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The linear instability analysis of thermocapillary convection in a bilayer system consisting of silicon oil
10cS and fluorinert FC70 liquids was discussed in this paper. The bilayer system was bound below by
a rigid plate and above by a free surface with a passive gas. The two immiscible liquids were separated
by an interface. A constant horizontal temperature gradient was imposed along the interfaces. Two typ-
ical cases were studied: (i) streamwise homogeneous disturbances (the streamwise disturbance wave
number «=0); (ii) spanwise homogeneous disturbances (the spanwise disturbance wave number
B=0). When « =0, it was found that convection in the two layers may occur in the form of stationary
mode or oscillatory mode. The oscillatory mode takes the form of traveling wave, which propagates in
either spanwise direction. When g =0, convection in the two layers occurs in the form of oscillatory
mode, which takes the form of traveling wave propagating in the same direction as base flow. The three
dimensional analysis suggested that disturbance in the spanwise direction was the major cause of desta-
bilization in the system. The influences of Biot number Bi and the depth ratio h on the unstable modes in
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the bilayer system were discussed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of thermocapillary instability has received
much attention in recent years. Colinet et al. [1] and Joseph and
Renardy [2] investigated the stability and pattern formation of heat
convection problems. Pearson [3] investigated the classical
Marangoni convection in a single liquid layer heated from below.
Linear stability analysis of Pearson predicts the threshold value
of Marangoni number, Ma = 79.6, which coincides with experi-
ments. Smith and Davis [4,5] and Davis [6] considered thermocap-
illary instabilities in a single layer system with a non-deformable
interface. Sen and Davis [7] studied steady thermocapillary flows
in two-dimensional slots. In [4-7], the flow system was subjected
to a constant horizontal temperature gradient along the interface
resulted in a linearly distributed horizontal flow, i.e. the thermal
Couette flow. Particularly, Smith and Davis [4] found that for this
linear base flow, when it was subjected to spanwise disturbances,
convection may occur in the form of stationary longitudinal rolls,
or in the form of hydrothermal waves. The hydrothermal wave
only occurs when the Prandtl number is small.

Zeren and Reynolds [8] analytically and experimentally dis-
cussed thermal convection instabilities in a two-fluid layer system
which was heated from below or above. Wahal and Bose [9] con-
sidered a bilayer system with a motionless basic state which was
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heated from below. Interaction between buoyancy and interfacial
modes and the oscillatory mode were discussed. Rasenat et al.
[10] investigated the Rayleigh-Bénard convection in a bilayer sys-
tem consisting of two immiscible fluids which were bound by two
parallel rigid plates and separated by a deformable interface. Sta-
tionary mode and oscillatory mode were discussed in their paper.
Liu and Roux [11] and Liu et al. [12] extended the problem to
Rayleigh-Bénard-Marangoni convection in a bilayer system by
the linear stability analysis. Liu et al. predicted that when the
depth ratio (lower layer’s thickness/upper layer’s thickness) was
bound in some region, the oscillating convection in the bilayer sys-
tem may be observed. Li et al. [13] studied the two-dimensional
base state of an annular two-layer pool. The system was heated
from outer cylindrical wall and cooled at the inner cylindrical wall.
Both asymptotic method and direct numerical simulation were
carried out by Li et al. to study the steady laminar two-dimensional
thermocapillary flow which showed the results by asymptotic
method and numerical experiment were in agreement. However,
the stability of flow system was not investigated.

Numerical study of thermocapillary flows in a three-layer sys-
tem subjected to a constant temperature gradient along the inter-
faces was carried out by Simanovskii [14]. Simanovskii et al. [15]
further investigated anticonvection and Rayleigh-Bénard convec-
tion in two-layer systems by numerical study. In [14,15], direct
simulation preformed the nonlinear dynamics of system, and the
finite-difference method was applied by considering a periodic
boundary conditions in the lateral direction. Nepomnyashchy and
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Fig. 1. Sketches of three different types of convection coupling modes in the bilayer system. (a) thermal coupling mode, (b) mechanical coupling mode, (c) weakly decoupled

mode.

Simanovskii [16] studied Marangoni instability in ultrathin two-
layer films, and van der Waals forces were included in their model.
Both linear and nonlinear analyses were employed to investigate
the problem [16]. Nepomnyashchy and Simanovskii [17] further
investigated dynamics of the two-layer films subjected to horizon-
tal temperature gradient under the gravity effect. Long-wave the-
ory was applied to study the linear stability of the system and
the nonlinear evolution of the interfaces.

