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Determination of shear creep compliance of linear viscoelastic
solids by instrumented indentation when the contact area has
a single maximum
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Lee and Radok [J. Appl. Mech. 27, 438 (1960)] derived the solution for the indentation of a smooth
rigid indenter on a linear viscoelastic half-space. They had pointed out that their solution was valid
only for regimes where contact area did not decrease with time. In this article, a large number of
finite element simulations and one typical experiment demonstrate that Lee-Radok solution is
approximately valid for the case of reducing contact area. Based on this finding, three semi-
empirical methods, i.e., Step-Ramp method, Ramp-Ramp method and Sine-Sine method, are
proposed for determination of shear creep compliance using the data of both loading and unloading
segments. The reliability of these methods is acceptable within certain tolerance.

I. INTRODUCTION

Instrumented indentation is an efficient and convenient
tool for probing mechanical properties of viscoelastic
materials, such as polymers and biomaterials. Due to the
time-dependent behavior of viscoelastic materials, the
widely used Oliver-Pharr1 method is not suitable here.2–8

Robust methods for characterization of mechanical prop-
erties of viscoelastic materials via instrumented indenta-
tion are therefore required. Over the past decade, a number
of researchers9–17 have proposed methods for determining
shear creep compliance and shear relaxation modulus from
load-depth curves of indentation tests. A common limita-
tion of these methods is that only the data of loading or
holding segments, where contact area is nondecreasing,
are used. Because they are based on the solution first
obtained by Lee and Radok18 as following equations
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whereG(t) and J(t) are the shear relaxationmodulus and shear
creep compliance, respectively; v is the time-independent

Poisson’s ratio; Cn is a constant related to indenter shape,
n 5 1, C1 5 tan a/p for conical indenter, and a is the
included half-angle [see Fig. 1(a)]; n 5 2, C2 ¼ 2
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for spherical indenter, and R is the radius of spherical
indenter [see Fig. 1(b)]. Lee and Radok18 pointed out their
solution is valid only for cases that contact area does not
decrease with time. Which means Lee-Radok solution is
valid during loading and holding, but fails for unloading.
Hunter,19 Graham,20 and Ting21 addressed the visco-

elastic contact problem when contact area has a single
maximum. They derived the solution for unloading. When
contact area passes through the maximum, the solution is
written as
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where a(t) is the contact radius at time t; t1(t) is the instant
at which a(t)5 a(t1) (see Fig. 2); tm is the instant at which
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the contact radius is maximum; Bn is a constant related to
indenter shape, for conical indenter, n5 1, B15 2 tan a/p;
for spherical indenter, n 5 2, B2 5 R. Moreover, Green-
wood22 recently gave a more convenient form for the
variation of the depth during unloading, so Eq. (2b) can be
replaced by

BnhðtÞ ¼ anðt1Þ

þ
Ztm
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Theoretically, when contact radius a(t), load on sample
F(t) and depth into sample h(t) are known, shear creep
compliance J(t) and shear relaxation modulus G(t) can be
determined from unloading segment by using either
Eqs. (2a) and (2b), or Eqs. (2a) and (3). However, since
shear creep compliance and shear relaxation modulus are
coupled in Eq. (2b) and Eq. (3), it is difficult to obtain the
explicit formula of shear creep compliance. The determi-
nation of shear creep compliance is very complicated in
practice. Thus there is a need for finding a more conve-
nient form for determination of shear creep compliance.

In the present work, a large number of finite element
(FE) simulations demonstrate that Lee-Radok solution
can be regarded as approximately valid for cases of
reducing contact area. Base on this finding, three semi-
empirical methods, which are convenient for determination
of shear creep compliance by using the data of both loading
and unloading segments, are derived from Eq. (1b). After
verification using FE simulations and performance of
a typical experiment, these methods have been demon-
strated to be reliable within certain tolerance limits.

II. DEMONSTRATION BY NUMERICAL
EXPERIMENTS

In this section, a large number of FE simulations are
implemented to verify the validity of Eq. (1b) when
the contact area has a single maximum. Assuming that the
shear creep compliance J(t) and loading history F(t) are
known, if Eq. (1b) can accurately predict the variation of
depth for unloading, then it demonstrates that Eq. (1b) can
be applied to cases of decreasing contact area. A three-
parameter linear viscoelastic model (see Fig. 3) with time-
independent Poisson’s ratio is adopted here, and its shear
creep compliance can be expressed as

JðtÞ ¼ 2ð1þ mÞ 1
E‘

� 1
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� �
; ð5Þ

where 1=E‘ ¼ 1=E0 þ 1=E1 indicates the long-term com-
pliance; sc 5 g1/E1 stands for the retardation time.

