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The linear instability analysis of thermocapillary conve ction in a bila yer system consisting of silicon oil 
10cS and fluorinert FC70 liquids was discussed in this paper. The bilayer system was bound below by
a rigid plate and above by a free surface with a passive gas. The two immiscible liquids were separated 
by an interface. A constant horizontal temperature gradient was imposed along the interfaces. Two typ- 
ical cases were studied: (i) streamwise homogeneou s disturbances (the streamwise disturbance wave 
number a = 0); (ii) spanwis e homogeneou s disturbances (the spanwis e disturbance wave number 
b = 0). When a = 0, it was found that convection in the two layers may occur in the form of stationary 
mode or oscillatory mode. The oscillatory mode takes the form of traveling wave, which propagates in
either spanwis e direction. When b = 0, convection in the two layers occurs in the form of oscillatory 
mode, which takes the form of traveling wave propagating in the same direction as base flow. The three 
dimensional analysis suggested that disturbance in the spanwis e direction was the major cause of desta- 
bilization in the system. The influences of Biot number Bi and the depth ratio h on the unstable modes in
the bilayer system were discussed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

The phenomenon of thermocapi llary instability has received 
much attention in recent years. Colinet et al. [1] and Joseph and 
Renardy [2] investigated the stability and pattern formation of heat 
convection problems . Pearson [3] investigated the classical 
Marangoni convectio n in a single liquid layer heated from below.
Linear stability analysis of Pearson predicts the threshold value 
of Marango ni number, Ma = 79.6, which coincides with experi- 
ments. Smith and Davis [4,5] and Davis [6] considered thermocap- 
illary instabilities in a single layer system with a non-deformabl e
interface. Sen and Davis [7] studied steady thermocapi llary flows
in two-dimensi onal slots. In [4–7], the flow system was subjected 
to a constant horizontal temperature gradient along the interface 
resulted in a linearly distribut ed horizontal flow, i.e. the thermal 
Couette flow. Particula rly, Smith and Davis [4] found that for this 
linear base flow, when it was subjected to spanwise disturbance s,
convection may occur in the form of stationary longitudina l rolls,
or in the form of hydrothe rmal waves. The hydrothermal wave 
only occurs when the Prandtl number is small.

Zeren and Reynolds [8] analytically and experimentally dis- 
cussed thermal convection instabilities in a two-fluid layer system 
which was heated from below or above. Wahal and Bose [9] con-
sidered a bilayer system with a motionless basic state which was 
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heated from below. Interaction between buoyancy and interfacial 
modes and the oscillator y mode were discussed. Rasenat et al.
[10] investigated the Rayleigh–Bénard convection in a bilayer sys- 
tem consisting of two immiscible fluids which were bound by two 
parallel rigid plates and separated by a deformable interface. Sta- 
tionary mode and oscillator y mode were discussed in their paper.
Liu and Roux [11] and Liu et al. [12] extended the problem to
Rayleigh–Bénard–Marangoni convection in a bilayer system by
the linear stability analysis. Liu et al. predicted that when the 
depth ratio (lower layer’s thickness/u pper layer’s thickness) was 
bound in some region, the oscillating convection in the bilayer sys- 
tem may be observed . Li et al. [13] studied the two-dimensi onal 
base state of an annular two-layer pool. The system was heated 
from outer cylindrical wall and cooled at the inner cylindrical wall.
Both asymptotic method and direct numerica l simulation were 
carried out by Li et al. to study the steady laminar two-dimensi onal 
thermocapi llary flow which showed the results by asymptotic 
method and numerica l experiment were in agreement. However,
the stability of flow system was not investigated .

Numerical study of thermocapi llary flows in a three-layer sys- 
tem subjected to a constant temperat ure gradient along the inter- 
faces was carried out by Simanovs kii [14]. Simanovskii et al. [15]
further investigated anticonvecti on and Rayleigh–Bénard convec- 
tion in two-layer systems by numerical study. In [14,15], direct 
simulatio n preformed the nonlinear dynamics of system, and the 
finite-difference method was applied by considering a periodic 
boundary conditions in the lateral direction. Nepomnyashch y and 
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Fig. 1. Sketches of three different types of convection coupling modes in the bilayer system. (a) thermal coupling mode, (b) mechanical coupling mode, (c) weakly decoupled 
mode.
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Fig. 2. A sketch of a geometry of the infinite, horizontal bilayer system. A constant 
temperature gradient imposed along the bilayer gives rise to the linear basic-state 
velocity profile.
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Simanovskii [16] studied Marangoni instability in ultrathin two- 
layer films, and van der Waals forces were included in their model.
Both linear and nonlinear analyses were employed to investigate 
the problem [16]. Nepomnyashch y and Simanovskii [17] further
investigated dynamics of the two-laye r films subjected to horizon- 
tal temperat ure gradient under the gravity effect. Long-wave the- 
ory was applied to study the linear stability of the system and 
the nonlinear evolution of the interfaces.

