
Implementation of replace rules using preference operator

Senka Drobac, Miikka Silfverberg, and Anssi Yli-Jyrä

University of Helsinki

Department of Modern Languages

Unioninkatu 40 A

FI-00014 Helsingin yliopisto, Finland

{senka.drobac, miikka.silfverberg, anssi.yli-

jyra}@helsinki.fi

Abstract

We explain the implementation of replace

rules with the .r-glc. operator and preference

relations. Our modular approach combines

various preference constraints to form differ-

ent replace rules. In addition to describing the

method, we present illustrative examples.

1 Introduction

The idea of HFST - Helsinki Finite-State Technol-

ogy (Lindén et al. 2009, 2011) is to provide open-

source replicas of well-known tools for building

morphologies, including XFST (Beesley and Kart-

tunen 2003). HFST's lack of replace rules such as

those supported by XFST, prompted us to imple-

ment them using the present method, which repli-

cates XFST's behavior (with minor differences

which will be detailed in later work), but will also

allow easy expansion with new functionalities.

The semantics of replacement rules mixes con-

textual conditions with replacement strategies that

are specified by replace rule operators. This paper

describes the implementation of replace rules using

a preference operator, .r-glc., that disambiguates

alternative replacement strategies according to a

preference relation. The use of preference relations

(Yli-Jyrä 2008b) is similar to the worsener rela-

tions used by Gerdemann (2009). The current ap-

proach was first described in Yli-Jyrä (2008b), and

is closely related to the matching-based finite-state

approaches to optimality in OT phonology (Noord

and Gerdemann 1999; Eisner 2000). The prefer-

ence operator, .r-glc., is the reversal of generalized

lenient composition (glc), a preference operator

construct proposed by Jäger (2001). The imple-

mentation is developed using the HFST library,

and is now a part of the same.

The purpose of this paper is to explain a general

method of compiling replace rules with .r-glc.

operator and to show how preference constraints

described in Yli-Jyrä (2008b) can be combined to

form different replace rules.

2 Notation

The notation used in this paper is the standard reg-

ular expression notation extended with replace rule

operators introduced and described in Beesley and

Karttunen (2003).

In a simple rule

op is a replace rule operator such as:

 () …; is the set

of patterns in the input text that are overwritten in

the output text by the alternative patterns, which

are given as set , where is a universal

language and set of alphabetical symbols; and

 are left and right contexts and dir is context

direction (||, //, \\ and \/).

Rules can also be parallel. Then they are divid-

ed with double comma (,,), or alternately with sin-

gle comma if context is not specified.

Operation Name

X Y The concatenation of Y after X

X | Y The disjunction of X and Y

X:Y
The cross product of X and Y,

where X and Y denote languages

X .o. Y
The composition of X and Y,

where X and Y denote relations

X
+
 The Kleene plus

X
*
 The Kleene star

proj1(X)
The projection of the input lan-

guage of the relation X

proj2(X)
The projection of the output lan-

guage of the relation X

Table 1 – List of operations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14927838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Operators used in the paper are listed in Table

1, where X and Y stand for regular expressions.

Additionally, parenthesis () are used to mark

optionality, squared brackets [] for precedence and

question mark ? is used to denote set in regular

expressions.

3 Method

The general idea for compiling replace rules with

the .r-glc. operator and preference constraints is

shown in Figure 1.

Figure 1: General method of building a replace rule

The method consists of the following steps:

1. Building an Unconstrained Bracketed

Transducer (UBT) – a transducer which

applies or skips contextually valid re-

placements freely in all possible portions

of the inputs. Every application of the re-

placement rule is marked with special

brackets. Similar replace rules that differ

only with respect to their replacement

strategies will use the same UBT. Thus,

the compilation of UBT is independent of

the replacement strategy, which increases

the modularity of the compilation algo-

rithm.

2. Implement the functionality of the replace

rule operator by constraining the UBT with

the respective preference relation.

3. Remove brackets from the transducer.

The major advantage of this method is its mod-

ularity. The algorithm is divided into small com-

ponents which are combined in the desired way.

This approach allows every part of the algorithm to

be separately and clearly defined, tested and

changed. Furthermore, modularity makes it possi-

ble to easily integrate new functionalities such as

weighted replace rules or two level contexts.

3.1 Unconstrained Bracketed Transducer

As mentioned earlier, it is first necessary to build

the UBT. This step can be seen as a variant of Yli-

Jyrä and Koskenniemi's (2007) method for compil-

ing contextually restricted changes in two-level

grammars. The main difference now is that the

rule applications cannot overlap because they will

be marked with brackets.

 Step 1: Bracketed center

The first step is to create a bracketed center,

 – the replace relation surrounded by

brackets {〈 〉}. For optional replacement, it is nec-

essary that also contains the upper side of

the relation bracketed with another pair of brackets

 {⟦ ⟧}. This is necessary for filtering out all

the results without any brackets (see later filter

) and getting non optional replacement.

