
On Dependency Analysis via Contractions
and Weighted FSTs

Anssi Yli-Jyrä

Abstract Arc contractions in syntactic dependency graphs can be usedto decide
which graphs are trees. The paper observes that these contractions can be ex-
pressed with weighted finite-state transducers (weighted FST) that operate on string-
encoded trees. The observation gives rise to a finite-state parsing algorithm that
computes the parse forest and extracts the best parses from it. The algorithm is cus-
tomizable to functional and bilexical dependency parsing,and it can be extended
to non-projective parsing via a multi-planar encoding withprior results on high re-
call. Our experiments support an analysis of projective parsing according to which
the worst-case time complexity of the algorithm isquadraticto the sentence length,
and linear to the overlapping arcs and the number of functional categories of the
arcs. The results suggest several interesting directions towards efficient and high-
precision dependency parsing that takes advantage of the flexibility and the demon-
strated ambiguity-packing capacity of such a parser.

1 Introduction

Finite-state transducers (FSTs) – and their underlying string relations – specify
elegant but general parsing algorithms. In this contribution, the methodology of
weighted FSTs is applied to efficient dependency grammar verification and search
for the globally best parse in a dependency-based forest. The solution would not
be as practical without memoizing composition and a simple implementation of arc
contractions in dependency analyses, which are perhaps themost original aspects of
this work.

Anssi Yli-Jyrä
Department of Modern Languages, University of Helsinki, Finland,
e-mail: anssi.yli-jyra@helsinki.fi

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14927817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Anssi Yli-Jyrä

Dependency grammar (Tesnière 1959) is typically implemented in computational
linguistics by parsing algorithms that compromise betweenefficiency and the lin-
guistic accuracy in different ways:

• Many practical dependency parsers are based ondeterministic parsing algo-
rithms (Nivre 2008) that can produce all kinds of trees but depend onheuris-
tics that may not always find the globally optimal parse. Thiscompromises the
accuracy or recall of the analysis, but yields practically fast parsers.

• Projective dependency parsinggives higher accuracy because the globally opti-
mal parses among all the projective parses can be found. The time complexity
of projective parsers is comparable with context-free parsers: for the sentences
of length n, it is in O(n3) in the case of functional and bilexical dependency
grammars (Lombardo and Lesmo 1996, Eisner 1997). However, the projectivity
condition for the parses restricts the admissible analysesto the subset of depen-
dency trees that do not contain dependencies that cross one other in the drawings
of the trees. The condition is fully explained in Yli-Jyrä (2005) and Kuhlmann
(2010).

• Non-projective dependency parsersrelax the projectivity condition by allowing
crossing dependencies. The admissible parses thus includeall possible depen-
dency trees, some of which are non-projective. Non-projective trees are common
in treebanks for major European languages (Kuhlmann 2010).However, unre-
stricted non-projective parsing is intractable (Neuhaus and Bröker 1997).

• Parameterized non-projective dependency grammars(Yli-Jyrä and Nykänen
2004, Nivre 2006, Kuhlmann 2010) have been proposed in orderto address the
precision, recall and efficiency considerations. For example, well-nested depen-
dency trees with bounded gap-degree can be parsed in polynomial time (Gómez-
Rodríguez et al. 2009, Kuhlmann and Satta 2009). The time complexity is in
O(n7) – quite much in comparison to deterministic parsing. More research is
thus needed in order to make parameterized non-projective parsers practical.

My objective is to describe a practical parsing algorithm (in fact a family of al-
gorithms) that takes advantage of partial projectivity anda performance-motivated
parameter,t, for overlapping dependencies. In the case of unrooted projective trees
with a fixed bound fort, the current analysis of the worst-case time complexity of
the final algorithm (in Sect. 5.4) is based on evidence ofO(n2) space andO(n2)
time complexities that are measured using an efficient finite-state library. I am argu-
ing that the approach is extendible towards non-projectiveparsing (then the actual
complexity bound depends on subtle properties of the grammar, being, in the worst
case, exponential to the number of dependencies that overlap but are not nested).

My secondary aim is to demonstrate the relevance of string-based finite-state
methods in packing and processing syntactic parse forests.Therefore, I will describe
the algorithm using weighted rational relations whose operations can be translated
to operations on weighted finite-state transducers. In order to process trees with
string automata, the work develops three new techniques:

1. The first new technique is to check the treeness of dependency graphs viaarc
contractions. Under the contractions, the notions of the bottom and the top in

On Dependency Analysis via Contractions and Weighted FSTs 3

the reduction tree are no more based on the dominance or precedence relations
but on the minorization relation.1 Contractions exhibit also a surprising ability to
make the crossing dependencies local.

2. The second technique is thedependency bracketingfor various kinds of depen-
dency trees. Dependency bracketing with assigned planes isexpressive enough
for non-projective parsing and it admits finite-state processing of contractions
in dependency forests. Dependency bracketing can be customized for functional
and bilexical dependency grammars.

3. The third technique is thememoizationof intermediate results in finite-state cas-
cades. Memoization allows for combining bottom-up and top-down filtering in
order to extract only the best parses. Memoization “tabulates” the found arcs via
epsilon removal after contractions in finite-state transducers.

The resulting method can be seen as an upgrade to a constraint-based dependency
parsing method (Yli-Jyrä 2005) that I developed during my Ph.D. studies.2 The pre-
decessor was based on a conjunctive decomposition of finite-state constraints that
restricted the set of lexicon-generated candidate parses.The new algorithm does not
only layerize the constraints (Oflazer 2003, Yli-Jyrä 2004,Yli-Jyrä and Kosken-
niemi 2004) but it also packs the local ambiguity and shares the subtrees.

2 The Input and Output Representations

In this section, I describe the graph representations manipulated by the parser and
give the general principles for validating dependency trees.

2.1 Functional Dependency Parsing

In terms of the outcome, the task of the dependency parser is to take a tokenized
orthographical string, such as (1a) and annotate it with oneor more dependency
trees3 as in (1b).

1 It would be interesting to study how the minorization relation compares with the derivation
relation of tree adjoining grammars. In both cases, the derived tree is manipulated from inside.
2 This article is published on the occasion of Professor Lauri Carlson’s birthday. As he co-
supervised my Ph.D. research together with Kimmo Koskenniemi a decade ago, it is now a great
privilege for me to write about these new advances in the research area where we started together.
3 The tree is drawn with thexdag.sty package written by Denys Duchier, Ralph Debusmann
and Robert Grabowski. For convenience, the orientation of the tree is flipped in the context of the
linguistic example that is typeset withexpex.sty.

4 Anssi Yli-Jyrä

(1) a. 〈time flies like an arrow〉

b. 〈time flies like an arrow〉

SUBJ ADVL
NOBJ

DET

The dependency trees of this work visualizesyntacticdependency relations, in con-
trast to deeper, semantic dependencies. A dependency is a link between adependent
word (Tesnière 1959: “subordonné”) and itshead(Tesnière 1959: “régissant”). By
convention, the arrowhead of each arc in the tree points, in this paper, to the depen-
dent node. The arc has a label that indicates what syntactic function is played by
the dependent word under the head. For example, the wordan in (1) is a determiner
(DET) for the wordarrow. Since it is quite common to add several uncoordinated
modifier words as dependents, the syntactic functions should not be confused with
mathematical functions.

The finite-state parser will encode the actual drawing via special markup that is
associated with the input string, as in the example (2).

(2) 〈time flies like an arrow〉
<SUBJ # SUBJ\/ADVL # ADVL> /NOBJ # <DET # DET\NOBJ>

The markup is based onbalanced dependency bracketing(Table 1) that gives
information on the dependency orientation, the syntactic function, and the lexeme.
The brackets are viewed as tags that annotate the tokenized string. The order of the
tags under each token mirrors the proximity of the connections in order to ensure
that nested brackets match neatly, and different kinds of brackets are chosen for
different kinds of trees, as demonstrated later in this paper.

