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Abstract 

This study presents some of the available methods for haplotype 

reconstruction and evaluates the accuracy and efficiency of three different 

software programs that utilize these methods. The analysis is performed on the 

QTLMAS XII common dataset, which is publicly available. The program 

LinkPHASE 5+, rule-based software, considers pedigree information (deduction 

and linkage) only. HiddenPHASE is a likelihood-based software, which takes into 

account molecular information (linkage disequilibrium). The DualPHASE 

software combines both of the above mentioned methods. We will see how usage 

of different available sources of information as well as the shape of the data 

affects the haplotype inference. 
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Introduction 

The genetic information of eukaryotic cells is stored on chromosomes located 

inside the nucleus. Chromosomes are long double-strand molecules of 

deoxyribonucleic acid (DNA), associated with proteins that fold and pack fine 

genetic information into a compact structure (see, e.g. Alberts et al., 2008). Genes 

can be defined as functional units of heredity. Most of gene functions and 

locations are still unknown (Human Genome Project and Beyond, 2008), and 

therefore markers are useful tools to analyze the variation observed in the genome 

and relate it to phenotypes. A genetic marker is an observable genetically 

controlled variation that follows a Mendelian pattern of inheritance (Williams, 

2005). A main issue when analyzing genome variation concerns the assessment of 

the diversity and frequencies of alleles in a population and their evolution over 

time.  

Genetic markers can be classified in two main types depending on their 

informativeness, namely biallelic and multiallelic markers. Biallelic markers 

present only two alleles segregating at the marker locus. In the study of dairy 

cattle, scientists work mostly with biallelic markers represented by single 

nucleotide polymorphisms (SNPs) (Brookes, 1999). Single nucleotide 

polymorphisms are very frequent on the genome. Current estimates indicate that 

they occur every 200 base pairs on average (Williams, 2005). Although less 

informative than multiallelic markers, the very high density of SNPs along the 

genome offers geneticists the opportunity to track the transmission over 

generations of very fine chromosomal segments. This should allow improving the 

accuracy of mapping genes involved in disease or quantitative traits. Another 

advantage of using SNP markers compared to multiallelic markers is that cheap, 

fast and very reliable technologies have been developed for their detection. 

However, modern genotyping methods do not allow obtaining haplotypes 

(ordered sequences of alleles on paternal / maternal chromosome) directly. 

Instead, data are collected routinely in large sequencing projects. Genotypes are 

obtained as a result of such sequencing. Hence, efficient, accurate and fast 
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methods are required for inferring haplotypes from genotypes. The methods can 

be divided into two main groups (cf. Gao et al., 2009): pedigree-based and 

population-based algorithms. Pedigree-based algorithms reconstruct 

configurations by minimizing the total number of recombinants in the pedigree 

data. Population-based methods always assume Hardy-Weinberg equilibrium 

(Falconer & MacKay, 1996) at individual loci, and they assume linkage 

disequilibrium among markers. 

In the present study both types of methods were studied using three different 

software programs. All programs were run on the QTLMAS common dataset and 

their results were compared in terms of accuracy and efficiency. 
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1 Biological background 

The Earth is the planet of great life diversity. It is estimated that there are 

more that 10 million – perhaps 100 million – living species inhabiting it. All 

species are different and each reproduces itself so that the progeny belongs to the 

same species. Indeed, parents transmit genetic information, stored under the form 

of a deoxyribonucleic acid molecule (DNA), which specifies the characteristic the 

offspring shall have. This phenomenon of heredity is central to the definition and 

maintenance of life. Astonishingly, it has been proved during the last century that 

mechanisms linked to inheritance and gene expression are remarkably conserved 

between species. In this section we will give a brief description of the location and 

the structure of the genetic information, and the mechanisms involved in its 

transmission from generation to generation. In addition, basic concepts used by 

geneticists to model these processes will be discussed. 

1.1 Location of the genetic information 

The genetic information of eukaryotic cells is stored on chromosomes located 

inside the nucleus. Chromosomes are long double-strand molecules of 

deoxyribonucleic acid (DNA), associated with proteins that fold and pack fine 

genetic information into a compact structure. The complex of DNA and protein is 

also called chromatin. 

Some eukaryote organisms only contain one set of chromosomes, they are 

said to be “haploid”. However, most of sexual organisms, such as mammals, are 

diploid, which means that they contain two copies of each chromosome (Lynch & 

Walsh, 1998). One copy is of paternal origin, the other of maternal origin. The 

paternally and maternally inherited chromosomes are defined as homologous. 

Some species, especially plants, are polypoid, i.e. they have genome containing 

more than two copies of chromosomes in their nucleus. However, those species 

are not under the scope of this review. 
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Diploid organisms have two types of chromosomes: sex chromosomes that 

contain genes participating in sex-deterministic mechanisms (XX and XY in 

mammals), and autosomes which are all the other chromosomes (Lynch & Walsh, 

1998).  

Different types of species have different number of chromosomes. For 

example, a human being has 24 pairs of chromosomes, a cow has 30; some plants 

might even have thousands of them. 

1.2 Organization of the genome 

Alberts et al. (2008) defines the genome as the totality of genetic information 

belonging to a cell or an organism. This term is used to describe DNA molecules 

that carry the information for all the proteins and RNA molecules that the 

organism will ever synthesize. 

1.2.1 Support of the genetic information 

DNA is the support and the storage of the genetic information within a cell 

and its carrier from generation to generation. A DNA molecule consists of two 

long polynucleotide chains composed of nucleotides (subunits). Each of the 

chains is known as DNA strand. Nucleotides are made up of two parts: 

 a sugar phosphate molecule which allows linking nucleotides together in a 

chain to form the sugar-phosphate backbone of DNA; 

 a base which is specific for each nucleotide. 

