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Abstract 

Background and purpose 

Intracranial aneurysm (IA) rupture causes subarachnoid hemorrhage (SAH), which has 

high mortality and morbidity. Treatment methods for IAs (microneurosurgical clipping 

and endovascular coiling) are invasive and may carry considerable risks. Some 

predisposing factors for IA rupture, such as smoking, hypertension, and large IA size, are 

known. However, these factors do not differentiate rupture-prone IAs sufficiently well. 

Better predictors for IA rupture and less invasive treatment methods for IAs are required. 

An IA wall shows signs of vascular remodeling, and the wall degeneration is associated 

with IA rupture. Loss of mural cells seems to be a crucial step in wall degeneration. 

Despite previous research on IA pathobiology, the cell signaling pathways involved in 

wall remodeling and the mechanisms of cell death in IA wall remain largely unknown. 

This study aimed to characterize cell signaling pathways associated with IA rupture and 

size and shape indices at the protein level as well as to determine possible cell death 

pathways in the IA wall. 

 

Materials and methods 

The localization of signaling molecules (c-Jun N-terminal kinase (JNK), p38, extracellular 

signal-regulated kinase (ERK), Akt, mammalian target of rapamycin (mTOR), cyclic 

AMP response element binding protein (CREB), and Bcl-associated death protein (Bad)) 

was studied using immunofluorescence staining in ruptured and unruptured IA samples, 

collected during microneurosurgical clipping. The levels of phosphorylated and total 

forms of signaling molecules were determined semi-quantitatively from IA tissue 

homogenates using Western blotting (WB). Altogether, 40 ruptured and 37 unruptured IA 

samples were investigated. IA size and shape indices were determined using 3D 

remodeling, and the associations between the levels of signaling molecules and IA rupture 

status and morphology were analyzed. The JNK signaling pathway was characterized 

further with c-Jun and pro-MMP-9 (MMP, matrix metalloproteinase) WB. Cell death in 

the IA wall was studied using terminal deoxynucleotidyl transferase (dUTP) nick end 

labeling (TUNEL) and cleaved caspase-3 immunostaining and caspase-3 WB. The 

activation of caspase cascades (caspase-9, intrinsic apoptosis; caspase-8, extrinsic 
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apoptosis) was investigated using WB. The role of oxidative stress in IA wall 

degeneration was studied using heme oxygenase-1 (HO-1). Potential sources of oxidative 

stress were revealed using endogenous peroxidase stainings. 

 

Results 

All signaling molecules (JNK, p38, ERK, Akt, mTOR, CREB, and Bad) were found in the 

IA wall in immunofluorescence staining. Stress-activated kinases (phospho-p38 and 

phospho-JNK) were associated with size and rupture, probably indicating that stress 

signaling contributes to IA growth and rupture. Pro-MMP-9 levels were increased in 

ruptured IAs. Of well-known growth-promoting factors, phospho-Akt was associated with 

size, but not with rupture, indicating active cell proliferation in large IAs. On the other 

hand, phospho-mTOR levels were downregulated in ruptured IAs suggesting that cell 

proliferation signaling is decreased in ruptured IAs. Phospho-CREB levels were 

associated with the non-sphericity and ellipticity indices, whereas a negative association 

between total CREB levels and the undulation index was observed. On the other hand, 

phosphorylated levels of p38 and Akt correlated negatively with the undulation index, and 

total levels of CREB correlated positively with size indices, suggesting a complex role of 

signaling molecules in IA remodeling. Furthermore, TUNEL staining was associated with 

rupture. A few cleaved caspase-3-positive cells were also detected. Intrinsic activation of 

apoptosis (cleaved caspase-9) was observed in WB, mainly in ruptured samples, but 

cleaved caspase-8 was not detected. Unphosphorylated Bad levels, a regulator of the 

intrinsic apoptotic pathway, were also associated with rupture. HO-1 was associated with 

wall degeneration and rupture, and endogenous peroxidase staining localized mainly in 

polymorphonuclear cells of the intraluminal thrombus. 

 

Conclusions 

This study revealed associations of several intracellular signaling molecules with IA 

morphology and rupture and also suggested oxidative stress as an important factor in the 

degeneration of an IA wall. Characterization of signaling pathways in the human IA wall 

may aid in finding biomarkers differentiating rupture-prone IAs and in developing less 

invasive treatment methods for IAs. However, the role of signaling pathways in IA growth 

and rupture must first be evaluated with appropriate experimental models. 
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1 Introduction 

Intracranial aneurysms (IAs) are dilatations of cerebral arteries (Figure 1A). IA rupture 

causes subarachnoid hemorrhage (SAH), which is an arterial bleeding to the subarachnoid 

space (Figure 1B). Sometimes intracerebral hemorrhage may also occur. SAH is a life-

threatening condition. Typical symptoms are sudden headache with nausea and vomiting 

and often loss of consciousness. SAH may lead to death or to severe neurological defects.  

IAs mainly occur in the bifurcations of the vessels near the circle of Willis, which is an 

arterial circle supplying blood to the brain. IAs are divided into saccular and fusiform 

subtypes according to their shape and relation to the parent artery. This study deals with 

saccular IAs (Figure 1A). 

 

Figure 1 Saccular intracranial aneurysm (A) and subarachnoid hemorrhage (B). Computer 

tomography angiography image of a typical saccular intracranial aneurysm (A). In the computer 

tomography image (B), blood is seen in the subarachnoid space (black arrow) as a result of 

intracranial aneurysm rupture. 

IAs are regarded as acquired rather than congenital lesions. Risk factors for IA 

development and rupture are female gender, smoking, and hypertension. However, the 

pathobiology of IAs is poorly known. Wall degeneration, characterized by loss of mural 
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cells and inflammatory cell infiltration, is associated with IA rupture (Kataoka et al. 1999, 

Frösen et al. 2004, Tulamo et al. 2006, Frösen et al. 2012). 

Vascular remodeling is an important process in many vascular diseases. The trigger 

may be, for instance, abnormal hemodynamic stress or oxidative stress. In vascular 

remodeling, the cells may start to proliferate, change their phenotype, migrate, or die 

(Newby et al. 2000, Michel et al. 2007). Many intracellular pathways are associated with 

vascular remodeling. Stress-activated kinases (c-Jun N-terminal kinase (JNK) and p38) 

belonging to the family of mitogen-activated protein kinases (MAPKs) respond to cellular 

stress and inflammatory cytokines (Kyriakis et al. 2001). Akt transmits cell survival 

signaling (Morello et al. 2009). The mammalian target of rapamycin (mTOR) inhibitor, 

sirolimus, prevents the proliferation of smooth muscle cells (SMCs) and is used in 

coronary stents to inhibit restenosis (Poon et al. 2002). Cyclic AMP response element 

binding protein (CREB) regulates several important functions of the cell such as 

proliferation and differentiation (Ichiki 2006). Cell death is divided into apoptosis and 

necrosis. Apoptosis is a programmed cell death that involves – in most instances  the 

activation of caspases. Nowadays, necrosis is also considered a “regulated” cell death 

(Galluzzi et al. 2012). However, the triggers and mediators of necrosis differ from those of 

apoptosis.  

Apoptosis has been detected in the IA wall (Pentimalli et al. 2004). However, the 

intracellular signaling pathways mediating the vascular remodeling in the IA wall are 

unknown. This study focuses on intracellular signaling pathways and possible mechanisms 

of cell death in the IA wall. Knowledge of cell signaling mechanisms in the IA wall at the 

molecular level may help to uncover clues for differentiating rupture-prone IAs and for 

developing new pharmaceutical therapies.    
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2 Review of the literature 

2.1 Intracranial aneurysms (IAs) and subarachnoid hemorrhage 

(SAH) 

2.1.1 Epidemiology 

IAs are saccular outbulgings of the cerebral artery. They are acquired – not congenital – 

lesions (Stehbens 1989). Based on radiological imaging and pathological examination, the 

prevalence of IAs has been estimated to be approximately 2% (0.4-6.0%) (Rinkel et al. 

1998, Ronkainen et al. 1998, Vlak et al. 2011). In patients with IA, up to one-third have 

multiple IAs (Rinne et al. 1994). Rupture of IA causes SAH, and sometimes also bleeding 

into the brain parenchyma. The incidence of aneurysmal SAH is approximately 9-11 per 

100 000 person-years in most Western populations, but is twofold in Finland (19.7-22.5 

per 100 000) and in Japan (22.7 per 100 000) (Ingall et al. 2000, de Rooij et al. 2007). 

SAH accounts for about 5% of all strokes. Despite modern intensive care, SAH leads to 

significant mortality (30-40%) and morbidity (20% require help in daily activities) 

(Nieuwkamp et al. 2009). A significant proportion of SAH patients are of working age, 

which causes a loss of productive life-years comparable to that of ischemic stroke 

(Johnston et al. 1998, Nieuwkamp et al. 2009). The annual rupture rate of IAs has been 

reported to be 0.05-1.9% (ISUIA 1998, Rinkel et al. 1998, Juvela et al. 2000), being 

higher in patients with larger IAs and previous SAH (Wiebers et al. 2003, Ishibashi et al. 

2009).  

2.1.2 Risk factors for IA rupture 

The relatively high prevalence of IAs as compared with the incidence of aneurysmal SAH 

suggests that not all IAs rupture during the lifetime of their carriers. This epidemiological 

finding has raised the question of which kinds of IAs are prone to rupture. The risk factors 

for having an IA partly differ from the risk factors for an SAH. On the other hand, the 

rupture risk of IAs varies between patients, but also between IAs of the same patient. Risk 

factors for both formation and rupture of IAs are discussed below. 
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2.1.2.1 Aneurysm-related risk factors 

Location 

The majority of IAs (80-90%) are located in the anterior circulation (Schievink 1997b, 

Rinkel et al. 1998), but posterior circulation IAs rupture more easily (Rinkel et al. 1998, 

Wiebers et al. 2003, Ishibashi et al. 2009).  

 

Size 

IA size is an important risk factor for rupture (ISUIA 1998, Wiebers et al. 2003). In the 

retrospective part of the International Study of Unruptured Intracranial Aneurysms 

(ISUIA), the cumulative rupture rate of IAs with diameter smaller than 10 mm was less 

than 0.05% per year in patients without previous SAH, whereas the rupture rate for IAs 

with diameter exceeding 10 mm approached 1% per year (ISUIA 1998). In the large 

prospective cohort of ISUIA, IAs smaller than 7 mm in the anterior circulation in patients 

with no previous SAH did not rupture in the 5-year follow-up (Wiebers et al. 2003). 

Rupture rate increased with increasing IA size (Wiebers et al. 2003). In the same study, 

the 5-year cumulative rupture rate for giant IAs (diameter 25 mm or greater) was 40% in 

the anterior circulation and 50% in the posterior circulation and the posterior 

communicating artery (Wiebers et al. 2003). Other studies have also reported a correlation 

between IA size and rupture risk (Rinkel et al. 1998, Juvela et al. 2000, Morita et al. 2005, 

Ishibashi et al. 2009). However, a significant proportion of ruptured IAs is smaller than 7 

mm (Juvela et al. 2000, Forget et al. 2001). 

 

Morphology 

Because size and location do not predict IA rupture alone, other risk factors for rupture 

have been sought. Higher aspect ratio (IA fundus length/neck diameter) has been 

associated with rupture (Ujiie et al. 2001, Weir et al. 2003, Nader-Sepahi et al. 2004, Hoh 

et al. 2007, Sadatomo et al. 2008), with a few exceptions (Beck et al. 2003). It is not clear 

what the threshold value is for aspect ratio, but aneurysms with an aspect ratio > 3 are at a 

high risk of rupture, whereas an aspect ratio < 1.4 predicts low rupture risk (Lall et al. 

2009).  
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Irregular multilobular appearance and secondary pouches have also been associated 

with ruptured IAs (Crompton 1966, Sampei et al. 1991, Asari et al. 1993, Hademenos et 

al. 1998, Beck et al. 2003). 

Raghavan et al. studied various size and shape indices in three-dimensional (3D) 

reconstructions to determine which best discriminates between ruptured and unruptured 

IAs. They found that quantified shape (especially non-sphericity index, undulation index, 

and ellipticity (ellipticity index and aspect ratio)) better differentiated ruptured IAs from 

unruptured lesions than size (Figure 2) (Raghavan et al. 2005). 

The effect of relationship of the aneurysm to its parent artery as a predictor for rupture 

has also been studied. Sadatomo et al. investigated the relationship of IA neck, parent 

artery, and daughter branches and found that when IA neck is an extension of the midline 

of the parent artery and the diameters of daughter arteries are equal the IAs are more often 

ruptured (Sadatomo et al. 2008). Dhar et al. noted that aneurysm-to-vessel size ratio and 

aneurysm inclination angle with respect to the parent artery had the strongest correlation 

with rupture risk, but also aspect ratio, ellipticity index, non-sphericity index, and 

undulation index differed between ruptured and unruptured IAs (Dhar et al. 2008). Hassan 

et al. reported that IAs with an aspect ratio > 1.6 and either a sidewall or sidewall with 

branching vessel-type tend to be ruptured (Hassan et al. 2005). 

Xiang et al. studied both morphological indices and hemodynamic parameters and 

found that size ratio, average wall shear stress (WSS), and oscillatory shear index 

differentiate IA rupture status (Xiang et al. 2011). 



2 Review of the literature 

 

 

 

 

16 

 

Figure 2 Selected size indices of intracranial aneurysm pouch (A) and schematic 

illustrations of shape indices, according to Raghavan et al. (2005) (B). 

2.1.2.2 Patient-related risk factors 

Age 

The prevalence of IAs is very low in the first two decades of life, but increases steadily 

after the third decade (Rinkel et al. 1998). The annual risk of IA rupture is approximately 
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1.3% (Juvela et al. 2000). Thus, the cumulative incidence of SAH is most significant for 

younger IA patients (Juvela et al. 2000).  

 

Gender 

Female gender is a risk factor for IA formation and growth (Juvela et al. 2001), but also 

for SAH, especially after the age of 55 years (Rinkel et al. 1998, de Rooij et al. 2007, 

Sandvei et al. 2009, Korja et al. 2011). Hormone replacement therapy has been associated 

with a lower risk of SAH (Longstreth et al. 1994, Mhurchu et al. 2001). The effects of 

hormonal factors on the vascular wall, especially the effect of estrogen, have been 

suggested to explain the gender differences (Harrod et al. 2006). 

 

Smoking 

Cigarette smoking increases the risk for both IA formation and growth as well as for IA 

rupture (Juvela et al. 2000, Juvela et al. 2001, Isaksen et al. 2002, Sandvei et al. 2009, 

Korja et al. 2011). Cigarette smoke has several possible harmful effects on the vascular 

wall (Pipe et al. 2010), although the exact mechanism of how smoking impairs the 

function of the vascular wall is unknown. 

 

Hypertension 

Hypertension is associated with the prevalence of IAs (Taylor et al. 1995) as well as with 

SAH (Bonita 1986, Knekt et al. 1991, Isaksen et al. 2002, Sandvei et al. 2009). Recently, 

in two prospective studies, the joint effect of current smoking and hypertension on the risk 

of SAH was stronger than the sum of the independent effects (Korja et al. 2011, 

Lindekleiv et al. 2012).  