Table 1 The dependency brackets

Left bracket Right bracket Head Corresponding arc Arc label

<SUBJ SUBJ\ on the right functional arc SUBJ

/OBJ OBJ> on the left functional arc OBJ

(SUBJ SUBJ) (by convention) undirected functional arc SUBJ

(OBJ OBJ) (by convention) undirected functional arc OBJ

time< \flies on the right bilexical arc –
time/ >flies on the left bilexical arc –

time()flies (not specified) undirected bilexical arc –
an()arrow (not specified) undirected bilexical arc –

In addition to the balanced brackets, the encoding includesa separator,# , that is
used to bound the nodes in the encoded dependency graph. The set of brackets and

On Dependency Analysis via Contractions and Weighted FSTs 5

the separator form the grammar alphabet,Γ. In addition, there is a corresponding
alphabet,Γ = { a | a∈ Γ}, that consists of the overlined variants of these symbols.

2.2 Bilexical Dependency Parsing

In fully data-driven parsing, the syntactic functions of dependencies are often un-
known. Therefore, a bilexical dependency tree (3) focuses on the dependencies be-
tween two lexical entries.

(3) 〈time flies like an arrow〉

Although the tree in (3) is very elegant without arc labels, the currently described
parser needs bracket labels in order to know about the syntactic properties of the
linked tokens. Provided that the possible lexical types arefixed, the internal tag
alphabet of the parser can be expanded with the brackets thatindicate the lexical
types (4). The expansion temporarily increases the redundancy in the encoding.

(4) 〈time flies like an arrow〉
time< # \flies flies/ # >like like/ # an< # \arrow>arrow

Although the linguistic aspects of dependency analyses would be an interesting
topic for further discussions, the rest of the paper will focus on the computational
properties of dependency tree processing.

2.3 The General Properties of Dependency Trees

Syntactic dependency trees have a number of crucial properties that we will need in
order to distinguish a valid parse from invalid parses.

• Every syntactic dependency tree is alabeled directed graph G= (V,Γ′,E) where

– V is the set ofnodes(vertices) that correspond to the tokens in the sentence;
– Γ′ = Γ−{#} is the set ofarc labels, and
– E ⊆V×Γ′×V is the set oflabeled arcs(aka directed labeled edges).

In the dependency tree drawings, the arc(d,x,h) is drawn asd
x
← h. The arc

indicates that noded depends on nodeh that is a head ford.
• Every syntactic dependency treeG is a labeled directed graph where every node

has at most one head. That is, the set of arcsE can be seen as a partial function
E : V→ (Γ′×V). Under this condition, we say thatG has thehead property.

6 Anssi Yli-Jyrä

• Every syntactic dependency tree is connected and acyclic. These properties are
not local graph properties and, therefore, their definitions require additional ma-
chinery. In this paper, the machinery consists ofcontractionsandminors:

Definition 1. Let G= (V,Γ′,E) be a labeled directed graph with the head prop-
erty. If there is an arc(d,x,h) ∈ E, then(d,x,h′) ∈ E implies h = h′. Thecon-
tractionof arc(d,x,h) produces a new graphH = (V ′,Γ′,E′) with

V ′ =V−{d}, (1)

E′ = (V ′×Γ′×V ′)∩ (E∪{(d′,y,h) | (d′,y,d) ∈ E}). (2)

The orthographical content corresponding to nodeh includes now implicitly the
content of noded.

Definition 2. In the current sense, a graph H is aminor of a directed graph G if
a copy of H can be obtained from G via arc contractions.4

Now we can test the connectedness and acyclicity as follows:

– A labeled directed graphG with the head property isconnectedif and only if
it has a trivial minorH = (V ′,Γ′, /0) where|V ′|= 1.

– A labeled directed graphG with the head property isacyclic if and only if it
has no minor graphH = (V ′,Γ′,E′) with a loop(d,x,d) ∈ E′.

• Every syntactic dependency tree is arooted tree. A connected labeled directed
graph with the head property is a rooted tree if there is exactly one independent
node, called aroot, and all the arcs point away from the root. In the example (1),
the root word is ‘flies’. All the arcs point away from this node.

It can be shown that a labeled directed graphG with the head property is a rooted
tree if and only ifG is connected and acyclic.

2.4 Validating Syntactic Dependency Trees

The relevant set of dependency trees are now characterized as acyclic and connected
labeled directed graphs with the head property. This characterization does not di-
rectly involve testing for the existence of a root. Instead,we must (i) check that no
word has two heads and (ii) prove the acyclicity and connectedness by contracting
non-loop arcs until a trivial graph is reached.

Some contractions can be performed in parallel. For example, (1) can be vali-
dated by two layers of contractions:

4 This definition excludes arc deletion that is normally included in the definition of graph minors.

On Dependency Analysis via Contractions and Weighted FSTs 7

(5) a. 〈time flies like an arrow〉

SUBJ ADVL
NOBJ

DET

b. 〈time flies like an arrow〉

NOBJ

c. 〈time flies like an arrow〉

An important observation of the current contribution is that the validation can
be implemented directly on bracketed dependency trees. In (6), the tags affected by
each contraction are indicated with an overline. A contraction of an arc(d,x,h) is an
internal contractionif h has some other connections andd is a head for some other
node. The contraction of theADVL arc in (6a) is an internal contraction if performed
before theSUBJarc has been contracted.

(6) a. 〈time flies like an arrow〉
<SUBJ # SUBJ\ /ADVL # ADVL> /NOBJ # <DET # DET\NOBJ>

b. 〈time flies like an arrow〉
/NOBJ # NOBJ>

c. 〈time flies like an arrow〉

The validation of bracketed trees is based on three principles:

1. Decodability.For each labelα∈ Γ−{#}, the left brackets<α and α\ are matched
with the corresponding right bracketsα\ and α> , respectively. Each pair of
matching brackets corresponds to an arc in the labeled directed graph.

2. Equicardinality.There is the same number of arcs and word boundaries. Every
boundary between two adjacent words is indicated with a hashsymbol (#). A
hash symbol is eliminated at the same time as the brackets. This ensures that a
loop cannot be eliminated because the left and right brackets are not separated
by any hash symbol. Thus, a cyclic dependency graph cannot befully reduced to
a trivial graph. If the graph is not connected, there remainsa word boundary that
is not eliminated, and the graph does not have a trivial graphas a minor.

3. Contiguity.The internal contraction of an arc(d,x,h) is allowed only if nodeh
corresponds to a contiguous string of brackets in the resulting graph. This prin-
ciple ensures that the resulting minor graph can be encoded with dependency
bracketing.

8 Anssi Yli-Jyrä

2.4.1 Ensuring Decodability

The bracket labels play a crucial role in non-projective dependency trees and in
minors obtained from them.

Any non-projective dependency tree can be bracketed when weadopt a multi-
planar decomposition for the arcs and corresponding brackets (Yli-Jyrä 2003). This
means that there is no limit for the complexity of non-projective trees, provided
that the number of available planes is not fixed. In bracketedencodings of bilexi-
cal dependency trees, multiplanarity seems presently to bethe only way to encode
crossing brackets.

A 2-plane encoding is already enough to achieve very high coverage (Gómez-
Rodríguez and Nivre 2010). Syntactic functions could further extend the set of non-
projective trees that can be encoded by allocating each function to a plane of its
own.

Example (7) shows that matching brackets of crossing arcs are distinguished us-
ing two planes, I and II.

