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Abstract 
 
The percept of a contrast target is substantially affected by co-occurring changes in mean luminance or underlying (“pedestal”) 
contrast elements. These two types of modulatory effects have traditionally been studied as separate phenomena. However, 
regardless of different higher-level mechanisms, both classes of phenomena will necessarily also depend on shared mechanisms in 
the first stages of vision, starting with the primary responses of photoreceptors. Here we present model simulations showing that 
important aspects of both classes may be explained by the temporal dynamics of photoreceptor responses read by integrate-and-
fire operators. The model is physiologically justified and all its parameters are constrained by experimental evidence. Although 
there remains plenty of room for additional mechanisms to shape the exact quantitative realization of the perceptual functions in 
different situations, we suggest that signature features may be inherited from primary retinal signaling. 
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1. Introduction 
 
The neural and perceptual responses to a contrast pattern are 
always modulated by the spatiotemporal context in which 
the pattern appears. Two of the most basic “context” 
attributes are the mean luminance in the relevant part of the 
visual field and the underlying contrast structure at the very 
location of the pattern. These two have traditionally been 
considered as mechanistically separate in psychophysical 
studies. The purpose of the modeling work presented here 
was to clarify to what extent two much-studied phenomena, 
representing each of these two lines of investigation, may be 
accounted for by shared retinal mechanisms. We find that 
major features of both the effect of a change in mean 
luminance and the pedestal effect can be explained by the 
temporal dynamics and thresholding of photoreceptor 
signals. 
 The first phenomenon that we shall consider is how an 
abrupt change in mean luminance over a wide field affects 
the perceived contrast of a restricted target (Geisler, 1978; 
Kilpeläinen, Nurminen & Donner, 2011; Poot, Snippe & van 
Hateren, 1997). Although the visual system adjusts its 
sensitivity to the prevailing mean luminance quite efficiently 
(Rieke & Rudd, 2009; Shapley & Enroth-Cugell, 1984), 
such adjustment is not instantaneous. As a result, both the 
contrast response of retinal neurons and psychophysically 
measured contrast perception are altered. 
 The second phenomenon is the well known “pedestal 
effect”, where the threshold for detecting a target stimulus is 
lowered when a low-contrast pedestal stimulus is 
simultaneously presented under the target, but rises again 
when pedestal contrast is increased further (resulting in the 
so-called “dipper function”). The pedestal is usually but not 
necessarily spatially similar to the target (Goris, Zaenen & 
Wagemans, 2008). The effect has been studied intensively 

since it was first described by Nachmias and Sansbury 
(1974). 
 In this study, we model responses associated with these 
two types of stimuli. The model comprises a grid of cone 
photoreceptors, their corresponding read-out mechanisms, 
and a simple decision rule. The model units closely replicate 
experimentally established response parameters of retinal 
cones plus a simple integrate-and-fire neuron (“ganglion 
cell”). The model simulations reproduce psychophysical 
data on the effect of luminance change and on the pedestal 
effect remarkably well, especially considering that none of 
the parameters used in the model were optimized to fit the 
data.  
 
2. Methods and results 
 
2.1 The general architecture of the model 
 
The architecture of the model is very simple. The stimulus is 
presented to a grid of “cone photoreceptors”. For the sake of 
simplicity, we assume that one cone corresponds to one 
stimulus pixel (although optically unrealistic, this 
simplification in the spatial domain has no significant 
consequences for our modeling). The response of each cone 
to a luminance step caused by its stimulating pixel is 
calculated according to the phenomenological “independent 
activation” model suggested by Baylor, Hodgkin and Lamb 
(1974) to describe cone responses in turtle retina (equations 
1 and 2): 
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where U may be photovoltage or photocurrent,  is a time 
constant  related  to  the  time  to  peak  of  the  response  as   = 
tp/ln(n), I is light intensity, and t is time. The meaning of the 
other symbols is given in Table 1. Sensitivity S depends on 
the adapting intensity (background illumination) IB and was 
described by the empirical function S =SD × (|d|+0.37bIB) / 
((|d|+0.37IB) × (0.37cIB+1)) derived from recordings in 
macaque cones by Dunn, Lankheet & Rieke (2007). The 
values of all parameters were taken from 
electrophysiological experiments reported in the literature 
(Table 1). No free parameters were used, save for a spike 
threshold in the pedestal modeling tuned to match the 
absolute sensitivity of a single model cone to the absolute 
sensitivity  of  the  human  subjects,  cf.  Fig.  4.   Most  of  the  
parameters stem from photocurrent measurements in 
macaque cones. Although photovoltage is the visually 
relevant signal, the difference is likely to be negligible in the 
early rising phase of responses. The parameters tp and  
describing response kinetics and b, c and d describing 
background adaptation, however, are derived from 
photovoltage recordings in intact retinas, since photocurrent 
recordings from isolated, superfused photoreceptors tend to 
indicate too slow response shut-off (Baylor et al., 1983; 
Schnapf et al., 1990; 1999) and too feeble light-adaptation 
(Donner et al., 1990). Compared with monkey photovoltage, 
electroretinogram (ERG) recordings of mass cone responses 
from the intact human eye have indicated even faster 
response kinetics (Friedburg, Thomas & Lamb, 2001), but 
ERG with ganzfeld stimulation is likely to be dominated by 
peripheral cones, which are faster than the foveal cones 
relevant here. 
 