Recently, Nepomnyashch y and Simanovskii [18] reported non- 
linear Marango ni waves in a heated two-layer film in the presence 
of gravity by a lubrication approximat ion. Both linear stability 
analysis and three dimensional nonlinear evolution study were 
carried out. The linear stability analysis revealed the existence of
stationary and oscillatory unstable modes in this bilayer system.
However, the complex coupling modes in the two-laye r flow sys- 
tem could not be studied by the long-wave theory [16–18]. Aside 
from that, to our knowledge, in previous works, oscillatory modes 
in multi-layer flow systems are all coupled with Rayleigh effects.

In this paper, we investigated the thermocapillar y convection in
a bilayer system to study all the possible coupling modes without 
buoyancy effects, using numerica l methods . The interfaces were 
assumed non-defor mable. First, it is helpful to discuss the physical 
mechanism s of possible unstable modes in the bilayer system as
shown in Fig. 1. In this bilayer system, there are two main forces 
that can drive thermal convectio n. One is the gas–liquid interface 
tension, and the other is the liquid–liquid interface tension. The 
type of convection may change if the depth ratio (upper layer’s 
thickness/lowe r layer’s thickness) between the two layers changes.
In Fig. 1(a), when the depth ratio is small, variation of either sur- 
face tension due to random disturbances may initiate co-rotating 
rolls in the bilayer system. This unstable mode is called thermal- 
coupling mode. Physically, suppose there exists a hot spot on the 
liquid–liquid interface, and due to the small depth of the upper 
layer, a temperat ure gradient would be generated at gas–liquid
interface through heat conduction resulted in co-rotati ng rolls in
the upper layer. If convection would not be driven by the gas–
liquid interface tension because of the cooling of bounding gas,
and would only be driven by the liquid–liquid interface tension,
then counter-rotati ng rolls can be seen as shown in Fig. 1(b). In this 
paper, this type of convection is called mechanical coupling mode.
As increasing the upper layer’s depth, convection may not occur in
the lower layer as shown in Fig. 1(c), and this type of convection is
called weakly decouple d mode in this paper. All of the three possi- 
ble modes occur in the form of stationary rolls, while the interac- 
tions between these modes may initiate oscillator y mode. We
will discuss these modes in the following sections.

This paper is organized as follows; the paper begins with math- 
ematical formulation of the problem in Section 2; in which, base 
state of the flow system and the linearized perturbed system are 
given. In Sections 3 and 4, results are presented, including two typ- 
ical cases: the streamwise homogeneous disturbance s case a = 0
and spanwise homogen eous disturbance s case b = 0. The influences
of depth ratio and Biot number on the nature of convection are dis- 
cussed. In Section 5, the three-dimens ional perturbed problem is
investiga ted to study the most preferred unstable mode. A conclu- 
sion remark is made in the end.

2. Mathematica l model 

The sketch of the bilayer system is shown in Fig. 2. A constant 
horizontal temperat ure gradient @T/@x = �b, b > 0, is imposed along 
the system. The upper fluid is silicon oil 10cS, and the lower is flu-
orinert FC70. The physical properties of the two liquids are listed in
Table 1. Both the two fluids are considered Newtonian. The surface 
tension of many liquids can be considered as linear function of
temperat ure: r = r0 � c(T � T0), where T0 is the reference temper- 
ature, c = � @Tr. In this paper, the gas–liquid and liquid–liquid
interface tension are considered to be linearly depende nt on the 
temperat ure,

