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Viisanen, Petteri Taalas and many others including all the coauthors of my

papers, my friends at the workplace as well as everyone at work, who is up for

the occasional chat, joke or sähly game. I really appreciate the helpfulness

and friendliness of the people and the many good discussions. The many

people increasing knowledge by sharing it with me have been an invaluable

help and helped solving many problems immediately instead of getting stuck

1



when battling them. The working environment at FMI has exceeded my ex-

pectations and as for the content in the work, working on climate modeling

has been as interesting as I hoped it would be and developed my skills and

understanding of things in a direction I like.

Friends outside the workplace have been a great support and through good

times and laughter helped me retain my sanity while wandering through the

labyrinths of equations, bureaucracy and IT problems. Tinja has kept me

nice company. My family has always supported me while also letting me

do my own choices without pressure and especially my father Torbjörn has

answered my questions on science and engineering for as long as I remember

having existed.

2



Contents

1 Introduction 5

2 Climate modeling 9

2.1 General principles . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The ECHAM5 model family . . . . . . . . . . . . . . . . . . . 12

3 Climate sensitivity and feedbacks 14

3.1 Blackbody response and feedbacks . . . . . . . . . . . . . . . . 15

3.2 Estimating climate sensitivity . . . . . . . . . . . . . . . . . . 17

3.3 Combining different lines of evidence . . . . . . . . . . . . . . 21

4 Climate variability at different timescales 23

4.1 Fourier analysis with a flexible time window, or Welch’s method 27

4.2 Quasiperiodic variability with a period of 50-80 years . . . . . 29

4.2.1 Erratum to Paper II . . . . . . . . . . . . . . . . . . . 36

4.3 The full spectrum and power laws . . . . . . . . . . . . . . . . 36

5 Aerosols and the climate 38

5.1 Modeled and observed aerosol distributions and optical prop-

erties in India and China . . . . . . . . . . . . . . . . . . . . . 42

5.2 Climate effects of aerosols in India . . . . . . . . . . . . . . . . 44

5.3 Climate effects of volcanic eruptions . . . . . . . . . . . . . . . 46

6 Review of papers and the author’s contribution 51

7 Discussion and conclusions 54

3



List of publications

Henriksson, S. V., Arjas, E., Laine, M., Tamminen, J., and Laaksonen, A.:

Comment on ”Using multiple observationally-based constraints to estimate

climate sensitivity” by J. D. Annan and J. C. Hargreaves, Geophys. Res.

Lett., 2006, Clim. Past, 6, 411-414, doi:10.5194/cp-6-411-2010, 2010.
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1 Introduction

Understanding Earth’s climate is built upon observing it and modeling its

physical processes. Carbon dioxide and other greenhouse gases warm the

climate through their capacity to absorb and re-emit longwave radiation.

Aerosols affect the climate mainly through scattering and absorbing sunlight

and modifying cloud properties, which presently appears to result in a net

cooling effect [Forster et al. (2007)]. Meanwhile, the atmosphere and ocean

have their own internal and coupled dynamics. These are key processes

causing climate change and variability. When observing the complex climate

system, it is often challenging to quantify the role the different processes

have had to produce the observed change and variability. On the other

hand, modeling the processes to have the right strengths and characteristics

is also challenging.

Carbon dioxide emitted into the atmosphere has a lifetime of decades, cen-

turies or much longer [Archer et al. (2009)]. Greenhouse gas warming of

the climate thus happens on the timescales from decades to centuries, even

millennia. Aerosols in the troposphere, on the other hand, have short life-

times, from days to weeks. Thus, their immediate effect vanishes as soon as

emissions stop. Internal variability is known to happen at a wide range of

timescales [Huybers and Curry (2006)].

The 20th century record of instrumental observations of the climate has rel-

atively good coverage globally and provides the best observational data of

the climate overall. Therefore, understanding these observations is central

to understanding the climate and its change and variability. The goal of this

thesis is to contribute to the understanding of the three factors: greenhouse

gas warming, aerosols and internal variability. These are all known to have

had significant contributions to the development of observed global mean
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temperature between 1850 and present, shown in Figure 1. Although green-

house gas warming is estimated to have been the most important contributor

to the increase in global mean temperature and is expected to dominate in the

future if greenhouse gas emissions develop according to projections assuming

a fossil-fuel based economy, its contribution can not be exactly quantified

and is dependent among other things on the contributions that aerosols and

internal variability (and other processes such as varying solar radiation) have

had in producing the observed temperature changes.

An important part of the scientific literature on climate change is formed

by the assessment reports (ARs) by the Intergovernmental Panel on Climate

Change (IPCC). The ARs have been published in 1990, 1995, 2001 and 2007

and AR5 is expected to be completed in 2013/14 [IPCC (2013)]. In the AR4,

the uncertain magnitude of the radiative forcing [Forster et al. (2007)] caused

by aerosols was mentioned to be the most important single factor limiting

understanding of past and future climate changes. The uncertainty range

of the estimate of radiative forcing due to carbon dioxide in 2005 was 1.49

to 1.83 W/m2, while the whole radiative forcing uncertainty was 0.6 to 2.4

W/m2, much larger mostly due to aerosols. Since the AR4 and also before it,

there has been a debate on the reasons behind the lack of rise in global mean

temperatures in the 1950s and 1960s and between 1998 and present despite

greenhouse gas warming; whether aerosol cooling or internal variability has

been more important [Booth et al. (2012), Zhang et al. (2013)]. As will be

discussed later in this thesis, a relatively regular oscillation with a period

of 60-70 years seems to appear in the instrumental temperature record, and

internal variability at frequencies corresponding to periods of 50-80 years

seem to be strong, compared to that at other timescales, also based on model

simulations.

The layout of this thesis is as follows. Firstly, the uncertainty of sensitivity

of the climate to greenhouse gas warming and the important contributions
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of internal variability and aerosol climate effects to the uncertainty are dis-

cussed. Then, the contributions of internal variability and aerosol climate

effects to climate change and variability are discussed in more detail. Inter-

nal, and externally-forced, climate variability at a wide range of timescales is

discussed, especially quasiperiodic internal variability with a period of 50-80

years. Aerosol effects on the climate are discussed in general, and in partic-

ular through the examples of volcanic eruptions and aerosols over Asia.

The main tools applied are climate models developed at the Max Planck

Institute for Meteorology. Observations are also analysed and used for model

evaluation. Specific research questions this thesis tries to answer are the

following:

* What is the uncertainty of the global mean temperature response to a

doubling of atmospheric CO2 concentration or other well-known forcing?

* How strongly and regularly does the climate vary globally and regionally

with a period of 50-80 years due to internal dynamics?

* How much does the climate vary at other timescales due to internal dy-

namics and external forcing?

* How do aerosols from northern hemisphere mid- and high-latitude volcanic

eruptions affect the climate?

* What are the characteristics of aerosols in India and China presently and

how do they affect the climate?

7



Figure 1: Global annual mean temperature (anomaly in degrees K) between

1850-2012 from the Hadley Center HadCRUT3 dataset.
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2 Climate modeling

2.1 General principles

The climate can be mathematically modeled with various levels of detail.

As relevant processes range in scale from nanometers (and below), such as

new particle formation, to global phenomena, such as the greenhouse effect

or El Nino Southern Oscillation, many of which are not fully understood,

approximations are necessary and unavoidable. General circulation models

or global climate models (GCMs) solving the full equations for atmospheric

(and oceanic) flow and energy transfer are employed in the papers included

in this thesis, although in Paper I also one simple equation describing the

global climate is used.

Between simple one-equation models and GCMs resolving the full flow,

there are a variety models that can be arranged in hierarchies based on

many classifications: the number of spatial dimensions in the model, the

extent, to which physical processes are explicitly resolved, the level at

which empirical parametrizations are involved and the computational cost

of running the model [Houghton et al. (1997)]. Regional climate models

[Jacob (2001), Christensen et al. (2007), Rummukainen (2010)] allow higher

resolution modeling in a region of interest than global climate models

and may also be viewed as forming part of a climate modeling hierarchy

[Randall et al. (2007)]. Earth system models of intermediate complexity

(EMICs) [Randall et al. (2007)] lie between simple models and GCMS by

describing the same processes as GCMs, only in more parametrized form.

Simple models usually have very few degrees of freedom and may have many

more adjustable parameters, but EMICs are already assumed to have more

degrees of freedom than adjustable parameters by many orders of magnitude

[Randall et al. (2007)]. EMICs are often applied in simulations over very
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long timescales or in experiments scanning wide regions of parameter spaces,

made possible by computational ease. Simpler ocean models include mixed-

layer models, ignoring processes below the turbulent mixed layer and slab

models, which ignore ocean dynamics completely. GCMs allow studying some

complex phenomena or interactions between several processes not described

by simpler models, this thesis being full of such examples, but complexity

is not univocally a positive property either, as a model is only as good as

its assumptions. Additionally, simpler models may allow for a better under-

standing of climate processes [Le Treut et al. (2007), Randall et al. (2007)].

They may help the person interpreting the data to see the forest from the

trees.

General circulation models for the atmosphere are based on solving the primi-

tive equations for atmospheric flow. The standard variables included in these

equations are the three velocity components of the flow, temperature and

humidity. Formulating these equations is based on conservation of mass,

momentum and energy. Corresponding ocean GCMs solve the equations for

the three velocity components of the flow, temperature and salinity. In addi-

tion to describing the atmosphere and the ocean, earth system models include

other components such as aerosol, cryosphere, carbon cycle and ocean bio-

geochemistry models interacting with the atmospheric and ocean models.

Aerosol-climate models consider emissions of aerosols, their transport due to

atmospheric flow, chemistry and removal from the atmosphere due to rain

and dry scavenging.

To solve the equations numerically, they are discretized and solved on a grid.

Grids may be longitude-latitude meshes with singularities at the poles (which

with their surroundings are excluded from the calculations), but also other

grids are used. Even when resolving the primitive equations on a grid, by

necessity a large number of essential quantities have scales smaller than the
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resolution of the grid. Such features include boundary layer turbulence, cloud

processes and detailed topography. Although some of these processes could

be described in more detail using high resolution, it is usually computation-

ally too expensive to include them in climate models. The standard solution

is parametrization, expressing the sub-grid scale processes with equations in-

cluding the values at the grid points. Parametrizations of sub-grid processes

can strongly influence the nature of large-scale processes explicitly computed,

such as winds and ocean currents [Houghton et al. (1997)]. They are there-

fore a major issue and a large part of the work in developing climate models.

