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1 Introduction

This document examines a number of regions that produce the final good

from land, labor and an emitting input and enhance their productivity by

devoting labor to R&D. The regions establish a central planner that decides

how much each region can emit greenhouse gases (GHGs). Because the

regions do not form a federation, the central planner is self-interested (i.e.

subject to lobbying) and has no budget of its own. Furthermore, the central

planner can use only one policy parameter that must be uniformly applied

to all regions. In this framework, it is instructive to compare the cases of

laissez-faire, the Pareto optimum and lobbying equilibrium.

It has been common in environmental economics to consider abatement

in a two-sector framework where one sector produces a final good, but the

other sector alleviates the use of natural resources (cf. Xepapadeas 2005,

chapter 4.3). The problem of environmental policy is then basically static: it

answer the question of how resources could be optimally allocated between

the sectors. Because that approach ignores the long traces that environmen-

tal policy may cause for the economic growth of countries, this document

examines emissions in a R&D-based growth model.

Haurie et al. (2006) examine a negotiation game where the regions talk

over an international agreement on their use of GHGs to foster their economic

development. They show that if GHGs in the atmosphere are exogenously

constrained, then there is a Pareto optimum in these talks. Böringer and

Lange (2005) and Mackenzie et al. (2008) consider emissions-based allocation

rules for which the basis of allocation is updated over time. They show that

if the emission cap is absolute, then grandfathering schemes – which allocate

allowances proportionally to past emissions – lead to the first-best. This

document extends the analysis of these papers as follows. First, the policy

maker in the coalition is self-interested, being subject to lobbying from the

regions. Second, the international emission cap is endogenously determined
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by the same bargaining between the coalition members and the policy maker.

Jouvet et al. (2008) incorporate externality through pollution in an

overlapping-generations (OLG) model, showing that the optimal growth path

can be decentralized only with lump-sum transfers and a market for GHG

permits. All permits should then be auctioned, which rules out all grand-

fathering practises. Jouvet et al. (2008) explain these results as follows:

grandfathering practices cause a distortion by raising the return on invest-

ment, but the lump-sum provision of pollution rights to households does not

distort anything. In contrast, this document considers the coordination of

environmental policy through the design of a policy maker with no budget. It

is instructing to see whether grandfathering schemes distort in that setting.

Palokangas (2009) considers emission policy with a self-interested cen-

tral planner in a coalition of identical regions. That paper however assumes,

rather unrealistically, that technology and primary resources are similar in

all regions and that the central planner can negotiate over different emission

caps with different regions. In this document, that assumption is relaxed:

the central planner has only one policy parameter – the proportion of grand-

fathering in allocating emissions caps – that must be uniformly applied to

all regions. Sections 2 presents the structure of the economy and section 3

constructs the model for a single region. Sections 4, 5 and 6 examine the

cases of laissez-faire, the Pareto optimum and lobbying, respectively. It is

shown that a one-parameter grandfathering agreement is self-enforcing (cf.

Haurie et al. 2006): no region has incentives to break it.

2 The economy

The economy contains a large number (a “continuum”) of regions placed

evenly in the limit [0, 1]. Each region j ∈ [0, 1] supplies land Aj and labor Lj

inelastically, and devotes lj units of labor to production and the remainder

zj = Lj − lj (1)
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to R&D. There exists an emitting input called energy the extraction costs

of which are ignored, for simplicity. It is assumed that local emissions are

proportional to the use of energy, mj, in each region j. Pollution m is a

linearly homogeneous function M of the emissions of all regions j ∈ [0, 1]:

m = M
(
mj| j ∈ [0, 1]

)
, M homogeneous of degree one. (2)

All regions produce the same consumption good from land, labor and energy.

That good is chosen as the numeraire, for simplicity.

To enable that the regions can increase their efficiency and consequently

grow at different rates in a stationary-state equilibrium, we eliminate

• the terms-of-trade effect by the assumption that all regions produced

the same internationally-traded good, and

• international capital movements by the assumption that all regions

share the same constant rate of time preference, ρ.

