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We present results from compressible Cartesian convection simulations with and without imposed shear. In the former case the dynamo
is expected to be of α2Ω type which is likely to be relevant for the Sun, whereas the latter case refers to α2 dynamos which are more
likely to occur in more rapidly rotating stars. The latter exhibit oscillatory large-scale magnetic fields. We perform a parameter study
where the shear flow is kept fixed and the rotational influence is varied in order to probe the relative importance of both modes. We find
that in cases with shear, the streamwise component of the magnetic field is between 9 and 20 times greater than the cross-streamwise
one, depending on the rotation rate. Oscillatory solutions are preferred either when the shear is relatively strong or weak in comparison
to rotation, but not when the two are comparable to each other. However, exceptions to these rules also appear and in many cases
the solution is oscillatory only in the kinematic regime whereas in the nonlinear stage the mean fields are stationary. The cases with
rotation and no shear are always oscillatory in the parameter range studied here and the dynamo mode does not depend on the magnetic
boundary conditions. The strength of total and the large-scale component of the magnetic field at the saturated state, however, are
sensitive to the chosen boundary conditions.

Keywords: Solar Dynamo, Convection, Turbulence

1 Introduction

The solar magnetic cycle is commonly thought to be a manifestation of an oscillatory large-scale dynamo
operating within or just below the convection zone (e.g. Ossendrijver 2003). A possible origin of the solar
magnetic fields is the turbulent dynamo mechanism, where helical small-scale fluid motions and large-
scale shear sustain the magnetic field (e.g. Moffatt 1978, Krause and Rädler 1980, Rüdiger and Hollerbach
2004). According to mean-field theory, turbulent stratified convection together with global rotation of the
Sun lead to an α effect (Steenbeck et al. 1966) and large-scale differential rotation (e.g. Rüdiger 1989).
Their combined effect constitutes the αΩ-dynamo which often yields oscillatory solutions (e.g. Parker 1955,
Steenbeck and Krause 1969).
However, reproducing the solar cycle with direct numerical simulations still remains challenging (e.g.

Miesch and Toomre 2009, Käpylä 2011). Early spherical simulations were indeed able to achieve oscillatory
large-scale fields that propagate toward the poles (Gilman 1983, Glatzmaier 1985). Simpler Cartesian
models with rotating stratified convection were less successful as only small-scale fields were seen (e.g.
Nordlund et al. 1992, Brandenburg et al. 1996). Only when a shear flow was added (Käpylä et al. 2008,
Hughes and Proctor 2009) or rapid enough rotation was used (Jones and Roberts 2000, Rotvig and Jones
2002, Käpylä et al. 2009b), large-scale fields were obtained. Even in the cases with imposed shear, no
oscillatory solutions were seen although the necessary prerequisites, helical turbulence and shear, were
present. However, these are aspects that depend critically on the boundary conditions. Indeed, Käpylä et al.

(2009c) have presented mean-field calculations of associated convection simulations that agree with each
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other not only qualitatively in that both are non-oscillatory, but they also agree quantitatively as far as
their excitation condition is concerned.
Here we extend previous studies on large-scale dynamos due to turbulent convection in Cartesian ge-

ometry (Käpylä et al. 2008, 2009b) to cover a larger parameter space and to explore more thoroughly
the effects of boundary conditions on the solutions. We present runs with imposed shear and find that
oscillatory solutions can be found in a limited part of the parameter range studied. We also report on
rigidly rotating runs where oscillatory α2-dynamos are observed.

2 Model

Our model setup is the same as that of Käpylä et al. (2008, 2009b). A rectangular portion of a star
is modelled with a box situated at colatitude θ. The dimensions of the computational domain are
(Lx, Ly, Lz) = (4, 4, 2)d, where d is the depth of the convectively unstable layer, which is also used as
the unit of length. The box is divided into three layers: an upper cooling layer, a convectively unstable
layer, and a stable overshoot layer (see below). The following equations for compressible magnetohydro-
dynamics are solved:

DA

Dt
= −SAyx̂− (∇U )TA− µ0ηJ , (1)