Parametrizations include uncertain and even non-observable quantities rep-

resented as numbers in the parametrized equations. Thus, their exact nu-

merical values are to some degree up to the subjective decision of the model

developers. Examples of quantities that are usually parametrized are drag

and gravity waves caused by sub-grid scale orography, autoconversion de-

scribing conversion of cloud water to rain and parameters related to the en-

trainment rate describing mixing of environmental air into convective clouds.

The parameters are standardly used in tuning the models for desired prop-

erties, such as the radiative balance at the top of the atmosphere, global

mean temperature and large scale wind fields. If the model is out of balance

at the top of the atmosphere, its climate will drift away from the state it

is in. Tuning is thus correcting the imperfections of the model. Tuning is

justified as long as there are more degrees of freedom than adjustable param-

eters [Mauritsen et al. (2012)], which is believed to be true, although formal

studies are few and determining the true or efficient number of degrees of

freedom reduced from potentially millions to more limited numbers due to

spatial, temporal and inter-variable correlations is a highly non-trivial task

[Bretherton et al. (1999), Randall et al. (2007), Yokohata et al. (2011)]. In

practice, these degrees of freedom are seen, for example, as modes of vari-

ability of the climate system, such as seasonal cycles [Wang and Shen (1999)]
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or the North Atlantic Oscillation [Randall et al. (2007)]. Most climate phe-

nomena studied in this thesis are properties the climate models are not tuned

for and are therefore good additional evaluation of the models. The recent

study of Mauritsen et al. (2012) went through tuning of an earth system

model in detail and concluded that its effects were less than expected.

The global climate models used in the papers included in this thesis have

been developed at the Max Planck Institut for Meteorology (MPI-M). Models

belonging to the ECHAM5 family were employed in Papers II-VI.

2.2 The ECHAM5 model family

In Papers V and VI, where we study explicit aerosol distributions

and their impacts in Asia, the coupled climate-aerosol model ECHAM5-

HAM is employed [Stier et al.(2005)], while the COSMOS earth sys-

tem model [Jungclaus et al. (2010)] is employed in Papers II-IV. In the

earth system model, ECHAM5 [Roeckner et al.(2003), Röckner (2006)] and

the ocean model MPI-OM [Marsland et al. (2003)] are coupled with the

PRISM/OASIS3 coupler [Valcke (2003)] with the carbon cycle and land-use

model JSBACH [Raddatz et al. (2007)] included in the atmospheric model

and the ocean biogeochemistry model HAMOCC [Wetzel et al. (2006)] in-

cluded in the ocean model.

ECHAM5 is a fifth generation atmospheric climate model originally devel-

oped from the weather model of the European Center for Medium Range

Weather Forecasts (ECMWF). It solves prognostic equations for vorticity,

divergence, surface pressure and temperature, derived through approxima-

tions from the primitive equations and expressed in terms of spherical har-

monics with a triangular truncation. The vertical coordinate is a flexible

hybrid of terrain-following and pressure levels and in the default version of
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ECHAM5 used in the papers of this thesis, the upper level is at 10 hPa. Time

integration is done semi-implicitly. The T42L19 and T31L19 spatial resolu-

tions used in this thesis imply horizontal resolutions of about 2.8 degrees and

3.75 degrees, respectively, and 19 vertical levels. It is also possible to run

simulations at lower and higher resolutions, from T21 truncation to T159.

Non-linear processes, including parametrizations, are treated in an a Gaus-

sian grid with almost regularly spaced grid points. Water vapor, cloud liquid

water, cloud ice and other tracers are transported with a flux form semi-

Lagrangian scheme on this grid. Radiation is calculated for 4 shortwave and

16 longwave bands.

MPI-OM simulates the ocean and sea ice using the seven primitive equations

for the ocean. The model uses a conformal orthogonal grid with poles placed

on the continents and locations chosen based on high local resolution near

the poles. The Bousinessq approximation is applied for the density of sea

water, meaning that variations in density are only considered in the vertical

momentum equation. The simulations analysed in this thesis have a nominal

horizontal resolution of 3 degrees and 40 vertical levels, with finer and coarser

resolutions also being possible.

The aerosol model HAM describes aerosol transport, removal and chemistry

by representing the five chemical species included in the model (sulfate, black

carbon, organic carbon, mineral dust and sea salt) in seven log-normal modes.

The modes are assumed to be externally mixed from each other with each

mode being internally mixed. Microphysics is treated in the M7 module

[Vignati et al.(2004)]. Emissions of all species except of sulfate are in par-

ticular form and emissions of sulfate except for marine DMS emissions are

97.5% in the form of SO2 and 2.5% in particular form. The model with AE-

ROCOM emissions [Dentener et al. (2006)] and other emissions described in

[Stier et al.(2005)] and references therein was in excellent agreement with
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global average aerosol optical depth (AOD) estimated from AERONET sta-

tions and in relatively good agreement with a satellite-measured MODIS-

MISR composite. In Section 5.1. and Papers V and VI, the model’s perfo-

mance in present-day India and China is evaluated.

The COSMOS earth system model was used in the millennium simulations to

assess and compare the impact of human activities, external natural forcings

and internal variability on the climate and carbon cycle since the year 800

[Jungclaus et al. (2010)]. Solar, volcanic, land-use, orbital, greenhouse gas

and aerosol forcings are included in the millennium simulations.

We studied several aspects of the climate in the millennium simulations in

the papers included in this thesis, including impacts of northern hemisphere

volcanic eruptions in Paper IV and quasiperiodic variability with a period

of 50-80 years in Paper II. In paper III, we studied the full spectrum of

temperature variability at different timescales and how this changed when

including only certain forcings. A control simulation without external forc-

ings was used in Papers II and III. The control simulation was run at FMI,

while the forced simulation data were downloaded from the CERA database

(see papers II-IV).

3 Climate sensitivity and feedbacks

Climate sensitivity is defined as the equilibrium response of global mean

temperature to the doubling of atmospheric carbon dioxide concentration.

Under certain conditions, it is also a more general simple metric for deter-

mining how much equilibrium global mean temperature reacts to a certain

amount of heating by greenhouse gases or to any external forcing. Firstly, the

equilibrium global mean temperature is assumed to react linearly to external

forcing:
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∆T = λ∆Q, (1)

where λ is called the climate feedback parameter and has the unit K/(Wm2).

The linearity seems to hold quite well in most GCMs, although it is changing

from model to model, and holds more accurately for global than for regional

forcings [Ramaswamy et al. (2001)]. Over wide ranges of parameter values

the feedbacks are most probably nonlinear [Colman and McAvaney (2009)],

in addition to which tipping points might change the qualitative climate state

[Lenton et al. (2008)], thereby invalidating the linear model. This and pos-

sible irreversibility of changes [Solomon et al. (2009)] should be taken into

account in any holistic risk assessment.

Secondly, the radiative forcing from the doubling of atmospheric CO2 con-

centration is quite well known: 3.7 W/m2 with an error margin of about

10% [Myhre et al. (1998), Ramaswamy et al. (2001)]. The radiative forcing

by CO2 is well approximated by the logarithmic relationship

Q = αln(C/C0), (2)

with α = 5.35 and C0 the reference level of carbon dioxide concentra-

tion, meaning that the forcing from a doubling of CO2 is well defined for

a wide range of concentrations (calculated for about 280-1000 ppmv in

[Myhre et al. (1998)]).

3.1 Blackbody response and feedbacks

An idealised blackbody response to a doubling of CO2 keeping all other things

fixed can be calculated based on the Stefan-Boltzmann relation. Denoting

climate sensitivity by ∆Ts, we get [Räisänen (2008)]:
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∆Ts =
∆Q

4εeffσT3
s

=
∆Q

(4Fspace/σT4
s )σT3

s

=
∆Q

4Fspace

Ts = 1.1K (3)

where ∆Q = 3.7W/m2, σ = 5.670 ∗ 10−8Wm−2K−4 is the Stefan-Boltzmann

constant, εeff < 1 is the effective emissivity of the Earth, Ts is the observed

global mean temperature and Fspace is the observed outgoing longwave radia-

tion at the top of the atmosphere. Alternatively, one could do the calculation

without needing the effective emissivity or the observed outgoing longwave

radiation by using the radiative temperature of Earth: 255 degrees K. This

yields ∆Ts = 0.97 K, i.e. a sensitivity of about 1 degree, and although the

result is similar to the calculation above, it might be less exact as it does not

consider the atmosphere as a whole [Manabe and Wetherald (1967)].

For describing the real climate, this simple blackbody model is not sufficient.

Besides the negative feedback caused by increasing outgoing longwave radia-

tion limiting the temperature response, there are other feedbacks, which seem

to sum up to be positive [Randall et al. (2007)], with the evidence described

more carefully below when reviewing the literature. Well-known important

feedbacks are the water vapor, lapse rate, surface albedo and cloud feedbacks.

A warmer atmosphere may contain more water vapor and seems to do so,

i.e. there is a positive water vapor feedback. The lapse rate, i.e. the rate of

decrease of temperature with height, probably weakens in a warming climate

producing a negative feedback. A warming climate generally implies less

snow and ice at the surface, a resulting higher albedo and more warming, i.e.

a positive feedback. Cloud feedbacks are more complex, but the consensus

among state-of-the-art climate models is that both low-level and high-level

cloud fields produce a positive feedback, although its magnitude has high

uncertainty [Andrews et al. (2012)].

While the paradigm of equilibrium surface temperature and radiative forcing

applied in this chapter seems to have strong support from climate model ex-

periments [Randall et al. (2007)], the models have also been critisized for
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producing climates that are too stable, underestimating centennial vari-

ability caused by internal dynamics as well as sensitivity to abrupt change

[Valdes (2011), Essex (2013)]. Thus, the first assumption mentioned in the

previous section could be invalid if a long-term equilibrium does not exist,

if low-frequency internal variability is strong or if a forcing exceeding some

threshold qualitatively changes the climate state. Variability in global mean

temperature without external forcing is dealt with in the next chapter of this

thesis for multidecadal and faster variability.

