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1 Introduction

The present thesis project was carried out within the Wartiovaara group of the Re-
search Program for Molecular Neurology at Biomedicum Helsinki. The group holds
as its mission "to understand the molecular background of mitochondrial disorders,
and use that knowledge to develop diagnosis and therapy."

The project was motivated by the group having started to use exome sequencing,
performed in cooperation with FIMM (Institute for Molecular Medicine Finland),
for molecular diagnosis of patients, mostly children, with suspected mitochondrial
disease. The aim was then to develop an approach for the analysis of genetic vari-
ation data resulting from exome sequencing, in order to identify the mutations and
genes linked to the patients’ disorders. In particular, the approach was to be applied
in studies comprising a single patient exome, without associated sequence data from
family members or from other patients affected by the same disorder.

An exome variant data analysis workflow was developed which is customised for
the characteristics of infantile mitochondrial disorders, combining computational
resources built in-house and external databases and tools. The development involved
users of the workflow — several members of the Wartiovaara group — who took part
in iterative rounds of proposed improvements and practical application in patient
studies.

This thesis discusses all the elements and the setup of the workflow. Patient study
examples illustrate how the workflow elements are put together. The results ob-
tained in the analysis of exome variant data of a cohort of 49 paediatric patients are
also presented. The workflow was effective in identifying single nucleotide variants
(SNVs) in nuclear genes causing mitochondrial disease, as validated by functional
studies, for 10 of the patients.

The thesis is structured as follows. Chapter 2 proceeds with some background on
mitochondrial disorders and exome sequencing. The core of the thesis is Chapter
3 where the workflow itself is discussed, including application examples. Chapter 4
presents the outcome of applying the workflow to a cohort of infantile-onset patients.
In Chapter 5 we briefly address current and future work that stemmed from this
project. Lastly, concluding considerations are drawn in Chapter 6.
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2 Mitochondrial disease and exome sequencing

Mitochondria are organelles present in almost all our cells, with mature red blood
cells as the only exception. Several cellular processes that are essential for life take
place in mitochondria, most prominently the production of energy which makes
the organelles known as the cell’s power plants. Energy is produced via cellular
respiration, whereby biochemical energy, in the form of oxygen and nutrients in food
molecules, is converted into ATP (adenosine triphosphate) molecules and oxygen is
reduced to water.

Mitochondria have their own genome: a small and circular DNA molecule contain-
ing 16 569 base pairs, believed to have been originally acquired by endosymbiosis
between our distant single-cell ancestor and a bacterium some few billion years
ago. Differently from nuclear DNA (nDNA), the inheritance of mitochondrial DNA
(mtDNA) is strictly maternal. The existence of mtDNA does not make the organelle
genetically self-sufficient, however. Most of the hundreds of proteins involved in the
energy production pathway are encoded in the nucleus, synthesised in the cytoplasm
and then imported into mitochondria. Notably, energy production in mitochondria
is the only process in the mammalian cell known to involve two genomes — mtDNA
and nDNA — operating in fine coordination.

Mutations in mtDNA or nDNA that affect proteins involved in energy metabolism
in mitochondria are the underlying cause of mitochondrial disease, although envi-
ronmental factors can also play a part (Ylikallio and Suomalainen, 2012). These are
usually severe and progressive disorders with an estimated minimum prevalence of
one in every 5 000 births, on the basis of combined data from studies undertaken
in Australia, for infantile-onset disorders, and England, for adult-onset disorders
(Thorburn, 2004). Treatment remains mostly palliative with no cure available at
this time (Koene and Smeitink, 2011).

Heterogeneity is the hallmark of mitochondrial disorders, from genetic to biochemical
to clinical features, making the disorders complex and difficult to diagnose:

"Oxidative phosphorylation, i.e., ATP synthesis by the oxygen-consuming
respiratory chain (RC) [in mitochondria], supplies most organs and tis-
sues with energy... Consequently, RC deficiency can theoretically give
rise to any symptom, in any organ or tissue, at any age, with any mode of
inheritance, due to the twofold genetic origin of RC components (nuclear
DNA and mitochondrial DNA)." (Munnich and Rustin, 2001)
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To date, more than 100 causative mtDNA and nDNA genes have been linked to mi-
tochondrial disease (Tucker et al., 2010). Phenotypes usually manifest in multiple
organ systems, have a wide spectrum of time of onset, from perinatal to adulthood,
and vary in presentation and severity throughout an individual’s life span and be-
tween individuals (Suomalainen, 2011). Children tend to be the most severely af-
fected with the poorest prognoses. Diagnosis in children is also the most challenging.
Clinical presentation is markedly variable in them and histological findings are often
less specific compared to adult patients (Thorburn and Smeitink, 2001; Wolf and
Smeitink, 2002). Amongst so much diversity, energy deficiency in the cells, and in
the patient by consequence, is the only unifying feature of mitochondrial disorders.

Within the currently known genetic underpinnings and genotype-phenotype correla-
tions of mitochondrial disorders, at best about half of patients studied by a particular
diagnostic centre have a causative mutation found in one of the known disease genes
(Kirby and Thorburn, 2008; Calvo et al., 2010). Mutant genes in mtDNA and their
associated disorders have been mapped out, while many nuclear genes remain to
be uncovered. It has been estimated that mutations in nuclear genes cause roughly
one-third of adult-onset and three-quarters of infantile-onset mitochondrial disease
(DiMauro and Schon, 2003). When current knowledge of mitochondrial disease
genes is exhausted to no avail, the more exploratory approach of exome sequencing
can provide some answers.

2.1 Exome sequencing in identifying disease-causing muta-

tions

Proteins are encoded by genes in nuclear and mitochondrial DNA. Each gene has
coding sections, called exons, and non-coding sections, called introns. The exome
consists of all exons of all genes in a genome. The human exome is estimated to
correspond to only about 1% of the total genome, amounting to approximately
30Mb. This relatively small part of the genome, however, holds most of the mu-
tations currently known to be associated with human genetic diseases. What is
more, the exome is as yet better understood than non-coding and regulatory regions
of the genome. Whole-exome sequencing is seen as a middle-ground approach for
identifying Mendelian disease genes: it is more comprehensive and less biased than
sequencing a pre-determined gene panel while at the same time potentially more
cost-effective than sequencing and studying the entire genome.
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Exome sequencing arose from the development of methods that couple together
targeted capture and massively parallel DNA sequencing (also referred to as ‘next-
generation’ sequencing (NGS)). The technique of capture of targeted genomic loci,
today widely used for exome capture, was proposed in (Gnirke et al., 2009). In the
article, a fishing analogy illustrates the technique: exon baits are thrown in excess
in a pond of total human DNA fragments for a catch of enriched segments of exonic
DNA. The baits are long single-stranded oligonucleotide probes, each consisting of a
target exome segment, long enough to hybridise in solution with protein-coding ex-
ons (they are in average 169 bp long) and flanked on both sides by primer sequences
for amplification. Since many target exons are shorter than the designed probes,
the captured sequence as a whole extends beyond the 30Mb long exome. Magnetic
beads are used to amass the catch of exome segments, which are amplified and can
then be sequenced in the chosen sequencing platform. Next, the obtained exome
sequence reads are aligned to the human reference genome. Identified differences
are genotyped to make up the set of genetic variants contained in the exome of
the sequenced individual. Today, the most widely used software for the alignment
step is the Burrows-Wheeler Alignment tool (BWA) (Li and Durbin, 2009), and
for variant calling, the Genome Analysis Toolkit (GATK) (DePristo et al., 2011)
developed at the Broad Institute, and SAMtools (Li et al., 2009) developed at the
Sanger Institute.

The types of genetic variation that can be ascertained by current exome variant call-
ing methods and accompanying tools are SNVs (point mutations, single nucleotide
substitutions), indels (small insertions and deletions) and CNVs (copy number vari-
ants). SNVs are the simplest and most common type of variation, as well as the
most prevalent in association to disease. They make up approximately 55% of the
pathogenic mutations in the Human Gene Mutation Database (HGMD) (Stenson
et al., 2009). So far, the methods for identifying variant in NGS data are more
accurate in calling SNVs, as compared to other types of variation (McKenna et al.,
2010; DePristo et al., 2011). Also, for the subsequent stage of data analysis, SNVs
are the best served with a variety of computational resources, such as large-scale
population databases and tools for prediction of their functional effect on proteins.