On the assumption of perfect markets, each region j ∈ [0, 1] behaves as

if there were a single agent (hereafter called region j) that controls fully the

resources in that region. This document ignores free riding, for simplicity:

all regions j ∈ [0, 1] are committed to common emission policy.

3 Single region j ∈ [0, 1]

3.1 Production

When region j develops a new technology, it increases its productivity by

constant proportion aj > 1. The level of productivity in region j is then

equal to aj
γj , where γj is its serial number of technology. The innovation of

new technology in region j increases γj by one.

Region j produces its output yj from land Aj, labor lj and energy mj.

It is assumed that local emissions, which are proportional to energy input
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mj, harm production by spoiling the quality of the product.1 It is futher-

more assumed that labor lj and energy mj form a composite input φj(lj,mj)

through CES technology, but otherwise there is Cobb-Douglas technology:2

yj = aj
γjf j(lj,mj)m

−β
j , f j(lj,mj)

.
= A

1−αj
j φj(lj,mj)

αj , 0 < αj < 1, β > 0,

f jl > 0, f jm > 0, φjl > 0, φjm > 0, φjll < 0, φjmm < 0, φjlm > 0, (3)

where the subscripts l and m denote the partial derivative of the function

with respect to lj and mj, respectively, aj
γj is total factor productivity, αj a

parameter and β is the constant elasticity of output with respect to emissions

mj. The higher β, the more local emissions mj harm local production.

When the markets are perfect in region j, one can interpret 1−αj as the

expenditure share of land and αj that of labor and energy taken together.

Noting (3), the expenditure shares of energy and labor in production are

mjf
j
m(lj,mj)

f j(lj,mj)
= αj

mjφ
j
m(lj,mj)

φj(lj,mj)
= αj

φjm(lj/mj, 1)

φj(lj/mj, 1)
.
= ξj

(
lj
mj

)
∈ (0, αj),

ljf
j
l (lj,mj)

f j(lj,mj)
= αj

ljφ
j
l (lj,mj)

φj(lj,mj)
= αj

[
1− mjφ

j
m(lj,mj)

φj(lj,mj)

]
= αj − ξj

(
lj
mj

)
∈ (0, αj). (4)

Because the composite input φj(lj,mj) is a CES function, one obtains

(ξj)′
(
lj
mj

)
=

dξj

d(lj/mj)

{
> 0 for 0 < σj < 1,
< 0 for σj > 1,

(5)

where σj is the constant elasticity of substitution between inputs lj and mj.

3.2 Research and development (R&D)

An increase in productivity in region j, aj
γj [cf. (3)], depends on labor

devoted to R&D, zj, in that region: the probability that input zj leads to

1Without this assumption, region j would use an indefinitely large amount of energy
in the case of laissez-faire (cf. section 4).

2The use of a general production function yj = a
γj
j F (Aj , lj ,mj) would excessively

complicate the analysis.
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development of a new technology with a jump from γj to γj + 1 in a small

period of time dθ is given by λjzjdθ, while the probability that input zj

remains without success is given by 1− λjzjdθ, where λj > 0 is a constant.

Noting (1), this defines a Poisson process χj with

dχj =

{
1 with probability λjzjdθ,
0 with probability 1− λjzjdθ,

zj = Lj − lj, (6)

where dχj is the increment of the process χj.

3.3 Preferences

All regions have the same preferences: the expected utility of region j ∈ [0, 1]

starting at time T is given by

E

∫ ∞
T

cjm
−δe−ρ(θ−T )dθ, δ > 0, ρ > 0, (7)

where E is the expectation operator, θ time, cj consumption in region j, ρ the

constant rate of time preference and δ the constant elasticity of temporary

utility with respect to economy-wide emissions m. The lower ρ, the more

patient the regions are. Total pollution m decreases welfare in all regions

j ∈ [0, 1], but a single region is so small that it ignores this dependence. The

higher δ, the more pollution m is disliked.

