the phenomenon under study and its context may not be clear [Yin03].

The goal of the case study in this work is to address formal research question
based on the general questions posed in Chapter 1. These questions are:

1. Is productivity based on lines of code a valid metric for productivity in
Agile and Lean software development?

2. Is the proposed concept of implicitly estimated velocity a valid metric
for productivity in Agile and Lean software development?

3. If productivity based on lines of code is unsuitable in an Agile and
Lean environment, could implicitly estimated velocity serve as a viable
replacement?

The case study is comprised of development projects carried out at the Soft-
ware Factory. As previously mentioned, the main focus is on the established
method of LoC-based measurement and the proposed concept of implicitly
estimated velocity.

In general, the case study follows the linear-analytical approach described by
Yin [Yin03]. This section describes the overall context of the Software Factory,
the research approach (including formal research questions and methodology),
the data collection process and threats to validity. Chapters 8 and 9 provide
a detailed analysis of both projects under study.
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7.1 General context

The Software Factory (henceforth referred to as the Factory), part of the
University of Helsinki’s Computer Science department, was established in
January 2010 and serves as an experimental research and development labo-
ratory and academic effort in which MSc-level student teams develop working
prototypes of applications during a full-time span of approximately seven
weeks, with each work day consisting of six hours. Students do not receive any
monetary compensation for their efforts; instead, they are awarded credits
based on how many days per week they work: ten ECTS credits are awarded
for four-day work weeks, twelve ECTS credits for five-day work weeks.

The Factory located in Helsinki is part of a larger, global initiative: currently,
similar Software Factory laboratories exist elsewhere in Finland (Joensuu and
Oulu) and Europe (Bolzano, Italy; Madrid, Spain) [Koi13].

All projects undertaken at the Factory are “commissioned” by industry
organisations; as such, there is always a real business demand behind each
project, adding credence to the validity of the Factory as a test bed for research.
Researchers from both the University of Helsinki and outside institutions are
welcomed to perform any type of research in the Factory. Possible research
methods include surveys, interviews, direct observations, action research and
data mining.

Regardless of the project, the Factory favours Lean software development by
adopting Scrumban as its primary development process. In essence, Scrumban
is an amalgamation of the Agile software development process Scrum and the
Kanban scheduling system. For the projects under study, a physical Kanban
Board was used in order to track tickets or tasks.
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7.2 Research questions

The general questions posed at the beginning of this work must be refined
into formal research questions that conform to the constraints of the case
study. This entails taking the overall context of the case study into account.
By doing so, the original questions can be refined into candidates for research
questions (CRQs) as follows:

• Q1: Is productivity based on lines of code a valid metric for productivity
in Agile and Lean software development?

– CRQ1: Is LoC-based measurement a valid productivity metric
in the Agile and Lean software development process used in the
Software Factory?

• Q2: Is the proposed concept of implicitly estimated velocity a valid
metric for productivity in Agile and Lean software development?

– CRQ2: Is the proposed concept of implicitly estimated veloc-
ity a valid productivity metric in the Agile and Lean software
development process used in the Software Factory?

• Q3: If productivity based on lines of code is unsuitable in an Agile and
Lean environment, could implicitly estimated velocity serve as a viable
replacement?

– CRQ3: Is implicitly estimated velocity a more valid productivity
metric than LoC-based measurement in the Agile and Lean software
development process used in the Software Factory?

As previously mentioned, the validity of a metric depends on what thresholds
are deemed suitable. For the purposes of this study, there is no need to
initially regard one criterion more important than another — determining for
which criteria a metric fares poorly and thus risks being deemed invalid yields
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a more interesting discussion. Applying this logic to the candidate research
questions results in three final research questions:

• RQ1: Under which circumstances may LoC-based measurement be
deemed an invalid productivity metric in the Agile and Lean software
development process used in the Software Factory projects under study?

• RQ2: Under which circumstances may implicitly estimated velocity be
deemed an invalid productivity metric in the Agile and Lean software
development process used in the Software Factory projects under study?

• RQ3: Under which circumstances is implicitly estimated velocity a
more valid productivity metric than LoC-based measurement in the
Agile and Lean software development process used in the Software
Factory projects under study?

7.3 Data collection

In order to analyse the validity of productivity measurement using LoC,
the code base produced during a project must be inspected. Both projects
examined in this case study used the Git version control system to store code.
Using a version control system greatly simplifies LoC-based measurement:
given a properly configured environment, both collective and individual lines
of code written can be extracted from the underlying repository. As framework
code can lead to misleading LoC counts, it has been omitted from the results
of the study4.

As the Factory projects made use of a physical Kanban board, task data was
collected manually. Before the start of both projects, teams were instructed
to denote each task with the current date and time when completed, along
with the names of the team members that worked on the task in question.

4Repository commits consisting of over 100 line insertions were considered framework
code; such a low threshold was chosen to eliminate as many false positives as possible.
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For any given task worked on by two or more team members, individual effort
is considered equal (one task per participating member). Though this may be
slightly misleading, it was not possible to determine participation in a given
task more accurately.

To analyse both LoC-based measurement and implicitly estimated velocity
against the validity criteria, an additional data set describing the attribute in
question (productivity) is required. In this study, the expert opinion of the
project team members themselves was chosen as such a data set. For both
projects, each team member was posed two questions after their respective
projects had ended:

1. How productive do you believe each team member was in terms of
programming (coding) during the project? Also assess yourself.