Recently, Nepomnyashchy and Simanovskii [18] reported non-
linear Marangoni waves in a heated two-layer film in the presence
of gravity by a lubrication approximation. Both linear stability
analysis and three dimensional nonlinear evolution study were
carried out. The linear stability analysis revealed the existence of
stationary and oscillatory unstable modes in this bilayer system.
However, the complex coupling modes in the two-layer flow sys-
tem could not be studied by the long-wave theory [16-18]. Aside
from that, to our knowledge, in previous works, oscillatory modes
in multi-layer flow systems are all coupled with Rayleigh effects.

In this paper, we investigated the thermocapillary convection in
a bilayer system to study all the possible coupling modes without
buoyancy effects, using numerical methods. The interfaces were
assumed non-deformable. First, it is helpful to discuss the physical
mechanisms of possible unstable modes in the bilayer system as
shown in Fig. 1. In this bilayer system, there are two main forces
that can drive thermal convection. One is the gas-liquid interface
tension, and the other is the liquid-liquid interface tension. The
type of convection may change if the depth ratio (upper layer’s
thickness/lower layer’s thickness) between the two layers changes.
In Fig. 1(a), when the depth ratio is small, variation of either sur-
face tension due to random disturbances may initiate co-rotating
rolls in the bilayer system. This unstable mode is called thermal-
coupling mode. Physically, suppose there exists a hot spot on the
liquid-liquid interface, and due to the small depth of the upper
layer, a temperature gradient would be generated at gas-liquid
interface through heat conduction resulted in co-rotating rolls in
the upper layer. If convection would not be driven by the gas-
liquid interface tension because of the cooling of bounding gas,
and would only be driven by the liquid-liquid interface tension,
then counter-rotating rolls can be seen as shown in Fig. 1(b). In this
paper, this type of convection is called mechanical coupling mode.
As increasing the upper layer’s depth, convection may not occur in
the lower layer as shown in Fig. 1(c), and this type of convection is
called weakly decoupled mode in this paper. All of the three possi-
ble modes occur in the form of stationary rolls, while the interac-
tions between these modes may initiate oscillatory mode. We
will discuss these modes in the following sections.

This paper is organized as follows; the paper begins with math-
ematical formulation of the problem in Section 2; in which, base
state of the flow system and the linearized perturbed system are
given. In Sections 3 and 4, results are presented, including two typ-
ical cases: the streamwise homogeneous disturbances case o =0
and spanwise homogeneous disturbances case 8 = 0. The influences
of depth ratio and Biot number on the nature of convection are dis-
cussed. In Section 5, the three-dimensional perturbed problem is

investigated to study the most preferred unstable mode. A conclu-
sion remark is made in the end.

2. Mathematical model

The sketch of the bilayer system is shown in Fig. 2. A constant
horizontal temperature gradient T/0x = —b, b > 0, is imposed along
the system. The upper fluid is silicon oil 10cS, and the lower is flu-
orinert FC70. The physical properties of the two liquids are listed in
Table 1. Both the two fluids are considered Newtonian. The surface
tension of many liquids can be considered as linear function of
temperature: ¢ = g — Y(T — Tp), where Ty is the reference temper-
ature, y=— 0ro. In this paper, the gas-liquid and liquid-liquid
interface tension are considered to be linearly dependent on the
temperature,

UiIUiQ*A)),'(Ti,IfTO)- (1)

The subscripti = 1,2, respectively represents the liquid-liquid inter-
face and the gas-liquid interface. g9, i = 1,2, represents the surface
tension at T;; = Top. T1 4, T2, respectively, is the temperature at the li-
quid-liquid interface and gas-liquid interface. y;, i = 1,2, represents
the negative rate of surface tension with temperature. The values of
the surface tension g, and coefficients ); are listed in Table 2. By
using the depth and the physical properties of fluorinert FC70 as
the non-dimensional scales, we introduced the depth ratio h = Q—;

the density ratio p = ;i, the kinematical viscosity ratio v = ;—; the

02

thermal diffusivity ratio x = f—; the thermal conductivity ratio
y= ;—; We considered the fully three-dimensional system and scale
all the distances on the depth of FC70. The velocities v= (u,z,w),
pressure p, temperature differences T — Ty, and the time t are refer-
paK?

h
sionless groups are listed:

v . 7,bh3
=% 1Sk

eed to scales ’,;—: bh,, % respectively. The following dimen-

@ — Vzbhg

Pr ) = s
P2V2K2

(2)

where Ma,, Ma, are Marangoni numbers, Pr is the Prandtl number.
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Fig. 2. A sketch of a geometry of the infinite, horizontal bilayer system. A constant
temperature gradient imposed along the bilayer gives rise to the linear basic-state
velocity profile.