A. Prediction of depth

We consider three loading profiles, i.e. Step-Ramp
load, Ramp-Ramp load and Sine-Sine load, which will
cause the contact area to possess a single maximum [see
Fig. 4(a)–4(c)].

For Step-Ramp load, a step load is suddenly exerted in
indentation and then unloads to zero linearly [See Fig. 4(a)],
the indentation load is represented by

FðtÞ ¼ F0HðtÞ � VFt ; ð6Þ
where F0 is the maximum load; VF denotes the unloading
rate; and H(t) is the Heaviside unit step function. By
inserting Eqs. (5) and (6) into Eq. (1b), the variation of
depth can be expressed as

FIG. 1. Schematic illustration of indentation; (a) conical indenter and
(b) spherical indenter.

FIG. 2. Contact radius with a single maximum. FIG. 3. Three-parameter linear viscoelastic model.
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For Ramp-Ramp load, a symmetric triangular load
function [See Fig. 4(b)] is used. Let the indentation
load be

FðtÞ ¼ VFt; t# tR
VFð2tR � tÞ; t > tR

�
; ð8Þ

where VF is the loading or unloading rate and tR is the
loading time. By inserting Eqs. (5) and (8) into Eq. (1b), it
comes to
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For Sine-Sine load, the load changes with the first half
cycle of the sine function as shown in Fig. 4(c), it can be
expressed as
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T

t

� �
; t #

T

2
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where F0 is the maximum load; and T is the period of
a loading cycle. By substituting Eqs. (5) and (10) into
Eq. (1b), we get
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Equations (7), (9) and (11) can be used to predict the var-

iation of depth of both loading and unloading for Step-Ramp
load, Ramp-Ramp load and Sine-Sine load, respectively.

B. FE simulations

The three-parameter linear viscoelastic model shown in
Fig. 3 is implemented in the commercial finite element
program ABAQUS.23 We consider a wide range of
mechanical properties of polymers that cover the majority
of rubber [such as natural rubber (NR), styrene/ butadiene
rubber (SBR) and butadiene rubber (BR)] and engineering
plastics [such as polymethyl methacrylate (PMMA),

FIG. 4. Loading profiles (solid lines) and the corresponding normalized contact area (open circles); (a) Step-Ramp load, (b) Ramp-Ramp load,
(c) Sine-Sine load and (d) Step-Hold load. The contact area is the fitting result of the calculated contact area from FE simulation.
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polycarbonate (PC) and polypropylene (PP)]. Table I lists
the mechanical parameters input into ABAQUS for de-
fining different materials. Since the Poisson’s ratio is time-
independent, the relaxation factor in shear should be equal
to the relaxation factor in bulk. The instantaneous modulus
takes 5 values, the Poisson’s ratio takes 5 values, the
relaxation factor takes 4 values and the relaxation time
takes one value. So the combination of these parameters
leads to 100 (5 � 5 � 4 � 1) different “materials.”

First, tensile tests are simulated to determine the shear
creep compliance of the 100 “materials” to verify the
material model. Second, we consider a frictionless, rigid
conical indenter of included half-angle a5 70.3º indenting
isotropic linear viscoelastic solid with four different loading
profiles, Step-Ramp load, Ramp-Ramp load, Sine-Sine load
and Step-Hold load, as shown in Fig. 4. The Step-Ramp
load,Ramp-Ramp load and Sine-Sine load cause the contact
area to possess a single maximum, whereas the Step-Hold
load leads to a monotonic increasing contact area. For Step-
Ramp load, a step load is applied within 0.001 s and then
decreased linearly to zero in 100 s. For Ramp-Ramp load,
a symmetric triangular load with the same loading and
unloading time of 50 s is used. For Sine-Sine load, a load
changes with the first half cycle of the sine function
sin pt=100ð Þ whose period is 200 s. For Step-Hold load,
a step load is applied within 0.001 s and then held for 100 s.
Since it is an axisymmetric problem, axisymmetric linear
quadrilateral elements are adopted. The finite element mesh
that consists of a fine-mesh with 2736 elements and
a coarse-mesh with 1031 elements is displayed in Fig. 5.
The size of the sample is ten times larger than the radius of
contact region, so that the sample can be considered as an
infinite half-space.