4 Laissez-faire

Because all regions j ∈ [0, 1] produce the same consumption good, then,

without GHG emissions management, each region j consumes what it pro-

duces, cj = yj. Noting (3) and cj = yj, the expected utility of the region

starting at time T , (7), becomes

Υj = E

∫ ∞
T

yjm
−δe−ρ(θ−T )dθ = E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j m−δe−ρ(θ−T )dθ. (8)

Assume for a while that energy input mj is held constant. Region j then

maximizes its expected utility (8) by its labor devoted to production, lj,
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subject to its technological change (6), given pollution m. The solution of

this maximization is the following (cf. Appendix A):

Proposition 1 The expected utility of region j is

Υj = m−δΠj(γj,mj, T ), for which
∂Πj

∂mj

=
Πj

mj

[
ξj
(
lj
mj

)
− β

]
.

(9)

Region j chooses its labor input lj so that

(aj − 1)λjlj
ρ+ (1− aj)λj(Lj − lj)

= αj − ξj
(
lj
mj

)
. (10)

In the presence of laissez-faire, region j can optimally determine its energy

input mj as well: it maximizes the value of its program, Υj, by mj. Given

(9), this leads to the first-order condition

∂Υj

∂mj

= m−δ
∂Πj

∂mj

= m−δ
Πj

mj

[
ξj
(
lj
mj

)
− β

]
= 0 and ξj

(
lj
mj

)
= β. (11)

The second-order condition of the maximization is given by

∂2Υj

∂m2
j

= − m−δ
Πj

mj︸ ︷︷ ︸
+

(ξj)′
lj
m2
j︸︷︷︸

+

< 0 and (ξj)′ > 0.

Given this and (5), labor and energy are gross complements, 0 < σj < 1, and

(ξj)′ > 0 holds true everywhere. From this, (10) and (11) it follows that

(aj − 1)λjl
L
j

ρ+ (1− aj)λj(Lj − lLj )
= αj − β, ξj

(
lLj
mL
j

)
= β with (ξj)′ > 0, (12)

where the superscript L denotes the laissez-faire equilibrium.

Finally, the following result is proven in Appendix B:

Proposition 2 The more emissions harm locally (i.e. the higher β), the less

there are emissions mL
j , dmL

j /dβ < 0, and the more there is R &D (i.e. the

higher zLj ), dzLj /dβ > 0.

Because technological change generated by R&D decreases the need for pol-

luting energy, there are incentives to perform R&D.
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5 The Pareto optimum

Grandfathering means that emission caps have a base that is determined by

the history, but updated over time. In models with discrete time, that base

would be calculated by a moving average of past emissions. In the quality-

ladders model of this document where time is continuous, the base is specified

as follows. The central planner sets the pollutant caps in fixed proportion ε

to the energy input of that region under previous technology, m̂j:

mj ≤ εm̂j for j ∈ [0, 1] and ε > 0. (13)

If the current number of technology is γj, then the allocation base m̂j is

calculated by energy input under previous technology γj − 1 (cf. subsection

3.1). If the central planner tightens emission policy by decreasing ε below one,

then the constraint (13) becomes binding for all regions j ∈ [0, 1]. Because

the function M in (2) is linearly homogeneous, one then obtains:

mj = εm̂j for j ∈ [0, 1], m = εm̂, m̂
.
= M

(
m̂j| j ∈ [0, 1]

)
. (14)

In the grandfathering scheme, there is thus only one policy parameter ε.

