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The monitoring of lakes is mainly based on collecting water samples, which are transported to a 
laboratory for analysis. In lake-rich regions, the gathering of information about water quality is chal-
lenging because only a small proportion of the lakes can be assessed each year. One of the techniques 
for improving the temporal and spatial representativeness of lake monitoring is remote sensing from 
aircrafts and satellites. The main objectives of this study were to investigate and test remote sensing 
interpretation algorithms for water quality estimation in Finnish lakes, to develop optical models for 
the needs of interpretation and for the estimation of light attenuation, and to study the advantages 
of using remote sensing data as compared to conventional monitoring methods. The experimental 
material included detailed optical measurements in 11 lakes, remote sensing measurements with 
concurrent in situ sampling, automatic raft measurements and a national dataset of routine water 
quality measurements. The analyses of the spatially high-resolution airborne remote sensing data 
from eutrophic and mesotrophic lakes showed that one or a few discrete water quality observa-
tions using conventional monitoring can yield a clear over- or underestimation of the overall water 
quality in a lake. The use of TM-type satellite instruments in addition to routine monitoring results 
substantially increases the number of lakes for which water quality information can be obtained. 
The preliminary results indicated that coloured dissolved organic matter (CDOM) can be estimated 
with TM-type satellite instruments, which could possibly be utilised as an aid in estimating the role 
of lakes in global carbon budgets. Based on the results of reflectance modelling and experimental 
data, MERIS satellite instrument has optimal or near-optimal channels for the estimation of turbid-
ity, chlorophyll a and CDOM in Finnish lakes. MERIS images with a 300 m spatial resolution can 
provide water quality information in different parts of large and medium-sized lakes, and in filling 
in the gaps resulting from conventional monitoring. Algorithms that would not require simultaneous 
in situ data for algorithm training would increase the amount of remote sensing-based information 
available for lake monitoring. The MERIS Boreal Lakes processor, trained with the optical data 
and concentration ranges provided by this study, enabled turbidity estimations with good accuracy 
without the need for algorithm correction with in situ measurements, while chlorophyll a and CDOM 
estimations require further development of the processor. The accuracy of interpreting chlorophyll a 
via semi empirical algorithms can be improved by classifying lakes prior to interpretation according 
to their CDOM level and trophic status, and by creating lake-type-specific algorithms. The results 
of optical modelling showed that the spectral diffuse attenuation coefficient can be estimated with 
reasonable accuracy from the measured water quality concentrations. This provides more detailed 
information on light attenuation from routine monitoring measurements than is available through the 
Secchi disk transparency. This study improves the interpretation of water quality by remote sensing 
in boreal lakes and encourages the use of remote sensing in lake monitoring.

Keywords: lakes, remote sensing, MERIS, ETM+, optical modelling, light attenuation, turbidity, 
suspended solids, chlorophyll a, CDOM, monitoring
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1 Introduction 

1.1 Background

The aim of lake monitoring is to provide information on the status and temporal changes of 
lakes for the needs of reporting and decision-making. In an ideal case, monitoring information is 
three-dimensional, is temporally extensive and includes information for the estimation of relevant 
processes (Van Stokkom et al. 1993, Fisher 1994). Monitoring of lakes has long been based on 
collecting of water samples, which are transported to a laboratory for analysis. Currently, most of 
the lakes that are monitored are sampled at one point only, often in the deepest part of the lake. In 
lake‑rich regions, only a small percentage of the lakes are monitored in the course of the year and 
usually are sampled only once in the ice-free season. The techniques proposed for improving the 
temporal and spatial representativeness of monitoring include automatic stations for continuous 
measurements (Tilak et al. 2007), transect measurements with optical instruments (e.g. Lindfors 
et al. 2005, Lepistö et al. 2010) and remote sensing via spectrometers installed aboard an aircraft 
or a satellite.

Remote sensing of water quality mainly employs passive instruments, which use the sun as 
their light source and measure the light reflected from a water body. Investigation of the use of 
satellite remote sensing for lake monitoring was under way already in the 1970s, after the launch 
of ERTS 1 (later named Landsat 1) in 1972 and a considerable amount of investigations has been 
published since then (see, for example, references in Bukata 2005). The early satellite instru-
ments were designed for terrestrial applications. The first instrument designed specifically for the 
estimation of water quality (particularly chlorophyll a) was CZCS, aboard the Nimbus 7 satellite, 
which provided images in 1978–1986 with 825 m spatial resolution, followed by SeaStar SeaWiFS 
(1,000 m resolution, 1997–2011).

In the 2000s, the usability of satellite imagery for water quality mapping has improved consider-
ably with the availability of several satellite instruments created for water applications in particular. 
Terra MODIS (2000–), Aqua MODIS (2002–) and ENVISAT MERIS (2002–) provide images daily 
and have several narrow channels optimised for water quality estimation. The low spatial resolution 
of these instruments (250 to 1,000 m), however, limits their use to only large and medium-sized 
lakes. In small lakes, satellite remote sensing is possible with Landsat-TM-type instruments (e.g. 
ETM+, SPOT, LISS and ALI), which typically have a 30-metre spatial resolution. Very high-
resolution instruments, such as IKONOS, typically have a spatial resolution of 1–4 m and enable 
monitoring of aquatic macrophytes and water quality in ponds (Sawaya et al. 2003). The drawback 
of the TM-type and high‑spatial‑resolution instruments is that, since they were designed initially 
for terrestrial applications, their spectral resolution, measurement frequency and radiometric char-
acteristics are not optimal for water quality mapping. Satellite instruments with good spectral and 
spatial resolution have hitherto been available only for research use (EO-1 Hyperion and CHRIS 
PROBA). Airborne remote sensing usually provides hyperspectral data with high spatial resolution 
from a limited area and has been used in algorithm development and in mapping of water quality 
in a single lake or a small group of lakes (e.g. Dekker 1993, Pulliainen et al. 2001).

At present, remote-sensing-based estimates of water quality are not routinely utilised in lake 
monitoring. Satellite images have been used in regional assessment of lake water quality (Kloiber 
et al. 2002a, Dekker et al. 2002, Koponen et al. 2004) , for the investigation of temporal trends 
(Kloiber et al. 2002b,  Shuchman et al. 2006) and to track the evolution of algal bloom across a 
lake (e.g. Binding et al. 2011). In addition to shortcomings in the instrument configuration, hin-
drances to the wider use of remote sensing in lake monitoring include suspicions of the reliability 
of remote sensing (the accuracy of the estimates etc.), lack of programmes in place that would 
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provide ongoing products and the weather-dependency of remote sensing (cloud cover hampers 
the estimation of water quality) (Bukata et al. 2002). 

The idea of remote sensing is to derive information on the optical properties and the concentra-
tions of substances from variations in water colour. The low radiance levels of natural waters mean 
that remote sensing is more complicated for water than in the cases of many terrestrial objects. 
Consequently, remote sensing for water requires knowledge of aquatic optics and of the fate of light 
in the atmosphere. The theory of aquatic optics was mainly developed by Preisendorffer (1976) 
and the related radiance transfer equations were numeralised by Mobley (Mobley 1994, Mobley & 
Sundman 2007). Aquatic optics focused in its early years on ocean waters (e.g. Jerlov 1976, Morel 
& Prieur 1977) and optical measurements in lakes (Bukata et al. 1979, Kirk 1984, Dekker 1993) 
were rare. Lakes are usually optically more complex than are ocean waters and some of the optical 
methods developed for ocean waters had to be modified for lakes (e.g. Strömbeck 2001). In recent 
years, optical measurements for lakes have become more commonplace (e.g. Rijkeboer et al. 1998, 
Strömbeck 2001, Herlevi 2002, Arst 2003, Reinart et al. 2004, Dall’Olmo & Gitelson 2006b, Gal-
legos et al. 2008), partly because of the better availability of optical instruments. Besides remote 
sensing, knowledge of in-water optical properties and processes is needed in the estimation of light 
available for photosynthesis (Pierson et al. 2003), in ecosystem models (Luyten et al. 1999), in 
the modelling of photochemical mineralization of dissolved organic matter (Vähätalo et al. 2000), 
in the simulation of water temperature and in underwater visibility studies. Optical properties 
and models have also been utilised in selection of best practice in lake management (Effler et al. 
2001, Jaun et al. 2007). In addition, direct measurement of optical properties (e.g. absorption and 
scattering coefficients) in field enables the estimation of water quality (e.g. Koponen et al. 2007). 

Investigations of remote sensing of lake water quality have been carried out in several regions 
– e.g. those of large lakes and Lake Erken in Sweden (Lindel 1981, Strömbeck & Pierson 2001), 
Estonian lakes (Kutser 1997, Reinart et al. 2004), lakes in southern Finland (Herlevi 2002, Ko-
ponen et al. 2004), Russia’s Lake Ladoga (Pozdnyakov 1998, Korosov et al. 2007), Lake Con-
stance (Gege 1998, Heege & Fischer 2004) and other lakes in Germany (Thiemann & Kaufmann 
2000), sub-alpine lakes (Brivio et al. 2001, Giardino et al. 2007) in Italy, eutrophic lakes in the 
Netherlands (Dekker 1993, Simis 2006), lakes and rivers in eastern Europe (Gitelson et al. 1993, 
Moses et al. 2009), the Great Laurentian lakes (Bukata et al. 1995, Binding et al. 2008), lakes in 
the USA’s Wisconsin (Kloiber et al. 2002a) and China’s Lake Taihu (Zhang et al. 2010). Most of 
the published investigations have included development and testing of interpretation algorithms as 
well as measurement of optical properties of water, which were utilised in algorithm development 
and validation. Recently, the Inland and Near-Coastal Water Quality Remote Sensing Working 
Group, in work initiated by the Group on Earth Observations, was created for promoting the use 
of remote sensing globally (GEO 2007, GEO 2011).

The water quality variables reported as able to be estimated by remote sensing in lakes are con-
centration of total suspended solids, turbidity, concentration of humic substances, concentration 
of chlorophyll a, occurrence of surface accumulating algal blooms, concentration of phycocyanin 
and Secchi disk transparency (e.g. Dekker 1993, Bukata et al. 1995, Pozdnyakov & Grassl 2003). 
One central aim in remote sensing of water quality is the development of algorithms, which would 
not require in situ sampling for algorithm training. This requires proper atmospheric correction, but 
standard atmospheric corrections are usually not directly valid/suitable for lakes (e.g. Simis 2006, 
Giardino et al. 2007, Moses et al. 2009). Atmospheric correction has turned out to be demanding 
particularly for oligotrophic lakes (Odermatt et al. 2010, Guanter et al. 2010).

The planned satellite missions will provide better remote sensing data for lake mapping than 
are currently available. For example, ESA’s Sentinel-2 MSI (scheduled to be launched in 2012, 
with spatial resolution of 10–20 m) will make possible more accurate water quality estimates 
through enhanced channel configuration and better temporal resolution than the current TM-type 
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instruments allow. Better data for the needs of atmospheric correction will also be available, since 
MSI and Sentinel-3 OLCI, the follow-up of MERIS and scheduled for a 2013 launch, will have 
additional channels optimised for correcting atmospheric disturbances. New hyperspectral satellite 
instruments, such as EnMap (http://www.enmap.org/) and HyspIRI (http://hyspiri.jpl.nasa.gov/), 
are also in the planning or construction stage.

1.2 Basics of water optics and remote sensing 

1.2.1 Colour-producing substances and their optical properties 

Water colour is due to colour-producing substances (CPSs), which absorb or scatter light (the vis-
ible region of the electromagnetic radiation, VIS). Absorption and scattering coefficients (m-1) are 
independent of the ambient light field and are therefore called inherent optical properties (IOPs, 
Preisendorfer 1976). Specific inherent optical property (SIOP) is IOPs expressed per unit mass 
of material. Apparent optical properties (AOPs) depend on the IOPs and on the directionality of 
the ambient light field (Preisendorfer 1976). Examples of AOPs are: remote sensing reflectance, 
diffuse attenuation coefficient and Secchi disk transparency. 

The two fundamental IOPs are the absorption coefficient and the volume scattering function. 
Water typically includes three main groups of absorbing CPSs: phytoplankton, tripton (non-algal 
particles such as detritus and mineral particles) and coloured dissolved organic matter (CDOM). 
In addition, pure water absorbs light. The total spectral absorption coefficient (atot(λ)) can be 
described by

	 (1)

where aw(λ) is the absorption coefficient of pure water, aph(λ) is the absorption coefficient of phy-
toplankton, aCDOM(λ) is the absorption coefficient of CDOM, atri(λ) is the absorption coefficient 
of tripton and λ is wavelength. 

The volume scattering function (β) describes how a volume of water is scattering light. The total 
scattering coefficient, btot(λ), is obtained by integrating β over all scattering angles (ψ): 

	 (2)

The angular pattern of the scattered light is given by the scattering phase function:

	 (3)

btot(λ) can be divided into the following main components contributing to scattering:

	 (4)

where bw is the scattering coefficient of pure water, bMSS is the specific scattering coefficient of 
mineral suspended solids and bph is the scattering coefficient of phytoplankton. 

The corresponding equation for the backscattering component (π/2 < ψ ≤ π) of btot is

 )()()()()( λλλλλ triphCDOMwtot aaaaa +++=

 

∫=
π

ψψλψβπλ
0

sin),(2)( dbtot

 

)(
),(),(~

λ
λψβλψβ

totb
=

 )()()()( λλλλ phMSSwtot bbbb ++=
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	 (5)

The total attenuation coefficient, ctot(λ), is the sum of the absorption and scattering coefficients:

	 (6)

Knowledge of the spectral absorption and scattering coefficients of CPSs is needed in, for example, 
bio-optical models, which can be formulated for total absorption, reflectance, diffuse attenuation 
coefficient etc. Next, the absorption and scattering properties and the inelastic processes of the 
main CPSs are briefly described.

