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Abstract 

Mining of phosphorus (P) and lead (Pb) ores increases their amounts in biogeochemical 

cycles and, consequently, their environmental risks. Phosphorus is an important nutrient, 

but P loading from sewage waters and agricultural activities to watercourses may result in 

eutrophication, a process eventually detrimental to aquatic ecosystems. Lead, on the other 

hand, poses a direct risk of intoxication to all living organisms. In addition to technical 

applications, Pb is used in pellets and shots on shooting ranges, which accounts for a large 

source of Pb loading to the environment. Prevention and abatement of detrimental impacts 

of P and Pb require large-scale, cost-effective techniques that do not compromise the 

environment.  

This thesis was undertaken to investigate the potential of tailings from apatite ore 

beneficiation at the Siilinjärvi phosphate mine, Finland, in the dephosphorization of 

sewage and in the remediation of metal-contaminated areas. The material is a mixture of 

minerals, mainly phlogopite [KMg3(Si3Al)O10(OH)2] and calcite (CaCO3), accompanied 

by apatite [Ca5(PO4)3F] residues. Based on the versatile chemical properties, this 

geomaterial was hypothesized to act as a sorbent for P and Pb, rendering the tailings a 

potential agent for environmental remediation. A part of the original tailings material was 

artificially weathered by treating with a strong acid to create reaction-active aluminium 

(Al) and iron (Fe) (hydr)oxide sites. Some of the acidified material was further subjected 

to partial neutralization by treating with a strong base to precipitate any metals dissolved 

from the mineral structure during the acidification. Furthermore, all of the tailings 

materials were sieved into two particle-size fractions somewhat differing in their 

mineralogical composition and investigated as separate amendments.  

The ability of the tailings to retain P and Pb from aqueous solutions as well as the 

tailings-induced changes in the Pb retention capacity of a mineral soil were studied by 

means of an isotherm technique. A sequential fractionation procedure was undertaken to 

investigate (a) the distribution of inherent and added P between various chemical pools in 

the tailings and (b) the tailings-induced changes in the distribution of Pb between various 

chemical pools in a mineral soil artificially contaminated with Pb as well as in an organic 

shooting range soil contaminated with pellet-derived Pb. Because the toxicity of dissolved 

Pb depends on its chemical speciation, the tailings-induces changes in the chemical 

speciation of water-extractable Pb in contaminated shooting range soil was tested 

separately by means of a cation exchange resin. 

The tailings retained both P and Pb efficiently. The removal of soluble P was primarily 

due to specific sorption by Al and Fe (hydr)oxides and possibly to retention to calcite. 

Lead sorption by the untreated tailings was a combination of various sorption mechanisms 

taking place simultaneously, primarily through precipitation and surface complexation. All 

tailings materials increased the Pb sorption capacity of a mineral soil and transferred Pb 

from the NH4NO3-extractable pool to the more strongly bound forms. In a contaminated 

shooting range soil, the pellets were found to undergo continuous weathering processes 

that released Pb into the soil. Amending the soil with the untreated tailings (a) reduced the 

solubility of the pellet-derived Pb through the formation of sparingly soluble 

fluorpyromorphite and cerussite, (b) reduced the bioavailability of Pb by transferring it 
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from the water-soluble and NH4NO3-extractable pools into the NaOH-extractable one and 

(c) transferred the most toxic cationic Pb species to the less toxic non-cationic form. 

The results suggest that the tailings may serve as an agent for dephosphorization of 

sewage and for Pb immobilization in polluted soil. The sorption properties of the material 

may be further optimized by chemical and physical pre-treatments. At present, the tailings 

material represents an uneconomic fraction of the ore deposit, but its components may 

render it a natural, environmentally sound and cost-effective remediation agent.  
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1 Introduction 

1.1 Mineral resources and mining-related environmental 
problems – A brief overview 

Although environmental pollution is generally considered to be an outcome of 

industrialization and urbanization, it dates far back in history. In Europe, the seed of 

anthropogenic environmental changes was sewn during the flourishing of the Roman 

Empire – a progenitor of the civilized Western world. During the peak of its powers 

maintenance of the high standard of living required large-scale exploitation of natural 

resources. At the time, large amounts of metals, such as lead (Pb), copper (Cu), zinc (Zn) 

and mercury (Hg), were mined for various purposes, rendering key roles for mining and 

metallurgy in the economy (Hong et al., 1994; Nriagu, 1996). As for the valuable metals, 

Pb became particularly important due to its suitability for various purposes. Lead 

compounds were used for glazing pottery, and metallic Pb was the raw material for piping 

and cooking utensils, and it served as an agent for preserving and sweetening wine 

(Hernberg, 2000; Borsos et al., 2003). Consequently, in their everyday life people were 

directly exposed to high Pb concentrations by consuming traces of this metal in drinking 

water, food and wine.  

Although Pb toxicity had been recorded already in Egyptian papyrus rolls, it was only 

in the 1st century that the connection between Pb exposure and toxic manifestations was 

finally recognized (Hernberg, 2000). Later on, Pb poisoning has been suggested as one of 

the reasons for the fall of Rome (Hong et al., 1994). For 400 years, the Romans produced 

60 000 tonnes of Pb annually (Hernberg, 2000). The extensive smelting of metal ores in 

open fires for centuries unavoidably led to high metal emissions to the atmosphere. 

Records of these emissions can nowadays be found in natural deposits such as polar ice 

caps and aquatic sediments (Renberg et al., 1994).  

After the fall of the Roman Empire, Pb production declined significantly, increasing 

again from the Medieval and Renaissance Ages to the Industrial Revolution. The 

industrialization from the 18th century onwards brought an unprecedented demand for 

various natural resources and turned a new page in the history of environmental pollution. 

The introduction of a steam engine in the 19th century and the later invention of a 

combustion engine and its use in motorized vehicles not only accelerated efficiency of 

mining activity, and thereby, the exploitation of natural resources, but also increased the 

use of fossil fuels. Before the development of end-of-pipe technology, the combustion of 

coal and the consequent production of fly ash rich in Pb and other metals resulted in 

notable unintentional Pb emissions. By contrast, lead loading originating from the use of 

Pb in petrol as an antiknock agent from the 1920s onwards (MacKenzie et al., 1997) was 

deliberate. This development was later discovered to cause persistent environmental load 

and to have disastrous health effects.  

Replacing animal power with mechanized sources of power also resulted in an 

accelerated revolution in agriculture. The crucial increase in crop yields, however, took 

place through the introduction of inorganic fertilizers. Although the fertilizing effects of 
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inorganic salts of phosphorus (P) and nitrogen (N) had been discovered already in the mid-

19th century by organic chemist Justus von Liebig (Ashley et al., 2011), for a long time 

the main source of P used in agriculture was still manure and human excreta (Cordell et 

al., 2009). The mining of P deposits began in the mid-19th century (Smit et al., 2009), but 

it was not until the mid-20th century that the use of mineral P resources grew 

exponentially (Smil, 2000; Ashley et al., 2011). The availability of rock-derived P 

dramatically increased the use of inorganic P fertilizers in agriculture and eventually led to 

Green Revolution, the development of high-yielding crop varieties, which – supported by 

the concomitant invention of high-volume production of artificial nitrogenous fertilizers – 

resulted in doubled crop yields (IFPRI, 2002). Since the mid-20th century, the 

consumption of non-fuel minerals has increased continuously and exceeded the total 

amount of all mineral consumption within the history of mankind (Wellmer and Kürsten, 

1992). 

As for P mining, the extensive use of non-renewable resources and the P losses from 

fields to water systems has not only lead to a variety of environmental issues, such as 

eutrophication of surface waters, but has also raised a question about the sufficiency of 

this nutrient for feeding the growing population. Several scientists have assumed that the 

known economically extractable P resources in the world will deplete within the 21st 

century due to intensive mining of rock phosphate (Herring and Fantel, 1993; Steen, 1998; 

Smil, 2000). Moreover, control over the remaining global P reserves is concentrated in 

only a few countries, mainly Morocco, China and the US (Cordell et al., 2009), rendering 

P valuable not only in monetary but also in strategic respects. While the issue of the 

sufficiency of P resources is controversial, it is an undisputable fact that more attention 

needs to be paid to the sustainable use of P resources and the recycling of this valuable 

nutrient in the future.  

Today, the high economic standard of living in developed countries is based on the 

availability and exploitation of natural resources, leading to environmental problems. As 

for metal pollution, mining activity is the main source of emissions (Rashed, 2010). 

Besides emissions of undesired metals in manufacturing processes to air, water and soil 

environments, mining also produces enormous amounts of by-products known as tailings. 

This material consists of ground rock and process effluents, i.e. chemicals used in the 

separation of the desired ore from bulk rock. It is primarily piled in massive ponds. These 

ponds pose a notable environmental risk because they often have a low pH and are rich in 

chemicals and metals, including toxic ones. Besides pollution of the surrounding soil and 

groundwater, the enormous piles of tailings are mainly considered waste with no further 

use.  
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1.2 Phosphorus- and lead-induced environmental risks 

1.2.1 Phosphorus loading to watercourses 

Phosphorus is an essential element for all living organisms. This non-metal is a constituent 

of DNA, RNA, ATP and phospholipids in cells, therefore playing an important role in 

protein synthesis and cell metabolism. Together with nitrogen (N) and potassium (K), P is 

quantitatively the most important plant nutrient. In soil, inorganic P occurs either as 

soluble phosphates (H2PO4
-
, HPO4

2-
 or PO4

3-
, all denoted as PO4-P) in soil solution, as 

labile (i.e. readily exchangeable) P loosely retained by Al and Fe (hydr)oxides on soil 

particles or as non-labile P strongly bound by the solid phase, e.g. sparingly soluble 

phosphate minerals, such as apatites [Ca5(PO4)3OH, F, Cl)]. Soluble P ending up in soil 

solution is readily sorbed into the labile pool on the Al and Fe (hydr)oxide surfaces by 

ligand exchange that controls the solubility. This reaction pattern explains why soil 

solution is naturally very low in P. As plants take up soluble P and thereby decrease its 

concentration in the solution phase, the loss tends to be compensated by desorption of P 

from the labile reserves on the oxide surfaces to maintain an equilibrium between solute 

and sorbed P. Maintenance of the P equilibrium between the amount of sorbed P (i.e. 

quantity parameter denoted as Q) and the solute P (i.e. intensity parameter denoted as I) is 

a specific feature of a soil, and it is controlled by factors such as pH, Al and Fe 

(hydr)oxides, calcium carbonates (CaCO3), soil organic matter and type and amount of 

clay (Syers and Curtin, 1989; Frossard et al., 1995).  

In many Western European countries, intensive fertilization since the Industrial 

Revolution has gradually led to a positive P balance (i.e. P import to soil exceeding P 

export from soil) and caused a considerable P enrichment of soils (Chardon and van 

Faassen, 1999; Tunney et al., 2003). Besides inorganic fertilizers, a significant amount of 

surplus P accumulation in agricultural fields also originates from animal husbandry. 

Between 2005 and 2008, inorganic fertilizers together with manure produced by the 

livestock accounted for over 95% of the P input to soils in the European Union (EU) 

(Eurostat, 2012a). In Finland, from 1950 to 1980, P inputs in the form of inorganic 

fertilizers significantly exceeded P outputs (Granstedt, 2000). Since the 1980's, however, 

the P balance of Finnish agriculture has decreased by 80%, to a level of 8 kg ha
-1 

reported 

in 2007 (Uusitalo et al., 2007).    

A high P surplus in soil increases the risk of P loss to nearby water bodies by surface 

runoff, erosion and drainage. Runoff waters originating from so-called critical source 

areas (CSAs) (Sharpley and Rekolainen, 1997; Chardon and van Faassen, 1999) in 

agricultural fields, such as feeding and queuing areas in pastures and fields repeatedly 

manured with dung from chicken houses or fur ranches, are particularly problematic. Even 

if a CSA on a given land area only covers 5% of a catchment, P loss from such an area 

may account for over 75% of the catchment's total annual P loss (Sharpley and 

Rekolainen, 1997). Owing to soils' ability to maintain a given P concentration in soil 

solution, when a soil particle ends up in conditions where the soil-to-solution ratio 

decreases, P will be released from the particle surfaces to the solution phase to counteract 
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the decrease in the solution P concentration. The tendency of soil to maintain a given 

equilibrium P concentration in the ambient solution means that the P loading potential of 

eroded material increases with increasing P saturation on the particle surfaces. An extreme 

case of such conditions may arise from erosion transferring soil particles from catchments 

to watercourses and further to larger recipient waters.  

A water body receiving eroded material from farmlands amended with manure and 

fertilizers may become enriched with soluble P, which is usually the growth limiting 

factor. The subsequent enhanced primary production increases the amount of 

decomposing plant material, and thus, may eventually lead to the depletion of dissolved 

oxygen in the hypolimnion of the water system. The anoxic conditions lead to microbially 

mediated reduction of Fe (III) oxides, which will dissolve and lose their ability to retain P. 

The subsequent release of P from Fe oxides in the sediments to overlying water causes a 

vicious cycle known as internal loading. Furthermore, conditions where P no longer is the 

limiting nutrient favour the growth of cyanobacteria, which are able to fix molecular N 

(i.e. atmospheric N2), some also producing toxins.  

Besides non-point sources, such as drainage and runoff waters from watersheds, a 

significant amount of P loading to watercourses originates from point sources, such as 

industrial and municipal wastewaters. In general, nutrient discharge from sewage waters 

directed to wastewater treatment plants is fairly easy to control by using modern 

techniques. In Finland, the level of P recovery by municipal wastewater treatment is about 

95% (The Finnish Environment Institute, 2012). Nevertheless, large amounts of soluble P 

are released to the watercourses also from diffuse sources other than agriculture and 

forestry. In Finland, a marked P load originates in sewage produced by households outside 

the sewer network (Hallanaro and Kujala-Räty, 2011). In 2009, only 81% of the 

population in Finland was connected to urban wastewater treatment (Eurostat, 2012b), 

leaving one-fifth of the population discharging their wastewaters elsewhere. Moreover, 

besides the 300 000 year-round households in sparsely populated areas (Hallanaro and 

Kujala-Räty, 2011), in 2011 there were nearly 500 000 free-time residences or summer 

cottages also located outside the municipal sewer network (Official Statistics of Finland, 

2012). Consequently, P loading to watercourses from rural areas is estimated to be 6-fold 

that from population centres within the sewer network in Finland (Hallanaro and Kujala-

Räty, 2011).  

The Finnish authorities have responded to the acknowledged problem by legislation. 

The Environmental Protection Act (86/2000) stipulating that wastewaters produced 

outside sewer networks must not cause a risk of pollution to the nearby waterworks came 

into force in 2000. In 2003, the act was amended with a Government Decree on Treating 

Domestic Wastewater in Areas Outside Sewer Networks (542/2003). In 2011, this decree 

was replaced with an updated version (Onsite Wastewater System Decree 209/2011) that 

sets the minimum standards for wastewater treatment as well as the planning, 

construction, use and maintenance of treatment systems. The latest decree (209/2011) 

stipulates that P loading from domestic sewage must be reduced by at least 70% before 

discharge to the environment. While municipal wastewater treatment plants dephosphorize 

sewage by large-scale chemical precipitation with iron (Fe) and aluminium (Al) salts (e.g. 

Al2(SO4)3, AlCl3) (Galarneau and Gehr, 1997; Omoike and vanLoon, 1999; Henze et al., 
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2002, p. 331; Yang et al., 2006; Mortula and Gagnon, 2007), private households require 

small-scale purification systems that are inexpensive and convenient. For this purpose, 

several onsite wastewater treatment systems, such as septic tanks combined with filter 

beds, have been developed. As for black waters (wastewaters including excreta), however, 

filtering the water through a soil or sand bed does not sufficiently reduce the total P 

content of the water, and additional P removal with pure chemicals or other manufactured 

sorbents is often required.  

An evaluation of the onsite wastewater treatment systems on the Finnish market was 

carried out between 2003 and 2004 by the Finnish Environment Institute. Among other 

solutions, this project studied the applicability of tailings from the Siilinjärvi phosphate 

mine in two different wastewater purification systems (Vilpas et al., 2005). In one 

application, the tailings were used as a middle layer in a conventional sand filter bed to 

improve P sorption. In another application, the tailings material was used as an additional 

P sorbent in a cesspool receiving sewage water from a conventional sand filter bed. The 

results revealed that tailings material used as an adsorbing layer in a conventional sand 

filter bed enhanced P retention, whereas in a cesspool, the tailings did not work as desired. 