Table 1. Parameters used in the cone response model 
Parameter Value Source 
SD (sensitivity in darkness) 33 x 10-3 pA/phot 2) 
a (conductance ratio) 1.64 1) 
UL (max amplitude) 19 pA 2) 
n (number of filters) 7 1, 3) 
tp (time to peak in moderate light) 32 ms   4, 5) 

L (time constant under bright  
background light) 

10 ms 1, 6) 

 b, c, d (sensitivity scaling) 1.3, 0.00029,100 5) 
1) Baylor et al., 1974; 2) Schnapf et al., 1990; 3) Hood & Birch, 
1993; 4) Schneeweis & Schnapf, 1999; 5) Dunn et al., 2007;  
6) Djupsund et al. 1996 
 

Temporal noise with the amplitude (15 % of maximum 
light response) and spectral distribution (11 ± 3 Hz) of 
voltage noise recorded in macaque cones was added to the 
cone responses (Schneeweis & Schnapf, 1999). No other 
noise was added, since cone noise is the dominant noise 
component of the retinal output in cone vision (Ala-Laurila, 
Greschner, Chichilnisky & Rieke, 2011). 

For each cone photoreceptor, the model includes a 
read-out mechanism, which transforms the graded signal of 
the cone into spike frequencies and applies a thresholding 
non-linearity to the signal. The read-out mechanism is a 

simple leaky integrator, whose membrane voltage (in mV) is 
determined by equation 3. 
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where m is the membrane time constant  (2.7 ms, Weber & 
Harman, 2005), U is  the input  current  response in  pA,  R is 
input resistance (here normalized to 1 G , to simplify the 
numerical implementation) and Inh is a subtractive static 
inhibition applied to all cone responses. Inh =  (U × i) / (i + 
|U|), where i = 3.95 pA. The inhibition component reduces 
spontaneous firing by a factor of 2.6, in agreement with 
physiological measurements (Brivanlou, Warland & Meister, 
1998). The model produces a spike if V > r(ts) where r is a 
function approximating threshold changes during the 
absolute and relative refractory periods  (Trong & Rieke, 
2008; Uzzell & Chichilnisky, 2004), described by an 
inverted cumulative Gaussian (mean = 4.5 ms, SD = 1 ms), 
where spike threshold decreases from 20 mV  (just higher 
than the highest input signal) to the absolute threshold value 
(0.13  mV  in  Case  1  and  0.195  in  Case  2)  as  a  function  of  
time since last spike (ts). We take no stand on the specific 
neural correlates of the read-out mechanism, but suggest that 
its behavior resembles that of parasol / Y-type retinal 
ganglion cells. 

In the following, we apply the model to two cases 
where contrast perception is modulated in a non-linear 
manner by the context in which the contrast stimulus is 
presented. In both cases we will first explain the mechanism 
that we propose to cause the altered contrast percepts, and 
then compare the model simulation results to corresponding 
psychophysical data. 
 
2.2 Case 1.  The luminance step effect  
 
In a previous study, we observed that an abrupt change in 
mean luminance attenuates the perceived contrast of a 
simultaneously presented grating stimulus (Kilpeläinen et al., 
2011). The subject’s task in the experiment was to match the 
contrast of a grating presented simultaneously with an 
upward step in mean luminance (from 185 to 1295 Td) to 
the contrast of a similar grating presented after a period of 
adaptation to the higher mean luminance (for full methods, 
see Kilpeläinen et al., 2011). At the lowest grating contrasts, 
the absolute amount of attenuation increased to some extent 
with increasing contrast, but over a wide range of higher 
grating contrasts, perceived contrast was attenuated by a 
constant, contrast-independent term (subtractive attenuation). 
Thus, the attenuation caused by the luminance change 
became, in relative terms, weaker with increasing target 
contrast.  