Z. Ding, Q. Liu/International Journal of Heat and Mass Transfer 62 (2013) 63-72 65

Table 1
Physical properties of Silicon oil 10cS and Fluorinert FC70.

Silicon oil 10cs Fluorinert FC70

Density (kg m—3) 9.35 x 10? 1.94 x x 10°
Kinematical viscosity (m?s~!) 1.00 x 10~ ° 1.40 x 10°°
Thermal diffusivity (m?s™') 950 x 10~ 8 3.40 x 1078
Thermal conductivity Jm~!s ' K1) 0.134 6.99 x 1072
Table 2
Physical properties of the surface tension.
go (Nm™1) y(Nm~'K™1)
Gas-Silicon oil 10cs interface 20.1 x 1073 6.80 x x 107°
Silicon oil 10cs-Fluorinert FC70 interface 7.60 x 1073 4.46 x 107

The dimensionless governing equations are,the continuity
equation, the Navier-Stokes equations and the energy equation.
For the upper layer:

Vv -V = 0, (3)

ov Pr

m‘ + (V- V)V = —FVpl +VPravy, (4)

00

6t1 +(Vy - V)0; = KAb;. (5)
For the lower layer:

V.vy, =0, (6)

v,

o (V2 - V)vy = —PrVp, + Pravy, (7

a0

6—t2+ (V2 V)Oz = A0;. (8)

The subscript 1, 2 represents the upper layer and the lower layer

respectively.

Prior to setting the boundary conditions at the two interfaces,
the Crispation number Cr; = 92‘2’;2 is defined. It measures the mag-
nitude of the effects of surface tension. Using the values in Tables 1
and 2, the order of Cr;, respectively, is about 0(107°), if the depth of
the lower layer is about 102 m. The small value of Cr; indicates
that the fluid system may justify the assumption of non-deform-
able interfaces that we made in Section 1.

Then, on the gas-liquid surface z = h, boundary conditions can
be expressed as follows,

wy; =0, pvous +Mayd6, =0, pvo, vy +Maydy6, =0, 9)

9,01 + Bi(0y — 0..) = 0. (10)

Bi is the Biot number; it measures the efficiency of heat transfer at
the surface. 6, is the non-dimensional temperature of the bounding
gas far from the gas-liquid interface, and is determined by the basic
state solution under particular consideration which is not an inde-
pendent parameter here.

On the liquid-liquid interface z = 0, velocity, temperature and
heat flux are assumed continuous,

U =Uy, Vy=1v, 0,=0y, O00,=)00;. (11)

The stress balance conditions at z=0 are,

07Uy — pvo, Uy = —Ma10x0,, 0,V — pvO,v1 = —Ma,0,0,. (12)

The non-deformable interface assumption gives the wall-normal
velocity condition at z=0,

wy, =w; =0. (13)

On the rigid lower plane z= —1, the non-slip boundary condition
and adiabatic condition are considered,

Uy =V =Wy = 0,0, = 0. (14)

2.1. The base state

We considered parallel-flow solutions of the system (3)-(14).
The non-dimensional temperature at the gas-liquid interface
z=h is set to 0y, = —x, and Eq. (10) is re-written as,

8,01 + Bi(01 — Oint) + Bi(Ojne — 0,) = 0. (15)

If let Q = Bi(0;n; — 0.), we got the same form as described in Davis’s
paper [6], and Q was defined as an imposed heat flux in [4,5]. Here,
we assumed 0, = 0;,; = —x, which implied an constant heat flux Q
should be imposed by the particular consideration.