However, the chemical reactions explaining the findings were not studied and the 

theoretical basis for functioning of the tailings material as a sorbent remained unclear. 

1.2.2 Lead as an environmental contaminant 

The principal ore mineral for Pb is galena (PbS). Besides primary PbS, weathering 

products of this unstable mineral, cerussite (PbCO3) and anglesite (PbSO4), are also mined 

to some extent. Lead is a metal widely used in the metal and chemical industries. Due to 

the high corrosion tolerance and tendency to mould and shape easily, it is suitable for a 

wide variety of applications. The primary use for this metal are lead-acid storage batteries, 

but it is also a common component of pigments, cable sheathing and ammunition. In 

Finland, as in many other countries, for decades a significant part of Pb emissions to the 

environment originated from exhaust gases. Since the use of leaded petrol in Finland 

ended in 1993 (Pietarila et al., 2001), the nationwide Pb emissions dropped from an annual 

level of 326 tonnes in 1990 to 18 tonnes in 2009 (The Finnish Environment Institute, 

2012). Today, one of the main sources of soil pollution is shooting activity (Sorvari et al., 

2006). Although the Finnish government decree on hunting (Hunting Act 615/93) 

prohibits the use of Pb pellets in waterfowl hunting, this metal is still, due to its superior 

ballistic properties, the main constituent of shots and pellets used in shooting ranges. 

There are approximately 2000–2500 outdoor shooting ranges in Finland, with almost one-

third of the ranges posing a pollution risk to groundwater. Of the total number of 20 000 

potentially contaminated sites in the country, shooting ranges comprise 5% of the sites 

(Sorvari et al., 2006). Considering that the annual site-specific Pb discharge in shotgun 

pellets may vary from 120 to 15000 kg (Sorvari et al., 2006), the relatively high 

percentage is not surprising. 

Despite the high corrosion tolerance of Pb, a chemically versatile soil environment 

may expose Pb pellets to various weathering processes such as oxidation, hydration and 
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carbonation (Jørgensen and Willems, 1987; Hardison et al., 2004). The transformation of 

the pellet-derived Pb into soluble secondary minerals enables the transition of the metal 

into soil water. In natural conditions, Pb primarily displays the oxidation state +II. While 

the hydration of Pb
2+

 in an aqueous solution is weak due to the low charge density of the 

ion (Persson et al., 2011), depending on the pH, the dissolved Pb
2+

 may undergo 

hydrolysis to form a mononuclear PbOH
+
 complex (Powell et al., 2009). As the soluble Pb 

species come into contact with various soil components, such as clay minerals, organic 

matter, aluminium (Al) and iron (Fe) (hydr)oxides and calcium carbonates (CaCO3), the 

metal undergoes reactions that largely dictate its bioavailability and ecotoxicity.  

Lead is highly toxic to all living organisms. In soil, it decreases the abundance and 

activity of  microorganisms (Kuperman and Carreiro, 1997), disturbs litter decomposition 

and nutrient mineralization (Tuomela et al., 2005; Rantalainen et al., 2006) and adversely 

affects various functionally important soil organisms (Rantalainen et al., 2006). 

Furthermore, Pb inhibits the growth and metabolism of plants (Singh et al., 1997). If 

leached to the groundwater, it may even threaten public health. As for health effects on 

humans, it is known to harm the nervous system and to have adverse effects on childhood 

development of intelligence and academic achievement (e.g. Grandjean, 1978; Lockitch, 

1993; Wang et al., 2002; Needleman, 2009). Thus, there is a great demand for 

environmentally sound and cost-effective ways of reducing the risk of Pb exposure.  

The most commonly employed remediation technique is excavation and disposal of 

contaminated soil (Sorvari et al., 2006; Isoyama and Wada, 2007; Jaakkonen, 2008). Other 

techniques include containment of the metal by using physical barriers, encapsulation or 

vitrification, various ex situ methods such as physical separation and soil washing, and in 

situ methods such as electrokinetics and soil flushing (e.g. Mulligan et al., 2001; Khan et 

al., 2004). Despite the variety of available techniques, the complexity of the reactions that 

Pb undergoes in  highly versatile soil environments renders their site-specific remediation 

demanding. Furthermore, many of the remediation techniques are unfeasible in large-scale 

applications due to their high cost and undesirable secondary environmental impacts. For 

instance, methods that require extensive use of electricity are very expensive and 

inconvenient in practice. Moreover, the use of synthesized chemicals, such as soil washing 

agents, have the disadvantage of causing the risk of further environmental hazard.  

1.3 Geological materials as potential agents for environmental 
remediation  

Due to financial and environmental issues related to many sophisticated remediation 

techniques of contaminated soils and water systems,  scientists have explored the potential 

of various low-cost geological materials in solving environmental problems. Depending 

on the mineral composition and the consequent chemical characteristics, various 

geomaterials may be able to act as remediation agents through ion exchange, precipitation 

and sorption reactions taking place between the contaminant and the mineral components. 

A review by Yamada et al. (2011) presents the application of smectites, layered doubled 

hydroxides and zeolites as remediation agents based on their cation- and anion-exchange 



 

 

 

 

17 

properties. The utilization of Leca
®
 (Light Expanded Clay Aggregates) (Johansson, 1997) 

and Filtralite P
®
 (Leca

®
 with lime included) (Jenssen et al., 2005, 2010) has been 

investigated for their ability to act as P sorbents in wastewater applications and as heavy 

metal sorbents in the purification of runoff waters originating from metal-contaminated 

shooting ranges (Strømseng et al., 2008). Moreover, several researchers have studied the 

immobilization of Pb and other metals using sparingly soluble phosphate minerals, such as 

phosphate rock (e.g. Ma et al., 1995; Cao et al., 2004; Lin et al., 2005; Elouear et al., 

2008; Cao et al., 2009), natural or synthesized hydroxyapatite (HAP) [Ca5(PO4)3OH)] 

(e.g. Ma et al., 1993; Davies et al., 2002; Ioannidis and Zouboulis, 2003; Sandrine et al., 

2007; Dybowska et al., 2009; Kaludjerovic-Radoicic and Raicevic, 2010) and synthesized 

phosphate glass (Jin and Heo, 1998). However, the problem with many of the artificial 

materials is that even if they successfully mimic naturally occurring minerals and, in that 

respect, may be considered environmentally friendly, the manufacturing of the chemicals 

required in the synthesis of the substances often involves extensive use of energy and 

discharge of other harmful substances to the environment. Thus, the application of such 

materials for remediation purposes may eventually compromise the environment.   

1.3.1 Mineralogical and chemical properties of tailings of Siilinjärvi apatite 

ore 

Siilinjärvi carbonatite complex (described in detail by Puustinen, 1971) is the most 

substantial phosphate mine in Western Europe and the largest open pit in Finland. The 

deposit mainly consists of three rocks: phlogopite- and apatite-rich glimmerite, granite-

like syenite and carbonate-rich carbonatite. Due to the rock composition, the complex has 

been mined since 1980 for apatite, a phosphate mineral used as a source of phosphoric 

acid and P fertilizers, and it is still in operation. The annual production of 795 000 tonnes 

of apatite concentrate requires the mining of 8.5 million tonnes of apatite ore (Stén et al., 

2003). In the beneficiation process, the raw rock material goes through crushing, wet 

grinding and flotation to separate the desired apatite ore from the tailings by-product. 

From the total annual volume (150 000 tonnes) of tailings produced, a small part is 

subjected to carbonate removal, particle-size fractionation and dewatering to produce soil 

amendment suitable for K, Mg and Ca fertilization. However, the bulk of the tailings 

material is discharged and pumped into the tailings ponds of Musti, Raasio and 

Jaakonlampi in the nearby area (Stén et al., 2003). After settling of the tailings material in 

the pond, most of the water used in the beneficiation process, together with the drainage 

water from the open pit, is recirculated to the concentration plant (Stén et al., 2003). The 

surplus water is treated with water purification chemicals and adjusted to pH 7 before 

release to the nearby lake.  

The tailings material from apatite ore beneficiation mainly consists of a trioctahedral 

phyllosilicate mineral, phlogopite [KMg3(Si3Al)O10(OH)2] (ca. 75%), carbonate minerals 

(mainly calcite, CaCO3) (ca. 16%) and water as well as fluorapatite (FAP) [Ca5(PO4)3F)] 

residues from the beneficiation process. In addition to the mineral components and water, 

the material contains unidentified flotation chemical residues. Based on the composition of 
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the tailings, the material is not considered toxic. The versatile mineralogy renders the 

tailings a multicomponent material, allowing a variety of chemical reactions to take place 

between the solid and dissolved substances. As for the phlogopite component, the sorption 

properties are largely dictated by the high content of Al and Fe derived from the 

isomorphic substitution of Al
3+ 

for Si
4+ 

in the tetrahedral layer and of Fe
2+ 

for Al
3+ 

in the 

octahedral layer of the mineral structure. Numerous studies have proved that P has a high 

affinity for Al
3+

 and Fe
3+

 on the edges of secondary minerals or in hydrated oxides 

(Muljadi et al., 1966; Hingston et al., 1967; Parfitt et al., 1975; Ryden et al., 1977; 

Borggaard, 1983; Beck et al., 1999; Borggaard et al., 2004; Peltovuori, 2006). The same 

components are also able to retain Pb (Bargar et al., 1997; Dong et al., 2000; Bradl, 2004; 

Helal, 2006; Xu et al., 2006). 

The retention of ions onto metal (hydr)oxides takes place either through the formation 

of an outer-sphere or an inner-sphere complex between the adsorbate and the metal. An 

outer-sphere complex is formed through electrostatic forces. Due to the amphotheric 

nature of Al and Fe (hydr)oxides, depending on the pH, these surfaces possess either a 

negative, positive or neutral surface charge. Thus, it is theoretically possible that at pH 

below the point of zero charge (p.z.c.), the retention of anions, such as PO4-P, may take 

place electrostatically, whereas that of cations (e.g. Pb
2+

) may take place at pH above the 

p.z.c. However, it is more probable that these adsorbates form an inner-sphere complex 

via a ligand exchange mechanism, which involves the substitution of a hydroxy (OH
-
) or 

an aqua (H2O) group in the co-ordination sphere of the metal on the adsorbate surface. 

Since the H2O group is more prone to substitution than the deprotonated OH
-
 group, a 

decrease in pH favours the reaction. The covalent bond formed in the reaction is very 

strong by nature, thus efficiently protecting the adsorbate from leaching.  

In addition to the Al and Fe (hydr)oxides in phlogopite, there is evidence that Pb may 

also be adsorbed by amorphous silica emerging on the fracture edges and edge-faces of 

weathered silicate minerals through the formation of inner-sphere surface complexes 

(Schindler et al., 1976; Elzinga and Sparks, 2002; Chen et al., 2006). This mechanism may 

partly contribute to the sorption properties of the phlogopite component in the tailings. 

Furthermore, CaCO3 has been reported to retain both PO4-P (Cole et al., 1953; Freeman 

and Rowell, 1981; Borrero et al., 1988) and Pb (Rouff et al., 2002, 2005). The retention of 

PO4-P by calcite occurs through monolayer surface sorption or through precipitation of P 

as dicalcium phosphate (Cole et al., 1953). As for the retention of Pb, the sorption may 

occur through surface complexation (Rouff et al., 2005) or through the formation of 

sparingly soluble cerussite (PbCO3) (Taylor and Lopata, 1984; Godelitsas et al., 2003; Al-

Degs et al., 2006).  

As for the fluorapatite component in the tailings, it may significantly contribute to Pb 

retention. A number of researchers have demonstrated that phosphates, particularly 

primary igneous apatites [Ca5(PO4)3OH, F, Cl)], together with secondary sedimentary 

phosphate rocks, play a significant role in Pb retention. Pb
2+

 may substitute for apatitic 

Ca
2+

 through an ion exchange mechanism (Suzuki et al., 1982; Chen et al., 1997; Zhu et 

al., 2010) due to its high value of electronegativity (2.33) and ionic radius (0.118 nm) 

close to that of Ca
2+

 (0.09–0.13 nm) (Suzuki et al., 1982). Apatites may also retain Pb
2+

 

through surface adsorption and complexation by the functional groups of the mineral 
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(Forsling and Wu, 1993; Ma et al., 1995; Mavropoulos et al., 2002; Hashimoto and Sato, 

2007; Sandrine et al., 2007). Furthermore, provided that the conditions are sufficiently 

acidic, the reaction between Pb
2+

 and apatites may result in the formation of sparingly 

soluble pyromorphites (PM) [Pb5(PO4)3(OH, F, Cl)] through dissolution of the parent 

apatite mineral and subsequent precipitation of PM (e.g. Ma et al., 1993, 1995; Chen et al., 

1997; Cao et al., 2003, 2004; Mavropoulos et al., 2002, 2004).  

1.4 Objectives of the work 

While the mining industry produces metals and non-metal elements for various purposes, 

it also produces large quantities of tailings considered to be waste material. Mining of 

bedrock-derived elements inevitably increases their concentrations in the biogeochemical 

cycles, and thus, increases the risk of contamination or pollution of various environmental 

compartments. By contrast, some tailings materials may have potential to be utilized in an 

environmentally sound way for various purposes or even to abate the deterioration of soil 

and water ecosystems. Based on its versatile mineralogy, the tailings from Siilinjärvi 

apatite ore beneficiation can be taken as a multicomponent geomaterial with the potential 

to act as a remediation agent to counteract P- and Pb-related environmental risks.  

This study was undertaken to unravel the chemical reactions of P and Pb with the 

apatite ore tailings in order to create a theoretical basis for potential practical applications. 

The aim was to investigate the potential of the tailings to act as a multifunctional 

remediation agent in the dephosphorization of domestic wastewaters and in the reduction 

of P discharge from CSAs (Article I) and in the remediation of shooting ranges and other 

areas contaminated with Pb (Articles II and III). Systematic experiments were carried out 

to evaluate the ability of the tailings material (a) to retain P and Pb from pure aqueous 

solutions (Articles I and II), (b) to immobilize Pb in a chemically versatile soil 

environment (Article III), (c) to understand the sorption mechanisms of P and Pb (Articles 

I-III) and (d) to reveal the potential of the material to reduce the bioavailability and 

ecotoxicity of pellet-derived Pb in contaminated soil (Article III). Attempts were also 

made to determine whether the sorption capacity of the material could be further enhanced  

(a) by sieving the tailings into small (ø < 0.2 mm) and large (ø > 0.2 mm) particle-size 

fractions differing to some extent in their mineralogy (Articles I–III) or (b) by artificially 

manipulating the quantity of reaction-active sites through acid (Articles I–II) or acid-base 

(Article I) pre-treatment. Since the material consists of natural soil components, its use in 

environmental applications would be ecologically justified. Besides finding a way to abate 

the P loading problems in watercourses and the Pb pollution of soils, the research also 

aims at finding sound and economically justified use for the untapped tailings, thereby 

reducing the enormous amount of tailings discharge primarily piled as waste. 
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2 Materials and methods 

The experimental designs and methodologies applied in this thesis are described here in 

brief. The main research subjects covered in the original articles (Articles I–III) and the 

experiments carried out to investigate the research subjects (Experiments 1–6) as well as 

the number of replicates used in each of the experiments are compiled in Table 1. Detailed 

descriptions of the procedures are given in the original publications.  

 

Table 1. Summary of the main research subjects, the experiments conducted and the 

number of replicates analysed in each experiment 

 

 

Research subject Experiment 

 

No. of 

replicates 

  No. Description  

Article I 

 

P sorption by tailings 1 Chemical fractionation of intrinsic 

and added P between various 

chemical pools in tailings 

3 

 2 P desorption-sorption isotherms 

(Q/I plot) of tailings 

4 

 3 P desorption-sorption isotherm (Q/I 

plot) of acid-treated tailings after 

the removal of Al and Fe 

(hydr)oxides 

3 

Article II 

 

Pb sorption by tailings 4 Pb sorption isotherms of untreated 

tailings 

4 

 5a Pb sorption isotherms of tailings-

amended mineral soil  

4 

 5b Chemical fractionation of added Pb 

between various chemical pools in 

uncontaminated mineral soil 

4 

Article III Tailings as a remediation 

agent for Pb-contaminated  

6a Chemical fractionation of Pb-

contaminated shooting range soil 

4 

shooting range soil 6b Chemical speciation of water-

extractable Pb from Pb-

contaminated shooting range soil  

4 

2.1 Tailings samples  

The tailings provided by Kemira GrowHow Oyj (company purchased by Yara in 2007) 

originated from the Siilinjärvi phosphate mine (for details, see Puustinen, 1971) located in 

Eastern Finland (63˚08´N, 27˚44´E). A part of the tailings material was treated with 70% 

H2SO4 (Articles I and II) in the research centre of the company to simulate weathering that 

produces reactive Al and Fe (hydr)oxides. A portion of the acidified tailings was also 

partly neutralized with NH4OH (Article I) to precipitate any metals dissolved from the 

mineral structure during the acidification. The acid-treated tailings (AtT), the acid-base-

treated tailings (ABtT) and the untreated material (UtT) were passed through a 0.2-mm 

sieve to divide the materials into small (ø < 0.2 mm) and large (ø > 0.2 mm) particle-size 
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fractions, which were studied as separate remediation agents. A portion of the material 

was also investigated without subjecting it to any preliminary physical or chemical 

treatments (Article III).  