In the studies of molecularly undiagnosed patients using exome sequencing data, the
Wartiovaara group concentrated first on SNVs. For this reason, SNVs are the type
of genetic variation this thesis focuses on. Recessively inherited, loss-of-function
mutations leading to altered, reduced or absent gene products required for nor-
mal mitochondrial function are usually implicated in infantile-onset disorders. Of
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interest, therefore, are the non-synonymous SNVs (nsSNVs), which change the cor-
responding codon so that they either code for a different amino acid (a missense
mutation) or become a stop codon (a nonsense mutation).

Discovery of Mendelian disease genes through exome sequencing has been growing at
an impressive rate since it was first demonstrated a few years ago (Ng et al., 2009;
2010). As originally proposed, most studies concern well-characterised disorders
with clear phenotypes affecting a small number of families or unrelated individuals
(Bamshad et al., 2011). By comparing exomes grouped by disorder, the search can
be narrowed down to the variants shared by all (or most) of the patients and not
found in unaffected family members and controls. This approach does not apply
to our cohort of children with suspected mitochondrial disease, who lack a firm
clinical or, in some cases, biochemical diagnosis, and in whom the same mutation
can cause different phenotypes and the same phenotype can be caused by different
mutations. Indeed, only a molecular diagnosis can make certain whether patients in
the cohort have particular mitochondrial disorders in common. The exome variant
data analysis workflow discussed here has been applied in studies starting with a
single index patient (n=1 studies) suspected of having a mitochondrial disorder with
variably defined genotype-phenotype relationships.

It is clear that the challenge of identifying all genes linked to mitochondrial disease,
a remarkably heterogeneous and complex group of disorders, has greatly and quickly
benefited from exome sequencing (Tucker et al., 2011; Tyynismaa et al., 2012; Elo
et al., 2012; Haack et al., 2012; Kornblum et al., 2013; Carroll et al., 2013; to
cite some of the most recent data). Another indication of the impact of exome
sequencing is the growing interest in extending its use as a diagnostic tool from
research to clinical settings (Bamshad et al., 2011; Haack et al., 2012; McCormick
et al., 2012).

2.1.1 Technological limitations

In spite of the many successes, there are technological limitations to exome sequenc-
ing that should be noted. To start with, causal variants located outside of coding
regions (in introns, untranslated (UTRs) and regulatory regions) are missed. More-
over, a consensual map of the coding regions of the human genome is still being laid
out (Pruitt et al., 2009). An exome is defined in practice by the specifications of the
particular capture method (kit) employed.
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Types of genetic variation that involve a genomic context broader than single exons
are not well detected. These include structural rearrangements and CNVs such as
repeats and larger deletions. Nonetheless, methods have been emerging for detection
of CNVs from exome data (Krumm et al., 2012; Fromer et al., 2012).

Errors can occur during exome capture due to defects in probes or deletions in exons,
for example. Also, hybridisation is inherently not fine enough to differentiate be-
tween exons belonging to genes with very similar sequences such as close paralogues,
pseudogenes, and gene family members (Gnirke et al., 2009).

There are many parts to the process of variant calling through alignment of the
captured short reads, amplified to the millions, to a reference sequence. It is ac-
knowledged that the reference human genome is still not free of errors. Major quality
improvements have recently been made by the GENCODE project (Harrow et al.,
2012). Insufficient coverage depth of the target sequence at positions is a common
problem which hinders reliable variant interpretation. A coverage depth of 20× for
80% of the sequence has been an early de facto standard. Newer technologies now
aim at an average depth of coverage in the 60× to 180× range.

In sum, characteristics of the chemistry used in the sequencing platform, of the ref-
erence sequence and of the alignment and variant calling algorithms can all influence
the extent to which all true, and only true, variants are identified. Complete and
correct identification of all types of human genetic variation is a running challenge
for exome sequencing and NGS technologies at large.

3 Workflow for analysis of exome SNV data

Despite the exome being a hundredth part of the genome, the number of SNVs
typically found in an individual exome is still large. The patients in our cohort
were found to carry in average around 30 000 SNVs, the vast majority of them being
benign variants. Essentially, in a Mendelian disease gene discovery study, the task at
hand is to find amongst all detected genetic variation one or two true causal variants
in a single gene that associates with the patient’s disease. Therefore, strategies are
needed to reduce the total set of variants into a much smaller set containing the
ones most likely to cause disease.

This chapter describes a workflow for analysis of exome variant data that aims at
identifying candidate disease SNVs and genes in paediatric patients suffering from
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suspected mitochondrial disorders. It can be thought of as a series of filters that sift
potential causal mutations from benign and polymorphic variants. Multiple layers
of information and computational resources pertaining to genetics of mitochondrial
disorders and to common and pathogenic human genetic variation are combined to
form the workflow.

More specifically, the workflow entails:

• variant selection criteria customised to the genetic characteristics of infantile
mitochondrial disorders;

• public and in-house databases of exome controls, of mitochondrial nuclear
genes and of human genetic variation; and

• software tools for prediction of pathogenic variants and of mitochondria-targeted
proteins.

3.1 Exome variant data

The exome variant data we analyse result from first extracting genomic DNA from
patient samples (usually, blood or muscle), followed by sample preparation and
exome sequencing and annotation performed by the Institute for Molecular Medicine
Finland (FIMM).

The FIMM pipeline applied to our patient samples comprises exome capture using
Roche NimbleGen Sequence Capture 2.1M Human Exome v2.0 array (except for
two of the samples for which Agilent SureSelect Human All Exon Kit was used),
and exome sequencing using Illumina Sequence Analyzer-IIx platform with 2×82 bp
or 2×100 bp paired-end reads (Sulonen et al., 2011). The achieved exome target
coverage has been between ∼95% and 98% in recent studies where the pipeline was
used (Tyynismaa et al., 2012; Elo et al., 2012; Carroll et al., 2013), with a typical
coverage depth of at least 20× for ∼80% of the capture target region (Sulonen et al.,
2011).

The pipeline produces exome sequence reads in the standard FASTQ format. The
reads go through quality filtering and scoring procedures, including assignment of
Phred scores for base calling quality. Phred is an well-established method that
scores each base call in a DNA sequence by analysing characteristics of peaks (e.g.,
spacing, amplitude, resolution) in sequence chromatograms, such as those produced
by Sanger sequencing, and scoring them in relation to reference quality scores of
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correctly called bases of known sequences (Ewing et al., 1998; Ewing and Green,
1998). Phred scores are typically in the [4, 60] range, with higher values indicating
higher quality. A Phred quality score, Q, maps to a base calling error probability,
P , through the relation Q = −10 log10P , or equivalently, P = 10−Q/10. The scores
can thus be conveniently related to probabilities of base calling error and accuracy:
a Phred score of 10 indicates a 1 in 10 (10%) probability that the base is erroneously
called, or that the call is 90% accurate; a score of 20 indicates a 1 in 100 (1%) error
probability, or 99% accuracy; and so forth.

Next in the pipeline, the QCed exome sequence is aligned to the latest human refer-
ence genome assembly, hg19/GRCh37, using the Burrows-Wheeler Alignment tool
(Li and Durbin, 2009), with aligned reads given in the BAM format. After that,
variant calling is performed using SAMtools (Li et al., 2009) and an in-house al-
gorithm for refinement (Sulonen et al., 2011). The common practice of discarding
variant bases with a quality score <20 is adopted, so that only high quality vari-
ant calls are filtered forward. Lastly, the called variants are annotated using the
Ensembl, dbSNP and 1000 Genomes databases, rendering variant data in BED and
text formats. This is the starting point of our exome variant data analysis workflow.

In the exome variant data, each SNV is described by a set of data items and their
values. We now list the data items that are used along the analysis workflow for
selecting the best candidate variants for association with disease. For each data item
a value example is given. These data item values compose the description of a SNV
that led to a successful molecular diagnosis. We will further refer to this particular
variant in one of the patient study examples given in Section 3.7.

• Sample: patient sample ID (e.g., P6).

• Chromosome: the chromosome where the SNV is located (e.g., chr2).

• Position: the genomic nucleotide position of the SNV (henceforth, the variant
position) (e.g., 224824538).

• Reference base: the base at the variant position in the reference genome
(e.g., T).

• VCP call base: the variant base determined by FIMM’s variant calling
pipeline (VCP), summarising the bases detected in the position (e.g., G).
A VCP call base value that differs from the Reference base value signals a
possible variant position. Further details below.
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• 1000 Genomes frequency: the frequency of the SNV in the 1000 Genomes
populations (e.g., 0).