2. How productive do you believe each team member was in general during
the project? Also assess yourself.

Team members answered both questions by rating their peers on an interval
scale from one to ten, one being “not productive at all” and ten “highly
productive”. Answers were kept private — no team member was able to
see the ratings given to others. Though individuals assessed themselves
as well as others, self-assessments have been omitted from this study to
prevent bias. For practical purposes, the questions were included as part of a
larger, end-of-project online questionnaire for each respective project. Prior
to filling out the questionnaire, all team members were introduced to the
definition of productivity as it appears in this thesis. In particular, students
were instructed to take variations in working days into account and not to
consider permitted absent days as having a negative impact on an individuals
productivity.

In order to accurately determine the extent to which a metric fulfills the
tracking criterion (outlined in Chapter 3.2), multiple data points taken at
different points in time are needed. Whilst this data has been collected for
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the metrics under study, the questionnaire was only answered once by each
team member. Thus, it is unfortunately not possible to examine LoC-based
measurement and implicitly estimated velocity against the tracking criterion
in this study.

All of the data collection performed in this case study can be classified as
second-degree collection, as subjects were not interacted with directly [RH09].
Respecting privacy, all data has been anonymised so that no single person
can be distinguished from any of the results.

7.4 Limitations and threats to validity

In any case study, a listing of possible threats to the validity of the study
should be present so that the reader can determine to which extent the
results are valid and extendible outside the scope of the study. The following
classification scheme is used (adapted from Yin [RH09]):

• Construct validity describes to what extent operational measures under
study represent what the case study researcher intended them to repre-
sent. Intuitively, construct validity describes to what degree operational
measures really have to do with the formal research questions of a study.

• Internal validity is only of concern if causal relationships are examined.
If a factor f1 is believed to affect another factor f2, one must be aware
of any additional factors that might affect f2.

• External validity describes to what extent it is possible to generalise any
findings and to what extent the findings may be of interest to people
outside of the case study. Though statistically significant results are
typically not found during a case study, results may be extended to
other studies with common characteristics.

• Reliability describes to what extent the collected data and analysis
thereof are dependent on the researcher(s) conducting the study. Hypo-
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thetically, if another researcher were to conduct the exact same study,
the results should be identical.

The construct validity of the productivity metrics under study is not threat-
ened as the purpose of this case study is to determine if these metrics do, in
fact, accurately measure productivity. Thus, no assumptions have been made
as to what these constructs represent.

For the two questions in which project participants were asked to assess the
productivity of their team members, construct validity may be threatened if
team members collectively decide to award each other a high productivity
rating, regardless of how productive a team member actually was. Incorporat-
ing the study’s questionnaire as part of the course’s “official” end-of-project
questionnaire may have mitigated this risk, as the questionnaire is used in
part to determine the grades students’ received for completing their respective
projects and thus likely answered truthfully. However, it is not possible to
determine if this is indeed the case.

The internal validity of this case study is not threatened as causal relationships
are neither suggested nor examined. The external validity, however, is subject
to a number of limitations. Results of a case study can typically not be
generalised [RH09, SCC02]. Nevertheless, the results of this case study do
form one example of using implicitly estimated velocity in an Agile and Lean
environment — enough upon which to form a theory for continued research
on the subject.

Regarding the reliability of the study, all data collection methods have been
explained in detail in this chapter, rendering an accurate recreation of the
results possible. Including all task data in this thesis is omitted due to the
sheer size of the data set, but are available upon request.
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8 Project 1

The first project under study took place between September 3, 2012 and
October 19, 2012, for a total of 35 working days (not counting weekends
nor holidays). During this project, a metrics and analytics front-end for
an embedded Internet telephony system was designed and developed. The
primary programming language used was Java.

A total of four students participated in development, with one student electing
to leave mid-project. Contributions of this team member have been omitted
from this analysis. The length of a person-month has been defined as 35×6 =
210 hours.

8.1 Analysis of programming productivity

This chapter examines the correlation, predictability and discriminative power
of both LoC-based measurement and implicitly estimated velocity for pro-
gramming productivity measurement in Project 1.

8.1.1 Correlation

Table 4 describes the total lines of code committed by each member of
the team, along with their respective LoC-based measurement ratings and
reported total working hours. A total of 9952 LoC were written, with team
member B writing a significant percentage — 46 per cent — of the entire
application, thus being the most productive member according to this metric.

Before a fair comparison with other team members can be carried out and
a proper correlation coefficient calculated, the productivity ratings of each
team member must be adjusted against a person-month length of 210 hours.
Table 5 presents the revised productivity ratings for each team member.
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Team member LoC written Reported hours Rating ( loc
pm)

A 3887 210 3887
pm

B 4560 177 4560
0.842pm

C 1505 169 1505
0.804pm

Total 9952 556

Table 4: LoC-based productivity ratings for Project 1.

Team member LoC written Rating ( loc
pm)

A 3887 3887
pm

B 4560 5410
pm

C 1505 1870
pm

Total 9952

Table 5: Adjusted LoC-based productivity ratings for Project 1.

Ratings calculated using the LoC-based metric do not exactly mirror that of
individual team members’ assessment of each others’ programming productiv-
ity. Table 6 outlines how each team member rated both their own and other’s
programming productivity. By calculating the mean of all ratings, A and B
were regarded as the most productive, despite A having written considerably
more code than B. Calculating the correlation between the adjusted produc-
tivity ratings and the means of the peer-assessment does, however, yield a
strong positive correlation coefficient of 0.903 for LoC-based measurement.