The tailings samples were dried at 60°C overnight to remove any adsorbed moisture 

and stored at room temperature in tight plastic containers. The unsieved tailings materials 

were analysed for electrical conductivity (EC) in a water suspension (V:V 1:2.5) and 

classified for colour according to the Munsell Color (1994) soil colour chart. All of the 

tailings samples, except for the small- and the large-sized fractions of the ABtT were 

analysed for pH in de-ionized H2O (V:V 1:2.5). Furthermore, all of the tailings samples, 

except for the unsieved ABtT, were analysed for poorly crystalline Al and Fe (hydr)oxides 

by extracting twice with 0.05 M acidic ammonium oxalate (NH4-Ox) ((NH4)2C2O4•H2O, 

pH 3.3, 1:50 g:mL, 2 h shaking in the dark) with a method modified from Niskanen 

(1989). Prior to the proper oxalate extraction, calcite residues in the UtT were removed 

with a method modified by Loeppert and Inskeep (1996) from those of Schwertmann 

(1964) and McKeague and Day (1966). In the removal of calcite, 1.5 g UtT samples were 

extracted with 90 mL of 1 M ammonium acetate (CH3COONH4) (pH 5.5). During the 

extraction, pH of the suspensions was controlled and readjusted to 5.5 with acetic acid 

(CH3COOH) until it remained unchanged. Next, the acid was discarded and the samples 

were washed twice with 50 mL of de-ionized H2O before drying at 50°C. Extraction of the 

samples with acid ammonium acetate revealed that the consumption of acid was higher for 

the small-sized than the large-sized UtT, suggesting that the small-sized material was 

richer in calcite than the large-sized one. The physico-chemical properties of the tailings 

materials are given in Table 2.  

 

Table 2. Properties of tailings materials 

Tailings Mesh pH
a
 EC

a
 Poorly crystalline oxides

b
 Colour

c
 

 Ø H2O μS cm
-1

 mmol kg
-1

 ± SD  

    Al Fe  

Untreated  

tailings (UtT) 

Unsieved 9.3 1.5·10
2
 0.8 ± 0.07 8.7 ± 0.7 10 YR 4/2 

(greyish 

brown) 
> 0.2 mm 9.4 n.a. 0.6 ± 0.04 6.8 ± 0.5 

 < 0.2 mm 9.1 n.a. 1.5 ± 0.05 17.8 ± 2.1  

Acid-treated  

tailings (AtT) 

Unsieved 3.2 2.6 ·10
4
 240 ± 11 184 ± 9 7.5 YR 6/2 

(pinkish 

grey) 
> 0.2 mm 4.0 n.a. 196 ± 8 150 ± 7 

 < 0.2 mm 3.1 n.a. 388 ± 6 299 ± 4  

Acid-base-

treated 

tailings (ABtT) 

Unsieved 4.6 3.2 ·10
4
 n.a. n.a. 10 YR 6/6 

(brownish 

yellow) 
> 0.2 mm n.a. n.a. 203 ± 5 158 ± 2 

 < 0.2 mm n.a. n.a. 288 ± 4 247 ± 5  

a
Measured from water suspension 1:2.5 (V:V) 

b
 Extracted twice with 0.05 M ammonium oxalate (pH 3.3, 1 g : 50 mL, shaking for 2 h in the 

dark) (method modified from Niskanen, 1989).  
c
 Munsell (1994) 

n.a. = Not analysed 
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2.2 Analytical approaches to studying the sorption properties of 
tailings 

2.2.1 Chemical fractionation 

To distinguish between the different sorption sites responsible for the retention of P and 

Pb, the tailings samples were subjected to sequential fractionation procedures. In these 

procedures, the samples are subjected to sequential extraction with solutions of increasing 

extraction power assumed to extract P or Pb from various chemical pools. However, it 

should be noted that these pools are operationally defined and strongly dependent on the 

solutions and conditions used in the extraction. Nevertheless, in this thesis the 

fractionation approach was considered to give an idea of the primary sorption sites and to 

reveal the principal differences in sorption properties of the different tailings materials.  

2.2.2 Desorption-sorption isotherms (Q/I plots) 

In the determination of a desorption-sorption isotherm, a series of sorbent material is 

allowed to equilibrate at a constant temperature with solutions of increasing 

concentrations of the adsorbate, and the final concentrations of the adsorbate in the 

ambient solutions are analysed. Sorption to or desorption from the sorbent surface 

(quantity parameter Q, mg kg
-1

) is calculated from the change of the adsorbate 

concentration. The intensity parameter I, on the other hand, represents the final adsorbate 

concentrations in the equilibrium solutions (mg L
-1

). Plotting the equilibrium 

concentration against the desorption from or sorption by the solid surface constitutes a 

quantity/intensity plot i.e. a Q/I plot (Beckett and White, 1964). The Q/I graph can be used 

to estimate the quantity of sorption or desorption needed to reach a given adsorbate 

concentration in the ambient solution. Plotting the initial solution concentration against the 

parameter Q constitutes another type of graph. This type of isotherm describes the 

desorption or sorption when the sorbent is subjected to a solution of a given adsorbate 

concentration (Hartikainen, 1982). This type of graph is termed the initial mass (IM) 

isotherm by Nodvin et al. (1986).  

In this thesis, the Q/I approach was chosen to describe the ability of the tailings to 

maintain given adsorbate concentrations in the solution phase. The Q/I isotherms were 

used to estimate the P and Pb sorption capacities of the different tailings materials and to 

reveal different stages of P and Pb sorption, such as specific sorption by Al and Fe 

(hydr)oxide surfaces, precipitation, possible re-release of sorbed P and Pb, or reaching of a 

sorption maximum (Articles I and II). Furthermore, the Q/I technique was applied to 

estimate the ability of the different tailings materials to lower solute P concentration, e.g. 

in purification systems to an allowable level (Article I), as well as to estimate the impact 

of tailings amendment on the Pb sorption properties of a mineral soil, i.e. on the risk of Pb 

leaching from soil (Article II).  
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2.3 Phosphorus sorption by tailings  

Prior to the actual experiments described below, preliminary experiments were carried out 

to get a general idea of the P sorption capacity of the tailings and to define the enrichment 

solution concentrations to be used in the experiments. The results from the preliminary 

tests indicated that the P sorption capacity of the AtT and the ABtT largely exceeded that 

of the UtT. Therefore, when preparing the Q/I isotherms higher P additions were needed 

for the AtT and the ABtT than for the UtT. The large variation in the sorption properties of 

the different tailings materials also explains the different tailings-to-solution ratios used 

for them.  

2.3.1 Distribution of intrinsic and sorbed phosphorus between various 

chemical pools in tailings materials  (Experiment 1) 

As a premise for the investigation of P sorption capacity of tailings, the materials were 

analysed for the occurrence of intrinsic P. To obtain information about the different 

chemical forms of innate P rather than to simply analyse the total P content of the 

material, the tailings were subjected to a sequential fractionation using a modified version 

of the Chang and Jackson (1957) method (Hartikainen, 1979). Despite the widely used 

Chang and Jackson method is known to have shortcomings (e.g. ambiguous segregation 

between Al and Fe bound P, possible transition of P from one pool to another, formation 

of new components able to retain P during the extraction), it was, however, considered to 

provide sufficient information about the apparent P pools in the different tailings 

materials. In this procedure, the samples were extracted with a selection of solutions 

assumed to extract P from various chemical pools as follows:  

 

1) 1 M NH4Cl replaces exchangeable Ca by NH4
+
 ions and removes water-soluble and 

loosely bound P (NH4Cl-P)  

 

2) 0.5 M NH4F (pH 8.5) removes Al-bound P (NH4F-P) through ligand exchange of PO4-P 

for F
-
-ions. Fluoride is known to have a higher affinity for Al

3+
 than  for Fe

3+
 (Lindsay, 

1979, pp. 36, 130). 

 

3) 0.1 M NaOH removes Fe-bound P (NaOH-P) on oxide surfaces through substitution of 

PO4-P by OH
-
- ions 

 

4) 2.5 M H2SO4 dissolves P from the residues of the apatite ore that passed the 

beneficiation process (H2SO4-P) 

 

Contrary to the original method of Chang and Jackson (1957), in the modified version of 

Hartikainen (1979) the pH of the NH4F solution was adjusted to 8.5 (instead of 7.0) to 

minimize the dissolution of Fe-bound P during the extraction, as suggested by Fife (1959). 
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After the second and third steps, the samples were washed twice with saturated NaCl 

solution to remove the P residues of the preceding extract in the interstitial water.  

To distinguish between the initially occupied and the still available P sorption sites, 

another set of tailings samples was first enriched with KH2PO4 solutions and then re-

subjected to a sequential fractionation. In the P addition procedure, 1-g UtT samples 

received 50 mL of a solution containing 1 mg P L
-1

, and 0.5-g AtT and ABtT samples 

received 50 mL of a solution containing 50 mg P L
-1

. The suspensions were shaken for 1 

h, allowed to equilibrate for 23 h at room temperature, and re-shaken for 10 min before 

passing through a 0.2-µm membrane filter (Nuclepore 
®
 polycarbonate). All extracts were 

analysed for P with a spectrophotometer. The DPS (degree of phosphorus saturation) of 

the Al and Fe (hydr)oxides (denoted as Alox and Feox) in both unenriched and enriched 

tailings was calculated according to Peltovuori et al. (2002) (Eq. 1):  

 

DPS = (NH4Cl-P+NH4F-P+NaOH-P) / (0.5×(Alox+Feox)) × 100(%)  (Eq. 1) 

 

where NH4Cl-P, NH4F-P, NaOH-P, Alox and Feox are given in mmol kg
−1

. According to 

the original procedure for DPS determination, the calculation is based on NH4-Ox-

extractable P (van der Zee and van Riemsdijk, 1988; Lookman et al., 1995). However, 

since acid oxalate solution is able to extract primary P resulting in erroneously high DPS 

values for materials high in apatitic P (Peltovuori et al., 2002), the sum of Chang and 

Jackson's (1957) NH4Cl-P, NH4F-P and NaOH-P fractions was used instead. The 

coefficient 0.5 employed in the equation is a value for a parameter that represents the 

fraction of Al and Fe presumably able to bind P. The parameter value used here is a mean 

of those determined by Breeuwsma and Schoumans (1986) and van der Zee and van 

Riemsdijk (1988). 

2.3.2 Phosphorus desorption-sorption isotherms (Q/I plots) (Experiment 2) 

To obtain further information about the ability of small- and large-sized UtT, AtT and 

ABtT to release and retain P as well as about the dependency of P reactions on contact 

time, the tailings samples were subjected to analysis for their P exchange properties by 

means of an isotherm technique (method modified from Hartikainen, 1982). In the 

procedure, two sets of tailings samples were allowed to react with aqueous KH2PO4 

solutions of eight increasing P concentrations for either 23 h or 7 d at 20°C (details about 

equilibration times, solid-to-solution ratios and concentrations of the enrichment solutions 

used for the different tailings samples are given in Table 3). After equilibration, the 

suspensions were shaken for 10 min before passing through a 0.2-µm membrane filter 

(Nuclepore
®
 polycarbonate). The filtrates were analysed for P with a flow injection 

analyser (FIA) and their pH was measured. The P concentrations were employed to 

calculate the parameters Q and I to construct a Q/I plot. The amount of readily mobile P 

(Q0, point of intersection on the y-axis) and the maximum quantity of P that the material is 

able to retain (Qmax) were interpreted from the Q/I graph. During the equilibration, the 

formation of a white milky precipitate was observed in all suspensions containing P 
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solution, especially in those containing AtT and ABtT. A subsequent chemical analysis of 

the collected precipitate by XRD technique (analysis carried out in the research centre of 

Kemira Growhow Oyj) revealed that it mainly consisted of P, Si, Fe and Al, listed in order 

of decreasing abundance.  
 

Table 3. Equilibration times, solid-to-solution ratios and P concentrations of enrichment 

solutions used in the Q/I experiments conducted with different tailings materials 

Tailings Mesh  Equilibration 

time 

Solid-to- 

solution ratio 

P enrichment solution 

concentrations 

 Ø mm  w:V mg L
-1

  

Untreated 

 tailings (UtT) 

> 0.2 24 h 1:50 0, 0.05, 0.1, 0.3, 0.5, 1.0, 2.0 

and 4.0 < 0.2 24 h 

 > 0.2 7 d 1:50 

 

0, 0.1, 0.3, 0.5, 1.0, 2.0, 4.0 

and 5.0 < 0.2 7 d 

Acid-treated 

tailings (AtT) 

> 0.2 24 h 1:100 

 

0, 25, 50, 100, 200, 300, 400 

and 500 < 0.2 24 h 

 > 0.2 7 d 1:100 

 

0, 25, 50, 100, 200, 300, 400 

and 500 < 0.2 7 d 

Acid-base-treated 

tailings (ABtT) 

> 0.2 24 h 1:100 0, 25, 50, 100, 200, 300, 400 

and 500 < 0.2 24 h 

 > 0.2 7 d 1:100 

 

0, 50, 100, 200, 300, 400, 500 

and 600 < 0.2 7 d 

AtT (oxides 

removed) 

< 0.2 24 h 1:50 0, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 

and 3.0 

2.3.3 Contribution of Al and Fe (hydr)oxides to phosphorus sorption 

(Experiment 3) 

To substantiate the contribution of Al and Fe (hydr)oxides to P sorption, the small-sized 

AtT material that had the highest Al and Fe (hydr)oxide contents out of all tailings (Table 

2) was examined in more detail. It was subjected to removal of oxides by using the 

modified acid ammonium oxalate method of Niskanen (1989), but using a larger 

extraction ratio of 100:1 (V:w) to ascertain a thorough removal of the (hydr)oxides. After 

the oxalate extraction, the samples were washed with saturated NaCl solution and with 

water to remove soluble ions, and the material was dried overnight. Next, the small-sized 

AtT material free of NH4-Ox-extractable Al and Fe was subjected to a 23-h equilibration 

with KH2PO4 solutions of eight increasing P concentrations (Table 3) at 20°C before a 10-

min shaking, filtration through a 0.2-µm membrane filter (Nuclepore
®
 polycarbonate) and 

analysis for P with a flow injection analyser. The desorption-sorption results were 

depicted as a function of the P concentration in the solution.  
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2.4 Lead sorption by tailings 

After confirming the ability of the tailings to retain P in Article I, the focus of the research 

shifted to Pb sorption (Article II). To obtain an overview of the Pb sorption capacity of the 

material, a series of preliminary tests were carried out by means of isotherm technique. 

Besides studying the impact of acid and acid-base treatments (At and ABt) and assorting 

(see Article I) on the Pb sorption properties of the tailings material, preliminary 

experiments were undertaken to investigate the contribution of thermal treatment 

(combustion at 550°C) and reaction time (24 h and 7 d) on the Pb retention by the tailings.  

However, the isotherms obtained with the AtT were practically upright in shape and 

the Pb additions required to obtain any curvilinear sorption graphs were unrealistically 

large and irrelevant in practice. Therefore, the AtT material was excluded in the further 

sorption experiment carried out with pure aqueous solutions (Experiment 4). Nevertheless, 

the AtT material was included in Experiments 5a and 5b (Article II), where the impact of 

tailings-derived Al and Fe (hydr)oxides to Pb sorption by an uncontaminated mineral soil 

was investigated. On the basis of the results of the preliminary experiments, in the 

sorption tests higher Pb additions were used for the AtT-amended soil samples than for the 

control soil or the UtT-amended soil samples. 