D ln ρ

Dt
= −∇ ·U , (2)

DU

Dt
= −SUxŷ −

1

ρ
∇p+ g − 2Ω×U +

1

ρ
J ×B +

1

ρ
∇ · 2νρS, (3)

De

Dt
= −

p

ρ
∇ ·U +

1

ρ
∇ ·K∇T + 2νS2 +

µ0η

ρ
J2 −

e−e0
τ(z)

, (4)

where D/Dt = ∂/∂t + (U + U0) ·∇ is the advective derivative with respect to the total (turbulent plus
shear) flow, U 0 = (0, Sx, 0) is the imposed large-scale shear flow, A is the magnetic vector potential,
B = ∇×A is the magnetic field, J = ∇×B/µ0 is the current density, µ0 is the magnetic permeability,
η and ν are the magnetic diffusivity and kinematic viscosity, respectively, K is the heat conductivity, ρ is
the density, U is the velocity, g = −gẑ is the gravitational acceleration, and Ω = Ω0(− sin θ, 0, cos θ) is
the rotation vector. The fluid obeys an ideal gas law p = ρe(γ − 1), where p and e are the pressure and
internal energy, respectively, and γ = cP/cV = 5/3 is the ratio of specific heats at constant pressure and
volume, respectively. The specific internal energy per unit mass is related to the temperature via e = cVT .
The traceless rate of strain tensor S is given by

Sij =
1
2(Ui,j + Uj,i)−

1
3δij∇ ·U . (5)

The last term of Eq. (4) describes cooling at the top of the domain. Here, τ(z) is a cooling time which has
a profile smoothly connecting the upper cooling layer and the convectively unstable layer below, where
τ−1(z) → 0.
The positions of the bottom of the box, bottom and top of the convectively unstable layer, and the

top of the box, respectively, are given by (z1, z2, z3, z4) = (−0.85, 0, 1, 1.15)d. Initially the stratification is
piecewise polytropic with polytropic indices (m1,m2,m3) = (3, 1, 1), which leads to a convectively unstable
layer above a stable layer at the bottom of the domain and an isothermal cooling layer at the top. All
simulations with rotation use θ = 0, corresponding to the north pole.
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2.1 Nondimensional units and parameters

Dimensionless quantities are obtained by setting

d = g = ρ0 = cP = µ0 = 1 , (6)

where ρ0 is the initial density at z2. The units of length, time, velocity, density, entropy, and magnetic
field are

[x] = d , [t] =
√

d/g , [U ] =
√

dg , [ρ] = ρ0 , [s] = cP , [B] =
√

dgρ0µ0 . (7)

We define the fluid and magnetic Prandtl numbers and the Rayleigh number as

Pr =
ν

χ0
, Pm =

ν

η
, Ra =

gd4

νχ0

(

−
1

cP

ds

dz

)

0

, (8)

where χ0 = K/(ρmcP) is the thermal diffusivity, and ρm is the density in the middle of the convectively
unstable layer, zm = z3 − z2. The entropy gradient, measured at zm in the non-convecting hydrostatic
state, is given by

(

−
1

cP

ds

dz

)

0

=
∇−∇ad

HP
, (9)

where ∇ − ∇ad is the superadiabatic temperature gradient with ∇ad = 1 − 1/γ, ∇ = (∂ lnT/∂ ln p)zm ,
where HP is the pressure scale height. The amount of stratification is determined by the parameter ξ0 =
(γ − 1)e0/gd, which is the pressure scale height at the top of the domain normalized by the depth of the
unstable layer. We use ξ0 = 0.3 in all cases, which results in a density contrast of about 23. We define the
fluid and magnetic Reynolds numbers via

Re =
urms

νkf
, Rm =

urms

ηkf
, (10)

where kf = 2π/d is assumed as a reasonable estimate for the wavenumber of the energy-carrying eddies.
Note that, according to this definition, Rm is by a factor 2π smaller than the usually adopted one based
on d instead of kf . The amounts of shear and rotation are quantified by

Sh =
S

urmskf
, Co =

2Ω0

urmskf
. (11)

The denominators in Eq. (11) give an estimate of the convective turnover time. We also use the value of
the relative shear rate

q = −S/Ω0, (12)

which is more often used in the context of disk systems, for which the local angular velocity varies like
Ω0 ∝ r−q. The equipartition magnetic field is defined by

Beq ≡ 〈µ0ρU
2〉1/2, (13)

where angle brackets denote volume averaging.
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2.2 Boundary conditions

Stress-free boundary conditions are used for the velocity,

Ux,z = Uy,z = Uz = 0, (14)

and either vertical field or perfect conductor conditions for the magnetic field, i.e.