The parallel-flow solution was obtained by solving the govern-
ing Eqgs. (3)-(14), and was defined as follows:

Vi = (Uy, 71, W) = <%2+Ma1+Ma2,0,0>, (16)

V2 = (Uy, U2, W,) = ((Ma; + May)z + Ma, + Mas,0,0), (17)

_ Ma,z> (Ma, +May)z>  (Ma; + May)z
0 = —x—
6pvK 2K 2y

Ma,h*  (Ma; + Ma,)h*  (Ma, + May)h
6Kpv 2K 2y ’

Ma2h3
6rpv

Dzz—x—w(fuzzuzw

. (May + Ma,)h?* . (May +Maz)h
2K 2y ’

(19)

The base pressure in each layer was constant. The flow-induced
temperature field made the bottom of the lower layer warmer than
the liquid-liquid interface, and the liquid-liquid interface warmer
than the gas-liquid surface.

2.2. Linear stability theory

We introduced infinitesimal disturbances to the system (3)-
(14) as follows,

(vl’plv()l):(V‘l’ﬁly(_)l)_‘—(v/l?pllv()ll)s (20)

(v27p2,92):(Vz7ﬁ2,@2)+(v’2,p’2,6'2). (21)

Substituting Eqgs. (20) and (21) into the governing system (3)-(14),
and after linearizing, we obtained the linearized perturbed system.
For the upper layer:

V-v; =0, (22)
! 53 ! ! 7 Pr / !

OV +V1-VV] +V, - V¥V, = —?Vp1 + VPravy, (23)

0:0, 4 Ty 040 + ;0401 + W, 0,0, = KAD). (24)
For the lower layer:

V.-v, =0, (25)

OV + Va2 - VVy +V, - VV,y = —PrVp), + Pravy, (26)

D0y + U0, + Uy D05 + WD, 0, = N0, (27)
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The perturbed boundary conditions take the same form as Egs. (9)-
(14) except (10). We wrote the dimensionless Newton'’s cooling law
for the perturbed system,

0,0, + Bi0}, = 0. 28
1 1

In this paper, we considered the normal mode analysis,

[vfl 7p{1 ’ 0/]} = [‘,1 3 P1 ) ®1](Z)ei(w(+ﬁy)+/:t7 (29)
[V2.D5. 03] = [V2, P2, ©2](2)e ™4, (30)

o and B are streamwise disturbance wave-number and spanwise
disturbance wave-number respectively. / is the complex eigenvalue
)= Jr+1iJ; whose real part /, is defined as the effective temporal

growth rate. A overall wave-number k = /o2 + 2, and the phase

speed ¢ = —“7 are defined here. The Chebyshev collocation numeri-
cal method [19,20] is used to resolve the eigenvalue problem in / of
the linearized system.

3. Results of Bi=0

In this section, we discussed the quasi-adiabatic condition at
the gas-liquid surface, i.e. Bi — 0. Bi cannot be zero, since the ambi-
ent temperature 0., is proportional to Z under the particular con-
sideration. However, to the perturbed system, we can let Bi =0 to
study the influence of the depth ratio on the nature of stability of
this system. Bi = 0 was also proposed in the works of Smith and Da-
vis [4] and Davis [6]. System (22)-(27) together with its boundary
conditions must be solved numerically to characterize completely
the three-dimensional instability of the basic state, because a
Squire’s theorem for this flow is not possible. First, we restricted
ourselves here to the two typical cases of =0 and 3 =0.

(a)

200
160
T 120

80

40t

I L L I L L L
0 5 10 15 20 25 30 35 40

(c) o /-

Ma,

op

25F

20

B

3.1 a=0

When o = 0, the linearized equations are decoupled. We intro-
duced a stream function here,

V=0, W=-0y¢ (31)

and wrote ‘theA normal mode of stream function as ¢
(y,z,t) = D(2)e™**, In this paper, ® = Og+iD;, and O = O +iO,,
and the two eigenfunctions are rescaled by the maximum of

|®| =+/®:+®} and ||@®] =4/O2+ O respectively. That is

0] [C)
<D—>m,and®—>m.