 

Other 

Alcohol consumption does not seem to be associated with IA formation or growth (Juvela 

et al. 2000, Juvela et al. 2001). However, excessive drinking may cause the rupture of a 

pre-existing IA (Juvela et al. 1993). Drinking more than five cups of coffee a day was an 

independent risk factor for SAH in one case-control study (Isaksen et al. 2002). 

Hypercholesterolemia is a well-known cardiovascular risk factor (deGoma et al. 2012), 
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but serum cholesterol levels do not appear to be associated with SAH (Knekt et al. 1991, 

Isaksen et al. 2002). 

2.1.2.3 Family history and genetics 

The prevalence of IAs is higher in patients with heritable connective tissue disorders like 

autosomal dominant polycystic kidney disease (ADPKD), Ehlers-Danlos syndrome type 

IV, and neurofibromatosis type 1 (Schievink et al. 1994, Schievink 1997a, Rinkel et al. 

1998). However, these heritable diseases are rare, comprising a minority of all IAs. Unlike 

previously thought, Marfan syndrome is not associated with increased prevalence of IAs 

(Conway et al. 1999).    

Family history is a significant risk factor for both IAs and SAH. In a family with two 

or more affected members, the prevalence of carrying IA is as high as 8.7% (Ronkainen et 

al. 1997), and the risk of aneurysmal SAH is significantly increased (Bor et al. 2008).  

The association of IAs with heritable diseases and the findings of epidemiological 

studies have raised the question about the role of genetics in the development and rupture 

of IAs. However, a large twin study showed only a moderate role of genetic factors in the 

etiology of SAH, suggesting that most of the familial SAHs are due to the familial 

clustering of such confounding risk factors as smoking and hypertension (Korja et al. 

2010).  

Nevertheless, the genetic background of IAs has been widely investigated. Genetic 

studies started with a functional candidate-gene approach (Ruigrok et al. 2005). This 

method requires knowledge of the disease mechanisms and it ignores genes that are 

potentially important in the disease process, but involved in unknown pathways (Ruigrok 

et al. 2005, Ruigrok et al. 2008). Genome-wide studies allow a hypothesis-free approach. 

The most promising loci of genome-wide linkage studies are 1p34.3-p36.13, 7q11, 

19q13.3, and Xp22 because these findings have been replicated in different study 

populations (Ruigrok et al. 2008). The first genomic-wide association study (GWAS) of 

Finnish, Dutch, and Japanese cohorts identified common SNPs on chromosomes 2q, 8q, 

and 9p that are associated with IAs (Bilguvar et al. 2008). The follow-up GWAS 

identified three new loci, namely 18q11.2, 13q13.1, and 10q24.32, strongly associating 

with IAs, and confirmed the previous associations with 8q11.23-q12.1 and 9p21.3 
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(Yasuno et al. 2010). Further studies have shown a significant association of SNPs on 

chromosomes 4q31.23 and 4q31.22 near the endothelin receptor type A gene with IA 

(Yasuno et al. 2011, Low et al. 2012). Yasuno et al. also found a suggestive IA risk locus 

at 5q23.2 (Yasuno et al. 2011). Further, Gaál et al. described an association between 

Putative histone-lysine N-methyltransferase PRDM6 gene at 5q23.2 and systolic blood 

pressure (Gaál et al. 2012). 

2.1.3 Diagnostics and current treatment options 

2.1.3.1 Ruptured IAs and SAH 

SAH is often characterized by sudden headache. Other symptoms of IA rupture may be 

vomiting, seizures, depressed consciousness, neck stiffness, and/or focal neurological 

defects. SAH is diagnosed by computer tomography (CT), magnetic resonance imaging 

(MRI), or lumbar puncture. IA is identified using computer tomography angiography 

(CTA), magnetic resonance angiography (MRA), or digital subtraction angiography 

(DSA). The anatomical configuration of IA and the adjoining vessels are also visualized 

using angiographic imaging, which facilitates choosing the optimal treatment method for 

the IA (van Gijn et al. 2007). Without intervention, the cumulative risk of rebleeding is 

approximately 40% in the first three weeks (Brilstra et al. 2002). The current treatment 

methods to prevent re-bleeding are microneurosurgical clipping and endovascular 

occlusion of IA using detachable coils. Both methods are invasive and have a risk of 

morbidity and even mortality (Vanninen et al. 1999, Molyneux et al. 2005, van der Schaaf 

et al. 2005, Raja et al. 2008). 

2.1.3.2 Unruptured IAs 

Nowadays, a growing number of unruptured IAs are incidentally found in patients imaged 

for reasons other than IAs or when families with a known history of SAH are screened. 

The current intervention options for unruptured IAs to prevent IA bleeding are the same as 

for ruptured IAs (clipping and coiling) – both invasive and somewhat risky (Wiebers et al. 

2003, Niskanen et al. 2005, Raja et al. 2008). However, it is known that not all IAs rupture 
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during the life-time of their carrier, and neither the safety nor the effectiveness of the 

prophylactic treatment of unruptured IAs has been tested in randomized controlled trials 

(Raymond et al. 2011). Better predictors are needed to differentiate rupture-prone IAs in 

order to concentrate prophylactic treatment efforts on those patients most at risk. One part 

of this endeavor can be research on IA pathogenesis in the hope of finding biomarkers 

predicting a high risk of rupture. IA wall research could also aid to develop less invasive, 

and thus, less risky, treatment methods for IAs in the future. 

2.2 Pathobiology of IA 

2.2.1 Normal cerebral artery wall 

Like extracranial arteries, the cerebral artery wall consists of three layers. The intima is 

lined by endothelial cells, and a small amount of connective tissue is located beneath the 

endothelium (Sawabe 2010). The media consists of regular layers of SMCs surrounded by 

collagen fibers and sparsely occurring elastic fibers (Nyström 1963). The adventitia, the 

main cellular component of which is fibroblasts, is the outer layer of the vessel wall 

(Ruigrok et al. 2005). The adventitia in cerebral arteries is only weakly developed 

(Nyström 1963). The intima is separated from the media by an internal elastic lamina 

(IEL), whereas the external elastic lamina seen in extracranial arteries between the media 

and the adventitia is absent (Ruigrok et al. 2005). 

The existence of a vasa vasorum in intracranial arteries has been debated. Aydin et al. 

found vasa vasorum-like vessels only in the proximal segments of vertebral and internal 

carotid arteries with a medial thickness of more than 250 µm in adults (Aydin 1998). 

However, Connolly et al. detected vasa vasorum-like vessels also in the adventitia of 

proximal segments of middle and anterior cerebral arteries (M1 and A1 segments), in 

addition to proximal segments of the carotid artery (Connolly et al. 1996). 

2.2.2. Vascular wall remodeling 

Vascular remodeling is a process in which the vascular wall changes its shape and 

structure in response to surrounding environmental conditions. In some situations, the 
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cellular responses may lead to pathological end-points, for example, to stenosis, as in 

atherosclerosis, or to aneurysmal dilatation (Michel et al. 2007). 

Early atherogenesis in humans begins with extracellular deposition of apolipoprotein 

B-containing lipids in the outer layer of the diffusely thickened intima (Nakashima et al. 

2007, Nakashima et al. 2008) and endothelial activation (Badimon et al. 2011). Early 

atherosclerotic changes include also the modification of lipids, e.g. oxidation of LDL, and 

the infiltration of CD68-positive macrophages. After phagocytizing the deposited lipids, 

macrophages become foam cells. Macrophages are also found in the adventitia and outer 

media, suggesting that macrophages also infiltrate the arterial wall from outside 

(Nakashima et al. 2007, Nakashima et al. 2008). Phenotypic modulation of SMCs is also 

crucial for vascular remodeling. In the atherosclerotic process, SMCs migrate into the 

intima, proliferate, secrete molecules like proteoglycans, and transform to foam cells, but 

apoptosis and loss of SMCs have also been detected (Nakashima et al. 2008). Progenitor 

cells from blood and adventitia may also migrate into the intima and differentiate to neo-

SMCs (Xu 2006). 

Adventitial response also occurs in vascular remodeling. In atherosclerosis, adventitial 

angiogenesis has been detected (Michel et al. 2007). The vasa vasorum is more often seen 

in cerebral arteries with atherosclerosis or thrombosis, or in large IAs, than in the normal 

cerebral artery wall (Atkinson et al. 1991, Aydin 1998). Especially in mechanical vascular 

injuries, like hypertension and balloon injury, the adventitial response also includes 

proliferation and phenotypic modulation of fibroblasts, leading to perivascular fibrosis 

(Michel et al. 2007). 

Abdominal aortic aneurysms (AAAs) are characterized by de-endothelialization and 

formation of intraluminal thrombus (ILT) (Michel et al. 2011). In AAAs, degradation of 

extracellular matrix proteins, such as elastin (Rizzo et al. 1989), and death of vascular 

smooth muscle cells (VSMCs) (Lopez-Candales et al. 1997) leads to medial destruction 

(Michel et al. 2011). ILT may have an important role in mediating medial destruction 

(Humphrey et al. 2008, Michel et al. 2011). The AAA wall covered with ILT is thinner, 

has more inflammatory cells, increased apoptosis of SMCs, and signs of increased 

extracellular matrix (ECM) degradation (Kazi et al. 2003). ILT is a source of proteinases 

due to trapped polymorphonuclear leukocytes (PMNs) (Fontaine et al. 2002). It also 

predisposes the AAA wall to hypoxic conditions that can lead to weakening of the wall 
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(Vorp et al. 2001). The pathogenesis of AAAs includes inflammation and fibrosis in the 

adventitia (Michel et al. 2007). 

2.2.3 Hemodynamic stress in the vascular wall 

Vessel walls are exposed to different hemodynamic forces as the heart pumps blood 

through the circulation. Hydrostatic forces and circumferential cyclic stretch cause a 

pressure that acts perpendicularly to the wall (Miller 2002). Movement of blood causes 

tangential shear stress (Miller 2002). In addition, axial wall stress is generated during the 

development of arteries due to elastin (Humphrey 2008). This longitudinal retractive force 

opposes vessel elongation (Dobrin et al. 1990). 

WSS is the component of frictional forces developing between flowing blood and 

endothelial cells. It acts parallel to the luminal surface of the vessel wall (Chiu et al. 

2011). Vessels with uniform geometry are exposed to laminar, undisturbed flow with 

physiological shear stress. Physiological flow conditions are essential for normal 

functioning of the endothelium. Near arterial bifurcations and curvatures, the flow 

becomes disturbed and oscillatory, with a varying shear stress gradient. These conditions 

have been shown to promote atheroma formation and intimal thickening (Cunningham et 

al. 2005, Cecchi et al. 2011). In areas of low shear stress, endothelial cells produce less 

nitric oxide and more vasoconstrictors and mitogens, like endothelin 1, angiotensin II, and 

platelet-derived growth factor B, activate circulating monocytes, and are themselves more 

susceptible to proapoptotic stimuli (Malek et al. 1999). 

Another primary mechanical force is blood pressure-induced circumferential wall 

stress (Humphrey 2008, Lu et al. 2011). This circumferential cyclic stretch affecting the 

whole vascular wall (intima, media, and adventitia) causes mechanical stimulation of both 

endothelial cells and SMCs (Ando et al. 2011, Lu et al. 2011). Cyclic stretch is needed to 

maintain the differentiated, contractile VSMC phenotype, but it may also enhance 

proliferative response of VSMCs (Birukov et al. 1995). Later, cyclic stretch has been 

shown to activate SMC proliferation and migration (Li et al. 2000, Li et al. 2007) as well 

as SMC apoptosis (Mayr et al. 2000, Wernig et al. 2003, Li et al. 2007). The final outcome 

of mechanical stress, such as SMC response, may depend on the intensity of mechanical 

stress and the micro-environment of SMCs (Li et al. 2007). 
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Wall tension is directly proportional to the intramural pressure and the radius of a 

spherical balloon, and inversely proportional to the wall thickness, as determined by 

Laplace’s law (Hall et al. 2000, Jeong et al. 2012). The magnitude of systemic blood 

pressure affects the intramural pressure of the vascular wall, thus having an impact on wall 

tension. A well-known fact is that “aneurysm rupture occurs when wall tension exceeds 

the mechanical strength of wall tissue” (Jeong et al. 2012). Therefore, factors affecting the 

structure of an IA wall as well as IA hemodynamics have been investigated. 

2.2.4 IA formation 

Saccular IAs typically form at the bifurcation of cerebral arteries. Tears in IEL are found 

at arterial bifurcation sites more frequently in patients with IAs (Hassler 1961). IEL 

disruption has been thought to precede IA formation and is associated with intimal 

thickenings (Stehbens 1960). However, the early process of IA formation is still largely 

unknown. Degeneration of the cerebral vessel wall and hemodynamic factors are proposed 

to have important roles in the initiation of IA formation (Stehbens 1989).  

In experimental animal models, the combination of hypertension and disrupted 

collagen synthesis induces the formation of aneurysms in cerebral arteries (Hashimoto et 

al. 1978, Hashimoto et al. 1987, Morimoto et al. 2002). Endothelial changes have been 

detected just distal to the apical intimal pad, leading to the formation of an inflammatory 

zone. Expansion of this inflammatory zone results in saccular dilatation of the arterial 

bifurcation (Jamous et al. 2007). Disruption of elastic laminae and death of medial SMCs 

are also first steps in the formation of induced aneurysms (Kim et al. 1993, Kondo et al. 

1998). However, these induced aneurysms do not spontaneously rupture (Aoki et al. 

2011).  

2.2.5 IA wall degeneration and rupture 

2.2.5.1 IA wall structure 

The IA wall is characterized by the loss of IEL and absent normal intima-media-adventitia 

layers (Hassler 1961, Scanarini et al. 1978). Unruptured IAs are usually characterized by a 
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linearly organized endothelium and regularly organized mural cells (VSMCs, 

myofibroblasts, fibroblasts) (Kataoka et al. 1999, Frösen et al. 2004). In addition, 

myointimal hyperplasia can be found in unruptured IAs, but it is also seen in some 

ruptured IAs (Frösen et al. 2004). In contrast, degenerative changes of the IA wall, like 

loss of endothelium, loss of mural cells, partial hyalinization of the wall, and 

disorganization of the collagen matrix, are associated with ruptured IA walls (Stehbens 

1963, Scanarini et al. 1978, Sakaki et al. 1997, Kataoka et al. 1999, Frösen et al. 2004). 

Thrombus formation is associated with wall degeneration and rupture (Frösen et al. 2004). 

In the adventitial side of some ruptured IAs, the vasa vasorum with partially occluded 

lumen is seen (Scanarini et al. 1978).  

