View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Helsingin yliopiston digitaalinen arkisto

On Dependency Analysis via Contractions
and Weighted FSTs

Anssi Yli-Jyra

Abstract Arc contractions in syntactic dependency graphs can be tasddcide
which graphs are trees. The paper observes that these c@nisacan be ex-
pressed with weighted finite-state transducers (weigh839 Ehat operate on string-
encoded trees. The observation gives rise to a finite-set&ng algorithm that
computes the parse forest and extracts the best parsedtfrbine ialgorithm is cus-
tomizable to functional and bilexical dependency parsany] it can be extended
to non-projective parsing via a multi-planar encoding wittor results on high re-
call. Our experiments support an analysis of projectiveipgraccording to which
the worst-case time complexity of the algorithngisadraticto the sentence length,
andlinear to the overlapping arcs and the number of functional categaf the
arcs. The results suggest several interesting directmmartls efficient and high-
precision dependency parsing that takes advantage of Kilgility and the demon-
strated ambiguity-packing capacity of such a parser.

1 Introduction

Finite-state transducers (FSTs) — and their underlyinigpgstrelations — specify
elegant but general parsing algorithms. In this contrdoutithe methodology of
weighted FSTs is applied to efficient dependency grammadfication and search
for the globally best parse in a dependency-based forest.sbhution would not
be as practical without memoizing composition and a simplgémentation of arc
contractions in dependency analyses, which are perhapsdsioriginal aspects of
this work.

Anssi Yli-Jyra
Department of Modern Languages, University of Helsinki, Fidlan
e-mail: anssi.yli-jyra@helsinki.fi

https://core.ac.uk/display/14927817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Anssi Yli-Jyra

Dependency grammar (Tesniere 1959) is typically impleexirt computational
linguistics by parsing algorithms that compromise betwetficiency and the lin-
guistic accuracy in different ways:

e Many practical dependency parsers are basedietarministic parsing algo-
rithms (Nivre 2008) that can produce all kinds of trees but dependheuris-
tics that may not always find the globally optimal parse. Tdumpromises the
accuracy or recall of the analysis, but yields practicadlstfparsers.

e Projective dependency parsiggyves higher accuracy because the globally opti-
mal parses among all the projective parses can be found.ifleecomplexity
of projective parsers is comparable with context-free gratsfor the sentences
of lengthn, it is in O(n®) in the case of functional and bilexical dependency
grammars (Lombardo and Lesmo 1996, Eisner 1997). Howéweprojectivity
condition for the parses restricts the admissible analysése subset of depen-
dency trees that do not contain dependencies that crosdtomdmthe drawings
of the trees. The condition is fully explained in Yli-Jyr&0@5) and Kuhimann
(2010).

e Non-projective dependency parseetax the projectivity condition by allowing
crossing dependencies. The admissible parses thus inalugessible depen-
dency trees, some of which are non-projective. Non-privjecttees are common
in treebanks for major European languages (Kuhlmann 204@)ever, unre-
stricted non-projective parsing is intractable (NeuhawasBroker 1997).

e Parameterized non-projective dependency gramn{&isJyrd and Nykanen
2004, Nivre 2006, Kuhlmann 2010) have been proposed in acdaddress the
precision, recall and efficiency considerations. For eXampell-nested depen-
dency trees with bounded gap-degree can be parsed in paigitome (Gémez-
Rodriguez et al. 2009, Kuhimann and Satta 2009). The timeptoxity is in
O(n’) — quite much in comparison to deterministic parsing. Morseeech is
thus needed in order to make parameterized non-projecrsefs practical.

My objective is to describe a practical parsing algorithmféct a family of al-
gorithms) that takes advantage of partial projectivity angerformance-motivated
parametert, for overlapping dependencies. In the case of unrootec:gtiog trees
with a fixed bound fot, the current analysis of the worst-case time complexity of
the final algorithm (in Sect. 5.4) is based on evidenc®@#?) space and(n?)
time complexities that are measured using an efficient fstege library. | am argu-
ing that the approach is extendible towards non-projegasing (then the actual
complexity bound depends on subtle properties of the grammeng, in the worst
case, exponential to the number of dependencies that puyautaare not nested).

My secondary aim is to demonstrate the relevance of straggd finite-state
methods in packing and processing syntactic parse fordstsefore, | will describe
the algorithm using weighted rational relations whose afi@ns can be translated
to operations on weighted finite-state transducers. Inrai@@rocess trees with
string automata, the work develops three new techniques:

1. The first new technique is to check the treeness of depepdgaphs viaarc
contractions Under the contractions, the notions of the bottom and tpero

On Dependency Analysis via Contractions and Weighted FSTs 3

the reduction tree are no more based on the dominance ordereae relations
but on the minorization relatiohContractions exhibit also a surprising ability to
make the crossing dependencies local.

2. The second technique is tdependency bracketirfgr various kinds of depen-
dency trees. Dependency bracketing with assigned plaregigessive enough
for non-projective parsing and it admits finite-state pssieg of contractions
in dependency forests. Dependency bracketing can be cizstfor functional
and bilexical dependency grammars.

3. The third technique is thmemoizatiorof intermediate results in finite-state cas-
cades. Memoization allows for combining bottom-up and dopw filtering in
order to extract only the best parses. Memoization “takslahe found arcs via
epsilon removal after contractions in finite-state transas.

The resulting method can be seen as an upgrade to a consiaaied dependency
parsing method (Yli-Jyra 2005) that | developed during myCRstudies’ The pre-
decessor was based on a conjunctive decomposition of fitate-constraints that
restricted the set of lexicon-generated candidate parbesnew algorithm does not
only layerize the constraints (Oflazer 2003, Yli-Jyra 2094,Jyré and Kosken-
niemi 2004) but it also packs the local ambiguity and shdrestibtrees.

2 The Input and Output Representations
In this section, | describe the graph representations roéatgd by the parser and
give the general principles for validating dependencysree

2.1 Functional Dependency Parsing

In terms of the outcome, the task of the dependency parsertakeé a tokenized
orthographical string, such as (1a) and annotate it with@neaore dependency
tree$ as in (1b).

11t would be interesting to study how the minorization relatianmpares with the derivation
relation of tree adjoining grammars. In both cases, the derieedsrmanipulated from inside.

2 This article is published on the occasion of Professor Laurigai$ birthday. As he co-
supervised my Ph.D. research together with Kimmo Koskenniemi a dexgal it is now a great
privilege for me to write about these new advances in the relsesea where we started together.
3 The tree is drawn with thedag. sty package written by Denys Duchier, Ralph Debusmann
and Robert Grabowski. For convenience, the orientationefrie is flipped in the context of the
linguistic example that is typeset witxpex. sty.

4 Anssi Yli-Jyra

1) a. (time flies like an arrow
b. (time flies like an arrow)
: : O« 5
ET.
: Nom/?o
SUBJ\GPD\‘L

The dependency trees of this work visual&mtacticdependency relations, in con-
trast to deeper, semantic dependencies. A dependencyistztiween alependent
word (Tesniére 1959: “subordonné”) and litsad (Tesniére 1959: “régissant”). By
convention, the arrowhead of each arc in the tree pointhismiaper, to the depen-
dent node. The arc has a label that indicates what syntagtitibn is played by
the dependent word under the head. For example, the avord(1) is a determiner
(DET) for the wordarrow. Since it is quite common to add several uncoordinated
modifier words as dependents, the syntactic functions dhmatl be confused with
mathematical functions.