In order to measure programming productivity using implicitly estimated
velocity, one can simply omit tasks that are not strict programming tasks
before applying the metric. Table 7 presents the number of programming
tasks completed per team member, along with their rating.

As with LoC-based measurement, the ratings must be normalised for a person-
month of 210 hours before comparisons can be made. Table 8 describes the
adjusted programming productivity ratings for each team member.
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A B C

A - 8 7

B 9 - 8

C 8 9 -

Mean 81
2 81

2 71
2

Table 6: Team members’ assessment of programming productivity in Project
1.

Team member Tasks completed Reported hours Rating ( tc
pm)

A 32 210 32
pm

B 24 177 24
0.842pm

C 22 169 22
0.804pm

Total 78

Table 7: Programming tasks completed in Project 1.

Team member Tasks completed Rating ( tc
pm)

A 32 32
pm

B 24 28.5
pm

C 22 27.3
pm

Table 8: Adjusted programming productivity ratings for Project 1.

Correlating these adjusted productivity ratings with the results of the peer-
assessment gives a coefficient of 0.697 — a lower correlation than when using
LoC-based measurement. Thus, for programming work in this project, the
correlation criterion is better fulfilled when using LoC-based measurement
over implicitly estimated velocity. The correlation coefficient for implicitly
estimated velocity does, however, indicate a moderate positive association
against team members’ perception of productivity.
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8.1.2 Consistency

Calculating the rank correlation between team members’ assessment of pro-
gramming productivity and the metric results yields values of 0.866 for both
LoC-based measurement and implicitly estimated velocity. Thus, for pro-
gramming productivity in Project 1, both metrics can be considered equally
consistent.

8.1.3 Predictability

Table 9 presents the coefficients of variation for both lines of code committed
per day and programming tasks completed per day, for both the entire team
as well as individual team members. A lower coefficient of variation is better,
indicating less variation in work done from day to day.

LoC-based measurement IEV

Entire team 1.468 1.566

Team member A 2.680 1.686

Team member B 2.354 2.145

Team member C 1.973 1.686

Table 9: Coefficients of variation for programming productivity in Project 1.

When assessing the entire team, LoC-based measurement provides a somewhat
higher degree of predictability in this project than implicitly estimated velocity.
However, when assessing individual team members, implicitly estimated
velocity provides a greater degree of predictability in all three cases, as
indicated by lower coefficients of variation.
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8.1.4 Discriminative power

Using the total lines of code written per person and programming tasks
completed per person, coefficients of variation can be used to assess the
discriminative power of LoC-based measurement and implicitly estimated
velocity with respect to programming productivity.

As shown in Table 5, team members A, B and C wrote 3887, 5410 and
1870 lines of code, adjusted for their total working hours. In terms of
programming tasks, the figures are 32, 28.5 and 27.3 tasks, respectively
(Table 8). Calculating the coefficient of variation for each of these two series
gives 0.477 for LoC-based measurement and 0.083 for implicitly estimated
velocity. The coefficient for LoC-based measurement is considerably higher,
indicating that the discriminative power of this metric is higher than implicitly
estimated velocity when assessing programming productivity in this project.

8.2 Analysis of general productivity

This chapter examines the correlation, predictability and discriminative power
of both LoC-based measurement and implicitly estimated velocity for general
productivity measurement in Project 1.

8.2.1 Correlation

Calculating general productivity using implicitly estimated velocity entails
simply counting the total number of tasks completed per team member,
without omitting any specific type of task or group of tasks.

Table 10 describes the total number of tasks completed by each team member.
A total of 219 tasks were completed during the project, with almost half
contributed to by team member A (circa 42 per cent). Team members B and
C contributed to roughly the same percentage of all tasks — 31 and 29 per
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cent, respectively.

Team member Tasks completed Reported hours Rating ( tc
pm)

A 93 210 93
pm

B 66 177 65
0.842pm

C 60 169 60
0.804pm

Total 219

Table 10: General tasks completed in Project 1.

Adjusting team members’ output to a 210-hour person-month week yields
ratings of 93, 78.3 and 74.6 tasks per month for members A, B and C (see
Table 11). Even with this adjustment, implicitly estimated velocity indicates
that A was the most productive team member during the project.

Team member Tasks completed Rating ( tc
pm)

A 93 93
pm

B 66 78.3
pm

C 60 74.6
pm

Total 219

Table 11: Adjusted general productivity ratings for Project 1.

The general productivity ratings provided by the implicitly estimated velocity
method are reflected well by team members’ assessment of each other. Table 12
presents the mean of the general productivity grades given to each team
member. A was regarded as the most productive, followed by B and then C
— the same outcome as indicated by implicitly estimated velocity. Correlating
the productivity rating of each team member with their respective mean
grades gives a coefficient of circa 0.945.

As mentioned earlier, LoC-based measurement is based on source code and
thus only measures programming productivity, not the general productivity
of any given software project. It is, however, sometimes applied to entire
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A B C

A - 9 8

B 9 - 8

C 9 8 -

Mean 9 81
2 8

Table 12: Team members’ assessment of general productivity in Project 1.

projects. Doing so in this project results in a correlation that is noticeably
lower than when using implicitly estimated velocity. Using the adjusted
LoC-based ratings from Table 5, we receive a correlation coefficient of 0.568.
In terms of correlation, it is clear that general productivity is better served
by implicitly estimated velocity.