C. FE results

For conical indenter, n5 1, and Cn should be replaced
with tana p= in Eqs. (7), (9) and (11). The variation of
depth predicted by Eq. (7), Eq. (9) or Eq. (11) is compared
with the corresponding depth-time curve extracted from the
FE simulation. Parts of the results are plotted in Fig. 6, which
shows that the predicted depth agrees well with the corre-
sponding FE depth-time curve except for the final section of
unloading segment. After viewing all the results of the 100

“materials,”wefind out that the relative error is less than 10%
for the first 90% of unloading segment, and increases rapidly
only in the last 10% of unloading segment. Though the
prediction of depth for unloading induces error, the error is in
the acceptable range. It demonstrates that within certain
tolerance, Lee-Radok solution could be regarded as approx-
imately valid for cases of reducing contact area.

III. METHODS

As Lee-Radok solution has been demonstrated to be
approximately valid for cases of reducing contact area. In
this section, three methods which make use of both
loading and unloading data to determine shear creep
compliance are derived from Eq. (1b). The three methods
are named Step-Ramp method, Ramp-Ramp method and
Sine-Sine method, respectively, according to the loading
profiles [see Fig. 4(a)–4(c)].

A. Methods for determination of shear
creep compliance

The Step-Ramp load, Ramp-Ramp load and Sine-Sine
load are expressed in Eqs. (6), (8) and (10), respectively.
Substituting these equations into Eq. (1b) respectively,
after several derivative and integral steps, we get

Step-Ramp method
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TABLE I. Mechanical parameters input into ABAQUS for defining
materials.

Instantaneous
modulus

Poisson’s
ratio

Relaxation factor
in shear and bulk Relaxation time

E0 GPað Þ m g1 ¼ k1 s1 sð Þ
0.001 0.33 0.2

10
0.01 0.38

0.4
0.5 0.43
2.5 0.48 0.6

10 0.49 0.8

FIG. 5. Finite element mesh of indentation.
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Ramp-Ramp method
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Sine-Sine method
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Equations (12), (13) and (14) can be used to compute the
shear creep compliance. However, as the measured data is
discrete, the computation of the derivative dh nþ1ð Þ=n�dt in
Eqs. (13) and (14) will induce error. In order to avoid the
computation of dh nþ1ð Þ=n�dt, a fitting method is adopted to
determine the shear creep compliance.

According to the generalized Kelvin model, the shear
creep compliance can be written in the form of Prony
series

JðtÞ ¼ J‘ � +
N

i¼1
Jie

�t=si ; ð15Þ

where J‘ is the long-term creep compliance; Ji and si are
compliance constant and retardation time, respectively;
N is a positive integer.

By inserting Eqs. (8) and (15) into Eq. (1b), we get the
fitting formula for Ramp-Ramp method
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By substituting Eqs. (10) and (15) into Eq. (1b), we
obtain the fitting formula for Sine-Sine method
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If we fit Eq. (16) or Eq. (17) into the measured depth-
time curve using the least squares method, we can find
a set of best-fit parameters J‘, Ji and si. Then the shear
creep compliance can be determined by substituting these
parameters back into Eq. (15). In practical applications,
Eqs. (13) and (14) are replaced with Eqs. (16) and (17),
respectively.

FIG. 6. The variation of depth predicted by Lee-Radok solution is compared with that extracted from FE simulation. (a) Step-Ramp load,
(b) Ramp-Ramp load and (c) Sine-Sine load.
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B. Verification of methods by FE simulations

The FE simulations are the same as that implemented in
Sec. II. B. For each “material,” the shear creep compliance
is determined by uniaxial tensile test and indentation tests
with Step-Ramp load, Ramp-Ramp load, Sine-Sine load and
Step-Hold load. These testing results of each “material” are
compared with the theoretical results, which can be com-
puted using Eq. (5). Typical results are displayed in Fig. 7.