2.2.5.2 Mechanisms of IA wall degeneration and rupture 

The loss of endothelial cells, adhesion of blood cells, and subsequent thrombus formation 

seen on the luminal side of the IA wall and are associated with IA rupture and wall 

degeneration (Scanarini et al. 1978, Kataoka et al. 1999, Frösen et al. 2004). In vascular 

pathologies, injury to the endothelium or to the medial layer leads to intimal response and 

myointimal hyperplasia (Newby et al. 2000). Signs of myointimal hyperplasia, 

proliferation of mural cells, synthesis of a new matrix, and organization of a mural 

thrombus by SMCs are seen in unruptured IAs, but also in some ruptured IA walls, and 

this may be a protective “healing” response of the vascular wall (Frösen et al. 2004, 

Frösen et al. 2012). Linearly organized collagen fibers maintain the strength of the 

vascular wall against hemodynamic stress, and they need to be repaired and synthesized 

when the vascular wall is exposed to mechanical stress (Sawabe 2010). Myointimal 

hyperplasia and synthesis and repair of collagen fibers likely increase the tensile strength 

of the IA wall and protect against IA rupture (Frösen et al. 2012).  

Unlike unruptured IAs, ruptured IA walls are often thin, hyalinized structures 

characterized by a loss of mural cells and breakdown of collagen fibers (Kataoka et al. 

1999, Frösen et al. 2004). Myointimal hyperplasia does not strengthen the wall. Instead, 

the death of mural cells leads to decreased synthesis of collagen fibers. In addition, 

proteinases degrade the ECM (Bruno et al. 1998). Matrix metalloproteinases (MMPs), 

serine proteinases, and plasmin are enzymes capable of cleaving ECM structural proteins, 
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such as collagens, elastin, and fibronectin (Mignatti et al. 1993, Bäck et al. 2010), and 

thus, their activity weakens the vascular wall.  MMP-9 is synthesized locally in the IA 

wall (Kim et al. 1997b), but increased pro-MMP-2 levels in serum samples of some IA 

patients have also been detected (Todor et al. 1998). Compared with normal cerebral 

arteries, increased MMP and serine proteinase activity and increased expression of 

plasmin, membrane type 1 MMP, MMP-2, and MMP-9 have been detected in the IA wall 

(Kim et al. 1997b, Bruno et al. 1998, Caird et al. 2006). Expression of MMP-2 and MMP-

9 messenger RNA (mRNA) is also higher in ruptured IAs than in unruptured IAs (Jin et al. 

2007). 

 

Cell death in the IA wall 

Mural cell loss has raised the question of possible cell death mechanisms in the IA wall. 

Sakaki et al. found that apoptosis is associated with IA rupture (Sakaki et al. 1997). They 

used TUNEL (terminal deoxynucleotidyl transferase (dUTP) nick end labeling) staining. 

Pentimalli et al. replicated the finding using TUNEL and electron microscopy (Pentimalli 

et al. 2004). In two Finnish studies, TUNEL-positivity did not reach statistical significance 

between ruptured and unruptured IAs (Frösen et al. 2004, Tulamo et al. 2006), but 

apoptotic cells were found using electron microscopy (Tulamo et al. 2006). Later, Guo et 

al. showed apoptotic cells in ruptured IA walls using electron microscopy (Guo et al. 

2007). They also studied caspases, which are enzymes that mediate apoptotic signaling. 

They noted increased expression of caspase-3 mRNA in ruptured IA samples and AAAs, 

as compared with normal arteries, but they did not investigate the activity of caspases 

(Guo et al. 2007). Necrotic cell death in ruptured IA walls has also been reported (Holling 

et al. 2009). However, how cells in the IA wall die and what triggers cell death remain 

obscure. 

 

Inflammation in the IA wall 

Inflammation was observed in the IA wall already by Virchow (Virchow 1847), and after 

Virchow’s report, inflammation has been suggested to be the cause of wall degradation 

and rupture by many authors. Inflammation is a response to tissue injury or irritants. The 

goal of the inflammatory response is to heal the injury or remove the irritant. If the irritant 

cannot be removed, the inflammatory reaction may become chronic. The immune system 
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mediates the inflammatory reaction, and it can be divided into two different types of 

responses: innate and adaptive immunity. Natural antibodies, part of innate immunity, 

recognize pathogen-associated molecular patterns (PAMPs) and danger-associated 

molecular patterns (DAMPs). One class of DAMPs is oxidation-specific epitopes, 

including oxidatively modified lipids like oxidized low-density lipoprotein (oxLDL) and 

epitopes on apoptotic cells (Chou et al. 2008, Miller et al. 2011). Natural and acquired 

antibodies activate complement, which is an important part of innate immunity. 

Inflammatory cells are also recruited to the site of inflammation. Macrophages and 

dendritic cells, part of innate immunity, are able to present antigens and to activate the 

cells of adaptive immunity, e.g. T-cells and B-cells. 

Inflammatory cells, including T-cells, macrophages, and PMNs, have been detected in 

the IA wall (Crompton 1966, Chyatte et al. 1999, Kataoka et al. 1999, Frösen et al. 2004). 

The complement system in the IA wall is activated by a classical pathway with an 

alternative pathway amplification (Tulamo et al. 2010b, Tulamo et al. 2010c), and 

complement activation may be one of the triggers of inflammatory cell infiltration into the 

degenerating IA wall (Tulamo 2010, Frösen et al. 2012). Antibodies are found in most IA 

walls, but complement activation does not correlate with the accumulation of antibodies 

(Chyatte et al. 1999, Tulamo et al. 2010b), suggesting that antibody-mediated 

inflammatory response in not the primary trigger of inflammation in the IA wall (Frösen et 

al. 2012). Terminal complement activation itself (the formation of membrane attack 

complex (MAC)) is associated with IA wall degeneration and rupture (Tulamo et al. 

2006). MAC formation on the surface of cells causes cell damage and may lead to 

apoptosis or necrosis. However, in IA walls, MACs are detected in the matrix and cellular 

debris in decellularized regions, but rarely on the cell surface (Tulamo et al. 2006), 

suggesting that complement activation may be a reaction to necrotic cell death (Frösen et 

al. 2012). 

Inflammatory cell infiltration is associated with ruptured IAs (Kataoka et al. 1999, 

Frösen et al. 2004). However, it has been suggested that inflammatory cell infiltration 

occurs before the rupture, as inflammatory cells are present in ruptured IAs that have been 

resected after a very short time interval from IA rupture, and they are also found in 

unruptured IAs  (Kataoka et al. 1999, Frösen et al. 2004).  
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The majority of macrophages in the IA wall are CD163-positive (Frösen et al. 2004). 

CD163 is a hemoglobin scavenger receptor that is expressed in macrophages involved in 

“alternative activation” (Moestrup et al. 2004, Fabriek et al. 2005). “Alternatively 

activated” macrophages may dampen the inflammatory response; they scavenge the 

components of damaged cells and take part in anti-oxidative defense of the tissue 

(Moestrup et al. 2004, Fabriek et al. 2005, Nielsen et al. 2009). Macrophages may induce 

apoptosis using FAS ligand (FASL) and tumor necrosis factor alpha (TNFα) (Ueda et al. 

2002, Boyle et al. 2003). TNFα and its downstream target, Fas-associated death domain 

protein (FADD), have been detected in ruptured IAs (Jayaraman et al. 2005). TNFα 

induces apoptosis via activation of caspase-8 (Alikhani et al. 2004), but the apoptotic 

pathways in the IA wall have not thus far been investigated. 

Hence, inflammation is likely an important modulator in the degeneration process of 

the IA wall, but its significance as a cause of cell death remains unclear (Frösen et al. 

2012). 

 

Cell signaling in the IA wall 

Only a few studies about signaling protein expression at the protein level in the human IA 

wall have been published to date. Kilic et al. evaluated 10 unruptured and 10 ruptured 

human IA samples collected perioperatively and compared them with autopsy samples of 

the circle of Willis using immunohistochemistry (Kilic et al. 2005). They found that 

transforming growth factor-α expression was lower in IA samples than in normal circle of 

Willis samples (Kilic et al. 2005). Frösen et al. noted in their immunohistochemical series 

of 21 unruptured and 35 ruptured human IA samples that vascular endothelial growth 

factor (VEGF), transforming growth factor-β, and basic fibroblast growth factor receptors 

were associated with IA wall remodeling (Frösen et al. 2006). Takagi et al. assessed 12 

human IA samples obtained at surgery and compared them with 5 control middle cerebral 

artery (MCA) samples obtained at autopsy (Takagi et al. 2002). Using 

immunohistochemistry, they found that phosphorylated JNK and phosphorylated c-Jun 

expression was increased in IA samples relative to control vessels (Takagi et al. 2002).  
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2.2.5.3 IA wall degeneration and rupture – results from gene expression 

studies 

In recent years, several genome-wide microarray studies investigating IA wall gene 

expression have been published. The first microarray study comparing unruptured and 

ruptured IAs found an association between antigen presenting inflammatory cells and IA 

rupture (Krischek et al. 2008). A study examining unruptured and ruptured IAs and the 

superficial temporal artery (STA) observed pathways involved in apoptosis, inflammation, 

focal adhesion, extracellular matrix-receptor interaction, and cell communication to be 

differentially expressed (Shi et al. 2009). Genes associated with both intrinsic and 

extrinsic apoptotic pathways were differentially expressed in IA samples, but differential 

expression of caspase-9 or caspase-8 mRNA was not observed (Shi et al. 2009). A 

microarray study comparing unruptured and ruptured MCA aneurysms revealed that genes 

related to inflammatory cell infiltration, oxidative stress, disturbed cell homeostasis, and 

dysfunctional endothelium were upregulated in ruptured IAs (Kurki et al. 2011). The 

largest microarray study to date compared 10 unruptured and 12 ruptured IAs with middle 

meningeal artery and STA samples and found overexpression of collagenases (MMP-2 

and MMP-9), proapoptotic genes (Fas, Bax, and Bid), and inducible nitric oxide synthase 

(iNOS) in ruptured IAs, whereas antiapoptotic genes (Bcl-X(L) and Bcl-2) were 

downregulated (Marchese et al. 2010). In contrast to other studies, one microarray study 

reported decreased inflammatory process in ruptured IAs (Pera et al. 2010). A microarray 

study comparing 3 unruptured IAs with 3 STA samples found ECM-related genes to be 

upregulated and inflammation-related genes to be downregulated (Li et al. 2009). 

2.2.5.4 Hemodynamic stress in IA development 

Hemodynamic stress has been suggested to have an important role in IA formation 

(Stehbens 1989). However, studying IA hemodynamics is complicated because many 

different factors, such as parent vessel and IA geometry, flow dynamics, pressures, and IA 

wall structure, should be taken into account (Gobin et al. 1994). Hemodynamics in the 

circle of Willis and inside the IA pouch has earlier been investigated using glass and 

silicone models (Ferguson 1972, Roach et al. 1972, Stehbens 1975, Steiger et al. 1987, 

Steiger et al. 1988, Gobin et al. 1994) and computational models (Perktold et al. 1988, 
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Gonzalez et al. 1992, Low et al. 1993). These studies have concluded that turbulent flow 

occurs inside IAs. In addition, they suggest that the flow is slower inside the IA pouch 

than in the parent vessel and even stagnation of flow may occur at the fundus, whereas the 

flow rate is higher at the neck region (Ujiie et al. 1999).  

Ujiie et al. studied the relationship between aneurysm morphology and flow conditions 

using a rabbit model. They found that a high aspect ratio (>1.6) (fundus length/neck 

diameter) resulted in low-flow conditions near the IA dome and suggested that low shear 

stress near the dome predisposes to IA rupture (Ujiie et al. 1999).  

In recent years, the development of medical imaging technology and computer 

equipment has enabled computational fluid dynamics (CFD) analysis. CFD enables more 

accurate prediction of the hemodynamics of IAs (Jeong et al. 2012). Due to the well-

known effects of WSS and flow type (laminar vs. turbulent) on the endothelium, WSS and 

local flow conditions in IA pathophysiology have been actively studied (Nixon et al. 

2010). Simple stable flow patterns have been observed in unruptured IAs, whereas 

complex or unstable flow patterns have been found in ruptured IAs (Cebral et al. 2005, 

Xiang et al. 2011). Low WSS has been noted especially in ruptured IAs (Shojima et al. 

2004, Xiang et al. 2011). Boussel et al. demonstrated that low WSS correlates with IA 

growth (Boussel et al. 2008). In addition to WSS, IA wall tension and possible pressure 

changes inside the IA pouch have been investigated using CFD. Isaksen et al. showed that 

high wall tension and wall displacement localize on the same regions where IAs usually 

rupture (Isaksen et al. 2008).  

However, the results of CFD analysis depend highly on material properties and chosen 

boundary conditions (Jeong et al. 2012). For example, local wall properties, possible 

effects of intraluminal thrombus, and outflow boundary conditions should be taken into 

account to improve the reliability of CFD results (Jeong et al. 2012). All in all, CFD 

analysis is a new, developing approach, but much effort is needed before this method can 

be applied to clinical work, e.g. to predict IA rupture risk of individual patients.   

2.2.6 Summary of putative mechanisms of IA wall degeneration and rupture 

Current data suggest that degeneration of the IA wall is a dynamic process, which 

probably starts with endothelium dysfunction. Hemodynamic factors affect the 
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functioning of the endothelium and mural cells. As the IA grows, the hemodynamics 

inside the IA pouch change from the normal laminar flow. Aberrant flow conditions 

activate pathological cell mechanisms, possibly leading to the loss of mural cells, 

inflammation, and degradation of the matrix. These mechanisms have the potential to 

weaken the vascular wall and change its structure, potentially resulting in outpouchings of 

the IA wall and other morphological variations from the spherical shape. These new 

morphological features lead to a more complex hemodynamic environment, which may, in 

turn, lead to activation of mechanisms that weaken the IA wall. Hence, the IA wall 

gradually degenerates. Finally, it is too fragile to resist hemodynamic stress leading to IA 

rupture (Frösen 2006, Tulamo et al. 2010a, Tulamo 2010, Frösen et al. 2012). 

2.3 Intracellular signaling pathways in vascular wall pathobiology 

2.3.1 Mitogen-activated protein kinases (MAPKs) 

MAPK signal transduction pathways are a widespread mechanism in eukaryotic cell 

regulation. MAPKs are a family of intracellular signaling proteins that are activated by 

phosphorylation by upstream kinases. They are activated by a large number of different 

stimuli, such as growth factors, inflammatory cytokines, and environmental stressors, 

including ischemic injury, ionizing radiation, osmotic shock, and mechanical stretch 

(Kyriakis et al. 2001). MAPKs control the activation of gene transcription, protein 

synthesis, cell cycle machinery, cell death, and differentiation (Kyriakis et al. 2001). In the 

following section, three major MAPKs, JNK, p38, and extracellular signal-regulated 

kinase (ERK), are described in more detail, focusing on their role in vascular 

pathobiology. ERK responds to mitogenic stimuli, whereas JNK and p38 are mainly 

activated by stress signaling (Kyriakis et al. 2001). 

2.3.1.1 Stress-activated kinases 

c-Jun N-terminal kinase (JNK) 

Three genes encode the JNK family members JNK1, JNK2, and JNK3. There are four 

splice variants of JNK1, four splice variants of JNK2, and four splice variants of JNK3. 
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These splice variants lead to the production of 12 JNK polypeptides, the molecular 

weights of which are either 46 or 54 kilodaltons (kDa) (Muslin 2008, Kyriakis et al. 