The finite-state parser will encode the actual drawing viece markup that is
associated with the input string, as in the example (2).

(2) (time flies like an arrow
<SUBJ # SUBJ\/ADVL # ADVL> /NOBJ # <DET # DET\NOBJ>

The markup is based dmalanced dependency bracketifitpble 1) that gives
information on the dependency orientation, the syntacticfion, and the lexeme.
The brackets are viewed as tags that annotate the tokeraggl 3he order of the
tags under each token mirrors the proximity of the connastia order to ensure
that nested brackets match neatly, and different kinds atkats are chosen for
different kinds of trees, as demonstrated later in this pape

Table 1 The dependency brackets

Left bracket Right bracket Head Corresponding arc Arc label
<SUBJ SuBY, on the right functional arc SUBJ

/oBJ 0B on the left functional arc 0BJ

(suBJ SuB) (by convention) undirected functional arc SuBJ

(oBJ oBJ (by convention) undirected functional arc 0BJ

time< \flies on the right bilexical arc -

time/ >flies on the left bilexical arc -

time(Ylies (not specified) undirected bilexical arc -

an()arrow (not specified) undirected bilexical arc -

In addition to the balanced brackets, the encoding incladesparatog, that is
used to bound the nodes in the encoded dependency graphefldfeosackets and

On Dependency Analysis via Contractions and Weighted FSTs 5

the separator form the grammar alphalbet|n addition, there is a corresponding
alphabet]” = { a | a€ I'}, that consists of the overlined variants of these symbols.

2.2 Bilexical Dependency Parsing

In fully data-driven parsing, the syntactic functions opdadencies are often un-
known. Therefore, a bilexical dependency tree (3) focusethe dependencies be-
tween two lexical entries.

(3) (time flies like an arrow)
: : o\(f)

Although the tree in (3) is very elegant without arc labéis, turrently described
parser needs bracket labels in order to know about the gimtoperties of the
linked tokens. Provided that the possible lexical typesfixet, the internal tag
alphabet of the parser can be expanded with the bracketintliahte the lexical
types (4). The expansion temporarily increases the recayda the encoding.

(4) (time flies like an arrow
time< # \flesfles # >likelike/ # an< # \arrow>arrow

Although the linguistic aspects of dependency analyseddioeli an interesting
topic for further discussions, the rest of the paper will®on the computational
properties of dependency tree processing.

2.3 The General Properties of Dependency Trees

Syntactic dependency trees have a number of crucial piepéiiat we will need in
order to distinguish a valid parse from invalid parses.

e Every syntactic dependency tree ibeled directed graph & (V,I"’,E) where

V is the set ohodeg(vertices) that correspond to the tokens in the sentence;
=T —{#} is the set ofarc labels and
— ECV xI'xVisthe set ofabeled arcqaka directed labeled edges).

In the dependency tree drawings, the &icx, h) is drawn asd & h. The arc
indicates that nodd depends on nodethat is a head fod.

e Every syntactic dependency tré€ds a labeled directed graph where every node
has at most one head. That is, the set of &csin be seen as a partial function
E:V — (I x V). Under this condition, we say th&has thehead property

6 Anssi Yli-Jyra

e Every syntactic dependency tree is connected and acydiesd properties are
not local graph properties and, therefore, their defingicaguire additional ma-
chinery. In this paper, the machinery consistsafitractionsandminors

Definition 1. Let G = (V,I’,E) be a labeled directed graph with the head prop-
erty. If there is an ar¢d, x, h) € E, then(d,x,h’") € E impliesh = h'. Thecon-
traction of arc(d, x,h) produces a new gragt = (V/,I"",E’) with

V' =V —{d}, (1)
E'= (V' x'xV)n(EU{(d,y,h) | (d,y,d) e E}).)

The orthographical content corresponding to nbdtecludes now implicitly the
content of nodel.

Definition 2. In the current sense, a graph H isninor of a directed graph G if
a copy of H can be obtained from G via arc contractitns.

Now we can test the connectedness and acyclicity as follows:

— Alabeled directed grapB8 with the head property isonnectedf and only if
it has a trivial minoH = (V’/,T’,0) where|V'| = 1.

— A labeled directed grap® with the head property iacyclicif and only if it
has no minor graphl = (V’,I"’,E’) with a loop(d,x,d) € E'.

e Every syntactic dependency tree isomted tree A connected labeled directed
graph with the head property is a rooted tree if there is éxacie independent
node, called &oot, and all the arcs point away from the root. In the example (1),
the root word isflies. All the arcs point away from this node.

It can be shown that a labeled directed gr&phith the head property is a rooted
tree if and only ifG is connected and acyclic.

2.4 Validating Syntactic Dependency Trees

The relevant set of dependency trees are now characteszayelic and connected
labeled directed graphs with the head property. This cheniaation does not di-
rectly involve testing for the existence of a root. Instead,must (i) check that no
word has two heads and (ii) prove the acyclicity and conmiess by contracting
non-loop arcs until a trivial graph is reached.

Some contractions can be performed in parallel. For exanip)ecan be vali-
dated by two layers of contractions:

4 This definition excludes arc deletion that is normally ineddn the definition of graph minors.

On Dependency Analysis via Contractions and Weighted FSTs 7

(5) a. (time flies like an arrow)
: Owpp.
. : . IS .
: NOBJ/T}O
O‘SUBJ\(E),;\OQ\"O/

b. (time flies like an arrow)
no®8?

c. (time flies like an arrow
o)

An important observation of the current contribution istttiee validation can
be implemented directly on bracketed dependency trees) lthe tags affected by
each contraction are indicated with an overline. A contoacbf an ardd, x, h) is an
internal contractionif h has some other connections ahi a head for some other
node. The contraction of thedvL arc in (6a) is an internal contraction if performed
before thesusJarc has been contracted.

(6) a. (time flies like an arrow
<SUBJ # SUBJ\ /ADVL # ADVL> /NOBJ # <DET ¥ DET\NOBJ>
b. (time flies like an arrow
/NOBJ 4 NOBI>

c. (time flies like an arroyw

The validation of bracketed trees is based on three priesipl

1. Decodability.For each label € ' — {#}, the left bracketsa and «\ are matched
with the corresponding right brackets, and o>, respectively. Each pair of
matching brackets corresponds to an arc in the labeledtederaph.

2. Equicardinality. There is the same number of arcs and word boundaries. Every
boundary between two adjacent words is indicated with a lsgsfbol ¢). A
hash symbol is eliminated at the same time as the brackeis efbures that a
loop cannot be eliminated because the left and right bracket not separated
by any hash symbol. Thus, a cyclic dependency graph canrfatlpeeduced to
a trivial graph. If the graph is not connected, there remaiwsrd boundary that
is not eliminated, and the graph does not have a trivial gesgdn minor.

3. Contiguity. The internal contraction of an afd, x, h) is allowed only if noden
corresponds to a contiguous string of brackets in the rieguliraph. This prin-
ciple ensures that the resulting minor graph can be encodteddependency
bracketing.

8 Anssi Yli-Jyra

2.4.1 Ensuring Decodability

The bracket labels play a crucial role in non-projective edgfency trees and in
minors obtained from them.

Any non-projective dependency tree can be bracketed wheadwopt a multi-
planar decomposition for the arcs and corresponding bta¢ké-Jyra 2003). This
means that there is no limit for the complexity of non-prtijex trees, provided
that the number of available planes is not fixed. In bracketezbdings of bilexi-
cal dependency trees, multiplanarity seems presently tbédenly way to encode
crossing brackets.