Four different types of nucleotides exist – namely adenine (A), cytosine (C), 

guanine (G), thymine (T) – and differ by their base. Specific hydrogen bonds can 

be tied between the bases of pairs of nucleotides. Adenosine can only be paired 

with Thymine and Cytosine with Guanine. Those hydrogen bonds allow holding 

the two DNA strands together. As a result of the base-pairing requirements, both 

DNA strands are complementary. This property is fundamental for the replication 
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of DNA which corresponds to the duplication of the genetic information just 

before a cell division. (Alberts et al., 2008; Deonier et al., 2005). 

Due to the chemical and structural properties of nucleotides, the 3-

dimensional structure of the DNA molecule is a double helix which confers to it 

high stability and maximal packing efficiency of the genetic information. 

The genome length is very variable between species: the human genome is 

estimated to contain about 3.2 billions of nucleotide pairs (or base pairs: bp) and 

the mouse genome about 2.6 billion bp (Human Genome Project and Beyond, 

2008). 

1.2.2 Organization of the genetic information 

Chromosomes carry genes which could be defined as functional units of 

heredity. A gene is a segment of DNA that contains the instructions for making a 

particular protein (or a set of closely related proteins), a structural, a catalytic or a 

regulatory RNA molecule (see e.g., Alberts et al,. 2008). The location of a gene 

on a chromosome is called the locus. 

The alternative forms of a gene at a locus are called alleles. Since DNA 

replication is not a perfect process, mutations arise, and as a consequence different 

versions of a gene can coexist in a population. Therefore, the two inherited 

“copies” of each gene carried by diploid individuals need not be identical. 

Monomorphic loci are loci at which all gene copies are identical. Polymorphic 

loci exhibit more than one allele (Lynch & Walsh, 1998). 

Eukaryotic genes contain exons, the coding sequences of the DNA, and 

introns which are non-coding sequences that separate the exons. The majority of 

genes consist of a long string of alternating exons and introns with most of the 

gene consisting of introns (Alberts et al., 2008; Deonier et al., 2005). According 

to estimations, genes comprise only about 2% of the human genome and the 

remainder consists of introns (Human Genome Project and Beyond, 2008). 

Besides, the human genome is estimated to contain between 25000 and 31000 

protein-encoding genes (Baltimore, 2001). 
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The particular combination of alleles found in a specific individual is called 

the genotype. At a specific locus, genotype of a diploid organism consists of two 

alleles, one of which was inherited from the mother and another one from the 

father. A combination of alleles at different loci inherited as a unit form the 

mother or from the father is called the haplotype. The difference between a 

genotype and a haplotype is shown in Figure 1. 

 

Figure 1: The difference between a genotype and a haplotype. 

 

 If the alleles in a locus are identical, the individual is called homozygote. If 

two different alleles were inherited from parents, the individual is called 

heterozygote (Lynch & Walsh, 1998). 

1.2.3 Ways to mark genes 

As most of gene functions and locations are still unknown, markers are useful 

tools to analyze the variation observed in the genome and to relate it to 

phenotypes. A main issue when analyzing genome variation concerns the 

assessment of the diversity and frequencies of alleles in a population and their 

evolution over time. 

A genetic marker is an observable genetically controlled variation that follows 

a Mendelian pattern of inheritance (definition from Williams, 2005). In other 

words, markers are used to track inheritance of chromosomal regions in families 

which satisfy Mendelian laws formulated in 1866:  

 the Law of Segregation. This law states that, for any particular trait, its 

two alleles (alternate versions of the same gene) separate so that only 

one is passed to the offspring. Which of the two alleles is inherited is left 

to chance, thus explaining variations within siblings; 

 the Law of Independent Assortment. Put simply, this law states that 

traits are expressed independently of each other. For example, 

http://www.iscid.org/encyclopedia/Law
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inheritance and expression of the genes for blue eyes does not directly 

affect inheritance and expression of the gene for hair color (Sobel & 

Lange, 1996). 

Given that relatives are more likely to carry similar alleles, a polymorphic 

marker is a very valuable tool to discriminate how related or distant some 

individuals can be. On the contrary, a monomorphic marker is not informative 

because all individuals in the population carry the same allele at this locus. 

Correlating marker information with phenotypes (disease, quantitative 

performance for animals like milk production, meat production, etc.) expressed by 

individuals in a family or in a population allows locating genes involved in those 

traits relative to the marker positions. 

Genetic markers can be classified in two main types depending on their 

informativeness, namely biallelic and multiallelic markers. 

Multiallelic markers are the most informative ones because they present more 

than two different alleles segregating in the population. The most commonly used 

multiallelic markers are microsatellites. Microsatellites consist of the repetition of 

a small DNA sequence, the polymorphism residing in the number of repetition of 

this sequence. Most of microsatellite markers have generally between five and ten 

different alleles. Other multiallelic markers exist as reviewed by Williams (2005). 

Biallelic markers present only two alleles segregating at the marker locus. 

Single nucleotide polymorphisms (SNPs) are the most commonly used biallelic 

markers, which are of the interest in this study. Brookes (1999) defines SNP as a 

single base pair position in DNA at which two different sequence alternatives 

(alleles) exist in individuals of some population(s). In the example illustrated by 

the Figure 2 sequences AAGCCTA and AAGCTTA differ by one nucleotide, and 

C / T (or G / A) are alternative alleles. 

To avoid having poor accuracy in statistical inferences made from SNP 

information, SNPs are taken into account in genetic analyses if the least frequent 

allele has an abundance of 1% or greater. 
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Figure 2: Single nucleotide polymorphism (SNP). 

 

Single nucleotide polymorphisms are very frequent on the genome. Current 

estimates indicate that they occur every 200 bp on average (Williams, 2005). 

Although less informative than multiallelic markers, the very high density of 

SNPs along the genome offers geneticists the opportunity to track the 

transmission over generations of very fine chromosomal segments. This should 

allow improving the accuracy of mapping genes involved in disease or 

quantitative traits. Another advantage of using SNP markers compared to 

multiallelic markers is that cheap, fast and very reliable technologies have been 

developed for their detection.  