Because all regions j ∈ [0, 1] produce the same consumption good, total

consumption is equal to total production,
∫ 1

0
cjdj =

∫ 1

0
yjdj. To construct

the Pareto optimum, let us introduce a benevolent central planner that max-

imizes the welfare of the representative agent of the economy, W . Given (7),

(8), (9) and
∫ 1

0
cjdj =

∫ 1

0
yjdj, that welfare is

W .
=

∫ 1

0

[
E

∫ ∞
T

cjm
−δe−ρ(θ−T )dθ

]
dj = E

∫ ∞
T

(∫ 1

0

cjdj

)
m−δe−ρ(θ−T )dθ

= E

∫ ∞
T

(∫ 1

0

yjdj

)
m−δe−ρ(θ−T )dθ = E

∫ ∞
T

(∫ 1

0

yjm
−δe−ρ(θ−T )dθ

)
dj

=

∫ 1

0

Υjdj = m−δ
∫ 1

0

Πj(γj,mj, T )dj (15)

which should be maximized by the policy parameter ε. Given (9) and (14),
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this leads to the first-order conditions

0 =
dW
dε

= m−δ
∫ 1

0

∂Πj

∂mj

∂mj

∂ε︸︷︷︸
=m̂j

dj − δm−δ−1 ∂m
∂ε︸︷︷︸
=m̂

∫ 1

0

Πjdj

= m−δ
[∫ 1

0

∂Πj

∂mj

m̂jdj − δ
m̂

m

∫ 1

0

Πjdj

]
= m−δ

{∫ 1

0

Πj

[
ξj
(
lj
mj

)
− β

]
m̂j

mj

dj − δ m̂
m

∫ 1

0

Πjdj

}
= m−δ

∫ 1

0

Πj

{[
ξj
(
lj
mj

)
− β

]
m̂j

mj

− δ m̂
m

}
dj. (16)

In the stationary state, all inputs (lj,mj) for all regions j ∈ [0, 1] must be

constant. Once the economy attains the stationary state, the emissions under

the previous and current technology become equal: m̂ = m and m̂j = mj for

j ∈ [0, 1]. Plugging these conditions and into (16) yields

0 = m−δ
∫ 1

0

Πj

[
ξj
(
lj
mj

)
− β − δ

]
dj. (17)

Because the expected utilities Πj for j ∈ [0, 1] are random variables, then,

given (17), the only possible stationary state is

ξj
(
lj
mj

)
= β + δ for j ∈ [0, 1]. (18)

The equilibrium conditions (10) for the regions j ∈ [0, 1] as well as those (18)

for the central planner can be written as

ξj
(
lPj
mP
j

)
= β + δ,

(a− 1)λjl
P
j

ρ+ (1− a)λj(Lj − lPj )
= αj − β − δ, (19)

where the superscript P denotes the Pareto optimum equilibrium.

The comparison of (19) with (12) shows that the introduction of a benev-

olent central planner increases the parameter β up to β + δ in the system.

Thus, Proposition 2 has the following corollary:

Proposition 3 A shift from laissez-faire to the Pareto optimum decreases

emissions, mP
j < mL

j , and increases R &D, zPj > zLj .
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The introduction of a benevolent central planner internalizes the negative

externality through emissions. This increases incentives to perform R&D.

With the uniform proportionality rule ε, all regions face the same marginal

benefits from pollutants via allocation in subsequent periods. In contrast

to Böringer and Lange (2005), the regulatory cap mP is not exogenous but

endogenously determined.

6 Regulation

In this section, regions j ∈ [0, 1] lobby the central planner over the policy

parameter ε. Following Grossman and Helpman (1994), it is assumed that the

central planner has its own interests and collects political contributions Rj

from regions j ∈ [0, 1]. This is a common agency game, the order of which is

then the following (cf. Grossman and Helpman 1994, and Dixit et al. 1997).

First, the regions j ∈ [0, 1] set their political contributions Rj conditional on

the central planner’s prospective policy ε. Second, the central planner sets its

policy ε and collects the contributions from the regions. Third, the regions

maximize their utilities. This game is solved in reverse order: Subsection 6.1

considers the equilibrium of the regions and 6.2 the political equilibrium.