In Fig. 3, marginal curves of four typical cases are shown. In
Figs. 4(a), and 5(a), the eigenfunctions of temperature almost do
not change in the upper layer, and the eigenfunctions of the stream
function indicate that convection of the bilayer is co-rotating. This
indicates unstable mode in the system is the thermal-coupling
mode. While in Fig. 5(b), the profile of ® indicates that the convec-
tion in the lower layer is very weak, and this is the weakly decou-
pled mode. The two coupling modes in Fig. 5 are stationary modes.
A special example h = 0.25 is presented here. The marginal curve in
Fig. 3(c) presents a bi-modal structure which indicates that con-
vection in the system may be initiated in two different coupling
modes. When g =1.5, it is thermal-coupling mode as shown in
Fig. 5(a); and when g =6, convection is in the form of weakly
decoupled mode as shown in Fig. 5(b).

In Fig. 3, when the Marangoni number Ma, exceeds some criti-
cal value, there are two temporal growth rates /> 0. We denote
the larger one /.= i; as the first eigenvalue, and the other A, = 1,
as the second eigenvalue. The mode corresponding to Z; is defined
as the first mode, and the mode corresponding to /i, as the second
mode. When Z; > /,, the second mode is suppressed by the first

100 :
(b) N, s
N /s
B \.\ a
8ot Tt
© L
S 60
40F
1 1 1 1
205 7 8 12 6 20
B
(d) 6o
H ‘/
i /
500 | 7
i /
] y;
40 \'\ //
o \ 7
= \ o
30F
1 1 1 1
105 2 4 6 8 70
B

Fig. 3. Marginal curves (solid lines) of four typical cases for « =0 on which /; =0. (a) h=0.05, (b) h=0.1, (c) h=0.25, (d) h =0.5. Dashed lines are the curves where 4, = 0.



Z. Ding, Q. Liu/International Journal of Heat and Mass Transfer 62 (2013) 63-72 67

—_—
Q
~—
o
T

L
-1 -0.75-05-025 0 0.25 0.5 0.75 1
[OXC)

(b) o

Il Il
-1 -0.75-05-025 0 0.25 0.5 0.75 1
0,0
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Fig. 5. The thick dark solid (dash) line represents the real (image) part of ®(z), and the thin gray solid (dash) line represents the real (image) part of ®(z) for h = 0.25. (a)

Thermal-coupling, Ma, = 27.8, = 1.5; (b) Weakly decoupled, Ma, = 28.4, § =6.
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Fig. 6. (a) The critical wave number g, versus the depth ratio h; (b) The critical Marangoni number Ma;. versus depth ratios h.

mode, as a result, the convection type is in the form of stationary
mode. When 4, = /,, the oscillatory mode occurs. It is found that,
when the depth is small (h <0.3), and for certain pair of (May, B),
oscillatory mode exists. In Fig. 4(b), we observe that the unstable
mode is oscillating between thermal-coupling mode and weakly
decoupled mode. This oscillatory mode takes the form of traveling
waves propagating in either spanwise direction. When the depth
ratio h > 0.3, the oscillatory modes are not observed, because con-
vection in the upper layer always dominates.

Fig. 6 presents the critical wave number . and Marangoni num-
ber Ma,. versus the depth ratio h. In Fig. 6(a), it is obvious that
there is a jump at the depth ratio of h = 0.3, which indicates, for
critical instability, the type of convection changes with the depth
ratio h. A further analysis is shown here. Pearson [3] indicated that
the scales of Marongoni convection cells are dependent on the
depth of the liquid layer. In this case, when h < 0.3, bearing in mind
of the lower layer’s dimensionless length, the critical wave number
Bc~ 1.5, which indicates that convection in lower layer dominates.
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Fig. 9. (a) The critical wave number o, versus the depth ratio h for g =0; (b) The critical Marangoni number Ma;. versus the depth ratio h for g =0.

When h > 0.3, if we re-scale the all the lengths in the system by
using the upper layer’s depth as the length scale, then we obtain
B = ph. Note that p’ ~ 1.5, which implies that the convection in
the upper layer dominates. In Fig. 6(b), the critical Marangoni
number Ma;. decreases with depth ratio h. In order to understand
the reason, we refer to the heat flux boundary condition Eq. (28),
and write it approximately as
820'2 ~ 0 |z:0h_ Oint . (32)
We assume that there is a hot spot on the liquid-liquid interface
due to disturbances. Eq. (32) indicates that the hot spot is cooled

through heat conduction in the upper layer. The heat conduction ef-
fects would be reduced with increasing the depth ratio h. Thus, the
system becomes more unstable. As a result, the critical Marangoni
number Ma,. decreases with increasing h.