Fig. 1 summarizes the stimuli and responses in this 
experimental paradigm as they appear in our model.  In the 
first situation (the “step-up” situation), the model cones are 
initially adapted to a low photopic luminance level of 185 
Td. Then, with the abrupt change in mean luminance (to 
1295 Td) and the simultaneous onset of the grating stimulus, 
each  cone  is  exposed  to  a  new  light  level  which  is  
considerably above the level of adaptation (Fig 1a, bottom). 
In the second situation, (the “steady-state” situation), the 
cones are adapted to the higher level (1295 Td). Upon the 
onset of the grating the cones are exposed to new light levels 
that depart from the adaptation level only by the amounts 
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corresponding to the grating contrast (downwards as well as 
upwards) (Fig. 1A, middle). 

Since the simplest definition of contrast, and indeed the 
simplest signal an observer could plausibly use to determine 
contrast, is modulation amplitude divided by mean, we 
simplify the model in this case to only 2 units: one 
responding to the peak light level (Lmax) and one to the mean 
light level (Lmean) of the grating. A unit responding to the 
minimum light level of the grating could, of course, also be 
of interest, but response families of retinal cones to light 
decrements accurate enough to provide us with useful 
response parameters are not currently available. 

The cone responses evoked by Lmax and  Lmean  are 
illustrated in Fig. 1B, denoted Rmax and  Rmean, respectively. 
By looking at the two response pairs, one might conclude 
that, due to the well-known compressive relationship 
between light intensities and cone peak response amplitudes 
(Baylor et al., 1974; Schnapf et al., 1990), the difference 
between the responses (and the integral of the difference) 
would always be smaller in the step-up situation. However, 
the earliest rise of photoreceptor responses is actually linear 
against stimulus intensity, and thus the integral of the very 
earliest segments of Rmax -  Rmean will be approximately the 
same regardless of adaptation level (Baylor et al., 1974; 
Lamb & Pugh, 1992). (The approximation holds in a 
moderate luminance range such as here, where the sustained 
response to the higher luminance does not significantly 
decrease the dynamic range of the cone, limited from above 
by the saturation level). This is illustrated in Fig. 1C, which 
shows integrals of Rmax - Rmean in the step-up situation (blue 
lines) and the steady-state situation (red lines). When the 
stimulus contrast is low (the pair of solid curves), the 
integrals first overlap, but diverge around the time of the 
crossing of the first spike criterion. The integral in the step-
up situation reaches subsequent spike criteria later than that 
in the steady-state case, thus producing a lower spike 

frequency. With a higher stimulus contrast (the dashed pair 
of curves), the two curves overlap nearly up to the fourth 
spike criterion. Consequently, spike frequencies up to that 
point will differ only a little between the step-up and the 
steady-state situation. Although the instantaneous 
integration of Rmax -  Rmean may seem physiologically 
unrealistic, it is worth noting that parasol/Y-type ganglion 
cells of the mammalian retina are able to encode both light 
flux linearly summed over the receptive-field centre and 
contrast with finer spatial grain, as the centre itself 
encompasses smaller non-linear subunits (Enroth-Cugell & 
Robson, 1966; Crook, Peterson, Packer, Robinson, Troy & 
Dacey, 2008; Demb, Zaghloul, Haarsma & Sterling, 2001). 
Importantly, the subunits appear to rely purely on 
feedforward processing without the delays involved in 
classical “surround” antagonism.  

To summarize, the spike frequency signal for contrast 
in the step-up situation becomes relatively less suppressed 
with increasing stimulus contrast, because higher contrast 
elicits more steeply rising cone responses, whereby the 
integrating read-out mechanism reaches its threshold criteria 
faster and consequently uses less and less of the compressed 
parts of the cone responses. Figure 2A shows simulated 
spike frequencies (means of responses with 200 different 
noise samples) as functions of grating contrast for the step-
up situation (blue line) and the steady-state situation (red 
line). The spike responses were produced by using Rmax-
Rmean as input to equation 3. The spike frequencies (SF) were 
then calculated as illustrated in Fig. 1C as (tx-t1) / (x-1), i.e. 
the time between the first and the xth spike divided by the 
number of intervals between them. Here we used x = 3 for 
the number of spikes carrying the contrast information, but 
as shown in Fig. 2C, the qualitative results are very similar 
for x = 4. However, x must be small in order to preserve the 
central role of the early part of photoreceptor responses. 