First, the fact that the tensile test result overlaps perfectly
with the theoretical result indicates that the material model
used in ABAQUS is correct. Second, the results determined
by indentation with different loading profiles also coincide
with the theoretical result, but with a maximum relative error
of 10.3%. After viewing all the results of the 100 “materi-
als,” we find out the maximum relative error is 13.2%.
Though the Step-Ramp method, Ramp-Ramp method and
Sine-Sine method are not accurate enough for determination
of shear creep compliance, they can be used to approximately
determine shear creep compliance. If the relative error of
13.2% is acceptable, the three methods can be regarded as
reliable. Themost important fact is that the three methods can
make use of both loading and unloading data to determine
shear creep compliance, whereas the prevalent methods
cannot do the same.

IV. EXPERIMENTS

The tests are performed at room temperature (24 °C)
using the MTS Nano Indenter XP system (MTS Nano

Instruments, Oak Ridge, TN) with the Berkovich indenter,
which can be modeled as an equivalent cone with an
included half-angle of 70.3°. The material used in the test
is PMMA (Anheda Plastic Products Co., Ltd., Suzhou,
China). The PMMA specimen is annealed at 120 °C for 2 h
in the air and is cooled down slowly to room temperature
by switching off the power of the temperature chamber.
The Ramp load and Ramp-Ramp load are used in the tests.
The Ramp load leads to a monotonic increasing contact
area, whereas the contact area of Ramp-Ramp load has
a single maximum. For Ramp load, the load increases
linearly to the maximum load (1.5 mN) in 100 s. For
Ramp-Ramp load, the load increases linearly to the
maximum load (1.5 mN) in 50 s and then decreases to
zero in 50 s. The peak load is set to be 1.5 mN to make sure
the indentation depth is less than 780 nm, because Lu9

pointed out that the indentation depth of 780 nm is the
limit of linear viscoelasticity for PMMA by experimental
observation. Each indentation test is repeated 5 times and
only typical values are presented here.

V. RESULTS AND DISCUSSION

The Ramp method extracts shear creep compliance
using the loading data only, but Ramp-Ramp method can
determine shear creep compliance using the data of both
loading and unloading segments. For Ramp method,
Eq. (15) and the upper formula of Eq. (16) are used. The
shear creep compliance of PMMA determined by Ramp

FIG. 7. Shear creep compliance determined by different methods are compared with the theoretical result. (a) The shear creep compliance and (b) the
relative errors of the “material” E0 ¼ 2:5GPa, m ¼ 0:43, g1 ¼ k1 ¼ 0:2, s1 ¼ 10 s; (c) the shear creep compliance and (d) the relative errors of the
“material” E0 ¼ 0:01GPa, m ¼ 0:48, g1 ¼ k1 ¼ 0:6, s1 ¼ 10 s.
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method and Ramp-Ramp method are plotted together in
Fig. 8, so that the results can be compared. As the Ramp
method has been proved to be accurate and robust by
several researchers,9,11 the result of Ramp method can be
regarded as the nominal reference value here. The result of
Ramp-Ramp method coincides with the result of Ramp
method, and the maximum relative error is 12.4%. If
12.4% relative error is in the acceptable range, the
reliability of Ramp-Rampmethod is acceptable. The shear
creep compliance determined by Ramp-Ramp method is
discontinuous at the end of loading. And the reason for this
discontinuity is that the depth-time curves of loading and
unloading segments are fitted respectively with different
formulas [see Eq. (16)].

In addition, the shear creep compliance of PMMA
determined by Rampmethod and Ramp-Rampmethod are
substituted into Eq. (16) to fit the load-depth curves [see

Fig. 9]. It is obvious that the fitting curves overlap well
with the experimental curves during loading segment.
During unloading segment, the fitting curve also coincides
well with the experimental curve except for the last 10% of
unloading, as shown in Fig. 9(b). Since the Ramp-Ramp
method is derived from Eq. (1b), it indirectly demonstrates
that Eq. (1b) is approximately valid for cases of decreasing
contact area.

VI. CONCLUSIONS

A large number of FE simulations and one typical
experiment demonstrate that Eq. (1b) is approximately
valid for cases of reducing contact area. It can be used to
approximately predict the variation of depth for unloading
and determine shear creep compliance using the data of
unloading segment. Under the premise that Eq. (1b) is
approximately valid for cases of reducing contact area,
three semiempirical methods, i.e., Step-Ramp method,
Ramp-Ramp method and Sine-Sine method, are proposed
for determination of shear creep compliance using the data
of both loading and unloading segments. Within certain
tolerance, these methods can be regarded as reliable.
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