A 2-plane encoding is already enough to achieve very higlerege (Gomez-
Rodriguez and Nivre 2010). Syntactic functions could fertixtend the set of non-
projective trees that can be encoded by allocating eachtifumto a plane of its
own.

Example (7) shows that matching brackets of crossing aecdiatinguished us-
ing two planes, | and II.

M a1 2 3 4
b. 1 2 3 4

S/ # IS/ s > # N>

2.4.2 Ensuring Contiguity

A typical non-projective dependency tree contains a latdggysaph that does not
contain crossing links. Therefore, it is often possiblegduce many non-crossing
arcs before it is necessary to contract any crossing arc.

An interesting observation is that contractions of norssiiag arcs often trans-
form a non-projective tree into a projective tree as denratei by Example (8)
that is obtained from the non-projective tree in (7).

8 a 12 3 4
54(5
b. 12 3 4

SN s s >

Another interesting observation is that a non-internati@mtion does not need to
merge adjacent positions in a bracketed tree. This produsémificant extension
to simple contractions that can be used to transform a nojegtive tree into a

On Dependency Analysis via Contractions and Weighted FSTs

projective one. The power of non-internal contractiondlussirated by Example (9)
that reduces to (10).

© a 1 2 3 4
: o
b. 1 2 3 4

(10) a 13 2 4
b. 13 2 4
Sl <lo# N>

Many of the non-projective trees discussed in Yli-Jyra @0&nd Kuhlmann
(2010) can be reduced to the trivial tree via contractionsasf-crossing arcs. The
remaining non-projective trees can be reduced with the faidio-internal contrac-
tions, because every nontrivial tree admits at least onle soistraction.

3 Computing Weighted Minors

This section describes a mechanical, finite-state impléadandeterministic method
whose purpose is to perform at least one contraction in amem@ty string.
The reader is referred to Mohri (2009) for a detailed exjpasiof algorithms on
weighted transducers.

In this article, the algorithms are specified with weightatibmal relations whose
operations can be implemented through manipulation okfisiiaite transducers.

3.1 The Formalism of Weighted Rational Relations

In this paper, weights are nonnegative real numi@gsg (J {0 }) with the usual mul-
tiplication operation and thmaximum(max) as the additive operation (i.e-,and
> denote the max operation). This set of weights gives us dly emglerstandable
starting point and supports Viterbi-decoding of the bessgs

Let > be an alphabet. The free monoid generatecbig denoted by>*. The
neutral element of this monoid is the empty striagfhe set of rational (i.e., regular)
languages includes the finite subset&vfnd is closed, for any two elemeritsM,

10 Anssi Yli-Jyra

under the rational operations such as concatendtidd, star L*), the Boolean
operationsi{UM, LNM, L — M, etc.).

The set of (binary) rational relations ovEf is also closed under concatenation,
star and union and includes rational relations such as

ld(L) = {(x,x) | xe L}, 3)
LxM={(xy)|xeLyeM}. (4)

LetRC =* x * be a rational relation. In a pair,y) € R, xis called thenputstring
andy is called theoutputstring. Define the characteristieighted rational relations
L(R),Le: (Z" x Z¥) = (R>oU{e}) by

_J1 (xy)eR
LRy = {0 otherwise’ ®)
1e = 1(1d(e)).)

Simple weighted rational relations can be defined with them@hension notation,
but the notation itself does not guarantee that the definkid seweighted rational
relation. Instead, the set of weighted rational relatiorer the alphabeX* and the
weightsRoU{e} (with max and multiplication) is closed under certain opierss.
Let T andU be weighted rational relation&* x Z*) — (R>oU{e}) and letw €
R>oU{}. Define thdeft product union compositionconcatenationstar and the
projectionoperations by

wW-T ={((xy),w-T(xy)) | xyeZ}, ()
Tuu :{((va)vT(va)+U(X7y))|X7yEZ*}a (8)
ToU :{((X7Z)ﬂ T(X7y)U(y,Z)) ‘X’ZEZ*}7 9)
ye2*
T-U :{((va)7 z T(X07YO)U(X17Y1)) ‘XayEZ*}v (10)
X=X0X1,Y=Yoy1
T*:{((va)v Z T(Xl;Y1)~~~T(Xn7Yn)) ‘Xﬂy€Z*}v (11)
neN
o
Proj (T) = {((x,x1), 3 T, %)) [x €27}, (12)
Prop,(T) = {((X2, %2), %kT(XLXZ)) | %o € Z¥}. (13)

Note that ifT (g,€) # 0 andT (x,y) # 0, T*(X,y) = co.
For a weighted rational relatioh, define itsmageandsupportby

Im(T) = {T(xy) [xyecz}, (14)
SupgT) ={(xy) X,y € Z",T(x,y) # 0}. (15)

On Dependency Analysis via Contractions and Weighted FSTs 11

By convention;T can be viewed as a weighted rational relati@ii x >5) — (R>oU
{e}) whereX;,5, C Zif T is a weighted rational relatiofr* x ¥*) — (R>qU{})
with Supg(T) C %] x 23, and vice versa.

Let T be a weighted rational relation with a finite support and {1,2}. Letw
be the maximal value in I(T). Let the sequencéy,...,x;) contain the elements
of the set{x | x € Z*, Proj,(T)(x,x) = w} in the lexicographical order. Define the
k-boundedbest restrictiorof Proj,(T) as

BestProj(T,k) = {((xi,%),w) [i € {1,...,min{j,k}}}. (16)

3.2 Weighted Contractions

In the parser, the rule component of the grammar defines ehtegigational rela-
tion, Contraction: 1§(I UT)*) — (R>oU{e0}). The support language of this relation
is Id~1(SupgContraction) and it is a subset dF*T'T* # T T*,

A convenient way to specify Contraction is through a finité afecontraction
rulesa — w where the expressioa gives a rational (i.e., regular) subset of the
languagel *I'T* # M*I'T* andw is a non-negative real number. The examples of
contraction rules include projective functional rules g4th), projective bilexical
rules (11c—d), and non-projective bilexical rules (11e).

(11) a (sues 7 susd) > .97,
b. (JabvL # aADVL>) — .47,
c. (ike/ # >amow) ~ .00127,
d (a< # Namow) > .42,

e. ¢ <sues # (F—{<susj,susd})* 'sued) — .97,

When applied by the finite-state implementation, each cotitnarule removes
a pair of dependency brackets and a respective node sep@natbhe overlining of
some symbols indicates which three tags in the strings pésapvhen a contraction
is performed. When a rule with weightis applied, the total weight of the string is
multiplied byw. In (11e), there are potentially some symbols that do na@ipgisar.

3.3 Applying Weighted Contractions Deterministically

FreeReduce is a weighted rational relation that reducekétad trees by applying
a specified set of contractions freely to the strings. It isstaucted as follows:

12 Anssi Yli-Jyra

Hesitate=1((Id(MU{(a,a) |acT})"), a7
FreeMark= (1(ld(I")) U Contraction*, (18)
Perform=1((Id(MN)u{(a,e) |aecT})*), (19)
FreeReduce- Hesitateo FreeMarko Perform (20)

When an input bracketing is reduced with FreeReduce, eadilg@place for con-
tractions optionally either undergoes the contractiorsdeft intact as indicated by
the weighted pairs (12a—d) belonging to FreeMark. The optity generates spu-
rious ambiguity. Spurious ambiguity complicates the esttom of the topk best
parses as any optimal parse itself may be reduced in morekt#ferent ways.
Furthermore, it restricts the possibilities for geneialigthe parsing algorithm and
changing the system of weights: if the additive operatioarahe weights were
non-idempotentriaximumis idempotent), we would have a danger that spurious
ambiguity invalidates the weights of parses.