3.2 Estimating climate sensitivity

There are two fundamentally different approaches to estimating climate sen-

sitivity in the real climate, including the feedbacks. In a ’bottom-up’ ap-

proach, the climate system including all the feedbacks is modeled and the

model will then provide an estimate as the difference of equilibrium tempera-

ture with carbon dioxide concentration doubled as compared to the reference

concentration and temperature. The uncertainty in the estimates can then

be estimated by varying the model parameters according to best understand-

ing of uncertainty. In a ’top-down’ approach, a given measured temperature

time series and measurements of forcing agents are used to estimate climate

sensitivity. This necessarily also involves estimates of the thermal inertia of

the climate system in reacting to external forcing, as the forcing in practi-

cal cases usually does not stay constant for long enough for the climate to

reach equilibrium. The uncertainty of an estimate in this latter case can be

estimated by estimating the uncertainties of the forcing data, the thermal in-

ertia of the climate system and the temperature time series. A simple energy

balance model may be used in the latter method:

c
d∆T

dt
= ∆Q− 1

λ
∆T, (4)
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where ∆T is the global mean temperature, ∆Q is the radiative forcing, c is the

ocean heat capacity and λ is the climate feedback parameter. The equation

reduces to Equation (1) in the steady state. The feedback parameter can be

represented as a sum:

λ = λP − λWV − λLR − λA − λC, (5)

with the negative Planck (P) longwave radiation feedback and the water

vapor (WV), lapse rate (LR), surface albedo (A) and cloud (C) feedbacks.

It is standard in the literature to approximate the feedback parameter as

the sum of these known feedbacks as they are, based e.g. on climate model

experiments, thought to form most of the total feedback. This equation

summing up the feedbacks can be rewritten:

λ = λP(1− Σiλi/λP), (6)

where the sum Σiλi includes the water vapor, lapse rate, surface albedo and

cloud feedbacks. The resulting equilibrium temperature anomaly is:

∆T =
1

λP

1

1− Σiλi/λP

∆Q. (7)

From this form it can be seen that the feedback parameters affect temperature

change non-linearly, and uncertainty in the λis may cause a large uncertainty

of climate sensitivity if the sum Σiλi/λP approaches 1 and the factor 1
1−Σiλi/λP

(the gain factor) thus becomes large. This possibility of explaining typical

long tails in climate sensitivity probability density functions was discussed

by Roe and Baker (2007).

Early estimates for climate sensitivity were 5.5 degrees by Svante Ar-

rhenius [Arrhenius (1896)] and, in more recent times, 3 degrees in the
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well-known Charney report from 1979 [Charney et al. (1979)]. Charney

and coauthors reported a most likely value of 3 degrees and an uncertainty

interval of 1.5-4.5 degrees. The estimate of the Charney report has stayed

perhaps even surprisingly little challenged [Kerr (2004)], despite a lot of

development in process description in climate models since 1979. The

IPCC AR4 quotes 2-4.5 degrees as a likely range of climate sensitivity

[Hegerl et al (2006)], meaning a probability exceeding 66%. A real possibil-

ity for the climate sensitivity value lying outside that interval remains. Many

references in the IPCC AR4 such as [Andronova and Schlesinger (2001),

Frame et al. (2005), Forest et al. (2006)] report upper bounds of the

95% confidence interval of the order of 9-10 degrees or higher,

while others [Annan and Hargreaves (2006), Hegerl et al (2006),

Schneider von Deimling (2006)] report 95% confidence intervals close

to the IPCC likely range. The possibility of high values of climate sensitivity

based on observations remains from the possibility that aerosol cooling

could have masked a large part of the greenhouse gas warming up until

now [Andreae et al. (2005)], showing up in Equations (1) and (4) as a small

total radiative forcing ∆Q having caused a large temperature anomaly ∆T.

Even the studies reaching higher upper bounds for climate sensitivity are

critisized by Tanaka et al. (2009) to underestimate the true uncertainty as

they only account for uncertainty in historical radiative forcing by scaling an

assumed forcing time series with different constants. The studies reaching

lower upper bounds include other information than the 20th century obser-

vations, which do not exclude high sensitivity due to uncertainty in aerosol

radiative forcing. For example information from uncertain paleo-records

[Jansen et al. (2007)] or models describing the climate feedbacks can be

used if the evidence is evaluated to be strong enough.

Compared to observationally-based studies, global climate models tend to

give narrower uncertainty intervals for climate sensitivity [Kerr (2004)]. The
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range of climate sensitivities in CMIP3 models cited in the IPCC AR4 was

2.1-4.4 K [Randall et al. (2007)], while the range of climate sensivity in the

newer generation CMIP5 models is 2.1-4.7 K [Andrews et al. (2012)]. In the

CMIP5 models, the differences in cloud feedbacks are an important contrib-

utor to the spread. However, there are also examples of higher modeled

sensitivities, like in the multi-thousand ensemble [Stainforth et al. (2005)],

reaching climate sensitivity values of up to 11 K in model simulations

and converting the results to a 95% confidence interval of 2.2-8.6 K with

a certain internally consistent representation of model-data discrepancy,

though with a simpler ocean model than used in models of full com-

plexity. Models have also been critisized for producing results too sim-

ilar to each other as compared to uncertainty of the underlying vari-

ables [Schwartz et al. (2007), Kiehl (2007)]. Lemoine (2010) made calcu-

lations for climate sensitivity based on the possibility that models share

uncertainties and biases, also relevant for the discussion related to Pa-

per I below. The conclusion was that high climate sensitivity may be

more probable than thought based on scatter between different model re-

sults. It would be desirable to explore the range of model uncertainty

further by scanning tuning parameters in wider, more systematic extent

than done up until now, for example with methods like those presented

in [Hakkarainen et al. (2012), Järvinen et al. (2010), Solonen et al. (2012)].

Perhaps it will turn out that the models have included information inde-

pendent of climate observations through the laws of physics describing the

dynamics of the system and that the narrower range of uncertainty is justi-

fied, but this remains to be confirmed.
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3.3 Combining different lines of evidence

In Paper I, we comment on and critisize the article by Annan and Hargreaves

(2006; hereinafter referred to as AH06), that claimed to have reached a nar-

row uncertainty for climate sensitivity from observations. AH06 assumes

three different lines of evidence to be independent and combine them in a

Bayesian estimate of climate sensitivity. The Bayesian framework assumes

that there is prior information represented in the form of a prior probability

density function, which is then combined with the new data through Bayes

formula:

f(x|O,H) = f (O|x,H)f (x|H)/f (O|H), (8)

where x is the parameter to be estimated, i.e., climate sensitivity, H is the

old data, O is the new data and f is a notation for conditional probability

density functions. f(x|H) is called the prior, f(x|O,H) the posterior and

f(O|x,H) the likelihood function.

In Paper I, we point out that of the three constraints used: 20th century

warming, volcanic cooling and the last glacial maximum (LGM), the volcanic

cooling constraint ignored radiative forcing uncertainty [Wigley et al. (2005)]

and likely contains information on the climate system already included in

the 20th century warming data. In combining the 20th century warming and

volcanic cooling estimates, the likelihood function f(O|x,H) thus does not

reduce to f(O|x) as assumed in AH06. In addition to this, the end result was

dominated by the tight LGM constraint derived on a few lines in AH06. We

also argued against assuming that the results had come from studies using

constant priors.

Annan and Hargreaves reply to the independence concern with three ar-

guments [Annan and Hargreaves (2011)]. Firstly, they note that the same
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assumption in their view had passed through in earlier articles without at-

tracting particular criticism. Secondly, they claim that neglecting evidence is

always expected to result in exaggerated uncertainty but that an assumption

of independence may overestimate or underestimate the uncertainty com-

pared to more precise calculations. Thirdly, they claim that the sensitivity

calculations of our Comment article strengthen their original result rather

than contradict it. As a reply to the first argument, certainly we could have

gone through other studies critically as well, but we focused on AH06 in

our comment. Additionally, the most recent reference listed by Annan and

Hargreaves (2011), [Hegerl et al (2006)] combining observations from the in-

strumental record with reconstructions had also received a critical response

[Schneider (2007), Hegerl et al (2007)] based on exaggerated certainty claims

in the reconstruction data, also relevant for our discussion. The second ar-

gument is the whole topic of discussion, more a question than an argument

and without calculations, it is not at all clear how strong such an impact

is expected to be. As noted by [Lemoine (2010)], Bayesian models do reach

points where adding additional constraints do not narrow down uncertainty

and as a sidenote, it is also possible in theory for a combined estimate of two

sources to have larger uncertainty than any of the original ones. Replying to

the third argument requires going through the different aspects of our sensi-

tivity calculations: We dropped the volcanic cooling line of evidence in the

first sensitivity calculation, which is justified considering the probable de-

pendence and the fact that the constraint did not consider radiative forcing

uncertainty. The narrowing down of the end result from the 20th century ob-

servational evidence is thereafter dominated by the LGM constraint and the

assumptions done in deriving it. The following can probably safely be con-

cluded from the discussion: 1. the volcanic eruption line of evidence should

be dropped from the original calculation as it is likely not to be independent

from the 20th century warming evidence and it does not consider radiative
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forcing uncertainty, 2. for the LGM line of evidence, the independence as-

sumption is probably a reasonable one, if not exact, but in including it in

the evidence one should be very critical if it is claimed that the LGM re-

constructions alone provide more information than 20th century warming as

paleoclimate records are known to be very uncertain [Jansen et al. (2007)].

The LGM constraint in AH06 was sketched in rough fashion and did not

result from a thorough study. The fact that its maximum conveniently coin-

cided at around 3 degrees K also contributes to the narrowing. 3. The result

can be narrowed with a narrower choice of prior. This remains a partly sub-

jective choice. However, [Lemoine (2010)] pointed out that there are weakly

informative priors giving far wider posteriors than those in AH06 and in the

subsequent article [Annan and Hargreaves (2009)].

Based on the research done for this thesis and surveying the literature, the

consensus estimate for a climate sensitivity of 3 degrees seems like a best

estimate with current knowledge. Additionally, while models seem to speak

against sensitivities over 5-6 degrees at high levels of confidence, it would

be desirable to explore full model uncertainty further than inter-model com-

parisons, at least by running through full spaces of tuning parameter values.