• SNP: the SNP ID corresponding to the SNV, if present in the dbSNP database
(e.g., no value).

• Gene: the gene harbouring the SNV, identified by its unique Ensembl ID
and its HGNC (HUGO Gene Nomenclature Committee) official symbol (e.g.,
ENSG00000135900 (MRPL44)).

• Call depth: the number of reads at the variant position, also known as read
depth (e.g., 31).

• Reference calls: how many reads had the reference base at the variant posi-
tion (e.g., 0).

• Variant calls: how many reads had a non-reference base at the variant posi-
tion (e.g., 31). Reference and variant calls add up to call depth.

• A: how many of the variant calls are adenine bases (e.g., 2).

• T: how many of the variant calls are thymine bases (e.g., 0).

• C: how many of the variant calls are cytosine bases (e.g., 0).

• G: how many of the variant calls are guanine bases (e.g., 29).

• Quality ratio: a metric for variant calling quality calculated from quality
scores of reference and variant base calls (e.g., 0.062). The VCP call base
value depends on the Quality ratio value, as described below.

Since the processing of samples for exome sequencing involves DNA fragmentation
and amplification, each variant position can and should be covered by multiple
exome segment reads. The Quality ratio attribute, Qr, is modelled to give reliable
VCP call base values. A variant position where the same base is detected in all
covering reads has Qr = 0 and receives accordingly a VCP call base value of A, C,
T or G. Whereas, a position in which different bases are detected in different reads
receives as VCP call base value a mixed-base code according to the calculated Qr

value. The standard IUB (International Union of Biochemistry) ambiguity codes
for nucleotides are used (Nomenclature Committee of the International Union of
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Biochemistry, 1985). For example, R designates nucleotides G or A, Y designates
nucleotides T or C, and so on.

The following algorithm describes how the Quality ratio value of each of the called
SNVs is calculated.

With respect to the call bases at the variant position:

IF more than two distinct bases were called (each with a count >1),

THEN Qr = −1; variant position discarded

ELSE

CASE 1 the reference base and one variant base were called:

Qr = R/(R + V ), where R is the sum of quality scores of the
reference base calls, and V is the sum of quality scores of the
variant base calls

CASE 2 the reference base was not called but two distinct variant bases:

Qr = Vl/(Vl + Vh), where, between the two called variant bases, Vl

is the lower sum of quality scores, and Vh is the higher sum of
quality scores

CASE 3 the reference base was not called but a single variant base:

Qr = 0

The example SNV falls in case 2, with no T reference base but two variant bases,
A and G, being called. The rationale of the quality ratio formulae in the first two
cases is that the higher the quality score sum V in relation to R in case 1, or Vh in
relation to Vl in case 2, the smaller Qr gets, suggesting that the called base giving
V or Vh is a true variant. For the example, the G calls give Vh and the A calls give
Vl, as can be seen from the proportion of 29 Gs to 2 As, leading to a small Qr value
of 0.062.

Furthermore, the Qr value determines the VCP call base in the following way:

IF Qr < 0.2 THEN a homozygous variant base call is asserted

CASE 1 VCP call base = the variant base

CASE 2 VCP call base = the variant base giving Vh

CASE 3 VCP call base = the variant base
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IF 0.2 ≤ Qr ≤ 0.8 THEN a heterozygous variant base call is asserted

CASE 1 VCP call base = mixed base code corresponding to the reference and
variant bases

CASE 2 VCP call base = mixed base code corresponding to the two variant
bases

IF Qr > 0.8 THEN no variant base call is asserted

CASE 1 the reference base prevails and the variant position is discarded

To conclude the example, a Qr < 0.2 asserts G, the variant of higher calling quality,
as homozygous VCP call base.

3.2 Selection of variants based on mode of inheritance

All known inheritance patterns have been observed in infantile-onset mitochondrial
disease, however two of them make the vast majority: maternal and (Mendelian)
recessive inheritance (Chinnery, 2002; McCormick et al., 2012). Some known mi-
tochondrial disorders are X-linked with recessive inheritance, usually affecting boys
only. Unlike nuclear DNA which has biparental inheritance, mitochondrial DNA is
inherited exclusively along the maternal line (Anderson et al., 1981). Therefore, dis-
orders caused by non-sporadic mutations in mtDNA follow a maternal inheritance
pattern.

For most of the patients in our cohort, the possibility of pathogenic mtDNA mu-
tations was excluded by mtDNA sequencing and mutation screening, or clinical
evidence, leading to a presumed recessive inheritance mode. Two additional factors
reinforced such presumption. Firstly, most our patients have severe infantile-onset
disorders, a presentation that is typical of recessively inherited mitochondrial dis-
orders. Secondly, most patients are of Finnish descent. Finland being a genetic
isolate (Salmela et al., 2008), the likelihood of some degree of consanguinity be-
tween the parents is increased, providing further support for disease manifesting
under a recessive mode of inheritance (Kirby and Thorburn, 2008).

3.2.1 Recessive inheritance, zygosity and variant calls

In regard to zygosity, homozygous and compound heterozygous variants are consis-
tent with recessively inherited disorders. When manifesting in a homozygous state,
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the individual inherits two copies of the same pathogenic variant allele (one from
each parent) (Turnpenny and Ellard, 2011). In a compound heterozygous state, the
individual has in the same gene two (or more, albeit unlikely) distinct heterozygous
variants which combined can cause disease.

Homozygous variants were selected first during exome variant data analysis, given
the Finnish ancestry of most of our patients. Besides, any individual carries a
fewer number of homozygous than heterozygous variants. The selection of variants
according to zygosity is done through the VCP call base data item in the exome
variant data (Section 3.1). As VCP call base value, each homozygous variant has
A, C, T or G, and each heterozygous variant has a mixed-base code. Compound
heterozygous variants are selected by counting heterozygous variants in each gene
and observing those which occur in combination with one or more other variants in
the same gene.

3.3 Selection of variants based on SNV allele frequency

Variants detected in a patient affected by a rare Mendelian disorder which are also
commonly found in the general population should not be causative. Grounded on
this assumption, selecting out common, hence likely benign, variants is a widely
adopted practice in disease gene discovery studies. To this end, the most used
resources are the public databases dbSNP of NCBI (National Center for Biotechnol-
ogy Information) (Sherry et al., 2001) and that of the 1000 Genomes project (1000
Genomes Project Consortium, 2012), as well as control exomes. Suitable control ex-
omes originate from individuals sampled from the same population as but without
a familial relation to the patient(s), and who are unaffected or have an unrelated
phenotype.

It has been estimated that up to 90% of non-synonymous substitutions in coding
and splice site regions and small indels present in an individual’s genome can also be
found in public data collections of human genetic variation (Robinson et al., 2011).
The estimate rises to more than 95% considering coding SNVs only (Bamshad et al.,
2011). In our data derived from exome sequencing, for each called SNV there are
annotations sourced from dbSNP and 1000 Genomes, namely, the SNP and 1000
Genomes frequency data items shown in Section 3.1.

A reference SNP identifier annotation (e.g., rs77655487) indicates that the variant
is known (not novel) but not necessarily that it is common. The ascertainment of a
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dbSNP variant does not require a global population sample. Many variants detected
through narrow-scope assays with small population samples, or even a single indi-
vidual, are included in the database. The 1000 Genomes database provides variant
allele frequencies estimated from global population samples. The 1 092 genomes
from 14 populations of African, American, East Asian and European ancestry, inte-
grated in phase I of the project, have rapidly become the most prominent baseline
data set of human genetic variation. A total of 2 500 genomes will compose the
database upon completion of phase II in the near future.

Selection of variants based on allele frequency requires a threshold for distinguishing
common polymorphisms from rare variants possibly linked to disease. For SNVs,
this threshold has been traditionally set at 1% (Kruglyak and Nickerson, 2001),
which we adopted in this work. Alleles that are globally rare, however, may be
relatively more common in genetic isolates such as the Finnish population, believed
to bear a founder effect (Salmela et al., 2008; Turnpenny and Ellard, 2011). In order
to enhance ancestry matching in the selection of rare SNVs, we take advantage of
our in-house exome variant database (Section 3.3.1) and of the SNV genotypes of
the 93 Finnish individuals that are part of the 1000 Genomes EUR ancestry group.
Variants found in our patients which, although rare in the 1000 Genomes populations
(frequency < 1%), occur repeatedly in the 93 Finnish individuals above and/or in
our exome controls are not prioritised for further analysis.