 ⋃ 〈 〉 ⟦ ⟧

In case of parallel replace rules, bracketed cen-

ter is the union of all individual bracketed centers.

Like XFST, this implementation requires parallel

replace rules to have the same replace operator

(and optionality) in all replacements.

Step 2: The change centers in free context

The second step is to expand bracketed center to be

valid in any context.

If {〈 〉 ⟦ ⟧} , we can define:

 []
Then, center in free context is:

where is diamond, which is used to align centers

and contexts during compilation.

Step 3: Expanded center in context

The next step is to compile contexts. The method

used for constructing depends on

whether the context must match on the upper or the

lower side. Since it is possible to have multiple

contexts, each replacement should be surrounded

with all applicable contexts:

Center surrounded with one context is:

 [] []

Remove

brackets

.r-glc.

.r-glc.

…

.r-glc.

UBT

Constraint 1

Constraint N

REPLACE

RULE

where and are left and right contexts from the

replace rule, and and are expanded contexts,

depending on which side the context matches. In

the case when context must match on the upper

side, and are:

 [[]]

 [[]]

If they must match on the lower side:

 [[]]

 [[]]
where brackets are freely inserted () in the con-

texts and then composed with .

In this example:

both contexts should match on the upper side of

the replacement, so is:

 [[]]

 [[]]

 () 〈 〉 ⟦ ⟧ ()

This way of compiling contexts allows every

rule in a parallel replace rule to have its own con-

text direction (||, //, \\, \/). Therefore, rules like the

following one are valid in this implementation:

Steps 4: Final operations

Finally, to get the unconstrained replace transducer

it is necessary to subtract from

 , remove diamond and do a negation of

that relation.

Let [[]]

, then:

 []
where denotes removal of diamond.

3.2 Constraints

All the preference constraints were defined in Yli-

Jyrä (2008), but since they were mostly difficult to

interpret and implement, here is the list of the con-

straints written with regular expressions over the

set of finite binary relations.

First, let us define RP – a regular expression of-

ten used in the restraints:

 []
The left most preference is achieved by:

 [] []
Right most preference:

 [] 〉
Longest match left to right:

 [] [〈 〈 〈][]

 〈 [] 〉
Longest match right to left:

 [] [] [〈 〉 〉]
 〈 [] 〉

Shortest match left to right:

 [] [〈 〉 〈][]

 〈 [] 〉
Shortest match right to left:

 [] [] [〈 〉 〈]
 〈 [] 〈

For compiling epenthesis rules, to avoid more than

one epsilon in the row:

 {〈 ⟦ }
 { 〉 ⟧}

For non-optional replacements:

 [[]]

To remove paths containing , where { ⟦ ⟧}:

Since and are reflexive, they

are not preference relation. Instead, they are filters

applied after preference relations.

3.3 Applying constraints with .r-glc. operator

To apply a preference constraint in order to restrict

transducer t, we use .r-glc. operator. The .r-glc.

operation between transducer t and a constraint is

shown in Figure 2. Input language of a transducer

is noted as proj1 and output language as proj2.

Figure 2: Breakdown of the operation:

t .r-glc. constraint

Contraints combinations

As shown in Figure 1, in order to achieve desired

replace rules, it is often necessary to use several

constraints. For example, to achieve left to right

longest match, it is necessary to combine and

.o.

t

proj1(t) – proj2

proj1(t)

.o.

constraint

.o.

proj1(t)

 . If the same longest match contains epen-

thesis, constraint should also be used.

3.4 Removing brackets

Removing brackets is simply achieved by applying

 constraint, where B is set of brack-

ets we want to remove. Additionally, in HFST

implementation, it is also required to remove the

brackets from the transducers alphabets.

4 Examples

Let us show how the replace rule is compiled on

different examples.

Since it would take too much space to show

whole transducers, we will show only output of the

intermediate results applied to an input string.

The first example shows how to achieve a non-

optional replacement. Intermediate results of the

replace rule is shown in the Table 2.

Since the arrow demands non-optional replace-

ment, the unconstrained bracketed replace, if ap-

plied to the input string , contains three

possible results. The first result is the input string

itself, which would be part of the non-optional

replacement. The second result is necessary to

filter out the first one. In this example, because of

the restricting context, replacement is possible only

in the middle, and therefore, it is bracketed with

special brackets. Finally, the third result contains

the bracketed replace relation.

UBT

 ⟦ ⟧

 〈 〉

 〈 〉

 ⟦ ⟧

 〈 〉

Table 2: Steps of the non optional replacement

Once when we have the unconstrained bracket-

ed replace transducer, we are ready to apply filters.

First filter, will filter out all results that

contain smaller number of brackets in every posi-

tion, without making difference to the type of

brackets. In this example, it will filter out the first

result, the one that does not have any brackets at

all.

The second filter, will filter out all the

results containing brackets because they don’t

contain the replace relation. Finally, to get the final

result, it is necessary to remove brackets from the

relation.

 Following examples will be shown on the input

string . Table 3 shows steps of building left

to right longest match and Table 4 left to right

shortest match.