8.2.2 Consistency

Calculating the rank correlation between team members’ assessment of general
productivity and the metric results yields values of 0.5 and 1.0 for LoC-based
measurement and implicitly estimated velocity, respectively. For Project 1, it
is clear that implicitly estimated velocity is able to rank the team members
with regards to general productivity better than LoC-based measurement.
Thus, the former is more consistent.

8.2.3 Predictability

Table 13 presents the coefficients of variation for both lines of code committed
per day and tasks completed per day, for both the entire team as well as
individual team members. As the LoC-based measurement metric is based
on lines of code written, the coefficients of variation calculated for this metric
are the same as for programming productivity.
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LoC-based measurement IEV

Entire team 1.468 0.951

Team member A 2.680 0.995

Team member B 2.354 1.184

Team member C 1.973 1.742

Table 13: Coefficients of variation for general productivity in Project 1.

In contrast to programming productivity, general productivity ratings in this
project are more predictable using implicitly estimated velocity over LoC-
based measurement, both when assessing the team as a whole and individual
team members. In both cases, the difference in coefficients is significant.

8.2.4 Discriminative power

The total number of tasks completed per team member — 93, 78.3 and 74.6
for A, B and C, respectively — gives a coefficient of variation of 0.119 for the
discriminative power of general productivity measurement using implicitly
estimated velocity. Using LoC-based measurement, the discriminative power
is the same as when assessing programming productivity (0.477). Clearly,
the discriminative power of LoC-based measurement is higher than that
of implicitly estimated velocity when assessing general productivity in this
project.

9 Project 2

The second project under study took place between October 29, 2012 and
December 14, 2012, for a total of 35 working days. During this project, the
metrics and analytics front-end developed during Project 1 was extensively
tested and further developed to handle a significant increase in concurrent

42



connections and stored data. The primary programming languages used were
JavaScript (Node.js) and Python.

A total of five students participated in development, with one student electing
to leave mid-project. Contributions of this team member have been omitted
from this analysis. Given 35 working days, the length of a person-months has
been defined as 35× 6 = 210 hours — the same as for Project 1.

9.1 Analysis of programming productivity

This chapter examines the correlation, predictability and discriminative power
of both LoC-based measurement and implicitly estimated velocity for pro-
gramming productivity measurement in Project 2.

9.1.1 Correlation

Table 14 describes the total lines of code committed by each member of
the team, along with their respective LoC-based measurement ratings and
reported total working hours. A total of 9479 LoC were written during this
project.

Team member LoC written Reported hours Rating ( loc
pm)

A 1848 195 1848
0.929pm

B 1288 197 1288
0.938pm

C 1695 161 1695
0.767pm

D 4648 193 4648
0.919pm

Total 9479 746

Table 14: LoC-based programming productivity ratings for Project 2.
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Based on the actual lines of code written, team member D appears to be
the most productive individual. Adjusting the ratings in accordance with a
210-hour person-month does not change the highest-ranked team member,
but does alter the rankings of the remaining three members (Table 15).

Team member LoC written Rating ( loc
pm)

A 1848 1990
pm

B 1288 1372
pm

C 1695 2210
pm

D 4648 5057
pm

Total 9479

Table 15: Adjusted LoC-based programming productivity ratings for Project
2.

Using implicitly estimated velocity, programming productivity ratings differ
from that of LoC-based measurement. Table 16 presents the number of
programming tasks completed per team member, along with their initial
rating. Adjusting these ratings for a 210-hour person-month results in team
member C being the most productive, followed by A, B and D (Table 17).

Table 18 outlines how each team members rated both their own and other’s
programming productivity. Interestingly, the mean is equal for all team
members, indicating that collectively, the team regarded each team member
equally productive.

This result renders assessment against the correlation impossible: given
no variation in mean averages, it is not possible to calculate a correlation
coefficient for either LoC-based measurement or implicitly estimated velocity
for programming productivity in this project.
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Team member Tasks completed Reported hours Rating ( tc
pm)

A 16 195 16
0.929pm

B 9 197 9
0.938pm

C 15 161 15
0.767pm

D 8 193 8
0.919pm

Total 48 746

Table 16: Programming tasks completed in Project 2.

Team member Tasks completed Rating ( tc
pm)

A 16 17.2
pm

B 9 9.6
pm

C 15 19.6
pm

D 8 8.7
pm

Total 48

Table 17: Adjusted programming productivity ratings for Project 2.

A B C D

A - 10 10 9

B 10 - 10 10

C 10 10 - 10

D 9 9 9 -

Mean 92
3 92

3 92
3 92

3

Table 18: Team members’ assessment of programming productivity in Project
2.

9.1.2 Consistency

Calculating the rank correlation between team members’ assessment of pro-
gramming productivity and the metric results is not possible due to the equal

45



means. As such, the result of the consistency inspection for programming
productivity in Project 2 must be considered undefined. As such, it is not
clear which of the metrics has better consistency in this case.

9.1.3 Predictability

Table 19 presents the coefficients of variation for the lines of code committed
per day and programming tasks completed per day, both for the whole team
as well as individual team members. For all but one team member, the figures
favour LoC-based measurement as a more predictable metric for programming
productivity in this project.

LoC-based measurement IEV

Entire team 1.456 1.832

Team member A 1.574 1.787

Team member B 1.705 2.180

Team member C 1.393 0.655

Team member D 2.447 3.198

Table 19: Coefficients of variation for programming productivity in Project 2.