(7) a. 1 2 3 4

b. 1 2 3 4
/I /I # I> /II # I> # II>

2.4.2 Ensuring Contiguity

A typical non-projective dependency tree contains a large subgraph that does not
contain crossing links. Therefore, it is often possible to reduce many non-crossing
arcs before it is necessary to contract any crossing arc.

An interesting observation is that contractions of non-crossing arcs often trans-
form a non-projective tree into a projective tree as demonstrated by Example (8)
that is obtained from the non-projective tree in (7).

(8) a. 12 3 4

b. 12 3 4
/I /II # I> # II>

Another interesting observation is that a non-internal contraction does not need to
merge adjacent positions in a bracketed tree. This producesa significant extension
to simple contractions that can be used to transform a non-projective tree into a

On Dependency Analysis via Contractions and Weighted FSTs 9

projective one. The power of non-internal contractions is illustrated by Example (9)
that reduces to (10).

(9) a. 1 2 3 4

b. 1 2 3 4
/I /I # <II # I> # II\I>

(10) a. 13 2 4

b. 13 2 4
/I # <II # II\I>

Many of the non-projective trees discussed in Yli-Jyrä (2003) and Kuhlmann
(2010) can be reduced to the trivial tree via contractions ofnon-crossing arcs. The
remaining non-projective trees can be reduced with the aid of non-internal contrac-
tions, because every nontrivial tree admits at least one such contraction.

3 Computing Weighted Minors

This section describes a mechanical, finite-state implementable deterministic method
whose purpose is to perform at least one contraction in any nonempty string.
The reader is referred to Mohri (2009) for a detailed exposition of algorithms on
weighted transducers.

In this article, the algorithms are specified with weighted rational relations whose
operations can be implemented through manipulation of finite-state transducers.

3.1 The Formalism of Weighted Rational Relations

In this paper, weights are nonnegative real numbers (R≥0∪{∞}) with the usual mul-
tiplication operation and themaximum(max) as the additive operation (i.e.,+ and
∑ denote the max operation). This set of weights gives us an easily understandable
starting point and supports Viterbi-decoding of the best parses.

Let Σ be an alphabet. The free monoid generated byΣ is denoted byΣ∗. The
neutral element of this monoid is the empty string,ε. The set of rational (i.e., regular)
languages includes the finite subsets ofΣ∗ and is closed, for any two elementsL, M,

10 Anssi Yli-Jyrä

under the rational operations such as concatenationL ·M, star (L∗), the Boolean
operations (L∪M, L∩M, L−M, etc.).

The set of (binary) rational relations overΣ∗ is also closed under concatenation,
star and union and includes rational relations such as

Id(L) = {(x,x) | x∈ L}, (3)

L×M = {(x,y) | x∈ L,y∈M}. (4)

Let R⊆ Σ∗×Σ∗ be a rational relation. In a pair(x,y) ∈R, x is called theinputstring
andy is called theoutputstring. Define the characteristicweighted rational relations
1(R),1ε : (Σ∗×Σ∗)→ (R≥0∪{∞}) by

1(R)(x,y) =

{

1 (x,y) ∈ R

0 otherwise,
, (5)

1ε = 1(Id(ε)). (6)

Simple weighted rational relations can be defined with the comprehension notation,
but the notation itself does not guarantee that the defined set is a weighted rational
relation. Instead, the set of weighted rational relations over the alphabetΣ∗ and the
weightsR≥0∪{∞} (with max and multiplication) is closed under certain operations.
Let T andU be weighted rational relations(Σ∗×Σ∗)→ (R≥0∪{∞}) and letw∈
R≥0∪{∞}. Define theleft product, union, composition, concatenation, star and the
projectionoperations by

w ·T = {((x,y),w ·T(x,y)) | x,y∈ Σ∗}, (7)

T ∪U = {((x,y),T(x,y)+U(x,y)) | x,y∈ Σ∗}, (8)

T ◦U = {((x,z), ∑
y∈Σ∗

T(x,y)U(y,z)) | x,z∈ Σ∗}, (9)

T ·U = {((x,y), ∑
x=x0x1,y=y0y1

T(x0,y0)U(x1,y1)) | x,y∈ Σ∗}, (10)

T∗ = {((x,y), ∑
n∈N

x=x1...xn
y=y1...yn

T(x1,y1) . . .T(xn,yn)) | x,y∈ Σ∗}, (11)

Proj1(T) = {((x1,x1), ∑
x2∈Σ∗

T(x1,x2)) | x1 ∈ Σ∗}, (12)

Proj2(T) = {((x2,x2), ∑
x1∈Σ∗

T(x1,x2)) | x2 ∈ Σ∗}. (13)

Note that ifT(ε,ε) 6= 0 andT(x,y) 6= 0, T∗(x,y) = ∞.
For a weighted rational relationT, define itsimageandsupportby

Im(T) = {T(x,y) | x,y∈ Σ∗}, (14)

Supp(T) = {(x,y) | x,y∈ Σ∗,T(x,y) 6= 0}. (15)

On Dependency Analysis via Contractions and Weighted FSTs 11

By convention,T can be viewed as a weighted rational relation(Σ∗1×Σ∗2)→ (R≥0∪
{∞}) whereΣ1,Σ2⊆ Σ if T is a weighted rational relation(Σ∗×Σ∗)→ (R≥0∪{∞})
with Supp(T)⊆ Σ∗1×Σ∗2, and vice versa.

Let T be a weighted rational relation with a finite support andp∈ {1,2}. Let w
be the maximal value in Im(T). Let the sequence〈x1, . . . ,x j〉 contain the elements
of the set{x | x ∈ Σ∗,Projp(T)(x,x) = w} in the lexicographical order. Define the
k-boundedbest restrictionof Projp(T) as

BestProjp(T,k) = {((xi ,xi),w) | i ∈ {1, . . . ,min{ j,k}}}. (16)

3.2 Weighted Contractions

In the parser, the rule component of the grammar defines a weighted rational rela-
tion, Contraction: Id((Γ∪Γ)∗)→ (R≥0∪{∞}). The support language of this relation
is Id−1(Supp(Contraction)) and it is a subset ofΓ∗ΓΓ∗ # Γ∗ΓΓ∗.

A convenient way to specify Contraction is through a finite set of contraction
rules α 7→ w where the expressionα gives a rational (i.e., regular) subset of the
languageΓ∗ΓΓ∗ # Γ∗ΓΓ∗ and w is a non-negative real number. The examples of
contraction rules include projective functional rules (11a–b), projective bilexical
rules (11c–d), and non-projective bilexical rules (11e).

(11) a. (<SUBJ # SUBJ\) 7→ .97,

b. (/ADVL # ADVL>) 7→ .47,

c. (like/ # >arrow) 7→ .00127,

d. (an< # \arrow) 7→ .42,

e. (# <SUBJ # (Γ−{<SUBJ , SUBJ\})∗ SUBJ\) 7→ .97,

When applied by the finite-state implementation, each contraction rule removes
a pair of dependency brackets and a respective node separator (#). The overlining of
some symbols indicates which three tags in the strings disappear when a contraction
is performed. When a rule with weightw is applied, the total weight of the string is
multiplied byw. In (11e), there are potentially some symbols that do not disappear.