Excluding high values of climate sensitivity from observations requires fur-

ther improving the estimates, which could be made possible for example by

improving estimates on historical radiative forcing in one way or the other,

waiting for the instrumental record to get longer or by improving observa-

tional estimates for ocean heat uptake (for example through the Argo float

measurement system [Roemmich et al. (2012)]).

4 Climate variability at different timescales

The real climate varies at all timescales from months to geological timescales

for different reasons. In this thesis, timescales from years to a millennium are
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at focus. The previous chapter dealt with equilibrium climate change caused

by greenhouse gases and other external forcings. In practice, this equilibrium

will never be completely reached (here leaving out the discussion to what ex-

tent such an equilibrium actually exists) and it will not be reached smoothly

as could be suggested by equation (4) if applying a constant or smoothly in-

creasing forcing. Aerosol emissions and thereby also concentrations typically

change significantly over years and decades, these being the most relevant

timescales to study aerosol climate effects. Natural variability occurs due to

varying external forcing in the form of changing incoming solar radiation and

volcanic aerosols and because of internal variability of the climate system,

which might interplay non-linearly with the external forcing. Well-known in-

ternal modes of variability in the atmosphere ocean system are e.g. El Nino

Southern Oscillation, the Quasi-biennal Oscillation, North Atlantic Oscilla-

tion and Southern Annular Mode, all operating on interannual timescales.

Significant internal variability also occurs at longer timescales and of partic-

ular interest in this thesis is quasiperiodic variability with a period of 50-80

years as deduced from reconstructions and modeling and showing up in the

instrumental measurement record as a more regular 65-70 year oscillation,

discussed in more detail in the following section.

There is a debate about how much of the cooling of global temperatures in

the 1950s and 1960s was caused by aerosol forcing and how much was due to

internal variability. For the North Atlantic, there are recent papers advocat-

ing both factors to be dominant [Booth et al. (2012), Zhang et al. (2013)],

although acknowledging both, with the latter favoring natural variability

and stating to have refuted the results of the first. The IPCC AR4 favored

the explanation of aerosol forcing [Hegerl et al (2006)]. More recently, the

lack of rise in global mean temperature since 1998 has been suggested to

be caused except by natural variability and declining solar radiation, by in-

creased sulfate load in Asia [Kaufmann et al. (2011)], studied in Papers V
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and VI. Based on the phase information presented in Paper II, the internal

multidecadal oscillation’s phase progresses in such a way that it could have

contributed to both halts in the rise of global mean temperature. Mean-

while, it is also very probable that aerosol forcing contributed to cooling in

the 1950s and 1960s, illustrated e.g. by the IPCC model trend used as one

alternative in detrending the results. The debate of aerosol effects versus

natural variability on interannual to multidecadal timescales is an important

link between the different papers included in this thesis.

Decadal prediction of the climate [Latif et al. (2004),

Keenlyside et al. (2008)] is attracting more and more societal and sci-

entific interest. Success of decadal prediction is dependent on understanding

the processes involved, and knowing their relative strengths could be applied

in decadal prediction of the climate.

In studying climate variability at different timescales, it can be noted that

defining the terms climate, climate change and climate variability exactly

is a non-trivial task, is usually not done explicitly but assumed to be clear

enough from the context. The definition of climate according to the World

Meteorological Organisation [WMO (2013)] is:

Climate in a narrow sense is usually defined as the ”average weather,” or

more rigorously, as the statistical description in terms of the mean and vari-

ability of relevant quantities over a period of time ranging from months to

thousands or millions of years. The classical period is 30 years, as defined

by the World Meteorological Organization (WMO). These quantities are most

often surface variables such as temperature, precipitation, and wind. Climate

in a wider sense is the state, including a statistical description, of the climate

system.

The climate system in the WMO definition means the system consisting of

the atmosphere, the hydrosphere (the ocean, lakes, rivers, groundwater and
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water in the atmosphere), the cryosphere (frozen water), the land surface

(or litosphere) and the biosphere and their interactions (thus, no circular

argument in using it in the definition of climate). Further, climate variabil-

ity is defined as the mean state and variability of the climate at all spatial

and temporal scales beyond individual weather events and climate change

as a statistically significant change in the mean state or the variability per-

sisting for an extended period. Climate change is alternatively defined by

the United Nations Framework Convention on Climate Change as a change

of climate attributed directly or indirectly to human activity through an

alteration of the composition of the atmosphere [UNFCCC (2013)]. Thus,

the definitions may vary somewhat from source to source, and the WMO

definition is not totally explicit in what kind of means (spatial/temporal,

resolution) and other statistical quantities from an infinite amount of pos-

sibilities are preferable in describing the climate, though the WMO climate

normals are defined as 30-year periods [WMO (1989), WMO (2007)]. The

lack of an exact general definition is not a weakness of the definition but

an illustration of the inevitable challenges in the task to conseptualize the

complex climate system. The climate normals have also been critically re-

viewed and alternatives proposed in particular to account better for climate

change that continuously makes 30-year normals obsolete even before they

are calculated [Milly et al. (2008), Arguez et al. (2011)].

The statistical descriptions of the climate presented in this chapter can be

considered as describing the climate in the wider sense of the WMO defini-

tion. The statistical descriptions are to our knowledge partly new additions

to the climate literature and we think that for example studying the phase

progression of an oscillation in a spectral analysis or a spectrum obtained can

provide useful information compared to alternative statistical descriptions.
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4.1 Fourier analysis with a flexible time window, or

Welch’s method

Spectral analysis, representing a time series as sines and cosines or more com-

plex oscillatory functions, provides tools for separating possible periodic func-

tions, or more generally, variability at different timescales (or spatial scales),

with care required in interpreting the results nonetheless. Spectral analysis

of climate data has involved a wide selection of methods [Yiou et al (1996)],

including wavelet analysis, singular spectrum analysis, multitaper analysis

and other Fourier methods.

The Fourier transform represents a time series as a sum of sines and cosines.

We chose this traditional method with a modification for the spectral analysis

to facilitate understanding for non-specialists in time series analysis, who are

interested in climate variability and because its pitfalls and limitations are

better known and more extensively studied than for other methods. Well-

known potential issues are aliasing, spectral leakage, only resolving certain

discrete frequencies and frequency and amplitude modulation. Aliasing oc-

curs from frequencies above the highest resolved frequency, called the Nyquist

frequency, to the other frequencies. Aliasing is not likely to be an issue in

analysing the annual mean temperatures, because the amplitudes in the fre-

quency range f > 1/(2y) are very small (except for the annual cycle that gets

averaged away in the analysed annual means), as can be seen in Figure 4 in

Paper III. Spectral leakage [Harris (1978)] may occur, but with varying the

length of the time window to suit an oscillation at interest, we can combat

this problem, especially when its amplitude is large compared to amplitudes

of oscillations at other frequencies. Similarly, we can also resolve much more

frequencies than usual since we are doing Fourier transforms using differ-

ent lengths of time window. Effects of amplitude modulation slower than a

full period of an oscillation are also resolved by the moving time window,
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but effects of possible frequency modulation will be visible in the results,

a limitation of the method to be kept in mind. In Paper II, we evaluate

the magnitude of different possible errors caused by the method by several

sensitivity calculations.

In studying the short global mean instrumental temperature record from the

year 1850 to present, the standard Fourier analysis was also preferred as the

rectangular window function allows us to retain all the data with full weight.

Multitaper analysis, whereby the data is multiplied with a number of non-

constant window functions, treats data close to the endpoints with smaller

weight. An important advantage of the chosen method is its flexibility in

that we can adjust the time window to be a multiple of the period of an

oscillation at interest. Another important advantage is being able to track

the amplitude and phase progression of a certain component. This tracking

is done for the sinusoidal wave with a period of 66 years in Paper II, found

to correspond closely to the the time window, that gives the maximum am-

plitude for the largest amplitude. Fitting the time window this way, spectral

leakage is reduced. We can also average over several spectra obtained by

different parts of a certain time series as the quantities S(f) ∝ |T̂ (f)|2 and

|T̂ (f)| are non-negative and phase differences will not cause cancellation in

the averaging. This is utilised in Paper II to evaluate the amplitude of the

quasiperiodic oscillation with a period of 50-80 years and in Paper III to

study the full spectrum. We are not aware of any other climate study per-

forming such averaging. The averaging improves the statistical estimate of

the amplitude at a certain frequency at the expense of decreasing the spec-

tral resolution, illustrated by the narrowing of the 95% confidence intervals

in Paper III. Averaging over spectra obtained from different segments was

probably first done by Welch in 1967 to facilitate computation, core storage

and stationarity testing [Welch (1967]. It would be possible to extend this

averaging to multiple time series for an ensemble of simulations to further
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improve the statistics. If one assumes that the processes generating climate

variability remain constant or nearly constant through a time series, averaged

spectra describe more characteristic climate variability at different timescales

than single stochastic realisations and can thus be considered important cli-

mate variables. Comparing these averaged spectra between datasets will

then be more meaningful than comparing spectra of single time series. This

is done in Paper III to compare climate variability in the earth system model

used and in measurements. As further work, an intercomparison of interan-

nual variability of global mean temperature in the CMIP5 models has been

started.

4.2 Quasiperiodic variability with a period of 50-80

years

An early study reporting the finding of a 65-70 year oscillation in the

global climate system was [Schlesinger and Ramankutty (1994)], using singu-

lar spectrum analysis to analyse the instrumental temperature record. Sev-

eral similar results have been reported thereafter [Delworth et al. (1997),

Delworth and Mann (2000), Semenov et al. (2010)], especially for the North

Atlantic, where the oscillation has been named Atlantic Multidecadal

Oscillation (AMO) [Kerr (2000), Enfield et al. (2001), Latif et al. (2004),

Knudsen et al. (2011), Wei and Lohmann (2012)]. The consensus is that the

oscillation is generated internally by the atmosphere-ocean system, but prob-

ably affected by external forcing [Otter̊a (2010)]. The quasiperiodic oscilla-

tion has also been found in tree-ring reconstructions [Gray et al. (2004)].