1.3. Transmission of the genetic information across generations 

The transmission of genetic information across generation is one of the main 

features for the survival of species. 

1.3.1. Segregation of chromosomes during the meiosis  

At the parental level each of the two diploid organisms contains N  pairs of 

chromosomes in its cell nucleus ( N2  chromosomes). During the reproductive 

cycle, the germline tissues produce haploid sex cells (gametes) with N  

chromosomes – ova from a female and spermatozoa from a male. Fusion of the 

gametes after mating produces a zygote that contains N2  chromosomes and is the 

start for a new diploid organism. The inheritance mechanism is schematically 
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shown in Figure 3. For more details see, for example, Alberts et al. (2008), on 

page 1090. 

 

Figure 3: Schematic illustration of inheritance mechanisms without recombination. 

 

The process of replication and reduction of chromosome numbers from N2  

to N  is called meiosis (Deonier et al., 2005). The separation of the pairs of 

chromosomes ( N2 ) by half allows forming two new cells (gametes), each of 

which contains N  chromosomes with possibly different genetic information. This 

phenomenon is known as segregation of chromosomes. 

1.3.2. Creation of gametes with new allele assortments through recombination 

Recombination is a very important phenomenon that sometimes occurs during 

meiosis. It consists of the exchange of homologous DNA sequences between a 

pair of homologous chromosomes via the chromosomal crossover. Crossover 

occurs when homologous chromosomes overlap, break in the points of 

overlapping and then reconnect, but to the different end piece. As a result of 

recombination, the allele combinations found on chromosomes in gametes can be 

different from the combinations found in the parental chromosomes. The scheme 

of recombination process is shown in the Figure 4. 
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Figure 4: Recombination of the chromosomes in the cell during meiosis. Here,  

 recombination occurred when producing paternal gametes. 

 

Recombination occurs randomly and its rate varies from chromosome to 

chromosome and within different regions of any particular chromosome. 

The further development of zygote is then carried out through a process of 

cellular multiplication called mitosis. Before the mitotic division of a cell, the 

DNA of each pair of chromosomes is replicated so that the two new cells formed 

also contain N2  chromosomes with the integrality of the genetic information 

contained in the original cell. 

1.3.3. Mutation as further source of variation 

Mutation is another source of variation. According to Alberts et al. (2008), 

mutation is a heritable change in the nucleotide sequence of a chromosome. It 

happens occasionally due to a failure of the cell’s DNA-maintenance processes, 

which results in a permanent change in the DNA. Mutation can be lethal for an 

organism if it occurs in a vital position in the DNA sequence. The mutation rate – 

the rate at which observable changes occur in the genome – is approximately one 

nucleotide per 910  nucleotides each time the DNA is replicated. Non lethal 

mutations occurring during meiosis are transmitted to the next generations. 
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1.4. Basic concepts for modeling genetic information 

1.4.1 Hardy – Weinberg equilibrium 

The first methods to model the evolution of allele and genotype frequencies in 

a population were proposed at the beginning of the 20
th

 century, i.e. a long time 

before the biological support of genetic information was discovered. Those 

models were developed supposing the theoretical framework in an ideal 

population. Such a population is required to be large, panmictic (random mating), 

not selected, closed (i.e. without migration), not affected by mutation and with 

discrete generations. In this case, effects of evolutionary processes can be ignored 

(Falconer & MacKay, 1996). Therefore, gene and genotypic frequencies at one 

locus reach an equilibrium state and remain constant across generations. This 

phenomenon was first demonstrated by Hardy and Weinberg in 1908 and is 

known as Hardy-Weinberg equilibrium. Furthermore, when the equilibrium state 

has been reached, allele frequencies p  and q  for a biallelic gene A/a at a specific 

locus can be deduced directly from observed genotypes and the following 

equation holds:  

,12 22  qpqp  

where )(2 AAPp   is the frequency of homozygotes AA , )(2 AaPpq   is the 

frequency of heterozygotes Aa , )(2 aaPq   is the frequency of homozygotes aa . 

Although simple, this model enabled to analyse the genetic structure of 

natural populations whose demographic and reproduction parameters do not differ 

too much from assumptions of the ideal population in Hardy – Weinberg 

equilibrium. In such a population, equilibrium is reached after 1 generation, but 

when deviations from ideal population assumptions are larger, this equilibrium 

takes longer to reach. In most of genetic analyses concerning one locus or 

independent loci, it is often assumed that Hardy-Weinberg equilibrium has been 

reached. 
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1.4.2 Notion of linkage between markers 

If two or more loci are located on the same chromosome, it is said that they 

are physically linked. This is a very important property as the probability that 

these loci are inherited together is quite high. Thus, a statistical dependence exists 

between loci located on a same chromosome (Lynch & Walsh, 1998). However, 

recombination occurring during meiosis may randomly break physical 

associations between alleles at different loci. As a recombination is more likely to 

happen between two remote than two close loci on a chromosome, the statistical 

dependence will decline with increasing distance between loci. 

The statistical dependence between close loci, which is perceived as a 

nonrandom association of alleles at two or more loci, is called linkage 

disequilibrium (LD). If the association between alleles at different loci is random 

and no statistical dependence is observed between loci, then those loci are said to 

be in linkage equilibrium (LE) (Slatkin, 2008). 

To illustrate this phenomenon, consider two biallelic loci A  and B  and let 

the frequencies of the four gamete types be 
122111

,, BABABA PPP and 
22BAP , and let 

allele frequencies be 
121

,, BAA ppp  and 
2Bp  (example taken from Lynch and 

Walsh (1998)). In a situation of LE, i.e. if allele in locus A  is independent of 

allele state in locus B , we expect that the probability of gamete 
1111 BABA ppP  , 

etc. 