(12) a. (Idksuss# susd/AaDvL # ADVL>), 1)
b. (Id(<susi # susd /apvL # ADVL>), .47)

c. (Id(<suBi # 'susd/apvL # ADVL>), .97)

d. (ld(<suss # suBd /ADVL # ADVL>, .97x.47)

The spurious ambiguity can be avoided by restricting thepsttpof (Hesitateo
FreeReducgin such a way that it is a function from inputs to outputs.

In order to make the restriction, the contraction rules ppiad deterministically
from left to right. This modification can be implemented wathechnique (Yli-Jyra
2008) that is based on earlier ideas of G. van Noord and D.&bsadn. To apply
this technique, define a rational relation Preférul")* x (FUIN)* that relates a pair
(x,y) of two overline marked copies of the same string if the firgiyca, contains
earlier overlines thap. For example, (12b) is preferred over (12a), (12c) is pretér
over (12a) and (12b), and (12d) is preferred over (12a—c).

Prefer=1d(r)-{(a,a) |ael}-{(xy) |xye {a a}l,acl}*. (21)

Now we extract from FreeMark the set of strings, DisprefdiffeeeMark, for
which there are preferred alternatives, and constructdtaptement NotDispre-
ferred(FreeMark).

DispreferredS) = Id~%(SupgProj,(So 1 (Prefed 0))), (22)
NotDispreferredS) = (I UT)* — DispreferredsS). (23)

By filtering the identity pairs in FreeMark with NotDisprefed(FreeMark), we re-
fine FreeMark and obtain DefiniteMark. We also want to rejéect@nempty strings
without any overlined symbol$ (*). In the end, we obtain a weighted rational rela-
tion that “performs” a deterministic, non-empty set of gawtions in all non-empty
inputs.

On Dependency Analysis via Contractions and Weighted FSTs 13

DefiniteMark= FreeMarko 1.(Id(NotDispreferred(FreeMark) 'T*)), (24)
Reduce= Hesitate> DefiniteMarke Perform (25)

We have thus defined a weighted rational relation, Redued, tfaps the input
strings deterministically to strings that are strictly gbhounless the input is already
the empty string.

Reduce can be viewed as a functioh— (I'* x (R>qU {})). The existence of
this alternative structure implies that Reduce can be implaed very efficiently
with a deterministic finite-state device.

4 The Structure of the Grammar and the Parser

The purpose of this section is to define the grammar and theecdge parser in
terms of weighted rational relations.

4.1 The Grammar Relation

In a high level, the grammar can be seen as a composition {Z6uo(weighted)
rational relations of typéX* x 2*) — (R>oU {c}).

Grammar= Lexicono Abstracto HasMinog o 1. (26)

In the composition, Lexicon does tokenization and morpgicial analysis and then
retrieves arguments and functions, Abstract is a relati) that deletes all but
syntactic symbols in strings, HasMingrerformst levels of reductions, being thus
a finite composition (28) of identical Reduce relations, arid ensures that we
finally obtain a trivial minor graph.

Abstract=1((Id(IN)U{(x,€) | xe Z-T}H*), 27
HasMinok = Reduce - - - o Reduce (28)
t

The component relations of the grammar link four repregemts:

Abstract

Ortho—L&X€__ norphoSyn Syn—HasMinot__rer - (29)

In this system, Ortho is the set of orthographical stringsr dkie set of orthograph-
ical symbolsQ, MorphoSyn is the set of morpho-syntactic strings that isbrodf
morphological symbol$1 and grammatical symbols, and Syn is the set of syn-
tactic strings over the alphabiet

To be precise, Grammar is a weighted rational relation thapsmthe pairs
(x,€) € Q* x {&} to the set of weights. The precise interpretation of the hisig

14 Anssi Yli-Jyra

remains intentionally open. The Grammar relation also attarizes a string set,
GrammaticalC Q*, that is defined by

Grammaticak= 1d~1(SupfProj, (Grammay)). (30)

4.2 The Parser Relation

In order toparsean orthographical string € Ortho, we need to extract the corre-
sponding morpho-syntactic stringse MorphoSyn from the internals of the sys-
tem (29). The extraction process (31) defines a weightednatrelation, Parser :
(Orthox MorphoSyn — (R>oU {}).

Parser= Lexicono Proj, (Abstract HasMinog o 1¢). (31)

Let x € Ortho be an orthographical string.(,y) is a pair in SuppParsey, we say
thaty is aparsefor x. The set of all parses foris denoted by

Parse&x) = Id~1(SupfProj,(1(1d(x)) o Parse))). (32)

The weight of each parges Parse§&) is Parser(x,y). A&-bounded set of best parses
is given by

BestParses, k) = Id~1(SuppBestProj(1(Id(x)) o Parserk))). (33)

4.3 The Grammar Constant

The parameter limits the number of iterations of Reduce in HasMindn the de-
pendency trees, the parameter limits the number of ovarigpgrcs that can be
contracted. The parameter can be fixed to a relatively smaljer without any ob-
servable loss in recall. This makes HasMirefixed weighted rational relation. The
Grammar and Parser relations are thus applicable in limmay; &it least according
to the asymptotic complexity analysis (@s+).

The asymptotic analysis ignores the fact that the apptinadf the grammar to
the input involves a large coefficient, tjgammar constantthat is bounded from
the above by the product of the sizes of the finite-state thazexs for Lexicon, Ab-
stract and HasMing@rAs to their sizes, Lexicon and Abstract are just ordinangdki
of weighted rational relations used in natural-language@ssing. Their implemen-
tation does not require our attention now.

In contrast to Lexicon and Abstract, the finite-state impatation of HasMingr
is of an impractical size. To see this, assume that S8Dpptraci = {i#i) |i €
{1,...,c}} wherec is the number of arc types. Table 2 shows experimental gesult
on how the size of HasMinpgrows as a function of andt. From these | gather

On Dependency Analysis via Contractions and Weighted FSTs 15
that the number of states in the finite-state implementatfdfasMinog o 1¢ is

Lok (1= (207

(Zc)t+(2c)t‘l+...+1:k;(ZC) (20 =0((20)"). (34)

Table 2 The growth of HasMingras a function of and the number of functional bracket pairs

c=1 c=2 c=3
t states trans. explanation states trans. explanation states. tramxplanation
3 3 2+1 5 6 4+1 7 9 6+1
7 9 4+2+41 21 30 16+4+1 43 63 36+6+1

15 21 8---+1 85 126 64+---+1 259 387 216----+1
31 45 16+---+1 341 510 256----+1 1555 2331 1296---+1
63 93 32+---4+1 13652046 1024---+1 9331 13995 7776 ---+1
127 189 64----+1 5461 8190 4096----+1 55987 83979 46656---+1

oOUhRAWNE

4.4 An On-Demand Construction

A slight improvement to the precomputation of (28) is ob¢airby the on-demand
computation of HasMingr This idea is used in (36), where Grammar is restricted
to the pair of the orthographical strizgand the empty string.