3.3.1 Exome variant controls

Our in-house exome variant database contains variants found in 90 patient exomes
(at time of writing), studied by the Wartiovaara and Tyynismaa groups, which are
part of the Research Program for Molecular Neurology of the Faculty of Medicine,
University of Helsinki. The majority of the patients are of Finnish decent and have
suspected mitochondrial disease. A wide range of phenotypes are represented, in-
cluding encephalopathy, cardiomyopathy, lactic acidosis, arPEO and POLG Parkin-
son’s disease, as well as presentations suggesting well-defined mitochondrial syn-
dromes, such as Leigh and Alpers. A few non-mitochondrial patients are also part
of the database.

FIMM’s exome sequencing platform and variant call methods (Section 3.1) have
been applied uniformly to yield the variants in the database, rendering them useful
as ancestry-matched control data. Potential candidate variants in a patient under
investigation are searched for in the database. Variants that are common to several
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patients with phenotypic features unrelated to those of the patient at hand are
selected out as potentially disease-causing. In the few instances of patients with a
very similar phenotype, the database is useful for finding variants that are private
to them, hence potentially causative of the disease they seem to share.

Such views into the database are realised through queries implemented in SQL
(Structured Query Language) (Date, 2009) and made available to the several inves-
tigators in the Wartiovaara and Tyynismaa groups analysing patient exome variant
data.

A few other exome variant databases concerning different populations and disease
groups exist and can be used as additional control resources. We have used the
Exome Variant Server of the University of Washington at Seattle (Exome Vari-
ant Server, 2011), which focuses on heart, lung and blood disorders, and more re-
cently, the Genome Variant Database for Human Diseases of the University of Miami
(Genome Variant Database for Human Diseases, 2012) which started off with a focus
on neuromuscular diseases.

3.4 Selection of variants based on mitochondrial nuclear genes

The full characterisation of the mitochondrial proteome is still under way. It is
estimated, however, that around 1 500 nuclear genes encode proteins with a mito-
chondrial function (Lopez et al., 2000).

Human MitoCarta is to date the most comprehensive and robust inventory of hu-
man nuclear genes encoding mitochondrial proteins. Mitochondrial DNA genes are
also included. In its original publication (Pagliarini et al., 2008), 1 013 genes were
included in the inventory, on the grounds of firm biochemical, statistical or literature-
based evidence of mitochondrial localisation of the encoded proteins. By applying
MitoCarta, we are able to combine knowledge of the patient variants gained through
exome sequencing with the best available knowledge of the mitochondrial proteome.

To do so, we use Human.MitoCarta.plus26: MitoCarta appended with 26 more genes
recently shown to be linked to mitochondria in the literature, most of them also used
by the MitoCarta developers in a recent study (Calvo et al., 2012; Sarah Calvo, per-
sonal communication). Human.MitoCarta.plus26 is structured as a relational table
with each row characterising a gene through attributes such as its official NCBI
symbol, description, genomic position, type of evidence supporting mitochondrial
localisation, etc. A relational join operation (Date, 2009) is performed between Hu-
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man.MitoCarta.plus26 and a table containing a patient’s SNVs (Section 3.1) through
the gene symbol attribute. The result is a selective table of the patient’s variants
located in genes with established or strongly inferred mitochondrial association.

3.4.1 Prediction of mitochondria-targeting proteins

Not all genes that encode mitochondria-associated proteins are in MitoCarta — the
inventory is estimated to cover about 85% of them (Pagliarini et al., 2008).

As a secondary resource for selecting variants possibly located in mitochondrial
nuclear genes, we use computational tools — MitoProt, TargetP and iPSORT —
that predict whether a nuclear-encoded protein is likely to be imported into and,
hence, to be functional in mitochondria.

The transport of nuclear-encoded proteins into their target organelles in the cell’s
cytoplasm, including mitochondria, is governed by sequence motifs called sorting
signals, in that they contain biochemical information that directs a protein to the
organelle it belongs to. Most signals are located at the N-terminus — one of the
two ends of a protein sequence marked by an amino acid with a free amino group
from where translation started — and are often cleaved off upon entry of the pro-
tein into its organelle destination (Lodish et al., 2007; Emanuelsson et al., 2007).
Mitochondrial proteins have an N-terminal mitochondrial targeting peptide (mTP).
The computational tools harness, primarily, known biochemical properties of mTPs,
such as hydrophobicity, amino-acid composition and existence of a cleavage site, to
predict whether such a signal is present in a given protein sequence. Of note, there
are proteins involved in key mitochondrial functions that do not have an mTP or do
not locate in mitochondria, for example, outer mitochondrial membrane proteins.
Bioinformatic tools, therefore, will fail to predict such proteins to be mitochondria-
targeting.

In addition to properties of the signal sequence, MitoProt employs properties of the
protein sequence as a whole, such as maximum hydrophobicity and total net charge.
Each property is assigned a weight statistically estimated from a large collection
of proteins, and a combined mitochondrial-localisation likelihood score is calculated
(Claros and Vincens, 1996). TargetP and iPSORT use N-terminal sequence infor-
mation only. In TargetP, N-terminal sequence properties are mapped to numerical
values and fed into a neural network that calculates an mTP score (Emanuelsson
et al., 2000; 2007). In iPSORT, predictions are drawn through computational rea-
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soning over rules describing the N-terminal sequence properties which, as opposed
to a black box neural network model, are amenable to understanding and interpre-
tation by the users of the tool (Bannai et al., 2002). The Swiss-Prot database was
the source of protein sequences used in the development of all three prediction tools.

Of interest for in silico prediction of mitochondrial localisation of encoded proteins
are the genes which harbour patient variants and which are not part of MitoCarta.
The tools require only the corresponding protein sequences as input, which we obtain
from the NCBI Reference Sequence (RefSeq) database. We use sequences with
IDs having an NP prefix (knnown protein), indicating that these are high-quality,
manually curated sequences. We consider for further analysis proteins predicted
to target mitochondria by at least one of the tools. More precisely, a MitoProt
probability of export to mitochondria > 0.5, or a TargetP mTP score > 0.5 or an
iPSORT ‘having a mitochondrial targeting peptide’ prediciton.

3.5 Selection of variants based on predicted damage to pro-

tein

Computational tools have been developed also to predict whether an amino acid
change caused by a SNV in a gene will result in damage to the protein’s structure
and function, possibly leading to disease. In other words, these tools predict missense
pathogenic mutations. As massively parallel sequencing technologies became more
widely accessible in recent years, a greater demand for computational prediction
tools ensued. The last ten years or so have seen intense development in the so
called in silico prediction field and many tools exist today (for a recent review see
(Rantapero, 2012)).

The central premise for most of the prediction tools is that of evolutionary conser-
vation, or sequence homology: protein conservation across species correlates with
conserved protein function. A high degree of similarity between protein sequences
from different organisms may indicate a common evolutionary ancestor and a shared
protein that persisted for having a function, likely to be disrupted should a mutation
occur in its encoding gene. Note that, in regard to the possible neutral, deleteri-
ous or beneficial effects of mutations in the unfolding of evolution, it is implicitly
assumed here that changes in functionally conserved proteins should be deleterious.

Protein damage prediction tools founded on the evolutionary conservation premise
have better applicability in the identification of variants associated with monogenic
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diseases — such as most infantile mitochondrial disorders — than with common
complex diseases. This is because the evolutionary conservation patterns of variants
known to be linked to complex diseases appear to be indistinguishable from the
patterns of polymorphisms occurring in the general population (Kumar et al., 2011).

As part of our exome variant analysis workflow, the most used tools for pathogenic
variant prediction have been SIFT (Ng and Henikoff, 2003; Kumar et al., 2009) and
PolyPhen-2 (Adzhubei et al., 2010). They are commonly referred to in other disease
gene discovery studies, and variants in the 1000 Genomes database are annotated
with their predictions.

Both SIFT and PolyPhen-2 give probabilistic estimates of the propensity of in-
dividual amino acid changes to damage protein function, on the basis of protein
conservation information obtained from aligning the protein sequence in organisms
from different species. In addition to that, Polyphen-2 harnesses known biochemical
properties of proteins to generate the predictions in a Bayesian fashion.