32.6=0

We further investigated the spanwise homogeneous dis-
turbances case in this section, i.e. $=0. In Fig. 7, marginal
curves for three typical depth ratios are shown. Comparing
Fig. 3 with Fig. 7, the system is more unstable to spanwise
disturbances.
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Fig. 10. The critical phase speed c versus the depth ratio h for
homogeneous disturbances case.
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Fig. 11. The critical Marangoni number Ma;. versus Bi at different depth ratio for
o=0.

Here, the stream function is defined as follows:

U'=0:p, W=-0up (33)
and, the normal mode of the stream function is ¢(x,z,t) = ®(z)e ™,
Fig. 8 shows the eigenfunctions ® and ®. The eigenfunctions are
also re-scaled as we made in the previous section. It is obvious, con-
vection in the bilayer system is in the form of oscillatory mode as

In Figs. 9(a) and 10, there is a jump near h = 0.1 respectively.
When h < 0.1, convection in the lower layer dominates, while con-
vection in the upper layer dominates when h > 0.1. Fig. 9(b) shows
that the critical Marangoni number Ma, . decreases with increasing
depth ratio h. The physical reason is similar to that we discussed in
the previous section. In Fig. 10, the critical phase speed c versus
the depth ratio is shown, and from which we obtain the perturbed
flow travels in the same direction as base flow.

4. Results of varying Bi
4.1. a=0

This section discussed the influences of Bi on stability of the sys-
tem, and the streamwise homogeneous disturbances case was
studied. When Bi — 0, convection in the system is initiated in the
form of weakly decoupled mode when h>0.3. However, the
weakly decoupled mode can be weakened by the cooling of the
bounding gas when Bi>0. If Bi is sufficiently large, convection
would be driven by the liquid-liquid interface tension rather than
by the liquid-liquid interface tension, and be initiated in the form
of mechanical-coupling mode. Fig. 11 shows the critical Marangoni
number Ma;. versus Bi which provides a first sight of the type of
convection in the system. It is obvious, for h = 0.1,0.25, the critical
Marangoni number Ma,. increases with increasing Bi, which im-
plies that convection in the lower layer always dominates and
increasing Bi enhance the stability of the system. While h=0.5,
when the Bi exceeds a threshold value, we observe Ma,. decreases
with increasing Bi slightly, which implies that the domination of
convection shifts from the upper layer to the lower layer.

For a certain Bi and some values of Ma; and 8, convection may
oscillate between the mechanical coupling mode and the thermal
coupling mode. First, we showed that for some certain large Bi,
convection in the system could be initiated in the form of mechan-
ical coupling mode. To illustrate this, the eigenfunction ®(z) for the
critical unstable case is plotted in Fig. 12 by fixing the depth ratio
h=0.25 to see the evolution of the convection mode versus Bi.
Clear, we can observe the mechanical coupling mode in Fig. 12(c).

The marginal curves of depth ratio h=0.5 for different Bi are
shown in Fig. 13. The dashed lines in Fig. 13 represent the oscilla-
tory branches. What is interesting that there exists a stable area in
the Ma;-p plane as shown Fig. 13(b). The gas-liquid interface ten-
sion acts an important role, and the mechanism can be understood
as follows. Suppose that convection is driven by liquid-liquid
interface tension, and is initiated in the form of mechanical cou-
pling mode. When Ma, increases, the thermal capillary force of

shown in Fig. 8. the gas-liquid interface increases, which suppresses the
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Fig. 12. Evolution of convection mode versus Bi for h = 0.25, o = 0, and solid (dash) lines correspond to the real (image) part of ®(z). (a) Bi = 0.1, Ma; = 30.03, = 2.5; (b) Bi = 5,

May =31.46, §=2.8; () Bi= 10, Ma, = 31.74, f = 2.7.
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Fig. 15. The critical Marangoni number Ma;. versus Bi at different depth ratio.

convection in the upper layer. Two possible results may happen.
One is that, because of the suppression of the upper layer, the sys-
tem may be stable, and the other is the generation of oscillatory
mode. Two special cases are presented here. Eigenfunction ® in
Fig. 14(a) suggests that convection in the upper layer is stronger
than the lower layer. However, the distribution of ® implies that
disturbances decay with time. In Fig. 14(b), the eigenfunction ®
indicates that convection in the bilayer system takes the form of
oscillatory mode which is in the cyclic variation between thermal

coupling mode and mechanical-coupling mode. The oscillatory
mode takes the form of traveling wave propagating in either span-
wise direction.