6.1 Optimal program

Region j pays its political contributions Rj to the central planner. It is

assumed, for simplicity, that the central planner consists of civil servants

who inhabit regions j ∈ [0, 1] evenly. Thus, the regions gets an equal share

R of total contributions,

R
.
=

∫ 1

0

Rjdj

/∫ 1

0

dk =

∫ 1

0

Rjdj. (20)

Noting the production function (3), consumption in region j is then

cj = yj +R−Rj = a
γj
j f

j(lj,mj)m
−β
j +R−Rj, (21)
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where yj is income from production and R − Rj net revenue from political

contributions in region j. Noting (21), the expected utility of region j starting

at time T , (7), becomes

Θj = E

∫ ∞
T

[
a
γj
j f

j(lj,mj)m
−β
j +R−Rj

]
m−δe−ρ(θ−T )dθ. (22)

Region j maximizes its expected utility (22) by its labor devoted to produc-

tion, lj, subject to technological change in the region, (6), given the emission

cap mj, pollution m and political contributions Rj and R. The solution for

this optimal program is the function (cf. Appendix C)

Θj(mj,m,R,Rj, γj),
∂Θj

∂mj

= m−δ
Γj(γj,mj, T )

mj

[
ξj
(
lj
mj

)
− β

]
,

∂Θj

∂m
= −δm−δ−1

(
Γj +

R−Rj

ρ

)
, − ∂Θj

∂Rj

=
∂Θj

∂R
=
m−δ

ρ
, (23)

where Γj is the expected value of the flow of output for region j, which is a

random variable, and l∗j is the optimal labor input in production for which

(aj − 1)λjl
∗
j

ρ+ (1− aj)λj(Lj − l∗j )
= αj − ξj

(
l∗j
mj

)
. (24)

6.2 The political equilibrium

Because each region j affects the central planner by its contributions Rj, its

contribution schedule depends on the central planner’s policy ε [cf. (20)]:

Rj(ε) for j ∈ [0, 1], R(ε)
.
=

∫ 1

0

Rk(ε)dk. (25)

The central planner maximizes present value of the expected flow of the

political contributions R from all regions j ∈ [0, 1]:

G(R)
.
= E

∫ ∞
T

Re−θ(θ−T )dθ =
R

ρ
. (26)

Each region j maximizes its expected utility Θj [cf. (23)].

According to Dixit at al. (1997), a subgame perfect Nash equilibrium for

this lobbying game is a set of contribution schedules Rj(ε) and a policy ε

such that the following conditions (i)− (iv) hold:

10



(i) Contributions Rj are non-negative but no more than the contributor’s

income, Θj ≥ 0.

(ii) The policy ε maximizes the central planner’s welfare (26) taking the

contribution schedules Rj(ε) as given,

ε = arg max
ε
G
(
R(ε)

)
= arg max

ε∈[0,1]
R(ε). (27)

(iii) Region j cannot have a feasible strategy Rj(ε) that yields it a higher

level of utility than in equilibrium, given the central planner’s antici-

pated decision rule (14),

ε = arg max
ε

Θj
(
mj,m,R,Rj(ε), γj

)
with mj = εm̂j and m = εm̂.

(28)

Because the region is small, it takes the total contributions of all re-

gions, R, as given. However, the region observes the dependency of

pollution m on environmental policy ε [cf. (14)].

(iv) Region j provides the central planner at least with the level of utility

than in the case it offers nothing (Rj = 0), and the central planner

responds optimally given the other regions contribution functions,

G
(
R(ε)

)
≥ max

ε
G
(
R(ε)

)∣∣∣
Rj=0

.

6.3 The stationary state

Noting (23), the conditions (28) for regions j ∈ [0, 1] is equivalent to

0 =
dΘj

dε
=
∂Θj

∂Rj

dRj

dε
+
∂Θj

∂mj

∂mj

∂ε︸︷︷︸
=m̂j

+
∂Θj

∂m

∂m

∂ε︸︷︷︸
=m̂

=
∂Θj

∂Rj

dRj

dε
+
∂Θj

∂mj

m̂j +
∂Θj

∂m
m̂

= −m
−δ

ρ

dRj

dε
+m−δΓj

[
ξj
(
lj
mj

)
− β

]
m̂j

mj

− δm−δ
(

Γj +
R−Rj

ρ

)
m̂

m

11



and

1

ρ

dRj

dε
= Γj

[
ξj
(
lj
mj

)
− β

]
m̂j

mj

− δ
(

Γj +
R−Rj

ρ

)
m̂

m
for j ∈ [0, 1]. (29)

Once the economy attains the stationary state, the emissions under the previ-

ous and current technology become equal: m̂ = m and m̂j = mj for j ∈ [0, 1].