As the tools differ in their total composition of predictive features and in their in-
ference algorithms (Sections 3.5.1 and 3.5.2), so may their predictions. Nonetheless,
in terms of overall performance, SIFT and PolyPhen-2 fare similarly on prediction
accuracy. Comparable performance rates can be found in their original reports
(Kumar et al., 2009; Adzhubei et al., 2010), as well as in recent independent as-
sessment studies (Li et al., 2013). New meta-tools have been proposed, e.g., Condel
(González-Pérez and López-Bigas, 2011) and logit (Li et al., 2013), which appear to
achieve better performance by combining prediction scores from multiple tools. Let
us note, however, that widely accepted standards for assessing tools (and meta-tools)
for prediction of pathogenic variants are yet to be established.

In our workflow, SIFT and PolyPhen-2 are used in a complementary manner. Vari-
ants predicted to be damaging to protein function by either of the tools are consid-
ered for further analysis. In the case of compound heterozygosity, damaging pre-
dictions for both variants are not required — suffices a damaging-predicted variant
compounded with other non-synonymous or non-coding variant.

In the remainder of this section, we summarise the workings of SIFT and PolyPhen-
2.
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3.5.1 SIFT

SIFT (Sorting Intolerant from Tolerant) predictions draw upon protein conserva-
tion information only. In SIFT’s terms, amino acid positions that appear highly
conserved in a protein sequence tend to be intolerant to substitution, whereas those
with a low degree of conservation tolerate most substitutions.

To obtain predictions, the user provides information on his variants of interest,
such as chromosome, genomic position, reference and variant alleles at the position.
From that, SIFT determines the protein query sequence and searches for its homo-
logues in the UniProt and NCBI protein resources by applying BLAST (Basic Local
Alignment Search Tool). The retrieved sequences are then aligned to the query one
resulting in a multiple sequence alignment (MSA). From the amino acid frequencies
in the MSA and from the amino acid substitution scores in the BLOSUM62 matrix
(Henikoff and Henikoff, 1992), probabilities for all the possible amino acid substitu-
tions at each position of the alignment are calculated. These probabilities, in turn,
are used to estimate the final SIFT score. The score represents the probability of
an amino acid substitution (caused by an nsSNV) being tolerated. A cutoff value
of 0.05 was experimentally determined. A score ≥0.05 predicts a TOLERATED, or
functionally neutral, substitution, whereas a score <0.05 predicts a DAMAGING
substitution, likely to affect protein function.

SIFT calculates also a so-called conservation value, which can be thought of as a
measure of sequence diversity. Apart from highly conserved protein families, too lit-
tle diversity (or, too much conservation) between the aligned homologous sequences
is not desirable for prediction. Closely related sequences may result, for example,
from the initial set of BLAST-searched sequences belonging to the same organism,
as opposed to being functionally conserved orthologous sequences. Little diversity
could also result from positions in the sequences being still conserved by chance in
the elapsed evolutionary time.

The conservation value calculated for each position of the MSA is in the range
[0, log220(= 4.32)]. Zero represents minimum conservation, when all 20 amino acids
occur at the position, while 4.32 represents maximum conservation, when only one
amino acid occurs. SIFT sets ∼3 as target median conservation value for each
amino acid position, aiming at optimal sequence diversity in the MSA. Positions
with conservation value >3.25 render a low confidence prediction warning.

The prediction accuracy of SIFT was estimated (Kumar et al., 2009) at a true
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positive rate of 69%, corresponding to the proportion of disease-associated nsSNVs
found in a cohort of affected individuals that were correctly predicted to damage
protein function. When applied to a dataset of nsSNVs found in healthy individuals,
SIFT predicted 19% of them as damaging, a proportion that can be interpreted as
an approximate false positive rate.

3.5.2 PolyPhen-2

Like SIFT, PolyPhen-2 also forms an MSA, searching sequences from the UniProt
resource according to user input. The BLOSSUM62 matrix is another shared re-
source with SIFT, used for estimating intermediate conservation scores of amino acid
positions (not yet the final score for protein damage prediction). These intermedi-
ate scores are distinguished between profile- and identity-based scores, depending
on the MSA scope involved in the estimation. Profile-based scores reflect the sub-
stitution patterns and the relatedness of the homologous sequences in the MSA
as a whole. Identity-based scores, on the other hand, reflect the identity between
the query sequence and its closest homologues. Intuitively, an amino acid position
within an MSA of highly diverse sequences would receive a low profile-based conser-
vation score; an amino acid position in a query sequence that is highly identical to
its closest homologues would receive a high identity-based conservation score.

Now, unlike SIFT, PolyPhen-2 combines conservation information with physico-
chemical features of amino acids, and with structural features of proteins, the latter
being limited to proteins with known 3D structures. Some examples of features
are: CpG (Cytosine–phosphate–Guanine) context of transition mutations (purine to
purine, A↔ G, or pyrimidine to pyrimidine, C↔ T), deemed to correlate with mu-
tation rate; change in the amino acid volume given the mutation; accessible surface
area and B-factor, an indicator of conformational mobility, of the wild-type amino
acid. To enable probabilistic inference, conservational features are represented by
alignment scores, and each biochemical feature by probability distribution values.

The final PolyPhen-2 score represents the probability that an nsSNV is damaging
(is pathogenic, or affects protein function) and is inferred by a naive Bayes classi-
fier. A general interpretation of such a classifier would be that a prior probability,
P (d), representing an initial degree of belief in the pathogenicity of the nsSNV, is
assigned and then reviewed in the light of features (observed data) that are relevant
for pathogenicity — biochemical properties of amino acids, structural and conserva-
tional properties of the protein — to give P (d|features). A corresponding general
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formulation for the classifier, followed by the rationale of its terms, is thus:

P (d|features) = P (d)× P (features|d)
P (features)

where

• P (d|features) is the posterior probability of the nsSNV being damaging given
the supporting features;

• P (d) is the prior probability assigned to the nsSNV being damaging;

• P (features|d) is the probability of the features given that the prediction d

holds, in other words, the likelihood that the observed features are supported
by a damaging nsSNV; and

• P (features) is the marginal probability of the features, representing their
overall combined likelihood.

Several different features can be exploited to inform prediction of protein-damaging
variants. This is the motivation for the naive Bayes approach in PolyPhen-2, an
approach that is particularly useful in scenarios where diverse data classes are com-
bined to support the inference of posterior probabilities. Naive Bayes classifiers
assume that the classes of supporting data (or features) are independent, in this
way drastically simplifying the modelling and training of the classifier. In actual-
ity, the features are often not independent. In the PolyPhen-2 context, amino acid
volume and accessible surface area, for example, are not biologically independent
protein features. Oversimplistic as it may seem, the feature independence assump-
tion does not usually impair the classifier’s performance significantly. PolyPhen-2
classifier’s performance was comparable to that of other machine learning methods
(Adzhubei et al., 2010; supplementary material).

PolyPhen-2 distinguishes three classes of nsSNVs, according to the inferred proba-
bilistic score: benign (score ≤ 0.15), possibly damaging (0.15 < score ≤ 0.85), and
probably damaging (score > 0.85). Additionally, PolyPhen-2 reports true positive
(sensitivity) and true negative (specificity) estimates for a given variant.

The prediction accuracy of PolyPhen-2 was estimated by applying it to two datasets
compiled from UniProt: one dataset comprising variants associated with human
Mendelian diseases, and another comprising variants associated with human ge-
netic disease more generally. Association with disease was asserted on the basis of
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UniProt annotations. Variants not annotated as linked to disease in the database
were assumed to be benign. For the dataset of variants linked to Mendelian dis-
eases, PolyPhen-2 displayed a true positive rate of 92% and a false positive rate of
20%. For the less Mendelian disease-specific dataset of variants, the true positive
rate was 73%, and the false positive rate, 20% (comparable to SIFT’s 69% and 19%,
respectively (Section 3.5.1)).

3.6 Prioritisation of candidate variants and genes

After applying the variant selection criteria discussed in the previous sections, a best
case scenario is to have at hand one to a few variants that could cause the disease
in the patient. Here we consider additional requisites of these candidate variants
which are used for prioritising them for further functional studies. Fulfilment of the
requisites increases the likelihood of a variant being a true causal disease mutation.

Evolutionary conservation is one such requisite, for the reasons discussed in Section
3.5. We use sequence alignment software to observe the degree of conservation across
species of the changed amino acids and of their flanking sequence block.