9.1.4 Discriminative power

Given LoC counts of 1990, 1372, 2210 and 5057 for team members A, B, C
and D respectively, the series of total lines of code written per team member
gives a coefficient of variation of 0.617. With implicitly estimated velocity,
the respective series is 17.2, 9.6, 19.6 and 8.7 tasks completed, for a coefficient
of variation of 0.395. As with Project 1, measuring programming productivity
using LoC-based measurement provides a higher degree of discriminative
power than implicitly estimated velocity.
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9.2 Analysis of general productivity

This chapter examines the correlation, predictability and discriminative power
of both LoC-based measurement and implicitly estimated velocity for general
productivity measurement in Project 2.

9.2.1 Correlation

Table 20 describes the total number of tasks completed by each team member.
A total of 107 tasks were completed during the project. Team member A
completed the most tasks — approximately 34 per cent of the entire team’s
output — followed by C, D and B. Adjusting team members’ output based
on their reported hours does not change this order (Table 21).

Team member Tasks completed Reported hours Rating ( tc
pm)

A 36 195 36
0.929pm

B 20 197 20
0.938pm

C 28 161 28
0.767pm

D 23 193 23
0.919pm

Total 107 746

Table 20: General tasks completed in Project 2.

Team member Tasks completed Rating ( tc
pm)

A 36 38.8
pm

B 20 21.3
pm

C 28 36.5
pm

D 23 25
pm

Total 107

Table 21: Adjusted general productivity ratings for Project 2.
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Table 22 presents the general productivity grades given to each team member
in Project 2. Correlating the means of the grades with the total tasks per
team member gives a coefficient of 0.4206 for implicitly estimated velocity.

A B C D

A - 10 10 8

B 10 - 10 10

C 10 10 - 10

D 9 9 9 -

Mean 92
3 92

3 92
3 91

3

Table 22: Team members’ assessment of general productivity in Project 2.

Calculating the corresponding correlation for LoC-based measurement yields
a negative coefficient of -0.976, indicating an inverse relationship between LoC
written and team members’ perception of general productivity. As in Project
1, implicitly estimated velocity fares better than LoC-based measurement in
terms of correlation for general productivity.

9.2.2 Consistency

Calculating the rank correlation between team members’ assessment of pro-
gramming productivity and the metric results yields values of -0.775 and
0.258 for LoC-based measurement and implicitly estimated velocity, respec-
tively. Thus, for general productivity in Project 1, implicitly estimated
velocity is more consistent, though neither metric succeeds in ranking general
productivity well enough to accurately reflect the team member assessments.

9.2.3 Predictability

Table 23 presents the coefficients of variation for both lines of code committed
per day and tasks completed per day (no tasks omitted) in Project 2. When
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assessing the entire team, implicitly estimated velocity is more predictable
than LoC-based measurement, as indicated by a lower coefficient value. For
individual team members, implicitly estimated velocity is more predictable in
three of the possible four cases.

LoC-based measurement IEV

Entire team 1.456 0.955

Team member A 1.574 1.190

Team member B 1.705 1.765

Team member C 1.393 0.994

Team member D 2.447 1.056

Table 23: Coefficients of variation for general productivity in Project 2.

9.2.4 Discriminative power

The approximate total of tasks completed per team per team member —
38.8, 21.3, 36.5 and 25 for A, B, C, and D, respectively — gives a coefficient
of variation of 0.282 for general productivity measurement using implicitly
estimated velocity. For LoC-based measurement, the discriminative power
is described by the same coefficient of variation found when assessing pro-
gramming productivity: 0.617. As in Project 1, the discriminative power of
LoC-based measurement is higher than that of implicitly estimated velocity
when assessing team members’ general productivity.

10 Results

Table 24 summarises the key findings of the case study. If we choose to
accept all other criteria as valid and focus solely on correlation, we can
determine which of the metrics under study more accurately reflects the
expert opinions of development team members. If we were to fix the threshold
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value to a positive association of 0.5, then LoC-based measurement is valid for
programming productivity at a reliability level of 50 per cent, as is implicitly
estimated velocity. Setting the threshold at strong positive association of 0.9
yields a valid result for LoC-based measurement at 50 per cent reliability; a
valid result for implicitly estimated velocity at this threshold would require
accepting a reliability percentage of zero. Intuitively, in terms of correlation,
LoC-based measurement is more likely to be valid than implicitly estimated
velocity for programming productivity in this study, depending on the chosen
correlation threshold.

The opposite is true when discussing general productivity measurement. If we
select a correlation threshold of either 0.5 or 0.9, implicitly estimated velocity
is valid at a reliability level of 50 per cent. LoC-based measurement is only
equally reliable at a threshold of 0.5.

Consistency is closely related to the correlation criterion — it too determines to
which degree both metrics under study reflects the opinions of a development
team members. However, consistency only concerns itself with ranking team
members from most productive to least productive — not with the difference
in work done between ranks. If a metric accurately reflects development team
members’ assessment of productivity, the consistency criterion will always
yield a value of 1.0, even if the differences between team members’ output
are large or comparatively minute.