Bx = By = 0 (vertical field), (15)

Bx,z = By,z = Bz = 0 (perfect conductor), (16)

respectively. We may think of them as open and closed boundaries, respectively, because they either
do or do not permit a magnetic helicity flux. In the y and x directions we use periodic and shearing-
periodic boundary conditions, respectively. In the runs with shear and rotation we always use vertical
field conditions at the top and perfect conductor conditions at the bottom. The simulations have been
made with the Pencil Code1, which uses sixth-order explicit finite differences in space and a third order
accurate time stepping method.

3 Results

We perform two sets of simulations with shear and rotation (Sets A and B) and a few exploratory runs with
only rotation (Set C), see Table 1. In the runs with shear we keep the shear rate S constant and vary the

rotation rate Ω0. In Set A we use S = −0.05
√

g/d and in Set B we have S = −0.1
√

g/d. Hydrodynamical
progenitors of the runs in Set A were used in Käpylä et al. (2010b) and the runs in Set B were obtained by
doubling both S and Ω0. In terms of q, we explore the range −10 . . . 1.99. Values of q near zero refer to runs
with rapid (and nearly rigid) rotation, whereas small values of |q| are associated with slow rotation. For
q ≥ 2 the flow is Rayleigh unstable and thus we limit our study to values q ≤ 1.99. The case where S 6= 0
and Ω0 = 0 is another special case in that a ‘vorticity dynamo’ (e.g. Elperin et al. 2003, Käpylä et al.

2009a) is excited for the values of shear chosen here. We also omit this part of the parameter regime (see,
however Käpylä et al. 2008). We take Runs A9 and A1 from Käpylä et al. (2011) as the hydrodynamical
progenitors for our runs in Set C with only rotation.
In the following we discuss first the case with shear and study the behavior solutions for a range of

values of q. We refer to these solutions as α–shear dynamos. We study separately the case without shear
and refer to such solutions as α2 dynamos. We focus here specifically on the case of oscillatory solutions.

3.1 α–shear dynamos

In our previous studies of convection-driven large-scale dynamos with shear (Käpylä et al. 2008, 2009b,
2010a), only non-oscillatory solutions were obtained. The large-scale field often had a different sign in the
convectively unstable layer with respect to the stable overshoot layer, although solutions with a single
sign have been obtained at low magnetic Reynolds numbers (see Fig. 5 of Käpylä et al. 2010a) and in
cases where Ω0 = 0 (see Fig. 7 of Käpylä et al. 2008). Runs with sinusoidal shear and rotation also show
non-oscillatory large-scale fields (Hughes and Proctor 2009, Käpylä et al. 2010c).
As is evident form Table 1, many of our current runs are also non-oscillatory; see Figure 1(a) for a

representative result from Run A6. When q is increased from unity, the mean magnetic field begins to
show reversals. This is particularly clear in the kinematic regime in Runs A1–A3. Cycles in the non-
linear regime are more irregular and in some cases the dynamo mode changes to a non-oscillatory mode
(Run B1). With q < 0.25, another oscillatory regime is found. These runs tend to show oscillations in the
kinematic stage but often switch to a stationary mode in the non-linear regime; see the time evolution

1http://pencil-code.googlecode.com/
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Table 1. Summary of the runs. In Sets A and B we use Pr = 1, Ra = 106, Pm = 1, and grid resolution 1283. Perfect conductor

(vertical field) conditions for the magnetic field at the lower (upper) boundary are used. In Set C, Pm varies, Pr = 0.24,

Ra = 2 · 106, and grid resolution 256 × 1282. The boundary conditions in Set C are listed in the rightmost column of the

table. Oscillatory (osc) and stationary (sta) modes of the dynamo are denoted in the second column from right. Question marks

indicate that only very few sign changes are covered by the time series or irregular reversals are seen. Here, B̃rms = Brms/Beq,

where Brms is the total rms magnetic field, and B̃i = 〈B
2

i 〉
1/2/Beq.