Different factors like natural selection, founder effects, migration and 

assortative mating lead to a situation of linkage disequilibrium, when gamete 

frequencies depart from expectations based on allele frequencies. A natural 

measure of LD between loci is calculated by the formula: 

.
jijiji BABABA ppPD   

This measure is often referred as coefficient of linkage disequilibrium or 

gametic phase disequilibrium.  

The LD phenomenon can as well occur across generations (example adapted 

from Lynch and Walsh (1998)). Consider an ideal population of effectively 
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infinite size, in which mating occurs randomly and all of the forces causing alleles 

at different loci to become statistically associated are absent. In order to obtain 

gametes of a particular type, chromosomes either have to be transmitted across 

generations intact or they can recombine and create new gene combinations of 

that type. Let the frequency of gamete type jiBA  in generation t  be 
jiBAP . Then 

   tPc
jiBA1  is the frequency that is passed on to the next generation without 

recombination. Let the proportion of the recombined gametes 
ji BA pp  be c . Due to 

independency of maternally derived A  and paternally derived B  caused by 

random mating in the population, c  has to contain both iA  and jB  genes. 

Summing up two terms, we get: 

     
jijiji BABABA pcptPctP  11 . 

After subtracting 
ji BA pp from both sides: 

     tDctD
jiji BABA  11 . 

This equation generalizes to 

     01
jiji BA

t

BA DctD  . 

This means that the linkage disequilibrium decays gradually. Even in the case 

of unlinked genes ( 5.0c ) only 50% of disequilibrium is removed from each 

generation. If the recombination is less frequent, the time to attain linkage 

equilibrium ( 0D ) is very long. 

The distance between markers is measured in centimorgans. A centimorgan 

(cM) corresponds to a recombination frequency of 1 %, which means that two 

markers or genes that appear together on the same chromosome are separated by 

recombination at a frequency of 0.01 during meiosis (Deonier et al., 2005). If the 

physical distance between markers is large, the probability that they are 

recombined during meiosis increases and it is not possible to conclude, if they will 

be inherited at the same or at a different time. 
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In other words, in a situation of linkage disequilibrium, some patterns of 

inheritance are witnessed in the population and knowing the information in one 

locus it is possible to infer the information in another close locus. 

1.5. The need of haplotype inference in animal breeding 

Traditionally, the aim of the selective breeding is to improve the genetics of 

local populations of animals, which led to the development of animals with 

characteristic phenotypes that could be classified as distinct breeds. The diversity 

of phenotypes displayed by the various breeds is controlled by a broad genetic 

diversity, which provides the opportunity for the selection of animals with 

superior performance in specific desirable traits (for example, growth rate, hair 

color, milk production and disease resistance). 

The use of selective breeding has resulted in dramatic improvements in simple 

production traits and the level of productivity from the selective improvement of 

livestock. However, the traditional approach based on selection of phenotypic 

qualities can lead to a narrowing of the genetic diversity is species, which reduces 

the genetic variation available for future selection, and also potentially 

concentrates genetic defects. In order to respond to public demand and develop a 

sustainable industry, it is necessary to address the potential problems associated 

with traditional selection approaches by fully exploiting the new technologies 

available for the selection of genetically superior animals. 

To understand genetic variation among animals and to identify correlations 

between genetic variation and phenotypic variation it is necessary to understand 

the haplotype structures in populations, which would determine the best choice for 

the breeding animals. 
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2 Statistical methods of haplotype inference 

2.1 Pedigree based method 

The main ideas of the pedigree-based method were described in Wijsman 

(1987). The method is based on the deduction rules, which are applied to data 

sequentially until no new loci can be phased. The logic behind them is the 

following (Sillanpää, 2004): 

1. In case an offspring is homozygous (AA), then 

1.1. The corresponding allele origins can be assigned at random. 

1.2. If there is any uncertainty in the parental genotypes, allele A is assigned to 

both parents with certainty. 

 

2. In case a parent is homozygous (AA), 

2.1. This parent will be the origin of allele A in all offspring genotypes. 

 

2.2. If there is any uncertainty in the offspring genotypes, then allele A is 

assigned to all the offspring with certainty. 
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3. If an offspring allele B is not present in the known genotype of parent 1, then 

the origin of that allele is parent 2. 

 

4. If an offspring has allele A with known origin, then the corresponding parent 

will have that allele in its genotype with certainty. 

5. If an offspring has allele A, then both parents might have that allele. 

6. If a parent is heterozygote (AB), then all the offspring will have one of the 

alleles A or B. 

 

7. If there is a possibility for a parent to have allele A, then such a possibility 

exists for all the offspring as well. 

After loci are phased according to the above rules, parental haplotypes are 

inferred using the recombination rate. The exact process is described in Druet and 

Georges (2010). In brief, the probability that marker allele 1 belongs to the “left” 

(L) homolog is computed as  RLLL LLLP  /  and to the “right” (R) homolog is 

computed as  RLRR LLLP  / . In these, LL  and RL correspond to the likelihood 

that the marker allele belongs to the L (respectively R) haplotype of the parent, 

conditional on information from flanking anchoring markers. LL  and RL  are 
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computed respectively as L

DN

L

UP LL   and R

DN

R

UP LL  , in which L

UPL  ( R

UPL ) 

correspond to the likelihood conditional on information from anchoring markers 

located upstream (UP) (respectively downstream, DN) of the marker to be phased. 

L

UPL  ( R

UPL )  and L

DNL  ( R

DNL ) are computed as 

  ,1
11





y

j

j

x

i

i rr  

where x  (respectively y ) is the number of offspring with marker phase in 

agreement (respectively disagreement) with the tested haplotype configuration of 

the examined parent and  
ji rr  is the recombination rate between the tested 

marker and the nearest (respectively upstream or downstream) anchoring marker 

informative in offspring i  (respectively j ). 