As for the acidified tailings that were partially neutralized (i.e. acid-base-treated 

tailings, ABtT), extension of the reaction time from 24 h to 7 d or thermal treatment of the 

tailings material did not notably affect the Pb sorption results. Therefore, the ABtT 

material was entirely excluded from the experiments described below.  

2.4.1 Lead sorption by untreated tailings (Experiment 4) 

To obtain a general picture of the Pb retention ability of the tailings, sorption isotherms 

were produced for the small- and the large-sized UtT by shaking the samples for 1 h with 

aqueous Pb(NO3)2 solutions of 11 increasing Pb concentrations (Table 4). The suspensions 

were allowed to equilibrate for 23 h at room temperature before a 10-min shaking and then 

passed through a filter paper (Schleicher & Schüll type 5893). The filtrates were analysed 

for Pb with ICP-MS and their pH was measured. The final Pb concentrations were 

employed to calculate the parameters Q and I to construct a Q/I plot. Details about the 

concentrations of the enrichment solutions and the solid-to-solution ratios are given in 

Table 4. 

2.4.2 Impact of tailings materials on lead sorption by soil (Experiment 5) 

The tailings-induced changes in the Pb sorption ability of mineral soils and the different 

reaction mechanisms attributable to Pb removal were investigated in an incubation 

experiment with uncontaminated sandy loam soil (soil described in detail by Simojoki, 

2000). The soil contained 2.5% organic carbon and had a pH of 5.8 (measured in water, 

V:V 1:2.5). The effective cation exchange capacity (CECef ) of the soil was 7.6 cmol(+) 
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kg
-1

 (unpublished data). One set of 125-g soil samples was amended with 5 or 10 g of 

small- or large-sized UtT. Another set of samples received 5 or 10 g of small- or large-

sized AtT rich in Al and Fe (hydr)oxides to reveal their contribution to Pb retention. Soil 

samples without tailings amendment served as controls. Each of the experimental units 

received 30 mL of mQ-H2O to obtain field capacity and were covered with cling film. 

During the 3-month incubation at 20°C, the experimental units were watered according to 

weight loss to replace evaporated moisture.  

2.4.2.1 Lead sorption isotherms of tailings-amended soil (Experiment 5a) 

After the incubation, subsamples from the experimental units were shaken for 1 h with 

aqueous Pb(NO3)2 solutions of eight increasing Pb concentrations (Table 4) and allowed 

to react for 23 h at 20°C before a 10-min shaking and passing through a filter paper 

(Schleicher & Schüll type 5893). The filtrates were analysed for Pb with an Inductively 

Coupled Plasma Optical Emission Spectrometer (ICP-OES) and their pH was measured. 

The Pb concentrations were employed to calculate the parameters Q and I to construct a 

Q/I plot. The following Langmuir adsorption equation (Eq. 2, Essington, 2004, p. 339) 

was fitted to the Q/I data points obtained by a least squares fit using MS Excel 2007 

Solver Tool: 

 

Q = Qmax*K*I / I+K*I     (Eq. 2), 

 

where Qmax is the maximum Pb sorption and K is a sorption equilibrium constant. Details 

about the sorption experiment are given in Table 4. 
 

 

Table 4. Tailings dosages used in the incubation experiment conducted with 125 g of 

mineral soil with and without tailings amendment and Pb concentrations of the 

enrichment solutions used in the Q/I experiments carried out with and without soil at a 

solid-to-solution ratio of 1:50 (w:V). 

Sample Tailings Pb enrichment solution concentrations 

 Mesh  

Ø mm 

Addition to soil 

g 

 

mg L
-1

 

Untreated tailings > 0.2 - 0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 30 and 35 

(UtT) < 0.2 -  

Soil - - 0, 50, 75, 100, 250, 500, 750 and 1000 

Soil + UtT > 0.2 5 

0, 50, 75, 100, 250, 500, 750 and 1000 
 > 0.2 10 

 < 0.2 5 

 < 0.2 10 

Soil + Acid-treated > 0.2 5 

0, 100, 250, 500, 750, 1000, 1500 and 2000 
tailings (AtT) > 0.2 10 

 < 0.2 5 

 < 0.2 10 
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2.4.2.2 Tailings-induced changes in the distribution of sorbed lead between 

various chemical pools  (Experiment 5b)  

The tailings-induced changes in the distribution of sorbed Pb between various chemical 

pools were investigated in a subsequent study. The samples that had received a Pb 

addition of 100 mg L
-1

 and retained an average of 5286 ± 113 mg Pb kg
-1

 in the preceding 

isotherm experiment were carefully collected from the filter papers and dried. The dry Pb-

enriched samples were subjected to a sequential extraction using a method modified from 

Venäläinen (2011, Article III). In the procedure, the soil samples were extracted with a 

selection of solutions (soil-to-solution ratio of 1:100 dw:V, 2-h shaking, filtration through 

a Schleicher & Schüll type 5893 filter paper) assumed to extract Pb from various chemical 

pools as follows:  

 

1) mQ-H2O to remove water-soluble Pb (Pbw)  

 

2) 1 M NH4NO3 to remove exchangeable Pb (Pbex) through the replacement of Pb
2+

 with 

NH4
+
 

 

3) 0.5 M NaOH to remove Pb retained by organic substances (Pborg) through the 

dissolution of humic substances  

 

4) 0.05 M ammonium oxalate (NH4-Ox) (pH 3.3) (Niskanen, 1989) to remove Pb retained 

by poorly crystalline Al and Fe (hydr)oxides (Pbox) through the dissolution of the oxides 

 

The second step of the extraction procedure was repeated to ascertain the complete 

removal of Pbex. Furthermore, the second and third steps of the extraction were followed 

by washing the samples twice with mQ-H2O to remove any soluble salts remaining from 

the NH4NO3 and NaOH extraction. The extracts were analysed for Pb with ICP-OES and 

their pH was measured. The Pb not extracted in the sequential extraction (Pbnon-extr) was 

calculated as the difference between the total amount of sorbed Pb (Pbsorbed) and the sum 

of Pbw, Pbex, Pborg and Pbox (∑Pbpools), i.e. non-residual Pb. 

2.5 Impact of tailings on lead in shooting range soil 

While the Pb sorption experiments in Article II were conducted with pure chemicals and 

uncontaminated soil, the experiments in Article III were undertaken to simulate the 

tailings-induced changes in a real contaminated soil environment. Soil material collected 

from a shooting range soil area was incubated with and without tailings amendment 

(Experiment 6). The small-sized fraction, the large-sized fraction and the unsieved 

material were investigated as separate amendments. Originally, the experiment was carried 

out with both the UtT and the AtT. However, the results revealed that the AtT of very low 

pH significantly increased the water-extractable Pb, rendering the material unsuitable as a 

remediation agent. Therefore, the AtT amendment was omitted from Article III. 
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2.5.1 Soil samples and sample preparation 

The soil samples used in Article III were collected from the Hälvälä shooting range 

(61°00.644′ N, 025°28.406′ E) located in Hollola, southern Finland. The area is described 

in detail by Hartikainen and Kerko (2009). The soil in the area, classified as Haplic 

Regosol (Humic, Dystric, Arenic) (FAO, 2006), consists of a sandy mineral horizon 

overlaid by a 0- to 7-cm-thick humus layer and is typical of a boreal forest. The soil 

sampling at the shooting range was carried out by first removing the ground cover and 

then collecting a composite sample from the underneath organic horizon, where the 

majority of the pellets are accumulated (Hartikainen and Kerko, 2009). In the laboratory, 

the soil was passed through a 1-cm sieve to remove the coarsest plant parts and then 

worked through in small amounts to carefully extract all of the visible shotgun pellets with 

a pair of tweezers. Finally, the pellet-free material was homogenized by passing through a 

2-mm sieve and stored at 5°C in a tight plastic container.  

The fresh soil was analysed for pH in water (V:V 1:2.5), for water content as weight 

loss on drying for 1.5 h at 105°C and for organic matter (OM) content as loss of weight on 

ignition for 2 h at 550°C after the drying. The water holding capacity (WHC) of the soil 

was determined by saturating 20-g soil samples with water overnight and calculating the 

amount of water held by the samples as a weight loss after drying the saturated samples at 

105°C overnight. Furthermore, the soil was analysed for its effective cation exchange 

capacity (CECef) as the sum of cations (extracted four times with 1 M CH3COONH4, pH 

7, soil-to-solution ratio 1:20 w:V, measurement with ICP-OES) and exchangeable acidity 

(extracted four times with 1 M KCl, soil-to-solution ratio 1:20 w:V, titration with NaOH 

solution). The soil properties are given in Table 5.  

 

Table 5. Properties (mean ± SD) of Hälvälä shooting range soil  

(modified from Venäläinen, 2011) 

Water content (% of fresh weight) 49.6 ± 0.1 

Organic matter content (% of dry weight) 56.5 ± 0.3 

WHC
a
 (% of dry weight)  546 ± 24 

pH in H2O 5.3 ± 0.0 

CECef (cmol(+) kg
-1

) 17.3 ± 1.0 

a
WHC = Water holding capacity 

2.5.2 Design of the incubation experiment (Experiment 6) 

A set of 50-g samples of fresh homogenized shooting range soil was placed in tared plastic 

vessels and then amended with 9-g dosages of the small-sized, large-sized or unsieved UtT 

material by spreading it over the samples. The 9-g tailings dosage was chosen to 
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correspond to an application rate of 10 t ha
-1

 to the surface soil. This was considered a 

realistic application rate in an in situ remediation situation. Samples not receiving a 

tailings addition served as controls. The samples were carefully moistened with 25 mL of 

mQ-H2O to adjust the soil moisture to 33% of the WHC and weighed for their total mass 

before covering with cling film. The experimental units were stored at a constant 

temperature of 20°C and watered weekly according to weight loss to replace evaporated 

water. 

2.5.3 Chemical fractionation of pellet-derived lead (Experiment 6a) 

The experimental units of the shooting range soils were sampled after a 9-, 10-, 14- and 

21-month incubation for the chemical analyses and for the determination of the exact 

water content in the samples to allow the calculation of the results per dry weight of soil. 

The tailings-induced changes in the distribution of pellet-derived Pb among various 

chemical pools in the contaminated shooting range soil were determined by means of a 

sequential extraction procedure described in Section 2.4.2.2 and in detail in Article III. In 

addition, the soil samples were analysed for the semi-total Pb content (Pbtot) by microwave 

digestion in 70% HNO3 according to the Environmental Protection Agency (EPA) 3051 

protocol (EPA, 1994). The extracts were analysed for Pb with an Inductively Coupled 

Plasma Mass Spectrometer (ICP-MS). The amount of Pb not extracted with the sequential 

extraction (Pbnon-extr) was calculated by subtracting  the sum of Pbw, Pbex, Pborg and Pbox 

(∑Pbpools) from Pbtot.  

2.5.4 Speciation of water-extractable lead (Pbw) (Experiment 6b) 

Following the incubation, the water-extractable fraction, i.e. the most readily bioavailable 

Pb fraction (Pbw), was subjected to a novel chemical speciation analysis to elucidate the 

tailings-induced changes in the occurrence of the most ecotoxic Pb species, Pb
2+ 

and 

PbOH
+
. The use of geochemical thermodynamic equilibrium modelling programs (e.g. 

Visual MINTEQ, Gustafsson, 2000) commonly applied to predict metal speciation and 

sorption on geomedia (e.g. Cao et al., 2008; Kaludjerovic-Radoicic and Raicevic, 2010) 

was not considered convenient due to the high complexity of the soil-tailings-metal 

system where precipitation reactions are expected to take place. Instead, for the speciation 

analysis, all of the experimental units were extracted with water (1:200 dw:V, 2-h 

shaking). A part of the suspension was filtered through a coarse (12–25 μm) filter paper 

(Schleicher & Schüll type 5891), retaining the largest plant parts, while allowing the total 

water-soluble Pb (Pbtot-s), likely including Pb
2+ 

and PbOH
+
 ions, and Pb bound to large-

molecular humic substances or particular organic matter to pass through. The filtrate was 

then subjected to microwave digestion in 70% HNO3, followed by analysis for Pb with 

ICP-OES. The rest of the suspension was filtered through a 0.2-μm membrane filter 

(Nuclepore
®
 polycarbonate), retaining the large-molecular humic substances and 
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particular organic matter, while allowing only the actual dissolved Pb (Pbdis) to pass 

through.  

To further distinguish between the dissolved cationic Pb (Pb
2+

, PbOH
+
 and possible 

organic cationic Pb species) and the neutral low-molecular organic Pb complexes in the 

Pbdis fraction, the membrane filtrate was subjected to cation exchange (CE) by passing it 

through a solid-phase extraction (SPE) tube (Strata-X-C 33 μm, 12 mL/1 g), retaining the 

cationic Pb species, while allowing the non-cationic Pb species (Pbnon-cat) to pass through. 

Prior to CE, the SPE tubes were preconditioned with 0.4 M KH2PO4 of pH 5 to prevent 

disintegration of any dissolved organic Pb complexes. The membrane filtrates were 

analysed for Pb with ICP-OES before and after the CE. The relative proportion of the less 

toxic non-cationic Pb to the actual dissolved Pb was calculated as Pbnon-cat/Pbdis * 100%. 

Furthermore, to distinguish between the most toxic inorganic cationic Pb species (Pb
2+ 

and 

PbOH
+
) and the organic Pb species of lower toxicity, the membrane filtrates were also 

analysed for dissolved organic carbon (DOC) with a carbon analyser before and after the 

CE. The abundance of possible organic cationic Pb species in each solution was estimated 

as the proportion of DOC after the CE to DOC before the CE (i.e. DOCnon-cat/DOCtot). A 

schematic description of the speciation analysis procedure is given in Figure 1.  

 



 

 

 

 

32 

 
Figure 1. Schematic description of speciation analysis of water-extractable Pb (Pbw)
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2.6 Quality control of chemical analyses 

The chemical analyses were primarily carried out in the laboratories of the Soil and 

Environmental Sciences Division at the Department of Food and Environmental Sciences, 

University of Helsinki. All analyses were carried out in 3–4 replicates (Table 1). Blank 

samples were included in all sample series. All of the devices used in the measurements 

were calibrated according to the manufacturers' instructions before use. The reference 

material used in controlling the quality of the microwave digestion procedure (Article III) 

was NIST SRM
®
 2711 Montana Soil (National Institute of Standards and Technology, 

U.S. Department of Commerce). The operation of ICP-MS (Article III), ICP-OES 

(Articles II and III), carbon analyser (Article III) and flow injection analyser (Article I) 

was confirmed by running external standards of known concentrations every 20 samples. 

According to the SFS standard (SFS-EN ISO 3696), the water used in the P experiments 

(Article I) was at least of Grade 2 (de-ionized water) and in the Pb experiments (Articles II 

and III) of Grade 1 (mQ-H2O, Millipore, Billerica, MA, USA). The quality of the waters 

was controlled by routine measurements of their electrical conductivities. All chemicals 

used in the experiments were of analytical grade. All dishes were machine-washed, 

followed by soaking in acid (2% HNO3) and five rinses in running mQ-H2O.  

To avoid the adsorption of Pb onto the dishes, practically all Pb experiments were 

carried out using plastic dishes (polypropylene) because Pb is more prone to adsorption by 

borosilicate than polypropylene surfaces (Issaq and Zielinski, 1974). To ensure that Pb is 

not adsorbed to the plastic centrifuge tubes during the equilibration, the UtT and AtT were 

equilibrated in 50 mL of PbNO3 solutions containing 15, 35, 400 and 1000 mg Pb L
-1

 for 

24 h. After the equilibration, the samples were discarded and the tubes were rinsed with 50 

mL of mQ-H2O to remove any Pb solution residues. Next, the tubes were shaken with 20 

mL portions of 2% HNO3 for 16 h before filtration and analysis for Pb with ICP-MS. The 

test revealed that at a maximum 0.3% of the added Pb was adsorbed to walls of the 

centrifuge tubes.  

The validity of the cation exchange procedure in Article III was ascertained by a 

recovery test. The resin in the SPE tubes used was extracted with 10 mL of 15% HNO3 

and the eluates were analysed for Pb with ICP-OES. The recovery of Pb retained by the 

tubes varied between 112% and 123%. 