ri ¼ ri0 � ciðTi;I � T0Þ: ð1Þ

The subscri pt i = 1,2, respective ly represe nts the liquid–liquid inter- 
face and the gas–liquid interface . ri0, i = 1,2, represe nts the surface 
tension at Ti,I = T0. T1,I, T2,I, respective ly, is the temperat ure at the li- 
quid–liquid interface and gas–liquid interface. ci, i = 1,2, represe nts 
the negative rate of surface tension with temperat ure. The values of
the surface tension ri0, and coefficients ci are listed in Table 2. By
using the depth and the physical properties of fluorinert FC70 as
the non-dimens ional scales, we introduce d the depth ratio h ¼ h1

h2
,

the density ratio q ¼ q1
q2

, the kinemati cal viscosity ratio m ¼ m1
m2

, the 

therma l diffusivity ratio j ¼ j1
j2

, the thermal conduct ivity ratio 

v ¼ v1
v2

. We considered the fully three-dim ensional system and scale 

all the distances on the depth of FC70. The velocities v = (u,v,w),
pressure p, temperatu re differences T � T0, and the time t are refer- 

eed to scales j2
h2
;

q2j2
2

h2
2
; bh2;

h2
2

j2
respective ly. The following dimen- 

sionless groups are listed:

Pr ¼ m2

j2
; Ma1 ¼

c1bh2
2

q2m2j2
; Ma2 ¼

c2bh2
2

q2m2j2
; ð2Þ

where Ma2, Ma1 are Marangon i numbers , Pr is the Prandtl number.



Table 1
Physical properties of Silicon oil 10cS and Fluorinert FC70.

Silicon oil 10cs Fluorinert FC70 

Density (kg m�3) 9.35 � 102 1. 94 � � 103

Kinematical viscosity (m2 s�1) 1.00 � 10� 5 1.40 � 10�5

Thermal diffusivity (m2 s�1) 9.50 � 10� 8 3.40 � 10�8

Thermal conductivity (J m�1 s�1 K�1) 0.134 6. 99 � 10�2

Table 2
Physical properties of the surface tension.

r0 (N m�1) c (N m�1 K�1)

Gas-Silicon oil 10cs interface 20.1 � 10�3 6.80 � � 10�5

Silicon oil 10cs-Fluorinert FC70 interface 7.60 � 10�3 4.46 � 10�5
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The dimensionless governing equations are,the continuity 
equation, the Navier–Stokes equations and the energy equation.

For the upper layer:

r � v1 ¼ 0; ð3Þ

@v1

@t
þ ðv1 � rÞv1 ¼ �

Pr
q
rp1 þ mPrMv1; ð4Þ

@h1

@t
þ ðv1 � rÞh1 ¼ jMh1: ð5Þ

For the lower layer:

r � v2 ¼ 0; ð6Þ

@v2

@t
þ ðv2 � rÞv2 ¼ �Prrp2 þ PrMv2; ð7Þ

@h2

@t
þ ðv2 � rÞh2 ¼ Mh2: ð8Þ

The subscript 1, 2 represents the upper layer and the lower layer 
respective ly.

Prior to setting the boundary condition s at the two interfaces,
the Crispation number Cri ¼ q2m2j2

ri0h2
is defined. It measure s the mag- 

nitude of the effects of surface tension. Using the values in Tables 1
and 2, the order of Cri, respectively , is about O(10�5), if the depth of
the lower layer is about 10�2 m. The small value of Cri indicates
that the fluid system may justify the assumption of non-deform- 
able interfaces that we made in Section 1.

Then, on the gas–liquid surface z = h, boundary conditions can 
be expressed as follows,

w1 ¼ 0; qm@zu1 þMa2@xh1 ¼ 0; qm@zv1 þMa2@yh1 ¼ 0; ð9Þ

@zh1 þ Biðh1 � h1Þ ¼ 0: ð10Þ

Bi is the Biot number; it measures the efficiency of heat transfer at
the surface. h1 is the non-dim ensional temperatur e of the boundin g
gas far from the gas–liquid interface, and is determine d by the basic 
state solution under particular considerat ion which is not an inde- 
pendent paramete r here.