Heterozygous markers that remain unphased in offspring can be further 

inferred conditionally on the known parental phase (Druet et al., 2008). Using 

information from flanking markers phased in both parent and offspring, the 

probability that a marker allele belongs to the R (respectively L) homolog of the 

offspring can be computed as a function of intermarker recombination rates. A 

marker considered to be phased if one of the two possible configurations has a 

probability exceeding a chosen threshold. 

2.2 Population-based method 

Population-based statistical model allows describing patterns of genetic 

variation in samples of unrelated individuals. The model (Scheet & Stephens, 

2006), which was implemented in the software for our study, is based on the idea 

that, over short regions, haplotypes in a population tend to cluster into groups of 

similar haplotypes. This clustering tends to be local in nature because due to 

recombination those haplotypes that are closely related to one another will vary as 

one moves along the chromosome.  
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The efficiency and effectiveness of this method is determined by the usage of 

the theory of hidden Markov models (HMM), described in Rabiner (1989) and 

Durbin et al. (1998). Observed haplotypes are modeled as mosaics of   hidden 

states (in other words, ancestral haplotypes), with   held constant throughout the 

genome. In the present study the number of hidden states is fixed and equals to 

25. 

Parameters of the HMM are (Druet & Georges, 2010): 

 Population frequencies of each hidden state, which may differ between 

marker positions. The population frequencies of the hidden state at the 

first marker position define the initial-state probabilities. 

 Hidden state-specific allele frequencies at each marker position, which 

define the emission (or observation) probabilities. 

 Recombination rates for each marker interval. 

Suppose that we observe unphased genotypes ),,( 1 nggg   on n  diploid 

individuals. Let img  denote the genotype at marker m  in individual i , which will 

code as the sum of its alleles. We should now assume that the two haplotypes that 

make up each multilocus genotype are independent and identically distributed, 

which means that the population is in Hardy-Weinberg equilibrium. Under this 

assumption, if 

imz denotes the unordered pair of clusters from which genotype img  

originates, then ),,( 1

  iMii zzz   form a Markov chain with initial state 

probabilities 
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where ik  is the number of cluster, that for simplicity is assumed to be known; 
ik  

denotes the relative frequency of cluster ik . 
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Transition probabilities are computed as a function of the recombination rate 

and the population frequencies of the different hidden states at the next marker 

position (2.2.2). As more than one allele may have nonzero frequency at a given 

marker position, hidden state in effect define clusters of related haplotypes. 
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where  kkpm
  is defined by 

     
 



















kke

kkee
rkzkzpkkp

mk

dr

mk

drdr

miimm
mm

mmmm

,1

,1
:,,: )1(




  

where for Mm ,2 , md  is the known physical distance between markers 1m  

and m , and  Mrrr ,2  and )( km   are unknown parameters to be 

estimated. 

Given the clusters of origins 

iz  it is again assumed that alleles are drawn 

independently from the relevant cluster allele frequencies: 
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Since 

iz  is unknown, the probability of ig is obtained by summing over all 

the possible values: 

     ,,,,, 
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iiii zgprzprgp   (2.2.4) 
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where 
 rzp i ,

 is determined by equations (2.2.1) and (2.2.2). We assume that 

  can vary across markers, but is fixed across individuals. 

HMM is applied in two stages: 

1. The model is trained on a haploid set consisting of the partially phased 

base haplotypes. Parameter estimation           was done using the 

expectation-maximization (EM) algorithm (Stephens et al., 2001; 

Dempster et al., 1977).  

2. The actual haplotype reconstruction and clustering by running a diploid 

HMM on the complete data set. The diploid HMM simultaneously 

models two independent chains, corresponding respectively to “left” 

and “right” homolog of the individual. The number of hides state 

combinations at each marker is      , where    and    characterize 

“left” and “right” HMM, respectively. 

At first, the diploid HMM is applied on the base individuals (genotyped 

individuals without genotyped parents). Second, the same HMM (       ) 

was used to model “left” and “right” homolog with estimated EM parameters as 

estimated on the haploid training set. For each base individual the most likely 

hidden state composition of haplotypes is determined using the Viterbi algorithm 

(Forney, 1973). 

Next, the descendent individuals were subsequently treated using a modified 

HMM. Haplotypes derived from genotyped parents were modeled as a mosaic of 

two parental haplotypes (   ), thus the number of hidden state combinations at 

a given marker position was     for individuals with two descendent 

haplotypes, and     for individuals with one descendent and one base 

haplotype. 
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2.3 Combination of pedigree and population based method 

This method is the combination of the previous two methods, which are 

iteratively applied one after another. At first, loci are phased based on the 

deduction rules, described in section 2.1, with the probability 1. At this point the 

modified diploid HMM applied on descendent individuals extracts linkage 

information only (offspring with two genotyped parents) or linkage and linkage 

disequilibrium information jointly (offspring with one genotyped parent). After 

that the population-based method (section 2.3.) is applied, assuming that all 

genotypes are independent and identically distributed, i.e. “population-wide” 

hidden state status of the base haplotypes is projected on their descendent 

haplotypes. 
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3 Comparison of methods of haplotype inference 

3.1 Materials and methods 

3.1.1 QTLMAS XII dataset 

The simulation of the QTLMAS XII common dataset is described in detail in 

Lund et al. (2009) and Calus et al. (2009). This is a publicly available simulated 

dataset, which consists of 5865 individuals from seven generations. There are 

6000 loci evenly distributed over six chromosomes (1000 markers per 

chromosome), with 0.1 cM between markers.  

The dataset is provided in two files:  

1. the phenotype file that contains six columns (Animal ID, sire ID, 

dam ID, Sex (male = 1, female = 2), Generation, Trait value); 

2. the genotype file that contains the genotype of each animal in the 

pedigree, which is described in the phenotype file. The genotype file 

contains one line for each individual in the pedigree and 12001 

columns (Animal ID; marker 1 allele 1 , marker 1 allele 2; marker 2 

allele 1 , marker 2 allele 2; ... ; marker 6000 allele 1 , marker 6000 

allele 2).  