3.3 Applying Weighted Contractions Deterministically

FreeReduce is a weighted rational relation that reduces bracketed trees by applying
a specified set of contractions freely to the strings. It is constructed as follows:

12 Anssi Yli-Jyrä

Hesitate= 1((Id(Γ)∪{(a,a) | a∈ Γ})∗), (17)

FreeMark= (1(Id(Γ))∪Contraction)∗, (18)

Perform= 1((Id(Γ)∪{(a,ε) | a∈ Γ})∗), (19)

FreeReduce= Hesitate◦FreeMark◦Perform. (20)

When an input bracketing is reduced with FreeReduce, each possible place for con-
tractions optionally either undergoes the contraction or is left intact as indicated by
the weighted pairs (12a–d) belonging to FreeMark. The optionality generates spu-
rious ambiguity. Spurious ambiguity complicates the extraction of the topk best
parses as any optimal parse itself may be reduced in more thank different ways.
Furthermore, it restricts the possibilities for generalizing the parsing algorithm and
changing the system of weights: if the additive operation over the weights were
non-idempotent (maximumis idempotent), we would have a danger that spurious
ambiguity invalidates the weights of parses.

(12) a. (Id(<SUBJ # SUBJ\/ADVL # ADVL>), 1)

b. (Id(<SUBJ # SUBJ\ /ADVL # ADVL>), .47)

c. (Id(<SUBJ # SUBJ\/ADVL # ADVL>), .97)

d. (Id(<SUBJ # SUBJ\ /ADVL # ADVL> , .97× .47)

The spurious ambiguity can be avoided by restricting the support of (Hesitate◦
FreeReduce) in such a way that it is a function from inputs to outputs.

In order to make the restriction, the contraction rules are applied deterministically
from left to right. This modification can be implemented witha technique (Yli-Jyrä
2008) that is based on earlier ideas of G. van Noord and D. Gerdemann. To apply
this technique, define a rational relation Prefer :(Γ∪Γ)∗×(Γ∪Γ)∗ that relates a pair
(x,y) of two overline marked copies of the same string if the first copy, x, contains
earlier overlines thany. For example, (12b) is preferred over (12a), (12c) is preferred
over (12a) and (12b), and (12d) is preferred over (12a–c).

Prefer= Id(Γ∗) · {(a,a) | a∈ Γ} · {(x,y) | x,y∈ {a, a},a∈ Γ}∗. (21)

Now we extract from FreeMark the set of strings, Dispreferred(FreeMark), for
which there are preferred alternatives, and construct its complement NotDispre-
ferred(FreeMark).

Dispreferred(S) = Id−1(Supp(Proj2(S◦1(Prefer)◦S))), (22)

NotDispreferred(S) = (Γ∪Γ)∗−Dispreferred(S). (23)

By filtering the identity pairs in FreeMark with NotDispreferred(FreeMark), we re-
fine FreeMark and obtain DefiniteMark. We also want to reject all nonempty strings
without any overlined symbols (ΓΓ∗). In the end, we obtain a weighted rational rela-
tion that “performs” a deterministic, non-empty set of contractions in all non-empty
inputs.

On Dependency Analysis via Contractions and Weighted FSTs 13

DefiniteMark= FreeMark◦1(Id(NotDispreferred(FreeMark)−ΓΓ∗)), (24)

Reduce= Hesitate◦DefiniteMark◦Perform. (25)

We have thus defined a weighted rational relation, Reduce, that maps the input
strings deterministically to strings that are strictly shorter unless the input is already
the empty string.

Reduce can be viewed as a functionΓ∗→ (Γ∗× (R≥0∪{∞})). The existence of
this alternative structure implies that Reduce can be implemented very efficiently
with a deterministic finite-state device.

4 The Structure of the Grammar and the Parser

The purpose of this section is to define the grammar and the respective parser in
terms of weighted rational relations.

4.1 The Grammar Relation

In a high level, the grammar can be seen as a composition (26) of four (weighted)
rational relations of type(Σ∗×Σ∗)→ (R≥0∪{∞}).

Grammar= Lexicon◦Abstract◦HasMinort ◦1ε. (26)

In the composition, Lexicon does tokenization and morphological analysis and then
retrieves arguments and functions, Abstract is a relation (27) that deletes all but
syntactic symbols in strings, HasMinort performst levels of reductions, being thus
a finite composition (28) oft identical Reduce relations, and1ε ensures that we
finally obtain a trivial minor graph.

Abstract= 1((Id(Γ)∪{(x,ε) | x∈ Σ−Γ})∗), (27)

HasMinort = Reduce◦ · · · ◦Reduce
︸ ︷︷ ︸

t

. (28)

The component relations of the grammar link four representations:

Ortho Lexicon—MorphoSyn Abstract—Syn HasMinort—{ε}. (29)

In this system, Ortho is the set of orthographical strings over the set of orthograph-
ical symbolsΩ, MorphoSyn is the set of morpho-syntactic strings that consist of
morphological symbolsM and grammatical symbolsΓ, and Syn is the set of syn-
tactic strings over the alphabetΓ.

To be precise, Grammar is a weighted rational relation that maps the pairs
(x,ε) ∈ Ω∗×{ε} to the set of weights. The precise interpretation of the weights

14 Anssi Yli-Jyrä

remains intentionally open. The Grammar relation also characterizes a string set,
Grammatical⊆Ω∗, that is defined by

Grammatical= Id−1(Supp(Proj1(Grammar))). (30)

4.2 The Parser Relation

In order toparsean orthographical stringx∈ Ortho, we need to extract the corre-
sponding morpho-syntactic stringsy ∈ MorphoSyn from the internals of the sys-
tem (29). The extraction process (31) defines a weighted rational relation, Parser :
(Ortho×MorphoSyn)→ (R≥0∪{∞}).

Parser= Lexicon◦Proj1(Abstract◦HasMinort ◦1ε). (31)

Let x∈Ortho be an orthographical string. If(x,y) is a pair in Supp(Parser), we say
thaty is aparsefor x. The set of all parses forx is denoted by

Parses(x) = Id−1(Supp(Proj2(1(Id(x))◦Parser))). (32)

The weight of each parsey∈Parses(x) is Parser(x,y). Ak-bounded set of best parses
is given by

BestParses(x,k) = Id−1(Supp(BestProj2(1(Id(x))◦Parser,k))). (33)

4.3 The Grammar Constant

The parametert limits the number of iterations of Reduce in HasMinort . In the de-
pendency trees, the parameter limits the number of overlapping arcs that can be
contracted. The parameter can be fixed to a relatively small integer without any ob-
servable loss in recall. This makes HasMinort a fixed weighted rational relation. The
Grammar and Parser relations are thus applicable in linear time, at least according
to the asymptotic complexity analysis (asn→ ∞).

The asymptotic analysis ignores the fact that the application of the grammar to
the input involves a large coefficient, thegrammar constant, that is bounded from
the above by the product of the sizes of the finite-state transducers for Lexicon, Ab-
stract and HasMinort . As to their sizes, Lexicon and Abstract are just ordinary kinds
of weighted rational relations used in natural-language processing. Their implemen-
tation does not require our attention now.

In contrast to Lexicon and Abstract, the finite-state implementation of HasMinort
is of an impractical size. To see this, assume that Supp(Contract) = {(i # i) | i ∈
{1, . . . ,c}} wherec is the number of arc types. Table 2 shows experimental results
on how the size of HasMinort grows as a function ofc andt. From these I gather

On Dependency Analysis via Contractions and Weighted FSTs 15

that the number of states in the finite-state implementationof HasMinort ◦1ε is

(2c)t +(2c)t−1+ · · ·+1=
t

∑
k=0

(2c)k =
(1− (2c)t+1)

1− (2c)
= O((2c)t). (34)

Table 2 The growth of HasMinort as a function oft and the number of functional bracket pairs

c= 1 c= 2 c= 3
t states trans. explanation states trans. explanation states trans. explanation

1 3 3 2+1 5 6 4+1 7 9 6+1
2 7 9 4+2+1 21 30 16+4+1 43 63 36+6+1
3 15 21 8+ · · ·+1 85 126 64+ · · ·+1 259 387 216+ · · ·+1
4 31 45 16+ · · ·+1 341 510 256+ · · ·+1 1555 2331 1296+ · · ·+1
5 63 93 32+ · · ·+1 1365 2046 1024+ · · ·+1 9331 13995 7776+ · · ·+1
6 127 189 64+ · · ·+1 5461 8190 4096+ · · ·+1 55987 83979 46656+ · · ·+1

4.4 An On-Demand Construction

A slight improvement to the precomputation of (28) is obtained by the on-demand
computation of HasMinort . This idea is used in (36), where Grammar is restricted
to the pair of the orthographical stringx and the empty stringε.