 
 

 
 
Fig. 1. The logic of the model from stimuli to the comparison of spike responses. A) An illustration of the grating stimulus (top), and the spatial 
luminance profiles of the stimulus in the steady-state (middle) and the step-up situation (bottom). B) The leading edges of cone responses to light 
pulses that have the peak (Rmax) and mean (Rmean) intensity of the grating. C) The read-out mechanism integrates Rmax-Rmean for the steady-state 
stimulus (adapted to 1295 Td, red lines) and the step-up stimulus (adapted to 185 Td, blue lines) and fires a spike every time the integral crosses 
a fixed criterion (the 1-spike and the 4-spike criteria exemplified by black dashed arrows). Solid curves for low target contrast, dashed curves for 
high target contrast. For illustrative purposes, responses are here shown without noise. D) The contrast of the comparison stimulus required for a 
match at a given physical contrast of the target is determined by comparing noisy target responses (step-up responses) against noisy comparison 
responses (steady-state responses) and finding the comparison contrast at which the comparison response is larger 50 % of the times. Similar 
results could be obtained with the common method of integrating the ROC-curve (Green & Swets, 1988), but the current approach was adopted 
for maximal transparency. 
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The strongly transient nature of parasol/Y-type 
ganglion cell responses (Lee, Pokorny, Smith & Kremers, 
1994; Nirenberg & Meister, 1997; cf.  Ludwig, Gilchrist, 
McSorley & Baddeley, 2005) was approximated by 
including only spikes  from the first  50 ms in  the spike rate  
calculation. Qualitatively, Fig. 2 A immediately shows both 
that there is suppression (the spike rate for the step-up case 
is always lower than that for the steady-state case), and that 
relative suppression decreases with increasing grating 
contrast. However, a comparison of mean rates is not 
representative of what really happens in a 2 alternative 
forced choice experiment involving pair-wise comparisons 
of single, noisy responses. To simulate this, we calculated 
for all pairs of target stimuli (i.e., contrast gratings presented 
together with the step in mean luminance) and comparison 
stimuli (i.e., contrast gratings presented with steady mean 
luminance) with added noise the probabilities that the SF 
produced by the target+noise be greater than the SF 
produced by the comparison+noise. The probabilities were 
calculated according to equation 4.  
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where t is the target, c is the comparison stimulus, n is noise 
and m is the number of noise samples (we used m = 200). 
The expression (t + nj > c + nk) takes the value 1 if the 
statement  in  the  parentheses  is  true  and  0  if  it  is  false.  
Observe that since each noise sample is used both with 
target and comparison stimulus, the number of possible 
comparisons is m2. For any given target contrast, the 
comparison contrast at which the probability is 0.5 
(corresponding to random responding by a subject in a 2 
alternative task) is the simulated matching contrast of the 
target. This principle is illustrated in Fig. 1D. The relative 
suppression due to the luminance step can then be calculated 
for  the  results  of  the  simulations  in  the  same  way  as  for  
results of psychophysical experiments: (Cphysical – Cmatching) / 
Cphysical). 

Figure 2B plots relative suppression in the step-up 
condition according to the model simulations (continuous 
curve) together with the pertinent psychophysical data from 
three subjects (Kilpeläinen et al., 2011). The data is the 
same as in Fig. 1A of Kilpeläinen et al. (2011) with the 
addition of one new data point for the lowest grating 
contrast for each subject. Interestingly, some of the inter-
subject differences might be explained by differences in the 
number of spikes used (cf. Fig. 2 C) and/or the spike 
threshold voltage. Such differences might occur e.g. as a 
consequence of differences in overall levels of intrinsic 
noise between subjects. Here, the spike threshold voltage 
was  set  to  0.13,  so  that  the  average  spike  frequency  in  
response to noise alone was approximately 20 Hz, 
corresponding to spontaneous activity of macaque parasol 
cells at photopic light levels (Croner, Purpura & Kaplan, 
1993; Trong & Rieke, 2008).  

 
2.3 Case 2. The pedestal effect 
  
One of the most intensely studied phenomena related to 
context-dependent contrast perception is the so-called 
pedestal effect, which refers to the fact that the threshold for 

 
 
Fig.  2 A) Spike frequencies produced by model simulations as 
functions of grating contrast for the step-up situation (blue line) 
and the steady-state situation (red line). B) The continuous curve is 
the simulated relative suppression caused by the luminance step. 
The data points are derived from Fig.1A of Kilpeläinen et al. 
(2011), re-plotted as relative suppression of perceived contrast. The 
symbols for the three subjects are the same as in the original figure. 
C) Comparison of simulated relative suppression when using x=3 
(thick line) of 4 (thin line).  
 
 
discriminating a contrast stimulus added to a low baseline 
contrast (the pedestal) can be lower than the absolute 
detection threshold  for  the  same  stimulus.  From  a  certain  
point, increasing the baseline contrast further causes the 
discrimination threshold to rise above the detection 
threshold, creating the characteristic threshold vs. pedestal 
contrast function commonly known as the “dipper function”.  