Both longest match and shortest match have the

same first two steps. After building Unconstrained

Bracketed Replace, we apply filter which

finds all the results with left most brackets in every

position and filters out all the rest. This contraints

characteristic filters out the results without the

brackets as well, so the result will be non-optional.

In order to get the longest match, we apply another

filter () to the result of the left most filter.

This filter finds the longest of the bracketed

matches with the same starting position. In the

final step, if we apply filter instead of

 , we will get the shortest match (Table 4).

UBT

 〈 〉

 〈 〉〈 〉

 〈 〉

 〈 〉

 〈 〉

 〈 〉〈 〉

 〈 〉

 〈 〉

Table 3: Left to right longest match

UBT

 〈 〉

 〈 〉〈 〉

 〈 〉

 〈 〉

 〈 〉

 〈 〉〈 〉

 〈 〉

 〈 〉〈 〉

Table 4: Left to right shortest match

5 Conclusion

The large number of different replace operators

makes it quite complicated and error-prone to build

a supporting framework for them. However, the .r-

glc. operator and preference relations allow split-

ting the algorithm into small reusable units which

are easy to maintain and upgrade with new func-

tionalities.

The replace rules are now part of the HFST li-

brary and can be used through hfst-regexp2fst

command line tool, but there is still some work to

be done to build an interactive interface. Addition-

ally, we are planning to add support for two level

contexts and parallel weighted rules.

Acknowledgments

The research leading to these results has received

funding from the European Commission’s 7th

Framework Program under grant agreement n°

238405 (CLARA).

References

Beesley, K.R., Karttunen, L.: Finite State Morphology.

CSLI publications (2003)

Eisner, J.: Directional constraint evaluation in optimali-

ty theory. In: 20th COLING 2000, Proceedings of the

Conference, Saarbrücken, Germany (2000) 257–263

Gerdemann, D. (2009). Mix and Match Replacement

Rules. Proceedings of the Workshop on RANLP

2009 Workshop on Adaptation of Language Re-

sources and Technology to New Domains, Borovets,

Bulgaria, 2011, pages 39-47.

Gerdemann, D., van Noord, G.: Approximation and

exactness in Finite-State Optimality Theory. In Eis-

ner, J., Karttunen, L., Thériault, A., eds.: SIGPHON

2000, Finite State Phonology. (2000)

Gerdemann, D., van Noord, G.: Transducers from re-

write rules with backreferences. In: 9th EACL 1999,

Proceedings of the Conference. (1999) 126–133

Jäger, G.: Gradient constraints in Finite State OT: The

unidirectional and the bidirectional case. In: Proceed-

ings of FSMNLP 2001, an ESSLLI Workshop, Hel-

sinki (2001) (35–40)

Karttunen, L.: The replace operator. In: 33th ACL 1995,

Proceedings of the Conference, Cambridge, MA,

USA (1995) 16–23

Karttunen, L.: Directed replace operator. In Roche, E.,

Schabes, Y., eds.: Finitestate language processing,

Cambridge, Massachusetts, A Bradford Book. The

MIT Press (1996) 117–147

Kempe, A., Karttunen, L.: Parallel replacement in finite

state calculus. In: 16
th

 COLING 1996, Proc. Conf.

Volume 2., Copenhagen, Denmark (1996) 622–627

Lindén, K., Axelson, E., Hardwick, S., Silfverberg, M.,

Pirinen, T.: HFST - Framework for Compiling and

Applying Morphologies, Communications in Com-

puter and Information Science, vol. 100, pp. 67-85.

Springer Berlin Heidelberg (2011)

Lindén, K., Silfverberg, M., Pirinen, T.: Hfst tools for

morphology - an efficient open-source package for

construction of morphological analyzers. In:

Mahlow, C., Pietrowski, M. (eds.) State of the Art in

Computational Morphology. Communications in

Computer and Information Science, vol. 41, pp. 28-

47. Springer Berlin Heidelberg (2009)

Yli-Jyrä, A., Koskenniemi, K.: A new method for com-

piling parallel replacement rules. In Holub, J.,

Ždárek, J., eds.: Implementation and Application of

Automata, 12th International Conference, CIAA

2007, Revised Selected Papers. Volume 4783 of

LNCS., Springer (2007) 320–321

Yli-Jyrä, A.: Applications of Diamonded Double Nega-

tion. In Finite-state methods and natural language

processing. Thomas Hanneforth and Kay-Michael

Würtzner. 6th International Workshop, FSMNLP

2007. Potsdam, Germany, September 14-16. Revised

Papers. Universitätsverlag Potsdam (2008a) 6-30

Yli-Jyrä, A., Transducers from Parallel Replace Rules

and Modes with Generalized Lenient Composition.

In Finite-state methods and natural language pro-

cessing. Thomas Hanneforth and Kay-Michael

Würtzner. 6th International Workshop, FSMNLP

2007. Potsdam, Germany, September 14-16. Revised

Papers. Universitätsverlag Potsdam (2008b) 197-212