Attenuation of light in pure water is dominated by absorption at wavelengths greater than 580 
nm and by scattering in the blue region of the spectrum. Absorption and scattering coefficients of 
pure water have been reported by several researchers; see, for example, the Ocean optics protocols 
of NASA (2003). Absorption by pure water is weakly temperature-dependent, mainly in the near-
infrared (NIR) region of the spectrum (Pegau et al. 1997).

In remote sensing and water optics, humic substances are commonly called coloured dissolved 
organic matter (CDOM), referring to the absorbing component of dissolved organic matter. Ab-
sorption by CDOM increases strongly with decreasing wavelength and is usually described by 
an exponential equation (Bricaud et al. 1981). Other proposed descriptions of aCDOM(l) include 
Gaussian (Gege 2000) and hyperbolic (Twardowski et al. 2004) models. The absorption coefficient 
of CDOM at a fixed wavelength in the blue region (usually 400 or 440 nm) of the spectrum is 
used as an indirect measure of CDOM concentration. The spectral slope coefficient (SCDOM) of the 
exponential equation depends on the type of CDOM; fulvic acids have been found to have higher 
SCDOM than have humic acids (Carder et al. 1989, Hansel & Carlsson 2002). Based on these find-
ings, two-component exponential models with different slopes of fulvic and humic acids have been 
proposed (Carder et al. 1989, Laanen 2007) instead of the single exponential function. Another 
factor influencing SCDOM is photobleaching of CDOM, which increases SCDOM (e.g. Twardowski & 
Donaghay 2002). The variations in the published SCDOM can also be due to methodological reasons, 
such as differences in the spectral range used for SCDOM estimation (Twardowski et al. 2004). 

aCDOM(l) is usually measured from filtered – preferably via a membrane filter with a 0.2 µm 
pore size (NASA 2003) – sample with a spectrophotometer. Small particles may be left in the 
water after filtering (e.g. Aas 2000), resulting in too high aCDOM and an error in the estimation of 
SCDOM. Several methods for correcting for this residual scattering have been proposed (Bricaud et 
al. 1981, Green & Blough 1994, Stedmon et al. 2000). Detritus mainly absorbs radiation and usu-
ally exponential increase with a decreasing wavelength analogous to that with CDOM is assumed 
(Roesler et al. 1989). The slope of detritus absorption is usually lower than that of aCDOM (Roesler 
et al. 1989, Strömbeck 2001). 

Pigments in phytoplankton can be divided into chlorophylls (a, b and c), biliproteins (phy-
cocyanin and phycoerythrin) and carotenoids, each with one or more specific absorption peaks 
(Rowan 1989). In addition, phytoplankton contains decomposed pigments, such as phaeophytin a, a 
degradation product of chlorophyll a. Chlorophyll a has two absorption peaks, centred at about 440 
and 675 nm and is present in all phytoplankton groups.  The specific pigments of phytoplankton 
groups, such as phycocyanin of cyanobacteria with an absorption peak at about 620 nm, mean that 
the phytoplankton groups can have characteristic absorption spectra. This enables distinguishing 
phytoplankton groups from measured reflectance spectra (Gege 1998). Promising results have 
been reported particularly for cyanobacteria estimation from measured reflectance in eutrophic-
hypertrophic lakes (Dekker 1993, Simis et al. 2007). 

Absorption by phytoplankton, aph(l) and tripton, atri(l), can be measured in the laboratory 
with the filter pad method, using a spectrophotometer and an integrating sphere (Ferrari & Tassan 

 )()()()( ,,,, λλλλ phbMSSbwbtotb bbbb ++=

 )()()( λλλ TotTottot bac +=
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1999, Tassan & Ferrari 2002). Specific aph (a
*
ph) decreases with increasing biomass, because of the 

package effect and sometimes systematic changes in relationships between species breakdown/
pigmentation and trophic level (Bricaud et al. 1995). Average a*

ph(l) that takes into account the 
package effect has been presented for ocean waters (Bricaud et al. 1995), the Baltic Sea (Stahr & 
Markager 2002) and lakes (Strömbeck 2001, Reinart et al. 2004).

The specific backscattering coefficient of phytoplankton can vary between phytoplankton spe-
cies (e.g. Ahn et al. 1992, Stramski et al. 2004) as a result of the variations in size, shape and re-
fractive index of phytoplankton cells (e.g. Mobley 1994). In the Baltic Sea, specific backscattering 
has been observed to vary considerably between cyanobacteria species (Metsamaa et al. 2006). 

Measurement of volume scattering and backscattering is more demanding than that of absorp-
tion (e.g. Vaillancourt et al. 2004). As a consequence, direct measurements of bb,ph in lakes are few 
and the estimation of backscattering properties of phytoplankton in bio-optical modelling of lakes 
(Kutser 1997, Strömbeck 2001, Dall’Olmo & Gitelson 2006) has mainly been based on research 
results for ocean phytoplankton or on theoretical simulations. Backscattering by inorganic particles 
in lakes has been reported to increase with decreasing wavelength (Bukata et al. 1991, Gallie & 
Murtha 1992, Strömbeck 2001) and has been described in bio-optical models by a power function 
(Bukata et al. 1991, Strömbeck 2001). 

Inelastic (trans-spectral) processes in natural waters include Raman scattering by pure water 
and fluorescence. Fluorescence is generated by phytoplankton pigments (e.g. chlorophyll a with 
emission centred at about 685 nm and phycoerythrin with emission centred at about 585 nm). 
CDOM produces broad fluorescence, which peaks at blue wavelengths. Fluorescence can influ-
ence reflectance spectrum in lakes and coastal waters, if phytoplankton or CDOM concentration 
is high and mineral particle concentration is low (Bukata et al. 2004). 

1.2.2 Remote sensing and reflectance modelling

The water-leaving radiance carries information on scattering and absorption coefficients – and, 
consequently, on the concentrations of CPSs. However, the water leaving component is only a small 
amount of the radiance measured by a satellite instrument; the rest is mainly due to atmospheric 
effects. An important part of remote sensing is correction of the measured radiance for atmospheric 
effects and other confounding factors, such as the adjacency effect (some of radiation from land 
pixels reaches the instrument such that it appears to come from water pixels). The adjacency effect 
can affect water pixels up to several kilometres from shore (Santer & Schmechtig 2000).

The radiance measured by a remote sensing sensor (assuming no adjacency effect or reflection 
from the bottom) can be expressed as

	 (7)

where Linst is radiance measured at the instrument, Lr is radiance due to Rayleigh scattering by air 
molecules, La is radiance due to aerosol scattering, Tatm is atmospheric transmission factor, Lsurf  
is surface radiance, θv is zenith observation angle, θv is azimuth observation angle θs and is solar 
zenith angle. Tatm depends on ozone content, Rayleigh scattering by air molecules, and scattering 
and absorption by aerosols. 

Lsurf can be estimated from Linst by the application of atmospheric correction. The radiative-
transfer-model-based atmospheric correction methods typically require information on the at-
mosphere – e.g. the ozone content and water vapour content, the surface pressure and the aerosol 
characteristics (e.g. Rahman & Dedieu 1994). 

Water leaving radiance, Lw, can be calculated from Lsurf by taking into account the blue-sky 
radiation reflected by the water surface (assuming that sun glint does not exist)

Linst(θv, ϕv, θs) = Lr (θv,ϕv,θs) + La (θv,ϕv,θs)+ Tatm(θv,θs) Lsurf(θv,ϕv,θs)  
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	 (8)

where Lsky(λ) is the average radiance of that area of the sky that is specularly reflected into the 
sensor. σL is the Fresnel reflectance and depends on the angle of reflection. It can be calculated, 
for example, from θv by means of the Fresnel equation (Jerlov 1976).

Remote sensing reflectance Rrs (sr-1), which is also called water leaving reflectance, is defined 
as (e.g. Mobley 1994)

	 (9)

where Lw is upwelling radiance (W m-2 s-1 sr-1) in the instrument observation direction after removal 
of radiation reflected at the air-water-interface, Ed is downwelling irradiance (W m-2 s-1) and 0+ 
refers to above-water observation.

Subsurface irradiance reflectance R at depth zi is defined as

	 (10)

where Eu is upwelling plane irradiance and Ed is downwelling plane irradiance. 
Remote sensing reflectance can be approximated from R (without angle dependencies) as fol-

lows (Mobley 1994): 

	 (11)

where s is the radiance reduction factor due to internal reflection and refraction at water-air inter-
face. Q is the Q factor, which is the ratio between upwelling irradiance and radiance and has been 
reported to range mainly between 3 and 6 sr (e.g. Morel & Gentili 1996, Loisel & Morel 2001). Q 
factor depends e.g. on the zenith angle of the sun and the scattering phase function.

Reflectance models are standard tools in the remote sensing of water, utilised e.g. in sensitivity 
analyses and interpretation of water quality by inverse techniques. A widely used approximation in 
the calculation of irradiance reflectance just beneath the water surface (R) is (Gordon et al. 1975, 
simplified by Jerlov 1976)

	 (12)

where C depends mainly on the illumination conditions. Also more physically based reflectance 
models are available, such as Hydrolight (Mobley 1994, Mobley & Sundman 2007), which is 
based on the radiative transfer equations. Hydrolight calculates radiance distributions and derived 
optical quantities, and considers their in depth variations. 

1.2.3 Diffuse attenuation coefficient

The diffuse attenuation coefficient for downward irradiance, Kd, is defined as

	 (13)

Lw(θv,ϕv,θs)0 = Lsurf(θv,ϕv,θs) - σL Lsky(θv,ϕv,θs) 
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where z is water depth and Ed is downwelling plane irradiance.

Attenuation depth zatt(l) is

	 (14)

zatt(l) defines the depth of the surface layer represented by the remotely sensed estimates: about 
90% of the backscattered light from a water column to the atmosphere comes from the surface 
layer down to zatt. 

1.2.4 Interpretation of water quality from remote sensing data

The ideal case in the interpretation of water quality from remote sensing data would be for the CPS 
of interest to have a clear optical signature (absorb, scatter or emit light) in a wavelength region 
where other CPSs do not affect reflectance. Natural waters, however, are usually far from the ideal 
case and the wavelength regions of the optical signatures of different CPSs often overlap each other.

The main approaches in the interpretation of water quality from remote sensing data are semi-
empirical and semi-analytical algorithms. In semi-empirical algorithms, channels or channel ratios 
are selected on the basis of knowledge of the optical properties of CPSs and their impact on the 
reflectance spectrum. This knowledge is used in analyses of remote sensing data by focusing on 
those channels where the CPS of interest has its optical signature and the effect of other CPSs 
is minimal, or their impact on the reflectance at the applied channels can be estimated. Semi-
empirical algorithms usually require simultaneous in situ data for algorithm training and are often 
image-dependent.

In semi-analytical algorithms, remote sensing data are corrected for atmospheric and other 
confounding factors to get Rrs or R. CPSs are obtained through inversion of a reflectance model. 
The problem of long computing time due to pixel-by-pixel inversion of remote sensing data has 
been solved through the use of neural networks (e.g. Schiller & Doerffer 1999), matrix inversion 
(Hoge & Lyon 1996) and Levenberg Marquardt multivariate procedure (e.g. Pozdnyakov et al. 
2005, Van Der Woerd & Pasterkamp 2008).

The most common optical classification in remote sensing and optics of natural waters is the 
Case 1 – Case 2 scheme, first presented by Morel and Prieur (1977) and modified by Gordon and 
Morel (1983) and Morel (1988). Clear ocean waters are optically classified as Case 1 waters, 
where phytoplankton with its covarying material of biological origin is the principal CPS respon-
sible for the variation in optical properties. In Case 1waters, the contribution of CPSs other than 
phytoplankton is small and they can be modelled as a function of phytoplankton concentration. 
For these reasons, semi-empirical algorithms based on the blue/green channel ratio have been 
successful in the estimation of chlorophyll a in ocean waters (e.g. O’Reilly et al. 1998). Lakes and 
coastal waters usually are among Case 2 waters, where other substances (CDOM and inorganic 
particles) in addition to phytoplankton may make a significant contribution to optical properties 
and they can vary independently of phytoplankton. Mobley et al. (2004) suggested dropping the 
Case 1 – Case 2 classification and focusing on optical modelling of water according to whatever 
CPSs are present. Nevertheless, the Case 1 – Case 2 scheme is still useful in explaining the basic 
optical complexity of Case 2 waters in comparison to most ocean waters, which were the starting 
point of aquatic optics.
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1.3 Objectives

In lake-rich regions, only a small proportion of the lakes belong to the monitoring network. In 
Finland, for example, lakes larger than 0.01 km2 number 56,012 (Raatikainen & Kuusisto 1988); 
about 4% of them are monitored annually (PVI). Because of the good spatial coverage, remote 
sensing could improve the effectiveness of lake monitoring by providing information on all lakes 
in an image, spatial differences within a lake and temporal variation in water quality.

One of the main water quality problems in lakes is eutrophication, which is often measured in 
terms of chlorophyll a concentration in routine monitoring programmes and which can be estimated 
via remote sensing. In the Water Framework Directive (WFD, European Union 2000), ecological 
classification of lakes is based on the four biological elements: phytoplankton, other aquatic flora, 
benthic invertebrates and fish. Only about 10% of the WFD lakes in Finland (mainly having area 
> 0.5 km2) could be classified by means of the available biological elements (Vuori 2009). In all, 
59% of the 4275 lake waterbodies of WFD reported to EU in 2010 missed ecological classification 
or other status estimation (Ministry of the Environment 2011). This calls for new methods for the 
mapping of a large number of lakes. Some of the lakes missing biological measurements were 
assessed on the basis of the physico-chemical elements (mainly chlorophyll a).Thus chlorophyll 
a measurements, as a measure of phytoplankton biomass, support WFD reporting.