Run Ma Rm q Co Sh B̃rms B̃x B̃y Mode Comment

A1 0.031 25 1.99 0.26 −0.25 1.50 0.07 1.38 osc/osc?
A2 0.029 23 1.75 0.31 −0.27 1.50 0.08 1.27 osc/osc
A3 0.028 22 1.50 0.38 −0.28 1.58 0.10 1.29 osc/osc
A4 0.027 22 1.25 0.46 −0.29 1.41 0.10 1.12 osc?/osc?
A4 0.027 22 1.25 0.46 −0.29 1.41 0.10 1.12 sta/osc?
A5 0.028 22 1.00 0.57 −0.28 2.65 0.22 2.46 sta/sta
A6 0.029 23 0.75 0.73 −0.27 3.34 0.29 3.16 sta/sta
A7 0.030 24 0.50 1.07 −0.27 3.92 0.37 3.73 sta/sta
A8 0.029 23 0.25 2.17 −0.27 4.34 0.47 4.08 sta/sta
A9 0.026 20 0.10 6.19 −0.31 5.70 0.61 5.33 osc/sta
A10 0.023 18 0.05 13.7 −0.34 7.07 0.75 6.53 osc/sta
A11 0.011 8 −0.05 −30.2 −0.75 − − − osc/− not run to saturation
A12 0.016 13 −0.10 −9.87 −0.49 − − − osc/− not run to saturation
A13 0.056 45 −0.25 −1.13 −0.14 2.21 0.36 1.81 osc?/sta
A14 0.062 49 −0.50 −0.52 −0.13 2.10 0.22 1.85 sta/sta
A15 0.027 21 −1.00 −0.59 −0.30 − − − sta/− no dynamo
A16 0.028 23 −2.50 −0.22 −0.28 − − − osc/− no dynamo
A17 0.030 24 −5.00 −0.11 −0.26 − − − osc/− no dynamo
A18 0.036 28 −10.0 −0.04 −0.22 − − − osc/− no dynamo
B1 0.090 72 1.99 0.18 −0.18 1.15 0.09 1.00 osc/sta
B2 0.040 32 1.75 0.46 −0.40 2.70 0.13 2.54 osc/osc?
B3 0.039 31 1.50 0.54 −0.40 3.18 0.18 2.99 sta/sta
B4 0.040 31 1.25 0.64 −0.40 3.22 0.20 3.03 sta/sta
B5 0.042 33 1.00 0.77 −0.38 2.94 0.20 2.74 sta/sta
B6 0.034 27 0.75 1.25 −0.47 3.79 0.34 3.57 sta/sta
B7 0.038 31 0.50 1.66 −0.42 3.63 0.29 3.38 sta/sta
B8 0.036 29 0.25 3.50 −0.44 4.00 0.33 3.68 osc/sta
B9 0.029 23 0.10 11.0 −0.55 4.51 0.41 4.00 sta/sta
B10 − − 0.05 − − − − − − no convection
B11 − − −0.05 − − − − − − no convection
B12 0.011 8 −0.10 −30.2 −1.51 − − − osc/− marginal dynamo
B13 0.018 15 −0.25 −6.91 −0.86 − − − osc?/− not run to saturation
B14 0.086 69 −0.50 −0.74 −0.18 1.35 0.19 1.01 osc?/sta
B15 0.094 75 −1.00 −0.34 −0.17 1.16 0.10 0.95 osc?/sta
B16 0.030 24 −2.50 −0.43 −0.54 − − − osc/− marginal dynamo
B17 0.032 26 −5.00 −0.20 −0.50 1.44 0.06 1.20 osc/sta
B18 0.035 28 −10.0 −0.09 −0.46 1.61 0.08 1.35 osc/sta
C1 0.021 66 − 4.60 − 1.18 0.30 0.31 osc/osc Pm = 2, pc/vf
C1b 0.025 39 − 3.85 − 0.36 0.09 0.09 osc/osc Pm = 1, pc/vf
C1c 0.032 26 − 2.96 − − − − osc/− Pm = 0.5, pc/vf, dynamo decays
C1d 0.021 66 − 4.60 − 1.18 0.32 0.29 osc/osc Pm = 2, vf/vf
C1e 0.023 72 − 4.22 − 0.54 0.10 0.09 osc/osc Pm = 2, pc/pc
C2 0.018 58 − 17.5 − 0.64 0.10 0.10 osc/osc Pm = 2, pc/vf