2012). The functional significance of these two isoforms, p46-JNK and p54-JNK, is 

unclear (Kyriakis et al. 2012). JNK is activated by mitogens, heat shock, ionizing 

radiation, oxidative stress, DNA-damaging chemicals, ischemic reperfusion injury, 

mechanical shear stress, proinflammatory cytokines of the TNF family, vasoactive 

peptides like endothelin and angiotensin II, PAMPs, DAMPs, and protein synthesis 

inhibitors (Kyriakis et al. 2001, Kyriakis et al. 2012). Depending on the cellular context, 

JNK may regulate either apoptosis or survival signaling (Davis 2000). Transcription factor 

c-Jun is a downstream target of JNK (Kyriakis et al. 2001). c-Jun enhances the expression 

of MMP-9 (Shin et al. 2002). 

JNK is activated in balloon-injury models and in hypertrophic cardiac and 

hypertensive vascular tissue (Hu et al. 1997, Kim et al. 1997a, Izumi et al. 1998, Kim et 

al. 1998). JNK activation leads to SMC proliferation and to neointimal formation in 

balloon-injury model (Izumi et al. 2001). Mechanical strain activates JNK in rat aortic 

VSMCs, producing induction of alpha-smooth muscle actin (αSMA) expression (Tock et 

al. 2003). c-Jun regulates VSMC proliferation and balloon injury-induced intimal 

hyperplasia (Yasumoto et al. 2001). In macrophages, JNK regulates foam cell formation 

after exposure to oxLDL (Rahaman et al. 2006). In cultured bovine endothelial cells, a 

similar activation pattern for JNK was observed as a result of cyclic strain and shear stress 

(Azuma et al. 2000). JNK is involved in AAA pathogenesis, with JNK enhancing the 

degradation of ECM and suppressing genes that encode ECM biosynthetic enzymes 

(Yoshimura et al. 2005). An immunohistochemistry study comparing surgically obtained 

unruptured and ruptured human IAs with MCA autopsy samples suggested increased 

expression of phospho-JNK and phospho-c-Jun in IA samples (Takagi et al. 2002). 

 

p38 MAPK 

Four different genes encode p38 MAPKs, p38α-δ (Kyriakis et al. 2012). Like JNK, p38 is 

activated by environmental stresses, inflammatory cytokines, PAMPs, and DAMPs 

(Kyriakis et al. 2001, Kyriakis et al. 2012). p38 has a central role in inflammation 

(Schieven 2005), but it also participates in several other biological processes, e.g. cell 

cycle control in embryogenesis (Kyriakis et al. 2001). 
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p38 was activated in cerebral arteries in an experimental SAH model, leading to the 

development of vasospasm (Sasaki et al. 2004). Like JNK, p38 activates strain-induced 

αSMA expression in rat aortic VSMCs (Tock et al. 2003) and promotes neointimal 

formation after balloon injury (Ohashi et al. 2000, Proctor et al. 2008). p38 has also been 

found to regulate cyclic strain stress-induced SMC proliferation and migration in cultured 

rat aortic VSMCs (Li et al. 2000, Li et al. 2007), but also cyclic stretch-induced β1-

integrin-mediated VSMC apoptosis (Wernig et al. 2003, Li et al. 2007). In endothelial 

cells, shear stress induced greater activation of p38 in vitro than cyclic strain (Azuma et al. 

2000). p38 has also been shown to be activated by oxLDL and may regulate foam cell 

formation (Zhao et al. 2002). 

2.3.1.2 Extracellular signal-regulated kinase (ERK) 

ERK has two isoforms, ERK1 and ERK2, the alternative names of which are p44-MAPK 

and p42-MAPK, respectively (Davis 1993, Kyriakis et al. 2012). ERK is known as 

insulin- and mitogen-activated MAPK (Kyriakis et al. 2012). The most familiar activator 

of ERK is the Ras proto-oncoprotein (Kyriakis et al. 2012). However, in some instances, 

ERK can also be activated by proinflammatory cytokines, by PAMPs like 

lipopolysaccharide produced by microbes, and by DAMPs like oxLDL in atherosclerosis 

(Kyriakis et al. 2012). 

ERK has been shown to be activated in a balloon-injury model, in cardiac hypertrophy, 

and in hypertensive vascular tissue (Hu et al. 1997, Kim et al. 1997a, Izumi et al. 1998, 

Kim et al. 1998, Koyama et al. 1998). ERK activation triggers SMC proliferation, leading 

to neointimal formation (Izumi et al. 2001). In rat aortic VSMCs, ERK is activated in vitro 

in response to both shear stress and cyclic strain (Hu et al. 1998, Li et al. 1999). In 

cultured endothelial cells, ERK activation is greater for shear stress than for cyclic strain 

(Azuma et al. 2000). 

2.3.2 Protein kinase B (PKB/Akt) 

Akt is a serine-threonine kinase with three isoforms, Akt1, Akt2, and Akt3. It has 

important roles in cell survival, cell growth, and glucose metabolism (Coffer et al. 1998). 
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In the vascular system, Akt signaling has specific functions in normal physiology and 

disease, e.g. in the endothelium, VSMCs, and atherosclerotic plaques (Morello et al. 

2009). In the endothelium, Akt regulates vascular tone by acting as a positive regulator of 

endothelial nitric oxide synthase (Luo et al. 2000). Akt also mediates VEGF-stimulated 

angiogenesis (Ahmad et al. 2006). In VSMCs, Akt participates in medial hyperplasia and 

vascular remodeling (Nemenoff et al. 2008, Morello et al. 2009). Akt signaling may 

promote the atherosclerotic process (Chang et al. 2007, Fougerat et al. 2008, Morello et al. 

2009, Eisenreich et al. 2011). Treatment with a PI3K inhibitor (AS605240) decreased 

Akt phosphorylation in leukocytes and in an atherosclerotic lesion and reduced the 

development of atherosclerotic lesions (Fougerat et al. 2008). On the other hand, Akt1 has 

been suggested to have an atheroprotective role (Fernandez-Hernando et al. 2007, Morello 

et al. 2009). Loss of Akt1 in the vessel wall increases inflammatory mediators, reduces 

endothelial nitric oxide synthase phosphorylation, and enhances the apoptosis of 

endothelial cells and macrophages in a murine model of atherosclerosis (Fernandez-

Hernando et al. 2007).  

2.3.3 Mammalian target of rapamycin (mTOR) 

mTOR affects a wide variety of cellular functions, including metabolism, cell growth, 

survival, aging, synaptic plasticity, immunity, and memory. It is a serine-threonine kinase 

and is found in two complexes, mTOR complex 1 (mTORC1) and mTORC2 (Yang et al. 

2007). Rapamycin, also known as sirolimus, is an mTOR inhibitor. Rapamycin acts by 

binding to its cytosolic receptor, FK506 binding protein (FKBP12) (Poon et al. 2002). The 

target of rapamycin-FKBP12 complex is mTOR (Sabatini et al. 1994). 

mTOR promotes cell-cycle progression in VSMCs and regulates VSMC differentiation 

(Rzucidlo et al. 2007). Rapamycin inhibits VSMC proliferation and migration (Marx et al. 

1995, Poon et al. 1996). It has been successfully used in coronary stents to inhibit 

restenosis (Sousa et al. 2001, Poon et al. 2002, Caixeta et al. 2009). Depending on the 

complex (mTORC1 or mTORC2), rapamycin has different effects on mTOR signaling 

and its subcellular localization in fibroblasts (Rosner et al. 2008). 
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2.3.4 Cyclic AMP response element binding protein (CREB) 

CREB is a phosphorylation-dependent transcription factor that controls cell proliferation, 

differentiation, metabolism, and survival (Reusch et al. 2004, Ichiki 2006, Wen et al. 

2010). It also has a role in the regulation of immune responses. Several kinases 

phosphorylate CREB at serine 133 (Wen et al. 2010). CREB has a wide range of target 

genes, e.g. cyclins, antiapoptotic Bcl-2 gene, growth factors, structural proteins like 

fibronectin, and heme oxygenase-1 (HO-1) (Mayr et al. 2001, Krönke et al. 2003, Ichiki 

2006). 

CREB maintains the normal function and structure of the heart, but in the vascular 

vessel wall CREB may have both positive and negative roles in the remodeling process 

(Ichiki 2006). CREB has been shown to support quiescent and healthy phenotypes in 

VSMCs and in endothelial cells (Klemm et al. 2001, Reusch et al. 2004). However, 

another study found that CREB was activated in the neointima after balloon injury of the 

rat carotid artery, and transduction of dominant-negative CREB by an adenoviral vector 

decreased the neointimal formation (Tokunou et al. 2003). Thus, Tokunou et al. concluded 

that CREB has an important role in the survival and proliferation of neointimal VSMCs 

and that CREB increases neointimal formation (Tokunou et al. 2003). After acute 

exposure to vascular toxins, like oxidative stress, high glucose, or cytokines, CREB is also 

phosphorylated and activated (Reusch et al. 2004). This has been interpreted as a 

protective response, possibly intended to decrease oxidant injury (Reusch et al. 2004, 

Schauer et al. 2010). A further study has shown that in rodent models of aging, 

hypertension, and insulin resistance, CREB expression was decreased (Schauer et al. 

2010). In the same study, the exposure of rat aortic VSMCs to LDL and oxLDL led to a 

rapid CREB activation (Schauer et al. 2010). However, longer exposure to oxLDL 

decreased expression of CREB protein (Schauer et al. 2010). The observed loss of VSMC 

CREB expression was suggested to be a common response to a vascular injury, probably 

to oxidative stress, making VSMC more susceptible to proliferation, migration, and 

apoptosis (Schauer et al. 2010). 
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2.3.5 Pathways of cellular death 

Cell death mechanisms are classically divided into apoptosis, autophagic cell death, and 

necrosis. Nowadays, it is suggested that cell death is “regulated” in most instances and 

“accidental” cell death is triggered only in extremely harsh physical conditions (Galluzzi 

et al. 2012). In recent years, several new cell death mechanisms have been described 

(Galluzzi et al. 2012). The most well-known mechanisms are still apoptosis and necrosis. 

Apoptosis has been divided into caspase-dependent and caspase-independent pathways as 

well as into extrinsic and intrinsic apoptosis (Galluzzi et al. 2012). Increasing evidence 

shows that necrosis is also “regulated” in many settings (Vandenabeele et al. 2010). Cell 

death by regulated necrosis can be triggered by alkylating DNA damage, excitotoxins, and 

ligation of death receptors (Vandenabeele et al. 2010, Galluzzi et al. 2012). 

2.3.5.1 Caspases 

Caspases are a family of enzymes that take part in programmed cell death. Caspases are 

activated by cleavage. Classically, apoptotic pathways are divided into “extrinsic” and 

“intrinsic”. A simplification of the activation of these pathways is represented in Figure 3. 

In extrinsic apoptosis, also known as the death-receptor pathway, cytokines like FASL, 

TNFα, and TNF-related apoptosis-inducing ligand bind to death receptors, including FAS, 

TNFα receptor 1, and TNF-related apoptosis-inducing ligand receptor 1-2, which results in 

activation of initiator caspase-8 (Figure 3) (Cohen 1997, Galluzzi et al. 2012). Especially 

inflammatory cells produce these cytokines (Aggarwal 2003), and inflammation is one 

important activator of extrinsic apoptosis. Recently, mitochondrial contribution to 

extrinsic apoptosis has been detected in some cell types, e.g. hepatocytes and pancreatic β 

cells, and another form of extrinsic apoptosis, apoptosis by dependence receptors, has 

been described (Galluzzi et al. 2012).   

Intrinsic apoptosis is activated by cellular stress, including hypoxia, oxidative stress, 

irradiation, DNA damage, and cytosolic Ca
2+

 overload (Kuida 2000, Ueda et al. 2002, 

Galluzzi et al. 2012). All of these triggers are able to cause a metabolic catastrophe that 

includes mitochondrial outer membrane permeabilization (MOMP). MOMP leads to the 

dissipation of mitochondrial transmembrane potential and arrest of mitochondrial ATP 

synthesis (Galluzzi et al. 2012). Reactive oxygen species (ROS) are overgenerated as the 
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respiratory chain gets uncoupled and proteins like cytochrome c are released into the 

cytosol (Galluzzi et al. 2012). Initiator caspase-9 is activated (Figure 3). Caspase-

independent intrinsic apoptosis has also been described (Galluzzi et al. 2012).  

 

Figure 3 Simplification of intrinsic and extrinsic apoptotic pathways. Cellular stress like 

oxidative stress activates the intrinsic apoptotic pathway with caspase-9 activation. Bad protein is 

one of the regulators of the intrinsic apoptotic pathway, and it can be inactivated by 

phosphorylation by survival factors (yellow circle indicates the phosphorylated form of Bad). The 

extrinsic apoptotic pathway is activated by inflammatory cytokines such as tumor necrosis factor 

alpha. Both of these pathways converge in the cleavage and activation of caspase-3 and apoptosis 

of the cell. Bad, Bcl-associated death protein; FADD, Fas-associated death domain protein; 

FASL, Fas ligand; M, mitochondrion; TNF, tumor necrosis factor alpha; TNFR1, tumor necrosis 

factor receptor 1 
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Both extrinsic and intrinsic apoptotic pathways converge in the cleavage and activation 

of caspase-3, which is an executioner caspase. Activated caspase-3 causes apoptosis of the 

cell (Figure 3). 

2.3.5.2 Cellular death in vascular diseases 

In the vascular system, cells are constantly exposed to various environmental stresses such 

as different types of hemodynamic forces and harmful metabolic byproducts. When the 

pathological disease process starts, the cells are exposed to new, harmful insults like 

abnormal hemodynamic stress. These changing environmental circumstances may trigger 

cell death (Zheng et al. 2011).  

Apoptosis of endothelial cells, VSMCs, and macrophages is an important step in 

atherosclerosis and has been widely studied (Kockx et al. 2000, Martinet et al. 2011, 

Zheng et al. 2011). Both intrinsic and extrinsic apoptotic pathways are activated in the 

atherosclerotic process (Kutuk et al. 2006). Necrotic cell death in atherosclerosis is poorly 

investigated. One reason for this is that reliable methods to detect necrosis in situ are not 

available; morphological analysis is mostly used (Martinet et al. 2011). Morphological 

analysis of human carotid plaques with transmission electron microscopy has shown that 

most of the dying VSMCs and macrophages have an ultrastructure typical of necrotic 

rather than apoptotic cells (Crisby et al. 1997). In atherosclerotic plaques, oxidative stress 

(high ROS levels), toxic levels of mildly oxidized LDL and highly oxidized LDL, and 

increased intracellular Ca
2+

 may act as triggers for necrosis (Martinet et al. 2011). It has 

been speculated that “a truly silent cell death” in vascular lesions could lead to regression 

of the lesions (Zheng et al. 2011). However, impaired phagocytic clearance of apoptotic 

cells and necrotic cell death stimulate inflammation, and this downstream response may 

accelerate the progression of the atherosclerotic plaque (Martinet et al. 2011, Zheng et al. 