Bot(x,y) = L({(x.Y)}) o Lexicon (35)
Grammayyye)} = (.- ((Bot(x,x) o Abstrac oReduce- --oReducg o 1¢. (36)
~~

t t

The worst-case size complexity of the finite-state repriediem of Grammar x ¢),

is still exponential td, but the average-case complexity of (36) can be much smaller
than the complexity of the constant grammar (28). This aslpridctical applicabil-

ity on similar grounds as some previous parsing approadfasteratively verify
labeled bracketing (Roche 1997, Oflazer 2003).

5 A Non-Linear but Efficient Approach

In the above, we have seen that although the parser can eseeped as a rational
relation that can be applied in linear time to the input gfrithe hidden grammar
constant does not guarantee that the relation could alwaysdiricted efficiently

to an orthographical string. There are situations where @grguarantees for the
worst-case complexity.

16 Anssi Yli-Jyra

This section describes algorithms that do not fully elateotiae composition (28)
of the relations. Instead, the algorithms compute the caitipa indirectly through
intermediate languages. The space complexity of eachmietdiate representation
is not linear to the length of the sentence because theiloegsire removed. Since
we never compute the composition as a whole, the algoritmenstil more practical
than the naive approaches that construct HasMinarvne way or another.

5.1 Forgetting Composition

If Grammaryy¢); is immediately applied to the paix,€), we may replace, in (37),
the input side of the composition with the empty string arnil @mpute the same
weight for (x,€).
Grammafx,€) = Im((... ((Bot(g, x) o Abstrac) c Reducg- - - o Reducgoly).
—~—

t t

(37)

The effect of the modification is significant. It basically kea the composition to
forget everything that is contracted. Since the matchingsad brackets are forgot-
ten, the details of the contracted brackets are not contjplicthe further process-
ing. The forgetting effect can be implemented also via tpas as in (38).

Grammafx,€) =Im([...[[Bot(x,x)o Abstracto Reduce..] o Reducéol,), (38)
~~

t t
where[X] = Projp(X).

The time complexity of this composition-projection methsdinear tot and to the
worst-case time complexity of the iteration rounds.

5.2 A Preliminary Complexity Analysis

In order to analyze the space complexity of the minimizedssiaf the projections,

| carried out some experiments. In these experiments, th&bau of tokens was

n < 80 and the number of iteratioms< n— 1, which is sufficient for obtaining all
parses. A highly ambiguous lexicon was modeled by replaBwtgx, x) either with
model (13a), wher€ 4 contains dependent-side brackets &patontains head-side
brackets, or with model (13b), wheFg consists of brackets that encode undirected
arcs.

(13) a. 1(ld(FieUrn)y (+FiEUrmrH™L))
b 1(d(Iy (FH)™ 1)

On Dependency Analysis via Contractions and Weighted FSTs 17

The first model (13a) gives rise to rooted trees and (13b) toaiad ones. Bilexical
brackets were modeled by adding token numbers to the regpdrackets. The
contraction rules of the grammar are restricted to thosé@fhapea # B—1,
wherea, B CT.

In the experiments, | measured the size (hnumber of statea@mber of transi-
tions) of minimal (unweighted) finite-state transduceed ttorrespond to the firstin-
termediate resulf[Bot(x, x)] o Reducé and the subsequent composition-projections
in (38). To reduce the number of necessary experimentaniredied some dimen-
sions with simple tests. These tests gave the followingulisesults:

e The sizes of intermediate results grow only by a constanbfaghen we switch
from unrooted trees to rooted trees.

¢ [fthe lexical differences were reduced, the size of thedatgntermediate result
would be become smaller. Thus, the bilexical bracketinggmés the maximal
complexity.

¢ If the number of functional categories of the dependenciebbbs, the number
of transitions will double too, but the number of states doatschange.

My main experiment focused on unrooted bilexical brackgtiithout depen-
dency functions. The models of inputs consistingno£ 20,...,80 tokens were
compared in order to see how the sizes of the intermediatéisés bilexical parsing
grow as a function of. For all sentence lengths, tfie/2 — 1) iteration produced
the largest result (Table 3).

In Table 3, the number of transitions in minimized projectidgs almost quadratic
(the exponent is between 1.60 and 1.87) to the number ofstEtés motivates the
observation that the complexity of the algorithm is notéineon. In each interme-
diate result, the contractions shorten the strings, whiedsgin the finite-state rep-
resentations, rise to epsilon removal and a quadratic nuoflimnsitions. Besides
the epsilon removal, the finite-state library automaticpkrforms determinization
and minimization of the finite-state representations ofgfzgections.

Table 3 The sizes of the projections of the first, the fifth and th&2 — 1) applications

1t iteration 81 iteration (n/2— 1) iteration

n states trans. exp. n2 states trans. 6 secs (n/2—1) states trans. exp.

20 38 834 185 800 90 1974 2400 .06 9 110 2410 1.66
30 58 1854 1.85 1800 150 4794 5400 .10 14 240 7665 1.63
40 78 3274 1.86 3200 210 8814 9600 .19 19 420 17620 1.62
50 98 5094 1.86 5000 270 14034 1500 .34 24 650 33775 1.61
60 118 7314 1.87 7200 330 20454 21600 .58 29 930 57630 1.60
70 138 9934 1.87 9800 390 28074 29400 .94 34 1260 90685 1.60
80 158 12954 1.87 12800 450 36894 38400 1.45 39 1640 134440 1.6

In Table 3, the number of states in the first intermediatelrés2(n— 1) and
in the largest intermediate result the number of statescat#d with the function

18 Anssi Yli-Jyra

(n/2)(n/2+ 1). The number of transitions in the largest intermediate [te=in-
cides with the functiom(n/2+1)(n/2+1) — (n/2).

Usually, howevert is fixed and much smaller tham The table indicates that
whenn doubles from 20 to 40 and 80, the number of transitions in tseifiterme-
diate result grows by the factor$ % and 298 and the fifth intermediate result by
the factors 21° and 297, This indicates that the number of transitions in a fixed in-
termediate result, such as the first and the fifth one, is kg t@an®) wheresis close
to 2. The number of iterations does not have any drastic teffie¢he space com-
plexity, since the 5th intermediate result, for examples leas than 6 transitions.
As the number of compositions is boundedtbye actually compute only a fixed
number of intermediate projections. The transition coxipteof each minimized
intermediate result seems to bedxit n?).

Assuming that the required time would be linear to the sizé®@fesults, the total
time complexity of computing the value of Gramrfrae) would beO(t?n?). But
Table 3 displays the running times for the fifth iterationmdwsing an unweighted
finite-state library (foma). The measured running time appéo be inO(n?) since,
e.g., log(1.45/.19) = 2.93. The experiment does not allow us, however, to conclude
that an implementation with a quadratic time complexity lddee impossible. The
contributions of the determinization and minimizationpstend the actual library
implementation have not been analyzed yet.

The current experimental analysis has assumed that thenmalixiambiguous
sentences and grammars are asymptotically at least asitfifficpractical sentences
and grammars. | have currently no complete proof for thismgdion, but | believe
that the complexity of a realistic situation differs onlydiarly from the current
artificial situation. Clearly, the assumption prompts farthier study.

The current analysis does not fully apply to the weighteckc&nce weighted
determinization and minimization (Mohri 2009) can move theights from the
original places, there is a danger that the intermediatdteegrow more than nec-
essary. The detailed analysis of the weighted case is pustido further work.