Some mechanisms contributing to or producing a quasiperiodic

multidecadal oscillation have been discovered from model data

[Dima and Lohmann (2007)]. In the North Atlantic, important pro-

cesses are related to the meridional overturning circulation (MOC) and
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Figure 2: The instrumental global annual mean temperature record from the

HadCRUT3 dataset detrended by a quadratic fit (degrees K).
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salinity anomalies in the important downwelling regions of the Gulf stream

north and east of Greenland. The negative salinity anomaly feedback

could come either from the Arctic as freshwater or sea ice export through

the Fram Strait [Delworth et al. (1997), Delworth and Mann (2000),

Jungclaus et al. (2005)] or from the tropical Atlantic through moving of

the intertropical convergence zone (ITCZ) [Vellinga and Wu (2004)]. In

paper II, we find medium high correlations for filtered data supporting both

possibilities.

This quasiperiodic oscillation might also be relevant for Finland, illus-

trated in Figure 3, showing 20-year running averages of the AMO index

derived from the HadSST2 dataset [Rayner et al. (2006)] and from mea-

sured mean temperature in Finland [Tietäväinen et al. (2010)]. The fil-

tered AMO signal and the Finnish mean temperature follow each other quite

closely. This suggests that the approach utilising observed sea surface tem-

peratures in model initialization [Latif et al. (2004), Collins et al. (2006),

Keenlyside et al. (2008)] that has given some predictability for the North

Atlantic could be tried also for Finland. Naturally, more adjustments would

be needed to catch the local features of variability at faster timescales in

Finland.

The spatial distribution corresponding to the quasiperiodic oscillation looks

quite different depending on how it is extracted. Zanchettin et al. (2013)

discuss this issue for Atlantic multidecadal variability in more detail by go-

ing through patterns obtained by three different definitions for describing

Atlantic multidecadal SST variability, two based on spatial averages and one

based on the first empirical orthogonal function of North Atlantic SSTs and

reached clearly different patterns with the different methods. In Paper II, we

derived spatial distributions with two methods: maximum minus minimum

and local discrete Fourier transform, again leading to somewhat different re-

sults. In general, though, northern ocean and continent areas tend to have
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Figure 3: Anomalies of Finnish mean temperature (blue) and AMO index

(green) in measurements, without detrending (above) and with quadratic

detrending applied (below) (degrees K).
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larger positive anomalies in such distributions than other regions. As will also

be corrected in the Erratum of Paper II below, in the local Fourier transform

estimates we mistakenly used the term ’amplitude’ in place of ’coefficient’ in

the context of Figs. 4 and 7. This method gives a value zero if the local

temperature anomaly has a 90 degree phase difference with the refence index

and a negative value for phase differences between 90 and 270 degrees. A

new map showing the absolute value of the amplitude and disregards the

phase, is shown in Figure 4. The Barents Sea, the North Atlantic, areas

near the Bering Strait and the Amundsen Sea have the highest amplitudes

(all areas with relatively large climatological temperature gradients). Local

amplitudes in Finland are also relatively high.

A 50-70 year oscillation in measured temperature in the North Pacific

was reported by [Minobe (1997)]. Multidecadal variability in the North

Pacific and North Atlantic in the Kiel climate model were studied in

[Park and Latif (2010)], where it was concluded that the memory of the

North Pacific low-frequency oscillation is related to the subtropical gyre,

while the North Atlantic low-frequency oscillation is related to the merid-

ional overturning circulation. It remains to be seen whether the 50-80-year

oscillations are regional and independent in nature or whether the oscilla-

tion is a hemispheric or global phenomenom. While there have been argu-

ments that the North Atlantic could have the ability to drive multidecadal

variability in the global climate [Zhang et al. (2007)], others have specu-

lated that the oscillation might be hemispheric, or even global in extent

[Semenov et al. (2010)]. [d’Orgeville and Peltier (2007)] studied measured

∼ 60− year temperature variability in the North Atlantic and North Pacific,

found that the North Atlantic variability leads that of the North Pacific, and

speculated that variability in the two ocean basins could be connected. Data

that could be used in such studies is plotted in Figure 5 showing mean tem-

perature in the North Atlantic (AMO index area 0 − 60◦ N, 70◦ W − 0◦ E)
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Figure 4: Local amplitude of 66-year oscillation in discrete Fourier transform

in unforced earth system model simulation (degrees K).
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Figure 5: Sea surface temperature in the North Atlantic (north of 0◦ N;

green) and in the North Pacific (north of 30◦ N;black) in the HadSST2 dataset

(degrees K).
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and in the North Pacific (30 − 60◦ N, 120◦ E − 120◦ W) from the measured

HadSST2 dataset [Rayner et al. (2006)].

Choosing the terminology related to the topic, including the title of this

section, is not straightforward. There is no consensus in the literature

as to how regular the oscillation is and for the (North) Atlantic some

prefer Atlantic Multidecadal variability (AMV) [Vincze and Jánosi (2011),

Zanchettin et al. (2013)] over Atlantic Multidecadal Oscillation (AMO).

This could be motivated as the oscillation is not completely regular, but

on the other hand for example the phase progression plots in Paper II show

quite regular progression in the instrumental record, which would perhaps

make AMV too general a term to describe the oscillatory behavior since 1850.

Figure 2 shows the instrumental temperature timeseries detrended with a

quadratic trend and by visual inspection a relatively regular amplitude and

length of the multidecadal oscillation.

4.2.1 Erratum to Paper II

As mentioned and discussed in the section above, the term ’amplitude’ was

mistakenly used in place of ’coefficient’ in the context of Figs. 4 and 7 in

Paper II.

4.3 The full spectrum and power laws

This section deals with the full spectrum of global temperature anoma-

lies. In addition to the 50-80 (or 65-70)-year cycle having been found, sig-

nificant amplitudes at periods of 20-30 years in the North Atlantic have

been found in several GCMs [Timmermann (1998), Cheng et al. (2004),

Dong and Sutton (2005), Frankcombe (2010)].
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A power spectrum can follow a power law:

S(f) ∝ f−β, (9)

where S(f) = |T̂(f)|2 or S(f) =< |T̂(f)|2 >, with < ... > denoting averaging

when it is used. A power law shows up as a line in a log-log plot of frequency

vs. power S(f). Power laws are found for a wide number of spectra and

frequency distributions [Clauset et al. (2009)], with the energy wavenum-

ber (spatial) spectrum of fully developed turbulence in the inertial subrange

of the spectrum perhaps most well known [Tennekes and Lumley (1972)].

Power laws are usually intuitively characterised as the system lacking a char-

acteristic length or time scale in the range, where the power law is valid.

Self-similar fractals have a constant exponent in the scaling of the frequency

distribution when going to smaller and smaller scales, while multifractality

means that the exponent is changing with scale.

Paper III goes through earlier power-law fits to temperatures in cli-

mate data in a wide range of timescales and proceeds to describe power-

law fits made to COSMOS earth system model data. Of earlier re-

sults, [Huybers and Curry (2006)] present results for timescales ranging from

monthly variations to timescales of hundreds of millennia and obtain differ-

ent exponents for different frequency ranges. In our results, after averaging,

we find two frequency ranges where power laws fit well: from multidecadal

(∼ 50 − 80 years) to El Nino (∼ 3 − 6 years) timescales and from El Nino

timescales up to the Nyquist frequency. Averaging is essential to narrow

down the confidence interval of the power estimate S(f) for each frequency

and to see the spectral form clearly.

We studied power laws in temperature anomalies, but also for example mul-

tifractality in rainfall and application of such found laws to study rainfall

extremes has been performed in previous studies [Veneziano et al. (2006)].
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Based on Paper III, averaged spectra seem to be a good way to compare vari-

ability at different timescales for different data sets representing conditions of

constant or nearly constant climatic conditions, especially when time series

are long enough to provide large enough samples of fluctuations at timescales

of interest. The spectra in the COSMOS model seem to follow power laws

quite well for frequencies between about 1/(65 y) and 1/(6 y), and the forced

simulation spectra correspond to estimates done for the instrumental tem-

perature record. The results can also be sensitive to the choice of frequency

range and averaging reveals the power-law ranges better than spectra of sin-

gle time series.

5 Aerosols and the climate

Aerosols affect the climate directly, by scattering and absorbing sun-

light and by scattering, absorbing and emitting longwave radiation

[Haywood and Boucher (2000)], and indirectly, through their interactions

with clouds [Lohmann and Feichter (2005)].

Scattering and absorption can be be calculated by the Mie solution of the

Maxwell equation in the case of spherical particles. The particles are very

often assumed to be spherical in climate models and the Mie solution thus

applied, but radiation calculations for more complex shapes, such as ellipsoids

have also been made and implemented in climate models [Räisänen (2012)].

The possibility of aerosols increasing cloud droplet number concentration

and thereby the reflectance of a cloud is called the first indirect effect

[Twomey (1959), Twomey (1977)] and the possibility of aerosols increasing

cloud lifetime and thereby reflection of sunlight is called the second indi-

rect effect [Albrecht (1989)]. Light absorption by aerosols can cause cloud

droplets to evaporate after warming of the droplets and their surroundings,
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thereby reducing the cloudiness, referred to as the semidirect effect. In their

review, [Lohmann and Feichter (2005)] also list the following possibilities for

aerosols to affect the climate through their effects on clouds: the thermody-

namic effect (smaller droplets delay freezing), the glaciation indirect effect

(more ice nuclei increase precipitation efficiency), the riming indirect effect

(smaller droplets decrease riming efficiency) and the surface energy budget

effect (less radiation absorbed at the surface). In short, the indirect effects

include the possible ways that aerosols can effect the cloud properties through

the modification of cloud droplets. The direct and indirect effects may also

modify the climate even more indirectly through feedbacks operating dif-

ferently than feedbacks due to forcings that operate globally. Some such

possible effects are discussed in Section 5.3. below.

Estimates for the radiative direct effect of aerosols tend to have quite large

relative uncertainty. The IPCC AR4 5 to 95% confidence interval was

−0.5 ± 0.4 W/m2 (all-sky at the TOA) and scientific understanding was

rated medium-low [Ramaswamy et al. (2001)]. [Myhre (2009)] reported

to have constrained the negative forcing value to below 0.5 W/m2 by

combining satellite observations and modeling, and the new AeroCom

Phase II modeling intercomparison reported results between −0.58 and

−0.02 W/m2 [Myhre et al. (2012)]. Advanced satellite products include

such variables as fine-mode fraction and effective radius in addition to AOD.