2011). 

Arterial aneurysms are characterized by a loss of VSMC relative to normal arteries. In 

human AAAs, signs of inflammation-mediated extrinsic apoptosis have been observed 

(Henderson et al. 1999). In a rodent model of elastase-induced experimental AAAs, 

activation of intrinsic apoptotic pathway has been reported (Sinha et al. 2005), and 

oxidative stress has also been speculated to play a role in the apoptosis of VSMC in 
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human AAA (McCormick et al. 2007). In elastase-induced experimental saccular 

aneurysms, the intrinsic apoptotic pathway was activated, whereas no activation of 

extrinsic apoptotic pathway was detected (Kadirvel et al. 2010). 

2.3.5.3 Bcl-associated death protein (Bad) 

Bad protein belongs to the BCL-2 family of cell death regulators. It is a proapoptotic 

BH3-only protein that is inactivated by phosphorylation by prosurvival signaling factors 

(Figure 3, page 36) (Danial 2009). Bad has three phosphorylation sites: Ser112, Ser136, 

and Ser155. Bad is a well-known apoptosis regulator acting in the intrinsic apoptotic 

pathway. Other roles of Bad have also been revealed, e.g. participation in glucose 

metabolism (Danial 2009). 

In the vascular system, exposure to mildly oxidized LDL resulted in increased levels of 

Bad and induced apoptosis of coronary artery endothelial cells and SMCs (Napoli et al. 

2000). Phosphatidylinositol (PI) 3-kinase-dependent pathway inactivates Bad and prevents 

VSMC death (Bai et al. 1999). 

2.3.6 Role of oxidative stress 

Increased formation or decreased destruction of ROS, including superoxide radical (O2
-
) 

and hydrogen peroxide (H2O2), leads to redox imbalance and increased oxidative stress 

(McCormick et al. 2007). In a vascular lesion, leukocytes are a potential source of ROS 

(Martin-Ventura et al. 2012). Hemolysis of red blood cells (RBCs) releases the pro-

oxidant hemoglobin (Hb), and heme-iron potentiates the toxicity of ROS (Martin-Ventura 

et al. 2012).  

Oxidative stress may cause tissue damage in the vascular wall (McCormick et al. 

2007), and it is involved in many vascular diseases such as hypertension, diabetes, 

ischemia/reperfusion injury, and atherosclerosis (Peterson et al. 2009). 

In AAAs, O2
-
 levels are increased relative to nonaneurysmal aortic segments (Miller et 

al. 2002), and increased H2O2 levels have been observed in intraluminal thrombus of AAA 

(Ramos-Mozo et al. 2011). Oxidative stress has been speculated to have an important role 

in the formation of AAAs (McCormick et al. 2007), and the intraluminal thrombus with 
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RBCs, leukocytes, and platelets has been proposed to be the main source of oxidative 

stress in AAAs (Michel et al. 2011, Martin-Ventura et al. 2012). 

ROS are also able to initiate the peroxidation of lipids, which results in the formation 

of oxLDL (Mitra et al. 2011). OxLDL itself is able to enhance ROS formation, and it also 

has other potentially harmful effects on the vascular wall, including induction of 

endothelial cell and VSMC apoptosis (Nishio et al. 1996, Li et al. 2000, Vergnani et al. 

2000, Mitra et al. 2011). The proatherogenic role of oxLDL in the atherosclerotic process 

is well established (Mitra et al. 2011). 

To reduce harmful effects of oxidative stress, the vascular wall has several antioxidant 

mechanisms (Martin-Ventura et al. 2012). Free Hb and haptoglobin (Hp) form a complex, 

which is endocytosed by scavenger receptor CD163 (Martin-Ventura et al. 2012). CD163 

is expressed on the surface of “alternatively activated” macrophages, which have anti-

inflammatory and anti-oxidative functions (Gordon 2003, Moestrup et al. 2004, Fabriek et 

al. 2005). After endocytosis, heme is degraded to less toxic compounds by HO-1 (Martin-

Ventura et al. 2012).  

2.3.6.1 Heme oxygenase-1 (HO-1) 

HO has three isoenzymes: HO-1, HO-2, and HO-3. HO-3 is not expressed in humans. HO-

2 is a constitutive isoform, whereas HO-1 is an inducible isoform. HO-1 and HO-2 play an 

important role in heme breakdown. HO-1 is induced by oxidative stress, and the heme 

degradation products produced by HO-1, like biliverdin and bilirubin, have antioxidant 

properties (Peterson et al. 2009). In addition to antioxidant effects, HO-1 has anti-

inflammatory and antiapoptotic properties (Dulak et al. 2008b). Genetic polymorphisms (a 

(GT)n dinucleotide length polymorphism, and two single-nucleotide polymorphisms 

(SNPs), G(-1135)A and T(-413)A), in the promoter region of human HO-1 gene affect the 

HO-1 response (Exner et al. 2004). 

HO-1 has been detected in the endothelium, foam cells/macrophages, and VSMCs in 

human atherosclerotic lesions (Wang et al. 1998). OxLDL acts as an inducer of HO-1 in 

human vascular cells (Ishikawa et al. 1997), and HO-1 has a protective role against 

atherosclerosis (Ishikawa et al. 2001). In an experimental AAA model, flow loading 

(causing increased wall shear stress and relative wall strain) increased HO-1 expression 
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(Nakahashi et al. 2002). In macrophages, HO-1 expression promotes antioxidant and anti-

inflammatory effects, thereby resulting in an antiatherogenic effect in atherosclerotic 

lesions (Orozco et al. 2007). HO-1 is also proangiogenic by inducing VEGF in VSMCs, 

endothelial cells, and macrophages (Dulak et al. 2008a). GT dinucleotide polymorphism is 

associated with the formation of AAA (Schillinger et al. 2002) and with aneurysmal SAH 

(Morgan et al. 2005). 

2.3.7 Summary of molecular pathways in vascular wall pathobiology 

Cell differentiation, proliferation, migration, and apoptosis have a crucial role in vascular 

pathologies. Hence, knowledge of the signaling pathways regulating these cellular 

functions is important to elucidate the disease processes. Activation of a signaling 

pathway may either initiate pathological remodeling or act as a protective response against 

harmful insults. In recent years, signaling pathways in different vascular pathologies, 

especially in atherosclerotic plaques and in the restenosis after balloon injury, have been 

investigated (Ichiki 2006, Muslin 2008, Morello et al. 2009, Peterson et al. 2009). 

However, signaling molecules, like MAPKs, often have different biological roles 

depending on cell type and on pathophysiological process (Muslin 2008). Thus, it is 

important to investigate the role of different signaling molecules in IA pathobiology. 
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3 Aims of the study 

The role of different intracellular signaling pathways has been unraveled in many vascular 

diseases. However, their role in IA wall pathobiology is poorly known.  

 

The objectives of this study were the following: 

 

1. To investigate the localization and activation of different signaling proteins (MAPKs 

(JNK, p38, ERK), Akt, mTOR, CREB, and Bad) in the IA wall in relation to IA rupture. 

 

2. To compare the activation of different signaling proteins (MAPKs (JNK, p38, ERK), 

Akt, mTOR, CREB, and Bad) with IA morphology to better understand the mechanisms 

of IA growth, wall degeneration, and rupture. 

 

3. To evaluate the possible mechanisms of cell death in the IA wall by analyzing the 

activation of caspase-3 in the IA wall, whether the caspase activation involves the intrinsic 

(caspase-9) or extrinsic (caspase-8) pathway, and the role of oxidative stress. 
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4 Patients, materials, and methods 

4.1 Patients and samples 

Ruptured and unruptured human IA samples were collected after microsurgical clipping of 

the aneurysm by cutting a part of the IA dome. The samples were immediately snap-

frozen and stored at -80°C. Clinical data were obtained from medical records. The study 

protocol was approved by the local ethics committee of the Departments of Neurology, 

Neurosurgery, Otorhinolaryngology, and Ophthalmology at Helsinki University Central 

Hospital. The patients or their relatives gave informed consent. A total of 77 IA (40 

ruptured and 37 unruptured) samples were included in the study. 

IA dimensions (fundus length, fundus width, and neck diameter) and Fisher grading 

were obtained from preoperative vascular imaging studies (CTA or DSA) and CT scans. 

Reconstruction of lesion geometry from computed tomography angiograms was separately 

performed for 26 aneurysms to calculate five size indices (fundus length, maximum 

diameter, neck diameter, volume, surface area) and six shape indices (aspect ratio, 

bottleneck factor, bulge location, undulation index, ellipticity index, non-sphericity index) 

from 3D models (Figure 2, page 16) (II). Shape indices were defined as follows. Aspect 

ratio is the ratio of fundus length to neck diameter. Bottleneck factor is the ratio of 

maximum diameter to neck diameter. Bulge location is the distance from the neck plane to 

the largest cross-section as a fraction of fundus length. Undulation index is the measure of 

lobulations on the aneurysm surface. Ellipticity index is the measure of ellipticity of the 

aneurysm. Non-sphericity index is the aggregate measure of deviation from spherical 

shape due to ellipticity and undulation. 

4.1.1 3D remodeling (II) 

For reconstruction of the IA geometry (n = 26), the IAs containing significant intraluminal 

thrombus based on imaging or intraoperative findings were not included in the study. 

Minor intraluminal thrombus visible in the histological analysis is a frequent finding in 

IA, and it was not considered an exclusion criterion. The analyzer was blinded to IA 

rupture status. 
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3D segmentation 

Computed tomography angiograms were scanned at 1.25-mm slice thickness in all but one 

case, which had a thickness of 0.625 mm. The 3D models were reconstructed from the 

source data using level-set segmentation techniques implemented in the Vascular 

Modeling Toolkit (VMTK). The parent vasculature and the aneurysm were segmented 

using the level-set initialization methods, referred to as colliding fronts and fast marching, 

respectively (Piccinelli et al. 2009). The deformable models were created by applying 

evolution parameters within a set range – number of iterations (200-300), propagation 

scaling (0-1), curvature scaling (0-1), and advection scaling (0-1). VMTK developers have 

published detailed reviews of these methods earlier (Antiga et al. 2002, Antiga et al. 2003, 

Piccinelli et al. 2009). The surfaces were smoothed using Taubin’s non-shrinking 

algorithm with consistent parameters implemented in VMTK to remove artifacts like 

unrealistic sharp edges (Taubin et al. 1996, Antiga et al. 2003, Ma et al. 2004). 

 

Aneurysm isolation 

For quantification of IA morphology, IAs were isolated from their parent vasculature by 

defining a single plane in 3D space (Ma et al. 2004). The plane was chosen with manual 

discretion using the 3D visualization software TECPLOT 360 (2009 Release, Tecplot Inc., 

Bellevue, WA, USA), and the aneurysm was isolated using isolation algorithm 

implemented in the computing software program MATLAB (version 7.8, The Mathworks 

Inc., Natick, MA, USA). To be consistent when choosing a plane for IA isolation, a 

clinical criterion was defined (i.e. the plane where a surgeon would place a clip while 

operating on the IA during microneurosurgical clipping). 

Five size indices and six shape indices were then calculated (Figure 2, page 16). 

4.2 Histological studies (I-III) 

The snap-frozen tissue samples were embedded in OCT Tissue Tek compound (Sakura 

Finetek Europe B.V., Zoeterwoude, Netherlands) and cryosectioned at 4 μm. 
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Controls and antibodies 

Human tonsils and rat balloon-injured aorta served as positive controls. For negative 

controls, the primary antibody was omitted. Primary antibodies used in 

immunofluorescence and immunohistochemical stainings and in Western blotting are 

listed in Table 1. 

Table 1. Primary antibodies used in Western blotting and immunohistochemical and 

immunofluorescence stainings 

Antibody 
target 

Antibody 
type 

Clone / 
Catalog 
number 

Dilution 
in WB 

Dilution 
in IHC 

Dilution 
in IF 

Source Study 

Phospho-proteins 

p-JNK 

(Thr183/Tyr185) 

rabbit pAb 9251 1:1000 - 1:20 1 I, II 

JNK rabbit pAb 9252 1:1000 - - 1 I, II 

p-p38 

(Thr180/Tyr182) 

rabbit pAb 9211 1:1000 - 1:20 1 I, II 

p38 rabbit pAb 9212 1:1000 - - 1 I, II 

p-p44/42 MAPK 

(Thr202/Tyr204) 

mouse mAb E10/ 

9106 

1:2000 - 1:100 1 I, II 

p44/42 MAPK rabbit pAb 9102 1:1000 - - 1 I, II 

p-c-Jun (Ser73) rabbit pAb 9164 1:1000 - - 1 I, II 

c-Jun rabbit mAb 60A8/ 

9165 

1:500 - - 1 I, II 

p-Bad (Ser136) rabbit pAb 9295 1:500 - - 1 II 

Bad rabbit pAb 9292 1:500 - 1:20 1 II 

p-Akt (Ser473) rabbit mAb D9E/ 

4060 

1:2000 - - 1 II 

p-Akt (Ser473) rabbit pAb 9271 - - 1:20 1 II 

Akt rabbit pAb 9272 1:1000 - - 1 II 

p-CREB 

(Ser133) 

rabbit pAb 9191 1:1000 - 1:50 1 II 

CREB rabbit mAb 48H2/ 

9197 

1:500 - - 1 II 

p-mTOR 

(Ser2448) 

rabbit pAb 2971 1:1000 - 1:20 1 II 

mTOR rabbit pAb 2972 1:500 - - 1 II 
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Caspases 

Cl. caspase-3 rabbit pAb 9661 - - 1:50 1 III 

Caspase-3 rabbit pAb 9662 1:1000 - - 1 III 

Caspase-8 mouse mAb 1C12/ 

9746 

1:1000 - - 1 III 

Caspase-9 rabbit pAb 9502 1:1000 - - 1 III 

Other        

α-SMA mouse mAb 1A4 - - 1:400 2 II, III 

α-SMA mouse mAb 

(Cy3-

conjugated) 

1A4  - - 1:1000 2 I, II 

actin mouse mAb C4 1:6000 - - 3 I-III 

CD45 mouse mAb 2B11+P

D7/26 

- 1:100 - 4 III 

HO-1 rabbit pAb SPA-

896 

1:1000 1:1000 1:1000 5 III 

MMP-9 mouse  1:500 - - 6 I 

α-SMA, alpha-smooth muscle actin; Cl. caspase-3, cleaved caspase-3; HO-1, heme oxygenase-1; 

IF, immunofluorescence; IHC, immunohistochemistry; mAb, monoclonal antibody; MAPK, mitogen-

activated protein kinase; MMP-9, matrix metalloproteinase 9; p-, phospho; pAb, polyclonal 

antibody; WB, Western blotting; 1. Cell Signaling Technology Inc., Danvers, MA, USA; 2. Sigma, 

St. Louis, MO, USA; 3. Millipore, Temecula, CA, USA; 4. DAKOCytomation, Glostrup, Denmark; 5. 