Turbidity and transparency can be used e.g. to estimate the spreading of agricultural river load-
ing in lakes. Transparency in WFD is defined as one of the supporting variables to the biological 
elements.  Humic (CDOM) level is one of the main criteria in the characterisation of surface water 
body types in WFD in Finland. In an end-user survey on the use of water remote sensing in Finland 
(Anttila et al. 2005), chlorophyll a and Secchi disk transparency (ZSD ) were considered the most 
useful among the water quality variables that potentially can be estimated by remote sensing. 

Lake mapping on a global scale could have important applications in fields such as climate 
change studies. Lakes are commonly ignored in global estimates of carbon budgets (IPCC 2001), 
although they play an active role in the global carbon cycle (Downing et al. 2006, Cole et al. 
2007). Estimation of the dissolved organic carbon (based on CDOM) in lakes by means of satellite 
remote sensing could be an aid in assessment of the carbon pool and its variation in lakes and in 
estimating CO2 efflux from lakes. 

The main objective of this study was to investigate and test remote sensing interpretation al-
gorithms for water quality estimation in Finnish lakes, which represent boreal lakes with a wide 
range of CDOM variation. Another major objective was to develop optical models for the needs 
of interpretation and for the estimation of light attenuation. In addition, the work aimed at demon-
strating the advantages of the use of remote sensing as compared to the conventional monitoring 
methods. The work focused on optically deep waters.

In detail, the individual objectives were to 
●	 obtain information on the variation of colour-producing substances (CPS) and apparent optical 

properties in Finnish lakes,
●	 determine specific inherent optical properties and develop optical models for Finnish lakes,
●	 develop and test interpretation algorithms for the estimation of water quality in Finnish lakes 

by using semi-empirical and semi-analytical methods,
●	 investigate the applicability of channel configurations of different satellite instruments for 

water quality (CPS and Secchi disk transparency) estimation,
●	 investigate whether water quality can be estimated by satellite instruments (ETM+ and 

MERIS) with reasonable accuracy without image-specific algorithm training with in situ data 
and
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●	 quantitatively compare the spatial information obtained via remote sensing to information 
collected through discrete sampling of routine lake monitoring

The first investigation of airborne remote sensing that used a large dataset (PIII) pointed up the 
complexity of water quality interpretation. This led to the investigation of SIOPs, CPS variations 
and their effects on reflectance (PI and PII). Knowledge of the SIOPs drew the author’s interest 
to other AOPs – namely, spectral Kd  and ZSD – and their modelling (PII). The final objective of 
remote sensing is to produce valuable information for the needs of monitoring. Large-scale remote 
sensing for lakes is, in practice, possible only with satellite instruments, which were included in the 
algorithm studies of satellite images (PV, PVI and unpublished results) and in channel configura-
tion analyses (PI). The production of remote-sensing-based water quality maps led to quantitative 
investigations of accuracy improvements obtained by means of spatial data (PV and PVI). The 
contents of PI–PVI are summarised in Figure 1. 

Figure 1. The main elements of remote sensing of water quality and how the original publications (PI–PVI) and 
unpublished investigations (UP) relate to them. 

Remote sensing data
- Satellite (PV, PVI, UP)
- Airborne (PIII, PIV)

Processing 
- Rectification and radiometric 

correction (PIII-PVI)
- Atmospheric correction (PIII, PV, PVI)
- Adjacency effect correction (UP)

Interpretation 

- Bio-optical modeling (PI, PII, PVI, UP)

- Accuracy characteristics (PI-PVI, UP)

End-user products 
- Thematic maps (PIV-PVI)
- Distribution statistics (PIV-PVI)
- Time series (UP)
- Water quality indexes
- Error maps

Field measurements 
- Concentrations of colour 

producing substances, ZSD
(PI-PVI, UP)

- Specific inherent optical 
properties (PI, PII, UP)

- Apparent optical properties
- R (PI, PII)
- Rrs (PV)
- Kd (PII)

- Atmospheric parameters (PVI)

- Semi-empirical algorithms (PI, PVI)

- Semi-analytical algorithms (PI, UP)
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2 Material and methods

The experimental material for this thesis comprised three dataset levels: detailed optical measure-
ments in a few lakes, remote sensing measurements with concurrent in situ sampling and automatic 
raft measurements, and a national dataset of routine measurements of CPSs and ZSD (Table 1). These 
datasets made it possible to test and develop optical models and to investigate semi-empirical and 
inversion-based interpretation methods for different lake types. Joint use of the optical models and 
the national dataset enabled the investigation of optical properties and interpretation algorithms 
in highly varying combinations of CPSs.
Table 1. The main characteristics of the datasets and measurements.

Data Measurements No of lakes/ 
observations

Location Main purpose Publica-
tions

National CPS and ZSD 1113/3549 Whole Finland Distribution of CPS and ZSD in 
Finnish lakes

PII

Optical EDW and EUW 
(LI-1800UW), 
atot and btot (ac-9), 
acdom(λ)

11/20 Southern and north-
ern Finland

SIOPs, reflectance model, 
Kd- and ZSD-models, interpreta-
tion of CPS by semi-analytical 
algorithm

PI, PII

Airborne AISA 11/127 Southern Finland Semi-empirical algorithms, 
comparison with discrete 
water quality information in 
single lakes

PIII, PIV

Satellite ETM+, ALI 

MERIS

52/78 

3/see text

Karjaanloki and Siun-
tionjoki river basins, 
Southern Finland 

Lake Pyhäjärvi, Vesi-
järvi and Päijänne

Semi-empirical algorithms, 
comparison with discrete 
water quality information in 
river basin scale 
Semi-analytical algorithm, time 
series,

PV, PVI 

UP

2.1 Study sites and datasets

The national dataset was obtained from the Environmental Information System of the Finnish 
Environment Administration and covered the period July–August in 2000–2002. This dataset, con-
sisting of 3,549 observations, from 1,670 stations (Figure 2), was used to 1) calculate CPS and 
ZSD distributions, 2) calculate Kd(PAR) and attenuation depth distributions with the aid of a Kd(l) 
model and 3) investigate semi-empirical algorithms based on the simulated R(l). 

Most Finnish lakes are oligo- or mesotrophic and the CDOM concentration can be high (Table 
2). The correlations between CTSS, CChl-a, aCDOM(400) and ZSD in the whole dataset were low (cor-
relation coefficient < 0.48) with the exception of CTSS vs. CChl-a (correlation coefficient = +0.64) 
and aCDOM(400) vs. ZSD (-0.57).

Table 2. Statistical characteristics of CPSs and ZSD in the national dataset and also Kd(PAR) and maximum zatt, calculated 
via the Kd model from station mean values in the dataset (PII) (P10 = 10th percentiles and P90 = 90th percentiles).

P10 Median P90 Mean Min Max N

CTSS (mg l-1) 0.7 2.20 9.3 4.3 0.19 151 3549

CChl-a (μg l-1) 2.8 9.8 41.2 18.3 0.5 450 3549

acdom(400) (m-1) 2.1 7.4 19 8.9 0.6 74 3549

ZSD (m) 0.75 1.8 4.0 2.1 0.1 11 3549

Kd(PAR) (m-1) 0.90 2.75 6.7 3.46 0.374 28.6 1670

Max Zatt (m) 0.45 1.05 2.20 1.23 0.06 5.55 1670
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Figure 2. Location of stations of the national dataset (•) and the optical measurements of this study (Δ). The AISA, 
ETM+ and ALI studies took place in the area indicated by a rectangle (see Figure 3). Grey areas are lakes. Lake 
Pyhäjärvi was included in the MERIS study (UP). Background map: © National Land Survey of Finland, license no. 
7/MYY/06.

Pyhäjärvi

km0 100 200 300
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Optical measurements were carried out in 1997 and 1998 at 11 lakes, in southern and northern 
Finland (Figure 2). Details on the optical dataset are presented in the appendix. The AISA airborne 
spectrometer measurements consisted of four surveys in southern Finland: August 1996, May 
1997, August 1997 and August 1998 (Figure 3). The spatial distribution of chlorophyll a, based 
on AISA data, was analysed in two lakes, Hiidenvesi and Lohjanjärvi (PIV).

The Landsat ETM+ and EO-1 ALI studies included two river basins, Karjaanjoki (A = 2,046 
km2) and Siuntionjoki (A = 487 km2); see Figure 3. The three Landsat 7 ETM+ images from 2002 
were acquired on 20 May, 16 July and 9 September. The in situ observations used in combination 
with ETM+ images consisted of 1) water sampling in Lake Lohjanjärvi on the days the Landsat 
satellite passed above, 2) turbidity measurements with the TPS WP89 portable meter at 27 loca-
tions in Lake Lohjanjärvi on 9 September 2002, 3) volunteer ZSD measurements on the Landsat 
overflight days and 4) routine lake water sampling in the river basins within three days of the 
Landsat overflight (PVI). The EO-1 ALI image was acquired on 14 July 2002, covering an area 
of 37 x 185 km in the Karjaanjoki river basin and its surroundings. In situ measurements of the 
ALI investigations were made in 13 lakes on 14–17 June 2002. The ALI data was used only for 
CDOM estimation (PV).

The MERIS dataset consisted of 21 cloudless images acquired at Lake Pyhäjärvi (Figure 2) in 
2009 and three images in 2007 in Lakes Pyhäjärvi, Vesijärvi and Päijänne (Figure 3). The MERIS 
estimates were compared with water quality measurements of the automatic raft station of Lake 
Pyhäjärvi and with ac-9 transects in these three lakes.

Figure 3. Location of the in situ sampling stations (grey triangle) of the AISA measurement campaigns and the bor-
ders of the Karjaanjoki and Siuntionjoki river basins, which were included in the ETM+(PVI) and ALI (PV) studies. 
Grey areas are lakes. Lakes Vesijärvi and Päijänne were included in the MERIS study (UP). For the orientation in 
Finland, see Figure 2. Background map: © National Land Survey of Finland, license no. 7/MYY/06.

0 25 50 km

Helsinki

Päijänne

Vesijärvi
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2.2 Water quality determinations 

The concentration of total suspended solids (CTSS) was determined in laboratory by means of gravi-
metric determination of the matter removed by a filter (EN 872, Nuclepore polycarbonate 0.4 µm 
filter). The concentration of the sum of chlorophyll a and phaeophytin a (CChl-a) was measured with 
a spectrophotometer after extraction with hot ethanol (ISO 10260, GF/C filter). Turbidity (Turb, 
measured in FNUs) was determined by the nephelometric method (EN 27027, based on measure-
ment of light (860 nm) scattered within a 90° angle from a beam directed at the water sample, with 
formazine used as a standard matching solution). aCDOM was measured for the 400–750 nm (see 
next section) and aCDOM(400) was selected for a measure of the CDOM concentration. 

In routine water quality monitoring in Finland, the concentration of humic substances is indi-
rectly determined via the ‘water colour’ (mg Pt l-1) method, which is based on the comparison of 
water samples with standard cobalt chloride disks (ISO 7887 1994). For the needs of the optical 
models, Pt water colour in the national dataset was converted to aCDOM(400) with aCDOM(400) = 
0.123 * colour (R2 = 0.83, N = 449, aCDOM(400) range: 0.1–34 m-1, PII). In addition, CTSS was es-
timated from turbidity in the national dataset with CTSS = 1.162 * Turb (R2 = 0.82, N = 106, CTSS 
range: 0.4–17 mg l-1, PII).

The CPS determinations were made in the water laboratory of Western-Uusimaa Water and 
Environment Ltd; the water laboratory of the Finnish Environment Institute; and the Uusimaa, 
Lapland and South-west Regional Environment Centres. In addition, the national CPS and ZSD data 
included the results from national and regional monitoring carried out by all regional environment 
centres in Finland and via local statutory monitoring. Water samples were taken from depths of 
0.2 (AISA) and 1.0 m (ETM+, national dataset) and from 0.2 and 1.0 m depths (optical dataset). 
In the national and ETM+ datasets, CChl-a was determined from a composite sample of 0–2 m. 

Turbidity at the automatic raft station of Lake Pyhäjärvi was measured with nitro::lyser (s::can) 
and CChl-a with a microFlu-chl unit (TriOS) at one-hour intervals. After the measurement period, 
the automatic measurements were corrected by way of the results for the control samples, which 
were analysed in the laboratory of the Water Protection Association of Southwestern Finland. 
Estimations of in situ aCDOM for the MERIS overflight dates were interpolated from the routine 
monitoring measurements (six measurements in 2009). The raft, automatic instruments and data 
are described in detail by Kallio et al. (2010). 

2.3 Optical measurements 

The optical measurements conducted in field consisted of upwelling and downwelling plane ir-
radiances (LI-1800UW underwater spectrometer, LI-COR) and total absorption and attenuation 
coefficients (ac-9 absorption/ attenuation meter with an optical path length of 25 cm, from WET 
Labs, Inc.). R was calculated from the E measurements according to Equation 10. 

The wavelengths used with the ac-9 absorption/attenuation meter were 412, 440, 488, 510, 
532, 555, 650, 676 and 715 nm. The measurements were corrected for temperature and scattering 
according to the ac-9 manual (WET Labs 1995). In the further analyses of the data, the average 
values of the measurements taken from 0–2 m were used. The measurement protocols and the data 
processing of the ac-9 and LI-1800UW are described in detail in PI. The measurement technique 
for the ac-9 transects in the validation of MERIS images in Lakes Pyhäjärvi, Vesijärvi and Päijänne 
was the same as in the work of Lindfors et al. (2005).