We investigated whether the pedestal effect could, in 
principle, also arise from the simple retinal mechanisms 
described above. The model parameters were kept the same 
as in case 1, but 32 “cone” units were now used. The 
rationale is that when an observer decides in which of two 
stimulus locations or intervals the target grating is, it is not 
necessary or efficient to determine the difference between 
peak and mean luminance. Instead, the photoreceptor 
responses to any one pixel of the two gratings have to differ 
sufficiently for the spike frequency in response to 
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pedestal+target+noise to be significantly larger than the 
spike frequency for pedestal+noise. In modeling, the 32 
model units were deployed to cover a quarter cycle of a 
sinusoidal grating, from peak to mean. In most experiments, 
grating stimuli produced on a monitor have much fewer than 
32 pixels per quarter cycle, but due to retinal point spread 
(Navarro, Artal & Williams, 1993; Westheimer & Campbell, 
1962), the cone mosaic is actually receiving a smooth 
continuum of light intensities.  

Discrimination thresholds were simulated in the same 
way as the matching contrast in Case 1. Spike frequencies 
were calculated from the first three spikes (x=3). Then the 
model calculates for all values of pedestal and target 
contrast the probability that the SF produced by pedestal + 
target + noise is greater than the SF produced by pedestal + 
noise. Thus, substituting the relevant stimuli into equation 4 
we get equation 5. 
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where p is pedestal, t is target, n is  noise  and  m is the 
number of noise samples (again we used m = 200). The 
simulation applies the same principles as that described 
under Case 1 (above), repeating the  procedure for every 
combination of pedestal and target. Figure 3 illustrates the 
route from comparison of noisy responses to the threshold-
versus-pedestal-contrast function. First, the probabilities are 
calculated in the manner presented, separately for different 
pedestal contrasts (Fig. 3A). Then the threshold contrast for 
any desired criterion level can be determined as the target 
contrast where the probablity reaches the criterion (75 % in 
this example). Figure 3B plots the target contrasts at which 
the  probability  reaches  the  75  %  threshold  criterion  as  a  
function of pedestal contrast. This can be done for any 
threshold criterion and for each of the 32 model units. 
Figure 3C shows functions for  threshold criterion 75 % for 

5 different model units. It can be seen that the units 
processing pixels further removed from the peak of the 
contrast pattern reach the lowest discrimination threshold at 
higher pedestal contrasts and are thus most useful at these 
contrasts. We emphasize that discrimination is here implied 
to benefit from the pixels close to mean luminance only at 
high contrasts, where responses to those pixels are just 
crossing the absolute threshold. A trend in favour of this 
idea  is  in  the  data  of  Kingdom  and  Whittle  (1996),  where  
discrimination thresholds relative to the absolute threshold 
are mostly higher for square wave gratings than sine wave 
gratings, although there is much more of the peak (less of 
the pixels close to mean) in the square wave gratings. 

Figures 3B and 3C clearly show that the model does 
produce the general characteristics of dipper functions. 
When the target is presented on top of a low-contrast 
pedestal, the discrimination threshold initially falls below 
the absolute detection threshold. 

An intuitive understanding would be that the pedestal 
“helps” the target response to exceed the spike threshold. As 
pedestal contrast is raised further, the discrimination 
threshold starts rising again, primarily because of the 
decelerating intensity-response function generated by the 
model thresholding mechanism (cf. Donner 1989), but also 
due to the refractoriness of the integrate-and-fire neuron.  

Given the discrimination data from many different 
model units, it would be a trivial exercise to devise rules that 
combine the unit responses in a way that would allow the 
model to predict almost any data quite well. We shall refrain 
from developing a number of (arbitrary) rules and only 
consider the arguably simplest (possibly unrealistically 
simple) principle: the discrimination threshold in each 
situation is equal to the lowest threshold of any model unit. 
For example, in Fig. 3C, the unit that is the least sensitive 
one at zero pedestal would be the one that determines the 
discrimination threshold at pedestal contrasts higher than 
0.07 (the curve reaching its minimum around pedestal 
contrast 0.13). 