Bot(x,y)= 1({(x,y)})◦Lexicon, (35)

Grammar|{(x,ε)} = (. . .(
︸︷︷︸

t

(Bot(x,x)◦Abstract)◦Reduce) · · · ◦Reduce)
︸ ︷︷ ︸

t

◦ 1ε. (36)

The worst-case size complexity of the finite-state representation of Grammar|{(x,ε)}
is still exponential tot, but the average-case complexity of (36) can be much smaller
than the complexity of the constant grammar (28). This admits practical applicabil-
ity on similar grounds as some previous parsing approaches that iteratively verify
labeled bracketing (Roche 1997, Oflazer 2003).

5 A Non-Linear but Efficient Approach

In the above, we have seen that although the parser can be represented as a rational
relation that can be applied in linear time to the input string, the hidden grammar
constant does not guarantee that the relation could always be restricted efficiently
to an orthographical string. There are situations where we need guarantees for the
worst-case complexity.

16 Anssi Yli-Jyrä

This section describes algorithms that do not fully elaborate the composition (28)
of the relations. Instead, the algorithms compute the composition indirectly through
intermediate languages. The space complexity of each intermediate representation
is not linear to the length of the sentence because their epsilons are removed. Since
we never compute the composition as a whole, the algorithms are still more practical
than the naive approaches that construct HasMinort in one way or another.

5.1 Forgetting Composition

If Grammar|{(x,ε)} is immediately applied to the pair(x,ε), we may replace, in (37),
the input side of the composition with the empty string and still compute the same
weight for(x,ε).

Grammar(x,ε) = Im((. . .(
︸︷︷︸

t

(Bot(ε,x)◦Abstract)◦Reduce) · · · ◦Reduce)
︸ ︷︷ ︸

t

◦1ε).

(37)

The effect of the modification is significant. It basically makes the composition to
forget everything that is contracted. Since the matching pairs of brackets are forgot-
ten, the details of the contracted brackets are not complicating the further process-
ing. The forgetting effect can be implemented also via projections as in (38).

Grammar(x,ε) =Im([. . . [
︸︷︷︸

t

[Bot(x,x)◦Abstract]◦ Reduce. . .]◦Reduce]
︸ ︷︷ ︸

t

◦1ε), (38)

where[X] = Proj2(X).

The time complexity of this composition-projection methodis linear tot and to the
worst-case time complexity of the iteration rounds.

5.2 A Preliminary Complexity Analysis

In order to analyze the space complexity of the minimized sizes of the projections,
I carried out some experiments. In these experiments, the number of tokens was
n≤ 80 and the number of iterationst ≤ n−1, which is sufficient for obtaining all
parses. A highly ambiguous lexicon was modeled by replacingBot(x,x) either with
model (13a), whereΓd contains dependent-side brackets andΓh contains head-side
brackets, or with model (13b), whereΓu consists of brackets that encode undirected
arcs.

(13) a. 1(Id(Γ∗d(ε∪Γh)Γ∗d (# Γ∗d(ε∪Γh)Γ∗d)
n−1))

b. 1(Id(Γ∗u (# Γ∗u)n−1))

On Dependency Analysis via Contractions and Weighted FSTs 17

The first model (13a) gives rise to rooted trees and (13b) to unrooted ones. Bilexical
brackets were modeled by adding token numbers to the respective brackets. The
contraction rules of the grammar are restricted to those of the shapeα # β 7→ 1,
where α , β ⊆ Γ.

In the experiments, I measured the size (number of states andnumber of transi-
tions) of minimal (unweighted) finite-state transducers that correspond to the first in-
termediate result,[[Bot(x,x)]◦Reduce], and the subsequent composition-projections
in (38). To reduce the number of necessary experiments, I eliminated some dimen-
sions with simple tests. These tests gave the following useful results:

• The sizes of intermediate results grow only by a constant factor when we switch
from unrooted trees to rooted trees.

• If the lexical differences were reduced, the size of the largest intermediate result
would be become smaller. Thus, the bilexical bracketing presents the maximal
complexity.

• If the number of functional categories of the dependencies doubles, the number
of transitions will double too, but the number of states doesnot change.

My main experiment focused on unrooted bilexical bracketing without depen-
dency functions. The models of inputs consisting ofn = 20, . . . ,80 tokens were
compared in order to see how the sizes of the intermediate results in bilexical parsing
grow as a function ofn. For all sentence lengths, the(n/2−1)th iteration produced
the largest result (Table 3).

In Table 3, the number of transitions in minimized projections is almost quadratic
(the exponent is between 1.60 and 1.87) to the number of states. This motivates the
observation that the complexity of the algorithm is not linear ton. In each interme-
diate result, the contractions shorten the strings, which gives, in the finite-state rep-
resentations, rise to epsilon removal and a quadratic number of transitions. Besides
the epsilon removal, the finite-state library automatically performs determinization
and minimization of the finite-state representations of theprojections.

Table 3 The sizes of the projections of the first, the fifth and the(n/2−1)th applications

1th iteration 5th iteration (n/2−1)th iteration
n states trans. exp. 2n2 states trans. 6n2 secs (n/2−1) states trans. exp.

20 38 834 1.85 800 90 1974 2400 .06 9 110 2410 1.66
30 58 1854 1.85 1800 150 4794 5400 .10 14 240 7665 1.63
40 78 3274 1.86 3200 210 8814 9600 .19 19 420 17620 1.62
50 98 5094 1.86 5000 270 14034 1500 .34 24 650 33775 1.61
60 118 7314 1.87 7200 330 20454 21600 .58 29 930 57630 1.60
70 138 9934 1.87 9800 390 28074 29400 .94 34 1260 90685 1.60
80 158 12954 1.87 12800 450 36894 38400 1.45 39 1640 134440 1.60

In Table 3, the number of states in the first intermediate result is 2(n− 1) and
in the largest intermediate result the number of states coincided with the function

18 Anssi Yli-Jyrä

(n/2)(n/2+ 1). The number of transitions in the largest intermediate result coin-
cides with the functionn(n/2+1)(n/2+1)− (n/2).

Usually, however,t is fixed and much smaller thann. The table indicates that
whenn doubles from 20 to 40 and 80, the number of transitions in the first interme-
diate result grows by the factors 21.97 and 21.98 and the fifth intermediate result by
the factors 22.15 and 22.07. This indicates that the number of transitions in a fixed in-
termediate result, such as the first and the fifth one, is actually O(ns) wheres is close
to 2. The number of iterations does not have any drastic effect on the space com-
plexity, since the 5th intermediate result, for example, has less than 6n2 transitions.
As the number of compositions is bounded byt, we actually compute only a fixed
number of intermediate projections. The transition complexity of each minimized
intermediate result seems to be inO(t n2).

Assuming that the required time would be linear to the size ofthe results, the total
time complexity of computing the value of Grammar(x,ε) would beO(t2n2). But
Table 3 displays the running times for the fifth iteration round using an unweighted
finite-state library (foma). The measured running time appears to be inO(n3) since,
e.g., log2(1.45/.19)= 2.93. The experiment does not allow us, however, to conclude
that an implementation with a quadratic time complexity would be impossible. The
contributions of the determinization and minimization steps and the actual library
implementation have not been analyzed yet.