If consistency were the only criterion of significance, implicitly estimated
velocity is more likely to be considered valid than LoC-based measurement
for general productivity. In Project 1, implicitly estimated velocity accurately
ranked team members’ productivity to reflect assessments. In Project 2,
the rankings differed from those of the assessment means, but the result
was nevertheless better than for LoC-based measurement, which yielded a
negative correlation coefficient. If we were to set a consistency threshold of 0.8,
implicitly estimated velocity would be considered valid at a reliability level of
50 per cent, whereas LoC-based measurement would only be considered valid
if zero per cent reliability were acceptable (or the threshold lowered).
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Criterion Project LoC-based IEV

Correlation, prog. prod. 1 0.903 0.697

Correlation, prog. prod. 2 undefined undefined

Correlation, gen. prod. 1 0.568 0.945

Correlation, gen. prod. 2 -0.976 0.421

Consistency, prog. prod. 1 0.866 0.866

Consistency, prog. prod. 2 undefined undefined

Consistency, gen. prod. 1 0.5 1.0

Consistency, gen. prod. 2 -0.775 0.258

Tracking 1 N/A N/A

Tracking 2 N/A N/A

Predictability, prog. prod., team 1 1.468 1.566

Predictability, prog. prod., indiv. 1 2.680 1.686

Predictability, prog. prod., indiv. 1 2.354 2.145

Predictability, prog. prod., indiv. 1 1.973 1.686

Predictability, prog. prod., team 2 1.456 1.832

Predictability, prog. prod., indiv. 2 1.574 1.787

Predictability, prog. prod., indiv. 2 1.705 2.180

Predictability, prog. prod., indiv. 2 1.393 0.655

Predictability, prog. prod., indiv. 2 2.447 3.198

Predictability, gen. prod., team 1 1.468 0.951

Predictability, gen. prod., indiv. 1 2.680 0.995

Predictability, gen. prod., indiv. 1 2.354 1.184

Predictability, gen. prod., indiv. 1 1.973 1.742

Predictability, gen. prod., team 2 1.456 0.955

Predictability, gen. prod., indiv. 2 1.574 1.190

Predictability, gen. prod., indiv. 2 1.705 1.765

Predictability, gen. prod., indiv. 2 1.393 0.994

Predictability, gen. prod., indiv. 2 2.447 1.056

Disc. power, prog. prod. 1 0.477 0.083

Disc. power, prog. prod. 2 0.617 0.395

Disc. power, gen. prod. 1 0.477 0.119

Disc. power, gen. prod. 2 0.617 0.282

Table 24: Summary of the case study.
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For programming productivity, the results from the case study are somewhat
inconclusive. In the first project, both LoC-based measurement and implicitly
estimated velocity received a rank correlation coefficient of 0.866. In the
second project, the result was undefined due to equal assessment means.
Based on these results, we can conclude that both metrics are as likely
to be considered valid (or invalid) if consistency were the only criterion of
significance. If we were to set a threshold of 0.8, both metrics would be
considered valid, but only at 50 per cent reliability.

The predictability of a productivity metric explains how accurately one can
predict the future productivity of a development team or its members based
on previous productivity data. Having a metric with a provenly high degree
of predictability is of importance when one wishes to estimate the completion
date of an ongoing project, or to determine how much work a team can be
assigned in future development iterations.

In terms of predictability in programming productivity, the results from the
case study are mixed. When the unit of analysis is the entire software team,
LoC-based measurement fares better than implicitly estimated velocity. For
individuals, implicitly estimated velocity offers better predictability in Project
1, but worse predictability in Project 2. Setting a predictability threshold of
2.0 would deem LoC-based measurement valid at a reliability level of 66.7 per
cent, provided that all other criteria are considered satisfied. For implicitly
estimated velocity, the same reliability level would also yield a valid outcome.

For general productivity, implicitly estimated velocity is clearly more pre-
dictable than LoC-based measurement. Spanning both projects, the coef-
ficients of variations calculated were eight out of nine times in favour of
it. If we were to set a predictability threshold of 1.0 and deem all other
criteria satisfied, implicitly estimated velocity would be considered valid at
a reliability level of 50 per cent, whereas LoC-based measurement would be
valid only if zero per cent reliability is acceptable.
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LoC-based measurement fares clearly better than implicitly estimated velocity
in terms of its discriminative power — its ability to distinguish between good
and poor productivity within the context of chosen project. This holds true not
only for both projects under study, but also for both general productivity and
programming productivity. If we were to set the threshold for discriminative
power at 0.450 and disregard the thresholds of other criteria, LoC-based
measurement would be considered a valid metric at a reliability level of 100
per cent, whereas implicitly estimated velocity would require a reliability level
of zero per cent.

Though not analysed, measuring productivity in terms of non-programming
work is by default better served by implicitly estimated velocity than LoC-
based measurement: during non-programming activities, no source code is
produced. The correlation criterion, for example, will always result in an
undefined value for LoC-based measurement.

Based on the case study findings, the formal research questions posed in
Chapter 7.2 can be answered as follows:

• RQ1: Under which circumstances may LoC-based measurement be
deemed an invalid productivity metric in the Agile and Lean software
development process used in the Software Factory projects under study?

– LoC-based measurement may be deemed invalid in cases where
general productivity is being measured and little to no importance
is being placed on a metric’s discriminative power.

• RQ2: Under which circumstances may implicitly estimated velocity be
deemed an invalid productivity metric in the Agile and Lean software
development process used in the Software Factory projects under study?

– Implicitly estimated velocity may be deemed invalid in cases where
programming productivity is being measured instead of general
productivity and the discriminative power and correlation criteria
of a metric are valued over its predictability.
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• RQ3: Under which circumstances is implicitly estimated velocity a
more valid productivity metric than LoC-based measurement in the
Agile and Lean software development process used in the Software
Factory projects under study?

– If both metrics are considered valid, LoC-based measurement is
more valid than implicitly estimated velocity for measuring pro-
gramming productivity for all validity criteria except predictability,
whose results are inconclusive. For general productivity mea-
surement, however, implicitly estimated velocity is more valid
than LoC-based measurement for all criteria except discriminative
power.