of the horizontally averaged magnetic field components from Run B8 in Figure 1(b). We find that in
the parameter regime explored here, non-oscillatory solutions are consistently found near q = 1. This
explains the lack of oscillatory dynamos in our previous works where we always used q = 1. This further
illustrates the importance of comprehensive parameter studies instead of individual numerical experiments
(Käpylä et al. 2010b).
Many runs in the q < 0 regime, especially in Set A, are either subcritical or show very slow growth of the

magnetic field and were not run to saturation. Convection is suppressed especially near q = 0 due to the
rapid rotation, decreasing the Reynolds number and thus explaining the absence of dynamo action there.
This can seem surprising because in the q < 0 regime the contributions to the α effect due to shear and
rotation have the same sign (Käpylä et al. 2009b). On the other hand, the magnetorotational instability
can be excited for q > 0 which may explain the more favourable dynamo excitation in that regime.
However, we find that if a saturated dynamo is present in this regime, also the turbulence is enhanced
(see Runs A13, A14, B14, and B15). This is associated with the generation of additional large-scale flows
that depend on x, see Figure 4. Also the large-scale magnetic fields are x-dependent. Such modes are not
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(a) (b)

Figure 1. Horizontally averaged horizontal components of the magnetic field from non-oscillatory Run A6 (a) and initially oscil-
latory but ultimately stationary Run B8 (b) α-shear dynamos.

visible in the kinematic stages of the runs.
Even in the cases with the clearest oscillatory solutions, e.g. Run A2 in Fig. 2(a), the period of the

oscillation varies from cycle to cycle. Furthermore, the cycle period is of the order of 103 convective
turnover times in this run. Such a long cycle period limits the duration of the simulation to only a few
cycles.
The cycle frequency of a saturated α–shear dynamo under the assumption of homogeneity is given by

ωcyc = ηTk
2
m, (17)

where ηT = ηt + η is the total magnetic diffusivity, ηt is the turbulent diffusivity, and km is the
wavenumber of the dominant mode of the magnetic field (Blackman and Brandenburg 2002). Because
this is valid in the non-linear regime, the quenching of ηt as a function of Rm and B can be estimated
(Käpylä and Brandenburg 2009). However, such procedure is not directly applicable here due to inhomo-
geneity of the system and the fact that a number of other effects are also present (e.g. Käpylä et al. 2009c),
rendering Eq. (17) inaccurate. However, provided that we are dealing with a turbulent dynamo, the cycle
frequency is likely regulated by the value of ηt. This suggests that the turbulent diffusivity is quenched by
a factor of roughly two to three in Run A2, compared to the kinematic stage of the same run.
The phase diagram of the horizontal components of the large-scale field averaged over 0.2d < z < 0.8d

in Run A2 are shown in Fig. 3(a). The streamwise and cross-stream field components are in antiphase in
this case.