Plugging these conditions into (29) yields

1

ρ

dRj

dε
=

[
ξj
(
lj
mj

)
− β

]
Γj − δ

(
Γj +

R−Rj

ρ

)
for j ∈ [0, 1].

Noting these equations and (25), the government’s equilibrium condition (27)

is equivalent to

0 =
dR

dε
=

∫ 1

0

dRj

dε
dj = ρ

∫ 1

0

{[
ξj
(
lj
mj

)
− β

]
Γj − δ

(
Γj +

R−Rj

ρ

)}
dj

= ρ

{∫ 1

0

[
ξj
(
lj
mj

)
− β − δ

]
Γjdj − δ

ρ

∫ 1

0

(R−Rj)dj︸ ︷︷ ︸
=0

}

= ρ

∫ 1

0

[
ξj
(
lj
mj

)
− β − δ

]
Γjdj. (30)

In the stationary state, all inputs (lj,mj) for all regions j ∈ [0, 1] must be

constant. Because the expected value of the flow of output, Γj is a random

variable for all regions j ∈ [0, 1], then, given (30), the only possible stationary

state in the economy of regions j ∈ [0, 1] is

ξj
(
lj
mj

)
= β + δ for j ∈ [0, 1]. (31)

This means that if region j ∈ [0, 1] has confidence on stable development,

then it expects that its expenditure share of energy, ξj, will be equal to β+ δ

in the long run. From the equilibrium conditions (24) of the regions j ∈ [0, 1]

as well as those (31) of the central planner, one obtains

ξj
(
lG

mG

)
= β + δ,

(aj − 1)λjl
G

ρ+ (1− aj)λj(L− lG)
= αj − β − δ, (32)

where the superscript G denotes grandfathering of emissions.

Comparing the systems (19) and (32) yields the following result:
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Proposition 4 Regulation leads to the Pareto optimum, (lG,mG) = (lP ,mP ).

The introduction of a self-interested central planner has the same impact

as that of a benevolent central planner: it internalizes the externality of

emissions through pollution, leading to the Pareto optimum. This means

that an agreement on a self-interested policy maker is self-enforcing: no

region has incentives to break it.

7 Conclusions

This document examines the design of emission policy for a large number of

regions which use land, labor and emitting inputs in production, but which

can increase their total factor productivity by allocating labor to R&D. The

use of emitting inputs pollutes, decreasing welfare everywhere. The regions

can agree on a central planner and authorize it to grant them GHG emission

caps. Because the regions do not form a federation with a budget of its own,

the central planner is non-benevolent, self-interested and subject to lobbying.

It is plausible to assume that the policy parameter of the central planner is

uniform throughout all regions.

By the use of grandfathering schemes with one policy parameter only, the

central planner internalizes the negative externality through GHG emissions.

When emission caps are set in proportion to past emissions, all regions face

the same marginal benefits from emissions via allocation in subsequent peri-

ods. Because the basis for allocation is updated over time, the central planner

has the full control of resources. Thus, an agreement on the central planner,

benevolent or self-interested, leads to the first-best allocation of resources

(i.e. the Pareto optimum). Consequently, that agreement is self-enforcing.

13



Appendix

A Proposition 1

Region j maximizes (22) by (lj,mj) subject to (6), given m. It is equivalent

to maximize

E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j e−ρ(t−T )dt

by (lj,mj) subject to (6).