The data is haplotyped meaning that allele 1 of the biallelic marker comes 

from the father and allele 2 is inherited from the mother with 100% certainty. This 

information was used for the validation of the mistakenly phased loci while 

comparing the software outputs with the original dataset. 

The amount of individuals per generation varies within the dataset. The 

ancestor generation (generation 0) consists of 165 individuals. Generations 1 – 3 

are made up by 1500 individuals each. The last three generations 4 – 6 contain 

only 400 animals per generation meaning that not all of the animals from the 

generation 3 participated in the reproduction process, so selection took place. 
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3.1.2 Software for haplotype inference 

Three different types of software for haplotyping (LinkPHASE 5+, 

HiddenPHASE, DualPHASE (Druet & Georges, 2010)) were tested. They are 

based on three different methods for haplotype inference. LinkPHASE 5+ utilizes 

pedigree-based method. It uses pedigree information (deduction and linkage) for 

inferring haplotypes. This software considers linkage information from sires with 

six or more offspring only. The software HiddenPHASE, which is based on theory 

of hidden Markov models (HMM) uses molecular information (linkage 

disequilibrium, LD) to reconstruct haplotypes and represents the second group 

(population-based method). Basically, HiddenPHASE is the implementation in the 

Fortran language of another commonly used method for haplotype reconstruction, 

which is called fastPHASE (Scheet & Stephens, 2006). Finally, DualPHASE 

utilizes both pedigree and molecular information. 

3.1.3 Comparison criteria 

The performance of the software for haplotyping was evaluated in terms of 

accuracy and efficiency. The accuracy was measured by heterozygous switch 

error rate and point-wise error rate. The efficiency was characterized by the 

elapsed time. Every reconstructed haplotype of each individual generated by the 

three types of software was compared to the correct haplotype provided by the 

original data. 

The heterozygous switch error rate is the proportion of mistakenly inferred 

loci out of total number of heterozygous loci. Unphased loci were ignored during 

computation of this error. 

The point-wise error rate is calculated allele-by-allele along each haplotype, 

yielding the overall score showing the difference between the generated haplotype 

and the original true haplotype taking each locus into account (Li & Li, 2007). 

Heterozygous switch error and point-wise error rates were calculated 

separately for the obtained datasets of whole population, three last generations, 
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and two last generations, per generation in the whole population and per 

generation in the three last generations. 

3.2 Aggregation of the data 

The performance of the software was tested on three datasets, which were 

obtained from the original QTLMAS XII data. For the interest of the present study 

the original dataset was reduced from six chromosomes to the size of one 

chromosome (5865 individuals × 1000 markers), which was required by the 

design of the software. The subsets of 3 last generations (1200 individuals × 1000 

markers) and 2 last generations (800 individuals × 1000 markers) were extracted 

from the dataset for one chromosome using R software (R Development Core 

Team, 2007). For the further evaluations the dataset of the whole population was 

divided into generations and six additional files were created: three generations 1 

– 3 of the size (1500 individuals × 1000 markers), three generations 4 – 5 of the 

size (400 individuals × 1000 markers). 

The aggregated data was obtained from the correct data for one chromosome. 

The process is shown step-by-step in the Figure 4. At first, the values of alleles of 

each marker were summed up creating aggregated genotypes. Next, markers were 

reconstructed according to the scheme: if the value of an aggregated genotype was 

2, both allele values of the marker were set up as 1; if the aggregated sum was 

equal to 3 then the first allele became equal to 1 and the second allele became 

equal to 2; in case the number was 4, both allele values we set up as 2. 

The file containing reconstructed genotypes had a fixed format: one line per 

individual with individual number that takes 6 positions (1 – 5865), two alleles, 

each takes 2 positions, per marker. Alleles were coded with 1 and 2. The subsets 

of 3 last generations (1200 individuals × 1000 markers) and 2 last generations 

(800 individuals × 1000 markers) were extracted from the reconstructed dataset. 
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Phased genotypes  
Aggregated 

genotypes 
 Unphased genotypes 

 

→ 

 

→ 

 

Figure 4: Aggregation of the data step-by-step. 

The identity numbers in the original dataset contained some missing values. 

When that file was used as the input file all the types of software created some 

extra animals to fill-in the gaps. In order to avoid this, the identity numbers were 

modified so that they would correspond to the number of an animal in the dataset 

(1 – 5865). 

Three additional input files required by the software were created manually: 

Pedigree file contained the identity number of an animal, identity number of 

male parent (sire), identity number of female parent (dam). This file was obtained 

from the provided phenotype file by extracting the required information out of it. 

The total number of animals was 5685. 

Marker file had a fixed format and was created according to the original data 

description: 1000 lines, one line per marker. Each line contained marker number 

(1 – 1000), marker name (1 – 1000) and marker position (0.1 – 100 cM with 

increment of 0.1 cM). 

File with known haplotypes was created empty as no such information was 

available but the software requested for it. 

After a run of each type of the software, output files containing phased loci 

were of the same format: two lines per individual with the same individual 

number (6 positions), origin of haplotype (1 – paternal, 2 – maternal), a space and 

then the haplotypes. The further described analysis was conducted for the output 

files of each type of the software. 
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To perform the analysis the file formats were modified. First, the identity 

numbers from the correct genotypes were removed by means of the R software. 

Second, the file format was modified to resemble the format of the output file 

with phases using Octave software (Eaton, 1997). As we dealt with biallelic 

markers, the correct haplotypes were obtained from genotypes in a way that each 

odd allele  12 n  belonged to paternal haplotype and even allele  n2  belonged 

to maternal haplotype. The phases file was changed as well: the first two columns 

containing ID and origin of haplotype were removed using R software. 