The correlation criterion is the single most important validity criterion, as it
describes the extent to which figures provided by a productivity metric are
related to team members’ expert opinion of each others’ productivity. As such,
it is difficult to imagine a scenario in which one would favour one valid metric
over another if its correlation coefficient is lower. Summarising the findings
of the study, it is clear that implicitly estimated velocity is more suitable
for general productivity measurement than LoC-based measurement. For
programming productivity, LoC-based measurement is the better option. The
correlation criterion does, however, indicate a moderate positive association
also for implicitly estimated velocity, indicating that the metric still measures
what it purports to measure even when only programming activities are under
inspection.

Intuitively, the findings of the case study suggest that implicitly estimated
velocity paints a more complete picture of a software teams’ productivity
than LoC-based measurement, a metric that is designed around the notion
that source code is the only artefact of significance in software development.
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11 Conclusions

Software development has changed significantly in the last 50 years. Even
though processes, tools and best practices have changed, the importance of
productivity measurement has not. Being able to assess productivity using
an accurate metric is an essential part of managing a software team. Used
correctly, the results of such measurements can be used to provide a baseline
for the continuous improvement of teams and, by extension, the software they
produce. In addition, productivity measurements are useful for predicting
how software-under-development will evolve over time, an important aspect
of managing the risks associated with software development.

For many years, productivity measurement was based solely on the amount
of code produced during a given span of time. Though such a metric is
easily automated, it has a numbers of drawbacks, chief amongst which are its
inability to measure output other than program code and issues inherent to the
differences between programming languages. Despite these shortcomings, LoC-
based measurement is still in use today, perhaps due to its easily automatable
nature.

Following the wide-scale adoption of Agile and Lean methodologies, detailed
information on individual work units (tasks) in software projects has become
easier to collect as many Agile and Lean methodologies mandate their use.
Task data is often easily automatable and, in contrast to LoC-based measure-
ment, suitable for measuring all types of development work. In essence, a
completed task serves as a proxy for a given unit of output, be it source code,
documentation or “invisible work” that produces no tangible artefacts.

Based on the aforementioned benefits, task data became the foundation for
measuring velocity, arguably the most widely used indicator of productivity
in the software industry today given the proliferation of Agile and Lean
concepts. Though the metric has proved to be more flexible than LoC-based
measurement, it stands in need of estimating the size and scope of each task.
Using estimation as a part of a productivity metric yields results only as
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accurate as the estimations themselves and is a time-consuming process.

In this thesis, it is assumed that even though tasks may vary in size and
scope, all software projects in which the concept of a task is clearly defined
have an implicit size interval within which all tasks lie, even without explicit
estimation. Based on this assumption, we propose that, from a software
developers point of view, simply counting the number of tasks completed
within a period of time is a approach that is at least as valid as LoC-based
measurement for general productivity measurement. Findings from the case
study support this claim, lending credence to the theory that LoC-based
productivity measurement can be replaced with implicitly estimated velocity
in cases where a complete picture of productivity in a software development
project is desired.
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Appendices

A Collected productivity data in Project 1

Date Team member A Team member B Team member C

03.09.12 0 0 0

04.09.12 0 0 0

05.09.12 0 0 0

06.09.12 0 0 0

07.09.12 0 0 0

10.09.12 0 0 0

11.09.12 0 0 0

12.09.12 0 0 0

13.09.12 0 0 0

14.09.12 0 0 0

17.09.12 1 0 0

18.09.12 0 0 1

19.09.12 1 0 1

20.09.12 0 1 0

21.09.12 0 0 0

24.09.12 3 0 2

25.09.12 2 2 1

26.09.12 4 1 3

27.09.12 4 1 2

28.09.12 0 0 0

01.10.12 2 0 1

02.10.12 1 6 2

03.10.12 0 1 0

04.10.12 0 0 0

05.10.12 0 0 0

08.10.12 4 5 4

09.10.12 1 1 1

10.10.12 4 4 1

11.10.12 0 0 0

12.10.12 0 0 0

15.10.12 5 0 3

16.10.12 0 2 0

17.10.12 0 0 0

18.10.12 0 0 0

19.10.12 0 0 0

Table 25: Programming tasks completed in Project 1.
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Date Team member A Team member B Team member C

03.09.12 0 0 0

04.09.12 0 0 0

05.09.12 4 2 2

06.09.12 8 7 7

07.09.12 0 0 0

10.09.12 3 4 3

11.09.12 2 3 3

12.09.12 2 1 2

13.09.12 3 2 2

14.09.12 0 0 0

17.09.12 4 3 1

18.09.12 1 1 2

19.09.12 3 1 2

20.09.12 3 4 3

21.09.12 0 0 0

24.09.12 9 0 2

25.09.12 3 2 1

26.09.12 5 1 4

27.09.12 5 2 3

28.09.12 0 0 0

01.10.12 5 5 4

02.10.12 5 9 3

03.10.12 3 2 1

04.10.12 0 0 0

05.10.12 0 0 0

08.10.12 6 5 5

09.10.12 4 3 2

10.10.12 8 4 2

11.10.12 0 0 0

12.10.12 0 0 0

15.10.12 5 1 4

16.10.12 0 2 0

17.10.12 0 0 0

18.10.12 2 2 2

19.10.12 0 0 0

Table 26: Total tasks completed in Project 1.
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Date Team member A Team member B Team member C