On the liquid–liquid interface z = 0, velocity, temperature and 
heat flux are assumed continuous,

u2 ¼ u1; v2 ¼ v1; h2 ¼ h1; @zh2 ¼ v@zh1: ð11Þ

The stress balanc e conditions at z = 0 are,

@zu2 � qm@zu1 ¼ �Ma1@xh2; @zv2 � qm@zv1 ¼ �Ma1@yh2: ð12Þ

The non-deforma ble interface assumpt ion gives the wall-norm al
velocity conditio n at z = 0,
w2 ¼ w1 ¼ 0: ð13Þ

On the rigid lower plane z = �1, the non-slip boundar y conditio n
and adiabat ic condition are considered ,

u2 ¼ v2 ¼ w2 ¼ @zh2 ¼ 0: ð14Þ
2.1. The base state 

We considered parallel-flow solutions of the system (3)–(14).
The non-dimensi onal temperature at the gas–liquid interface 
z = h is set to hint = �x, and Eq. (10) is re-written as,

@zh1 þ Biðh1 � hintÞ þ Biðhint � h1Þ ¼ 0: ð15Þ

If let Q = Bi(hint � h1), we got the same form as described in Davis’s 
paper [6], and Q was defined as an imposed heat flux in [4,5]. Here,
we assumed h1 = hint = �x, which implied an constant heat flux Q
should be imposed by the particula r considerat ion.

The parallel-flow solution was obtained by solving the govern- 
ing Eqs. (3)–(14), and was defined as follows:

v1 ¼ ðu1; v1;w1Þ ¼
Ma2

qm
zþMa1 þMa2;0;0

� �
; ð16Þ

v2 ¼ ðu2; v2;w2Þ ¼ ððMa1 þMa2ÞzþMa1 þMa2;0;0Þ; ð17Þ

h1 ¼ �x� Ma2z3

6qmj
þ ðMa1 þMa2Þz2

2j
þ ðMa1 þMa2Þz

2v

� �

þMa2h3

6jqm
þ ðMa1 þMa2Þh2

2j
þ ðMa1 þMa2Þh

2v ; ð18Þ

h2 ¼ �x�Ma1 þMa2

6
ðz3 þ 3z2 þ 3zÞ þMa2h3

6jqm

þ ðMa1 þMa2Þh2

2j
þ ðMa1 þMa2Þh

2v : ð19Þ

The base pressure in each layer was constant. The flow-induced
temperat ure field made the bottom of the lower layer warmer than 
the liquid–liquid interface, and the liquid–liquid interface warmer 
than the gas–liquid surface.

2.2. Linear stability theory 

We introduced infinitesimal disturbance s to the system (3)–
(14) as follows,

ðv1;p1; h1Þ ¼ ðv1;p1; h1Þ þ ðv01;p01; h
0
1Þ; ð20Þ

ðv2;p2; h2Þ ¼ ðv2; p2; h2Þ þ ðv02;p02; h
0
2Þ: ð21Þ

Substitutin g Eqs. (20) and (21) into the governing system (3)–(14),
and after linearizin g, we obtained the linearized perturbed system.

For the upper layer:

r � v01 ¼ 0; ð22Þ

@tv01 þ v1 � rv01 þ v01 � rv1 ¼ �
Pr
q
rp01 þ mPrMv01; ð23Þ

@th
0
1 þ u1@xh

0
1 þ u01@xh1 þw01@zh1 ¼ jMh01: ð24Þ

For the lower layer:

r � v02 ¼ 0; ð25Þ

@tv02 þ v2 � rv02 þ v02 � rv2 ¼ �Prrp02 þ PrMv02; ð26Þ

@th
0
2 þ u2@xh

0
2 þ u02@xh2 þw02@zh2 ¼ Mh02: ð27Þ
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The perturbed boundary conditio ns take the same form as Eqs. (9)–
(14) except (10). We wrote the dimens ionless Newton’s cooling law 
for the perturbed system,

@zh
0
1 þ Bih01 ¼ 0: ð28Þ

In this paper, we considered the normal mode analysis ,

½v01;p01; h
0
1� ¼ ½V1; P1;H1�ðzÞeiðaxþbyÞþkt ; ð29Þ

½v02;p02; h
0
2� ¼ ½V2; P2;H2�ðzÞeiðaxþbyÞþkt ; ð30Þ

a and b are streamwise disturbance wave-nu mber and spanwise 
disturbance wave-numbe r respective ly. k is the complex eigenv alue 
k = kr + iki whose real part kr is defined as the effective temporal 

growth rate. A overall wave-nu mber k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
, and the phase 

speed c ¼ � ki
k are defined here. The Chebysh ev collocation numeri- 

cal method [19,20] is used to resolve the eigenvalue problem in k of
the linearize d system.