2.7 Statistical analyses 

The results of the replicate samples were used to calculate averages and standard 

deviations (SDs). The limit of quantification assessed as 10 * SD of the blank samples was 

0.04 mg P L
-1

 for the FIA measurements, 0.03 mg Pb L
-1

 for the ICP-MS measurements 

and 0.007 mg Pb L
-1

 for the ICP-OES measurements. In addition, the statistical 

significance of differences in certain variables between various tailings samples was tested 

with Student's t-test and one-way ANOVA. Statistical significance was set at p ≤ 0.05. 
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The principal statistical analyses carried out with references to the original papers are 

listed in Table 6. 

 

Table 6. Statistical analyses carried out for the results from Experiments 1-6 

Article Experiment 

 

Statistically tested  

variable 

Statistical 

analysis 

 No. No. Description 
I 1 Distribution of intrinsic 

and enriched P between 

various chemical pools in 

tailings 

Enrichment-induced 

changes in P recovery 

from various chemical 

pools between various 

tailings 

Student's t-test 

I 2 P sorption-desorption 

isotherms (Q/I plot) of 

tailings 

Differences in Qmax 

between various tailings 

One-way 

ANOVA with 

Tukey’s test for 

paired 

comparisons 

 2  Differences in Qmax 

between tailings of 

different particle sizes and 

after different reaction 

times 

Student's t-test 

II 5b Distribution of enriched 

Pb between various 

chemical pools in 

uncontaminated mineral 

soil 

Tailings-induced changes 

in relative proportions of 

various Pb pools to the 

Pbsorbed 

Student's t-test 

III 6b Chemical speciation of 

water-extractable Pb 

(Pbw) from Pb-

contaminated shooting 

range soil  

Differences in Pbtot-s, 

Pbnon-cat and Pbdis between 

control and tailings-treated 

soils 

Student's t-test 
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3 Results and discussion 

3.1 Tailings materials as phosphorus sorbents 

The isotherm test (Experiment 2) revealed that all tailings retained P efficiently. However, 

due to the strong fluctuation in the desorption-sorption curves with increasing levels of P 

addition, no actual plateau was reached with any of the tailings materials (Figure 2). Thus, 

the peak sorption was taken to represent the Qmax value. It was used in the comparison of 

the P sorption capacities. In all tailings materials, the Qmax value obtained within the 24-h 

equilibration was higher for the small-sized than for the large-sized fraction. This can be 

attributable to a larger surface area, but also to differences in the mineralogical 

composition. In all tailings materials, the small-sized fraction was substantially higher in 

Al and Fe (hydr)oxides than the large-sized one (Table 2).  

Acid treatment of the tailings drastically increased the Qmax values obtained within 24 

h for of both particle-size fractions. In the large-sized AtT, Qmax increased from 5.7 to 

8890 mg kg
-1

, whereas in the small-sized AtT the corresponding increase was from 7.6 to 

14420 mg kg
-1

. The partial neutralization of the AtT reduced the Qmax value. In the ABtT, 

the peak value was 8460 mg kg
-1

 for the large-sized fraction and 11420 mg kg
-1

 for the 

small-sized one. As for the small-sized material, the partial neutralization of the acidified 

material diminished the amount of extractable Al and Fe (hydr)oxides (Table 2). This 

decrease may be due to possible loss of some of the oxidic material during the 

neutralization process.  

Extension of the equilibration time to 7 days substantially increased the Qmax values. 

As for the AtT, the peak value for the large-sized fraction was 10900 mg kg
-1

 and 17110 

mg kg
-1

 for the small-sized one. The Qmax value for the large-sized ABtT was 15400 mg 

kg
-1

 and for the small-sized one 13000 mg kg
-1

. Thus, Qmax of the large-sized fraction of 

the ABtT was substantially higher than that of the AtT. This reaction pattern may be 

attributable to the formation of Al and Fe hydroxypolymers offering reactive sites within 

their porous structure. On the contrary, in the UtT, no significant time-dependent change 

in Qmax was observed, the peak value for the large-sized fraction being 4.5 mg kg
-1

 and for 

the small-sized fraction 7.2 mg kg
-1

. However, in the UtT and the ABtT equilibrated for 7 

days at high P addition, the P sorption plunged with the tail ends of the curves showing 

desorption of P. It is noteworthy that the removal of NH4-Ox-extractable metal oxides 

from the AtT (Experiment 3) resulted in a 300-fold drop in Qmax values, from the initial 

level of 14400 mg kg
-1

 to 45 mg kg
-1

.  

At different stages of sorption, pH of the equilibrium solutions fluctuated to some 

extent (Figure 2). Overall, the changes in pH values seemed to reflect the nature of the 

components in the different tailings materials and their reactions rather than P sorption. 

The UtT elevated pH of the initial P solution from 5.4–6.3 to 7.3–7.6 in the equilibrium P 

solution. This increase was presumably due to the calcite compartment but also to the 

residuals of unidentified flotation chemicals. The latter factor can explain pH of the UtT 

(9.1–9.3) (Table 2) being much higher than calcite alone could maintain. The AtT and the 
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ABtT in turn, lowered the pH of the initial P solutions from 4.6–5.1 to 3.5–4.1. This 

reaction pattern was undoubtedly due to the residuals of acids left from the artificial 

weathering of the material.  

The chemical fractionation of the P-unenriched tailings (Experiment 1) revealed that 

the main part of P was in the H2SO4-extractable pool, which predominated especially in 

the large-sized fraction (Table 7). This indicates that plenty of apatite residues were left in 

the tailings after the beneficiation process. As expected, the H2SO4-extractable fraction 

was highest in the UtT, whereas the pre-treatment with acid had transferred some of 

apatitic P primarily to the NaOH- and NH4F-extractable fractions assumed to represent Fe- 

and Al-associated P, respectively (Table 7). This conclusion is supported by the drastic 

concomitant increase in the poorly crystalline Al and Fe oxides found in the AtT material 

(Table 2).  

In the AtT and the ABtT, enriching the samples with P significantly increased all P 

fractions, whereas in the UtT the increase was statistically significant only in the H2SO4- 

and NaOH-extractable ones (Table 7). In the AtT and the ABtT, most of the sorbed P was 

recovered in the NaOH- and NH4F-extractable fractions. The retention being strikingly 

higher by Al-oxides is consistent with the dominance of this sorption component (Table 

2). In all tailings subjected to the acidification step, a significant amount of the added P 

remained in the salt-soluble pool (NH4Cl-P). As expected, the added P markedly increased 

DPS of the Al and Fe (hydr)oxides in all tailings, except for UtT (Table 7), where P was 

primarily retained in a sparingly soluble form in the H2SO4-extractable fraction.  

The finding that in the AtT and the ABtT the sorbed P was primarily allocated to the 

NaOH- and NH4F-extractable pools supports the hypothesis that the high P sorption 

(Figure 2) was primarily due to the Al and Fe (hydr)oxides formed as a result of artificial 

weathering of the material (Table 2). This was further ascertained by the fact that in the 

AtT the apparent Qmax decisively dropped after the removal of metal oxides by NH4-Ox-

extraction. Being the conjugate bases of moderately weak acids, phosphate anions have a 

high affinity for Al and Fe (hydr)oxides (Hingston et al., 1967; Parfitt et al., 1975; Ryden 

et al., 1987; Beck et al., 1999), rendering the artificially weathered tailings material an 

ideal adsorbent for P. The long-term retention being higher in the ABtT and in the AtT is 

likely attributable to the diffusion of P into the porous oxides produced by the base 

treatment of the acidified material. Similarly, the scarcity of reaction active sites explains 

why the extension of the equilibration time from 24 h to 7 d did not enhance P sorption by 

the UtT (Table 2).  

While in the AtT and the ABtT the P sorption took place on the Al and Fe (hydr)oxide 

surfaces, it is likely that in the UtT a combination of various sorption reactions occurred 

simultaneously (Figures 2a and 2b). Calcite is known to retain P to some extent (Cole et 

al., 1953; Wang et al., 1995). Despite the fact that its contribution to P sorption is probably 

minor in the presence of Fe (hydr)oxides and other P sorbents (Borrero et al., 1988), 

calcite may have to some extent contributed to P sorption by the UtT low in the reaction-

active Al and Fe (hydr)oxides. According to Cole et al. (1953), at low P concentrations the 

reaction between calcite and P occurs via rapid monolayer sorption, whereas at higher 

concentrations P may be precipitated as dicalcium phosphate (CaHPO4). Thus, the gradual 

P sorption at the low P addition levels may be due to saturation of the few oxide and 
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calcite surfaces, whereas the rapid peak sorption observed thereafter may represent 

precipitation of P as calcium phosphates. According to Lindsay (1979, p.195), however, 

increased P activity eventually leads to the formation of soluble calcium phosphate species 

(CaPO4
-
 and CaH2PO4

+
), which may explain the desorption of P by the UtT observed with 

the highest added P concentrations after the 7-d equilibration. Because the rather radical 

pre-treatment by strong acid would have dissolved any calcite present in the AtT and the 

ABtT, its contribution to P sorption by these materials can be ignored.  
 

 

 

Table 7. P in various pools before (Punenriched) and after (Penriched) the addition of P and the 

increment of P fractions in various types of tailings materials (modified from Hartikainen 

and Hartikainen, 2008) 

* α ≤  95% 

** α ≤ 99%   

*** α ≤ 99.9% 
a
 DPS = Degree of P saturation 

 

  

 

Mesh Added  

P  

P mg kg
-1

 in various pools DPS
a
 

 Ø 

mm 

mg kg
-1

  NH4Cl-P 
Salt-

soluble P 

NH4F-P 
“Al-P” 

NaOH-P 
“Fe-P” 

H2SO4-P 
Apatitic 

P 

% 

Untreated 

tailings 

(UtT) 

> 0.2  50 Unenriched 0.2 7.6 0.3 695 6.2 

Enriched 0.2 2.1 3.9 709 4.7 

Increment ± 0 - 5.5 3.6 14  

        

< 0.2  

 

50 Unenriched 0.2 4.5 1.2 204 1.6 

Enriched 0.7 4.1 3.1 1111 2.2 

Increment 0.5 - 0.4 1.9* 907***  

         

Acid-

treated 

tailings 

(AtT) 

> 0.2  5000 Unenriched 1.4 29 38 591 1.1 

Enriched 69 2212 762 1045 50 

Increment 68** 2183*** 724*** 454***  

        

< 0.2  5000 Unenriched 8.0 28 65 153 0.9 

Enriched 62 2847 1106 430 40 

Increment 54** 2820*** 1042** 277***  

         

Acid-

base-

treated 

tailings 

(ABtT) 

> 0.2  5000 Unenriched 0 20 55 442 1.3 

Enriched 71 2276 773 1076 56 

Increment 71* 2256*** 719*** 634**  

        

< 0.2  

 

5000 Unenriched 0 21 83 141 1.3 

Enriched 55 2640 1442 288 50 

Increment 55*** 2619*** 1359*** 147**  
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Figure 2. P sorption-desorption isotherms of tailings samples (solid lines) and pHs of 

equilibrium solutions (dashed lines) with different reaction times. (♦) Tailings Ø > 0.2 

mm; (■) Tailings Ø < 0.2 mm; (◊) pH Tailings Ø > 0.2 mm; (□) pH Tailings < 0.2 mm; 

(Δ) pH P enrichment solution. Error bars indicate the standard deviations of Q and I 

(modified from Hartikainen and Hartikainen, 2008). The original measured Q/I data is 

given in Appendices 1–3. 
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3.2 Tailings as sorbent for lead 

3.2.1 Sorption and its mechanisms in untreated tailings  

The Pb sorption isotherms obtained with the UtT in Experiment 4 (Figure 3) revealed that 

both size fractions of the material retain Pb efficiently. Similarly to P, the curves 

fluctuated strongly upon increasing Pb additions, reflecting the multiplicity of the 

reactions taking place at various steps. The sorption curves obtained with the small- and 

large-sized UtT were of similar shapes, but the small-sized material showed a more 

intensive retention of Pb. Since no sorption maxima were reached, the comparison of the 

particle size fractions was based on the Pb concentration in the equilibrium solution at the 

upper limit value of soil Pb specified in the Sewage Sludge Directive of the European 

Council (86/278/EEC). According to this directive, the total Pb concentration of soil 

should not exceed 0.3 g kg
-1

. This was taken as the reference Pb concentration in the solid 

phase. The comparison showed that the equilibrium Pb concentration in the solution 

obtained with the large-sized UtT (0.2 mg L
-1

) was 10-fold that obtained with the small-

sized material (0.02 mg L
-1

).  

 

 

 

 
 

Figure 3. Pb sorption isotherm for the small- (▲) and the large-sized (■) UtT. Error bars 

indicate the standard deviations of I and Q (Venäläinen, 2012). The original measured Q/I 

data is given in Appendix 4. 
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As for the chemical reactions taking place with increasing Pb additions, their mechanisms 

depend on the chemical speciation of Pb. The pKa value of Pb
2+

 being 7.7 (Lindsay, 1979, 

p.331), Pb undergoes hydrolysis in weak acidic aqueous solution: 

 

Pb
2+

 + H2O ⇌ PbOH
+
 + H

+
    (Eq. 3) 

 

At pH up to 6, Pb is primarily found as Pb
2+

, whereas at higher pH its hydroxy species 

(PbOH
+
) becomes more significant. In the UtT, both size fractions elevated the pH of the 

initial enrichment solution by more than 2 units (from 3.9–4.8 to 6.4–6.9), rendering Pb
2+

 

and PbOH
+
 the predominant Pb species in the solution. The foreparts of the sorption 

curves resembled the L-type sorption (see Giles et al., 1960) up to equilibrium solution 

concentration of 0.1 mg L
-1

 in the small-sized fraction and up to 0.5 mg L
-1

 in the large-

sized one (Figure 3). The initial retention was obviously attributable to retention of Pb
2+

 to 

possible cation exchange sites and that of PbOH
+
 to the few Al and Fe (hydr)oxide 

surfaces in the phlogopite compartment of the tailings (Figure 3). The relatively high pH 

of the equilibrium solutions (6.4–6.9) probably favoured the Pb hydrolysis and the 

formation of PbOH
+
 species able to be chemisorbed on Al and Fe (hydr)oxide surfaces. At 

the low Pb additions, the retention was more intensive by the small-sized material, 

presumably due to its higher content of Al and Fe (hydr)oxides (Table 2).  

After the L-type forepart of the sorption curves, the equilibrium Pb concentrations 

sharply decreased to 0.03 and 0.4 mg L
-1 

for the small- and the large-sized tailings, 

respectively, even though the amount of sorbed Pb still increased. Upon further addition of 

Pb, the solute Pb concentration relapsed to the level prior to the sharp drop. At the highest 

Pb addition level, the equilibrium concentrations eventually decreased to 0.06 and 0.3 mg 

Pb L
-1 

for the small- and the large-sized tailings, respectively. The sharp drop in the 

equilibrium Pb concentration after the L-type forepart of the retention curve indicates the 

precipitation of Pb. In the UtT material, the constituents able to precipitate Pb are calcite 

and fluorapatite (FAP), which may react with soluble Pb to form sparingly soluble 

cerussite and fluorpyromorphite (FPM). The formation of cerussite is assumed to involve 

the dissolution of calcite (Eq. 4, Plummer et al., 1978; Chou et al., 1989), followed by the 

interaction between solute Pb
2+ 

and CO3
2- 

(Eq. 5, Al-Degs et al., 2006) or the deposition of 

PbCO3 on the calcite surface (–S–CaCO3) (Eq. 6, Al-Degs et al., 2006): 

 

CaCO3 (s) ⇌ Ca
2+ 

(aq) + CO3
2- 

(aq)    (Eq. 4) 

Pb
2+ 

(aq) + CO3
2- 

(aq) ⇌ PbCO3 (s)    (Eq. 5) 

–S–CaCO3 (s) + PbCO3 (s) → [–S–CaCO3–PbCO3] (s)  (Eq. 6) 

 

Similarly, the formation of fluorpyromorphite is initiated by the dissolution of the parent 

FAP mineral (log Ksp -12.98, Lindsay, 1979, p. 331) (Eq. 7) and followed by the 

interaction between the soluble H2PO4
-
 and Pb

2+ 
(Eq. 8) (Cao et al., 2004):  

 

Ca10(PO4)6F2 (s) + 12H
+
 ⇌ 10Ca

2+ 
(aq) + 6H2PO4

-
 (aq) + 2F

-
 (aq)  (Eq. 7) 

10Pb
2+

 (aq) + 6H2PO4
-
 (aq) + 2F

-
 (aq) ⇌ Pb10(PO4)6F2 (s) + 12H

+
  (Eq. 8) 
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The relatively high pH of the solutions, however, presumably restrained the dissolution of 

FAP, and consequently, the formation of FPM. Nevertheless, the apatite compartment in 

the tailings may still have partly contributed to Pb sorption through surface adsorption by 

the functional groups of FAP. Based on the acid-base properties of the FAP-water 

interfaces and the pH of the equilibrium solutions (Forsling and Wu, 1993), the principal 

functional groups occurring on the FAP surfaces of the UtT would be ≡PO
-
, ≡POH and 

≡CaOH2
+ 

in the pH range (6.4–6.9) detected in this thesis. These surfaces may adsorb Pb
2+ 

as follows (Eqs. 9–11, Mavropoulos et al., 2002):  

 

≡PO
-
 + Pb

2+ 
→ ≡POPb

+
     (Eq. 9) 

≡POH + Pb
2+ 

→ ≡POPb
+
 + H

+
    (Eq. 10) 

≡CaOH2
+ 

+ Pb
2+ 

→ ≡CaOPb
+
 + 2H

+
    (Eq. 11) 

 

Due to the versatility of the tailings material, it is possible that reaction mechanisms other 

than those given above also contributed to Pb sorption. Such reactions may involve the 

formation of some meta-stable intermediate Pb compounds before the development of the 

actual precipitates. This may partly explain the abrupt changes in the equilibrium Pb 

concentrations upon increasing Pb addition levels.  