An independent form of sequence analysis, most often Sanger sequencing, is per-
formed in order to confirm the variant and its zygosity. The most common cause
of false positives in candidate variant identification is insufficient coverage depth of
the genomic segment in question. We have had several instances of unconfirmed
homozygosity of variants with a small coverage depth (Call depth data item in Sec-
tion 3.1). When available, family samples are also sequenced for confirmation of a
recessive inheritance pattern or of a de novo mutation. In the case of an inherited
homozygous mutation: affected siblings, if any, are expected to also have the mu-
tation; parents are expected to be heterozygous carriers; and unaffected siblings, to
be heterozygous carriers or not to carry the mutation. Compound heterozygosity
is confirmed by observing that the two mutations are not allelic, i.e., that each of
them is inherited from a distinct parental allele. When parental samples are not
available, non-allelic mutations can be confirmed by cloning the genetic region in
bacterial vectors, but this can be done only if the mutations are relatively close
together (Tyynismaa et al., 2012).

Approximately 400 ancestry-matched control chromosomes are screened in order to
verify that the mutation does not occur in healthy individuals. A small number
of heterozygous carriers was sometimes found in our studies, indicating a possible
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enrichment of the concerned variants in the genetically isolated Finnish population.

For each patient case, expert biologists and clinicians in the Wartiovaara group care-
fully consider the candidate variants and genes in relation to the patient’s phenotype.
This is clearly a decisive, final step in the prioritisation of variants. Previous stud-
ies in the literature may (or may not) provide support for investigating the variant
further. Once prioritised, variants are subjected to biochemical assays aiming at
understanding their consequences at the molecular level and their associations with
the patient’s disease.

3.7 The workflow exemplified

The order in which the different variant selection criteria discussed in the previous
sections are applied is not fixed. A general strategy is to give precedence to the
criterion that reduces the current set of SNVs the most. In this section, a couple
of examples of successful application of the workflow are given, one singling out a
homozygous variant later confirmed to underlie the patient’s disease, and another
yielding compound heterozygous variants in a few candidate disease genes.

The first example comes from a sibship of three girls born to healthy Finnish parents
without close consanguinity. The eldest daughter is healthy while the other two are
affected with cardiomyopathy. The middle daughter died at six months of age from
acute cardiac insufficiency which developed after a respiratory infection.

We performed exome sequencing for the second affected daughter, now a teenager.
Elevated enzymes in the liver were her first sign of disease found at three months
of age. At eight months, she was diagnosed with hypertrophic cardiomyopathy,
which progressed initially but stabilised after 2 years of age. The patient is now 14
years old with normal psychomotor development, apart from selective mutism. The
cardiomyopathy remains stable and asymptomatic.

Figure 1 shows a series of selection criteria applied to the exome variant data from
the patient. The process starts off with a total of 23 958 detected SNVs. Across our
cohort of 49 patients, the average number of exomic SNVs has been around 30 000,
in line with other published studies where similar exome sequencing technologies
were used.

Selecting variants that were either absent or present in <1% frequency in the 1000
Genomes populations resulted in 3 950 SNVs. Of these, 56 SNVs were found to
locate in mitochondrial nuclear genes by use of Human.MitoCarta.plus26. Only two
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of these SNVs were homozygous, one of them receiving ‘damaging’ predictions from
both SIFT and PolyPhen-2, with scores 0.02 (probability of the resulting amino acid
substitution being tolerated) and 0.989 (probability of the SNV being damaging to
protein structure and function), respectively.

  

23 958 SNVs

Selection of rare
variants (Section 3.3) 3 950 SNVs

Selection of variants in 
mitochondrial genes (Section 3.4) 56 SNVs

Selection of homozygous
variants (Section 3.2) 2 SNVs

Selection of damaging
variants (Section 3.5)

1 SNV

Figure 1: Example of exome variant data analysis workflow identifying a homozygous
candidate variant.

The resulting SNV c.467T>G (p.Leu156Arg) — a thymine at nucleotide 467 in the
coding DNA reference sequence is changed to a guanine, and consequently the amino
acid Leucine-156 is changed to an Arginine in the protein sequence — is located on
chromosome 2q in exon 2 (of 4) of the MRPL44 gene. The Leu156 amino acid is
highly conserved among vertebrates. Sanger sequencing confirmed the homozygous
mutation in the patient as well as in her affected sibling, while the parents and the
healthy sibling were found to be heterozygous carriers.

Through the 1000 Genomes Ensembl browser, one can find the SNP rs1433697995,
imported from dbSNP (release 137), which corresponds to the variant but found in
heterozygote carriers only. The SNP has a reported rounded frequency of 0.001 for
the T/G genotype in a European-American population (3 T/G to 4 297 T/T). The
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variant was not found in 436 Finnish control chromosomes, neither in our in-house
90 exome controls (Section 3.3.1).

MRPL44 (mitochondrial ribosomal protein L44) encodes a protein of the large
subunit of the mitochondrial ribosomes, the structures where proteins encoded by
mtDNA are synthesised. The identification of the mutant MRPL44 in the two
siblings motivated functional studies, which demonstrated the role of the protein
in assembly and stability of the ribosomal subunit and indicated the identified ho-
mozygous mutation as a novel genetic cause for primary mitochondrial hypertrophic
cardiomyopathy with variable clinical presentation (Carroll et al., 2013).

Figure 2 gives a second example of application of the workflow, this time identify-
ing compound heterozygous candidate variants. The studied patient suffers from
cardiomyopathy and encephalopathy with onset at one year of age.

  

23 041 SNVs

Selection of rare
variants (Section 3.3) 3 955 SNVs

Selection of variants in 
mitochondrial genes (Section 3.4) 67 SNVs

Selection of homozygous
variants (Section 3.2) 17 SNVs

Selection of damaging
variants (Section 3.5)

6 SNVs
in 4 genes

Selection of compound
heterozygous variants (Section 3.2)

1 synonymous SNV

Figure 2: Example of exome variant data analysis workflow identifying compound
heterozygous candidate variants.

Applying the selection criteria down to rare, homozygous variants in nuclear mito-
chondrial genes led to a single synonymous SNV. The selection was then extended
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to compound heterozygous variants, leading to 17 SNVs. Of these, six variants
distributed in four different genes were predicted to be protein damaging by SIFT
and/or PolyPhen-2.

Among the genes, MNDG1 (Mitochondrial Nuclear DNA Gene 1 — fictitious name),
with one missense and one nonsense mutation found in the patient, was prioritised
for further studies, as the gene is known to cause severe infantile-onset mitochondrial
disease. Both altered amino acids are highly conserved. The missense mutation was
not found in any of our other (89) disease exomes. Interestingly, the nonsense mu-
tation was also found, compound heterozygous with another missense mutation, in
a second, unrelated patient in the cohort presenting with juvenile-onset neuropathy.
The mutations in the two patients were confirmed by Sanger sequencing.

MNDG1 encodes an elongation factor which is needed, along with many other pro-
teins, for mitochondrial translation. Its function in the elongation step affects the
accuracy of protein synthesis in mitochondria. Computational structural modelling
of the gene with the identified SNVs predicted them to cause protein instability
progressing to degradation. The study indicates the variants as novel compound
heterozygous mutations underlying less severe phenotypes with later onset (Ahola-
Erkkilä et al. (unpublished)), as compared to a previously reported1 homozygous
mutation causing infantile multiorgan mitochondrial disease leading to early death.

4 Aggregate Results

Firstly, this thesis work resulted in the structured assembly of the presented data
analysis workflow. The workflow was then applied to exome variant data from
patients with a view to reaching genetic molecular diagnoses.

Table 1 lists a cohort of 49 paediatric patients with suspected recessively inherited
mitochondrial disease. As seen on the table, the cohort encompasses a variety of
phenotypes, the majority being encephalopathies, cardiomyopathies and mitochon-
drial syndromes, such as Leigh and Alpers. The workflow was executed on the
exome variant data sets from these 49 patients jointly by this author and several
other members of the Wartiovaara group.

1References are not given due to pending publication of the patient study.
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Table 1: Cohort of 49 paediatric patients with suspected recessively inherited mito-
chondrial disease. Disease genes, and supporting references, identified through ap-
plication of the exome variant data analysis workflow. Findings of nuclear genes with
confirmed association to mitochondrial disease are highlighted in bold. MNDG1–
4 (Mitochondrial Nuclear DNA Gene), NMNDG1–4 (Non-Mitochondrial Nuclear
DNA Gene), and MTDG1–3 (Mitochondrial DNA Gene) are fictitious gene names,
used due to pending publication of the respective patient studies. na, not available.