5.3 Memoizing Composition

An efficient decision method for grammatical strings in (8&ds us halfway to
obtaining some if not all parses efficiently. This requiressing the computations
done during the decision process. Therefore, the integedésults are memoized
inductively to variables Up ..., Up,; by setting

Upy = [Bot(x,x) o Abstract, (39)
[

Up; = [...[Upyo Reduce..] o Reducé= [Up,_; o Reducé (40)
~~

In the end, Up(g, ¢) tells the weight of the best parse.

On Dependency Analysis via Contractions and Weighted FSTs 19

Now we could comput&-bounded best restrictions iteratively in order to obtain
(at mostk) best parses. This is achieved by processing the intermeddiselsi from
the top levelt, back to the lowermost level 0 and by filtering the lower lewéh
the information on the partial parses of the best patses.

If xis a grammatical string, the support of the first downwarellevn, contains
the encoded trivial graplg, whose top-down weight is 1:

D = 1(SupUp; o 1)). (41)

Foreachlevele {t—1,...,2 1}, we first compute DnSuppgthat contains partial
parses of the best parses. The best parses are selected lmsthef their total
weight, whose factors come from the YReduce and Dn; components. After
this, we compute Dnwhich contains the same strings with the top-down weights
only.

DnSupport= SupfBestProj (Up; c Reduce Dn;1,k)), (42)
Dn; = Proj; (1(DnSupport) o Reduce Dn.1). (43)

The last level, Dg, is computed differently:
Dno = BestProj(Proj,(Bot(x, X)) o Abstract Dng, k). (44)

In the end, the support and the image ofgl@ontains up tk parses and the best
weight, respectively. We can now define the selectiok laést parses by

BestParsésx, k) = Id~1(SupdDny)). (45)

The previously defined set BestParsek) in (33) does not necessarily coincide
with BestParségx, k) in (45), because the different methods may pick a different
selection from the best parses.

The total time complexity of this best-parse algorithm isnilwated by the
bottom-up phase, because extracting the kgstrses from the memoized cascade
Upy, ..., Up,_4 takes only linear time to the size of the memoized finiteestains-
ducers. This result makes use of the linear time compleXitie@shortest-distance
algorithm for acyclic weighted automata (Mohri 2009).

The same parser algorithm is applicable with non-projectiontraction rules.
However, the time complexity of the resulting non-projeetparser depends on the
specifics of the rule component and remains open for the temegb

5 These minorization and “majorization” phases could be comparéuetforward and backward
procedures used in trellis algorithms for Hidden Markov Madel

20 Anssi Yli-Jyra

5.4 Allowing Spurious Ambiguity

Since we usenaximurras the additive operation for the weights, the spurious ambi
guity does not actually affect the weights of the parsess Bhiservation allows us
to avoid Reduce and use FreeReduce instead. That is, thengrasemantics will
be retained even if we replace HasMipaith HasMinof, defined by

HasMinof = FreeReduce- - - o FreeReduce (46)
t

Similarly, the use of Reduce could be replaced with FreeBed the forgetting
composition. In memoizing composition, the change appbes provided that we
then extract only the best parde=f 1).

In practice, FreeReduce is much easier to construct thandeett also induces
smaller projections (Table 4) and provides much fasteriegipbn to long sentences.
This is explained by the fact that the states in the compmuwsitiith FreeReduce do
not keep track of the number of applied contractions. On ¢timérary, the obligatory
contractions in Reduce expand the state space of the caiopssand the projec-
tions, which also complicates the subsequent epsilon raindeterminization and
minimization steps.

Table 4 The sizes of the projections after applying FreeReduce, BRdrse$x) (now avoided)

1stiteration & iteration t iterations witht =n—1 Parse)
n states trans. states trarfe? +2n— 1) tot.secs tot.secs parses statesin fsa
10 10 119 10 119 119 .04 .04 246675 2036
20 20 439 20 439 439 .05 .10 16332922290300 2097130
40 40 1679 40 1679 1679 .08 .34 A% 1072 22x1012
60 60 3719 60 3719 3719 14 1.80 5410 23x108
80 80 6559 80 6559 6659 27 4.50 Ak 1002 24x10%4

| experimented with forgetting composition that uses FeiRe. By comparing
the lines fom = 40 andn = 80 in Table 4, the total time complexity of the projective
parser (unrooted trees= n— 1) appears to be i®(n>"3) since log(4.5/.34) =
3.73. However, if we fixt = 5, the total time complexity appears to be quadratic
to n since log(.27/.08) = 1.75~ 2. Since this is linear to the transitions in each
projection, it appears that the worst-case complexity 3(n?) in general.

Table 4 shows also the total number of unrooted trees (eesggs) for sentences
of different lengths. In the worst case, the growth in the hanof trees is really fast.
The resulting sequence coincides with the sequence A0Oh78kbane’s On-Line
Encyclopedia of Integer Sequences (OEIS, oeis.org).

If all the strings that encode the parses for a 20-word seetarould be stored
into one finite-state automaton (fsa), this would requireéhe worst case, more than
2 million states (the last column in Table 4). In general,shquence of the worst-

On Dependency Analysis via Contractions and Weighted FSTs 21

case state counts 2 — n— 2, for the single-fsa representations coincides with the
Eulerian number$1>7 (i), ... (the sequence A000295 in OEIS). This demonstrates
that the memoized cascade is much more efficient repregsmtat the parse forest
than a single automaton.

A drawback in using FreeReduce is that only one optimal peaaebe extracted
directly from the memoized cascade, because extrak{pagses can actually result
in extracting the same parsekrdifferent ways. In order to obtain the next optimal
parse, we can “remove” the best parse from(Bot) and rerun the parser on the
remainder set. This may be inefficient in practice.

6 Comparison to the Prior Work

The body of research on dependency parsing is already lath s impossible to
recall all approaches. The most relevant prior work combiependency parsing
and string-based finite-state methods, or at least suggestsa combination.

e Constraint Grammar (CGparsers perform morphological and surface-syntactic
disambiguation and dependency linking.

— The core CG parsers refine the ambiguity classes of wondgiitely, accord-
ing to the contextual conditions and rule application oirdgr

— Mature CG variants (Tapanainen 1999, Didriksen 2010)ideoactions for
inserting dependency links between two words and for priogdua single
dependency analysis for each sentence.

— Finite-state automata are used in some CG implementatiduisien 2011,
Yli-Jyra 2011).

e Finite-state intersection grammar (FSIGas been used to parse dependency
structures of varying specificity and complexity.

— Koskenniemi et al. (1992) denote the syntactic functidnsards with tags
that additionally specify the direction of the possible gmors, leaving pos-
sible attachment ambiguity unresolved.

— Yli-Jyré (2005) encodes every dependency link with a phiprackets be-
tween the nodes. With such encoding, every projective digresy grammar
is representable with an intersection of a strictly locédigtable regular lan-
guage and a language that balances labeled brackets. Tesepftion has
efficient implementations, but the grammar semantics igdbas inviolable
properties of the parses.

e Constraint network parsersombine consistency-enforcing methods with back-
tracking search in order to resolve ambiguity and to procameses as search
results.

— Maruyama (1990) presents a constraint network parsecémaproduce non-
projective dependency graphs.

22 Anssi Yli-Jyra

— Debusmann et al. (2004) implemented a dependency parsseveonstraint
network can be extended with word order and dominance @intdr

e Finite-state cascadeare used in deterministic parsing approaches:

— Joshi (1996) describes retrospectively a parser (fron®)L8%at used finite-
state cascades. Each level in the cascade correspondedetieranighistic
finite-state transducer that read the input either left ghtrior right to left
and marked syntactic units with various kinds of brackets.