As software LinkPHASE 5+ was not able to phase all of the loci, it was 

important to calculate the amount of such gaps (marked as 0 in the output file). To 

be able to do that, the zeros were substituted with 9 to distinguish the unphased 

and incorrectly phased markers. 

After the above preparations, modified matrix of the correct haplotypes was 

subtracted from the matrix with the output phases and the absolute value of the 

algebraic sum was taken. As a result a matrix, which contained elements 0 for the 

correctly phased allele, 1 for the heterozygous switches and 7 or 8 for the 

unphased allele, was obtained. These actions were applied to each of the three 

datasets (whole population, 3 generations and 2 generations).  

The subtraction matrices for the whole population and 3 last generations were 

then divided using the R software by generations, creating nine new files (six 

generations in the whole population (three first of the size 1500 individuals × 

1000 markers and three last of the size 400 individuals × 1000 markers) and three 

last generations of the size 400 individuals × 1000 markers). Generation number 0 

was not included in the study of the error per generation as no pedigree 

information was available for it.  Based on this result the further statistical 

evaluations were made separately for the obtained datasets (whole population, 

three last generations, two last generations, per generation in the whole population 

(excluding generation 0) and per generation in the three last generations). 
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3.3 Practical considerations and challenges 

It is important to mention that the size of the data files was very large, that is 

why this caused additional challenges for analysis. For instance, the size of the 

original dataset with six generations was about 120 GB. This made it impossible 

to use the R software for the mathematical operations during the analysis, as it 

reserves the memory for the output, and in our case the memory to be reserved 

was supposed to be 120 GB that cannot be supported by most of the computers. 

On the contrary, the Octave software does the same computations iteratively, 

which makes the manipulations with such a big dataset feasible.   

However, presenting the dataset as a data frame in the R software allowed 

doing such operations as, for example, ID number removal and extracting the 

subsets from the original data extremely quick, using only one command line. 

These operations would have been more awkward with the Octave 

software. 

These reasons justify the use of two statistical software for performing 

computations on large datasets. 
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4 Results 

4.1. Computing time 

The elapsed time per analysis is presented in Table 1. It can clearly be seen 

that the LinkPHASE 5+ outperformed other software. HiddenPHASE was the 

slowest of all, though its running time is quite comparable with that of the 

program DualPHASE. 

Table 1. Elapsed time. 

 Running time (sec) 

Software 

Whole 

population 

3 last 

generations 

2 last 

generations 

LinkPHASE 5+ 60 9 5 

HiddenPHASE 42780 18900 18900 

DualPHASE 46560 15960 16920 

 

These results show that the use of linkage, which is thought to reduce 

computing time, is not so efficient. Another aspect to consider is that the software 

LinkPHASE 5+ is used to phase only part of the loci, leaving quite a significant 

part of them undetermined. That is why DualPHASE is more preferable for 

haplotype inference to obtain complete haplotypes. 

4.2. Point-wise error rates 

Point-wise error rates are presented in Table 2, accounting for data of the 

whole population (generations 1 – 6), three last generations (generation 4 – 6) and 

two last generations (generations 5 – 6), respectively. To produce more accurate 

results the threshold value for LinkPHASE 5+ was set up to 1, meaning that 

haplotypes were inferred with probability 1 using deduction rules. This left a large 

number of loci unphased (1411282, 553004, 385672 respectively) and contributed 
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to the error rate, which is about two times higher than that for the other programs. 

The number of unphased loci was included in the computation of the error rate. 

Table 2. Point-wise error rate for the whole population, three last generations and two last 

generations. 

Software  Whole population 3 last generations 2 last generations 

LinkPHASE 5+ * 0.120314 0.230418 0.241045 

HiddenPHASE 0.044668 0.187369 0.183619 

DualPHASE ** 0.043871 0.184635 0.185074 

* Threshold = 1; ** Threshold = 0. 
 

Point-wise error rates were also estimated for each generation in the 

population (Table 3), when whole population was genotyped. The increase in the 

error rates for the generations 4 – 6 is explained by the structure of the data, i.e. 

low number of offspring per parent in each on the last three generations. 

Table 3. Point-wise error rate per generation in the whole population, whole population has 

been genotyped. 

Software Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6 

LinkPHASE 5+ * 0.076678 0.081045 0.081045 0.246605 0.267930 0.234552 

HiddenPHASE 0.003081 0.001853 0.001853 0.166580 0.201763 0.180391 

DualPHASE ** 0.000139 0.000240 0.003249 0.165620 0.194075 0.180311 

* Threshold = 1; ** Threshold = 0. 

 

The situation when the data are obtained only for two or three last generations 

in the population occurs very frequently in the real life. This was the reason for 

including such a case in the present study. Point-wise error rates estimated on the 

dataset consisting of the last three generations are summed up in the Table 4. 

Table 4. Point-wise error rate per generation in the last three generations, only three last 

generations have been genotyped. 

 

 

Software Generation 4 Generation 5 Generation 6 

LinkPHASE 5+ * 0.243150 0.230767 0.217337 

HiddenPHASE 0.084621 0.003060 0.003185 

DualPHASE ** 0.192447 0.184986 0.176471 
 

* Threshold = 1; ** Threshold = 0. 
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4.3. Heterozygous switch error rates 

Heterozygous switch error rates are presented in Table 5 accounting for data 

of the whole population (generations 1 – 6), three last generations (generation 4 – 

6) and two last generations (generations 5 – 6), respectively. 

Table 5. Heterozygous switch error rate for the whole population, three last 

generations and two last generations. 

Software  Whole population 3 last generations 2 last generations 

LinkPHASE 5+ * 0.068755 0.001358 0.000416 

HiddenPHASE 0.089328 0.003704 0.003719 

DualPHASE ** 0.087733 0.006497 0.000482 

* Threshold = 0; ** Threshold = 0. 