Assay Designs, Stressgen, Ann Arbor, MI, USA; 6. Serotec Ltd., Oxford, UK 

4.2.1 Histological stainings (I-III) 

For basic morphological analysis, the sections were stained with Mayer’s hematoxylin and 

eosin G. 

4.2.2 Immunofluorescence stainings (I-III) 

The sections were fixed with 4% formaldehyde and blocked with 5% normal goat serum 

(NGS) (Vector Laboratories Inc., Burlingame, CA, USA) diluted in 0.3% Triton X-100 

(Sigma-Aldrich, St. Louis, MO, USA) in phosphate-buffered saline (PBS/Triton). After 

fixation, some sections were incubated in 0.1% Triton X-100 in PBS for 10 min, followed 

by blocking with 3% NGS, 3% bovine serum albumin (BSA) (Sigma-Aldrich) in PBS or 
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5% NGS in PBS. Primary antibodies (see Table 1) were diluted in 5% NGS in PBS/Triton 

or in 1.5% NGS/PBS, incubated for 30 min at room temperature (RT) and overnight at 

4°C, and detected with fluorochrome-conjugated Alexa Fluor 488 (green) secondary 

antibody (Molecular Probes Inc., Eugene, OR, USA) diluted 1:200 in 5% NGS in 

PBS/Triton. For double-stainings with α-SMA, the sections were incubated with Cy3-

conjugated anti-α-SMA antibody (in 1.5% normal horse serum/PBS) or with anti-α-SMA 

antibody (Table 1) in 1.5% NGS in PBS, followed by detection with Alexa Fluor 546 (red) 

or 555 (red) secondary antibody (Molecular Probes Inc., dilution 1:200). The sections 

were mounted in Vectashield medium with DAPI (Vector Laboratories Inc.) to detect the 

nuclei. 

4.2.3 Immunohistochemical stainings (III) 

For immunohistochemical stainings, the fixation, blocking, and incubation with the 

primary antibody were performed as described above. The endogenous peroxide was 

blocked with 3% H2O2 in PBS. Next, the sections were incubated with biotinylated 

secondary antibodies (Vector) diluted 1:200 in 1.5% NGS or normal horse serum in PBS 

for 30 min at RT. Sections were then incubated with horseradish peroxidase-conjugated 

avidin-biotin complexes and visualized with diaminobenzidine (Vector). Finally, the 

background was stained with Mayer’s hematoxylin.  

For the detection of endogenous peroxidase activity, the snap-frozen samples were 

directly incubated with diaminobenzidine. In addition, the sections were counterstained 

with hematoxylin and mounted. 

4.2.4 TUNEL assay (III) 

TUNEL assay was used to detect cell death. TUNEL reaction was performed using a 

Fluorescein In Situ Cell Death Detection Kit (Roche Diagnostics GmbH, Mannheim, 

Germany) according to the manufacturer’s instructions, followed by immunofluorescence 

staining. 
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4.2.5 Imaging 

Immunofluorescence stainings were microphotographed with an Axioplan2 fluorescence 

microscope and camera (Carl Zeiss Vision GmbH, Aalen, Germany) with appropriate 

filters. Pseudo-colored images were created with Axiovision 4.8 (Carl Zeiss) and Image J 

(NIH software, Bethesda, MD, USA). Immunohistochemical stainings were 

microphotographed with an Axioplan 2 light microscope and camera (Carl Zeiss). The 

aneurysm wall was reconstructed from serial microphotographs using Image J software.  

4.2.6 Histological evaluation 

Evaluation of localization of phospho-proteins (I, II) 

To study the existence and localization of active forms of signaling proteins in IA 

samples, the localization of phosphorylated forms of signaling proteins (Table 1, except 

the unphosphorylated form of Bad) in the IA wall (luminal / medial / outer side of the 

wall) was evaluated categorically. Localization inside the cell (cytoplasm / perinuclear 

region / nucleus) and colocalization with αSMA-positive cells were scored. 

 

Evaluation of TUNEL stainings 

For quantification of TUNEL stainings, the percentage of TUNEL-positive cells of the 

total number of cells per view (0.3621 mm
2
) was calculated. One to three “hot spot” fields 

were analyzed per sample. The measurements were performed three times, and the mean 

values were calculated. The colocalization of TUNEL-positive nuclei with αSMA-positive 

cells was evaluated from double-stainings.  

 

Evaluation of cleaved caspase-3 stainings 

The amount of cleaved caspase-3-positive cells was scored as follows: completely 

negative sample, 1 to 5 positive cells, more than 5 positive cells per view. The presence or 

absence of nuclear staining, positively staining matrix, positively staining cell remnants 

without nuclei, and colocalization of cleaved caspase-3 staining with αSMA-positive cells 

was categorically scored (yes / no).   
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Evaluation of HO-1 expression 

Localization of the HO-1 signal in the IA wall (luminal surface / intramural / adventitial / 

thrombus) was scored. Cell populations (endothelium / mural cells / inflammatory hot 

spots / thrombus) positive for HO-1 were also scored. The number of HO-1-positive cells 

per total number of cells and per sample area was counted. In addition, the amount of HO-

1-positive staining was also categorically scored (none / one spot / several spots / 

ubiquitous). The association of HO-1 expression with specific wall type was analyzed. 

The previously published grading system was applied to classify the IA wall type: A, 

endothelialized wall with linearly organized SMCs; B, thickened wall with disorganized 

SMCs; C, hypocellular wall with either myointimal hyperplasia or organized thrombus; D, 

extremely thin thrombosis-lined hypocellular wall (Frösen et al. 2004). The number of 

CD45-positive cells was also counted, and the correlation of HO-1 expression and CD45-

positive cells was analyzed. Using immunofluorescence stainings, the colocalization of 

HO-1-positive cells with αSMA-positive cells was evaluated. 

4.3 Western blotting (I-III) 

IA samples were pulverized in liquid nitrogen using a mortar and pestle, followed by 

homogenization in hot 1% sodium dodecyl sulphate (SDS) in PBS buffer, and sonication. 

Samples were kept at 100°C for 10 min and immediately frozen on dry ice. The mixture 

was centrifuged at 14 000 g for 15 min at 4°C. The supernatant was then separated. Using 

the DC protein assay (Bio-Rad Laboratories, Hercules, CA, USA), the protein 

concentrations were determined according to the manufacturer’s instruction. Samples were 

mixed (5:1) with sample buffer (0.3 mol/L Tris, pH 6.8, 10% SDS, 25% β-

mercaptoethanol, 50% glycerol, and bromophenol blue) for gel electrophoresis. Proteins 

were separated in 7.5-12% SDS polyacrylamide gel with Tris-glycine-SDS running buffer. 

With Tris-glycine transfer buffer and wet blotter (Bio-Rad Laboratories), proteins were 

transferred to polyvinylidene difluoride membrane (Bio-Rad Laboratories). Then, 5% 

nonfat dry milk in 0.1% Tween-20 (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) 

in Tris-buffered saline (TBST) was used to block the membrane for 1 hour at RT. The 

blots were then incubated with primary antibodies (Table 1) diluted in 5% BSA (Sigma-

Aldrich) in TBST or 5% nonfat dry milk in TBST. Next, the blots were incubated with 
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peroxidase-conjugated goat anti-mouse/anti-rabbit secondary antibody (Jackson 

ImmunoResearch Laboratories Inc., West Grove, PA, USA) diluted 1:50 000 in 

milk/TBST. For visualization of the antibody-antigen complexes by chemiluminescence, 

ECL Plus Western Blotting Detection Reagents (Amersham Biosciences/GE Healthcare, 

Piscataway, NJ, USA) and Typhoon scanner (Amersham) were used according to the 

manufacturer’s instructions.  

For actin Western blot, 20 µg of protein was loaded. Actin, which is a ubiquitous 

intracellular protein, served as an internal loading control to standardize the amount of 

intracellular protein for each IA sample. For caspase analysis, the gels with about 60 µg 

(50 to 79 µg) of total protein per sample (4 unruptured and 6 ruptured IAs) were run first 

to determine whether cleaved forms of caspases exist in IAs. 

Quantification of Western blotting (WB) scans was conducted using Scion Image 

software (www.scioncorp.com). Quantified optical densities on Western blots were 

standardized to actin levels of the same samples. Results are expressed as arbitrary units, 

where the mean of the unruptured group is set at 1.00. Phosphorylation state was 

calculated as the ratio between phosphorylated form and total protein level. In the case of 

Bad, the ratio between phosphorylated and unphosphorylated protein was calculated. 

In caspase WB, cytochrome c-treated Jurkat cell extracts (Cell Signaling Technology 

Inc., Danvers, MA, USA) served as controls. 

4.4 Statistical analysis 

For statistical analysis, SPSS for Windows (13.0, 17.0 (SPSS Inc., Chicago, IL, USA) and 

19.0.0.1 (IBM Corporation, Somers, NY, USA)) was used. Proportions, means, standard 

deviations, medians, and ranges were calculated for categorical and continuous variables, 

and Fisher’s exact, Pearson’s χ
2
, non-parametric Mann-Whitney U, and Spearman’s 

correlation test were used as appropriate.  Phospho-proteins that were associated 

significantly with either rupture or morphometric indices were further tested for 

interactions between rupture status, morphometric indices (each index tested individually), 

and protein levels with two-way analysis of variance, using the Univariate General Linear 

Model module of SPSS. For variables with inequality of variances between rupture status 
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groups (Levene’s test), logarithmic transformation before two-way ANOVA was 

performed. Statistical significance was set at P < 0.05. 
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5 Results and discussion 

5.1 Intracellular signaling pathways in IA wall degeneration and 

rupture (I, II) 

Localization of signaling proteins in the IA wall (I, II)  

Active (phosphorylated form, except for Bad, the unphosphorylated form) forms of all 

studied intracellular signaling proteins (JNK, p38, ERK, Bad, mTOR, CREB, and Akt) 

were found in the ruptured and unruptured IA wall in immunofluorescence staining. 

Double-staining with αSMA was performed.  

Phospho-JNK was detected in the nuclei of αSMA-positive cells, and the cytoplasm 

was also weakly positive. In the outer IA wall, some αSMA-negative cells were positive 

for phospho-JNK with or without positive nuclei. Phospho-p38 was detected in the 

cytoplasm of most and the nuclei of some αSMA-positive cells. A few phospho-p38 

positive cells were also localized in the luminal and outer sides of the IA wall. Phospho-

ERK was detected in the cytoplasm of αSMA-positive cells and in some αSMA-negative 

cells in the outer and luminal side of the wall. Bad localized mainly in the cytoplasm and 

the perinuclear region of αSMA-positive cells. Some nuclei were also positive for Bad, as 

were some αSMA-negative cells. Phospho-mTOR was detected in all samples in the 

cytoplasm of αSMA-positive and αSMA-negative cells. In some samples, phospho-mTOR 

was also found in the nuclei of some αSMA-positive and some αSMA-negative cells. 

Phospho-CREB was mainly detected in the nuclei of αSMA-positive and αSMA-negative 

cells in the IA wall, but in a few samples phospho-CREB was also found in the luminal 

thrombus. Phospho-Akt staining localized mostly in the nuclei and in the cytoplasm of 

αSMA-positive cells. The nuclei and cytoplasm were also positive for phospho-Akt in 

some αSMA-negative cells. 

5.1.1 Intracellular signaling and IA rupture (I, II) 

The phosphorylation of p54 JNK was increased 1.5-fold in ruptured IAs compared with 

unruptured ones (P = 0.028, Student’s independent samples t-test) in the univariate 

analysis. However, in the covariance analysis the phosphorylation of p54 JNK was 
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associated with IA size, but not with rupture status (P = 0.023 and P = 0.296, 

respectively). The phosphorylated and total levels of transcription factor c-Jun correlated 

with the levels of phosphorylated p54 and p46 JNK. Statistically nearly significant 

increase in c-Jun levels was observed in ruptured IAs.  

In 3D remodeling, p38 levels were not associated with rupture in univariate analysis. 

However, phospho-p38 levels associated significantly with both rupture and size indices 

(volume, surface area, fundus length, maximum diameter) in covariance analysis.  This 

result may indicate that cellular stress and inflammatory signaling are involved in both IA 

growth and rupture. 

Phospho-Bad (Ser136) levels and the ratio between phosphorylated and 

unphosphorylated Bad were decreased 5-fold in ruptured IAs (P < 0.001 and P = 0.001, 

respectively). This association was also shown in covariance analysis. Bad is able to 

promote apoptosis when unphosphorylated. Therefore, our finding suggests the activation 

of proapoptotic Bad signaling and the intrinsic apoptotic pathway in ruptured IAs. 

Phospho-mTOR levels and mTOR phosphorylation state were decreased in ruptured 

IAs compared with unruptured IAs in univariate analysis (0.39 ± 0.23 vs. 1.00 ± 0.44, P = 

0.001 and 0.63 ± 0.35 vs. 1.00 ± 0.40, P = 0.039, respectively). In the covariance analysis, 

phospho-mTOR levels were significantly associated with rupture, whereas only nearly 

significant association between mTOR phosphorylation state and rupture was observed. 

mTOR regulates cell growth and proliferation. In the IA wall, mTOR may have a 

protective role in maintaining cell growth. This seems to be compromised in ruptured IAs. 

ERK, CREB, and Akt were not associated with rupture. 

 

MMP-9 expression (I) 

Because the JNK pathway was active in large and ruptured IAs, we studied potential 

mechanisms affecting IA size and wall degeneration. By regulating MMP expression 

(Shin et al. 2002), JNK and c-Jun may affect matrix remodeling, thus affecting IA wall 

degeneration and growth. The regulatory role of JNK in the production of MMP-9 in AAA 

has been shown (Yoshimura et al. 2005). Thus, we evaluated the levels of pro-MMP-9 in 

the IA wall. Pro-MMP-9 levels were increased 4.3-fold in ruptured IAs (P < 0.001, 

Student’s t-test). Pro-MMP-9 levels did not correlate with IA size. When comparing large 

IAs (>8.0 mm in diameter) with small IAs, pro-MMP-9 levels were 2.6-fold higher in 
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large IAs (P = 0.014). In covariance analysis, pro-MMP-9 levels were associated with IA 

rupture, but not with IA size (P < 0.001 and P = 0.385, respectively). A correlation 

between pro-MMP-9 levels and phosphorylation of p54 JNK was found in unruptured IAs, 

but not in ruptured ones (r = 0.797, P = 0.002 and r = -0.266, P = 0.404, respectively), 

suggesting that JNK may be one of the regulators of MMP-9. WB samples were highly 

denatured to preserve the phosphorylation state of the proteins. Thus, we could not 

investigate the enzymatic activity of MMP-9 using e.g. zymography. 

5.1.2 Intracellular signaling and IA size (I, II) 

The levels of phospho-p54 JNK and its phosphorylation state correlated with IA diameter 

(r = 0.490, P = 0.015 and r = 0.501, P = 0.013, respectively). In 3D remodeling, phospho-

p54 JNK level was associated positively with three size indices (volume, surface area, 

maximum diameter). A correlation between c-Jun levels and IA size was not observed, but 

a nearly significant increase was found in phospho-c-Jun levels in large IAs (>8.0 mm in 

diameter) compared with small IAs.  