 

 
 

 
 

 
Fig. 3. A) The probability that the SF for pedestal + target is greater than the SF for pedestal alone as a function of target contrast, simulated for 
one model unit. The black curve is for no pedestal, the blue, red and green curves for pedestal contrasts 0.009, 0.017, 0.025, respectively. B) 
Threshold contrast for a criterion of 75% correct as a function of pedestal contrast, extracted from the curves in A as the target contrast where the 
corresponding curve crosses the threshold criterion (the horizontal line at 0.75 in A). Colours of markers correspond to colours of lines in A. C) 
Threshold contrasts for criteria of 75% correct in different model units, based on simulations similar to those in A. Each curve represents one of 
the model units (only 5 model units included to avoid clutter). Unit 1 (leftmost curve) corresponds to the peak of the sine wave; the other units 
are nos.  16, 26, 28, and 30.  
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In Fig. 4, we compare predictions based on this “most 
sensitive unit” rule with psychophysical data of Henning and 
Wichmann (2007). Panel A presents the psychophysical data 
and the model simulation for the 75% threshold criterion. 
Here, the spike threshold was increased to 0.195 mV to 
match the mean of the psychophysical subjects’ detection 
thresholds (with pedestal contrast 0). Even with this change, 
the model still operates with the early rise of the 
photoreceptor signals (times of the 3 spikes relative to 
“stimulus onset” with a 10 % contrast (in ms) are -20, 1, 15 
in case 1 and 4, 19, 27 in case 2, negative spike times caused 
by noise just before stimulus onset). While the model curve 
does not closely reproduce any of the three data sets, the 
shape of the curve is quite similar. Rather than reproducing 
any single data set as such, the emphasis here is in grasping 
the larger patterns of the data as whole. Such aspects of 
model performance are illustrated by Fig. 4B, where 
discrimination thresholds for three different % correct 
criteria (60%, 75% and 90%), shown separately for each of 
the three subjects, are compared with corresponding model 
curves (here, all absolute thresholds have been normalized 
to unity). The model correctly predicts two salient features 
of the data: lowering the criterion deepens the dip trough 
and moves it to higher pedestal contrast. Also the slopes of 
the subsequent rising parts of the functions are also 
generally well reproduced.  The main shortcoming is that the 
model produces a somewhat too shallow dip in the 60% 
criterion function. 

 
3. Discussion 
 
The first steps of vision are shared by all visual input and 
must therefore constrain any visual function. The common 
stages include at least phototransduction and the formation 
and early transmission of photoreceptor signals. It is a 
common assumption in current psychophysical literature 
that these stages provide an approximately linear 
representation of natural stimuli and can therefore be of little 
help in the analysis of perceptual phenomena currently in 
the focus of vision research. We think, on the contrary, that 
the modelling of phenomena observed in psychophysics and 
cortical electrophysiology would generally benefit from 
building on a solid foundation of known retinal physiology. 
In this study we have shown that central properties of two 
fundamental nonlinearities in the processing of contrast 
patterns, the effects of abrupt changes of mean luminance 
and the pedestal effect, may be inherited from early retinal 
signalling.  
 
3.1 The performance of the model: Luminance change 
 
The fact that an abrupt increase in mean luminance 
attenuates the perceived contrast of a simultaneously 
presented grating is not surprising as such. There is a 
compressive relationship between light intensity and cone 
response amplitudes (see Schnapf et al., 1990), and the step 
from 185 to 1295 Td is likely to transiently consume most of 
the cones’ dynamic range. From such strong compression, 
however, one would expect attenuation to be stronger than 
the higher the grating contrast. What is observed is quite the 
opposite: roughly subtractive attenuation, implying that 
relative attenuation decreases substantially with increasing 
grating contrast (Kilpeläinen et al., 2011). The present 
model predicts this counter-intuitive result correctly, 
capturing the overall pattern of the data correctly (Fig. 2), 

 
 
Fig.  4. The pedestal effect. A) Comparison of model simulations 
and data for three subjects at 75 % correct threshold criterion (data 
from Henning and Wichmann, 2007). B) Comparison of 
simulations and data at three different % correct criteria (see legend) 
on normalized axes. Each of the panels S1-S3 shows data for one 
subject; the fourth panel (bottom right) gives the model curves for 
the same levels of % correct. The data markers as well as the order 
of subjects are as given by Henning & Wichmann (2007). Note: the 
authors do not give information on observer pupil sizes. Here, 
retinal illuminance has been estimated by assuming an average 
pupil diameter of 5.6 mm at the mean luminance used in the 
experiments, 50 cd/m2 (cf. Winn, Whitaker, Elliott & Phillips, 
1994). 
 

 
with no free parameters. Admittedly, a certain amount of 
quantitative inter-subject variation remains unexplained. 
However, although analysis of differences between subjects 
might be interesting, it would require individual estimation 
of sensitivity and noise beyond the scope of the present 
study. 