Assume for a while that energy input mj is kept constant. The value of

this maximization is

Πj(γj,mj, T ) = max
lj s.t. (6)

E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j e−ρ(t−T )dt. (33)

Let us denote Πj = Πj(γj,mj, T ) and Π̃j = Πj(γj + 1,mj, T ). The

Bellman equation corresponding to the optimal program (33) is given by (cf.

Dixit and Pindyck 1994)

ρΠj = max
lj ,mj

Ψ(lj,mj, γj, T ), where

Ψ(lj,mj, γj, T ) = a
γj
j f

j(lj,mj)m
−β
j +

(
Π̃j − Πj

)
λj(Lj − lj). (34)

Noting (4), this leads to the first-order condition

∂Ψ

∂lj
= a

γj
j f

j
l (lj,mj)m

−β
j − λj

(
Π̃j − Πj

)
=

1

lj
a
γj
j f

j(lj,mj)m
−β
j

[
1− ξj

(
lj
mj

)]
− λj

(
Π̃j − Πj

)
= 0. (35)

To solve the dynamic program (33), assume that the value of the program,

Πj, is in fixed proportion ϑj > 0 to instantaneous utility at the optimum.

Noting (4), this implies

Πj(γj,mj, T ) = ϑja
γj
j f

j(l∗j ,mj)m
−β
j with

∂Πj

∂mj

= Πj

[
f jm(lj,mj)

f j(lj,mj)
− β

mj

]
=

Πj

mj

[
ξj
(
lj
mj

)
− β

]
,

(36)
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where l∗j is the optimal value of the control variable lj. This implies

(Π̃j − Πj)/Πj = aj − 1. (37)

Inserting (36) and (37) into the Bellman equation (34) yields

1/ϑj = ρ+ (1− aj)λj(Lj − l∗j ) > 0. (38)

Inserting (36), (37) and (38) into (35), and noting (ξj)′ > 0 yield (12):

0 = ϑj
lj
Πj

∂Ψ

∂lj
= a

γj
j f

j(lj,mj)m
−β
j

ϑj
Πj︸ ︷︷ ︸

=1

[
αj − ξj

(
lj
mj

)]
−
(

Π̃j

Πj
j︸︷︷︸

=aj

−1

)
λjljϑj

= αj − ξj
(
lj
mj

)
− (aj − 1)λjlj
ρ+ (1− aj)λj(Lj − l∗j )

. (39)

From (8), (33) and (38) it follows that

Υj = max
lj s.t. (6)

E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j m−δe−ρ(θ−T )dθ

= m−δE

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j e−ρ(θ−T )dθ = m−δΠj(γj,mj, T ). (40)

Results (36), (39) and (40) lead to Proposition 1.

B Proposition 2

Given (1), (3), (4) and (12), it then holds true that

ρ+ (1− aj︸ ︷︷ ︸
−

)λj(Lj − lLj︸ ︷︷ ︸
+

) ξj︸︷︷︸
∈(0,1)

> ρ+ (1− aj)λj(Lj − lLj ) > 0,

(aj − 1)λjl
L
j

ρ+ (1− aj)λj(Lj − lLj )
< αj − β < αj < 1, ρ+ (1− aj)λjLj > 0. (41)

Noting (1), (12) and (41) yield

d

dlLj
log

[
(aj − 1)λjl

L
j

ρ+ (1− aj)λj(Lj − lLj )

]
=

1

lLj

[
1−

(aj − 1)λjl
L
j

ρ+ (1− aj)λj(Lj − lLj )︸ ︷︷ ︸
∈(0,1)

]
> 0 and

d

dlLj

[
(aj − 1)λjl

L
j

ρ+ (1− aj)λj(Lj − lLj )

]
> 0.
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Noting this and differentiating the left-hand equation in (12), one obtains

d

dlLj

[
(aj − 1)λjl

L
j

ρ+ (1− aj)λj(Lj − lLj )

]
︸ ︷︷ ︸

+

dlLj + dβ = 0

and dlLj /dβ < 0. Given (1), this implies dzLj /dβ = −dlLj /dβ > 0. Finally,

differentiating the right-hand equation in (12), and noting (12), one obtains

dmL
j

dβ
=
mL
j

lLj

[
dlLj
dβ︸︷︷︸
−

−
mL
j

(ξj)′︸︷︷︸
+

]
< 0.