The levels of phospho-p38 and total p38 correlated with IA size (r = 0.506, P = 0.012 

and r = 0.592, P = 0.002, respectively). In 3D remodeling, p38 levels were associated 

positively with several size indices (volume, surface area, fundus length, maximum 

diameter). The levels of ERK did not correlate with IA size or shape indices.  

JNK and p38 are stress-activated kinases. Their association with size indices may 

indicate that they have important roles in regulating IA wall remodeling. Their activation 

may be a pathological response to hemodynamic stress, leading to increased IA size, or 

they may have a protective role by maintaining cell proliferation and wall repair 

mechanisms. JNK and p38 were also associated with rupture, which could indicate that 

their activation results in a pathological cellular response leading to IA rupture. In AAAs, 

treatment with JNK inhibitor SP600125 resulted in regression of induced AAAs in mice 

and in diminished secretion of MMP-9 and MMP-2 in an ex vivo culture of the human 

AAA wall (Yoshimura et al. 2005, Yoshimura et al. 2012). p38 inhibitor (SB203580) has 

reduced the size of a atherosclerotic lesion in mice (Seeger et al. 2010), and preliminary 

clinical trials with p38 inhibitors suggest that p38 inhibition attenuates vascular 

inflammation and improves vascular function (Sarov-Blat et al. 2010, Cheriyan et al. 
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2011, Denise Martin et al. 2012, Elkhawad et al. 2012). In the future, stress-activated 

kinases should be studied with an appropriate experimental IA model to further elucidate 

their role in IA pathogenesis. 

The levels of the well-known cell survival and growth promoter Akt (phospho-

Akt(Ser473)) were associated with volume, surface area, fundus length, and maximum 

diameter in covariance analysis. Akt levels were not associated with rupture. Akt signaling 

probably maintains cell growth and proliferation in the IA wall during the remodeling 

process. 

Phospho-Bad levels were not associated with morphometric indices. A positive 

correlation between unphosphorylated Bad levels and maximum diameter was found in 

univariate and covariance analyses. 

Total CREB levels were associated with maximum diameter and neck diameter, which 

may indicate protective or growth-promoting signaling in large IAs as discussed further in 

the following chapter. 

5.1.3 Intracellular signaling and IA shape (I, II) 

The phosphorylation state of CREB correlated positively with nonsphericity index and 

ellipticity index in both univariate and covariance analyses. Total CREB was associated 

negatively with undulation index. CREB may have a protective role in vascular tissue or it 

may increase the neointimal formation (Tokunou et al. 2003, Reusch et al. 2004), and 

CREB activation has been suggested to be an acute, protective response against harmful 

insults in the vascular wall (Schauer et al. 2010). Our result suggests that CREB activation 

in an irregular IA wall may be a protective response to extracellular stress, but it is also 

possible that CREB promotes vascular remodeling, like myointimal hyperplasia, in the IA 

wall. The association between total CREB levels and maximum diameter of IA fundus 

may implicate that CREB is a positive regulator of cell proliferation in the IA wall. 

However, as the active, phosphorylated form of CREB was not associated with size 

indices, this interpretation is only tentative. On the other hand, the decreased expression of 

total CREB in the irregular IA wall is in line with the observation that the expression of 

CREB is decreased in chronic vascular pathologies  (Schauer et al. 2010), suggesting that 

the protective CREB response may have failed in the irregular IA wall. All in all, the 
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associations between CREB and IA size and shape indices are complex. The possible 

activation or downregulation of CREB in the IA wall should be studied using a larger 

number of samples and experimental animal models or tissue cultures before definitive 

conclusions of the role of CREB in IA pathobiology can be drawn. 

Phospho-p38 levels correlated negatively with undulation index. p38 phosphorylation 

state correlated negatively with ellipticity index. In covariance analysis, the association 

with undulation index was not seen, and there was only a nearly significant association 

with ellipticity index. 

Phospho-Akt levels and Akt phosphorylation state correlated negatively with 

undulation index in the univariate analysis, but significant associations were not seen in 

the covariance analysis.  

The negative correlation of p38 and Akt with undulation index may indicate that Akt 

and p38 are involved in protective signaling pathways that have failed in irregularly 

shaped IA walls. Thus, the IA wall may become weaker and more prone to rupture. On the 

other hand, the observations that increasing p38 levels were associated with increased IA 

size and rupture, but decreasing phospho-p38 levels were associated with increased 

irregularity index (undulation index), which is known to predispose to rupture, suggests a 

more complex role of p38 in IA wall pathobiology. These observations of p38 activation 

also suggest that although both increasing IA size and increasing IA irregularity increase 

the risk of IA rupture, their underlying pathological mechanisms may differ. 

5.1.4 Summary of intracellular signaling pathways and IA size, shape, and 

rupture 

The associations between the levels of signaling molecules and IA size, shape, and rupture 

are summarized in Figure 4. Both IA size and irregularity predict IA rupture. However, the 

mechanisms underlying the weakening of the IA wall may differ between large and 

irregular IAs, as the activation of signaling pathways differs between them as discussed 

above. 
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Figure 4 Summary of the signaling pathways in the human intracranial aneurysm. Potential 

roles of signaling molecules in intracranial aneurysm growth, reshaping, and rupture as suggested 

by the associations of protein levels with aneurysm size and shape indices and aneurysm rupture 

are shown. Aneurysm growth and/or reshaping likely precede the rupture, but the exact 

mechanism leading to aneurysm rupture is not known. The dashed arrow indicates unknown 

mechanisms leading to rupture. 

5.2 Cellular death in IA wall (II, III) 

Degeneration of the IA wall, including the loss of mural cells, is associated with IA wall 

rupture (Kataoka et al. 1999, Frösen et al. 2004, Tulamo et al. 2006). TUNEL-positive 

cells have been observed in several studies (Sakaki et al. 1997, Frösen et al. 2004, 

Pentimalli et al. 2004, Tulamo et al. 2006), and apoptotic cell death has been observed in 

IA walls also using electron microscopy (Pentimalli et al. 2004, Tulamo et al. 2006, Guo 

et al. 2007). Necrotic cell death has also been reported (Holling et al. 2009). However, the 

significance of different types of cell death in the IA wall is unknown. Also unknown are 

the triggers for cell loss and the cellular death pathways activated. In this series, the 
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percentage of TUNEL-positive cells was higher in ruptured samples (median 12%, range 

0-45% in ruptured samples vs. 1%, range 0-12% in unruptured samples, P < 0.001, Mann-

Whitney U-test). TUNEL-positive cells were mainly αSMA-negative. 

5.2.1 Apoptosis vs. necrosis 

To evaluate the role of apoptotic cell death, we investigated the activation of caspase-3 by 

WB and immunofluorescence staining. We found uncleaved caspase-3 (35 kDa) in all WB 

samples (12 unruptured and 12 ruptured), but cleaved caspase-3 (17 kDa and 19 kDa), the 

active form of caspase-3, was not detected in WB. We increased the amount of protein 

loaded to the gels to 60 µg/well to enhance the sensitivity of the assay, but still could not 

detect cleaved caspase-3. However, using immunofluorescence staining, which is more 

sensitive in detecting random positive cells than WB, we found some cleaved caspase-3-

positive cells in the IA wall. Cleaved caspase-3-positive cells were associated with IA 

rupture (P = 0.01, Chi-square test). The cells were mainly αSMA-negative. 

The number of cleaved caspase-3-positive cells was extremely low relative to the 

number of TUNEL-positive cells. TUNEL stains not only apoptotic cells but also cells 

undergoing necrosis (Grasl-Kraupp et al. 1995, Huerta et al. 2007). The explanation for 

the discrepancy between the amount of TUNEL-positive and cleaved caspase-3-positive 

cells may be the different forms of cell death (apoptosis vs. necrosis) occurring in the IA 

wall or the short half-life of cleaved caspase-3. RNA synthesis, RNA splicing, mitosis, 

sample preparation, and fixation may also affect the pattern of TUNEL staining (Migheli 

et al. 1994, Davison et al. 1995, Lucassen et al. 1995, Sträter et al. 1995, Negoescu et al. 

1996, Kockx et al. 1998, Saraste 1999).  

In this series, only a few cells were double-positive for SMA and TUNEL or cleaved 

caspase-3. This may indicate that the loss of the SMCs in the IA wall is a very slow 

process, whereas a larger number of SMA-negative cells, which are most likely 

inflammatory cells, are dying. These dying inflammatory cells probably release agents that 

promote and maintain mural cell death. 



5 Results and discussion 

 

 

 

 

58 

5.2.2 Mechanisms of cell death in the IA wall 

In all WB samples, full-length caspase-8 (57 kDa) and full-length caspase-9 (47 kDa) 

were detected. Cleaved caspase-9 (35 kDa and 37 kDa) was found in 5 (42%) of 12 

ruptured samples, whereas unruptured samples were negative for cleaved caspase-9. When 

60 µg of protein per well was used, cleaved caspase-9 was detected in all ruptured (6/6 

samples) and one unruptured sample (1/4 samples). Cleaved caspase-8 (41 kDa and 43 

kDa) was not detected in IA samples, even when 60 µg of protein per well was used.  

Cleaved caspase-9 activation suggests that programmed cell death is activated by the 

intrinsic pathway in the IA wall. Increased levels of unphosphorylated, proapoptotic Bad 

protein in ruptured IAs also support this finding. No sign of extrinsic activation (cleaved 

caspase-8) of the apoptotic pathway was observed. Intrinsic activation of apoptosis has 

also been noted in elastase-induced aneurysms in rabbits (Kadirvel et al. 2010). Cell 

damage or stress, like oxidative stress, may induce this type of cell death. 

5.3 Role of oxidative stress in IA wall degeneration and rupture 

(III) 

5.3.1 HO-1 expression in the IA wall 

Oxidative stress is involved in vascular lesions, including atherosclerotic plaque and 

AAAs (McCormick et al. 2007, Peterson et al. 2009). The important role of ROS in IA 

formation and growth has been shown in induced aneurysms in animal models (Aoki et al. 

2009). Oxidized neoepitopes (Frösen 2006, Tulamo et al. 2010b) and CD163-positive 

macrophages (Frösen et al. 2004) are found in IA walls, suggesting that the cells in the IA 

wall are also exposed to oxidative stress. Oxidative stress is one of the activators of the 

intrinsic apoptotic pathway.  

To study the possible involvement of oxidative stress in the IA wall, we investigated 

the levels and expression of HO-1. It has previously been shown that HO-1 

polymorphisms are associated with aneurysmal SAH (Morgan et al. 2005) and HO-1 has 

various protective roles in vascular lesions (Peterson et al. 2009). 
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In WB, HO-1 protein expression was 8.7-fold higher in ruptured IAs than in 

unruptured IAs (mean 8.68 ± 11.16 vs. 1.00 ± 1.18, P = 0.002, Mann-Whitney U-test) but 

HO-1 expression was not associated with the severity of SAH (Fisher score) or with the 

time from rupture to sample collection, suggesting that HO-1 expression is not just a 

reaction to rupture. Moreover, in immunohistochemical staining, HO-1 expression was 

associated with wall type (P = 0.003, Kruskal-Wallis test), and HO-1-positive cells were 

also found in unruptured IA samples, suggesting that oxidative stress has a role in the 

degeneration process of the IA wall. In WB, HO-1 levels were not associated with wall 

type, probably because thin, decellularized walls were not selected in WB.  

The percentage of HO-1-positive cells was also associated with the percentage of 

TUNEL-positive cells and with the amount of cleaved caspase-3-positive cells. This result 

may indicate that the protective HO-1 response is activated due to high oxidative stress, 

but, in some cells, the protective signaling is insufficient and cell death is increased.  

In immunohistochemical staining, HO-1-positive cells were mainly detected in the 

areas with inflammatory cell infiltration. Positive staining was especially localized in the 

areas where the lumen was lined by thrombus. The percentage of HO-1-positive cells was 

also associated with the number of CD45-positive cells (P < 0.001, Spearman correlation), 

and, in the immunofluorescence double-stainings, HO-1 expression was localized in 

αSMA-negative cells. Hence, in the IA wall, HO-1 is likely to be mostly expressed by 

inflammatory cells. 

5.3.2 Thrombus as a source of oxidative stress 

The thrombus itself had high endogenous peroxidase activity and the endogenous 

peroxidase staining localized into PMNs. Neutrophils, which belong to the PMN family, 

have azurophilic granules that contain myeloperoxidase (MPO) (Nicholls et al. 2005). 

Some phenotypes of macrophages also contain MPO (Sugiyama et al. 2001). MPO 

catalyzes the formation of ROS and is able to initiate lipid peroxidation (Klebanoff 1980, 

Zhang et al. 2002, Nicholls et al. 2005). Thus, MPO increases oxidative stress and has 

been shown to have detrimental effects on the progression of atherosclerosis (Nicholls et 

al. 2005). 
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In AAAs, ILT with leukocytes, RBCs, and platelets has been suggested as a main 

source of oxidative stress (Michel et al. 2011). Thrombus with PMNs is also likely to be a 

main source of oxidative stress in IA tissue. Another source of oxidative stress in the IA 

wall may be cells that are dying via necrosis because they may release free radicals and 

enzymes involved in oxidant pathways. 

5.3.3 Oxidative stress in IA samples – association with SAH risk factors 

In both WB and immunostaining series, HO-1 expression correlated with fundus length 

and aspect ratio. Large IA size and large aspect ratio favor the development of aberrant 

flow conditions in the IA fundus (Ujiie et al. 1999, Hashimoto et al. 2006). 

Nonphysiological WSS may promote de-endothelialization and thrombus formation, 

which again may increase oxidative stress and lead to degeneration of the IA wall.  

Interestingly, HO-1 expression was downregulated in smokers in the immunostaining 

series. Cigarette smoke increases oxidative stress of the vascular wall (Pipe et al. 2010). In 

human macrophages, which are exposed to cigarette smoke condensate, HO-1 shows early 

induction (6 hours), but later (after 72 hours) HO-1 expression is decreased (Goven et al. 

2009). Similarly, in human umbilical vein endothelial cells, HO-1 expression is decreased 

when the cells are exposed to smokers’ serum (Fratta Pasini et al. 2012). Regulation of the 

protective HO-1 may have also failed in the IA wall of smokers, increasing oxidant injury.  

In the WB series, HO-1 expression was downregulated in ruptured IAs in patients with 

hypertension. Hypertension also increases oxidative stress of the vascular wall (Peterson et 

al. 2009), but how hypertension affects the defense mechanism against oxidative stress in 

the IA wall remains to be elucidated.  

Regardless of rupture status, HO-1 expression was increased in males in the WB 

series. The reason might be gender-related differences in the defense mechanisms against 

oxidative stress, but confirmation requires further studies. However, the association 

between decreased HO-1 expression and female gender is in line with the epidemiological 

observation that females are at higher risk of aneurysmal SAH than males.  