3.2.2 Impact of various tailings amendments on lead retention by mineral 

soil  

3.2.2.1 Lead sorption by amended soil samples  

Lead sorption experiments conducted with the uncontaminated mineral soil with and 

without tailings amendments (Experiment 5a) yielded isotherms of the H-type (see Giles 

et al., 1960) (Figure 4). The experimental data obtained with the AtT-amended soil 

samples fit the Langmuir model, whereas those obtained with the control soil and the UtT-

amended soil did not follow the model equally well. The Langmuir model was still used to 

calculate the sorption parameters Qmax and K for all materials, allowing comparison of the 

isotherms.  

Based on the Qmax values (Table 8), all tailings materials significantly increased the Pb 

sorption capacity of the control soil, the AtT-evoked increases in Qmax values being 

substantially higher than those obtained with the UtT. Irrespective of the amendment, Qmax 

increased with decreasing particle size and increasing tailings dosage. In other words, in 

the UtT-amended samples, the Qmax values obtained with the small-sized tailings were 

higher than those obtained with the large-sized material, and the 10-g dosages were more 

efficient than the 5-g ones. This outcome suggests that with the UtT the particle size holds 

larger significance for Pb sorption than does the dosage. In the AtT-amended samples, on 

the contrary, the highest Qmax values were obtained with the 10-g dosages irrespective of 

particle size, but also in this treatment the small-sized material was superior to the large-
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sized one. Thus, with the AtT, the dosage proved to hold more significance for Pb sorption 

than did the particle size. The sorption affinity assessed as the slopes of the isotherms 

(1/K, Table 8), tended to increase with increasing Qmax values. The small-sized UtT 

elevated pH of the equilibrium solution in the control soil (3.7–4.8) to 3.9–6.3, whereas 

the large-sized UtT elevated it to 3.8–5.8. However, the small-sized AtT slightly decreased 

pH of the equilibrium solution to 3.8–4.2, whereas the large-sized fraction had no effect 

on the equilibrium solution pH. 
 
 

 

a b 

Figure 4. Experimental data (dashed lines) and Langmuir Pb sorption isotherms (solid 

lines) for (a) the control soil and the soil amended with the different dosages of the small- 

(< 0.2 mm) or the large-sized (> 0.2 mm) UtT and (b) the soil amended with different 

dosages of the small- or the large-sized AtT. Error bars indicate the standard deviations 

of the sorbed Pb (Venäläinen, 2012). The original measured Q/I data is given in Appendix 

5. 

 

Table 8. Pb sorption parameters of control soil and UtT- and AtT-amended soils  

(modified from Venäläinen, 2012) 

Amendment Tailings Sorption parameter 

Mesh (ø mm) Dosage (g) Qmax
a
 (g kg

-1
) 1/K

b
 

Control   10.8 1.8 

Untreated tailings (UtT) > 0.2 5 14.0 1.9 

  10 15.6 1.9 

 < 0.2 5 18.4 2.0 

  10 20.5 1.2 

Acid-treated tailings (AtT) > 0.2 5 32.1 9.1 

  10 50.0 11.1 

 < 0.2 5 38.4 9.1 

  10 72.1 5.9 
a
Qmax = Maximum Pb sorption 

b
1/K = Slope of the isotherm 
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3.2.2.2 Distribution of retained lead between various pools 

At the addition level of 100 mg Pb L
-1

, all soil samples incubated with various tailings 

materials retained approximately the same amount of Pb (average 5286 ± 113 mg kg
-1

) 

(Experiment 5b, Figure 5). The fractionation analysis carried out to unravel the 

distribution of the sorbed Pb between various chemical pools showed that in all samples 

the relative proportion of water-extractable Pb (Pbw) to the total sorbed Pb (Pbsorbed) was 

negligible (≤ 0.1%). In the control soil, most of the Pbsorbed was found in the NH4NO3-

exchangeable pool (Pbex) (51%), covering 34% of the CECef, whereas the relative 

proportions of NaOH-extractable Pb (Pborg) and NH4-Ox-extractable Pb (Pbox) were 4% 

and 9%, respectively. The overall recovery of the sorbed Pb in the control soil was 

approximately 64%, leaving 36% in the non-extracted pool (Pbnon-extr) representing more 

strongly bound Pb. This approximation is, however, only computational and, 

unfortunately, is not confirmed by a chemical analysis of the residual fraction by a 

microwave digestion and the subsequent measurement of acid-extractable Pb. 

All tailings decreased the total non-residual Pb (ΣPbpools) and increased the non-

extracted pool (Pbnon-extr) (Figure 5). This was primarily due to the transfer of Pbex to the 

non-extracted pool. The 10-g dosage of the small-sized UtT diminished the relative 

proportion of Pbex to Pbsorbed most efficiently. Furthermore, the UtT and the 10-g dosage of 

the large-sized AtT transferred some of the NH4NO3-extractable Pb (Pbex) to the NaOH-

extractable (Pborg) pool. On the contrary, the small-sized AtT practically eliminated Pborg 

at both addition levels.  

The UtT elevated pH of the water extracts [pH(H2O)] from 4.5 in the control soil to 

4.6–5.1 and pH of the NH4NO3 extracts from 4.1 to 5.7–6.3 (Figure 5). This reaction 

pattern is similar to that found in the sorption tests in Experiment 4, where the UtT 

efficiently elevated the pH of the equilibrium solutions. An increase in pH promotes the 

formation of organo-Pb complexes (see Sauvé et al., 1997; Klucakova and Pekar, 2008), 

which may partly explain the finding that the ratio of Pborg to Pbsorbed increased in all UtT-

amended samples. This conclusion is supported by the abundance of calcite. It can be 

ascribed to the fact that the liming effect was more notable for the small particle-size 

fraction higher in calcite than the large-sized one. Moreover, the marked increase in the 

relative proportion of Pbnon-extr to Pbsorbed in the UtT-amended samples suggests calcite-

induced formation of cerussite during the short-term (24-h) reaction.  

Despite the fact that both the large- and small-sized AtT materials were very acidic 

(pHs 4.0 and 3.1, respectively, Table 2), the 5-g dosages of both materials slightly 

increased the pH of the water extracts [pH(H2O)], from 4.5 to 4.6 (Figure 5). On the 

contrary, the 10-g dosages decreased it to 4.4 and 4.2. Despite the acidity of the At- 

promoted weathering reactions in the mineral soil and the significantly increased content 

of Al and Fe (hydr)oxide surfaces, no increase in Pbox was observed in any of the AtT-

amended samples. In fact, only the 10-g dosage of the small-sized AtT slightly decreased 

the relative proportion of Pbox to Pbsorbed. This outcome suggests that Fe and Al 

(hydr)oxides were not the key factors in the AtT-induced increase in Qmax values observed 

in Experiment 5a. Furthermore, the severe acid pre-treatment that the material underwent 

also excluded the contribution of calcite in the retention. Thus, the AtT-induced Pb 
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immobilization was most likely attributable to the fluorapatite (FAP) compartment in the 

tailings. 

The artificial weathering procedure dissolved the sparingly soluble FAP mineral 

compartment and released H2PO4
-
 anions according to Eq. 7. The released anions are 

susceptible to specific sorption by hydrous Al and Fe (hydr)oxides, as shown in Article I 

by Hartikainen and Hartikainen (2008). The phosphate surfaces formed, in turn, are able to 

retain Pb
2+

 according to Eqs. 9 and 10. Moreover, the acid-induced dissolution of the FAP 

compartment also enabled the formation of sparingly soluble fluorpyromorphite (FPM) 

when Pb was added to the system (Eq. 8). This reaction can explain the increased ratio of 

Pbnon-extr to Pbsorbed in all AtT-amended samples. The large-sized AtT fraction was richer in 

H2SO4-extractable FAP than the small-sized one (Table 7). However, because the specific 

surface area of minerals increases with decreasing particle size, the small-sized tailings 

material was presumably higher in reactive FAP surfaces than the large-sized one. This 

may explain the outcome that the Qmax obtained in the sorption test for the small-sized AtT 

was higher than that for the same dosage of the large-sized material (Figure 4). The 

formation of FPM and cerussite is largely dictated by the solubility of the parent FAP and 

calcite minerals. The theoretical solubility of FAP (log Ksp -0.21, Lindsay, 1979, p.165) 

being substantially lower than that of calcite (log Ksp 9.74, Lindsay, 1979, p.88) explains 

why the relative proportion of Pbnon-extr to Pbsorbed increased more in the UtT-amended than 

in the AtT-amended soil. 

 

Pbsorbed mg kg
-1

 5337 5349 5324 5411 5336 5258 5156 5054 5351 

pH (H2O) 4.5 4.6 4.7 4.7 5.1 4.6 4.4 4.6 4.2 

pH (NH4NO3) 4.1 5.7 6.0 6.1 6.3 4.7 4.3 5.6 4.3 

Figure 5. Relative proportion of water-soluble Pb (Pbw) (quantity negligible), NH4NO3-

extractable Pb (Pbex), NaOH-extractable Pb (Pborg), NH4-Ox-extractable Pb (Pbox) and 

residual Pb (Pbnon-extr) to the total enriched Pb (Pbtot-sorb) in the soil with and without 

tailings treatment and the pHs as measured from the water extracts [pH(H2O)] and the 

NH4NO3 extracts [pH(NH4NO3)] (Venäläinen, 2012). 
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3.3 Remediation of lead-contaminated shooting range soil with 
tailings 

3.3.1 Tailings-induced changes in the distribution of lead between various 

chemical pools  

The shooting range soil used in the incubation experiment conducted with and without 

UtT amendment (Experiment 6) was highly contaminated, with Pbtot in the control soil 

(33.5 g kg
-1

) largely exceeding the average background level of Pb in Finnish soils (17 mg 

kg
-1

) (Koljonen, 1992). In all samples, the sum of Pbw, Pbex, Pborg and Pbox  (∑Pbpools), i.e. 

non-residual Pb recovered in the fractionation analysis, significantly increased over the 

incubation time of 9-21 months (Figure 6). At the first sampling time (i.e. after a 9-month 

incubation), ∑Pbpools in the control sample covered 21% of the Pbtot, whereas at the last 

sampling time (i.e. after the 21-month incubation), the proportion increased to 72%. As for 

the large-sized UtT-amended sample, extending the incubation from 9 to 21 months 

increased the Pb recovery from 29% to 80%. However, in the samples amended with the 

unsieved and the small-sized UtT, the corresponding proportions increased from 24–29% 

to 47–50%. In the small-sized UtT-amended sample, the 50% Pb recovery was obtained 

already at the third sampling time (after a 14-month incubation), with no further change in 

the ∑Pbpools observed thereafter.  

 

 

 
Figure 6. Proportion (%) of non-residual Pb (∑Pbpools) to semitotal Pb (Pbtot) in the 

control soil and in the UtT-amended soils as a function of incubation time (Venäläinen, 

2011).  

 

The substantial increase in the ∑Pbpools indicates that Pb was released to the soil during the 

incubation. The probable source of the released Pb was the tiny, undetectable pellet 

fragments that went unnoticed when picking pellets from the soil samples. Such fragments 

may be released to the soil as a result of weathering, making the pellets brittle and 

susceptible to crumbling. The continuing dissolution of these fragments explains the 

increased Pb recovery by the sequential fractionation over the course of the incubation. A 
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significant increase in ∑Pbpools within a relatively short period (21 months) indicates that, 

under conditions favouring the dissolution of pellets (suitable temperature, moisture, pH), 

the release of pellet-derived Pb to the soil can be considerable. This phenomenon 

highlights the significance of incubation time when assessing the behaviour and pellet-

derived risks of Pb in soil, as also suggested by Levonmäki and Hartikainen (2007).  

The dissimilarities in the ability of the different size fractions to lower the Pb recovery 

can be explained by differences in their mineralogy. In the samples amended with the 

small-sized UtT rich in calcite, the solubility of Pb was presumably hindered by the 

relatively fast formation of cerussite taking place in the reaction between Pb
2+

 and the 

dissolution products of calcite (see Eq. 5). The formation of this sparingly soluble 

precipitate is supported by the finding that in the small-sized UtT-amended sample the 

maximum in ∑Pbpools (50%) was reached already within a 14-month incubation (Figure 6). 

In the samples amended with the unsieved and the large-sized UtT richer in FAP than the 

small-sized fraction, the formation of cerussite was likely to take place simultaneously 

with the formation of an intermediate phase solid solution of Ca and Pb, such as 

(Ca,Pb)10(PO4,CO3)6(F)2.56 •1.5H2O (Mavropoulos et al., 2002) and the FPM end-product 

(Chen et al., 1997; Cao et al., 2003, 2004). The solubility of FAP being much lower than 

that of calcite, the precipitation reactions between FAP and Pb are less likely to take place 

than the formation of cerussite. However, FPM has been reported to occur within the pH 

range of 2–7 (Valsami-Jones et al., 1998).  

Furthermore, organic acids typically abundant in boreal forest soil environments have 

been reported to promote the dissolution of FAP (Cerezine et al., 1988; Welch et al., 

2002). Thus, they may also have encouraged the formation of FPM in the shooting range 

soil used in this study. However, due to the higher solubility of calcite than of FAP, in the 

presence of both minerals the formation of cerussite becomes more important in 

controlling Pb solubility, as also reported by Mavropoulos et al. (2005). Consequently, in 

the small-sized UtT-amended samples, the solubility of Pb was mainly restricted by the 

formation of cerussite, whereas in the soil amended with the unsieved material the gradual 

formation of FPM or FPM-like minerals may also have taken place. Nevertheless, due to 

the lower stability of cerussite (log Ksp 4.65, Lindsay, 1979, p. 331) than of FPM (log Ksp -

12.98, Lindsay, 1979, p. 331), the apatite compartment in the tailings has more potential to 

act as a long-term sink for Pb than does calcite.  

As for the extracts from the shooting range samples, a more extensive analysis of their 

chemical composition may have allowed the calculation of the degree of saturation of 

solution phase with respect to P and Pb solids. This information may have provided 

further support for the precipitation reactions that were predicted to take place in the 

system. Unfortunately, however, the extracts were only analyzed for their Pb 

concentrations. Thus, the solution data was insufficient to allow the estimation of the 

degree of saturation.  

As for the individual pellet-derived Pb pools in the shooting range soil, the results 

obtained with the uppermost organic soil layer were quite different from those obtained 

with the mineral soil in Experiment 5b. In the control sample, Pbw remained low (20–25 

mg kg
-1

) throughout the 21-month experiment (Figure 7a). In the samples amended with 

the unsieved UtT, this Pb pool was either slightly reduced or remained unchanged over the 
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course of the incubation. Similarly, at the first two sampling times (after the 9- and 10-

month incubations), no change in Pbw was observed in the samples amended with the 

large- and the small-sized UtT, but by the end of the experiment (after a 21-month 

incubation) these tailings materials elevated Pbw to 40 and 51 mg kg
-1

, respectively. 