The current experimental analysis has assumed that the maximally ambiguous
sentences and grammars are asymptotically at least as difficult as practical sentences
and grammars. I have currently no complete proof for this assumption, but I believe
that the complexity of a realistic situation differs only linearly from the current
artificial situation. Clearly, the assumption prompts for further study.

The current analysis does not fully apply to the weighted case. Since weighted
determinization and minimization (Mohri 2009) can move theweights from the
original places, there is a danger that the intermediate results grow more than nec-
essary. The detailed analysis of the weighted case is postponed to further work.

5.3 Memoizing Composition

An efficient decision method for grammatical strings in (38)leads us halfway to
obtaining some if not all parses efficiently. This requires reusing the computations
done during the decision process. Therefore, the intermediate results are memoized
inductively to variables Up0, . . . ,Upt by setting

Up0 = [Bot(x,x)◦Abstract], (39)

Upi = [. . . [
︸︷︷︸

i

Up0◦ Reduce. . .]◦Reduce]
︸ ︷︷ ︸

i

= [Upi−1◦Reduce]. (40)

In the end, Upt(ε,ε) tells the weight of the best parse.

On Dependency Analysis via Contractions and Weighted FSTs 19

Now we could computek-bounded best restrictions iteratively in order to obtain
(at mostk) best parses. This is achieved by processing the intermediate levelsi from
the top level,t, back to the lowermost level 0 and by filtering the lower levelwith
the information on the partial parses of the best parses.5

If x is a grammatical string, the support of the first downward level, Dnt , contains
the encoded trivial graph,ε, whose top-down weight is 1:

Dnt = 1(Supp(Upt ◦1ε)). (41)

For each leveli ∈ {t−1, . . . ,2,1}, we first compute DnSupporti that contains partial
parses of the best parses. The best parses are selected on thebasis of their total
weight, whose factors come from the Upi , Reduce and Dni+1 components. After
this, we compute Dni , which contains the same strings with the top-down weights
only.

DnSupporti = Supp(BestProj1(Upi ◦Reduce◦Dni+1,k)), (42)

Dni = Proj1(1(DnSupporti)◦Reduce◦Dni+1). (43)

The last level, Dn0, is computed differently:

Dn0 = BestProj1(Proj2(Bot(x,x))◦Abstract◦Dn1,k). (44)

In the end, the support and the image of Dn0 contains up tok parses and the best
weight, respectively. We can now define the selection ofk best parses by

BestParses′(x,k) = Id−1(Supp(Dn0)). (45)

The previously defined set BestParses(x,k) in (33) does not necessarily coincide
with BestParses′(x,k) in (45), because the different methods may pick a different
selection from the best parses.

The total time complexity of this best-parse algorithm is dominated by the
bottom-up phase, because extracting the bestk parses from the memoized cascade
Up0, . . . ,Upt−1 takes only linear time to the size of the memoized finite-state trans-
ducers. This result makes use of the linear time complexity of the shortest-distance
algorithm for acyclic weighted automata (Mohri 2009).

The same parser algorithm is applicable with non-projective contraction rules.
However, the time complexity of the resulting non-projective parser depends on the
specifics of the rule component and remains open for the time being.

5 These minorization and “majorization” phases could be compared to the forward and backward
procedures used in trellis algorithms for Hidden Markov Models.

20 Anssi Yli-Jyrä

5.4 Allowing Spurious Ambiguity

Since we usemaximumas the additive operation for the weights, the spurious ambi-
guity does not actually affect the weights of the parses. This observation allows us
to avoid Reduce and use FreeReduce instead. That is, the grammar semantics will
be retained even if we replace HasMinort with HasMinor′t , defined by

HasMinor′t = FreeReduce◦ · · · ◦FreeReduce
︸ ︷︷ ︸

t

. (46)

Similarly, the use of Reduce could be replaced with FreeReduce in the forgetting
composition. In memoizing composition, the change appliestoo, provided that we
then extract only the best parse (k= 1).

In practice, FreeReduce is much easier to construct than Reduce. It also induces
smaller projections (Table 4) and provides much faster application to long sentences.
This is explained by the fact that the states in the composition with FreeReduce do
not keep track of the number of applied contractions. On the contrary, the obligatory
contractions in Reduce expand the state space of the compositions and the projec-
tions, which also complicates the subsequent epsilon removal, determinization and
minimization steps.

Table 4 The sizes of the projections after applying FreeReduce, and of Parses(x) (now avoided)

1st iteration 5th iteration t iterations witht = n−1 Parses(x)
n states trans. states trans.(n2+2n−1) tot.secs tot.secs parses states in fsa

10 10 119 10 119 119 .04 .04 246675 2036
20 20 439 20 439 439 .05 .10 16332922290300 2097130
40 40 1679 40 1679 1679 .08 .34 2.1×1029 2.2×1012

60 60 3719 60 3719 3719 .14 1.80 4.5×1045 2.3×1018

80 80 6559 80 6559 6659 .27 4.50 1.1×1062 2.4×1024

I experimented with forgetting composition that uses FreeReduce. By comparing
the lines forn= 40 andn= 80 in Table 4, the total time complexity of the projective
parser (unrooted trees,t = n−1) appears to be inO(n3.73) since log2(4.5/.34) =
3.73. However, if we fixt = 5, the total time complexity appears to be quadratic
to n since log2(.27/.08) = 1.75≈ 2. Since this is linear to the transitions in each
projection, it appears that the worst-case complexity is inO(t n2) in general.

Table 4 shows also the total number of unrooted trees (i.e., parses) for sentences
of different lengths. In the worst case, the growth in the number of trees is really fast.
The resulting sequence coincides with the sequence A001764in Sloane’s On-Line
Encyclopedia of Integer Sequences (OEIS, oeis.org).

If all the strings that encode the parses for a 20-word sentence would be stored
into one finite-state automaton (fsa), this would require, in the worst case, more than
2 million states (the last column in Table 4). In general, thesequence of the worst-

On Dependency Analysis via Contractions and Weighted FSTs 21

case state counts, 2n+1−n−2, for the single-fsa representations coincides with the
Eulerian numbers〈1

1
〉,〈2

1
〉, . . . (the sequence A000295 in OEIS). This demonstrates

that the memoized cascade is much more efficient representation for the parse forest
than a single automaton.

A drawback in using FreeReduce is that only one optimal parsecan be extracted
directly from the memoized cascade, because extractingk parses can actually result
in extracting the same parse ink different ways. In order to obtain the next optimal
parse, we can “remove” the best parse from Bot(x,x) and rerun the parser on the
remainder set. This may be inefficient in practice.

6 Comparison to the Prior Work

The body of research on dependency parsing is already large and it is impossible to
recall all approaches. The most relevant prior work combines dependency parsing
and string-based finite-state methods, or at least suggestssuch a combination.

• Constraint Grammar (CG)parsers perform morphological and surface-syntactic
disambiguation and dependency linking.

– The core CG parsers refine the ambiguity classes of words iteratively, accord-
ing to the contextual conditions and rule application ordering.

– Mature CG variants (Tapanainen 1999, Didriksen 2010) provide actions for
inserting dependency links between two words and for producing a single
dependency analysis for each sentence.

– Finite-state automata are used in some CG implementations(Hulden 2011,
Yli-Jyrä 2011).

• Finite-state intersection grammar (FSIG)has been used to parse dependency
structures of varying specificity and complexity.

– Koskenniemi et al. (1992) denote the syntactic functions of words with tags
that additionally specify the direction of the possible governors, leaving pos-
sible attachment ambiguity unresolved.