Why does the present model give such a different 
result compared with a straightforward correlation of 
photoreceptor intensity-response data with psychophysics? 
The main reason is that it largely ignores the final (peak) 
amplitudes of the cone responses. Instead, it considers the 
early parts of the cone signal, where the relation between 
response amplitude and light intensity is closer to linear. 
With increasing contrast, the “thresholding point” moves 
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successively closer to the earliest rise of the photoresponse 
(which is the most linear part). This is certainly functionally 
realistic. It would be inefficient for the system to wait for the 
final amplitude of responses before making decisions (the 
noisy photoresponses would, in fact, need to be analyzed 
beyond the peak to determine their final amplitudes in the 
first place). This idea is supported by psychophysical studies 
suggesting linear summation of visual responses to the onset 
of even very high contrasts or light intensities (Alpern, 
Rushton & Torii, 1970; Vassilev, Mihaylova & Bonnet, 
2002), which is best understood as resulting from the 
linearity of the early rising part of photoreceptor responses 
(Donner, 1989; Donner & Fagerholm, 2003). Functions 
relating reaction time (latency) and perceived contrast to 
stimulus contrast at different adapting luminances are also 
consistent with modelling based on this idea (Djupsund, 
Fyhrquist, Hariyama & Donner, 1996; Donner, 1989). When 
transmitted through the retina, signal components derived 
from the early rise of photoreceptor responses, including 
initial spike frequencies of ganglion cells, are comparatively 
robust against differentiation, surround antagonism, or 
lateral inhibition, which may strongly modulate or suppress 
later parts (Donner, 1981; Donner, 1989). In addition, the 
earliest rising phase of photoreceptor responses is little 
affected by adapting luminances that do not cause sustained 
responses that significantly decrease the dynamic range of 
the cells (Friedburg et al., 2001; Heikkinen et al., 2009). 
This partial invulnerability of the early photoreceptor signal 
should probably be taken into consideration in the 
characterization of the adaptation mechanisms that restore 
the steady-state responsivity of the system (e.g., Hayhoe, 
Benimoff & Hood, 1987; Hayhoe, Levin & Koshel, 1992; 
von Wiegand, Hood & Graham, 1995) 

The plausible neural code of retinal ganglion cells has 
recently been elegantly explored by Jacobs et al. (2009). 
Two of their conclusions are relevant to the present study. 
Firstly, they found that spike count is an implausible neural 
code. This is in line with our emphasis on the initial spike 
rate. For example, our luminance step simulation with spike 
count coding would produce nearly complete suppression, 
regardless of target contrast. Secondly, they found that a 
spike rate code would also fall somewhat short of 
satisfactory performance and suggested that a more complex 
spike time correlation code might be necessary. It would be 
interesting to see whether the “initial spike rate code” we 
present here would prove to be biologically plausible in such 
an analysis. 

 
3.2 The performance of the model: Pedestal effect 
 
The pedestal data is more complex than the data on 
luminance change, consisting of entire threshold-versus-
contrast functions measured for three different threshold 
criteria (Henning & Wichmann, 2007). In view of the 
complexity of the data, our simple model with parameters 
strongly constrained by physiology performs quite well. It 
reproduces qualitatively several salient effects in different 
conditions, e.g., the relative magnitudes and locations of the 
dips as well as the shapes and the relative locations of the 
entire functions, although inter-individual differences 
remain unexplained. One weakness of our “pedestal” 
simulation is that we needed to raise the spike threshold of 
the leaky integrator from what was used in the “luminance 
step” simulation (where the threshold was based strictly on 
the spontaneous firing rate of macaque ganglion cells). To 

match the absolute thresholds in the pedestal experiments (cf. 
Fig. 4), we may have assigned to our retinal spike threshold 
effects of some mechanisms that actually operate on post-
retinal levels. For example, neurons in macaque thalamus 
are known to transmit spikes with probability increasing 
with increasing spike rate (Carandini, Horton & Sincich, 
2007).  
  
3.3 Relation to other models of the pedestal effect 
 
The psychophysical dipper function has most often been 
treated as an expression of an underlying sigmoid-shaped 
contrast-response function (Legge & Foley, 1980). 
According to this description, the initial dip in thresholds 
reflects the initial acceleration of the contrast-response 
function (when going from zero contrast to low contrasts) 
and the subsequent rise in thresholds correspondingly 
reflects deceleration of the function at higher contrasts. This 
general framework has produced much fine-tuning of 
models with excitatory and inhibitory, linear and non-linear 
operators and clever experimental studies measuring 
interactions between pedestals and other contextual elements 
(Chen & Tyler, 2001; Chen & Tyler, 2008; Foley, 1994). 
The idea has since been complicated by the notion that the 
amount of internal noise will also have an effect on 
thresholds, and that this noise may be signal dependent 
(Geisler & Albrecht, 1997; Georgeson & Meese, 2006, see 
also, Meese & Baker, 2011).  

