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ABSTRACT

Parsimonious Markov models, a generalization of vari-
able order Markov models, have been recently introduced
for modeling biological sequences. Up to now, they have
been learned by Bayesian approaches. However, there
is not always sufficient prior knowledge available and a
fully uninformative prior is difficult to define. In order to
avoid cumbersome cross validation procedures for obtain-
ing the optimal prior choice, we here adapt scoring criteria
for Bayesian networks that approximate the Normalized
Maximum Likelihood (NML) to parsimonious Markov
models. We empirically compare their performance with
the Bayesian approach by classifying splice sites, an im-
portant problem from computational biology.

1. INTRODUCTION

Classifying discrete sequences is an omnipresent task in
computational biology, where an additional challenge is
limited data. Recently, parsimonious Markov models [1],
a generalization of variable order Markov models [2],
have been proposed to model complex statistical depen-
dencies among adjacent observations while keeping the
parameter space small and thus avoiding overfitting.

Parsimonious Markov models (parsMMs) use parsi-
monious context trees (PCTs), which differ from tradi-
tional context trees [2] in two aspects: (i) a PCT is a bal-
anced tree, i.e. each leaf has the same depth, and (ii) each
node represents an arbitrary subset of the alphabetA, with
the additional constraint that everywhere in the tree, sib-
ling nodes form together a partition of A. An example
PCT, which shows both features, forming a partition of
context sequences that can not be represented by a tradi-
tional context tree, is shown in Figure 1. A PCT τ of depth
d partitions all context sequences of length d over alphabet
A into disjoint sets, which are called context. We denote
all contexts represented by τ as Cτ . An inhomogeneous
parsimonious Markov model of order D for modelling se-
quences of length L allows using different PCTs at each
position in the sequence. The first D positions use PCTs
of increasing order 0, . . . , D − 1, whereas the remaining
L − D positions use PCTs of order D. The likelihood

Figure 1. Example PCT of depth 2 over DNA al-
phabet. It encodes the partitioning of all 16 pos-
sible sequences of length 2 into a set of contexts
Cτ ={{AA},{CA,GA},{TA},{AC,AG,AT,GC,GG,GT},
{CC,CG,CT,TC,TG,TT}}.

function is given by

P (X|~Θ) =

L∏
`=1

∏
w∈Cτ`

∏
a∈A

(θτ``wa)
N`wa . (1)

where N`wa is the number of occurrences of symbol a at
position ` in all sequences in data set X, whose subse-
quences from position ` − |w| to ` − 1 are an element of
context w.

The likelihood is closely related to that of Bayesian
networks (BNs), since it factorizes into independent terms
for each variable and the number of conditional proba-
bility parameters depends on the structure of the model.
However, whereas BNs have freedom in choosing the par-
ent nodes of a random variable but always use seperate
conditional probability parameters for each possible real-
ization of the parent nodes, parsMMs have fixed parent
nodes but freedom in lumping several of their possible re-
alizations together as one context.

There is an efficient dynamic programming (DP) al-
gorithm [3, 1] for finding the PCT that maximizes an ar-
bitrary structure score, which only has to fulfil the prop-
erty of factorizing into independent leaf scores. In the
Bayesian setting, the structure score is usually the local
posterior probability of a PCT given data. If the local
parameter prior is a symmetric Dirichlet with equivalent
sample size (ESS) α, we obtain the BDeu score [4], which
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can be used in the DP algorithm since it factorizes along
contexts. The conditional probability parameters are esti-
mated by the mean posterior (MP) principle.

In practice, there is rarely reliable a priori knowledge
available for specifying α. Since it is known that the
choice of α influences the model complexity in the case of
Bayesian networks [5], it is safe to assume that a similar
effect may be observed for parsimonious Markov models.
Often a cross validation (CV) on the training data is used
to obtain a reasonable choice for this external parameter.
However, CV is a time consuming procedure and there is
no guarantee that a useful prior on a subset of the training
data will also yield optimal results when learning from the
complete training data for classifying previously unseen
test instances.

In order to avoid CV, we propose using NML ap-
proximating methods for structure and parameter learn-
ing, which have been initially proposed for BNs, for par-
simonious Markov models. The fNML score [6] has been
suggested as score for structure learning of BNs, whereas
the corresponding conditional probability parameters have
been obtained in the same setting by using fsNML esti-
mates [7]. Due to the structural similarity of the likelihood
function of parsMMs and that of BNs, both methods can
be adapted without modification.

2. RESULTS

We compare two different scores for the PCT structures,
BDeu and fNML, and two different methods for estimat-
ing conditional probability parameters of each PCT, MP
and fsNML. In order to determine whether structure or
parameter learning is dominating the results, we do not
only compare MP parameter estimates for a BDeu optimal
structure with fsNML parameter estimates for an fNML
optimal structure, but also consider the other two possibil-
ities (Table 1).