C Function (23) and condition (24)

Region j maximizes (22) by lj subject to (6), given (m,mj, R,Rj). It is

equivalent to maximize the expected value of the flow of output for region j,

E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j e−ρ(θ−T )dθ,

by lj subject to (6), given mj. The value of this maximization is

Γjj(γj,mj, T ) = max
lj s.t. (6)

E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j e−ρ(θ−T )dθ. (42)

Denote Γj = Γj(γj,mj, T ) and Γ̃j = Γj(γj + 1,mj, T ). The Bellman

equation corresponding to the optimal program (42) is

ρΓj = max
lj

Ψ(lj, γj,mj, R−Rj, T ), where

Ψ(lj, γj,mj, T ) = a
γj
j f

j(lj,mj)m
−β
j + λj(Lj − lj)

(
Γ̃j − Γj

)
. (43)

Noting (4), this leads to the first-order condition

∂Ψ

∂lj
= a

γj
j f

j
l (lj,mj)m

−β
j − λj

(
Γ̃j − Γj

)
=

1

lj
a
γj
j f

j(lj,mj)m
−β
j

[
αj − ξj

(
lj
mj

)]
− λj

(
Γ̃j − Γj

)
= 0. (44)
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To solve the dynamic program (42), assume that the value of the program,

Γj, is in fixed proportion ϑj > 0 to instantaneous utility:

Γj(γj,mj, T ) = ϑja
γj
j f

j(lj,mj)m
−β
j , (45)

where l∗j is the optimal value of the control variable lj. This implies

(Γ̃j − Γj)/Γj = aj − 1. (46)

Inserting (48) and (46) into the Bellman equation (43) yields

1/ϑj = ρ+ (1− aj)λj(Lj − lj) > 0. (47)

Plugging this (47) into (45), one obtains

Γj(γj,mj, T ) =
a
γj
j f

j(lj,mj)m
−β
j

ρ+ (1− aj)λj(Lj − l∗j )
, (48)

where l∗j – the optimal value of the control variable lj – is taken as given.

Inserting (48), (46) and (47) into (44), one obtains (24):

0 = ϑj
lj
Γj
∂Ψ

∂lj
= a

γj
j f

j(lj,mj)m
−β
j

ϑj
Γj︸ ︷︷ ︸

=1

[
αj − ξj

(
lj
mj

)]
−
(

Γ̃j

Γj︸︷︷︸
=aj

−1

)
λjljϑj

= αj − ξj
(
lj
mj

)
− (aj − 1)λjlj
ρ+ (1− aj)λj(Lj − lj)

.

Noting (42) and (48), the expected utility (22) becomes (23):

Θ(mj,m,Rj, R) = m−δE

∫ ∞
T

[
a
γj
j f

j(lj,mj)m
−β
j +R−Rj

]
e−ρ(θ−T )dθ

= m−δ
[
E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j e−ρ(θ−T )dθ +

∫ ∞
T

(R−Rj)e
−ρ(θ−T )dθ

]
= m−δ

[
E

∫ ∞
T

a
γj
j f

j(lj,mj)m
−β
j e−ρ(θ−T )dθ +

R−Rj

ρ

]
= m−δ

[
Γj(γj,mj, T ) + (R−Rj)/ρ

]
,

∂Θ

∂mj

=
Γj

mδ

[
f jm(lj,mj)

f j(lj,mj)
− β

mj

]
=

Γj

mδmj

[
ξj
(
lj
mj

)
− β

]
,
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∂Θ/∂M = −δm−δ−1
[
Γj + (R−Rj)/ρ

]
, − ∂Θ/∂Rj = ∂Θ/∂R = m−δ/ρ.
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