The sigmoidal contrast-response function is a 
phenomenological construct, i.e., without strong claims 
about underlying mechanisms. Thus there is no substantive 
contradiction with our model. It may be noted that a 
thresholding mechanism reading the early rise of cone 
responses will not quite produce a sigmoid contrast-response 
function (cf. Donner, 1989), but on the other hand there is 
no data with sufficient resolution to judge between such 
subtle shape differences. Our threshold assumption is of 
course originally derived from ganglion cell physiology (see 
e.g., Barlow & Levick, 1969), but is also in agreement with 
the conclusion of Kontsevich and Tyler (1999) that, besides 
a non-linear transducer function, a hard threshold is a factor 
in the pedestal effect. 

Approaches that differ qualitatively from the ones 
presented above include the idea that the dip is caused by a 
reduction in observer uncertainty (Klein & Levi, 2009; Pelli, 
1985) or by off-frequency looking, i.e., involvement of units 
tuned to spatial frequencies other than the nominal spatial 
frequency of the target grating (Goris, Wichmann & 
Henning, 2009, see also Chirimuuta & Tolhurst, 2005).  

Our approach does not categorically exclude any of 
these theories. For example, if spike frequency responses are 
more consistent and less variable when the stimulus is 
presented on a pedestal (Fig. 3), this may be seen as a 
specification of “decreased observer uncertainty” (Pelli, 
1985). Similarly, the possibility of off-frequency looking 
(Goris et al., 2009) is inherent in the idea of units that read 
the “cone” responses at different parts of the grating and a 
discrimination decision built on combination of these unit 
responses. 

Indeed, in view of the extremely different situations 
where “dipper functions” may arise (for a review, see 
Solomon, 2009), it may be wisest to accept that almost any 
reasonable mechanism that has been suggested may in some 
situation surface as dominant. The modelling presented here 
operates on a different level, however, dealing with 
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physiological preconditions “below” the alternative theories 
discussed above. We have shown that basic retinal 
mechanisms, which undoubtedly are at work, can generate 
functions similar to those observed in psychophysical 
experiments. A claim that the proposed mechanism is 
irrelevant would need to be supported by an explanation of 
where and how the retinal effect is lost and a similar 
function recreated by other means at a higher level. 

 
3.4 Links between the two cases 
 
Although the modelling of the two phenomena is explicitly 
based on the same mechanisms and parameters, it may be 
useful to point out how the main features operate in the two 
cases. Firstly, the increasing importance of the earliest, near-
linear part of the photoreceptor signal with increasing 
contrast is essential for both. When applied to this signal, the 
thresholding read-out mechanism produces intensity-
response functions of the type illustrated in Fig. 2A: 
monotonically increasing, non-saturating, but decelerating 
(cf.  Donner  1989).  In  Case  1,  this  allows  the  grating  
response in the step-up situation to “catch up” with that in 
the steady-state situation as grating contrast increases. In 
Case 2, this determines, for a single model unit, the rise of 
the discrimination threshold with increasing pedestal 
contrast after the dip (cf. Mansfield 1976). The post-
receptoral thresholding mechanism in itself is of course 
essential. For both cases, it is the mechanism that 
implements the move towards ever earlier parts of the cone 
signal with increasing contrast. For Case 2 specifically, it is 
the mechanism chiefly responsible for the dip in the dipper 
function.  
 
3.5 Conclusions 
 
We investigate how far certain perceptual phenomena may 
be explained by retinal mechanisms that are necessarily 
present, using simple modelling tightly constrained by 
physiological evidence and with a minimum of arbitrary 
elements. We show that one such model is quite successful 
in accounting for central features of two basic context 
modulation effects in contrast perception: contrast 
attenuation by an abrupt change in mean luminance, and the 
pedestal effect. By increasing mechanistic understanding, 
this type of model may be useful in at least three ways. 
Firstly, it suggests new electrophysiological experiments. 
For example, do spiking responses of (some) monkey 
ganglion cells to stimuli similar to those considered here 
carry components conforming to the model predictions? 
Secondly, it helps to dissect relevant psychophysical 
phenomena into retinal and cortical components. There is a 
large body of psychophysical studies using paradigms 
similar to those considered here which may be amenable to 
analysis on similar lines, e.g., studies involving various 
forms of overlay of contrast patterns. Thirdly, it suggests 
perceptually relevant properties of retinal circuitry that need 
to be implemented in retinal models designed as tools for 
such analyses (see eg., Wohrer & Kornprobst, 2009). 
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