— Abney (1996) also applies finite-state cascades to phtasgige analysis.

e |terated finite-state transducersan bind the rule applications with movable
markers. The parsing terminates if a fixed point is reached.

— Roche (1997) iterates finite-state transducers in ordg@atee context-free
grammars, transformation grammars and tree adjoining @ The ap-
proach does not include hierarchical ambiguity packing,itodemonstrates
the computational power of iteration.

— Elworthy (2000) uses iterated deterministic finite-stamsducers that are
augmented with instructions that insert links to the readgt Elworthy’s de-
terministic finite-state parser includes an ambiguitykirag mechanism that
adds multiple heads to phrases to avoid the attachment aibighanks to
the deterministic parsing that does not elaborate all auilyigthe parsing
time isO(n?) for an input ofn words.

— Oflazer (2003) uses an iterated finite-state transduceintiptements projec-
tive dependency parsing. The approach is robust but dogaciatle hierar-
chical ambiguity packing.

e Bilexical dependency parsetan carry out projective dependency analysis with-
out lexical functions (Eisner 1997).

e Restarting automatperform a sequence of monotonic rewrite steps that reduce
the length or weight of the input tape. Platek et al. (2003}ivate restarting
automata as a tool for dependency analysis.

6.1 The Distinctive Characteristics of the Current Approach

Although it is partially similar to the prior approachese tturrently presented algo-
rithm has clear distinctive characteristics that make\t as for now.

In comparison with most dependency parsers, the curretgrydgiffers by as-
suming aparametric bound for the number of overlapping arfthe time complex-
ity is similar to Elworthy’s parser, but the method computeglicitly all parame-
terized parses

The iterated application of Reduce reminds us of the fixppiethod (Roche
1997) and of finite-state cascades (Abney 1996). A strikiffgrénce from them is
that the current (bottom-up) cascade produces nothing asiiput.

On Dependency Analysis via Contractions and Weighted FSTs 23

Some of the cascading parsers resolve the ambiguity on fiedfadeterministic
heuristics and underspecification, while the current sgsesolves the ambiguity
on the basis of the lexical categories (functional tags tecal pairs), the perfor-
mance constraints, and the weights

The analysis-by-elimination approach of the current sgsteminds of one-level
intersection grammars that assume a set of candidate ertesr input. In contrast
to the early practice in FSIG (Voutilainen 1994), the depsmay bracketing of the
current system specifiedall syntactic tree

The author has used a similar encoding for trees in an eagligilar approxima-
tion method for dependency grammars (Yli-Jyra 2005). Haxethe current work
operates omveighted rational relationsather than parallel constraints.

The use of rewrites rather than constraints as a means fidatiag the arcs is
familiar from Oflazer’'s dependency parser (Oflazer 2003wei@r, the new parser
contracts the validated bracketsid memoizes the intermediate resuifsthe cas-
cade, which improves efficiency.

Parsing by contractions is a familiar approach from reistguidutomata and con-
textual grammars. It is not yet known if the currently présememoization tech-
niqueis completely new in the context of restarting automatajtonfy prove use-
ful in practice. The current contractions operditectly on the encoded dependency
trees and there is a performariireit for overlapping rule applications

Deterministic contractions and functional rational riglas are also a natural ap-
proach to Constraint Grammar parsing. However, the cumpptoachmanages
sentence-level ambiguigndcombines deterministic contractions with full parsing

7 Conclusions

The paper has described a new approach to dependency parkmgresented
finite-state approach uses three new techniques: depgnteaketing, bracketed
arc contraction and cascade memoization. The paper haanpedshe final parsing
algorithm of Sect. 5.4 via an abstract calculus of weigh&idnal relations and mo-
tivated its efficiency through a series of experiments arsijtechoices. In addition,
we provided new interpretations for the integer sequen@xlA64 and A000295,
which might be of interest in applied mathematics.

7.1 Practical Benefits

In the case of projective parsing, the proposed memoizimgimma algorithm pro-
duces optimal parses and is efficient: its time complexityeaps to be irO(t n?)
according to the analysis of the method that uses FreeReahal(t°n®) according
to the preliminary analysis of the method that uses Reduce.

24 Anssi Yli-Jyra

The proposed parser can be tailored for functional and ibééxdependency
parsing. Under the performance-motivated parantdtarthe overlapping arcs, the
parse forest contains all plausible parses of the proggti@mmar. The parse forest
is extendible to non-projective trees that contain cragaits.

The method has a rational design and it is easy to implemeht finite-state
methods. The packed weighted parse forest is computedghroomposition and
projection, two commonly used high-level finite-state @piens, and the memoiza-
tion of the internals of the cascade allows for efficientiestal of the parses.

7.2 Further Work

There are several directions for further study. (i) The Wegiructure could be gen-
eralized to arbitrary semirings in order to enable the gaitgrof “semiring pars-
ing”. (ii) A statistical parser will have to explicate howetlweights in Grammar
are set and whether they behave like probabilities or indisame other kinds of
weights. Furthermore, the actual implementation of theerurillustrative system
would replace the semiring of the nonnegative real numbétstihe tropical semir-
ing of their negative logarithms (Mohri 2009) in order to irape the numerical sta-
bility of the algorithm. (iii) The use of non-projective cwactions should be studied
further. There are certainly some strategies to reduceuh#ar of non-projective
parses while maintaining high recall. (iv) More insightatihe packed forest and the
growth of the intermediate results is needed. The currgrerxents were based on
unweighted bilexical grammars where all dependencies pessible. In practice,
the possible argument structures are more specific, whidtesnine average case
more interesting than the limited experimental resultvioled so far. (v) The cur-
rent method throws away all partial parses. For text pansimgoses, the parser can
be modified to allow dependency graphs that consist of urexied trees.

The possible extensions of the presented method includattigiing option of
combining statistics and linguistic knowledge into the saystem. Adding hand-
written linguistic constraints to Grammar is technicallyspible and would allow
human interventions to complement statistically estimhggarameters and would
help us finish the precision and recall of the practical impatation of the ap-
proach.

Acknowledgements The research has been made possible by the Academy of Finland grant
number 128536 “Open and Language Independent Automata-BasemiRe Production Meth-

ods for Common Language Research Infrastructure”, and, morethgcey the FIN-CLARIN
project steered by Krister Lindén. Kimmo Koskenniemi, Pasi TapemiAtro Voutilainen and
Lauri Carlson supported my first investigations into contradtiorfinite-state intersection parsing
since 1995. More recently, my thinking has benefitted from sgvetated discussions with Car-

los Gbmez-Rodriguez, Jason Eisner, Joakim Nivre, Marco Kuhlnsmh,John Hale. During the
multi-year creative process, | felt several times need for hégenpowerment. | look gratefully
back to every inspired moment.

On Dependency Analysis via Contractions and Weighted FSTs 25

| am indebted to the prior anonymous reviewers of the CIAA 2a4d FSMNLP 2011 meet-
ings, as well as Aarne Ranta, Wanjiku Nganga, Jussi PiitulasreshMiikka Silfverberg for their
valuable comments pointing out many areas for further studyr@imaining imperfections in the
text are mine, of course.

References

Abney, Steven. 1996. Partial parsing via finite state cascadeBroteedings of the ESSLLI'96
Robust Parsing Workshoprague, Czech.