The absorption spectra (380–800 nm) of CDOM were measured with a spectrophotometer (cu-
vette length of 50 mm in most cases but in a few cases 10 mm) from a sample filtered through a 
Nuclepore polycarbonate 0.4 µm filter. The absorption measurements were corrected for residual 
scattering by subtracting absorption at 750 nm from the measured values in 400–750 nm (Green 
& Blough 1994). 
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2.4 Bio-optical models

This study included optical models for the calculation of R(λ), Kd(λ) and ZSD. Similar models have 
been widely used in water optics and remote sensing, but the models had to be parameterised and 
tested in the lakes under investigation. An additional aim here was to investigate the models’ per-
formance in CDOM-rich waters with varying CChl-a and CTSS. The R model was used to investigate 
1) the effect of CPS variations on the interpretation of CPSs (PI and PVI), 2) the sensitivity of 
SCDOM variation interpretation of CPSs by semi-empirical algorithms (PII) and 3) interpretation of 
CPSs by the inversion method (PI). All of the models applied require SIOPs, which were measured 
at the optical stations or taken from other studies performed in Finnish lakes.  

2.4.1 Absorption and scattering 

The total absorption (atot(λ)) and scattering (btot(λ)) coefficients, needed in the R(λ), Kd(λ) and ZSD 
models, were calculated from SIOPs and CPS concentrations. The R(λ) model additionally requires 
backscattering ratios for the calculation of bb,tot(λ).

The bio-optical models of this study assume, in addition to pure water, three colour‑producing 
components: phytoplankton, tripton and CDOM (Equation 1). The calculation of the components 
of atot(l) is described by equations 15–18.

Absorption by CDOM was calculated by assuming an exponential increase with a decreasing 
wavelength (Bricaud et al. 1981):

	 (15)

where aCDOM(400) is the absorption coefficient of CDOM at 400 nm and SCDOM is the spectral slope 
coefficient.

Absorption by phytoplankton, aph(λ), was calculated by

	 (16)

where a*
ph(λ) is the Chl-a specific absorption coefficient of phytoplankton.

Absorption by tripton, atri(λ), was expressed as:

	 (17)

where a*
TSS(λ) is the specific absorption of bleached (pigments were broken down in order to 

exclude aph) total suspended solids. CTSS is the concentration of TSS. Absorption by tripton was 
defined by means of CTSS, because tripton concentration measurements were not available. 
a*

TSS(λ) was described analogously to the calculation of aCDOM(λ) (Roesler et al. 1989):

	 (18)

where a*
TSS(400) is the specific absorption of bleached total suspended solids at 400 nm and Stri is 

the spectral slope coefficient of tripton absorption.

The total scattering coefficient, btot(λ), was calculated as:

 )400()400()( −−= λλ cdomS
cdomcdom eaa

 aChlphph Caa −= )()( * λλ

 
TSSTSStri Caa )()( * λλ =

 )400(** )400()( −−= λλ TriS
TSSTSS eaa
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	 (19)

where bw(λ) is the scattering coefficient of pure water and b*
TSS(λ) is the specific scattering coef-

ficient of the TSS.  

The specific scattering coefficient of TSS (b*
TSS(λ)) was described by a power function (e.g. Jupp 

et. al. 1994, Strömbeck 2001): 

	 (20)

where b*
TSS(555) is the specific scattering coefficient of TSS at 555 nm and nb is the scattering 

exponent.
The total backscattering coefficient, bb,tot(λ), needed in the reflectance model (Equation 12), is 

described by:

	 (21)

where         and           are the backscattering ratios of pure water and TSS, respectively.
 
        

 was assumed to be independent of wavelength (Whitmire et al. 2007).

2.4.2 Reflectance model and inversion

The irradiance reflectance just beneath the water surface, R(l),was calculated according to Equa-
tion 12. Inelastic processes were not considered in the reflectance model. Inelastic processes have 
been included in a few reflectance models of lakes (e.g. Grassl et al. 2002), but their modelling is 
more demanding than in case of elastic processes. The C in Equation 12 comprises the illumina-
tion dependencies and was estimated according to Kirk (1984):

	 (22)

where µ0 is the cosine of the solar zenith angle in the water.  
The inversion-based interpretation algorithm applied to the measured R at the optical stations 

relied on the maximum-likelihood method, assuming that the forward (reflectance) modelling error is 
normally distributed. Following this, the maximum-likelihood estimate for multiple variables was 
obtained by finding the maximum value of a multidimensional Gaussian conditional probability 
density distribution. When the modelling errors of different channels are assumed to be independent 
from each other, the constrained minimisation problem obtained for the joint estimation of CTSS, 
CChl-a and aCDOM(400) was (with respect to constrains: 0.2 ≤  CTSS ≤  25 mgl-1, 0.2 ≤  CChl-a ≤  100 
µgl-1, 0.2 ≤  CTSS ≤  25 mgl-1)

	 (23)

where σi is the standard deviation of statistical reflectance modelling error for channel i. Ri,sim and 
Ri,mea are the simulated and measured reflectance for channel i, respectively. σi was estimated by 
using the root mean squared error (RMSE), which was calculated from the residual errors between 
the measured and simulated reflectances. Rsim in Equation 23 was calculated by means of Equation 
12, utilising Equations 1, 21 and 22. The components of atot and bb,tot were obtained via Equations 
15–20. In practice, each inversed squared variance term, σi

-2, weighted each channel according 
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to its estimated modelling accuracy. Inversion analyses were performed for the full spectrum and 
for each channel of the ETM+, MODIS and MERIS instruments (Table 3) constructed from the 
measured R(l). 

Table 3. Channel configuration of the ETM+, ALI, MODIS (1,000 m data) and MERIS satellite instruments in the 400–
760 nm range, with the spatial resolution indicated under the instrument name (PI).

Channel number Wavelength range (nm)

ETM+ 25 m ALI 25 m MODIS 1,000 m MERIS 300 m

1 450–520 450–515 405–420 407.5–417.5

2 530–610 525–605 438–4481 437.5–447.51

3 630–690 630–690 483–493 485–495

4 526–536 505–515

5 546–556 555–565

6 662–672 615–625

7 673–683 660–670

8 743–7532 677.5–685

9 703.75–713.753

10 750–757.52

1 450–460 nm in the subsurface reflectance study (PI) 
2 743–750 nm in the subsurface reflectance study (PI) 
3 700–710 nm in the subsurface reflectance (PI)

2.4.3 Kd and ZSD models

The mean Kd(λ) in the euphotic zone can be estimated with (Kirk 1984):

	 (24)

where u0 is the cosine of the solar zenith angle in the water. Coefficients g1 and g2 depend on the 
shape of the scattering phase function. Here, g1 = 0.425 and g2 = 0.190 were used as proposed by 
Kirk (1984), who applied the scattering phase function of Petzold (1972). 

The other tested Kd(λ) model was (e.g. Maffione & Jaffe 1995, Herlevi 2002):

	 (25)

where D1 and D2 are empirical coefficients.

ZSD was modelled according to Tyler (1968):

	 (26)

where C2 is an empirical coefficient, ctot(PAR) is the total beam attenuation coefficient of the PAR 
(400–700 nm) region of the spectrum and Kd(PAR) is the diffuse attenuation coefficient of PAR.

ZSD was also calculated with a simplified version of Equation 26 presented by Höjerslev (1986, 
ref. Preisendorfer 1986):
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	 (27)

where C1 is an empirical coefficient. Estimation of the empirical coefficients in Equations 25–27 
is described in section 2.4.4.

2.4.4 Estimation of coefficients for the optical models 

The Chl-a specific absorption coefficient of phytoplankton, a*Ph, in Equation 16, was calculated 
via the power function originally presented by Bricaud et al. (1995):

	 (28)

where A(λ) and B(λ) are positive empirical coefficients. Here A(λ) and B(λ) were obtained from a 
study by Ylöstalo (unpublished), carried out in 2000 and 2002 at 10 Finnish lakes. a*

TSS(400))and 
Stri were also from the study of Ylöstalo. SCDOM was estimated by fitting Equation 15 to the measured 
aCDOM(l) (18 spectra of the optical dataset, 400–750 nm wavelength region) (PI). 

Scattering related IOPs (b*
TSS(λ), b*

TSS(555) and nb, Equation 20) were estimated from the ac-9 
and CTSS measurements (PI). b*

TSS(λ)) was calculated for the nine ac-9 wavelengths by

	 (29)

The backscattering ratio of TSS ( TSSbb ,
ˆ ) was estimated by fitting the modelled reflectance spectrum 

(Equations 12 and 21) with the 12 measured R(l). The 400–448 nm range was not included in the 
analyses, because of the difficulties in measuring the low irradiance levels and possible instrument 
self-shading, which has its greatest influence at the blue end of the spectrum (Gordon & Ding 1992). 

The simple Kd(λ) and ZSD models were parameterised and tested with the optical dataset (PII). 
All optimised coefficients of the bio-optical models (SCDOM, nb, bTSSb̂  and the empirical coeffi-
cients of the Kd and ZSD models) were determined with the least-squares method according to a 
Nelder–Mead simplex search technique (Nelder & Mead 1965). 

2.5 Processing of the remote sensing data 

The flight altitude of the AISA airborne imaging spectrometer (Mäkisara 1998) measurements 
ranged from 1,000 to 3,000 m. The channel combinations differed slightly between the surveys 
and 24 channels with approximately the same position and width (5–8 nm) were selected for the 
final analyses (PIII). A pixel size of 2 x 2 m was selected for the geometrically and radiometrically 
corrected AISA images. Before the comparison with in situ measurements, AISA data from an area 
of 20 x 20 m were averaged at each in situ sampling station. The AISA radiances were converted to 
reflectances through the atmospheric correction method developed by de Haan and Kokke (1996), 
which utilises the MODTRAN radiative transfer code simulations. The procedures applied and the 
configurations of the AISA are reported in detail in PIII and by Attila et al. (2008). 

The three ETM+ images acquired in 2004 were rectified to national geographic co‑ordinates 
on the basis of 25 ground control points and top-of-atmosphere (TOA) radiances were calculated 
(PVI). Atmospheric correction for the ETM+ images was conducted via the SMAC (Simplified 
Method of Atmospheric Correction) model (Rahman and Dedieu 1994). The estimation of the at-
mospheric parameters (aerosol optical depth (AOD) at 550 nm, humidity and ozone concentration) 
is described in PVI. For comparison of the ETM+ data and in situ measurements, all pixels within 
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a radius of 75 m (30 pixels) and with their centre in the pixel corresponding to the geographic co-
ordinates of the in situ stations were extracted. The atmospheric correction for the ALI image was 
based on use of the ENVI FLAASH software and of the overlapping HYPERION image (PV). 

The MERIS images were processed by the Boreal Lakes processor version 1.0.2 (Doerffer & 
Schiller 2008a, Doerffer & Schiller 2008b, Koponen et al. 2008a), which is partly based on the 
MERIS Case 2 algorithm (Doerffer & Schiller 2007). The Boreal Lakes processor is a plug-in 
module of the BEAM software (http://www.brockmann-consult.de/beam/) and consists of the 
atmospheric correction (which generates Rrs) and the Hydrolight bio-optical model (Mobley 1994, 
Mobley & Sundman 2007). The bio-optical model yields aph(443), bTSS(443) and aCDOM(443). CChl-a 
and CTSS are obtained by means of conversion factors – i.e., the relationship between the concentra-
tions and aph or bTSS at 443 nm. The ICOL adjacency effect correction (version 1.0, Santer & Zagolski 
2008), also a plug-in module of BEAM, was used as a pre-processing step. For each output variable 
a 3 x 3 MERIS pixel square with its centre pixel corresponding to the location of the automatic 
raft station was extracted and the median of these pixel values was used in the final analyses.

The SIOPs needed in the bio-optical model (Doerffer & Schiller 2008b) of the Boreal Lakes 
processor were from PI, with the exception of SIOPs related to particulate absorption (a*ph and 
a*tri), which were updated on the basis of a larger dataset (Ylöstalo et al. 2011) than was available 
in PI. The ranges of CPSs needed in training of the neural networks of the processor were based 
on the national dataset (PII).

2.6 Statistics

Statistical accuracy characteristics of the interpretation algorithms were determined by
–	 the coefficient of determination (R2),
–	 root mean squared error (RMSE),
–	 relative RMSE (RRMSE) and 
–	 bias.

In the case of one predictor variable, RMSE was defined as (Milton & Arnold 1995)

	  (30)

where N is the total number of observations in the dataset, CPSObs,i is the observed in situ value 
and CPSEst,i is the estimated value; j = 2 if observations are used for training the algorithm, while 
j = 0 for an independent dataset. RRMSE is RMSE as a percentage of the mean observation.

Evaluation of the statistical accuracy of remote-sensing-based CChl-a estimation and the in situ 
CChl-a measurements at discrete monitoring stations in Lakes Hiidenvesi and Lohjanjärvi was based 
on the calculation of 95% confidence intervals, standard errors and observed errors (PIV). The 
confidence interval (MS) for the estimated mean CChl-a of the area under investigation (lake) was 
obtained by means of

	 (31)
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where ta / 2 is a coefficient based on the Tn-2 distribution. S is the RMSE for algorithm training data 
and n is the number of samples in the training dataset. ‹X› is the mean of remotely sensed CChl-a 
over the entire study area and ‹Xref› is the corresponding mean value for the algorithm training 
data. Sxx in Equation 31 is given by

	 (32)

where xref,i is the measured CChl-a  for training data point i. The confidence intervals presented are 
the 95% bounds that indicate the limits within which the estimated mean is located with a prob-
ability of ≥ 95%.