42. =0

The influence of Bi on the spanwise homogeneous disturbance
case is discussed in this subsection. The critical Marangoni number
Ma, versus Bi is plotted in Fig. 15 which reflects the influence of Bi
on the stability of the system. When h = 0.08, convection in the
lower layer dominates, and in Fig. 15, the critical Marangoni num-
ber Ma,. decreases with Bi, which indicates the upper layer sup-
presses convection in the lower layer. When Bi — oo, the critical
Marangoni number Ma;. — 74.31. But, when h=0.1, or h=0.25,
convection in the upper layer dominates when Bi is less than some
critical value. It is clear that, when Bi is less than the critical value,
a larger Bi will lead the system to be more stable due to the cooling
of the bounding gas. When Bi exceeds the critical value, convection
in the lower layer dominates, as a result, the critical Marangoni
number decreases with increasing Bi. In Fig. 15, when h=0.1,
Bi — oo, the critical Marangoni number Ma,;. — 65.10; and when
h =0.25, Bi —» oo, the critical Marangoni number Ma,. — 46.97.

5. Three dimensional disturbances: o # 0 and g # 0

This section investigates the three dimensional disturbances on
the stability of the bilayer system, because the Squire’s theorem for
this flow is not possible as mentioned in Section 3. The marginal
surface is defined as follows,
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Ma; = Ma; («, 8, Bi, h). (34)

There must exist a minimum M, defined as the global critical
Marangoni number on the marginal surface, i.e. when Ma; < M, dis-
turbances decay to zero when time tends to infinity. We assume
that the most preferred unstable mode travels in the direction,

_ .o B
ﬁ_tan1&. (35)

However, calculation of this marginal surface costs too much
time. In another way, the temporal growth rate in the «-8 plane
is plotted by fixing Ma, Bi and h. Fig. 16 shows the temporal growth
rate for Bi = 0. In Fig. 16(a), we notice that the maximum temporal
growth rate occurs at o = 0, which implies that spanwise distur-
bance makes the system be more unstable. In Fig. 16(b), the
Marangoni number exceeds the critical Marangoni number M,,
and the maximum temporal growth rate also occurs at o =0.
Fig. 17, the temporal growth rate is plotted by fixing Bi=30. In
Fig. 17, the maximum growth rate occurs at o = 0 indicating span-
wise disturbances are the major cause of destabilization in the sys-
tem. Thus, the traveling direction of the most preferred unstable
mode is 9 = 90°.

For the spanwise homogeneous disturbance, suppose there ex-
ists a hot spot on either liquid-liquid interface or gas-liquid inter-
face. The hot spot flows to the downstream due to the base flow
and is cooled by the downstream liquids. As a result, the distur-
bance is weakened, which indicates the base flow is stabilizing.
However, disturbances in spanwise direction could not be weak-

ened by the base flow. Therefore, the streamwise homogeneous
disturbances are the most destabilizing factors in the system.

6. Conclusion

In this paper, we investigated the thermocapillary instabilities
in a bilayer system consisting of silicon oil 10cS and fluorinert
FC70 subjected to a constant horizontal temperature gradient.
Either variation of gas-liquid interface tension or liquid-liquid
interface tension can initiate convection in the system. Linear sta-
bility analysis was performed to study the complex coupling
modes of convection in the system.

We studied two typical cases including the streamwise homo-
geneous disturbances and spanwise homogeneous disturbances
in this paper. The influences of depth ratio and Biot number on
the nature of convection were discussed. For the streamwise
homogeneous disturbances case, convection may occur in the form
of the thermal-coupling mode, or weakly decoupled mode when
Bi = 0. When Bi > 0, convection may occur in the form of mechani-
cal coupling mode. We found that the thermal-coupling mode
interacts with the mechanical-coupling mode generating oscilla-
tory mode which propagates in either spanwise direction. For the
spanwise homogeneous disturbances case, it was found that con-
vection always takes the form of traveling wave propagating in
the same direction as the base flow. The three dimensional analysis
showed that disturbances in spanwise direction were the major
cause of destabilization in the system.
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