Throughout the experiment, pH of the water extracts varied between 4.1 and 4.5 (Figure 

7a). In all samples, Pbw remained rather low during the incubation, even though Pb was 

regularly released from the pellet fragments (Figure 6). This was presumably attributable 

to the abundance of various sorption components that efficiently retained dissolved Pb. In 

the control samples, for instance, Pbex increased from 2.6 to 16.1 g kg
-1

 (Figure 7b). 

Amending the soil with the UtT drastically lowered this pool to 0.9–1.5 g kg
-1

, while 

elevating pH of the NH4NO3 extracts from 3.7–3.9 in the control to 5.2–6.3 (Figure 7b). 

The increased pH favours the formation of exchange sites on variable-charge surfaces. 

Similarly to the Pbex pool, Pborg in the control sample increased throughout the 

experiment from 3.1 to 6.2 g kg
-1

 (Figure 7c). After the 10-month incubation, the control 

sample showed a slight temporary drop in Pborg, but, after 14 and 21 months, this Pb pool 

yet again exceeded the level observed at the first (9-month) sampling time. The 

unpredictable variation in Pborg was probably due to the fact that from the 10-month 

incubation onwards the NH4NO3-extractable pool was removed more efficiently by 

repeating the NH4NO3 extraction, leaving less Pb susceptible to extraction with NaOH. 

Amending the soil with the UtT further increased Pborg, which reached 9.0–15.4 g kg
-1

 by 

the end of the experiment. The large-sized material increased this Pb pool most efficiently. 

The pH of the NaOH extracts ranged between 13.1 and 13.7, with no substantial variations 

between the control and the tailings-amended soils. The increase in Pbex and Pborg in the 

control soil suggests that the Pb dissolved from the pellet fragments ended up in the cation 

exchange sites or it formed complexes with organic matter. In the UtT-amended samples, 

the calcite-induced increase in pH resulted in a marked reduction in Pbex and a notable 

concomitant increase in Pborg, suggesting the transfer of exchangeable Pb
2+

 to the organic 

pool, where the stability of the complexes is favoured by elevated pH. 

In the incubated shooting range samples, no significant time- or tailings-related 

changes were detected in the NH4-Ox-extractable Pb pool (Pbox) (Figure 7d). The Pb 

content of this pool within the samples varied between 0.9 and 2.1 g kg
-1

, with all of the 

extracts having a pH of approximately 3.5 throughout the experiment. Despite the increase 

in pH in the NH4NO3 extracts, which might enhance the abundance of PbOH
+
 susceptible 

to specific sorption on Al and Fe (hydr)oxide surfaces, this reaction pattern seemed to be 

insignificant in the samples representing the organic soil layer. 
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Figure 7. (a) Water-soluble Pb (Pbw) and pH of the water extract, (b) NH4NO3-

extractable Pb (Pbex) and pH of the NH4NO3 extract, (c) NaOH-extractable Pb (Pborg) and 

(d) NH4-Ox-extractable Pb (Pbox) in various treatments as a function of incubation time. 

Error bars indicate the standard deviations of Pb. Note the dissimilar scales and 

dimensions for Pb fractions (Venäläinen, 2011). 
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3.3.2 Tailings-induced changes in the speciation of water-extractable lead 

(Pbw)  

Because the ecotoxicity of soluble Pb is dependent on the species present, the Pbw fraction 

was further subjected to speciation analysis. The analysis was carried out with separate 

water extracts from the shooting range samples with and without UtT amendments (the 

small-sized fraction, the large-sized fraction and the unsieved material) (Experiment 6b). 

The results revealed that in the control sample all particle size fractions decreased the total 

water-soluble Pb (Pbtot-s) from 0.72 mg L
-1

 to 0.25–0.20 mg L
-1

 and the actual dissolved 

Pb (Pbdis) from 0.36 mg L
-1

 to 0.04–0.08 mg L
-1

. Moreover, the UtT amendments notably 

elevated pH of the water extracts from 5.0 in the control sample to 5.9–6.2. Regardless of 

the sample, Pbtot-s largely exceeded Pbdis, suggesting that a large proportion of the water-

extractable Pb was bound in particulate form that failed to pass the 0.2-µm membrane 

filter. Passing the actual dissolved Pb through a cation exchange resin did not affect DOC 

notably. The proportion of the non-cationic DOC (DOCnon-cat) to the total DOC (DOCtot) 

ranged between 81% and 97%. This outcome indicates that only a minor part of cationic 

Pb was in organically bound form. In the control soil, the subsequent cation exchange 

(CE) procedure decreased Pbdis by 95%, leaving 5% of the actual dissolved Pb in the less 

toxic non-cationic pool. Thus, almost all of the actual dissolved Pb was in inorganic 

cationic form (i.e. Pb
2+ 

or PbOH
+
), representing the most ecotoxic Pb species.  

In the UtT-amended samples, the relative proportions of non-cationic Pb species were 

much higher than in the control, being 10%, 12% and 9% for the unsieved, large-sized and 

small-sized materials, respectively. This finding provides evidence that tailings 

amendments diminished the proportion of the more toxic cationic species and converted 

them to the less toxic non-cationic form. This outcome can be ascribed to the calcite 

compartment and possible alkaline chemical residues in the tailings material that elevated 

pH of the water extracts, and thus, most likely favoured the formation of stable organo-Pb 

complexes (see Sauvé et al., 1997; Klucakova and Pekar, 2008). 

 



 

 

 

 

50 

4 General discussion 

Phosphorus loading from non-point and point sources on the watershed not only causes a 

risk of eutrophication of surface waters but also dissipates non-renewable natural P 

resources. Theoretically, P losses from soil as well as removal of P from household 

sewage waters can be attained by means of Al and Fe salts. However, the precipitation 

chemicals are not safe for use on agricultural land, and in wastewater treatment they form 

P compounds of low bioavailability. Thus, there is need for introducing sustainable 

measures to control P losses to watercourses and, simultaneously, to keep P in the 

biogeochemical cycle. On the other hand, to control the environmental risks caused by 

detrimental heavy metals, such as Pb in soil, it is important to immobilize them into 

sparingly soluble forms. The prerequisite for the on-site remediation is, however, that the 

adopted measure has no negative secondary effects. The apatite ore mine tailings 

representing a natural geomaterial consist of a mixture of components relevant in reactions 

with both P and Pb. This study was undertaken to unravel the applicability of the tailings 

material as a sorption and remediation agent to be used in abatement of P- and Pb-evoked 

environmental risks.  

4.1 Reducing phosphorus in domestic wastewaters 

An evaluation of different on-site wastewater treatment systems supplemented with 

tailings from the Siilinjärvi phosphate mine revealed that when used as a middle layer 

material of a conventional sand filter bed, the tailings efficiently lowered P concentration 

of the sewage water. By contrast, when used as a sorbent material in a cesspool receiving 

sewage water from a conventional sand filter bed, the tailings did not dephosphorize the 

sewage equally well (Vilpas et al., 2005). The results here provide explanations for the 

differences in P retention between the two applications. The Q/I experiment (Experiment 

2) revealed that the UtT material is able to retain P when its concentration in water is 

relatively low. As for the sand filter bed, the uppermost soil layers reduce the P 

concentration of the sewage to a level where the tailings material is able to retain P 

efficiently. Furthermore, in a sand filter bed the infiltration proceeds gradually and over a 

large area. This means that a relatively high tailings-to-solution ratio can be maintained, 

favouring the sorption reactions. On the contrary, a closed cesspool system connected to a 

conventional sand filter bed (without additional sorption components) may receive sewage 

water relatively high in P. Under these conditions, the ability of the UtT material to retain 

P is rather quickly used up or the material is even subjected to desorption of P, as 

observed in the Q/I experiment (Experiment 2).  

However, the results obtained with the AtT indicate that the tailings very high in Al 

and Fe (hydr)oxides may function as an efficient P sorbent even at extremely high P 

concentrations.  In Finland, the average total P concentration of unpurified sewage from 

sparsely populated areas is 17 mg L
-1

 (Vilpas et al., 2005). Treating such sewage water 

with the artificially weathered tailings at a tailings-to-solution ratio of 1:100 would reduce 
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the P concentration of the sewage water by 98% and 99.9% within 24-h and 7-d periods 

(Experiment 2). The P concentration of the output water being less than 0.5 mg L
-1

 and 

0.005 mg L
-1

, respectively, would clearly exceed the 70% purification requirement set for 

total P in the Onsite Wastewater System Decree (209/2011). However, a notable 

disadvantage related to the AtT material is that its preparation requires the use of strong 

acid, rendering production of the material less economic and environmentally friendly.  

4.2 Reducing phosphorus losses from agricultural land 

The ability of the UtT and AtT materials to retain P makes their utilization in abatement of 

P loading to watercourses from agricultural land, especially CSAs, worth considering. In a 

2-month incubation test conducted by Venäläinen (2009), the UtT and AtT materials 

significantly elevated the P sorption maximum (Qmax), even though the tailings dosage was 

relatively low. The AtT also increased the P affinity of the soil, as estimated by the 

increase in the slope of the isotherm (parameter K). The acid-treated material also 

significantly decreased the potentially labile, i.e. easily desorbable, P (Q0), considered to 

provide an estimate for the direct risk of P loading (see e.g. Koski-Vähälä et al., 2001). 

Despite the low pH, the AtT did not decrease soil pH significantly. The tailings-induced 

changes in the DPS values of the soil were not analysed.  

In the present study, the innate DPS values of the tailings materials were 6.2% and 

1.6% in the UtT and 1.1% and 0.9% in the AtT for large- and small-sized fractions, 

respectively (Table 7). These values were very low relative to soil DPS values of 25–40%, 

commonly considered to cause an increased risk of P loss in leaching or with surface 

runoff (Pautler and Sims, 2000). Mixing the tailings with a soil most likely reduces DPS 

of the soil.  

4.3 Tailings as a means of decreasing lead leaching to 
groundwater from contaminated sites 

In shooting ranges, one of the highest environmental risks is leaching of Pb to the 

groundwater. The susceptibility of pellet-derived Pb to vertical movement within the soil 

profile largely depends on the physico-chemical properties of the soil. The Hälvälä 

shooting range investigated here is located in a typical boreal forest where the plant 

residues in soil are acidic by nature, rendering fulvic acids (FAs) more abundant than 

humic acids (HAs) (Stevenson, 1982, p. 46). Hartikainen and Kerko (2009) reported that 

in the Hälvälä shooting range, the pellets are accumulated in the organic horizon of the 

topsoil. This horizon is rich in FAs and HAs that are likely to form organo-metal 

compounds with Pb. The organic ligands not only reduce the ecotoxicity of Pb compared 

with its free cationic species (Pb
2+

and  PbOH
+
) (Shanmukhappa and Neelakantan, 1990; 

Mager et al., 2011) but may also affect the solubility of the metal. FAs being lower in 

molecular weight and higher in acidity than HAs, their complexes with metals are less 
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likely to be precipitated than those formed with HAs (Kerndorff and Schnizer, 1979; 

Christl and Kretzschmar, 2001).  

Amending the contaminated shooting range soil with the UtT was observed to promote 

the formation of organo-Pb complexes (Pborg) (Experiment 6a). This phenomenon was 

presumably due to the liming effect of the calcite compartment of the UtT, which favours 

the formation and stability of organic metal complexes (Sauvé et al., 1997; Klucakova and 

Pekar, 2008). Although the increase in Pborg took place at the expense of the more 

bioavailable NH4NO3-extractable Pb pool (Pbex), in certain conditions the liming effect of 

the UtT may be undesired. Liming may increase the risk of leaching of Pb as soluble 

organic complexes to the deeper soil layers, towards the groundwater. This feature of the 

UtT material becomes particularly significant if the soil in the shooting range area is peaty 

(e.g. Histosols), as also shown by Deiss et al. (2004). In the Hälvälä shooting range, 

amending the soil with the UtT may to some extent decrease the abundance of Pb in the 

biologically active top soil layer and transfer the toxic metal to the deeper soil layers of 

lower biological activity. 

In the experimental site of this study, the organic top soil is underlayed by a sandy 

mineral soil horizon rich in Al and Fe (hydr)oxides. These (hydr)oxide surfaces are able to 

retain FA-metal complexes through the formation of inner-sphere or outer-sphere 

complexes with the functional groups of the organic ligand (McBride, 1989; Weng et al. 

2005; Vreysen and Maes, 2006; Perelomov et al., 2011). Thus, they may further reduce 

the leaching of the organically bound Pb. This became evident in Experiment 5, where the 

retention of Pb by uncontaminated mineral soil was investigated. The retention of 

organically bound Pb by oxide surfaces is particularly efficient in conditions where the 

soil is podzolic by nature (e.g. in forests of Nordic countries, Mokma et al., 2004) with an 

illuvial horizon enriched with Al and Fe (hydr)oxides (Borggaard et al., 1990).  

Furthermore, in organic soil the UtT material reduces the abundance of the most toxic Pb 

species (Experiment 6b), rendering the utilization of the material justified despite the risk 

of increased leaching of Pb to the mineral soil layers. 

The reactions between Pb and the tailings-amended soil largely depend on the nature 

of the soil. In uncontaminated mineral soil, both the UtT and the AtT tailings efficiently 

increased the Pb retention capacity of the soil and the relative abundance of non-extracted 

Pb (Pbnon-extr), i.e. Pb retained in sparingly soluble forms (Experiment 5). This reaction 

pattern is contrary to that obtained with the organic soil, where the UtT enhanced the Pbw 

and Pborg, i.e. the solubility of Pb (Experiment 6a). In mineral soil, the increase in Pbnon-extr 

was predicted to be attributable to cerussite and FPM formation in the reaction between 

added Pb and UtT or AtT. The immobilization of Pb through the formation of sparingly 

soluble compounds may be significant, especially in the remediation of contaminated 

areas low in organic matter such as major roads, metalliferous mines (Fonseca et al., 2011) 

or shooting ranges located in barren landscapes or even in sand pits. For this purpose, the 

UtT material would probably exhibit the most efficient remedial effects due to its superior 

ability to reduce the quantity of Pbex and to increase the quantity of Pbnon-extr without 

increasing the acidity of the soil.  
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4.4 Tailings as a multifunctional remediation agent 

Contaminated soils and aqueous waste streams often contain a variety of undesired 

substances. Based on the results obtained with P and Pb, the tailings material can be 

assumed to be able to retain also other harmful substances chemically resembling P, such 

as arsenate, chromate and possibly antimonite, and metal cations with a pKa value similar 

to that of Pb, such as Cu (pKa 7.95, Powell et al., 2007) and Zn (pKa 7.69, Lindsay, 1979, 

p. 213). The multifunctionality of the tailings would be particularly advantageous in the 

remediation of areas contaminated with chemicals like chromated-copper-arsenate (CCA), 

commonly used as a wood preservative (Girouard and Zagury, 2009). Furthermore, the 

Q/I experiment carried out with the UtT without soil (Experiment 4) revealed that the UtT 

retains Pb efficiently from aqueous solutions. Thus, the material may be suitable for the 

purification of aqueous waste streams of industrial and shooting range origins. As for 

runoff waters from shooting ranges, the solutions are not only rich in Pb but may also 

contain significant amounts of Sb and Cu (Heier et al., 2009, 2010; Mariussen et al., 

2012); thus, the tailings show potential for multipurpose remediation of such waste.   

4.5 Recovery of used tailings  

Utilization of the untapped tailings material from the Siilinjärvi apatite ore in 

environmental applications may provide a sound and cost-effective way of recycling the 

waste produced by the mining industry. Since the UtT material consists of natural and 

harmless geological components, the material applied to, for instance, CSAs or shooting 

ranges may be left in the soil. However, tailings material used in more controlled systems, 

such as wastewater purification applications, may have the potential to be further recycled. 

As the tailings material in a conventional sand filter eventually becomes enriched with P, 

and thus, loses its P sorption ability, the sorbent needs to be replaced by unenriched 

material. Fortunately, the P-enriched tailings material has the potential to serve as a P 

fertilizer in agricultural fields. As for the fertilizer use of the tailings, the Siilinjärvi 

complex has the advantage of being internationally exceptionally low in cadmium (Cd), a 

toxic element often associated with phosphate deposits (Louekari et al., 2000).  

However, the use of the tailings material as a P fertilizer has some restrictions. First, 

the prerequisite for the utilization of the material as a fertilizer is that P retained will be 

released in the soil. Decomposable organic matter may produce organic acids able to 

release precipitated P through dissolution reactions. As for sorbed P, desorption reactions 

can be promoted by elevating pH through liming. Furthermore, organic ligands may 

enhance the desorption by competing with P for sorption sites (Bhatti et al., 1998). The 

efficiency of the latter reaction pattern is, however, controversial since the organic ligands 

are more relevant in reducing sorption than in inducing desorption (Violante et al., 2002). 