 

To compare the error rate of each software, threshold was set up 0 for 

LinkPHASE 5+ in order to phase the maximum number of loci. The number of 

the unphased loci became fixed when the threshold was around 0 and this 

indicated the absence of the pedigree information for those loci (108980, 27339 

and 39836, respectively). For DualPHASE threshold was chosen as 0 meaning 

that the probability of double recombination was bigger than 0 (the detailed 

instructions are provided in the software manual).  

Table 6 presents heterozygous switch error rate per generation in the whole 

population. The rates differ significantly between generations 1 – 3 and 4 – 6 due 

to the higher number of offspring per family in generations 1 – 3 (“bottle neck” 

shape of the data). Generations 4 – 6 were formed under selection process, 

meaning that not all of the animals of generation 3 participated in the reproduction 

process. It is a well-known fact that it is much easier to deduce the haplotype of a 

parent, which has a lot of offspring. The opposite does not hold. This causes the 

increase in the error rates in generations 4 – 6. 
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Table 6. Heterozygous switch error rate per generation in the whole population, whole 

population has been genotyped. 

Software Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6 

LinkPHASE 5+ * 0.000272 0.000416 0.001358 0.236535 0.294083 0.292038 

HiddenPHASE 0.006137 0.003719 0.003704 0.331618 0.403721 0.362568 

DualPHASE ** 0.000276 0.000482 0.006497 0.329707 0.388338 0.362407 

* Threshold = 0; ** Threshold = 0. 

 

For this case DualPHASE proved to be the fastest and the most accurate 

software for haplotyping. 

Heterozygous switch error rates per generation in the case of three last 

generations were computed and the summary is represented by the Table 7. 

Threshold values were chosen the same as in the previous case. 

Table 7. Heterozygous switch error rate per generation in the last three generations, only three 

last generations have been genotyped. 

Software Generation 4 Generation 5 Generation 6 

LinkPHASE 5+ * 0.088248 0.096323 0.091867 

HiddenPHASE 0.045136 0.001626 0.001692 

DualPHASE ** 0.102242 0.098278 0.093754 

* Threshold = 0; ** Threshold = 0. 
 

It can clearly be seen that the program HiddenPHASE outperformed the 

others, but the computation time required to run the program was more than five 

hours. 
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5 Discussion 

The program LinkPHASE 5+, based on pedigree information, was not 

initially designed to phase all the loci, that is why the output files contain gaps 

(marked as 0). There are two criteria that have to be fulfilled to obtain the 

haplotypes using this program: the number of progeny is one of the thresholds that 

is a natural requirement (two or more progeny need to be informative to phase the 

marker) was set up inside the program; threshold for probability (between 0 and 

1) that we set up manually during the computational process. 

Different values for the threshold were tested for LinkPHASE 5+: 1, 0.95, 

0.5, and 0 (the results are not shown). The value 1 was recommended by the 

author of the software. In this case program inferred haplotypes based on the 

deduction rules and phased loci with probability 1 utilizing the pedigree 

information, which led to the number of unphased loci was significantly larger 

(1411282, 553004 and 385672 for the whole population, three last generations 

and two last generations respectively) and contributed to the point-wise error rate. 

In the situation, when the threshold  equals to 0 the probability to accept false 

haplotype remarkably rises as we ignore the recombination rate values, but in this 

case it is possible to detect the loci without origin or missing markers. The 

number of unphased loci becomes constant and does not change when the 

threshold value is equal or less than 0.5: 108980, 27339 and 39836 for the whole 

population, three last generations and two last generations respectively. These 

values were left out when computing the heterozygous switch error rate. 

Threshold was set up 0 to make the heterozygous switch error rate of the rule-

based software more comparable with that of the other three programs. 

Our results indicate that point-wise error rate produced by DualPHASE was 

smaller than that of the other types of software in the cases of the whole 

population, three last generations, two last generations and per generation in the 

whole population. However, point-wise error rate per generation in the three last 

generations (the closest case to the real situation geneticists deal with) produced 

by the software HiddenPHASE was the smallest. This can be explained by that 
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HiddenPHASE does not take into account pedigree information and treats all of 

the loci as independent. Thus the number of markers becomes significantly 

smaller compared to the size of the whole population containing six generations. 

In general, for the small number of markers the software for haplotyping 

works rapidly and accurately. As the number and complexity of the system 

increases haplotype inferring becomes more laborious. This can also explain why 

the computation time was the same for the datasets of three and two generations. 

Heterozygous switch error rate was computed for all the software outputs. 

However, LinkPHASE 5+ stands out from the rest of software and forms a 

separate group. It was designed to infer partial haplotypes. That is why the 

heterozygous switch error rate as well as the elapsed time for this software is 

hardly comparable. 

The elapsed time of the DualPHASE in the cases of 3 and 2 generations was 

considerably smaller than that of the HiddenPHASE, taking into account that it 

utilizes both molecular and pedigree information. Computation took about an hour 

less compared to the time required by HiddenPHASE (about 5 hours 15 minutes). 

However, in the case of the whole population HiddenPhase performed faster. Our 

research clearly shows that doing haplotype inference with the help of 

DualPHASE and HiddenPHASE is highly time consuming, but brings quite 

accurate results. If the time is a significant factor that needs to be taken into 

account, it is recommended to use some other type of software, e.g. DAGphase 

(developed by the same author, T. Druet). 

Hence, the results show that different types of the tested software can be used 

in different situations. In the situation, when a dataset is rather small, dense and 

the computational time makes little difference, HiddenPHASE or DualPHASE 

programs are more preferable to use as they are based on quantitative statistical 

methods, do not require any prior specification, and the error rates they produce 

are small. Software LinkPHASE 5+ should be used for preliminary analysis to 

infer partial haplotypes with probability 1 based on deduction rules to make the 

further computations go faster. 
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