We perform two seperate case studies. The first study
is a standard classification experiment for short symbolic
sequences, which uses labeled training data and involves
structure and parameter learning for both classes. In com-
putational biology, this an abundant task, when experi-
mentally verified training data is available.

The second study is inspired by the computational
problem of de novo motif discovery [8, 9]. Motif dis-
covery usually involves latent variables, hence it cannot
be solved exactly, and approximate algorithms, such as
the expectation-maximization (EM) algorithm [10] have
to be resorted to. Formulating fNML and fsNML in a set-
ting with latent variables, i.e. utilizing weighted data in-
side the EM algorithm is not straightforward, but a slight
modification of the classification problem resembles the
task that typically arises in those iterative algorithms. In
the modified classification, the structure and parameters
of the background class are fixed and there is much more
background training data available. Hence the prior in the
Bayesian setting only affects the foreground model. This
resembles the problem of motif discovery, where only
structure and parameters of a motif model (foreground)

Table 1. The two combinations in the major diagonal are
the obvious ways of learning parsMMs in the Bayesian
and NML setting respectively, whereas the minor diagonal
contains rather artificial combinations, which we mainly
investigate for academic purposes.

BDeu fNML
MP BDeu-MP fNML-MP
fsNML BDeu-fsNML fNML-fsNML

are to be estimated, whereas the structure and parameters
of the background model remain fixed.

2.1. Standard classification

In the first experiment, we perform a standard classifica-
tion on the benchmark data set of Yeo and Burge [11].
It consists of 12,623 experimentally verified splice donor
sites (foreground data) and 269,157 non splice sites (back-
ground data). Both data sets, consisting of sequences of
length 7 over the quarternary DNA alphabet, were already
split by Yeo and Burge into training and test data at the
ratio of 2:1 [11], and we use the same partitioning.

Since we are interested in situations with limited data,
we randomly pick 500 sequences from each of the training
data sets for learning foreground and background model,
both being second order inhomogeneous parsimonious
Markov models. We learn – for each possible combina-
tion of scores – structure and parameters of two parsimo-
nious Markov models. For the Bayesian scores, we learn
models for a large variety of possible ESS values, ranging
from 10−5 to 108. We repeat the procedure 103 times with
different training samples.

In Figure 2, we compare the average complexities of
the learned models. For the BDeu score, we observe with
increasing ESS an increase in model complexity, which
is a behaviour that is already known from Bayesian net-
works [5]. The fNML score has the advantage of not
being affected by the ESS at all. However, it yields a
comparatively low model complexity for the foreground
model, which is surprising since the foreground data set
is known to contain strong statistical dependencies. The
background model is surprisingly complex, given the fact
that the background data shows much less dependencies.

Additional studies have have shown that the difference
in model complexity of fNML estimated foreground and
background model decreases when both samples sizes are
reduced. The BDeu score, however, retains a certain dif-
ference in model complexity, even when sample sizes are
very small.

However, the PCT structure itself is not sufficient to
compare scoring criteria, since we are mainly interested
in the classification performance of the learned models.
In order to evaluate the classification performance of a
set of PCTs, we estimate conditional probability param-
eters, build a likelihood ratio classifier, compute probabil-
ities for each sequence in both test data sets and compute
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Figure 2. Averaged model complexities (measured as the
total number of leaves in the model) for foreground and
background model are plotted against the equivalent sam-
ple size. Since the fNML criterion does not use the ESS
parameter, the model complexities is constant. Standard
errors are 0.1 at most, hence error bars are omitted from
the plot.

the area under the ROC curve (AUC) [12]. When com-
bining the Bayesian structure and parameter learning, we
apply the same prior to both problems.

For each of the four possible score combinations, we
repeat the entire study with 103 different training sam-
ples and average the resulting AUC values. The results
are shown in Figure 3. We observe an AUC of 0.9691
for the fNML-fsNML method. For an ESS ranging from
101 to 103, the Bayesian approach outperforms fNML-
fsNML method, obtaining a maximal AUC of 0.9708 for
an ESS of 200. Interestingly, an ESS of 1, which is often
considered to be the most uninformative choice, is obvi-
ously not optimal, since performs significantly worse than
larger ESS values and even slightly worse than the NML
approach.

The mixed approach of combining fNML structure
learning with MP parameter estimates also yields a good
classification, if the ESS is chosen correctly. For ESS val-
ues between 10 and 500, it outperforms the pure NML
method, and its absolute maximum with an AUC of
0.9712 at ESS of 100 even outperforms the pure Bayesian
method, even though the difference is quite small.

The BDeu-fsNML method does not show strong over-
or underfitting, but it is even with perfectly chosen ESS
only slightly better than the pure NML method. In gen-
eral, the parameter learning seems to dominate the exper-
iment, since the methods using the same parameter esti-
mate resemble each other more than the methods using
the same structure score.