– Yli-Jyrä (2005) encodes every dependency link with a pair of brackets be-
tween the nodes. With such encoding, every projective dependency grammar
is representable with an intersection of a strictly locallytestable regular lan-
guage and a language that balances labeled brackets. The representation has
efficient implementations, but the grammar semantics is based on inviolable
properties of the parses.

• Constraint network parserscombine consistency-enforcing methods with back-
tracking search in order to resolve ambiguity and to produceparses as search
results.

– Maruyama (1990) presents a constraint network parser thatcan produce non-
projective dependency graphs.

22 Anssi Yli-Jyrä

– Debusmann et al. (2004) implemented a dependency parser whose constraint
network can be extended with word order and dominance constraints.

• Finite-state cascadesare used in deterministic parsing approaches:

– Joshi (1996) describes retrospectively a parser (from 1959) that used finite-
state cascades. Each level in the cascade corresponded to a deterministic
finite-state transducer that read the input either left to right or right to left
and marked syntactic units with various kinds of brackets.

– Abney (1996) also applies finite-state cascades to phrase structure analysis.

• Iterated finite-state transducerscan bind the rule applications with movable
markers. The parsing terminates if a fixed point is reached.

– Roche (1997) iterates finite-state transducers in order toparse context-free
grammars, transformation grammars and tree adjoining grammars. The ap-
proach does not include hierarchical ambiguity packing, but it demonstrates
the computational power of iteration.

– Elworthy (2000) uses iterated deterministic finite-statetransducers that are
augmented with instructions that insert links to the read string. Elworthy’s de-
terministic finite-state parser includes an ambiguity-packing mechanism that
adds multiple heads to phrases to avoid the attachment ambiguity. Thanks to
the deterministic parsing that does not elaborate all ambiguity, the parsing
time isO(n2) for an input ofn words.

– Oflazer (2003) uses an iterated finite-state transducer that implements projec-
tive dependency parsing. The approach is robust but does notinclude hierar-
chical ambiguity packing.

• Bilexical dependency parserscan carry out projective dependency analysis with-
out lexical functions (Eisner 1997).

• Restarting automataperform a sequence of monotonic rewrite steps that reduce
the length or weight of the input tape. Plátek et al. (2003) motivate restarting
automata as a tool for dependency analysis.

6.1 The Distinctive Characteristics of the Current Approach

Although it is partially similar to the prior approaches, the currently presented algo-
rithm has clear distinctive characteristics that make it new as for now.

In comparison with most dependency parsers, the current system differs by as-
suming aparametric bound for the number of overlapping arcs. The time complex-
ity is similar to Elworthy’s parser, but the method computesimplicitly all parame-
terized parses.

The iterated application of Reduce reminds us of the fixpointmethod (Roche
1997) and of finite-state cascades (Abney 1996). A striking difference from them is
that the current (bottom-up) cascade produces nothing as its output.

On Dependency Analysis via Contractions and Weighted FSTs 23

Some of the cascading parsers resolve the ambiguity on the basis of deterministic
heuristics and underspecification, while the current system resolves the ambiguity
on the basis of the lexical categories (functional tags or bilexical pairs), the perfor-
mance constraints, and the weights.

The analysis-by-elimination approach of the current system reminds of one-level
intersection grammars that assume a set of candidate parsesas their input. In contrast
to the early practice in FSIG (Voutilainen 1994), the dependency bracketing of the
current system specifies afull syntactic tree.

The author has used a similar encoding for trees in an earlierregular approxima-
tion method for dependency grammars (Yli-Jyrä 2005). However, the current work
operates onweighted rational relationsrather than parallel constraints.

The use of rewrites rather than constraints as a means for validating the arcs is
familiar from Oflazer’s dependency parser (Oflazer 2003). However, the new parser
contracts the validated bracketsandmemoizes the intermediate resultsof the cas-
cade, which improves efficiency.

Parsing by contractions is a familiar approach from restarting automata and con-
textual grammars. It is not yet known if the currently presentedmemoization tech-
niqueis completely new in the context of restarting automata, butit may prove use-
ful in practice. The current contractions operatedirectlyon the encoded dependency
trees and there is a performancelimit for overlapping rule applications.

Deterministic contractions and functional rational relations are also a natural ap-
proach to Constraint Grammar parsing. However, the currentapproachmanages
sentence-level ambiguityandcombines deterministic contractions with full parsing.

7 Conclusions

The paper has described a new approach to dependency parsing. The presented
finite-state approach uses three new techniques: dependency bracketing, bracketed
arc contraction and cascade memoization. The paper has presented the final parsing
algorithm of Sect. 5.4 via an abstract calculus of weighted rational relations and mo-
tivated its efficiency through a series of experiments and design choices. In addition,
we provided new interpretations for the integer sequences A001764 and A000295,
which might be of interest in applied mathematics.

7.1 Practical Benefits

In the case of projective parsing, the proposed memoizing parsing algorithm pro-
duces optimal parses and is efficient: its time complexity appears to be inO(t n2)
according to the analysis of the method that uses FreeReduceandO(t2n3) according
to the preliminary analysis of the method that uses Reduce.

24 Anssi Yli-Jyrä

The proposed parser can be tailored for functional and bilexical dependency
parsing. Under the performance-motivated parametert for the overlapping arcs, the
parse forest contains all plausible parses of the projective grammar. The parse forest
is extendible to non-projective trees that contain crossing arcs.

The method has a rational design and it is easy to implement with finite-state
methods. The packed weighted parse forest is computed through composition and
projection, two commonly used high-level finite-state operations, and the memoiza-
tion of the internals of the cascade allows for efficient retrieval of the parses.

7.2 Further Work

There are several directions for further study. (i) The weight structure could be gen-
eralized to arbitrary semirings in order to enable the generality of “semiring pars-
ing”. (ii) A statistical parser will have to explicate how the weights in Grammar
are set and whether they behave like probabilities or indicate some other kinds of
weights. Furthermore, the actual implementation of the current illustrative system
would replace the semiring of the nonnegative real numbers with the tropical semir-
ing of their negative logarithms (Mohri 2009) in order to improve the numerical sta-
bility of the algorithm. (iii) The use of non-projective contractions should be studied
further. There are certainly some strategies to reduce the number of non-projective
parses while maintaining high recall. (iv) More insight into the packed forest and the
growth of the intermediate results is needed. The current experiments were based on
unweighted bilexical grammars where all dependencies werepossible. In practice,
the possible argument structures are more specific, which makes the average case
more interesting than the limited experimental results provided so far. (v) The cur-
rent method throws away all partial parses. For text parsingpurposes, the parser can
be modified to allow dependency graphs that consist of unconnected trees.

The possible extensions of the presented method include theintriguing option of
combining statistics and linguistic knowledge into the same system. Adding hand-
written linguistic constraints to Grammar is technically possible and would allow
human interventions to complement statistically estimated parameters and would
help us finish the precision and recall of the practical implementation of the ap-
proach.

Acknowledgements The research has been made possible by the Academy of Finland grant
number 128536 “Open and Language Independent Automata-Based Resource Production Meth-
ods for Common Language Research Infrastructure”, and, more recently, by the FIN-CLARIN
project steered by Krister Lindén. Kimmo Koskenniemi, Pasi Tapanainen, Atro Voutilainen and
Lauri Carlson supported my first investigations into contractions in finite-state intersection parsing
since 1995. More recently, my thinking has benefitted from several related discussions with Car-
los Gómez-Rodríguez, Jason Eisner, Joakim Nivre, Marco Kuhlmann,and John Hale. During the
multi-year creative process, I felt several times need for heavenly empowerment. I look gratefully
back to every inspired moment.