Age of
Patient onset Phenotype Identified Reference

(death) disease gene

P1 na cardiomyopathy,
mtDNA depletion

P2 3.5 m cardiomyopathy AARS2 Götz et al. (2011)
(10 m)

P3 2nd day encephalomyopathy FARS2 Elo et al. (2012),
(8 m) Shamseldin et al. (2012)

P4 3 m cardiomyopathy MRPL44 Carroll et al. (2013)
(Section 3.7)

P5 1 y cardiomyopathy, MNDG1 Ahola-Erkkilä et al.
encephalopathy (Section 3.7) (unpublished), undisclosed

supporting references

P6 prenatal infantile lactic
(neonatal) acidosis, myopathy

P7 birth neuropathy,
encephalopathy

P8 na POLG-like NMNDG1 undisclosed supporting
reference

P9 na POLG-like
P10 2 m POLG-like

(1.5 y)

P11 na POLG-like
P12 na POLG-like
P13 na POLG-like
P14 birth encephalopathy NMNDG2 Tyynismaa et al.

(4 y) (unpublished)

P15 1.3 y Leigh syndrome-like
P16 4 m cardiomyopathy, MNDG2 undisclosed supporting

Leigh syndrome-like reference
encephalopathy
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Age of
Patient onset Phenotype Identified Reference

(death) disease gene

P17 6 y epileptic
(9 y) encephalopathy,

Alpers syndrome-like

P18 3 m encephalopathy
P19 <2 y encephalopathy

(9 y)

P20 teen-age neuropathy MNDG1 Ahola-Erkkilä et al.
(unpublished), undisclosed
supporting references

P21 birth encephalopathy
P22 1st day encephalopathy
P23 8 m encephalopathy
P24 birth encephalopathy NMNDG2 Tyynismaa et al.

(unpublished)

P25 birth Alpers syndrome-like
(5 m)

P26 1 m Leigh syndrome MNDG3 Matilainen et al.
(2.5 y) (unpublished), undisclosed

supporting references

P27 1 y cardiomyopathy,
encephalopathy

P28 <2 y encephalopathy,
renal presentation

P29 prenatal failure to thrive,
(5 m) encephalomyopathy

P30 1.25 y Leigh syndrome,
(10 y) hearing deficit

P31 4 y encephalopathy
P32 birth Leigh syndrome

(12 y)

P33 <1 m encephalopathy
P34 6 m encephalopathy
P35 prenatal infantile lactic acidosis

(2nd day)

P36 10 m Leigh syndrome MNDG2 undisclosed supporting
(1.5 y) reference

P37 5 y encephalopathy MNDG4 undisclosed supporting
reference

P38 na Leigh syndrome,
cardiomyopathy
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Age of
Patient onset Phenotype Identified Reference

(death) disease gene

P39 na encephalopathy
P40 neonatal encephalopathy
P41 5-6 y encephalopathy MTDG1

(21 y)

P42 1st day encephalopathy MTDG2
P43 1st day encephalopathy NMNDG3 undisclosed supporting

references

P44 prenatal hepatoencephalopathy,
(4 m) hypertrophic

cardiomyopathy

P45 1 m hepatoencephalopathy NMNDG4 undisclosed supporting
reference

P46 1 y Leigh syndrome MTDG3
(9 y)

P47 2 y Leigh syndrome-like
(13 y)

P48 na encephalomyopathy
P49 <1 y Leigh syndrome,

(20 y) Alpers syndrome-like
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Overall, for 17 out of the 49 patients a disease gene was identified. Table 1 gives
the literature references, produced by the Wartiovaara group and others, supporting
each of the nuclear DNA findings. For the studies with pending publication, fictitious
gene names are used and supporting references are undisclosed.

Three of the findings (patients P41, P42 and P46) were in mtDNA genes, identified
by using additional data analysis resources, such as the MITOMAP and mtDB
databases, which are outside of the scope of this thesis. Five other findings concern
genes that do not encode mitochondrial proteins (patients P8, P14, P24, P43 and
P45). However, the protein encoded by NMNDG4 (P45) participates in a reaction
in the cytosol that yields a cofactor which is transported into mitochondria and is
essential to the organelle’s energy metabolism.2 Therefore, a nuclear gene linked to
a mitochondrial disorder was identified for 10 of the patients.

The distribution of the mutations in the 10 patients according to zygosity was as
follows:

• five patients with a homozygous mutation in the identified gene (P2, P4, P36,
P37 and P45);

• four patients with heterozygous mutations (P3, P5, P20 and P26); and

• one patient with a heterozygous mutation (P16).

Each of MNDG1 and MNDG2 was identified for two patients. Therefore, 8 distinct
disease genes were identified. With regard to novelty of the findings, they are:

• three novel disease genes (AARS2, FARS2 and MRPL44 );

• two known disease genes with a novel phenotype association (MNDG1 (2×)
and MNDG3); and

• three known genes in known phenotypes (MNDG2, MNDG4 and NMNDG4).

Patients P1 to P5 were selected first for exome sequencing and data analysis, as both
their clinical and biochemical data bore the strongest evidence of a mitochondrial
disease. For only one of these patients a molecular diagnosis was not reached, giving
an astounding success rate of 80%. All 49 patient exomes included, the success
rate was 35% (17/49) considering all findings, and 20% (10/49) considering nuclear

2Reference is not given due to pending publication of the patient study.
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genes and confirmed mitochondrial disorders only. Not surprisingly, analysis of
exome variant data resulted in a higher proportion of genetic diagnosis for clear
mitochondrial pathology cases compared to a more openly defined cohort.

5 Current and Future Work

This thesis project focused on analysis of SNV data obtained from exome sequenc-
ing for molecular diagnosis of suspected mitochondrial patients. Extensions of the
project have started to develop in regard to analysis of other types of genetic vari-
ation and the construction of a relational database of patient data, starting with
exome sequencing variant data, for the Wartiovaara group.

5.1 Other types of genetic variation

As pointed out in Section 2.1, SNVs, indels and CNVs are ascertainable from exome
sequencing data. So far, SNVs have been the most extensively and systematically
examined type of variation in our patient studies.

Second to SNVs, small insertions and deletions ranging from one to a few tens
of bases, or indels, are the next most common mutation type associated with
Mendelian disease. Indels amount to about one quarter of the total of entries in
the Human Gene Mutation Database (HGMD) (Stenson et al., 2009).

FIMM’s exome sequencing and variant calling pipeline (Section 3.1) produces a data
set of indels for each patient (in addition to a data set of SNVs). Variant calling
systems such as SAMtools, which is part of the pipeline, and GATK are in general
less accurate with indels in comparison to SNVs (Bamshad et al., 2011), having a
tendency to overcall them (Daniel MacArthur, personal communication).

Algorithms and software tools have emerged for predicting whether an indel is dam-
aging to gene function. There are distinct tools for in-frame and frameshifting indels.
Because an amino acid is coded by three consecutive bases (a codon), a frameshift
can occur when the number of inserted or deleted bases is not a multiple of three.

PROVEAN, Protein Variation Effect Analyzer (Choi et al., 2012), predicts in-frame
indels, and also single and short multiple amino acid substitutions, as neutral or
deleterious to the encoded protein. The prediction method uses pairwise alignments
between a query protein sequence and sequences of functional homologues. The
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similarity between the query sequence and a homologue is measured with an without
the variant occurring in the query sequence. If the variant reduces the similarity
between the two sequences, as measured by a pairwise alignment score, then the
variant is predicted to be deleterious; otherwise, it is predicted to be neutral. Note
that PROVEAN uses the change in the alignment score as a measure of the effect
of the variant on protein function. The measuring of similarity takes into account
a short sequence region encompassing the variant site and flanking amino acids on
both sides. This is why the method is applicable to both indels and short amino
acid substitutions. The PROVEAN tool was developed and is hosted together with
SIFT, the damaging SNV predictor (Section 3.5.1), at the J. Craig Venter Institute.