The reason for the associations between HO-1 levels and clinical risk factors may be 

covariance with rupture status or other variables. Potential associations of HO-1 levels 

with clinical risk factors should be explored using a larger number of samples.  
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5.3.4 Possible role of oxidative stress in IA pathobiology 

Our results show that signs of oxidative stress (HO-1 expression) are found in the human 

IA wall. HO-1 expression is associated with wall degeneration and cell death. Our results 

also show the intrinsic activation of caspases, suggesting that one activator of cell death 

may be oxidative stress. It is also possible that some cells exposed to oxidative stress die 

via necrosis. Our findings reveal that thrombus with PMN is one source of oxidative 

stress. Oxidative stress is also able to induce inflammatory response in the vascular wall 

(Ross 1999, Griendling et al. 2000, Nicholls et al. 2005), and inflammation itself has a 

role in the degeneration process of the IA wall. 

5.4 IA pathobiology and cell signaling 

Vascular remodeling has been characterized in the IA wall, and wall degeneration is 

associated with IA rupture (Kataoka et al. 1999, Frösen et al. 2004). The geometry of the 

IA wall affects the flow conditions inside the IA pouch, and hemodynamic stress inside 

the saccular IA differs from that of the normal cerebral artery (Hashimoto et al. 2006, 

Jeong et al. 2012). Cell signaling pathways mediating vascular remodeling are activated in 

response to abnormal hemodynamic stress. The ultimate goal of wall remodeling is likely 

to be adaptation to the changing hemodynamic environment (Hashimoto et al. 2006), and, 

based on our results, it seems that stress signaling and cell proliferation pathways are 

associated with IA growth. Some pathways are also associated with IA shape, and they 

may either enhance the irregular remodeling of the wall or mediate the protective response 

against pathological remodeling. Aberrant flow conditions inside the IA pouch are also 

likely to cause endothelial dysfunction and de-endothelialization of the IA wall, which 

predisposes to thrombus formation (Frösen et al. 2012). Thrombus with inflammatory 

cells seems to be an important source of oxidative stress and is likely to be an important 

modulator of IA wall degeneration. The imbalance between protective and harmful 

signaling pathways as well as the activation of cell death pathways probably lead to 

weakening of the wall and finally to IA rupture, as summarized in Figure 5. 
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Figure 5 Potential mechanisms of intracranial aneurysm wall degeneration and rupture. 

Cell signaling pathways mediating, for example, cell proliferation and survival but also cell death 

and matrix degradation are activated probably due to abnormal hemodynamic stress. Thrombus 

with inflammatory cells is likely to be an important source of oxidative stress, thus modulating the 

remodeling process of the wall. The imbalance between “maintaining” and “degrading” 

pathways probably leads to enlargement of the IA dome as well as to wall irregularities, which in 

turn change the hemodynamic environment of the IA wall. The vicious circle of abnormal 

hemodynamics, wall irregularities, and an imbalance between protective and harmful signaling 

pathways likely leads to wall degeneration and IA rupture. 
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5.5 Limitations of the study 

This study has certain methodological limitations. We used freshly frozen human IA 

samples. However, we did not have normal arterial tissue as a control sample. Fresh 

samples of normal intracranial arteries are extremely difficult to obtain, and the structure 

of extracranial arteries differs from that of intracranial arteries. On the other hand, 

postmortem samples are subject to dephosphorylation and autolysis/degradation of 

proteins. Thus, we did not consider postmortem samples to be reliable controls when 

studying phosphorylated proteins and caspases, which can be rapidly dephosphorylated, 

cleaved, and degraded. Although fresh samples were carefully stored and prepared for WB 

and immunostainings, the handling of tissue samples (like cryosectioning) is a possible 

source of artifacts.  

Surgically obtained human IA samples are small. To obtain a sufficient amount of 

protein for WB homogenates, we were obliged to exclude the smallest samples, which 

were often unruptured. Thus, the unruptured samples in the WB series are larger than 

unruptured IAs on average. Acellular or highly thrombosed IA samples were excluded 

from the WB series because the aim was to study intracellular signaling proteins. IAs 

containing significant intraluminal thrombus based on imaging or intraoperative findings 

were excluded from 3D remodeling (II) because intraluminal thrombus prevents accurate 

angiographic determination of IA geometry. Because it is difficult to obtain fresh human 

IA samples, we had a relatively small number of samples, they were not equally 

distributed between males and females, and their localization in cerebral arteries was 

heterogeneous. Thus, the results may not be generalizable to all subtypes of IA. Because 

of the small sample size, we could not analyze the signaling pathway profiles in the 

subgroups of unruptured IAs, for instance, in relation to the wall type. Additionally, the 

reason for the associations between signaling proteins and clinical risk factors may be 

covariance with rupture status or other variables.  

The IA neck, which is left under the clip in microneurosurgical clipping, cannot be 

taken as a sample, and thus, is unavailable for study. 

Homogenized IA samples were used in WB, although the IA wall may have local 

structural differences and also the amounts of signaling proteins may differ in different 

parts of the wall. However, the quantitation of ubiquitously expressed signaling molecules 

using other methods, like immunohistochemistry, is practically impossible.  
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We used immunohistochemistry to study localization of the signaling proteins, cell 

death markers, and HO-1 in the IA wall. We performed the double-stainings using αSMA 

to determine whether the staining colocalizes with the mural SMCs. However, fibroblasts, 

endothelial cells, and different types of inflammatory cells are also found in the IA wall. 

In further studies, the types of αSMA-negative cells expressing the proteins of interest 

could be characterized in more detail using immunohistochemistry. 

The presence of oxidative stress in IA wall was evaluated using HO-1, which is an 

anti-oxidant enzyme induced by pro-oxidant conditions, and using endogenous peroxidase 

staining. Further investigation of oxidative stress in IA wall could include the more 

detailed characterization of endogenous peroxidase activity in IA wall, for instance, if 

active MPO exist in IA wall or in ILT (Daugherty et al. 1994). 

The differences between unruptured and ruptured IA samples may be due to SAH. 

Using this kind of experimental setting, it is impossible to definitely determine whether 

the association between a biochemical measure and rupture have a causal relationship and 

whether the observed changes predate the rupture or represent a reaction to it. TUNEL, the 

amount of cleaved caspase-3-positive cells, or the levels of HO-1 were not associated with 

the time between IA rupture and sample collection. Causality should be investigated using 

an appropriate experimental model – which to date does not exist. 

All in all, IA formation and rupture is likely to be a heterogeneous disease process as 

supported by multifactorial etiology of IAs and varying histological appearance of IA 

wall. Homogenous experimental animal models may not represent the complex nature of 

IA disease sufficiently well, and the investigation of IA pathobiology would require a 

large series of unruptured and ruptured human IA samples with the analysis of subgroups 

of especially unruptured IAs to differentiate the characteristics of rupture-prone IAs. 

5.6 Future perspectives 

IA rupture followed by SAH is a life-threatening situation. The treatment options of IAs 

(clipping and coiling) also have risks of complications. Nowadays, a growing number of 

unruptured IAs are incidentally found when patients are imaged for other reasons or when 

families with aneurysmal SAH are screened. Not all IAs rupture during the lifetime of 

their carriers. The problem is how to differentiate rupture-prone IAs from IAs that would 
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never rupture. With the aid of basic research, IA pathobiology could be understood and 

biomarkers predicting rupture-prone IAs identified. Knowledge of IA pathobiology could 

also help to develop less invasive treatment methods for IAs to prevent rupture, and 

optimally, to prevent IA formation. 

5.6.1 Further characterization of signaling pathways in the IA wall 

Although in recent years research on IA pathobiology has increased, the mechanisms 

underlying IA formation, growth, and rupture warrant attention. We investigated cell 

signaling molecules in whole-tissue homogenates and found interesting associations 

between the expression of signaling molecules and IA size and shape indices and rupture. 

However, signaling molecules have different roles in different cells and tissues. Using 

laser capture microdissection techniques, each cell type and “the profile” of its cell 

signaling molecules could be studied separately from other IA tissue. In addition, the 

significance of associations detected in the levels of signaling molecules in human IA 

samples should be evaluated in experimental animal models or cell cultures. Endothelial 

cells and SMCs of the human IA wall have been successfully cultured (Boscolo et al. 

2006, Bygglin et al. 2011). Moreover, experimental aneurysm models have been 

developed (Aoki et al. 2011), but an appropriate model of IA growth and rupture is still 

lacking. 

5.6.2 Characterization of the intraluminal thrombus (ILT) 

We found that ILT is a significant source of oxidative stress. In AAAs, ILT affects and 

modulates the remodeling process of the wall (Michel et al. 2011). Inflammatory cells, 

like T-cells and macrophages, have been detected in the areas of organizing 

thrombus/myointimal hyperplasia in IA tissue (Frösen et al. 2004), but further 

characterization of the structure of the thrombus and the cell types that it contains is 

needed to elucidate the degeneration process of the IA wall. In eroded and ruptured 

atherosclerotic plaques, the number of macrophages expressing MPO increases (Sugiyama 

et al. 2001). It would be interesting to determine whether the phenotypes of inflammatory 
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cells differ also between unruptured and ruptured IAs, potentially yielding a means of 

differentiating rupture-prone IAs.  

5.6.3 Biomarkers 

Prognostic biomarkers for cardiovascular diseases have been enthusiastically sought 

(Vivanco et al. 2005, Martin-Ventura et al. 2007, Urbonavicius et al. 2008, Michel et al. 

2011). We found several interesting signaling molecules associated with IA morphology 

and rupture when studying IA tissue samples. When the aim is noninvasive detection of 

rupture-prone IAs, the focus is on identifying circulating biomarkers that can be analyzed 

from a blood sample, but this would require further studies. Modern proteomic methods, 

such as two-dimensional gel electrophoresis and mass spectrometry, could help to find 

biomarkers without an a priori hypothesis (Martin-Ventura et al. 2007). However, the 

special nature of IA disease, such as the small size of IAs and localization in the cerebral 

vasculature, makes the research on circulating biomarkers challenging. 

5.6.4 Perspectives for pharmacological therapies 

Investigating IA pathobiology could also aid to develop pharmacological therapy for IAs. 

In our study, the stress-activated kinases (JNK and p38) and HO-1 were associated with 

rupture and with size indices. Inhibitors of signaling molecules are available, but they may 

have toxic side-effects (Bogoyevitch et al. 2008, Davies et al. 2012). Some 

pharmacological inducers of HO-1 are known such as lipid-lowering drugs probucol and 

its analogs, statins, and fenofibrate (Peterson et al. 2009, Chan et al. 2011). However, 

probucol has adverse side-effects and the doses of statins used clinically may not have any 

effects on HO-1 expression (Chan et al. 2011). In addition, statins do not seem to affect IA 

formation in humans (Marbacher et al. 2012). The local delivery of drugs using coils could 

be beneficial to avoid systemic side-effects. However, whether signaling molecules have a 

pathological or protective role in IA wall degeneration should first be determined using an 

experimental model before testing them as a pharmacological therapy for IAs. The 

development of pharmacological therapy preventing IA formation would be most ideal but 
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it would require further studies with focus on the differences between IAs and normal 

cerebral arteries. 
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6 Summary and conclusions 

Significant mortality and morbidity are related to SAH. Approximately 2% of the 

population has IAs. However, not all of these IAs rupture. In addition, treatment methods 

(clipping and coiling) for ruptured and unruptured IAs have risks. Risk factors for IA 

formation are age, female gender, smoking, hypertension, and family history. 

Furthermore, risk factors for SAH are IA size, irregularity, location in posterior 

circulation, female gender, nationality (Finnish and Japanese people at higher risk), 

smoking, hypertension, family history, and probably excessive consumption of alcohol. 

However, even by combining all of these risk factors, one cannot definitely distinguish 

rupture-prone IAs from IAs that would not rupture. Better predictors for IA rupture risk 

are needed. 

Studying IA pathobiology may yield clues to identifying rupture-prone IAs. 

Previously, degeneration and inflammation of the IA wall have been linked to rupture. 

However, these changes are already present in some unruptured IAs, suggesting that the 

IA wall continuously undergoes remodeling, and in some IAs, the remodeling process 

leads to pathological weakening of the wall and subsequent rupture. 

In recent years, microarray analyses investigating the gene expression of IA walls have 

revealed associations between inflammation, apoptosis, and oxidative stress and IA 

rupture. However, to date, studies reporting on the expression of molecules at the protein 

level in human IA samples are scarce. This study aimed to characterize cell signaling 

pathways in the IA wall at the protein level. 

We found that stress-activated kinases (JNK and p38) were associated with IA size and 

rupture. They may have protective roles in the growing IA wall. However, the association 

with IA rupture suggests that their activation may enhance apoptosis and other weakening 

mechanisms of the IA wall. When studying potential weakening mechanisms of the IA 

wall, we found elevated pro-MMP-9 levels in ruptured IAs. MMPs are able to degrade 

ECM, which weakens the vascular wall. 

On the other hand, Akt activation was associated with size indices, but not with 

rupture, and mTOR levels were downregulated in ruptured IAs. Akt and mTOR are both 

well-known promoters of cell growth and cell proliferation. Their activity, which probably 

maintains and strengthens the IA wall, is compromised in ruptured IAs. 
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The loss of mural cells is a crucial step in the degeneration and weakening of the IA 

wall. In addition to growth-promoting factors, we studied the mechanisms of cell death in 

the IA wall. Caspase-9 activation was observed mainly in ruptured IA samples, whereas 

no sign of cleaved caspase-8 was detected, suggesting that the intrinsic apoptotic pathway 

is activated in the IA wall. This finding was supported by the observation that the 

unphosphorylated, proapoptotic form of Bad, a member of the intrinsic pathway signaling 

proteins, prevailed in ruptured IAs. A few cells positive for cleaved caspase-3, which is an 

executioner caspase, were detected and they were associated with IA rupture. However, 

the number of cleaved caspase-3-positive cells was much lower than the number of 

TUNEL-positive cells. Thus, we speculated that cells in the IA wall may die via necrosis 

more often than via apoptosis. 

We were also interested in investigating oxidative stress - a possible inducer of 

intrinsic apoptosis. We found that HO-1 levels, a detoxifying enzyme that is induced 

during oxidative stress, was associated with wall degeneration, IA rupture, IA size, and 

aspect ratio. HO-1 localized in the areas of inflammatory cells. Our results also showed 

that CREB, a signaling protein activated by for instance oxidative stress, was associated 

with IA irregularity.  

The associations of HO-1 with IA size and aspect ratio and CREB with IA irregularity 

suggest an association between IA geometry and oxidative stress. Abnormal 

hemodynamic stress, such as nonphysiological WSS in an irregular IA wall, likely 

promotes de-endothelialization and thrombus formation. We noted that thrombus with 

PMN had a high endogenous peroxidase activity. Therefore, thrombus, formed especially 

in irregular IA domes, is likely to be an important source of oxidative stress, linking IA 

geometry with oxidative stress.  

All in all, we found interesting signaling molecules associated with IA morphology 

and rupture and differences in signaling pathway profiles between unruptured and 

ruptured IAs. Further characterization of signaling pathways in appropriate experimental 

models could clarify their role in IA growth and rupture. This could help to identify 

markers differentiating rupture-prone IAs and, hopefully, also to develop less invasive 

treatment methods for IAs.  
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