Debusmann, Ralph, Denys Duchier, and Geert-Jan M. Kruijff42@xtensible dependency gram-
mar: A new methodology. IfProceedings of the COLING 2004 Workshop of Recent Ad-
vances in Dependency Grammad. Geert-Jan M. Kruijff and Denys Duchier, 78-84. Geneva,
Switzerland.

Didriksen, Tino. 2010.Constraint Grammar Manual: 3rd version of the CG formalism vatian
GrammarSoft ApS, Denmark. http://beta.visl.sdu.dk/cg3/visiedf.

Eisner, Jason. 1997. Bilexical grammars and a cubic-time prasiibiparser. InProceedings of
the 4th International Workshop on Parsing Technologis-65. MIT, Cambridge, MA.

Elworthy, David. 2000. A finite state parser with dependenaycstire output. IrProceedings of
Sixth International Workshop on Parsing Technologies (IWPT200ento, Italy: Institute for
Scientific and Technological Research.

Gomez-Rodriguez, Carlos, and Joakim Nivre. 2010. A transhigsed parser for 2-planar depen-
dency structures. IRroceedings of the 48th Annual Meeting of the Association tonguta-
tional Linguistics (ACL 201Q)1492—-1501. Uppsala, Sweden.

Gomez-Rodriguez, Carlos, David Weir, and John Carroll. 200&csiRg mildly non-projective
dependency structures. Rroceedings of the 12th Conference of the European Chaptaeo
Association for Computational Linguistics (EACL 200291—-299.

Hulden, Mans. 2011. Constraint Grammar parsing with left and sglyuential finite transduc-
ers. InProceedings of the 9th International Workshop on Finite Stagthdds and Natural
Language Processing (FSMNLP 20139-47. Blois, France: Association for Computational
Linguistics. http://www.aclweb.org/anthology/W11-4406.

Joshi, Aravind K. 1996. A parser from antiquity: an early apaiien of finite state transducers
to natural language parsing. Extended Finite State Models of Language, Proceedings of
the ECAI'96 Workshoped. Andras Kornai, Studies in Natural Language ProcessBeR®
Cambridge University Press.

Koskenniemi, Kimmo, Pasi Tapanainen, and Atro Voutilainen. 199@mpiling and using finite-
state syntactic rules. Ib4th COLING 1992, Proceedings of the Conferenadume 1, 156—
162. Nantes, France.

Kuhlmann, Marco. 2010.Dependency structures and lexicalized grammars. An algebnaic a
proach volume 6270 of_ecture Notes in Artificial Intelligence, FoLLI Publicatisron Logic,
Language and InformatiorBerlin, Heidelberg: Springer.

Kuhlmann, Marco, and Giorgio Satta. 2009. Treebank gramménigaes for non-projective
dependency parsing. Rroceedings of the 12th Conference of the European Chaptéreo
Association for Computational Linguistics (EACL'08)y8—486.

Lombardo, Vincenzo, and Leonardo Lesmo. 1996. An Earley-tgpegnizer for dependency
grammar. Inl6th COLING, Proceedings of the Conferepeglume 2, 723-728. Copenhagen,
Denmark.

Maruyama, Hiroshi. 1990. Structural disambiguation with caistrpropagation. 1128th ACL
1989, Proceedings of the Conferend&—38. Pittsburgh, Pennsylvania.

Mohri, Mehryar. 2009. Weighted automata algorithms.Handbook of weighted automated.
Manfred Droste, Werner Kuich, and Heiko Vogler, 213-254irgyar.

26 Anssi Yli-Jyra

Neuhaus, Peter, and Norbert Broker. 1997. The complexitycofgeition of linguistically adequate
dependency grammars. Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics and the 8th Conf. of the Europefayier of the Association for
Computational Linguistigs337-343. Madrid, Spain.

Nivre, Joakim. 2006. Constraints on non-projective dependpacsing. InProceedings of the
11th Conference of the European Chapter of the AssociatioifC&nputational Linguistics
(EACL 2006) 73-80.

Nivre, Joakim. 2008. Algorithms for deterministic incrementgbeledency parsingComputa-
tional Linguistics34:513-553.

Oflazer, Kemal. 2003. Dependency parsing with an extended-ftéite approaclComputational
Linguistics29:515-544.

Platek, Martin, Markéta Lopatkova, and Karel Oliva. 200&sRrting automata: motivations and
applications. InNorkshop ‘Petrinetze’ and 13. Theorietag ‘Formale Sprachen uridrAaten;
ed. M. Holzer, 90-96. Institut fir Informatik, Technische Usrsitat Minchen.

Roche, Emmanuel. 1997. Parsing with finite-state transducef@ite-state language processing
ed. Emmanuel Roche and Yves Schabes, chapter 8, 241-281. CgenMassachusetts: MIT
Press.

Tapanainen, Pasi. 1999. Parsing in two frameworks: finite-statéuactional dependency gram-
mar. Doctoral Dissertation, University of Helsinki, Finland.

Tesniére, Lucien. 195%Iéments de syntaxe structuralaris: Editions Klincksieck.

Voutilainen, Atro. 1994 Designing a parsing grammaiNumber 22 in Publications of the Depart-
ment of General Linguistics, University of Helsinki. Helsinkinkind: Yliopistopaino.

Yli-Jyra, Anssi Mikael. 2003. Multiplanarity — a model for depkamcy structures in treebanks.
In TLT 2003. Proceedings of the Second Workshop on Treebanksireguidtic Theoriesed.
Joakim Nivre and Erhard Hinrichs, volume 9M&thematical Modelling in Physics, Engineer-
ing and Cognitive Science$89-200. Vaxjo, Sweden: Vaxjo University Press.

Yli-Jyra, Anssi. 2004. Axiomatization of restricted non-prdjee dependency trees through finite-
state constraints that analyse crossing bracketing8rdeoeedings of the COLING 2004 Work-
shop of Recent Advances in Dependency GramB88#40. Geneva, Switzerland.

Yli-Jyra, Anssi. 2005. Approximating dependency grammars thmontgrsection of star-free reg-
ular languagesinternational Journal of Foundations of Computer Scieti6e565—-579.

Yli-Jyra, Anssi. 2008. Transducers from parallel replace ratesmodes with generalized lenient
composition. InFinite-State Methods and Natural Language Processing, 6tbriational
Workshop, FSMNLP-2007. Revised Papé&&7/—212. Potsdam, Germany: Potsdam University
Press.

Yli-Jyra, Anssi. 2011. An efficient constraint grammar parser baseidward deterministic au-
tomata. InProceedings of the NODALIDA 2011 Workshop Constraint Gramnpgtigations
ed. Eckhard Bick, Kristin Hagen, Kaili Midrisep, and Trond Sterud, volume 14 dNEALT
Proceedings Serie$0-60.

Yli-Jyrd, Anssi, and Kimmo Koskenniemi. 2004. Compiling contextestrictions on strings
into finite-state automata. IRroceedings of the Eindhoven FASTAR Days 2@@#4 Loek
Cleophas and Bruce W. Watson, number 04-40 in Computer SciezperR. Eindhoven, The
Netherlands: Technische Universiteit Eindhoven.

Yli-dyrd, Anssi, and Matti Nyk&nen. 2004. A hierarchy of mildlgntext sensitive dependency
grammars. IrProceedings of the 9th conference on Formal Grammar (FGN&064) ed.
Gerald Penn, Gerhard Jager, Paola Monachesi, and Shuly Wih&ie-165.