3. Results of Bi = 0

In this section, we discussed the quasi-adiabatic condition at
the gas–liquid surface, i.e. Bi ? 0. Bi cannot be zero, since the ambi- 
ent temperature h1 is proportional to 1

Bi under the particular con- 
sideration. However , to the perturbed system, we can let Bi = 0 to
study the influence of the depth ratio on the nature of stability of
this system. Bi = 0 was also proposed in the works of Smith and Da- 
vis [4] and Davis [6]. System (22)–(27) together with its boundary 
conditions must be solved numerically to characterize completely 
the three-dimens ional instability of the basic state, because a
Squire’s theorem for this flow is not possible. First, we restricted 
ourselves here to the two typical cases of a � 0 and b � 0.
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Fig. 3. Marginal curves (solid lines) of four typical cases for a = 0 on which k1 = 0. (a) h
3.1. a = 0

When a = 0, the linearized equations are decoupled. We intro- 
duced a stream function here,

v 0 ¼ @z/; w0 ¼ �@y/ ð31Þ

and wrote the normal mode of stream function as /
(y,z, t) = U(z)eiby+kt. In this paper, U = UR + iUI, and H = HR + iHI,
and the two eigenfunct ions are rescaled by the maximum of

kUk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

R þU2
I

q
and kHk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

R þH2
I

q
respective ly. That is

U! U
kUk, and H! H

kHk.

In Fig. 3, marginal curves of four typical cases are shown. In
Figs. 4(a), and 5(a), the eigenfunctions of temperature almost do
not change in the upper layer, and the eigenfunctio ns of the stream 
function indicate that convection of the bilayer is co-rotating. This 
indicates unstable mode in the system is the thermal-cou pling 
mode. While in Fig. 5(b), the profile of U indicates that the convec- 
tion in the lower layer is very weak, and this is the weakly decou- 
pled mode. The two coupling modes in Fig. 5 are stationary modes.
A special example h = 0.25 is presented here. The marginal curve in
Fig. 3(c) presents a bi-modal structure which indicates that con- 
vection in the system may be initiated in two different coupling 
modes. When b = 1.5, it is thermal-cou pling mode as shown in
Fig. 5(a); and when b = 6, convection is in the form of weakly 
decouple d mode as shown in Fig. 5(b).

In Fig. 3, when the Marangoni number Ma1 exceeds some criti- 
cal value, there are two temporal growth rates kr > 0. We denote 
the larger one kr = k1 as the first eigenvalue, and the other kr = k2

as the second eigenvalue. The mode corresponding to k1 is defined
as the first mode, and the mode correspond ing to k2 as the second 
mode. When k1 > k2, the second mode is suppressed by the first
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= 0.05, (b) h = 0.1, (c) h = 0.25, (d) h = 0.5. Dashed lines are the curves where k2 = 0.
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mode, as a result, the convection type is in the form of stationary 
mode. When k1 = k2, the oscillator y mode occurs. It is found that,
when the depth is small (h < 0.3), and for certain pair of (Ma1,b),
oscillatory mode exists. In Fig. 4(b), we observe that the unstable 
mode is oscillating between thermal-coupli ng mode and weakly 
decoupled mode. This oscillator y mode takes the form of traveling 
waves propagating in either spanwise direction. When the depth 
ratio h > 0.3, the oscillatory modes are not observed, because con- 
vection in the upper layer always dominates.
Fig. 6 presents the critical wave number bc and Marangoni num- 
ber Ma1c versus the depth ratio h. In Fig. 6(a), it is obvious that 
there is a jump at the depth ratio of h = 0.3, which indicates, for 
critical instabilit y, the type of convection changes with the depth 
ratio h. A further analysis is shown here. Pearson [3] indicated that 
the scales of Marongo ni convection cells are dependent on the 
depth of the liquid layer. In this case, when h < 0.3, bearing in mind 
of the lower layer’s dimensio nless length, the critical wave number 
bc � 1.5, which indicates that convection in lower layer dominates.
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When h > 0.3, if we re-scale the all the lengths in the system by
using the upper layer’s depth as the length scale, then we obtain 
b0 = bh. Note that b0 � 1.5, which implies that the convection in
the upper layer dominates. In Fig. 6(b), the critical Marangoni 
number Ma1c decreases with depth ratio h. In order to understand 
the reason, we refer to the heat flux boundary condition Eq. (28),
and write it approximat ely as

@zh
0
2 � vh0jz¼0 � h0int

h
: ð32Þ

We assume that there is a hot spot on the liquid–liquid interface 
due to disturban ces. Eq. (32) indicate s that the hot spot is cooled 
throug h heat conduct ion in the upper layer. The heat conduction ef- 
fects would be reduced with increasing the depth ratio h. Thus, the 
system becom es more unstable. As a result, the critical Marangoni 
number Ma1c decreases with increasing h.