Remote sensing of aerosol absorption, on the other hand, is currently limited

to a semi-quantitative UV index [Moosmüller et al. (2009)]. A large part

of the uncertainty of direct-effect estimates in modeling studies also comes

from absorption as emissions of carbonaceous aerosols are more uncertain

than those of SO2 and the absorption depends on assumptions related to

mixing state of the aerosols, particle compositions, vertical distributions and

shape, age and wavelength [Bond and Bergstrom (2006), Stier et al. (2007),

Andreae and Gelencsr (2006), Vignati et al. (2010), Bond et al. (2013)].
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Estimates of indirect aerosol radiative forcing both from modeling and

observations are uncertain and the scientific understanding of the cloud

albedo effect is deemed to be low by the IPCC. The best estimate for the

radiative forcing due to this first indirect effect in the AR4 was −0.7 W/m2

with a 5 to 95% range of -0.3 to − 1.8W/m2 [Ramaswamy et al. (2001)].

Sulfates have a strong radiative forcing, possibly in magnitude second

only to CO2, but opposite in sign [Forster et al. (2007)]. Sulfates form

mainly heterogeneically, e.g. in cloud water, or from emitted SO2 be-

ing photo-oxidized by UV radiation and converted into sulfate particles

[Kulmala and Kerminen (2008), Laaksonen et al. (2008)]. Black carbon has

a positive net forcing and might be a major contributor to the total anthro-

pogenic radiative forcing [Jacobson (2001), Bond et al. (2013)]. As a side-

note, the term black carbon is not totally clear, but it is normally defined

through optical properties of the aerosols, although this might not be a com-

plete characterisation and wavelength dependence of absorption through the

introduction of ’brown carbon’ alongside black carbon has been suggested as

one solution to improve the description of light-absorbing aerosols in climate

research [Andreae and Gelencsr (2006)]. Other anthropogenic aerosol species

showing significant impacts on the climate are nitrates formed through oxida-

tion of nitrogen oxides NOx [Kulmala et al. (1995), Makkonen et al. (2012)],

organic carbon and industrial dust [Forster et al. (2007)]. Sulfate, carbona-

ceous and nitrate aerosols as well as for example pollen, spores and bacteria

are also emitted by natural sources (biogenic, volcanoes, wildfires etc.). Ad-

ditionally, mineral dust and sea salt emissions are caused by surface winds

and their average concentrations may be changing as a result of changes in

the climate or land-use [Forster et al. (2007)].

Light-absorbing carbonaceous aerosols are produced in biomass and fossil

fuel burning, wildfires and biogenic and other processes and have significant

40



climate impacts in many regions of the world. Atmospheric brown clouds

with high aerosol optical depths and high absorption were identified by Ra-

manathan et al. (2008) to exist in East Asia, the Indo-Gangetic Plain in

South Asia, Southeast Asia, Southern Africa and the Amazon Basin. In the

following two sections, aerosol-climate interactions of absorbing and other

aerosols in Asia are considered. Effects of black carbon aerosols in Arctic

areas and Finland have become of interest as black carbon through absorb-

ing light in the air or when deposited on snow or ice can have significant

climate effects and may under suitable circumstances be transported from

far to the Arctic [Hyvärinen et al. (2011c)]. As an example, in spring 2006,

large amounts of absorbing aerosols emitted by agricultural fires in eastern

Europe were transported to the Arctic [Stohl et al. (2007)]. McConnell et al.

(2007) reported Arctic black carbon forcing estimates from 1788 to present

and found that industrial emissions have caused ice core black carbon con-

centrations to be seven-fold compared to preindustrial values since about

1850 and peaking in 1906 to 1910 when surface forcing was estimated to be

about 3 W/m2. The concentrations were smaller after 1951 than before, but

increased again toward the end of the century.

Smith et al. (2011) estimated anthropogenic sulfur dioxide emissions for the

years 1850-2005 and [Junker and Liousse (2008)] estimated anthropogenic

carbonaceous aerosol emissions for the years 1860-1997. In the last few

decades, emissions of sulfate, nitrogen oxides and carbonaceous aerosols have

decreased in Europe and North America and lately increased in Asia, with

global emissions having peaked in the early 1970s. Carbonaceous aerosol

emissions were dominated by North America, Germany and the United King-

dom until 1950, after which the USSR, China and India became substantial

contributors. Global black carbon emissions have mostly increased during

the 20th century, with a local peak around 1910 and some decrease after the

1980s, but estimates have relatively large uncertainty and there is scatter be-
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tween inventories [Junker and Liousse (2008), Ito and Penner (2005)]. Skeie

et al. (2011) estimated a historical timeseries of radiative forcing and uncer-

tainty for the present-day forcing. Seemingly there is no study concerning

the historical development of radiative forcing uncertainty, but one would be

desirable for improving climate sensitivity estimates and detrending for the

anthropogenic signal in studying internal climate variability.

5.1 Modeled and observed aerosol distributions and

optical properties in India and China

India and China are presently experiencing a high load of aerosols,

that have dimmed their surface by at least 6% since preindustrial times

[Ramanathan et al. (2008)]. In addition to their climate effects, the aerosols

have adverse effects on human health and the environment. Negative health

effects are caused by exposure to aerosols both indoors and outdoors and

include cardiovascular and pulmonary effects leading to chronic respiratory

problems, hospital admissions and premature deaths. Surface ozone formed

from precursors emitted simultaneously with aerosols in combustion have

through experiments been estimated to reduce the harvests of the wheat,

rice and legumes by 10 − 40% at levels of 30-45 ppbv, typical values for

present-day Asia [Ramanathan et al. (2008)].

Plenty of aerosol station measurements in India and China have

been done [Lelieveld (2001), Carrico et al. (2003), Franke et al. (2003),

Monkkonen et al. (2004), Monkkonen et al. (2005), Muller et al. (2006),

Nakajima et al. (2007), Kanaya et al. (2008), Beegum et al. (2009),

Moorthy et al. (2008), Hyvärinen et al.(2009), Hyvärinen et al.(2010),

Hyvärinen et al. (2011a), Hyvärinen et al. (2011b), Zhang et al. (2012)].

Satellite measured MODIS aerosol optical depths (AOD) and ground-

based network AERONET AODs were used for comparison with
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models in Paper V. The modeled load of carbonaceous aerosols is

uncertain, judging from much higher uncertainties in emissions than

for SO2 [Ohara et al. (2007), Lu and Streets (2011)], from high spatial

and temporal heterogeneity of measured black carbon concentrations

[Beegum et al. (2009)] and because of poor correspondence of modeling

results with satellite AOD measurements in the Ganges valley with high

absorption [Paper V, Ganguly et al (2012)]. Nair et al. (2012) performed

a comprehensive validation study of South Asian aerosols in a regional

climate-aerosol model with observations at AERONET stations, by the

MODIS and MISR satellite instruments and at Aerosol Radiative Forcing

over India (ARFI) network stations. The BC mass concentrations were un-

derestimated by a factor of 2 to 5 at most stations. The many measurement

and modeling efforts show promise in constraining the BC concentrations

better in the near future.

In modeling studies on Indian aerosols, anthropogenic aerosol concentrations

have a maximum in the winter and natural aerosol concentrations have a

maximum in the summer, resulting in a total average AOD with maxima both

in summer and in winter [Adhikary et al. (2007), Carmichael et al. (2009),

Paper V], qualitatively corresponding to MODIS measurements [Ramachan-

dran et al.(2007), Paper V]. Figure 6 illustrates the large-scale properties of

the climate in India and China by showing the average monthly 10-meter

wind speed and precipitation in the longitude-latitude boxes taken to repre-

sent India and China in an ECHAM5-HAM simulation. Precipitation and

10-meter wind speed are largest in the summer, which are connected with

the larger washout of anthropogenic aerosols and larger emissions of natural

aerosols in the summer. In China, the seasonal variations are not as large,

with a spring maximum, mainly caused by dust aerosols originating in Mon-

golia and northern China and a second maximum in AOD in fall mainly

explained by a high contribution from sulfate and its hygroscopic growth to
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Figure 6: Mean precipitation (above; mm/d) and 10-meter wind speed (be-

low; m/s) in India (represented by longitude-latitude box 5 − 35◦ N, 65 −
90◦ E), average in 5-year simulation with GAINS emissions and without

aerosol cloud activation.

AOD, again qualitatively consistent with MODIS data [Paper V].

5.2 Climate effects of aerosols in India

India and southern Asia in general, the home of over a billion people, is

dependent on its climate to produce an environment suitable for food pro-

duction. Monsoon rainfall and river runoff are important variables. Glacier
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melt through heating at elevated levels and black carbon deposition on the

glacier surfaces may diminish the glaciers and threaten runoff in the dry sea-

son [Ramanathan et al. (2008), Kehrwald et al. (2008)]. Both positive and

negative effects of aerosols on monsoon rainfall have been proposed. The el-

evated heat pump (EHP) hypothesis [Lau et al.(2006), Lau and Kim(2006)]

states that light-absorbing aerosols increase atmospheric heating and thereby

convection at elevated levels, leading to enhanced rainfall. The solar

dimming mechanism (SDM) reducing the temperature gradient in the

monsoon season could, on the other hand, lead to diminished rainfall

[Chung and Ramanathan(2006)]. Solar dimming might also reduce precip-

itation through reduced evaporation resulting from diminished solar radi-

ation absorbed at the surface. Very strong radiative atmospheric heat-

ing by absorbing aerosols has been measured on urban sites in India

[Tripathi et al. (2005)]. Sreekanth et al. (2007) reported high forcing val-

ues in the winter and moderate forcing values in the summer from a tropical

station in eastern India, with net forcing at the top of the atmosphere being

positive in all seasons.

Correspondingly with the aerosol distributions studied in Paper V, we find

in Paper VI that total aerosol radiative forcing in India is largest in summer

and anthropogenic forcing is largest in winter. In Paper VI, we also find

that in northern India the elevated heat pump mechanism works to increase

rainfall and that solar dimming works to reduce rainfall. Ramanathan et al.