The standard error (SE) of the CChl-a estimates was presented for both in situ sampling and remote-
sensing-data-based estimates. In the case of discrete in situ sampling, the SE of the estimated mean 
among sampling stations is 

	 (33)

where ‹Cchl,ref› is the mean CChl-a of discrete sampling stations. 
Accordingly, the SE for the remote-sensing-data-based estimate of the mean CChl-a can be de-

fined as

	 (34)

The observed error (difference to the AISA based estimation) for the discrete data was obtained by

	 (35)

where                          is the mean AISA-based estimate of CChl-a.

3 Results and discussion

This section presents the main results of PI–PVI and the unpublished MERIS investigations (UP). 
It is organised according to the three main themes of the thesis: optical modelling, interpretation 
algorithms and comparison of spatial and discrete water quality information. Discussion includes 
comparison of the results with the published results of other investigators and implications of the 
results for the application of remote sensing in lake monitoring.

3.1 Bio-Optical modelling

3.1.1 Absorption, scattering and reflectance models 

The total absorption and scattering coefficients, needed in the R, Kd and ZSD models, were obtained 
from CPS concentrations and SIOPs (PI). The variation in some SIOPs in lakes can be large 
(Strömbeck 2001, Herlevi 2002), but the optical data available did not allow the estimation of the 
regional or temporal SIOP variation. Therefore, average SIOPs were used in all optical models. 
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The SIOPs (Table 4) were mostly in line with published values for lakes. The SCDOM was within 
the range that has been reported for lakes in Estonia and Finland (mean value: 0.015–0.017 nm-1) 
(Sipelgas et al. 2003) and Sweden (mean value 0.015 nm-1) (Pierson & Strömbeck 2001). The Stri 
was in agreement with the mean values (0.010–0.013 nm-1) from several other lake studies (Ström-
beck 2001, Reinart et al. 2004, Dall’Olmo & Gitelson 2006, Binding et al. 2008). The a*TSS(400) 
was close to that measured in lakes in the USA (0.124 m2 g-1) by Dall’Olmo & Gitelson (2006b). 
Calculation of a*

ph(λ) as a function of CChl-a is an improvement over many other lake models (e.g. 
Gege 2002, Dall’Olmo & Gitelson 2006a), where fixed a*

ph(λ) is assumed or CChl-a-dependency 
of ocean waters is used. This enables more realistic simulation of optical properties in lakes with 
considerable variation in CChl-a than the fixed a*

ph(λ) approach does.
Table 4. SIOPs used in the optical models. 

Coefficient Symbol Value Source

Absorption coefficient of pure water aw(λ) see the reference Buiteveld (1994)

Specific absorption of phytoplankton a*
ph(λ) see text Ylöstalo (unpublished)

Spectral slope coefficient of CDOM absorption SCDOM 0.0150 nm-1 PI

Specific absorption of bleached TSS at 400 nm a*
TSS(400) 0.13 m2 g-1 Ylöstalo (unpublished)

Spectral slope coefficient of tripton absorption Stri 0.012 nm-1 Ylöstalo (unpublished)

Specific scattering of TSS at 555 nm b*
TSS(555) 0.811 m2 g-1 PI

Scattering exponent of TSS nb 0.705 PI

Scattering coefficient of  pure water bw(λ) see the reference Buiteveld (1994)

Backscattering ratio of pure water 0.5 Sathyendranath et al. (1989)

Backscattering ratio of TSS 0.0131 PI

The backscattering ratio of TSS (Table 4) was slightly lower than in Dutch lakes (0.0157, Dekker 
1993). The b*

b,TSS(555) of 0.0106 m2 g-1, calculated from the backscattering ratio and the scatter-
ing coefficient presented in Table 4, was in agreement with other lake studies. In the Dutch Lake 
IJsselmeer, for example, the b*

b,TSS(550) was 0.011 m2 g-1 (Hoogenboom et al. 1998a). Heege and 
Fischer (2004), assuming wavelength-independent backscattering, reported a somewhat lower 
b*

b,TSS of 0.0086 m2 g-1 for Lake Constance.
Scattering was simulated here without consideration for particle type. Optical modelling could 

be improved by considering inorganic particles and phytoplankton separately with characteristic 
scattering properties. For example, waters dominated by inorganic particles have backscattering 
ratios of a few per cent (Boss et al. 2003), while the phytoplankton-dominated ocean waters have 
lower backscattering ratios,  such as  0.5% (Sathyendranath et al. 1989) and 1% (Oishi et al. 2002). 
Also in lakes the backscattering ratio has been reported to be higher for inorganic particles than 
for phytoplankton (Strömbeck 2001, Reinart et al. 2004).

Comparison of SIOPs published by different researchers is sometimes difficult because of the 
variety of methods applied. For example, the estimation of SCDOM from measured aCDOM(l) is not 
standardised and the method of aCDOM(l) measurement applied by different researchers differs by 
filter type and pore size used in the filtering of water samples and in the correction of spectropho-
tometric measurements for residual scattering and baseline shift (e.g. Aas 2000, Sipelgas et al. 
2003, Twardowski et al. 2004). Many of the optical methods for water remote sensing have been 
developed specifically for the ocean waters (NASA 2003). Validation measurements for lakes have 
been compiled e.g. by Pierson et al. (1999) and Kallio et al. (2007). 

The measured R in the optical dataset (PI) showed considerable variation in its maximum values 
(0.01–0.08) and in the shape of the spectra among the lakes (Figure 4). The level of the modelled 
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reflectance and the shape of the spectra were generally in good agreement with measured values 
(Figure 4). The noise in the 400–450 nm region of the measured R at some stations is due to the 
low Eu, which is close to the lower measurement limit of the LI-1800UW spectrometer. The great-
est discrepancies between the simulated and measured reflectances were in the eutrophic lakes 
(in the top row in Figure 4). The SIOPs can vary by lake (e.g. Strömbeck & Pierson 2001) and 
in eutrophic lakes the absorption and backscattering properties of phytoplankton have a strong 
impact on the reflectance.

0

0.05

0.1

R

Loh1−a

0

0.05

0.1
Ena−a

0

0.05

0.1
Sie−a

0

0.05

0.1

R

Loh2−a

0

0.05

0.1
Loh3−a

0

0.05

0.1
Loh4−a

0

0.01

0.02

0.03

R

Puu−m

0

0.01

0.02

0.03
Vas−a

0

0.01

0.02

0.03
Nor1−a

400 500 600 700
0

0.01

0.02

0.03

R

Wavelength (nm)

Nor2−a

400 500 600 700
0

0.01

0.02

0.03

Wavelength (nm)

Son−a

400 500 600 700
0

0.01

0.02

0.03

Wavelength (nm)

Poy−a

Figure 4. Measured (     ) and simulated (—) R(λ) of the optical stations (PI). R2 = 0.92 and RRMSE = 25% (for simu-
lated vs. measured R in the 400-750 nm range of all 12 stations). Note the two scales on the y-axis. Simulated R(λ) 
was calculated via Equations 12 and 22. SIOPs needed in the calculation of atot and bb,tot are presented in Table 4. The 
CPS concentrations and selected optical properties of the stations are presented in the appendix. 
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3.1.2 Kd and ZSD models 

Kirk’s Kd model (Equation 24) with fixed coefficients g1 and g2 produced as good estimations as 
the Kd model (Equation 25) with calibrated coefficients (Figure 5). Kirk’s model has been applied 
to Finnish lakes before, with measured atot and btot at nine wavelengths as input to the model (Her-
levi 2002). Herlevi tested several other simple Kd(λ) models and found that the optimal empirical 
coefficients varied somewhat by lake type. Strömbeck (2001) also used Kirk’s model in the es-
timation of Kd(PAR) in Swedish lakes from CPS concentrations and average SIOPs, but spectral 
comparisons were not made. 

Calibration of the two Z
SD

 models resulted in Z
SD

 = 11.4/(ctot (PAR)+Kd(PAR)) and Z
SD

 = 7.26/
ctot(PAR) (PII). The statistical accuracy characteristics of the two models were almost the same, 
with R2 about 0.96 and RRMSE about 19% (N=14). The empirical coefficient C2 of the first model 
was somewhat higher than those obtained by other investigators; for example, Tyler (1968) reported 
C2 = 8.69 (ZSD range: 10–48 m) and Holmes (1970) C2 = 9.42 (2–12 m). Davies-Colley (1988) found 
C2 = 9.52 (0.42–17.7 m) for lakes in New Zealand. 

Figure 5. Simulated Kd(l) according to Equation (24) and Equation (25), and measured Kd(l) (redrawn from PII) in 
the optical stations. RRMSE is presented for Kd(l) simulated by means of Equation 25.
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The optical models gave reasonable results in lakes with large differences in CPS concentrations 
and in different geographical regions. The optical models presented here are semi-empirical and 
do not take into account in detail, for example, the factors related to measurement geometry. Ad-
vanced optical modelling requires models such as Hydrolight (Mobley 1994, Mobley & Sundman 
2007), which is utilised in the MERIS Boreal Lakes processor (Doerffer & Schiller 2008a, UP). 
The SIOPs may in reality differ from those assumed in the models, but the presented models are 
useful as general tools for various applications. The reflectance model is a module for inversion-
based interpretation algorithms (PI) and for estimation of the influence of CPS and SIOP varia-
tion on semi-empirical algorithms (PII and PVI). The results obtained here indicated that Kd(λ) 
can be calculated with Kirk’s model (Equation 24) from measured CPSs and average SIOPs with 
reasonable accuracy in lakes with large CPS variations. The Kd(λ) and ZSD models presented are 
also ready modules for remote sensing algorithms (e.g. Kallio et al. 2009).

3.2 Interpretation of CPSs and ZSD 

The semi-empirical algorithms were investigated by means of optical (PI) and remote sensing data 
(PIII–PVI; see Figure 1). The AISA campaigns provided a large dataset with varying lake types 
and enabled investigation of lake-type-specific algorithms. Applicability of the semi-empirical 
algorithms was additionally studied through the simulations of R(l) using the CPS data from the 
national dataset, with particular focus on the influence of CDOM on interpretation. The results 
of the inversion algorithm applied to the optical station data are discussed in the satellite channel 
configuration section. 

3.2.1 Semi-empirical algorithms 

Previous studies have shown that in lakes with trophic status ranging from mesotrophic to hyper-
eutrophic Chl-a is best estimate by the NIR-red ratio algorithm (e.g. Millie et al. 1992, Gitelson et 
al. 1993, Pierson & Strömbeck 2001). This was also the case with the airborne (PIII) and optical 
datasets (PI), where the highest correlation for CChl-a was found with a radiance/reflectance ratio 
whose numerator is in the 685–715 nm and denominator in the 660–677 nm range (Table 5).

The best wavelength region for CTSS and turbidity estimation was between 700–730 nm (Table 5, 
PI and PIII). According to the AISA data turbidity can be estimated with better accuracy than can 
CTSS. The nephelometric determination of turbidity, which is based on an optical measurement, is 
an indirect approximation of scattering by particles, which directly influence reflectance. Another 
reason is that the measurement uncertainty of turbidity determination in the laboratory is less 
than that for CTSS (PIII). The use of atmospherically corrected AISA data improved the estimation 
accuracy of the single-channel CTSS and turbidity algorithms (PIII). This indicates that the atmos-
pheric correction was able to smooth out the differences between campaign days to some extent. 

According to the reflectance simulations using the national dataset (with fixed SIOPs, data from 
1670 stations), aCDOM(400) was best predicted by linear regression against a ratio of reflectance at 
wavelength > 600 nm to reflectance in the 400–580 nm range (Fig. 6, PII). The simulation results 
were supported by the AISA (PIII) and LI-1800UW (PI) data. In this algorithm, the reflectance 
changes due to CDOM absorption in the short wavelength region are normalised by changes in 
reflection not related to CDOM in the longer wavelengths. The result is in accordance with the 
findings of  Pierson et al. (2000) and Del Castillo & Miller (2008), among others, but here the 
algorithm was tested with a wider range of aCDOM (with varying CTSS and CChl-a) than in the inves-
tigations of other researchers.

ZSD estimation via a channel ratio approach is site-specific, involving varying optimal channels 
and empirical coefficients (Härmä et al. 2001, Attila et al. 2008; PII and PIII). ZSD measurement 
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in the field is influenced by all CPSs (and by several other factors, such as the measurement condi-
tions and the reflectance of the disk – see Preisendorffer 1986). A generally applicable algorithm 
for the estimation of ZSD and Kd(l) from remote sensing data that would not be sensitive to the 
independent variation of CPSs could be obtained by application of semi-analytical models (e.g. 
Equations 26 and 24) using atot(l) and btot(l) estimated from remote sensing data. 

3.2.2 Limitations and improvements of the semi-empirical algorithms

The performance of the NIR-red Chl-a algorithm depends on the variation of a*ph(λ), the specific 
backscattering coefficient of phytoplankton and other particles, SCDOM, fluorescence and the con-
centration of inorganic particles and CDOM, as has been demonstrated in bio-optical simulation 
studies (Pierson & Strömbeck 2000, Strömbeck & Pierson 2001, Dall’Olmo & Gitelson 2005, 
Dall’Olmo & Gitelson 2006a). The key assumptions of the NIR-red ratio algorithm are: aph >> 
bbTSS and aph >> (aCDOM+atri) in the 660–675 nm region (Gitelson et al. 2008). 