3.2. b = 0

We further investigated the spanwise homogeneous dis-
turbances case in this section, i.e. b = 0. In Fig. 7, marginal
curves for three typical depth ratios are shown. Comparing
Fig. 3 with Fig. 7, the system is more unstable to spanwise
disturbances.
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Here, the stream function is defined as follows:

u0 ¼ @z/; w0 ¼ �@x/ ð33Þ

and, the normal mode of the stream function is /(x,z, t) = U(z)eiax+kt.
Fig. 8 shows the eigenfunction s U and H. The eigenfunct ions are 
also re-scaled as we made in the previous sectio n. It is obvious, con- 
vection in the bilayer system is in the form of oscillator y mode as
shown in Fig. 8.
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In Figs. 9(a) and 10, there is a jump near h = 0.1 respectively.
When h < 0.1, convection in the lower layer dominate s, while con- 
vection in the upper layer dominate s when h > 0.1. Fig. 9(b) shows 
that the critical Marangoni number Ma1c decreases with increasing 
depth ratio h. The physical reason is similar to that we discussed in
the previous section. In Fig. 10, the critical phase speed c versus
the depth ratio is shown, and from which we obtain the perturbed 
flow travels in the same direction as base flow.
4. Results of varying Bi

4.1. a = 0

This section discussed the influences of Bi on stability of the sys- 
tem, and the streamw ise homogeneous disturbance s case was 
studied. When Bi ? 0, convection in the system is initiated in the 
form of weakly decoupled mode when h > 0.3. However, the 
weakly decoupled mode can be weakened by the cooling of the 
bounding gas when Bi > 0. If Bi is sufficiently large, convection 
would be driven by the liquid–liquid interface tension rather than 
by the liquid–liquid interface tension, and be initiated in the form 
of mechanical- coupling mode. Fig. 11 shows the critical Marangoni 
number Ma1c versus Bi which provides a first sight of the type of
convectio n in the system. It is obvious, for h = 0.1,0.25, the critical 
Marango ni number Ma1c increases with increasing Bi, which im- 
plies that convection in the lower layer always dominates and 
increasing Bi enhance the stability of the system. While h = 0.5,
when the Bi exceeds a threshold value, we observe Ma1c decreases
with increasing Bi slightly, which implies that the domination of
convectio n shifts from the upper layer to the lower layer.

For a certain Bi and some values of Ma1 and b, convection may 
oscillate between the mechanical coupling mode and the thermal 
coupling mode. First, we showed that for some certain large Bi,
convectio n in the system could be initiated in the form of mechan- 
ical coupling mode. To illustrate this, the eigenfunctio n U(z) for the 
critical unstable case is plotted in Fig. 12 by fixing the depth ratio 
h = 0.25 to see the evolution of the convection mode versus Bi.
Clear, we can observe the mechanical coupling mode in Fig. 12(c).

The marginal curves of depth ratio h = 0.5 for different Bi are
shown in Fig. 13. The dashed lines in Fig. 13 represent the oscilla- 
tory branches. What is interesting that there exists a stable area in
the Ma1–b plane as shown Fig. 13(b). The gas–liquid interface ten- 
sion acts an important role, and the mechanis m can be understood 
as follows. Suppose that convection is driven by liquid–liquid
interface tension, and is initiated in the form of mechanical cou- 
pling mode. When Ma1 increases, the thermal capillary force of
the gas–liquid interface increases, which suppresses the 
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convection in the upper layer. Two possible results may happen.
One is that, because of the suppression of the upper layer, the sys- 
tem may be stable, and the other is the generation of oscillatory 
mode. Two special cases are presented here. Eigenfunctio n U in
Fig. 14(a) suggests that convection in the upper layer is stronger 
than the lower layer. However, the distribution of H implies that 
disturbance s decay with time. In Fig. 14(b), the eigenfunctio n U
indicates that convection in the bilayer system takes the form of
oscillatory mode which is in the cyclic variation between thermal 
coupling mode and mechanical- coupling mode. The oscillator y
mode takes the form of traveling wave propagat ing in either span- 
wise direction.