03.09.12 0 0 0

04.09.12 0 0 0

05.09.12 4 0 0

06.09.12 22 53 34

07.09.12 22 53 34

10.09.12 75 85 34

11.09.12 75 85 34

12.09.12 75 85 34

13.09.12 75 85 34

14.09.12 75 85 34

17.09.12 116 960 34

18.09.12 196 1009 56

19.09.12 196 2509 88

20.09.12 260 2509 88

21.09.12 2016 2509 88

24.09.12 2209 2509 110

25.09.12 2250 2640 502

26.09.12 2452 2670 612

27.09.12 2526 2670 614

28.09.12 2526 2846 614

01.10.12 2531 2940 650

02.10.12 2730 3049 934

03.10.12 2776 3049 1060

04.10.12 3020 3049 1060

05.10.12 3025 3049 1178

08.10.12 3132 3353 1251

09.10.12 3158 3522 1281

10.10.12 3456 3694 1397

11.10.12 3573 3694 1400

12.10.12 3574 3694 1400

15.10.12 3765 3831 1495

16.10.12 3838 3831 1495

17.10.12 3887 4560 1505

18.10.12 3887 4560 1505

19.10.12 3887 4560 1505

Table 27: LoC committed to repository in Project 1 (cumulative).
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B Collected productivity data in Project 2

Date Team member A Team member B Team member C Team member D

29.10.12 0 0 0 0

30.10.12 0 0 0 0

31.10.12 0 0 0 0

01.11.12 0 0 0 0

02.11.12 0 0 0 0

05.11.12 0 0 0 0

06.11.12 0 0 0 0

07.11.12 0 0 2 0

08.11.12 0 0 1 0

09.11.12 0 1 0 0

12.11.12 1 0 1 0

13.11.12 1 0 1 0

14.11.12 0 0 1 0

15.11.12 0 2 0 4

16.11.12 0 0 0 0

19.11.12 1 1 0 0

20.11.12 0 0 1 0

21.11.12 2 2 2 1

22.11.12 2 0 2 0

23.11.12 0 1 0 1

26.11.12 2 0 0 0

27.11.12 1 0 0 1

28.11.12 2 0 1 0

29.11.12 1 0 1 1

30.11.12 0 0 0 0

03.12.12 0 0 0 0

04.12.12 0 1 1 0

05.12.12 0 0 0 0

06.12.12 0 0 0 0

07.12.12 0 0 0 0

10.12.12 0 0 0 0

11.12.12 0 0 0 0

12.12.12 3 1 1 0

13.12.12 0 0 0 0

14.12.12 0 0 0 0

Table 28: Programming tasks completed in Project 2.
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Date Team member A Team member B Team member C Team member D

29.10.12 0 0 0 0

30.10.12 0 0 0 0

31.10.12 0 0 0 0

01.11.12 3 2 3 2

02.11.12 1 0 1 2

05.11.12 2 0 1 2

06.11.12 5 1 3 2

07.11.12 2 2 2 0

08.11.12 1 1 1 1

09.11.12 1 4 0 0

12.11.12 2 0 2 0

13.11.12 1 0 1 0

14.11.12 0 0 1 1

15.11.12 0 2 0 5

16.11.12 0 0 0 2

19.11.12 1 1 0 0

20.11.12 0 0 1 1

21.11.12 2 3 2 1

22.11.12 2 0 2 0

23.11.12 0 2 0 1

26.11.12 2 0 1 0

27.11.12 1 0 0 1

28.11.12 2 0 3 0

29.11.12 1 0 1 1

30.11.12 0 0 0 0

03.12.12 1 0 0 0

04.12.12 1 1 2 0

05.12.12 0 0 0 0

06.12.12 0 0 0 0

07.12.12 0 0 0 0

10.12.12 1 0 0 1

11.12.12 0 0 0 0

12.12.12 4 1 1 0

13.12.12 0 0 0 0

14.12.12 0 0 0 0

Table 29: Total tasks completed in Project 2.
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Date Team member A Team member B Team member C Team member D

29.10.12 0 0 0 0

30.10.12 0 0 0 0

31.10.12 0 0 0 0

01.11.12 0 0 0 0

02.11.12 0 0 0 0

05.11.12 0 0 1 0

06.11.12 0 0 140 0

07.11.12 77 0 282 1646

08.11.12 126 0 479 2675

09.11.12 127 63 533 2766

12.11.12 127 63 540 2766

13.11.12 152 76 660 2830

14.11.12 355 181 927 2998

15.11.12 360 275 956 3061

16.11.12 388 280 1056 3061

19.11.12 433 440 1106 3061

20.11.12 705 566 1173 3412

21.11.12 815 567 1210 3597

22.11.12 890 567 1320 3728

23.11.12 987 567 1320 3728

26.11.12 1170 629 1320 3789

27.11.12 1225 629 1405 4067

28.11.12 1579 629 1489 4067

29.11.12 1625 887 1638 4147

30.11.12 1628 1055 1638 4483

03.12.12 1629 1118 1684 4483

04.12.12 1629 1118 1685 4623

05.12.12 1685 1158 1694 4644

06.12.12 1700 1262 1694 4646

07.12.12 1700 1262 1694 4646

10.12.12 1700 1262 1694 4646

11.12.12 1774 1288 1695 4648

12.12.12 1848 1288 1695 4648

13.12.12 1848 1288 1695 4648

14.12.12 1848 1288 1695 4648

Table 30: LoC committed to repository in Project 2 (cumulative).
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