In Lake Tuusulanjärvi, the empirical parameters of the Chl-a algorithm differed from those 
of the other eutrophic lakes in August (PIII). The accuracy of the Chl-a algorithm trained only 
for this lake was also lower than it was for the rest of the lakes. The fact that the ratio between 
turbidity and the CChl-a was higher (0.42) than in the other four eutrophic lakes (0.21–0.29) of the 
AISA dataset indicates that the first key assumption of the NIR-red ratio algorithm, aph >> bbTSS, was 
probably not fulfilled. The exceptional ratio between turbidity and the CChl-a might be due to, for 
example, high concentration of inorganic particles.

The largest relative errors of NIR-red ratio algorithm with fixed wavelengths has been found for 
CChl-a < 10 μg l-1 (Gons et al. 2002, Dall’Olmo & Gitelson 2005). At low CChl-a, the NIR-red ratio 
becomes increasingly sensitive to the influence of other factors, especially to the variation of (aCDOM 
+ atri) and bb (Dall’Olmo & Gitelson 2006a, Gitelson et al. 2008). The same NIR-red ratio cannot 
be optimal for a wide range of CChl-a, because the position of maximal radiance in the 685–715 

Table 5. Summary of the channels and statistical accuracy characteristics of semi‑empirical algorithms of AISA (PIII) 
and LI-1800UW (PI) data; Rsurf is reflectance corrected for atmospheric disturbance according to de Haan and Kokke 
(1996). N is the number of measurements. The range column indicates the minimum and maximum values of measured 
in situ water quality and ZSD.

Variable Instrument Channel or channel ratio Month(s) R2 RMSE RRMSE % N Range

CChl-a µg l-1 AISA Lu(699–705)/Lu (670–677) August 0.91 6.03 29 88 1.3–100

AISA Lu (699–714)/Lu (661–667) 
(MERIS channels)

August 0.91 5.85 28 88 1.3–100

LI-1800UW R(700–710)/R(660–670)  July–
August

0.96 27 12 0.8–73

Turb, 
FNU

AISA Rsurf(705–714) (MERIS channel) August 0.93 1.90 23 105 0.4–26

CTSS
mg l-1

AISA Rsurf(705–714) (MERIS channel) August 0.85 2.86 32 74 0.7–32

LI-1800UW R(700-710) July–
August

0.98 18 12 0.4–20

ZSD, m AISA (Lu (661–667) – Lu (747–755))/ 
(Lu (699–705) – Lu (747–755))

August 0.85 0.52 31 107 0.4–7.0

acdom(400), 
m-1

AISA (Lu(567–574) – Lu(603–610))/Lu 
(603–610)

August 0.84 0.81 20 47 1.2–14

AISA Lu(661–667)/Lu(552–560)  
(MERIS channels)

August 0.78 0.92 23 47 1.2–14

LI-1800UW R(660–670)/R(485–495) 
(MERIS channels)

July–
August

0.98 14 12 0.3–18
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nm region shifts to shorter wavelengths with decreasing CChl-a (Gitelson 1992, Hoogenboom et al. 
1998a). The use of a shorter wavelength in the numerator of the NIR-red ratio improved the estima-
tion accuracy of CChl-a in oligo- and mesotrophic lakes (CChl-a < 25 μg l-1) in the AISA data (PIII): 
the R2 increased from 0.67 (for L(699–705)/L(670–677)) to 0.83 (for L(685–691)/L(670–677)). 
For oligotrophic lakes (CChl-a < 10 μg l-1) alone, the latter channel ratio yielded also reasonable 
accuracy (R2 = 0.76, RRMSE = 27%, N = 30).

The second key assumptions of the NIR-red ratio algorithm, aph >> (aCDOM+atri) in the 660–675 
nm region (Gitelson et al. 2008), is critical for CChl-a estimation in humic lakes. This was also proved 
by the AISA dataset, wherein the most humic lake, Keravanjärvi (aCDOM(400) = 14.3 m-1, CTSS = 
4.4 mg l-1, CChl-a = 8.8 μg l-1), was an outlier in the Chl-a estimation (PIII). Although aCDOM in the 
660–680 nm region is small in comparison to shorter wavelengths, it disturbs the CChl-a algorithm 
by decreasing R in the 660–680 nm region, if CDOM concentration is high. This leads to higher 
NIR-red ratios and overestimation of CChl-a if an algorithm calibrated for low CDOM is applied. 
The impact of aCDOM on the NIR-red-ratio-based Chl-a algorithm has been earlier demonstrated 
in three Swedish lakes (Pierson & Strömbeck 2000, Strömbeck &Pierson 2001). The reflectance 
simulations with realistic CPS variations (national dataset; PII) showed that the accuracy of the 
NIR-red Chl-a algorithm is lowest in the lakes with high CDOM in all trophic classes (see Figure 
6 for the mesotrophic lakes).

Accurate measurement and mathematical formulation of aCDOM(λ) in the 660–680 nm region are 
important for understanding of the limitations and development of lake-type-specific version of the 
NIR-red ratio algorithm, particularly in lakes with high CDOM. This was indicated through the 
sensitivity study of SCDOM (PII). The use of a higher SCDOM value, of 0.017 nm-1, by Kallio (1999) 
and Sipelgas et al. (2003) instead of 0.015 nm-1 in the channel ratio simulation for the national 
dataset increased R2 more in the high-CDOM lakes than in the low-CDOM lakes in all trophic 
levels (PII). The influence of SCDOM variation on Chl-a estimation was strongest in the oligotrophic 
lakes with high CDOM: R2 between CChl-a and R(705)/R(675) increased in the high-CDOM sub-
group of oligotrophic lakes from 0.76 to 0.88, when higher SCDOM was assumed (PII). The CTSS and 
aCDOM(400) algorithms were not sensitive to SCDOM, as the changes in R2 were negligible.

Some of the CDOM algorithms applied (Table 5) include a channel in the short‑wavelength 
region, where high absorption combined with low particle concentration leads to low water leaving 
reflectance. Low light levels are difficult to measure accurately by remote sensing, because of the 
limitations in radiometric sensitivity. This may be one reason the CDOM estimation for the humic 
Lake Keravanjärvi (aCDOM(400) = 13 m-1) was an outlier in the AISA dataset (PIII), although high 
CDOM was estimated satisfactorily in the humic lakes of the subsurface reflectance data (PI). The 
limitations of the semi-empirical CDOM algorithms are also discussed in section 3.2.4.

Remote sensing of a large group of lakes would benefit from the classification of lakes before 
interpretation. If hyperspectral data are available, the channels of Chl-a algorithms can be optimised 
by trophic status. In Finnish conditions, lakes should also be classified by their CDOM level (PII 
and PIII), which would enable separate training of, for example, the Chl-a algorithm by CDOM 
level and identification of lakes for which the accuracy of Chl-a estimation is expected to be lower 
than in other lakes. In the adaptive Chl-a algorithms (Ruddick et al. 2001, Dall’Olmo et al. 2003, 
Gitelson et al. 2008), optimal algorithms are selected directly according to the information included 
in the measured remote sensing data, but this approach requires hyperspectral data. Pulliainen 
et al. (2001) have shown that more comprehensive classification of lakes (by trophic status, and 
separation of humic and clear-water lakes) prior to the CPS interpretation can be performed from 
the shape of the radiance spectra of airborne spectrometer data. 
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3.2.3 Applicability of satellite instruments’ channel configurations for CPS 
estimation 

Knowledge of the suitability of the channel wavelengths of different satellite instruments for the 
estimation of CPSs is useful in, for instance, the selection of satellite imagery for a region of inter-
est. The channel configurations of MERIS, MODIS and ETM+ were here investigated through the 
use of channels reconstructed from the measured hyperspectral R data (PI). MERIS and MODIS 
were included here because they were designed for water applications and provide images daily. 
ETM+ represents a large group of instruments first designed for land applications, but the data they 
provide would be valuable for lake monitoring, given their good spatial resolution. ETM+ has three 
wide channels, while MERIS and MODIS have several narrow ones in VIS and NIR (Table 3).

According to the airborne spectrometer study by Härmä et al. (2001), MERIS has the best 
channel configuration of the three satellite instruments for CTSS and CChl-a estimation in lakes and 

Figure 6. Relations between simulated channel ratios and measured CPSs in the low- (left column, aCDOM(400) < 
8.61 m-1, N = 547) and high- (right column, aCDOM(400) ≥ 8.61 m-1, N = 608) CDOM sub-groups in the mesotrophic 
lakes of the national dataset (PII). 
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coastal waters with semi-empirical algorithms. This result was confirmed here for CTSS (based on 
R(700–710)) and CChl-a (R(700–710)/R(660–670)) with measured R(λ) data (PI). The essential dif-
ference between MERIS and MODIS is the 705 nm channel included in MERIS, which improves 
the accuracy of the estimation of CTSS and CChl-a, particularly when the semi-empirical algorithms 
are used. The wide channels of ETM+ make the interpretation sensitive to the independent variation 
in CPSs (PI, PVI). However, the estimation of aCDOM(400), not included in the study of Härmä et 
al. (2001), was not sensitive to the width of the channels, as it was estimated with TM3/TM2 with 
the same accuracy as in the case of  the narrow channels of MERIS (R(660–670)/R(485–495)) and 
MODIS (R(662–672)/R(483–493)) (PI). 

The differences between instruments in the interpretation of CPSs by inversion (Figure 7) were 
similar to those of the semi-empirical algorithms applied to the same dataset (PI). Estimation 
of CPSs by inversion is sensitive to the variation of SIOPs (e.g. Gege 2002) and the estimation 
accuracy could be improved if information on lake-specific SIOPs were available. Based on the 
measured R data, MERIS has optimal or nearly optimal channels for CPS estimation by inversion 
(when compared with the use of continuous spectra 450–750 nm, 2 nm step) and semi-empirical 
algorithms (compared with the best channel or channel ratio in 450–750 nm, step 10 nm) (PI).
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Figure 7. Relations between measured CPSs and CPSs estimated by the inversion of R (measured with LI-1800UW) 
using MERIS channels 2–10 (a–c), MODIS channels 2–8 (d–f) and ETM+ channels 1–3 (g–i) (PI).The inversion 
method is described in section 2.4.2 of the thesis. 
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3.2.4 ETM+ and ALI data 

In addition to the channel position and width of a satellite instrument, interpretation accuracy for 
satellite measurements depends on the atmospheric disturbance and its correction, the measure-
ment geometry, the radiometric characteristics of the instrument etc. The number of small lakes 
in boreal region (e.g. Raatikainen & Kuusisto 1988) can be high, with the monitoring by satellite 
remote sensing requiring sufficient spatial resolution. Water quality of small lakes can be mapped 
with TM-type instruments, but their limitations must be taken into account.

The average RRMSE of image-specific ETM+ algorithms trained with in situ data for turbid-
ity, aCDOM(400) and ZSD ranged from 17% to 23% (PVI). The relation between turbidity and TM3 
was linear in May and July but was exponential in September (Figure 8). This is probably due 

Figure 8. Relations between measured water quality variables (Turb, aCDOM(400) and ZSD) and ETM+ reflectance and 
reflectance ratios (PVI). The left column (a–c) is for the SMAC-corrected reflectances and the right column (d–f) 
for TOA reflectances. Algorithm coefficients and statistical accuracy characteristics are shown in Table 6.  
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to the differences in the relative share of phytoplankton and inorganic particles, and the effect 
of phytoplankton absorption on reflectance at TM3. The variability of the relationship between 
turbidity and TM3 can also be seen in the R simulations using the national dataset (PVI) and with 
the semi‑empirical algorithm for the measured R of the optical dataset (PI). 

The ZSD algorithm based on TM1 and TM3 has been used in several other studies of TM-type 
instruments (Lathrop 1992, Cox et al. 1998, Kloiber et al. 2002a, Brezonik et al. 2005). ZSD is influ-
enced by all three CPSs; therefore, a simple algorithm based on a channel ratio cannot be accurate 
if CPSs vary independently of each other (PVI). In some regions, conditions can be favourable 
for ZSD estimation if, for example, turbidity and CChl-a have a strong positive correlation with each 
another and strongly negative correlations with ZSD (Brezonik et al. 2005). Here the estimation 
accuracy of ZSD from ETM+ data was high in May (R2 = 0.92) right after spring flooding, when 
CChl-a was low and the correlation between turbidity and CDOM was high (PVI).

CDOM was estimated by ETM+ (PVI) and ALI (PV) with about the same accuracy. Differences 
in the performance of these two instruments could not be investigated here, because of the lack of 
simultaneous ETM+ and ALI data. According to the simulation study (PV), the 16-bit radiometric 
resolution of ALI enables estimation of a wider CDOM range with the TM2/TM3 ratio than the 
eight-bit radiometric resolution of ETM+ does.  

High aCDOM(400) in combination with low backscattering leads to high absorption and conse-
quently to low reflectance with the short wavelengths. Low water‑leaving radiances are demand-
ing to estimate by satellite instruments, because of atmospheric disturbances and possibly low 
radiometric sensitivity of the instrument. Doerffer (2008) estimated that the water‑leaving radi-
ance of the blue channels in waters with very high CDOM is near or even below the noise floor 
and calibration uncertainty of MERIS. Higher concentration of scattering particles increases water 
leaving radiance and decreases this problem. According to the results from the optical dataset and 
reflectance simulations (PI and PII), estimation of high aCDOM(400) is possible via semi-empirical 
algorithms in lakes with low turbidity if R (or Rrs) can be estimated with reasonable accuracy. 
Brezonik et al. (2005) reported that lakes with high CDOM (aCDOM(440) between 8 and 10 m-1, 
corresponding to aCDOM(400) between 16 and 20 m-1, if SCDOM = 0.015 nm-1 is assumed) were outliers 
in ZSD estimation by TM (based on the TM1 and TM3 channels). The ETM+ dataset included high 
CDOM values (up to aCDOM(400) of 12 m-1), which were estimated with good accuracy. However, 
the high CDOM was connected to high turbidity (the correlation coefficient between aCDOM(400) 
and turbidity was +0.79). 