4.2. b = 0

The influence of Bi on the spanwise homogeneous disturbance 
case is discussed in this subsection. The critical Marangoni number 
Ma1c versus Bi is plotted in Fig. 15 which reflects the influence of Bi
on the stability of the system. When h = 0.08, convection in the 
lower layer dominate s, and in Fig. 15, the critical Marangoni num- 
ber Ma1c decreases with Bi, which indicates the upper layer sup- 
presses convection in the lower layer. When Bi ?1, the critical 
Marango ni number Ma1c ? 74.31. But, when h = 0.1, or h = 0.25,
convectio n in the upper layer dominates when Bi is less than some 
critical value. It is clear that, when Bi is less than the critical value,
a larger Bi will lead the system to be more stable due to the cooling 
of the bounding gas. When Bi exceeds the critical value, convection 
in the lower layer dominates, as a result, the critical Marangoni 
number decreases with increasing Bi. In Fig. 15, when h = 0.1,
Bi ?1, the critical Marangoni number Ma1c ? 65.10; and when 
h = 0.25, Bi ?1, the critical Marangoni number Ma1c ? 46.97.

5. Three dimensional disturbances: a 6¼ 0 and b 6¼ 0

This section investigates the three dimensional disturbance s on
the stability of the bilayer system, because the Squire’s theorem for 
this flow is not possible as mentioned in Section 3. The marginal 
surface is defined as follows,
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Ma1 ¼ Ma1ða; b;Bi;hÞ: ð34Þ

There must exist a minimum Mg defined as the global critical 
Marangoni number on the marginal surface, i.e. when Ma1 < Mg, dis- 
turbances decay to zero when time tends to infinity. We assume 
that the most preferred unstable mode travel s in the direction,

# ¼ tan�1 b
a
: ð35Þ

However, calculation of this marginal surface costs too much 
time. In another way, the temporal growth rate in the a–b plane
is plotted by fixing Ma, Bi and h. Fig. 16 shows the temporal growth 
rate for Bi = 0. In Fig. 16(a), we notice that the maximum temporal 
growth rate occurs at a = 0, which implies that spanwise distur- 
bance makes the system be more unstable. In Fig. 16(b), the 
Marangoni number exceeds the critical Marangoni number Mg,
and the maximum temporal growth rate also occurs at a = 0.
Fig. 17, the temporal growth rate is plotted by fixing Bi = 30. In
Fig. 17, the maximum growth rate occurs at a = 0 indicating span- 
wise disturbances are the major cause of destabilization in the sys- 
tem. Thus, the traveling direction of the most preferred unstable 
mode is # = 90�.

For the spanwise homogeneous disturbance , suppose there ex- 
ists a hot spot on either liquid–liquid interface or gas–liquid inter- 
face. The hot spot flows to the downstream due to the base flow
and is cooled by the downstre am liquids. As a result, the distur- 
bance is weakened, which indicates the base flow is stabilizing.
However, disturbances in spanwise direction could not be weak- 
ened by the base flow. Therefore, the streamwise homogen eous 
disturbance s are the most destabilizin g factors in the system.
6. Conclusion 

In this paper, we investigated the thermocap illary instabilities 
in a bilayer system consisting of silicon oil 10cS and fluorinert
FC70 subjected to a constant horizontal temperature gradient.
Either variation of gas–liquid interface tension or liquid–liquid
interface tension can initiate convection in the system. Linear sta- 
bility analysis was performed to study the complex coupling 
modes of convection in the system.

We studied two typical cases including the streamwise homo- 
geneous disturbance s and spanwise homogeneous disturbance s
in this paper. The influences of depth ratio and Biot number on
the nature of convectio n were discussed. For the streamwise 
homogen eous disturbance s case, convectio n may occur in the form 
of the thermal-cou pling mode, or weakly decoupled mode when 
Bi = 0. When Bi > 0, convection may occur in the form of mechani- 
cal coupling mode. We found that the thermal-cou pling mode 
interacts with the mechanical- coupling mode generating oscilla- 
tory mode which propagat es in either spanwise direction. For the 
spanwise homogeneous disturbances case, it was found that con- 
vection always takes the form of traveling wave propagat ing in
the same direction as the base flow. The three dimensional analysis 
showed that disturbances in spanwise direction were the major 
cause of destabilizati on in the system.
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