On Dependency Analysis via Contractions and Weighted FSTs 25

I am indebted to the prior anonymous reviewers of the CIAA 2011and FSMNLP 2011 meet-
ings, as well as Aarne Ranta, Wanjiku Nganga, Jussi Piitulainen,and Miikka Silfverberg for their
valuable comments pointing out many areas for further study. Theremaining imperfections in the
text are mine, of course.

References

Abney, Steven. 1996. Partial parsing via finite state cascades. In Proceedings of the ESSLLI’96
Robust Parsing Workshop. Prague, Czech.

Debusmann, Ralph, Denys Duchier, and Geert-Jan M. Kruijff. 2004. Extensible dependency gram-
mar: A new methodology. InProceedings of the COLING 2004 Workshop of Recent Ad-
vances in Dependency Grammar, ed. Geert-Jan M. Kruijff and Denys Duchier, 78–84. Geneva,
Switzerland.

Didriksen, Tino. 2010.Constraint Grammar Manual: 3rd version of the CG formalism variant.
GrammarSoft ApS, Denmark. http://beta.visl.sdu.dk/cg3/vislcg3.pdf.

Eisner, Jason. 1997. Bilexical grammars and a cubic-time probabilistic parser. InProceedings of
the 4th International Workshop on Parsing Technologies, 54–65. MIT, Cambridge, MA.

Elworthy, David. 2000. A finite state parser with dependency structure output. InProceedings of
Sixth International Workshop on Parsing Technologies (IWPT 2000). Trento, Italy: Institute for
Scientific and Technological Research.

Gómez-Rodríguez, Carlos, and Joakim Nivre. 2010. A transition-based parser for 2-planar depen-
dency structures. InProceedings of the 48th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2010), 1492–1501. Uppsala, Sweden.

Gómez-Rodríguez, Carlos, David Weir, and John Carroll. 2009. Parsing mildly non-projective
dependency structures. InProceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2009), 291–299.

Hulden, Mans. 2011. Constraint Grammar parsing with left and right sequential finite transduc-
ers. InProceedings of the 9th International Workshop on Finite State Methods and Natural
Language Processing (FSMNLP 2011), 39–47. Blois, France: Association for Computational
Linguistics. http://www.aclweb.org/anthology/W11-4406.

Joshi, Aravind K. 1996. A parser from antiquity: an early application of finite state transducers
to natural language parsing. InExtended Finite State Models of Language, Proceedings of
the ECAI’96 Workshop, ed. András Kornai, Studies in Natural Language Processing, 33–34.
Cambridge University Press.

Koskenniemi, Kimmo, Pasi Tapanainen, and Atro Voutilainen. 1992. Compiling and using finite-
state syntactic rules. In14th COLING 1992, Proceedings of the Conference, volume 1, 156–
162. Nantes, France.

Kuhlmann, Marco. 2010.Dependency structures and lexicalized grammars. An algebraic ap-
proach, volume 6270 ofLecture Notes in Artificial Intelligence, FoLLI Publications on Logic,
Language and Information. Berlin, Heidelberg: Springer.

Kuhlmann, Marco, and Giorgio Satta. 2009. Treebank grammar techniques for non-projective
dependency parsing. InProceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics (EACL’09), 478–486.

Lombardo, Vincenzo, and Leonardo Lesmo. 1996. An Earley-type recognizer for dependency
grammar. In16th COLING, Proceedings of the Conference, volume 2, 723–728. Copenhagen,
Denmark.

Maruyama, Hiroshi. 1990. Structural disambiguation with constraint propagation. In28th ACL
1989, Proceedings of the Conference, 31–38. Pittsburgh, Pennsylvania.

Mohri, Mehryar. 2009. Weighted automata algorithms. InHandbook of weighted automata, ed.
Manfred Droste, Werner Kuich, and Heiko Vogler, 213–254. Springer.

26 Anssi Yli-Jyrä

Neuhaus, Peter, and Norbert Bröker. 1997. The complexity of recognition of linguistically adequate
dependency grammars. InProceedings of the 35th Annual Meeting of the Association for
Computational Linguistics and the 8th Conf. of the European Chapter of the Association for
Computational Linguistics, 337–343. Madrid, Spain.

Nivre, Joakim. 2006. Constraints on non-projective dependency parsing. InProceedings of the
11th Conference of the European Chapter of the Association forComputational Linguistics
(EACL 2006), 73–80.

Nivre, Joakim. 2008. Algorithms for deterministic incremental dependency parsing.Computa-
tional Linguistics34:513–553.

Oflazer, Kemal. 2003. Dependency parsing with an extended finite-state approach.Computational
Linguistics29:515–544.

Plátek, Martin, Markéta Lopatková, and Karel Oliva. 2003. Restarting automata: motivations and
applications. InWorkshop ‘Petrinetze’ and 13. Theorietag ‘Formale Sprachen und Automaten’,
ed. M. Holzer, 90–96. Institut für Informatik, Technische Universität München.

Roche, Emmanuel. 1997. Parsing with finite-state transducers. InFinite-state language processing,
ed. Emmanuel Roche and Yves Schabes, chapter 8, 241–281. Cambridge, Massachusetts: MIT
Press.

Tapanainen, Pasi. 1999. Parsing in two frameworks: finite-state and functional dependency gram-
mar. Doctoral Dissertation, University of Helsinki, Finland.

Tesnière, Lucien. 1959.Éléments de syntaxe structurale. Paris: Éditions Klincksieck.
Voutilainen, Atro. 1994.Designing a parsing grammar. Number 22 in Publications of the Depart-

ment of General Linguistics, University of Helsinki. Helsinki, Finland: Yliopistopaino.
Yli-Jyrä, Anssi Mikael. 2003. Multiplanarity – a model for dependency structures in treebanks.

In TLT 2003. Proceedings of the Second Workshop on Treebanks and Linguistic Theories, ed.
Joakim Nivre and Erhard Hinrichs, volume 9 ofMathematical Modelling in Physics, Engineer-
ing and Cognitive Sciences, 189–200. Växjö, Sweden: Växjö University Press.

Yli-Jyrä, Anssi. 2004. Axiomatization of restricted non-projective dependency trees through finite-
state constraints that analyse crossing bracketings. InProceedings of the COLING 2004 Work-
shop of Recent Advances in Dependency Grammar, 33–40. Geneva, Switzerland.

Yli-Jyrä, Anssi. 2005. Approximating dependency grammars through intersection of star-free reg-
ular languages.International Journal of Foundations of Computer Science16:565–579.

Yli-Jyrä, Anssi. 2008. Transducers from parallel replace rulesand modes with generalized lenient
composition. InFinite-State Methods and Natural Language Processing, 6th International
Workshop, FSMNLP-2007. Revised Papers, 197–212. Potsdam, Germany: Potsdam University
Press.

Yli-Jyrä, Anssi. 2011. An efficient constraint grammar parser based on inward deterministic au-
tomata. InProceedings of the NODALIDA 2011 Workshop Constraint Grammar Applications,
ed. Eckhard Bick, Kristin Hagen, Kaili Müürisep, and Trond Trosterud, volume 14 ofNEALT
Proceedings Series, 50–60.

Yli-Jyrä, Anssi, and Kimmo Koskenniemi. 2004. Compiling contextualrestrictions on strings
into finite-state automata. InProceedings of the Eindhoven FASTAR Days 2004, ed. Loek
Cleophas and Bruce W. Watson, number 04-40 in Computer Science Reports. Eindhoven, The
Netherlands: Technische Universiteit Eindhoven.

Yli-Jyrä, Anssi, and Matti Nykänen. 2004. A hierarchy of mildly context sensitive dependency
grammars. InProceedings of the 9th conference on Formal Grammar (FGNancy2004), ed.
Gerald Penn, Gerhard Jäger, Paola Monachesi, and Shuly Wintner, 151–165.