(2005) report a weakening of the climatological SST gradient in March to

June from having been from about 303 K at 20◦ N on average in the Arabian

Sea and Bay of Bengal to about 301 K at the equator by about 0.5 K since

the 1950s and a decreasing trend in monsoon precipitation. As sea surface

temperatures are prescribed in ECHAM5-HAM, we artificially decreased the

gradient similarly in two model experiments. If the observed SST gradient

reduction over the decades is caused by aerosols, then the best model estimate
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is that rainfall is decreased by ∼ 20 − 25% in northern India in July and

August because of the aerosol load. The corresponding spatial distribution

for the whole India is shown in Figure 7. There is large uncertainty in the

model estimates for aerosol effects on rainfall as the phenomena are complex

and as modeling of aerosol-cloud droplet interactions is uncertain due to their

complexity and small, sub-grid scale [Roelofs et al. (2006)]. An illustration

of the uncertainty is Fig. 9 of Paper VI, showing that depending on whether

aerosol-cloud interactions are applied or not, the rainfall in a region can

change even by a factor of 2.

5.3 Climate effects of volcanic eruptions

Volcanic aerosols influence the climate. Emitted sulfur dioxide is oxidized and

converted to sulfate aerosols in the stratosphere, where the particles have a

long lifetime due to lack of removal by precipation, typical e-folding times

being 12-14 months. In the direct aftermath of an eruption, also coarser

particular ash can have an effect on the climate. After an eruption large

enought to cause climate effects and of typical size, the sulfate aerosols

are removed from the stratosphere in 2-3 years, but oceans have a longer

memory of the eruptions [Stenchikov et al. (2009)]. Volcanic eruptions are

considered essential in triggering the little ice age in approximately the years

1250-1850, alongside the probably smaller influence of solar radiation changes

[Hegerl et al (2006), Jungclaus et al. (2010)]. Radiative forcing uncertainty

of volcanic aerosols is typically very large, however, and often not even esti-

mated [Andronova et al. (1999), Wigley et al. (2005)]. In general, the pre-

vious IPCC assessment report evaluated scientific understanding of radiative

forcing caused by volcanic eruptions to be low [Forster et al. (2007)].

Very large eruptions have self-limiting effects when particles coagulate on

each other and get removed from the stratosphere faster than they would
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Figure 7: Difference in mean rainfall (mm/d) in July and August be-

tween simulation with GAINS anthropogenic aerosol emissions and artifi-

cially cooled sea surface in the northern Indian Ocean and the simulation with

no anthropogenic emissions and standard sea surface temperatures, cloud ac-

tivation included in both simulations and 5-year means used in plot.
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otherwise [Pinto et al. (1989), Timmreck et al. (2009)], but also a prolonged

lifetime of stratospheric sulfate due to dehydration caused by SO2 works as

an opposite mechanism [Bekki (1995)]. Timmreck et al. (2010) studied the

very large Younger Toba Tuff eruption that happened 74000 years ago and

has been proposed to be connected to a near-extinction of the modern human.

They incorporated both the self-limiting effects of aerosol microphysics and

the dehydration of the stratosphere in the ECHAM family models. They

reported a shorter duration and a three times smaller value for the cooling

of global mean temperature than in earlier studies on the Younger Toba Tuff

eruption.

Effects of volcanic eruptions on internal modes of variability such

as El Nino Southern Oscillation, the Quasi-biennal Oscillation, the

North Atlantic Oscillation and the Arctic Oscillation have been stud-

ied in several publications [Robock et al. (1995), Stenchikov et al. (2002),

Stenchikov et al. (2004), Emile-Geay et al. (2008)]. Otter̊a et al. (2010)

conclude that volcanic eruptions have affected the phasing of North Atlantic

multidecadal variability discussed above in Section 4.2. in the past through

deterministic effects of volcanic eruptions on the meridional overturning cir-

culation. Therefore, the effects of their result on decadal climate predictabil-

ity in the North Atlantic would be twofold: limiting on one hand, as eruptions

can currently not be predicted on climatic timescales [Sparks et al. (2003)],

and on the other hand, would improve chances for short-term climate pre-

diction after an eruption has happened.

In addition to being of interest for climate understanding in general, North-

ern hemisphere volcanic eruptions fell under the spotlight with the eruptions

of Eyjafjallajökull in 2010 and Grimsvotn in 2011 [Kerminen et al. (2011)].

Their climatic effects were most likely nearly negligible, but in addition to

causing disruptions to air traffic, especially the Eyjafjallajökull eruption was
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interesting, because, due to a history of simultaneous activity, it might an-

ticipate an eruption of the bigger volcano Katla, situated 25 kilometers away

[Sturkell et al. (2003)]. Paper IV was largely motivated by this possibility.

Generally, mid- and high-latitude eruptions can have significant climate ef-

fects [Robock (2000), Oman et al. (2005), Oman et al. (2006a]. One exam-

ple from the past is the eruption of the Icelandic volcano Laki in June 1783

[Oman et al. (2006b)], that was followed by an exceptionally cold European

winter 1783/4 [Thordason and Self (2003)].

The approach taken in Paper IV is to study a typical climate response of a

northern hemisphere mid- or high-latitude volcanic eruption. The estimates

can not be directly converted to a prediction of what the climate impact

of a Katla eruption would be, as the volcanic aerosols are only resolved in

four latitude bands. In addition to not resolving the local effects in the im-

mediate aftermath of an eruption, an important difference of these coarsely

resolved simulated eruptions and Katla eruptions is that the insolation at

Katla’s latitude (∼ 64◦N) varies much more with season than insolation at

mid-latitudes. Thus, real eruptions outside the summer season would, com-

pared to our simulations, likely have a significantly smaller or even negligible

climate effect through stratospheric sulfate aerosols, as such aerosols could

not be formed through photooxidation [Kravitz and Robock (2011)].

Our best estimate for a typically sized northern hemisphere mid- or high-

latitude eruption is −0.19 K for the maximum cooling and −0.095 K for

average cooling during the 21 months following the eruption. The time of

eruption does play a role. When lumping all the studied eruptions from the

ensemble together, the negative precipitation anomaly signal was statistically

significant at the 90% level and similar in magnitude compared to the tem-

perature signal as projections for increased precipitation due to greenhouse

gas warming: ∼ 2%K−1. Effects on carbon dioxide concentrations were rel-
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atively small and the monthly anomalies were not statistically significant at

high levels.
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6 Review of papers and the author’s contri-

bution

Paper I deals with the uncertainty of climate sensitivity deduced from ob-

servations. It comments on an earlier paper from literature and concludes

that constraining climate sensitivity and ruling out its high values is not as

simple as described in that paper. I was responsible for the climate-related

physics, performed the calculations and wrote most of the paper.

Paper II studies 50-80 year quasiperiodic variability in the instrumental tem-

perature record and in unforced and forced millennium simulations made

with the COSMOS earth system model. Estimates for the amplitude of

the quasiperiodic oscillation are given. For measurements, three different

trends are used in detrending. Phase and amplitude progression were anal-

ysed. The average amplitude was larger and the North Atlantic sea surface

temperatures are more synchronized with global mean temperature in the

simulation including external forcing. I developed the modifications to the

spectral analysis method, performed the analyses and wrote the paper with

input and important ideas coming from my coauthors.

Paper III studies power-law behavior in millennium simulations. Power laws

are found to describe the temperature spectrum in the frequency range from

the multidecadal peak to the El Nino frequencies. These power laws are

found by averaging many time series obtained by splitting up the original

time series and both in unforced and forced simulations, with the exponent

in the latter case corresponding to that estimated from the instrumental

temperature record. I performed the analyses and wrote the paper with

support and input from my coauthors.

Paper IV studies climate effects of northern hemisphere volcanic eruptions

in the COSMOS earth system model. Estimates for maximum cooling and
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average cooling during the 21 months following eruptions are provided as well

as estimates for radiation, precipitation and carbon dioxide concentration

anomalies. The large ensemble allows us to assign 90% statistical significance

to the decrease in precipitation. I wrote the paper based on Heidi Meronen’s

master’s thesis, which I supported through technical support and advice. I

also did additional analyses not included in the master’s thesis.

Paper V studies spatial distributions and seasonal cycles of aerosol mass

distributions and optical properties in India and China. The succesful eval-

uation against MODIS AOD data, other models and some measurements

gave confidence in the climate-aerosol model to be applied in Paper VI and

facilitated separating the effects of anthropogenic and natural aerosols. A

finding made possible by the aerosol treatment in the model was that sulfate

aerosols on average get transported further away from their sources than

carbonaceous aerosols, and therefore sulfate concentrations are on average

higher in remote locations. I did the simulations and the post-processing

with help from my coauthors, drew most of the conclusions and wrote most

of the paper.

Paper VI studies aerosol climate effects in India with ECHAM5-HAM, partly

building on Paper V. Estimates on radiative forcing and temperature and

precipitation response are provided relying on nine simulations with differ-

ent model setups. A brief comparison with black carbon observations is

included. The total negative aerosol forcing at the top of the atmosphere is

largest in summer while anthropogenic forcing is largest in winter. Temper-

ature anomalies are mainly negative with some exceptions, such as northern

India in March-May. Aerosol effects on rainfall are studied with and without

aerosol cloud activation, with and without aerosol light absorption and with

and without modified sea surface temperatures. Absorption increases mon-

soon rainfall in the model, while solar dimming reduces it. I performed the
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simulations, the analyses and wrote the paper with important support and

input from my coauthors.
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7 Discussion and conclusions

Key processes causing climate change and variability were studied in this

thesis. Climate models developed at the Max Planck Institute were em-

ployed and results were compared to measurements. Sensitivity of global

mean temperature to greenhouse gas warming, when inferred from observa-

tions was shown to be uncertain to a large extent because of uncertain aerosol

forcing and to some extent because of internal variability. In the instrumen-

tal global mean temperature record from 1850 to present, on the other hand,

it was shown that isolating multidecadal internal variability is important to

extract the aerosol effects. Thus, greenhouse gas warming, aerosol climate ef-

fects and internal variability are closely connected, even inseparable, research

questions.