3.2 Oscillatory α2 dynamos

In an earlier study we found the appearance of large-scale magnetic fields in rigidly rotating convection
(Käpylä et al. 2009b). However, none of the runs in that paper were run for much more than 103 convective
turnover times. Although sign changes of the large-scale fields were seen (see, Fig. 7 of KKB09), the time
series were too short to enable any firm conclusions regarding the possibly oscillatory nature of the dynamo.
Furthermore, in similar rapidly rotating runs without magnetic fields, the appearance of large-scale

vortices has been discovered (Chan 2007, Käpylä et al. 2011, Mantere et al. 2011). Here we use the hydro-
dynamical states of runs with large-scale cyclones as initial conditions for our dynamo simulations. We find
that a large-scale dynamo is excited provided the magnetic Reynolds number exceeds a certain critical
value. Furthermore, as the magnetic fields become dynamically important, the cyclones decay and are
absent in the non-linear state. The large-scale magnetic field is oscillatory in the two cases with different
values of Co that we have considered. Figure 2(b) shows the horizontally averaged mean magnetic fields
from a rigidly rotating Run C1 where an α2 dynamo is excited. In Run C1 the large-scale fields are only



November 30, 2011 1:18 Geophysical and Astrophysical Fluid Dynamics paper

Oscillatory large-scale dynamos from Cartesian convection simulations 7

(a) (b)

Figure 2. Same as Fig. 1 but for oscillatory α-shear dynamo Run A2 (a) and α2 dynamo Run C1 (b).

(a) (b)

Figure 3. Phase diagrams for the same runs as in Fig. 2.

functions of z whereas in the more rapidly rotating Run C2 the large-scale fields depend also on x and y.
Furthermore, the oscillatory nature of the solution is not so clear. Figure 3(b) shows the phase diagram
of the horizontal components of the large-scale field in Run C1. There is a phase shift of π/2.
The saturation level of the dynamo is sensitive to the magnetic Reynolds number. Decreasing Rm from

66 to 39 by doubling the value of η, decreases the saturation field strength by a factor of three (Run C1b).
Another doubling of η shuts the dynamo off (Run C1c).
Our standard setup in the present paper is to use perfect conductor boundaries at the bottom and

vertical field conditions at the top. Changing also the lower boundary to vertical field conditions produces
no discernible difference in the solution (Run C1d). However, imposing perfect conductor conditions on
both boundaries decreases the saturation strength to less than a half of the standard setup and decreases
the fraction of the large-scale field (Run C1e). We have not, however, studied the Rm-dependence of the
saturation field strength in this case (cf. Käpylä et al. 2010a).

4 Conclusions

We have presented results from simulations of turbulent magnetized convection both with an imposed
shear flow using the shearing box approximation (Sets A and B) and in rigidly rotating cases (Set C). In
accordance with previous results, we find the generation of dynamically important large-scale magnetic
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(a)

Figure 4. Mean velocities (upper row) and magnetic fields (lower row) averaged over the y-direction and time from Run B14. The
velocities are shown in units of

√

dg and the magnetic fields in units of volume averaged equipartition field Beq.

fields. In distinction to our earlier studies, we here vary the relative importance of rotation with respect
to shear by covering the range q = −10 . . . 1.99 of the relative shear rate q. We find that for q = 1 the
solutions are always stationary, which is in accordance with earlier results. For large q, i.e. slower rotation,
and for q ≪ 1, oscillatory solutions are found. These trends are particularly clear in the kinematic regime.
In the saturated state, however, we often find that the dynamo switches from oscillatory to stationary.
In the rigidly rotating cases of Set C, all the dynamo solutions are found to be oscillatory. Large-scale

vortices, present in the hydrodynamic state, are no longer found in the saturated state of the dynamo.
Usage of a perfect conductor boundary condition instead of a vertical field condition, allowing for magnetic
helicity fluxes, is found to decrease both the total saturation field strength and the strength of the large-
scale field with respect to the total magnetic field.
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Nordlund, Å., Brandenburg, A., Jennings, R. L., Rieutord, M., Ruokolainen, J., Stein, R. F. and Tuominen,
I., Dynamo action in stratified convection with overshoot. Astrophys. J. 1992, 392, 647–652.

Ossendrijver, M., The solar dynamo. Astron. Astrophys. Rev. 2003, 11, 287–367.
Parker, E.N. Hydromagnetic Dynamo Models Astrophys. J. 1955, 121, 491
Rotvig J. and Jones, C.A., Rotating convection-driven dynamos at low Ekman number. Phys. Rev. E

2002, 66, 056308.
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