Various atmospheric correction methods have been applied with TM-type instruments in lake 
applications (e.g. Dekker et al. 1992, Dekker et al. 2002, Hirtle & Rencz 2003, Vincent et al. 
2004). However, the quantitative influence of atmospheric correction on the accuracy of estima-
tion of water quality with TM-type instruments has seldom been reported. According to Klober 
et al. (2002a), atmospheric correction based on dark pixel subtraction and dark calibration targets 
applied to multi-temporal TM images were insufficient. 

The SMAC atmospheric correction of the ETM+ data produced only a slight improvement in the 
overall estimation accuracy for aCDOM(400) and ZSD as compared with the use of TOA reflectances 
(Figure 8 and Table 6). In the case of turbidity, the estimation accuracy was about the same for 
the various types of ETM+ data. However, the best turbidity algorithm for the TOA reflectances 
was based on the channel ratio, while the best algorithms for SMAC-corrected ETM+ data relied 
on a single channel. The channel ratios approximately compensate for differences in atmospheric 
disturbances by day and for the pixelwise variation in the atmosphere. They are also less susceptible 
to sun glint from waves than are the single-channel algorithms. The single-channel (TM3) turbid-
ity algorithm was more accurate with SMAC-corrected reflectance (RRMSE = 29%; see Table 
6) than with TOA reflectance (RRMSE = 53%), which indicates that the atmospheric correction 
balanced out the differences due to atmosphere disturbance to some extent over the three days. 
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The application of semi-empirical algorithms without image-specific training doubled the 
RRMSE on average (in worst case RRMSE for a single image was about 50% for aCDOM(400) 
and ZSD) in comparison to the use of an image-specific algorithm (PVI). Accordingly, the method 
presented did not produce accurate enough CPS estimations without image-specific training and 
the application of ETM+ for water quality mapping (using the atmospheric correction procedure 
described here) with reasonable estimation accuracy requires simultaneous or near-simultaneous 
in situ measurements.

3.2.5 MERIS data 

This section refers to the unpublished results of S. Koponen, K. Kallio and T. Pyhälahti (UP).

The previous validations of the MERIS lake processors were conducted with data from a few 
days – e.g. in Finland with data from three days (Koponen et al. 2008). The automatic measurement 
raft with observations at one-hour intervals in Lake Pyhäjärvi in 2009 made it possible to obtain 
validation data for every cloudless MERIS image, providing comprehensive data for algorithm 
testing in different atmospheric and lake conditions. The transect ac-9 measurements enabled 
the spatial test of the IOP (atot and btot) estimation by MERIS. This data was collected during the 
MERIS lakes project (Koponen et al. 2008), but the transect results shown here have not been 
published earlier. 

The level of turbidity estimations generated by the Boreal Lakes processor was close to that of 
the automatic measurements (Figure 9). The b(443) produced by the processor was converted to 
turbidity with a conversion factor of 1.05 m FNU, which was based on the ac-9 measurements of 
24 June 2009. For September, this conversion factor yielded too low turbidity. After the applica-
tion of a higher conversion factor (1.72 m FNU) based on the ac-9 measurements of 16 September 
2009, the correspondence between estimated and draft results in September was good (Figure 9). 
The correction (without bias) based on the comparison with raft measurements was small: y = 
1.11x, where y = corrected value and x = value generated by the processor. The different scattering 
properties in September might be related to the occurrence of cyanobacteria, which were observed 
by the phycocyanin fluorometer installed on the measurement raft (Kallio et al. 2010).

According to the spatial comparison of IOPs in Lake Vesijärvi, Päijänne and Pyhäjärvi in 2007, 
the processor was able to estimate btot with RRMSE ≤ 16% (Figure 10). This confirms that turbidity 
and CTSS can be estimated by the processor with reasonable accuracy, once the specific scattering 
coefficient is known.

Table 6. Interpretation algorithms and their statistical accuracy characteristics with SMAC-corrected reflectances and 
TOA reflectances – data from all three days were used in algorithm training. In the case of turbidity, two algorithms 
(linear and exponential) are shown for TOA reflectances (PVI).

Variable Data Algorithm R2 RMSE RRMSE % N Range

Turb (FNU) 1 SMAC 385.3* TM3 - 1.624 0.862 1.22 28.7 80 0.6–15

TOA 570* TM3 - 18.4 0.535 2.25 52.6 80 0.6–15

TOA 2389*exp(-2.72*TM1/TM3) 0.858 1.53 35.9 80 0.6–15

acdom(400) (m-1) SMAC 23.33*exp(-0.970* TM2/TM3) 0.830 1.18 22.3 29 1.0–12.2

TOA -18.1* (TM2/ TM3)+32.9 0.721 1.28 24.3 29 1.0–12.2

ZSD (m) SMAC 1.806* (TM1/TM3) - 0.8903 0.778 0.52 26.9 131 0.5–5.5

TOA 0.0299*exp(1.668* TM1/TM3) 0.729 0.67 34.5 131 0.5–5.5

1Four eutrophic/hypereutrophic lakes were not included in the calculation of turbidity statistics
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Figure 9. Time series of turbidity estimated from MERIS data by the Boreal Lakes processor (with ICOL pre-pro-
cessing) and measured by automatic raft instruments in Lake Pyhäjärvi in 2009. MERIS = estimation generated by 
the processor, MERIS-corrected = processor estimation corrected by means of the raft data, raft = raft measure-
ments. The accuracy characteristics of the corrected values were R2 = 0.76 and RRMSE = 22%.
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The CChl-a estimated by the processor was overestimated by about 200% and aCDOM (443) was 
underestimated by about 40% in comparison to the raft (Chl-a) and interpolated (CDOM) measure-
ments of Lake Pyhäjärvi in 2009 (detailed results are not shown), which is in line with the previous 
validation results of the processor (Koponen et al. 2008).  After empirical correction R2 was 0.36 
(RRMSE=51%) for CChl-a and 0.29 (RRMSE=36%) for aCDOM(443). The processor estimates followed 
the measured dynamics of both variables from May to September to some extent.

The discrepancies between the in situ measurements and semi-analytical interpretation of CPSs 
may be due to inaccuracies in SIOPs (in situ SIOPs differ from those assumed in the processor), 
Rrs (atmospheric and adjacency effect correction) or IOPs estimated by the processor. The spatial 
comparison in 2007 indicated that atot estimated by the processor corresponds well to the meas-
ured values or slightly underestimates them (Figure 11). In an experiment during the MERIS lake 
project, the processor estimated CDOM with reasonable accuracy with the bio‑optical neural 
network of the Boreal Lakes processor, when Rrs(λ) measured with a portable spectrometer was 
given as input (Koponen et al. 2008). While a*ph measurements were not available from 2009, 
previous validation measurements indicate that the overestimation of CChl-a was not due to devia-
tions in aph* (Kallio et al. 2009). The validation measurements from 2007 showed that the Boreal 
Lakes processor (with ICOL pre-processing) slightly overestimated Rrs, particularly in the blue 
region of the spectrum in oligotrophic lakes. These findings suggest that the problems in CChl-a and 
CDOM estimation are related to the errors in the partition of atot between aph and aCDOM, and in the 
atmospheric correction. Humic lakes with low backscattering level is an additional challenge to 
the Boreal Lakes processor, as was preliminary shown in the previous validation of the prosessor 
(atot(443) was clearly underestimated, Koponen et al. 2008).

The automatic raft and transect measurements increase the number of matches in validation 
of the satellite instruments considerably. In addition,  temporally intensive in situ measurements 
enable studying the ability of an algorithm to estimate the seasonal dynamics of CPSs and they 
decrease the need for manual validation measurements during the satellite overflight.
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Figure 10. btot(443) transects estimated from MERIS data by the Boreal Lakes processor (with ICOL pre-processing) 
and btot(440) measured by ac-9. Panes a) and b) show the combined transects for Lake Vesijärvi and Päijänne for two 
days and pane c) shows the transect for Lake Pyhäjärvi. Lake Vesijärvi is represented in pane a) by pixel numbers 
1-60 and in pane b) by pixel numbers 1-30. The rest of the pixels in panes a) and b) represent Lake Päijänne.  
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Figure 11. atot(443) transects estimated from MERIS data by the Boreal Lakes processor  (with ICOL pre-process-
ing) and atot(440) measured with ac-9. Panes a) and b) show the combined transects for Lake Vesijärvi and Päijänne 
for two days and pane c) shows the transect for Lake Pyhäjärvi. Lake Vesijärvi is represented in pane a) by pixel 
numbers 1-60 and in pane b) by pixel numbers 1-30. The rest of the pixels in panes a) and b) represent Lake Päi-
jänne.  
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3.3 Comparison of spatial remote sensing data and discrete water 
quality information 

Conventional monitoring provides numerically accurate information at one or a few locations in a 
lake and for selected lakes in a river basin, while remote sensing produces water quality information 
with good spatial resolution within a lake (PIV, PVI) and on different lakes over large areas (PV 
and PVI). The results of remote sensing mapping are usually reported in the form of concentra-
tion maps, but quantitative comparison with the information obtained by means of conventional 
sampling has seldom been carried out. 

Airborne spectrometer data typically have high spatial resolution of a few metres and allow 
calculating estimates of overall water quality and its variation in a lake (PIV). At Lake Hiidenvesi, 
application of the lake-specific interpretation algorithm to AISA images revealed that CChl-a can 
vary considerably even in short distances (Figure 12). The statistical characteristics of the discrete 
sampling stations were inadequate to describe the true spatial variation of CChl-a (Table 7). The 
error for mean CChl-a was large (about 50%) when the value calculated from the standard monitor-
ing information (based on three routine monitoring stations) was compared with the AISA-based 
estimation. Remote sensing information can also be used to find representative locations of routine 
monitoring stations for the evaluation of changes in trophic status. In Lake Hiidenvesi, for example, 
the north-western part of the lake is oligotrophic and not part of the routine monitoring network. 

Satellite instruments provide data for all lakes for which the image pixel size is sufficient. The 
30 m resolution of the ETM+ images enables estimation of water quality in lakes of different sizes 
over large areas and of the spatial variation of water quality in large and medium-sized lakes. The 
spatial lake information derived from an ETM+ image shows the regional differences in water 
quality effectively (Figure 13). Because of the large number of lakes and the limited resources 
available for routine monitoring conducted via water sampling, monitoring can only cover some 

Figure 12. CChl-a interpreted from AISA airborne spectrometer data for Lake Hiidenvesi on 11 August 1998. The 
locations of the three routine monitoring stations are indicated by white circles (redrawn from PIV).
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of the lakes. In the Siuntionjoki river basin, the use of ETM+-derived information enabled water 
quality estimation for 57 lakes (74% of all lakes ≥ 0.01 km2), while routine monitoring (water 
sampling) in 2000–2003 covered only 20 lakes (26%) (PVI). Fifteen lakes (19%) had enough water 
quality observations (at least three) for general usability classification of water bodies (Vuoristo 
1998) based on the data from 2000–2003. 

The use of TM-type instruments as an additional tool in water quality assessment would con-
siderably increase the number of lakes for which at least some water quality estimates can be 
obtained. This makes possible more comprehensive comparison of lakes and river basins than the 
use of conventional monitoring data allows on its own. All lake information within an image is 
simultaneous, which is another advantage over routine monitoring, where only a few lakes can be 
sampled on any given day. Currently, the best interpretation technique for the TM-type images 
is to create image-specific algorithms using in situ data (PVI) either by means of specific field 
campaigns or through utilisation of near-simultaneous routine monitoring results.  

The use of routine monitoring results for algorithm training requires that 1) the number of in 
situ observations be high enough and they represent different lake types, 2) the in situ observations 
provide information on CPSs and 3) observations represent the water layer that is measured by 
the remote sensing instrument. The routine monitoring results available vary greatly by image, 
but in some cases routine monitoring can provide sufficient data for algorithm training and valida-
tion. In the ETM+ study, the number of routine in situ observations (time window: ±3 days from 
satellite overflight) varied between eight and 20 in the area of the two river basins and in their 
vicinity (PVI). The combination of the number of in situ observations available and the width of 
the time window should be optimised for each image (e.g. Kloiber et al. 2002b). Knowledge of the 
seasonal differences in CPS variation (PVI) and the expected range of CPSs in conjunction with 
reflectance modelling (PII and PVI) can be utilised in algorithm selection and in identification of 
the algorithm’s limitations. Routine monitoring in Finland normally provides information on the 
main CPSs: TSS (estimated on the basis of turbidity), Chl-a, CDOM (estimated from Pt colour) 
and ZSD. In 2000, aCDOM(400) and CTSS were added to the determinations in national monitoring 
programmes (mainly with intensively monitored stations) of the Environmental Administration 
in Finland for the needs of the development of remote sensing methods and optical applications. 
The routine monitoring samples are taken from a 1 m depth or as a composite sample from 0–2 
m. The maximum zatt in Finnish lakes was between 0.45 and 2.20 m in 80% of the cases and the 
median value was 1.05 m (Table 4). Therefore, the routine monitoring results represent fairly well 
the surface layer measured by a remote sensing instrument. 

Table 7. Standard errors and observed errors of estimated mean CChl-a in Lake Hiidenvesi (modified from PIV). Ob-
served error (difference to the AISA-based estimation) was calculated by Equation 35. The relative errors indicated in 
brackets were obtained by dividing the absolute errors by the true mean CChl-a, with the latter assumed to be the AISA-
based estimation (25.2 μg l-1) .