In (Hu and Ng, 2012), an algorithm is described which predicts frameshifting indels
to be neutral or gene-damaging. The algorithm consists of a decision tree classifier
with classification rules built on the basis of a set of 20 features of the indels and
of the genes where they occur. For example, number of transcripts not affected by
the indel, position of the indel on the affected gene transcripts, number of overlap-
ping amino acids between the original and the indel-modified protein, number of
conserved nucleotide positions affected by the indel. The source of disease-causing
frameshift indels used to train the decision tree algorithm was the Human Gene
Mutation Database (HGMD).

We have used the above prediction tools for in-frame and frameshifting indels in the
analysis of some of our patient exome data. Data formatting templates were built
to form batch input to the tools.

SNVs and indels at splice sites can alter gene products and have a pathogenic role.
Our exome variant data contain splice site variant annotations derived from SAM-
tools and Ensembl. Additionally, Eino Palin, from our group, developed a program
that uses known sequence motifs at splice sites to find their genomic positions. These
positions can then be matched against exome variant data to identify SNVs and in-
dels at splice sites occurring in a patient. Furthemore, a number of algorithms and
tools exist for prediction of splicing sites and alterations, among them NNSPLICE
(Reese et al., 1997), GeneSplicer (Pertea et al., 2001) and Human Splicing Finder
(Desmet et al., 2009).

Large-scale gains or losses of genomic segments, spanning up to several million
bases, caused by duplication or deletion events are known as CNV (Copy Number
Variation). Exome sequencing is not specifically tailored for detecting CNV, as the
units of sequence capture, the exons, are short and sparsely distributed along the
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genome.

Nonetheless, methods and tools have been developed for calling CNVs from exome
sequencing data by leveraging depth of coverage (read depth) information. The
rationale is that, given an estimated read-depth average for a set of sequenced ex-
omes, a position of a particular exome with an above-average depth may indicate
gain of sequence (duplication) around the position and, conversely, a below-average
depth may indicate loss of sequence (deletion). The highly variable read-depth val-
ues that exome sequencing typically yields, however, are also influenced by a host of
other factors: DNA biochemical properties, sample batch biases, experimental and
bioinformatic procedures. Data analysis techniques such as principal component
analysis (PCA) are applied for identification of confounding factors which, in turn,
enables depth of coverage normalisation and more accurate detection of CNV sig-
nal. CoNIFER — Copy Number Inference From Exome Reads (Krumm et al., 2012)
and XHMM — eXome Hidden Markov Model (Fromer et al., 2012) are two of the
recently described methods. Our group has started experimenting with CoNIFER.

Once systematic analysis of all these types of variation is in place together with
SNV analysis, the possibility of variants of different types acting in combination to
harm gene function can also be considered — for example, an indel combined with
a splice site SNV, a small-scale variant combined with CNV, and so forth.

5.2 ExoMitDB

A strength of the exome variant analysis workflow described in this thesis was its
easy assimilation into the everyday work of biologists and medical doctors in the
Wartiovaara group. One reason was that no computing platform shift was required.
All the variant analysis steps are performed through Web-based software tools and
the Microsoft Office suite (Excel and Access), familiar to the researchers. Moreover,
the development wait was minimal. The workflow took shape incrementally, with
new steps put into practice quickly. That said, the benefits that a relational database
solution designed for patient exome analysis could bring about were apparent.

The exome variant data in its original form of a SNV table per patient was de-
scribed in Section 3.1. Although variant data from all the patients are now accessible
through a functioning Access database and SQL queries, the original tables had not
been structured within the relational database paradigm — they are simply data
sheets, one per patient, one SNV per row.
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A project was initiated to build a relational database to allow storage, manage-
ment and interrogation of data on patients studied by the Wartiovaara group. Ex-
ome data is the first type of patient data being tackled through development of
a database prototype we are calling ExoMitDB. Jan Vollert, a student from the
MSc programme in Molecular Biology/Bioinformatics at the University of Applied
Sciences Gelsenkirchen, Germany, started off the design and implementation of the
prototype as a summer internship project.

ExoMitDB is being developed with a view to integrate other existing and future
types of patient data, such as, respectively, data on biological samples and whole-
genome sequencing data. Capacity for extension is one of the advantages of a re-
lational database solution. This requires, however, a careful design that reflects all
concerned data entities and their relationships. Figure 3 shows a very high-level
depiction of the conceptual data entities in ExoMitDB: Patients and their Family
members, Phenotypic features patients present with and Disease groups of interest
(e.g., mitochodrial disease, cardiomyopathies, etc.), genetic Variants identified in
an individual and Genes where they locate, and Variant Analysis relating patients
and their families, phenotypes and variants to draw disease associations.

  

Patient and 
Family

Phenotype 
and Disease Variant

Gene

Variant
Analysis

Figure 3: High-level conceptual data entities in ExoMitDB.

ExoMitDB will allow the steps composing the data analysis workflow to be further
automated and better integrated. Querying flexibility will also improve, responding
to diverse data analysis needs as they emerge. Analysis of patient variant data relies
on external information resources, such as the human reference genome or databases
of genetic variation in the general population, which are constantly evolving. Auto-



34

mated integration between ExoMitDB and relevant external information resources,
allowing for fast data re-analysis following updates, is another desired feature.

Our choice of database management system for implementing ExoMitDB was
MySQL, motivated by it being robust, open source, widely used in bioinformatics
(which eases the integration with external resources just mentioned) and, impor-
tantly, by the provision of a MySQL server by FIMM. For scripting of connections
to the server, procedures for loading existing data to the new relational tables, data
analysis procedures, etc., we chose the Python programming language. Python is
also open source and widely used in bioinformatics, has a clean syntax and supports
interface with MySQL.

6 Conclusion

This thesis project set up a workflow for analysis of exome variant data for identifica-
tion of mutations causing mitochondrial disease in children. The workflow has been
one component in the introduction of exome sequencing as a new research tool for
the Wartiovaara group, and is a current resource for actual patient studies performed
by several members of the group. Rather than finished, it is in continuous devel-
opment in keeping, as much as possible, with rapid advances in human genomics,
sequencing technologies, and bioinformatic methods and tools. Also, the workflow
has had ramifications into analysis of data on other types of genetic variation de-
tectable through exome sequencing (Section 5.1) and into constructing a relational
database of patient data on a robust platform as a bioinformatics infrastructure
project for the Wartiovaara group (Section 5.2).

The workflow targets specifically SNVs in nuclear genes coding for proteins which
when absent or defective can impair mitochondrial function and cause disease. The
results of applying the workflow in 49 paediatric patient studies were reported (Chap-
ter 4). SNVs in nuclear genes selected through the workflow led to a confirmed
molecular diagnosis of a mitochondrial disorder for 10 of the patients. This repre-
sented a significant increase in successful diagnoses in a short period of time. Some of
the patients had been previously studied at length, with traditional methods falling
short of revealing the underlying cause of their disease. Moreover, with each diag-
nosis, enabled by exome sequencing and substantiated with solid functional studies,
a better understanding of mitochondrial biology and pathogenicity comes about.

Still, most cases in our patient cohort remain unsolved. Part of them can be at-
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tributed to types of genetic variation other than SNVs. Another part, to the techno-
logical limitations of exome capture, sequencing and variant calling (Section 2.1.1).
Another yet is due to analytical limitations, imposed by shortcomings of the re-
sources used to apply some of the variant selection criteria (Sections 3.3 to 3.5).

Human.MitoCarta.plus26 is not an exhaustive inventory of mitochondrial genes, and
prediction tools for both mitochondria-targeting proteins and damaging variants do
give false negatives.

Our main reference for selecting variants on the basis of population allele frequency
has been the 1% threshold on the 1000 Genomes populations. Ancestry-specific
population data provide a better ground for frequencies that distinguish between
common and potentially pathogenic variants. And, clearly, patient and population
should be ancestry matched, even more so for isolates, such as the Finnish popula-
tion, with their private genetic make-up. We now have good prospects for this kind
of resource becoming available with the Sequencing Initiative Suomi (SISu) project
(Palotie et al., 2013).

Our workflow assumes a monogenic recessive pattern of inheritance for infantile
mitochondrial disorders. It may be so that more complex genetic phenomena are
also involved (Calvo et al., 2012; McCormick et al., 2012): interactions between
multiple, low-penetrance alleles in mtDNA and/or nDNA genes, modifier genes, or
epigenetics, for example.

All in all, this work joins others in showing that exome sequencing, coupled with
data analysis that incorporates properties of mitochondrial disorders, is a power-
ful approach to keep expanding our understanding of these disorders and bringing
effective therapies closer.
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