Second, toilet waste associated with the black waters from households poses a high risk of 

pathogens (Vinnerås, 2007). This limitation may, however, be overcome by composting 

the tailings. Besides sanitation, exposing the material to microbial activity in a compost 
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may offer other advantages. Several studies have shown that a range of bacteria and fungi 

are able to solubilize phosphate minerals (e.g. Harris et al., 2006; Chatli et al., 2008; Kang 

et al., 2009; Feng et al., 2011). Subjecting the tailings to such microbes may promote the 

release of P from the sparingly soluble apatite fragments, thus further increasing the 

fertilizer value of the material.  

Yet another theoretical possibility for the re-use of the tailings enriched with P lies in 

the chemistry between Pb and PO4-P. Due to the high affinity of Pb for the PO4
3-

 ligand, 

the P-enriched tailings may have the potential to be used as an improved Pb sorbent, e.g. 

in the remediation of Pb-contaminated wastewater or even at Pb-contaminated sites. The 

re-use of the P-enriched tailings material would further increase its ecological and 

economic value and support the recycling of P. However, all of the suggested applications 

should be carefully studied before being put into practice. 
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5 Concluding remarks 

Mine tailings from apatite ore beneficiation consist of phlogopite, calcite and apatite 

residues that are able to retain P and Pb from aqueous solutions. The tailings also increase 

the Pb retention capacity of uncontaminated mineral soil and decrease the ecotoxicological 

risk of pellet-derived Pb in contaminated shooting range soil by reducing its most 

bioavailable and most toxic Pb species (i.e. water-soluble and NH4NO3-extractable Pb). 

The results obtained here suggest that the tailings may act as a P sorbent in the purification 

of wastewaters and as a remediation agent in Pb-contaminated sites. Depending on the 

purpose of use, the sorption properties of the tailings may be further optimized by sieving 

and treating with strong acid. However, utilization of acid-treated material of very low pH 

in environmental applications should be carefully considered before being put into 

practice.  

The naturalness of the untreated tailings material may allow its utilization in various 

applications even after serving as a P sorbent in wastewater treatment. Provided that the 

sorbed P can be re-released from the tailings, e.g. by liming or addition of organic matter, 

the material may have the potential to be used as a P fertilizer in agricultural land. Because 

Pb has high affinity for phosphate, the tailings used in P retention may be suitable for 

removing Pb from wastewater and immobilizing it in contaminated soil. 

The results showing that the tailings are able to retain P and Pb give reason to suggest 

that the tailings may also be able to retain other elements with similar chemical behaviour 

such as toxic As, Sb or Cu. This feature would further increase the value of the material as 

a remediation agent. The introduction of the tailings could offer an environmentally sound 

and cost-effective remediation or stabilization technique for various potentially harmful 

substances in the environment. Furthermore, it would also decrease the amount of 

untapped by-products produced by the mining industry, without further compromising the 

environment, and support the recycling of P.   
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Appendix 1 

Measured Q/I data of the P desorption-sorption isotherms of the untreated tailings (UtT) 

 
Tailings Mesh Equilibration 

time 

P concentration 

of the enrichment 

solution 

Q I 

 Ø mm  mg L
-1

 mg kg
-1

 ± SD mg L
-1

 ± SD 

Untreated  > 0.2  24 h 0 -1.0 ± 0.1 0.02 ± 0.00 

tailings (UtT)   0.05 -0.2 ± 0.0 0.05 ± 0.00 

   0.1 -0.3 ± 0.1 0.1 ± 0.0 

   0.3 0.6 ± 0.0 0.3 ± 0.0 

   0.5 1.1 ± 0.0 0.5 ± 0.0 

   1.0 5.7 ± 0.3 0.9 ± 0.0 

   2.0 2.7 ± 0.2 1.9 ± 0.0 

   4.0 4.4 ± 0.9 3.8 ± 0.1 

 < 0.2   0 -0.7 ± 0.1 0.01 ± 0.00 

   0.05 0.2 ± 0.0 0.04 ± 0.00 

   0.1 0.2 ± 0.0 0.1 ± 0.0 

   0.3 1.7 ± 0.1 0.2 ± 0.0 

   0.5 2.4 ± 0.4 0.4 ± 0.0 

   1.0 7.6 ± 0.0 0.8 ± 0.0 

   2.0 3.8 ± 0.6 1.8 ± 0.1 

   4.0 3.3 ± 0.3 3.8 ± 0.1 

Untreated  > 0.2  7 d 0 -1.2 ± 0.2 0.02 ± 0.00 

tailings (UtT)   0.1 0.6 ± 0.1 0.1 ± 0.0 

   0.3 1.2 ± 0.1 0.3 ± 0.0 

   0.5 1.4 ± 0.3 0.5 ± 0.0 

   1.0 4.5 ± 0.1 0.9 ± 0.0 

   2.0 1.6 ± 0.0 2.0 ± 0.0 

   4.0 -1.3 ± 0.2 4.0 ± 0.1 

   5.0 -3.3 ± 1.4 5.1 ± 0.0 

 < 0.2   0 -1.4 ± 0.1 0.03 ± 0.01 

   0.1 1.2 ± 0.1 0.1 ± 0.0 

   0.3 2.4 ± 0.1 0.3 ± 0.0 

   0.5 2.8 ± 0.2 0.5 ± 0.0 

   1.0 7.2 ± 0.6 0.9 ± 0.0 

   2.0 4.2 ± 1.3 1.9 ± 0.0 

   4.0 6.5 ± 2.4 4.0 ± 0.2 

   5.0 -1.9 ± 1.8 5.0 ± 0.1 
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Appendix 2 

Measured Q/I data of the P desorption-sorption isotherms of the acid-treated tailings (AtT) 

 
Tailings Mesh Equilibration 

time 

P concentration 

of the enrichment 

solution 

Q I 

 Ø mm  mg L
-1

 mg kg
-1

 ± SD mg L
-1

 ± SD 

Acid-treated  > 0.2  24 h 0 0.1 ± 0.2 0.01 ± 0.00 

tailings (AtT)   25 2305 ± 7 0.6 ± 0.4 

   50 3870 ± 104 9 ± 1 

   100 4590 ± 139 50 ± 1 

   200 6910 ± 313 136 ± 3 

   300 6953 ± 495 242 ± 5 

   400 7311 ± 808 348 ± 8 

   500 8887 ± 537 449 ± 5 

 < 0.2   0 -0.1 ± 0.1 0.0 ± 0.0 

   25 2329 ± 9 0.4 ± 0.1 

   50 2461 ± 38 2 ± 0 

   100 7311 ± 159 22 ± 2 

   200 10879 ± 303 97 ± 3 

   300 11678 ± 579 195 ± 6 

   400 13070 ± 487 291 ± 5 

   500 14421 ± 227 388 ± 13 

Acid-treated  > 0.2  7 d 0 0.2 ± 0.1 0.00 ± 0.00 

tailings (AtT)   25 2329 ± 1 0.01 ± 0.00 

   50 4666 ± 34 0.6 ± 0.4 

   100 8117 ± 251 21 ± 3 

   200 9589 ± 313 109 ± 4 

   300 9702 ± 722 203 ± 7 

   400 10895 ± 754 307 ± 8 

   500 9508 ± 892 410 ± 9 

 < 0.2   0 0.0 ± 0.0 0.01 ± 0.00 

   25 2328 ± 1 0.01 ± 0.00 

   50 4721 ± 3 0.01 ± 0.00 

   100 10227 ± 18 0.3 ± 0.1 

   200 15211 ± 189 54 ± 2 

   300 15465 ± 573 146 ± 6 

   400 17110 ± 342 245 ± 3 

   500 16854 ± 641 336 ± 6 
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Appendix 3 

Measured Q/I data of the P desorption-sorption isotherms of the acid-base-treated tailings 

(ABtT) 
Tailings Mesh Equilibration 

time 

P concentration 

of the enrichment 

solution 

Q I 

 ø mm  mg L
-1

 mg kg
-1

 ± SD mg L
-1

 ± SD 

Acid-base-  > 0.2  24 h 0 -0.5 ± 0.4 0.01 ± 0.00 

treated    25 2320 ± 7 0.1 ± 0.0 

tailings   50 3913 ± 104 8 ± 1 

(ABtT)   100 5572 ± 125 47 ± 1 

   200 7018 ± 137 136 ± 1 

   300 6650 ± 232 234 ± 2 

   400 8369 ± 123 332 ± 2 

   500 6964 ± 481 435 ± 5 

 < 0.2   0 -1.7 ± 0.4 0.02 ± 0.00 

   25 2325 ± 1 0.04 ± 0.00 

   50 4712 ± 5 0.1 ± 0.0 

   100 7463 ± 223 28 ± 2 

   200 9643 ± 327 110 ± 3 

   300 9708 ± 566 203 ± 6 

   400 11417 ± 755 301 ± 8 

   500 9739 ± 641 407 ± 6 

Acid-base-  > 0.2  7 d 0 -2.8 ± 0.6 0.03  ± 0.01 

treated    50 4854 ± 32 2.9 ± 0.3 

tailings   100 6931 ± 67 33 ± 1 

(ABtT)   200 8271 ± 159 121 ± 2 

   300 9717 ± 289 215 ± 3 

   400 10696 ± 537 307 ± 5 

   500 15404 ± 501 357 ± 5 

   600 -7755 ± 6527 667 ± 65 

 < 0.2   0 -5.2 ± 0.2 0.05 ± 0.00 

   50 5138 ± 5 0.07 ± 0.01 

   100 *8183 ± n.a. *20 ± n.a. 

   200 11102 ± 194 92 ± 2 

   300 13005 ± 24 184 ± 3 

   400 10278 ± 2843 311 ± 28 

   500 3439 ± 1797 477 ± 18 

   600 -154 ± 2422 591 ± 24 

*Calculation is based on two replicate samples 

n.a. = SD not available 
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Appendix 4 

Measured Q/I data of the Pb sorption isotherms of the untreated tailings (UtT) 

 
Tailings Mesh Pb concentration of the 

enrichment solution  

Q I 

 Ø mm mg L
-1

 mg kg
-1

 ± SD mg L
-1

 ± SD 

Untreated tailings  > 0.2  0 0.1 ± 0.1 0.00 ± 0.00 

(UtT)  2.5 102 ± 7 0.03 ± 0.01 

  5.0 193 ± 30 0.11 ± 0.03 

  7.5 298 ± 53 0.20 ± 0.04 

  10 479 ± 4 0.40 ± 0.05 

  12.5 593 ± 2 0.48 ± 0.06 

  15 724 ± 4 0.42 ± 0.08 

  20 950 ± 7 0.53 ± 0.10 

  25 1180 ± 2 0.55 ± 0.11 

  30 1410 ± 3 0.41 ± 0.14 

  35 1664 ± 6 0.29 ± 0.03 

 < 0.2  0 0.1 ± 0.1 0.00 ± 0.00 

  2.5 101 ± 8 0.00 ± 0.00 

  5.0 197 ± 29 0.01 ± 0.00 

  7.5 338 ± 53 0.01 ± 0.01 

  10 497 ± 4 0.02 ± 0.01 

  12.5 614 ± 3 0.06 ± 0.03 

  15 743 ± 2 0.09 ± 0.01 

  20 971 ± 5 0.03 ± 0.03 

  25 1199 ± 4 0.07 ± 0.02 

  30 1422 ± 7 0.12 ± 0.04 

  35 1676 ± 5 0.17 ± 0.07 
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Appendix 5 

Measured Q/I data of the Pb sorption isotherms for the control soil and the soil amended 

with the different dosages of the untreated tailings (UtT) and the acid-treated tailings 

(AtT). 

Amendment  Mesh Tailings 

dosage (g) 

Pb concentration 

of the enrichment 

solution 

Q I 

 Ø mm  mg L
-1

 mg kg
-1

 ± SD mg L
-1

 ± SD 

Control  - 0 0.8  ± 1.6 0.00 ± 0.00 

   50 2403 ± 44 0.2 ± 0.2 

   75 3911 ± 85 0.7 ± 0.1 

   100 5337 ± 122 2.9 ± 1.6 

   250 9419 ± 239 113 ± 8 

   500 11107 ± 528 409 ± 8 

   750 11448 ± 1017 722 ± 18 

   1000 10792 ± 1496 1031 ± 19 

Untreated  > 0.2  5 0 0.7 ±1.5 0.00 ± 0.00 

tailings (UtT)   50 2421 ± 12 0.1 ± 0.1 

   75 3948 ± 91 0.3 ± 0.2 

   100 5349 ± 100 1.6 ± 2.2 

   250 12221 ± 239 58 ± 6 

   500 14436 ± 1012 343 ± 24 

   750 14383 ± 1376 665 ± 25 

   1000 14077 ± 962 964 ± 20 

 < 0.2  5 0 0.7 ± 1.5 0.00 ± 0.00 

   50 2402 ± 32 0.2 ± 0.2 

   75 3929 ± 73 0.4 ± 0.3 

   100 5411 ± 129 0.8 ± 0.7 

   250 14129 ± 142 16 ± 2.5 

   500 18396 ± 458 261 ± 19 

   750 19580 ± 938 559 ± 16 

   1000 19360 ± 1033 855 ± 10 

Untreated  > 0.2 10 0 0.7 ± 1.5 0.00 ± 0.00 

tailings (UtT)   50 2375 ±  18 0.3 ± 0.1 

   75 3852 ± 32 0.3 ± 0.2 

   100 5324 ±  65 1.2 ± 0.5 

   250 13001 ± 521 38 ± 6 

   500 15912 ± 682 307 ± 12 

   750 15983 ± 1176 625 ± 16 

   1000 15506 ± 1066 929 ± 20 

 < 0.2  10 0 0.7 ± 1.5 0.00 ± 0.00 

   50 2358 ± 51 0.3 ± 0.3 

   75 3901 ± 41 0.3 ± 0.4 

   100 5336 ±140 0.5 ± 0.3 

   250 14351 ±131 11 ± 2 

   500 19536 ± 966 237 ± 20 

   750 21069 ±1406 520 ± 26 

   1000 20822 ±1316 824 ± 19 
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Amendment  Mesh Tailings 

dosage (g) 

Pb concentration 

of the enrichment 

solution 

Q I 

 Ø mm  mg L
-1

 mg kg
-1

 ± SD mg L
-1

 ± SD 

Acid-treated  > 0.2  5 0 0.03 ± 0.04 0.01 ± 0.01 

Tailings (AtT)   100 5258 ± 78 2.2 ± 0.6 

   250 14266 ± 109 8.2 ± 0.6 

   500 28026 ± 1001 34 ± 21 

   750 29395 ± 4626 313 ± 83 

   1000 31376 ± 5356 598 ± 102 

   1500 32280 ± 1146 1210 ± 25 

   2000 31967 ± 2136 1841 ± 36 

 < 0.2  5 0 0.01 ± 0.03 0.01 ± 0.01 

   100 5054 ± 119 6.2 ± 0.5 

   250 14434 ± 276 5.1 ± 1.9 

   500 29402 ± 598 10 ± 5 

   750 34728 ± 6363 209 ± 132 

   1000 36969 ± 4064 489 ± 101 

   1500 39457 ± 6955 1070 ± 131 

   2000 38153 ± 4231 1715 ± 72 

Acid-treated  > 0.2  10 0 0.05 ± 0.09 0.00 ± 0.00 

tailings (AtT)   100 5156 ± 98 2.9 ± 0.5 

   250 14231 ± 166 5.8 ± 0.5 

   500 29305 ± 480 8.3 ± 0.6 

   750 42327 ± 1736 57 ± 18 

   1000 47580 ± 1962 257 ± 56 

   1500 49470 ± 1099 836 ± 21 

   2000 49566 ± 2382 1458 ± 26 

 < 0.2  10 0 0.00 ±  0.00 0.02 ± 0.03 

   100 5351 ± 280 2.6 ± 0.6 

   250 14870 ± 804 2.0 ± 0.1 

   500 30398 ± 1559 3.0 ± 0.2 

   750 46047 ± 1747 5.5 ± 1.0 

   1000 60726 ± 3311 31 ± 7 

   1500 69674 ± 3869 470 ± 19 

   2000 70928 ± 2766 1064 ± 25 

 

 