The thesis contains quantitative estimates for the effects of greenhouse gas

warming, multidecadal internal variability and aerosols on the climate glob-

ally and regionally. The estimates show that all are important processes

causing climate change and variability. Especially on decadal timescales, the

strengths are comparable, illustrating the importance to take all into consid-

eration in modeling when attempting decadal climate predictions. However,

especially through climate sensitivity, also longer-term climate projections

require an improved understanding of internal variability and aerosols, even

if assuming that greenhouse gases in the atmosphere increase so much as

to dominate the others in terms of radiative forcing and impact on temper-

atures. The estimates obtained and methods developed in this thesis may

be applied in improving the estimates for greenhouse gas warming or other

long term climate change through improved estimates of the other signals in

climate data.

Of the more specific conclusions in the thesis, some highlights answering the

questions presented in the Introduction are the following:
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* Climate sensitivity deduced from observations still has relatively high un-

certainty.

* A quasiperiodic oscillation in global mean temperature with a period of

50-80 years is observed in measurements and in the MPI models with its

amplitude and typical frequency agreeing surprisingly well between the two.

The oscillation is likely to explain part of the lack of rise of global mean

temperature in the 1950s and 1960s, as well as from 1998 to present. However,

external forcing has probably also been smaller during these times, which

makes quantitative estimation of the oscillation’s contribution to temperature

records challenging. The amplitude can be estimated to lie between 0.05 K

and 0.15 K, with large uncertainty remaining and with model results agreeing

on a qualitative level with measurements.

* The power spectrum of global mean temperature is well approximated by

a power law with exponent ∼ 0.7 − 0.8 between multidecadal and El Nino

frequencies in the earth system model when external forcing is included.

The exponent is consistent with a best fit for the same frequency range of

the spectrum of measured global mean temperature. Averaged spectra allow

for better recognition of frequency ranges, where power laws are valid and

are better suited for comparing climate variability in different datasets than

single realisations.

* The model estimate for effects of northern hemisphere mid- and high-

latitude volcanic eruptions during the last millennium with mean AOD north

of 30◦N exceeding 0.1 is -0.19 K for the largest hemispheric mean tempera-

ture anomaly and -0.095 K on average during the 21 months following the

eruption with summer eruptions causing a larger integrated effect than winter

eruptions. Precipitation decreases, but the signal is weak compared to inter-

nal variability. Especially for high-latitude eruptions, the time of the year
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is important for photo-oxidation of sulfur dioxide, which was not explicitly

modeled.

* Anthropogenic aerosols in India have a maximum in winter and natural

aerosols in the summer. Secondary sulfate aerosols spread wider than pri-

mary carbonaceous aerosols.

* Absorption by aerosols seems to increase monsoon rainfall in India while

solar dimming and the resulting weakened SST gradient in the monsoon sea-

son seem to reduce it. When including all aerosol processes in a simulation,

assuming the observed cooling of the Northern Indian Ocean relative to the

equator to be an aerosol effect, the total effect on monsoon rainfall is clearly

negative.

The gained understanding about climate variability at different timescales

and due to northern hemisphere volcanic eruptions could be helpful in decadal

climate prediction, for example for Finland. The mechanisms of multidecadal

internal variability could be studied further, especially for the Pacific and the

deep ocean, which have been studied much less than the Atlantic part of the

oscillation. It would also be interesting to study the nonlinearities involved:

synchronization of the different regions by external forcing, coupling between

variability at different timescales etc. It would also be important to study

unforced climate variability at lower than multidecadal frequencies in more

detail, to evaluate climate models in this aspect and evaluate the radiative

forcing and equilibrium paradigm based on best knowledge of internal climate

dynamics at each time. The effects of volcanic eruptions could be studied

more carefully by looking at coupling with internal modes of variability and

by resolving the eruption, which would account for the UV oxidation effects

and climate effects immediately after the eruption. The aerosol-monsoon in-

terplay in India could be studied further by analyzing the mechanisms more

carefully or by using a regional climate model, which could also make the
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rainfall estimates more realistic. Secondary organic aerosols could be mod-

eled to see if also they spread wider than primary carbonaceous aerosols like

sulfate. The climate analysis could also be extended to China. Including

more of the available aerosol observations in Asia in evaluating the model

and in constraining it would be essential to estimate the effects on the radia-

tive balance more accurately. This would facilitate separating temperature

variability because of aerosols, internal dynamics and other factors from each

other, not only for Asia but globally. Simulating greenhouse gas warming,

aerosol effects and internal dynamics for the present climate all together with

the best possible model setup would be desirable further research. Although

challenging, if successful, it would help not only understanding past and

present climate change and variability but also in developing the models for

future predictions and projections.
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bone, S., Saarikoski, S., Teinilä, K., Hakkarainen, J., Tamminen, J., Vira, J.,

Prank, M., Sofiev, M., and Hillamo, R.: Characterization of a volcanic ash

episode in southern Finland caused by the Grimsvötn eruption in Iceland in
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Röckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh,

L., Manzini, E., Schlese, U., Schulzweida, U.: Sensitivity of simulated climate

to horizontal and vertical resolution in the ECHAM5 atmosphere model, J.

Climate, 19, 3771-3791, 2006.

Self, S.: The effects and consequences of very large explosive volcanic erup-

tions, Phil. Trans. R. Soc. A, 364, 2073-2097, 2006.

Schlesinger, M. E. and Ramankutty, N.: An oscillation in the global climate

system of period 6570 years, Nature 367, 723726, 1994.

Schneider, T.: Climate modelling: Uncertainty in climate-sensitivity esti-

mates, Arising from: G. C. Hegerl, T. J. Crowley, W. T. Hyde D. J. Frame

Nature 440, 10291032 Nature 446, E1, doi:10.1038/nature05707, 2007.

Schneider von Deimling, T., Held, H., Ganopolski, A., and Rahmstorf, S.:

Climate sensitivity estimated from ensemble simulations of glacial climate,

Clim. Dyn., 27, 149163, 2006.

Schwartz, S. E., Charlson, R.J., and Rhode, H.: Quantifying climate change-

too rosy a picture?, Nat. Rep. Clim. Change 1, 2324, 2007

Semenov, V. A., Latif, M., Dommenget, D., Strehz, A., Martin, T., Keenly-

side, N. S., Park, W.: The Impact of North Atlantic–Arctic Multidecadal

Variability on Northern Hemisphere Surface Air Temperature, J. Climate,

23, 5668-5677, 2010.

79



Skeie, R. B., Berntsen, T. K., Myhre, G., Tanaka, K., Kvalevag, M. M., and

Hoyle, C. R.: Anthropogenic radiative forcing time series from pre-industrial

times until 2010, Atmos. Chem. Phys., 11, 1182711857, doi:10.5194/acp-11-

11827-2011, 2011.

Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and

Delgado Arias, S.: Anthropogenic sulfur dioxide emissions: 18502005, Atmos.

Chem. Phys., 11, 1101-1116, doi:10.5194/acp-11-1101-2011, 2011.

Solomon, S., Plattner, G., Knutti, R., and Friedlingstein, P.: Irreversible

climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA,

106, 17041709, 2009.

Solonen, A., Ollinaho, P., Laine, M., Haario, H., Tamminen, J., and Järvinen,

H.: Efficient MCMC for Climate Model Parameter Estimation: Parallel

Adaptive Chains and Early Rejection Sourcem, Bayesian Anal. 7, 715-736,

2012.

Sparks, R. S. J., Forecasting volcanic eruptions, Earth and Planetary Science

Letters, 210, 1-15, 2003.

Sreekanth, V., Niranjan, K., and Madhavan, B. L.: Radiative forcing

of black carbon over eastern India, Geophys. Res. Lett., 34, L17818,

doi:10.1029/2007GL030377, 2007.

Stainforth, D. A., Aina, T.,Christensen, C., Collins, M., Faull, N., Frame,

D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani,

C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe , A. J., and Allen M.

R.: Uncertainty in predictions of the climate response to rising levels of

greenhouse gases, Nature 433, 403-406, 2005.

80



Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton,

K., and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount

Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, J. Geo-

phys. Res., 107, 4803, doi:10.1029/2002JD002090, 2002.

Stenchikov, G., Hamilton, K., Robock, A., Ramaswamy, V., and

Schwarzkopf, M. D.: Arctic oscillation response to the 1991 Pinatubo erup-

tion in the SKYHI general circulation model with a realistic quasi-biennial

oscillation, J. Geophys. Res., 109, D03112, doi:10.1029/2003JD003699, 2004.

Stenchikov, G., Delworth, T. L., Ramaswamy, V., Stouffer, R. J., Witten-

berg, A., and Zeng, F.: Volcanic signals in oceans, J. Geophys. Res., 114,

D16104, doi:10.1029/2008JD011673, 2009.

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J.,

Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O.,

Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM,

Atmos. Chem. Phys., 5, 1125-1156, doi:10.5194/acp-5-1125-2005, 2005

Stier, P., Seinfeld, J. H., Kinne, S., and Boucher, O.: Aerosol absorption

and radiative forcing, Atmos. Chem. Phys., 7, 5237-5261, doi:10.5194/acp-7-

5237-2007, 2007.

Stohl, A., Berg, T., Burkhart, J. F., Fjraa, A. M., Forster, C., Herber, A.,

Hov, ., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson,

D., Solberg, S., Stebel, K., Ström, J., Trseth, K., Treffeisen, R., Virkkunen,

K., and Yttri, K. E.: Arctic smoke record high air pollution levels in the

European Arctic due to agricultural fires in Eastern Europe in spring 2006,

Atmos. Chem. Phys., 7, 511-534, doi:10.5194/acp-7-511-2007, 2007.

81



Sturkell, E., Sigmundsson, F., and Einarsson, P.: Recent unrest and magma

movements at Eyjafjallajökull and Katla volcanoes, Iceland, J. Geophys.

Res., 108, 2369, doi:10.1029/2001JB000917, 2003.

Tanaka, K., Raddatz, T., ONeill, B. C., and Reick, C. H.: Insufficient forcing

uncertainty underestimates the risk of high climate sensitivity, Geophys. Res.

Lett., 36, L16709, doi:10.1029/2009GL039642, 2009.

Tennekes, H., and Lumley, J. L.: A First Course in Turbulence, The MIT

Press, 1972.

Thordason, T., Self, S.: Atmospheric and environmental effects of the 1783-

1784 Laki eruption: A review and reassessment, J. Geophys. Res. 108, D1,

2003.
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