Dataset Mean CChl-a

μg l-1
Range of 

CChl-a, μg l-1
Observed error 

μg l-1
Standard error

μg l-1
Equation used for 

standard error

AISA data 
(N=3,010,748)

25.2 2.0–101 - 1.00 (4.0%) (33)

Discrete stations 
(N=15)

22.4 6.2–70 2.78 (11.0%) 5.08 (20.2%) (34)

Routine stations 
(N=3)

37.0 11–66 11.8 (46.9%) 15.9 (63.3%) (34)
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Figure 13. ZSD in the Karjaanjoki and Siuntionjoki river basins as estimated from the ETM+ image on 20 May 2002 
(PVI). The corresponding frequency distributions are presented in the small figure. The average ZSDs were 1.2 and 
1.9 m, respectively.
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Conclusions and future perspectives

The main advantage of the use of remote sensing in lake-rich regions is that remote sensing yields 
water quality estimates for lakes not belonging to the routine monitoring networks, as demonstrated 
in the river basin studies of this thesis. Remote sensing also enables simultaneous comparison of 
the water quality of all lakes within an image. In lakes with a large spatial variation in water qual-
ity, the use of spatially high-resolution remote sensing data improves the accuracy of water quality 
estimation compared to conventional monitoring methods. The quantitative analyses of this study 
showed that routine monitoring results can yield as high as 50% under- or overestimation of the 
overall water quality of a lake. Remote sensing yields water quality information for the surface 
layer and for a limited number of variables primarily related to water transparency, trophic status 
and humic level, but when combined with conventional monitoring results, and with tools such 
as lake modelling, it aids in providing extensive information of lakes. Remote sensing has not yet 
reached a level that would enable its large-scale routine use in lake monitoring, mainly because 
of non-optimal satellite instruments and a lack of easily applicable interpretation algorithms. The 
methods presented here improve the interpretation of water quality from remote sensing data and 
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support its use in lake monitoring. The results are applicable also in other parts of the boreal region 
where the number of lakes is high and the CDOM varies considerably. 

The optical models of this thesis were applied in a wide range of CPS combinations, including 
lakes with high CDOM. Combining the reflectance model and an extensive dataset of routine 
monitoring results helped to identify the limitations of the semi-empirical algorithms and the need 
for lake-type-specific algorithms; obtaining a similar amount of reflectance spectra via radiomet-
ric measurements in the field is very laborious. The strength of this approach is the fact that the 
algorithm simulations represent realistic combinations of CPSs in the region of interest. 

Knowledge about optical properties and their modelling could be utilized in the monitoring and 
managing of lakes more than is currently done today. The finding that the Kd(l) can be estimated 
with reasonable accuracy from the measured CPS concentrations, for example, enables us to 
gain more detailed information on light attenuation from routine monitoring results than can be 
obtained via the routinely measured ZSD. This detailed information on attenuation may be usable 
in ecological applications. 

The optical models of this thesis relied on the average SIOPs determined for Finnish lakes, since 
the optical data did not allow us to take into account SIOPs for different seasons, lake types and 
regions. Such information would be useful for the further improvement of the optical models and 
remote sensing algorithms. More information is also needed on backscattering and the contribu-
tion of phytoplankton and inorganic particles to scattering. Because of the high impact of CDOM 
on absorption and reflectance in many Finnish lakes, the aCDOM(λ) should be known and modelled 
with good accuracy throughout the visible region. Alternative methods for aCDOM(λ) determina-
tion not sensitive to the presence of small particles, such as the Point-Source Integrating-Cavity 
Absorption Meter (PSICAM) (e.g. Röttgers & Doerffer 2007), should be tested. 

The error from remote sensing-based estimates (AISA, ETM+) was mainly between 10 and 30% 
when simultaneous in situ measurements were used for algorithm training. The estimation accuracy 
of semi-empirical algorithms can be improved by classifying the lakes prior to interpretation and 
by creating lake-type-specific algorithms. This is particularly the case with CChl-a, which benefits 
from the pre‑classification of lakes by their trophic status. This study indicated that in regions 
with a wide CDOM range, lakes should additionally be classified according to their CDOM level 
before CChl-a interpretation.

The use of TM-type instruments in addition to routine monitoring results substantially increases 
the number of lakes for which water quality information can be obtained. The planned TM-type 
instruments will be better suited to remote sensing of water quality than what is currently avail-
able for operational use. Sentinel-2 MSI (http://www.esa.int/esaLP/SEMM4T4KXMF_LPgmes_0.
html) and LDCM OLI (http://ldcm.nasa.gov/), both scheduled to be launched in 2012, will provide 
12-bit data. In addition, the MSI will include a 30-nanometre-wide channel near the red absorption 
peak of phytoplankton and a 15 nm wide channel at 705 nm. This means an improved estima-
tion accuracy for turbidity and CTSS and may enable the estimation of CChl-a with a good spatial 
resolution (10–20 m). Reflectance modelling and experimental hyperspectral data indicated that 
MERIS has optimal or nearly optimal channels for CPS estimation in Finnish lakes. Because of 
the 300 m spatial resolution, MERIS images are suitable only for large and medium‑sized lakes. 
These lakes often belong to the routine monitoring network, but MERIS images can be utilised in 
producing CPS information for different parts of large lakes, and in filling in the gaps resulting from 
conventional monitoring. The limitations of satellite remote sensing in humic lakes with low back-
scattering levels should be studied with a more extensive dataset than that available in this study.

The preliminary results of this thesis indicated that CDOM can be estimated with TM-type 
satellite instruments. The future TM-type instruments will be more suitable for CDOM estimation, 
particularly in terms of their radiometric characteristics and the number of channels designed for 
atmospheric correction. Large-scale CDOM mapping with good spatial resolution could be used 
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as an aid in the global estimation of the role of lakes in global carbon budgets. The recent study 
of Griffin et al. (2011) showed that TM-type instruments can also be utilized in the assessment of 
carbon flux from large river systems to the sea.

Algorithms that would not require simultaneous in situ data for algorithm training would increase 
the amount of remote sensing-based information usable for lake monitoring. These algorithms 
should be based on the regional characteristics of SIOPs and the atmosphere, and on the typical 
variation of CPS. The analytical algorithm of the MERIS Boreal Lakes processor, trained with 
the optical properties and CPS ranges typical of Finnish lakes, enabled turbidity estimations with 
good accuracy without the need for image-specific algorithm correction with simultaneous in 
situ measurements. Using the processor to estimate Chl-a and CDOM with reasonable accuracy 
requires better partitioning of atot to aph, and aCDOM and enhanced atmospheric correction. Chl-a 
estimation by the processor in boreal lakes could possibly be improved via better modelling of 
the red-NIR region, where the influence of CDOM on reflectance is small.

The development and validation of remote sensing algorithms is often based on manual sam-
pling and measurements, which only provide occasional discrete data. The automatic raft and 
transect measurements used here yield, temporally and spatially, a high number of match-ups for 
the validation and development of algorithms in different conditions and thus aid in the creation 
of better remote sensing products. In addition, comprehensive measurement campaigns (SIOPs, 
Rrs, atmospheric parameters) similar to those of the MERIS Lake project would provide essential 
material for the testing and development of various processors.

Yhteenveto

Järvien seuranta perustuu nykyisin pääasiassa manuaaliseen näytteenottoon ja näytteiden analy-
sointiin laboratoriossa. Runsasjärvisillä alueilla kuitenkin vain pientä osaa järvistä pystytään seu-
raamaan perinteisin menetelmin. Yksi mahdollisista menetelmistä parantaa seurannan alueellista 
kattavuutta on järvien kaukokartoitus lentokoneen tai satelliittien avulla.

Tämän työn tavoitteet olivat tutkia vedenlaadun tulkinta-algoritmeja suomalaisissa järvissä, 
kehittää optisia malleja tulkinnan avuksi ja valon tunkeutumisen arvioimiseksi sekä verrata kauko-
kartoituksella saatavaa tietoa perinteisten menetelmien tuottamaan tietoon. Tutkimuksen aineistot 
koostuivat optisista mittauksista, satelliitti- ja lentokonekuvista yhdessä samanaikaisten in situ 
havaintojen kanssa, automaattimittauksista ja järviseurannan tuloksista koko Suomesta. 

Tarkan resoluution kaukokartoituskuvat osoittivat, että rehevissä järvissä perinteisen mene-
telmillä saatava arvio voi poiketa jopa 50 % järven todellisesta a-klorofylli pitoisuudesta. TM-
tyyppisten satelliittikuvien (erotuskyky tyypillisesti 30 m) käyttö lisää huomattavasti niiden järvien 
määrää, joista saadaan vedenlaatuarvioita (pääasiassa sameudesta). Tulokset osoittivat myös alus-
tavasti, että TM-tyyppiset instrumentit soveltuvat humuspitoisuuden arviointiin. Laajojen alueiden 
humuskartoituksia voitaisiin mahdollisesti hyödyntää arvioitaessa järvien vaikutusta hiilitaseisiin. 
MERIS satelliitti-instrumentin kanavat ovat optimaaliset tai lähes optimaaliset sameuden, kiinto-
aineen, a-klorofyllin ja humuksen arviointiin Suomen järvissä. MERIS kuvia (erotuskyky 300 m) 
voidaan käyttää suurten ja keskisuurten järvien eri osien tilan arvioinnissa sekä arvioitaessa niitä 
tämän kokoluokan järviä, jotka eivät kuulu seurantaohjelmiin.  Menetelmät, jotka eivät vaadi in 
situ havaintoja algoritmien kalibrointiin, lisäisivät huomattavasti käyttökelpoisten kaukokartoi-
tusarvioiden määrää. Tässä työssä osoitettiin, että analyyttinen MERIS Boreal prosessori, jonka 
opettamiseen käytettiin tämän tutkimuksen optisia ominaisuuksia ja vedenlaadun vaihteluvälejä, 
arvioi sameutta hyvällä tarkkuudella ilman kuvakohtaista kalibrointia. a-klorofylli ja humuksen 
arviointi MERIS Boreal prosessorilla kohtuudella tarkkuudella vaatii vielä kokonaisabsorptio-
kertoimen tarkempaa jakamista eri komponentteihin. Satelliittikaukokartoituksen soveltuvuutta 
humusjärvien vedenlaadun arviointiin tulisi tutkia laajemmalla aineistolla kuin mitä tässä työssä oli 
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käytettävissä. a-klorofyllin arviointitarkkuutta empiiristen kanasuhteiden avulla voidaan tarkentaa 
jakamalla järvet ryhmiin humus- ja rehevyystason mukaan. 

Tässä työssä hyödynnettiin vedenlaadun automaattimittauksia ja optisten ominaisuuksien lin-
jamittauksia. Nämä mittaukset mahdollistavat kaukokartoitusmenetelmien tehokkaan testauksen 
tuottamalla ajallisesti ja paikallisesti kattavaa vertailuaineistoa. Veden optiikan tietämystä voitaisiin 
hyödyntää nykyistä enemmän järvien seurannassa ja hoidossa. Tässä työssä osoitettiin, että valon 
vaimenemista eri aallonpituuksilla voidaan mallintaa luotettavasti rutiiniseurannan vedenlaatu-
mittausten perusteella.

Tämän tutkimuksen tulokset parantavat vedenlaadun tulkintaa kaukokartoitusaineistoista ja 
tukevat kaukokartoituksen käyttöä järvien seurannassa.
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Appendix

Appendix. The concentrations of CPSs, ZSD, Kd(PAR) and btot(555) of the optical stations (PI) (btot(555) was measured by 
ac-9 and is presented without pure water). 

Lake Station Month CTSS

mg l-1
CChl-a

ug l-1
acdom(400)

m-1 
ZSD

m
Kd(PAR)

m-1

btot(555)
m-1 

Puujärvi Puu-m* May 1.9 4.5 2.1 3.9 1.1 1.2

Lohjanjärvi Loh1-a* August 15.5 55 5.3 0.8 3.8 6.6

Lohjanjärvi Loh2-a* August 4.6 13.5 3.8 1.5 1.9 2.6

Lohjanjärvi Loh3-a* August 5.9 10.5 3.9 1.9 2.0 2.5

Lohjanjärvi Loh4-a* August 3.0 11.5 3.3 2.9 1.0 1.9

Enäjärvi Ena-a* August 10 37 1.9 1.1 2.8 7.9

Norvajärvi Nor1-a* August 0.8 3.5 3.1 4.0 1.5 1.0

Norvajärvi Nor2-a* August 1.1 3.3 3.6 3.3 1.5 0.9

Sierijärvi Sie-a* August 19.6 73 18.2 0.4 7.8 -

Sonkajärvi Son-a* August 1.7 5.7 13.0 2.2 3.9 1.7

Pöyliöjärvi Poy-a* August 1.0 7.6 10.0 2.5 3.0 1.2

Vasikkajärvi Vas-a* August 0.4 0.8 0.3 11.8 0.6 0.3

Lohjanjärvi Loh1-m May 17 9.7 9.2 0.8 - 8.1

Lohjanjärvi Loh2-m May 10 7.2 5.4 1.1 - 4.5

Lohjanjärvi Loh3-m May 7.8 4.2 4.8 1.2 - 3.6

Keravanjärvi Ker-m May 4.4 8.8 14.3 1.4 - 2.8

Puujärvi Puu-a August 1.7 1.3 1.3 7.0 0.8 0.9

Vesijärvi Ves-a August 2 11.5 1.4 2.8 - 2.1

Pääjärvi Paa1-a August 2.1 5.5 7.4 2.7 - 1.4

Pääjärvi Paa2-a August 1.6 6.8 7.2 2.7 2.7 1.4

* Stations used for testing of the reflectance model. 
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