2.2. Fixed background

In the second experiment, we consider a different set-
ting. Now fix the background model to a simple inde-
pendence model and estimate its parameters once from
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Figure 3. Averaged AUC values for the standard classi-
fication experiment plotted against the equivalent sample
size. In the BDeu-MP setting, the same ESS is used for
structure and parameter learning. For BDeu-fsNML, the
ESS only affects structure learning, whereas for fNML-
MP is only affects parameter learning. Standard errors are
10−4 at most, hence error bars are omitted.

the entire background training data set according to the
maximum likelihood (ML) principle. Since the complete
background data contains over 105 data points, the ML es-
timator is basically identical to fsNML and MP estimates.
The repeated holdout experiment as described in the pre-
vious section is only carried out for the foreground model.
This situation resembles the problem de novo motif dis-
covery [8, 9], where there is orders of magnitude more
data available for learning the parameters of the back-
ground compared to the foreground, and where learning
the background model does not contain a model selection
step.

The results of this modified classification are shown
in Figure 4. We observe the fNML-fsNML approach in
comparison with the BDeu-MP approach to be almost op-
timal. There is only a tiny improvement that the Bayesian
approach may achieve if the ESS would have been cho-
sen perfectly at a value of approximately 20. Interest-
ingly, both mixed approaches perform better than the pure
Bayesian approach, since the range of good ESS values
and the maximal improvement in AUC are increased.

Both methods using the MP parameter estimates break
down if the ESS is larger than 100, which might be ex-
plained as follows. If the foreground parameters are com-
puted by using a large ESS, resulting large pseudocounts,
they get concentrated around the uniform distribution.
This is not a problem as long as the same applies to the
background parameters, since even small differences be-
tween foreground and background parameters are suffi-
cient to classify a test sequence correctly. However, if the
background parameters are fixed to certain values, only
smoothing the foreground parameters creates an imbal-
ance which prevents a fair comparison of foreground and
background likelihood for a test sequence, resulting in
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Figure 4. Averaged AUC values for the classification ex-
periment with fixed background model. The standard er-
rors are below 10−5, hence error bars are omitted.

many classification errors. This situation however, typi-
cally occurs in the problem of de novo motif discovery,
where a motif model is estimated from small data sam-
ples, and where and the background model, it is compared
with, has fixed parameters that may have been estimated
from a much larger amount of data.

3. CONCLUSIONS

We have compared NML with Bayesian criteria for struc-
ture and parameter learning of parsimonious Markov
models with application to the classification of DNA
sequences. In a standard classification, we found the
Bayesian approach to perform well, outperforming the
NML approach for a comparatively large range of ESS
values. We also found the optimal ESS parameter for clas-
sification purposes to be larger than 1, which is often an
intuitive choice, but smaller than 500. In a classification
with fixed background model structure and parameters,
we found the NML approach to be as good as the opti-
mal Bayesian approach. The latter does not yield a sig-
nificant improvement in AUC, even if the optimal value
of the ESS would have been guessed. Moreover, we find
the Bayesian approach in this setting to be very sensitive
towards very large ESS values. This makes it tempting to
speculate that the NML learning approach might be also
of use in the problem of de novo motif discovery, which
includes a classification step with fixed background pa-
rameters.
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cally Minimax Optimal Predictive Modeling with
Bayesian Networks,” in Proceedings of the 12th In-
ternational Conference on Artificial Intelligence and
Statistics, 2009, pp. 504–511.

[8] C.E. Lawrence and A.A. Reilly, “An Expecta-
tion Maximization Algorithm for the Identification
and Characterization of Common Sites in Unaligned
Biopolymer Sequences.,” Proteins: Structure, Func-
tion and Genetics, vol. 7, pp. 41–51, 1990.

[9] T.L. Bailey and C. Elkan, “Fitting a mixture model
by expectation maximization to discover motifs in
biopolymers,” in Proceedings of the Second Interna-
tional Conference on Intelligent Systems for Molec-
ular Biology, 1994, pp. 28–36.

[10] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Max-
imum Likelihood from Incomplete Data via the EM
Algorithm,” Journal of the Royal Statistical Society,
vol. 39, no. 1, pp. 1–38, 1977.

[11] G. Yeo and C.B. Burge, “Maximum Entropy Mod-
eling of Short Sequence Motifs with Applications to
RNA Splicing Signals,” Journal of Computational
Biology, vol. 11(2/3), pp. 377–394, 2004.

[12] Kent A. Spackman, “Signal detection theory: Valu-
able tools for evaluating inductive learning,” in Pro-
ceedings of the Sixth International Workshop on Ma-
chine Learning, San Mateo, CA, 1989, pp. 160–163.


