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Abstract

In the urban environment, atmospheric aerosols consist mainly of pollutants from anthro-

pogenic sources. The majority of these originate from traffic and other combustion processes.

A fraction of these pollutants will penetrate indoors via ventilation. However, indoor air con-

centrations are usually predominated by indoor sources due to the small amount of dilution

air. In modern societies, people spend most of their time indoors. Thus, their exposure is

controlled mainly by indoor concentrations from indoor sources.

During the last decades, engineering of nanosized structures has created a new field of ma-

terial science. Some of these materials have been shown to be potentially toxic to human

health. The greatest potential for exposure to engineered nanomaterials (ENMs) occurs in

the workplace during production and handling of ENMs. In an exposure assessment, both

gaseous and particulate matter pollutants need to be considered. The toxicities of the parti-

cles usually depend on the source and age. With time, particle morphology and composition

changes due to their tendency to undergo coagulation, condensation and evaporation. The

PM exposure risk is related to source specific emissions, and thus, in risk assessment one

needs to define source specific exposures.

This thesis describes methods for source specific risk assessment of airborne particulate

matter. It consists of studies related to workers’ ENM exposures during the synthesis of

nanoparticles, packing of agglomerated TiO2 nanoparticles, and handling of nanodiamonds.

Background particles were distinguished from the ENM concentrations by using different

measurement techniques and indoor aerosol modelings. Risk characterization was performed

by using a source specific exposure and calculated dose levels in units of particle number and

mass. The exposure risk was estimated by using non-health based occupational exposure

limits for ENMs. For the nanosized TiO2, the risk was also assessed from dose-biological re-

sponses which had been extrapolated from inhalation studies conducted in mice. The ENM

exposure levels were compared with background particle concentrations in order to determine

the relevant ENM exposure metrics and exposure scenarios.

Keywords: aerosol, exposure, dose, risk, nanomaterial
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1 Introduction

The air that we breathe contains both gaseous and particulate matter (PM) pollutants.

These originate mainly from natural sources but the fraction of anthropogenic pollu-

tants has been growing since the industrial revolution in the 18th century, mostly due

to fossil fuel combustion (Lefohn et al., 1999; Streets et al., 2009). Urban air pollution

is recognized as a major contributor to the global burden of disease (Ezzati et al., 2002;

Brunekreef and Holgate, 2002). Increases in atmospheric particulate matter <10 µm

[PM10] are associated with morbidity and mortality due to pulmonary and cardiovas-

cular diseases (Pope, 2000; Anderson, 2009; Franchini and Mannucci, 2012; Kelly and

Fusell, 2012), central nervous system disease (Block and Calderon-Garciduenas, 2009),

and different adverse pregnancy outcomes (Dadvand et al., 2013).

According to epidemiological data, an increase of 10 µg m−3 in urban aerosol PM10

concentration increases cardiovascular mortality by nearly 1 % (Anderson, 2009). For

example, in 2005, an estimated 5 million years of life were lost due to fine particulate

matter <2.5 µm [PM2.5] pollution in Europe (EEA, 2010), which originates mainly

from anthropogenic sources, such as traffic and local combustion sources (Almeida et

al., 2005). Recently, ultrafine particulate matter <0.1 µm [PM0.1] has been assessed as

being the most harmful fraction with respect to pulmonary uptake (Seaton, 1995; Peters

et al., 1997; Donaldson et al., 2001; Oberdörster et al., 2001, 2002; Nel, 2005; Politis

et al., 2008). This is because ultrafine particles are efficiently deposited in all regions

of the respiratory tract in the human lung, they evade specific defence mechanisms,

and they can translocate out of the respiratory tract via a variety of pathways and

mechanisms (Oberdörster et al, 2005; Oberdörster, 2010; Geiser and Kreyling, 2010).

At the end of 20th century, a new field of technology called nanotechnology was dis-

covered (Siegel et al., 1999; Roco, 2011). Nanotechnology refers to the engineering

of functional systems at the molecular scale. One common property for engineered

nanomaterials (ENMs), such as nanoparticles (NPs), nano-objects, nano-fibers, and

nanoplates, is that they have at least one dimension less than 100 nm (ISO, 2008;

Kreyling et al., 2010). These ENMs are used in a huge range of applications for

example energy, electronics, paper, cosmetics, textiles, nutrition, and medical drugs.

Nanotechnology is one of the fastest growing and most promising technologies in ad-

vanced societies (OECD, 2009a; Roco, 2011). For example, the European Union has

identified nanotechnology as one of the Key Enabling Technologies, and it is believed
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that it will employ 400 000 persons in Europe by 2015 (EC, 2012). Nanotechnology

endows technological benefits, but on the other hand, ENMs have been claimed to pose

new challenges in safety issues. This is because the potential toxicities of ENMs are far

from clear (see for example reviews by Borm et al., 2006; Nel, 2006; Xia et al., 2009;

Savolainen et al., 2010; Yokel and MacPhail, 2011).

Some nanomaterials have been produced since the 1980s, such as TiO2 and SiO2 NPs,

but since the year 2000, production and use of many new ENMs has increased spec-

tacularly (Piccinno et al., 2012). These new materials have given birth to a new field

of toxicology, called nanotoxicology that examines the toxicity associated with parti-

cles with physical structures in the size range of 1 to 100 nm (Donaldson et al., 2004;

Oberdörster et al, 2005). However, because ”nano” is not well defined, Maynard et al.

(2011) proposed that a better term would be the toxicology of sophisticated materials

that would include also some particles with a dimension over 100 nm. This has spurred

a demand for a source specific inhalation exposure assessment where exposure to urban

PM and local indoor sources are examined separately.

The highest potential risk for human exposure to ENMs occurs in the workplace, in

both the manufacturing industry and research laboratories (Balas et al., 2010; Brouwer,

2010). Currently, there are very few ENM exposure studies. There are no quantita-

tive exposure levels for ENMs and differences in the format of reporting data compile

the comparison of different studies. This is because the fraction of background parti-

cles associated with the ENM concentration is usually not well-known (Brouwer, 2010;

Kuhlbusch et al., 2011). It is also unclear which metrics should be used to describe the

ENM exposure and which parameters are best associated with the biological response

(i.e. toxicity). In the ENM exposure assessment, the measurement metric should be

sensitive to the ENM concentrations but not to the background particles that are as-

sumed to be less dangerous to human health. On the other hand, the metric should

correlate with the biological response so that the health effects can be estimated di-

rectly. Some studies have indicated that the particle surface area is associated with the

biological response (Maynard and Kuempel, 2005; Oberdörster et al., 2000). However,

the surface area alone may not provide a sufficient indicator of the biological response

(Warheit et al., 2006) and thus there is no agreement about appropriate measurement

metrics (Maynard et al., 2011). In an ENM exposure assessment, Maynard and Aitken

(2007) proposed that investigators should measure the main concentrations, namely

particle number [cm−3], surface area [µm2 cm−3], and mass concentration [µg m−3].
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Currently, there are only recommended occupational exposure limits (OELs) for ENMs

(see IFA (2010) with the limits for ENMs given in units of particle number concen-

tration, NIOSH (2009) for TiO2 NPs, and NIOSH (2010) and IFA (2010) for CNTs).

van Broekhuizen et al. (2012) has supported the usefulness of the proposed OELs in

different exposure scenarios. Official OELs are lacking because the relevant exposure

scenarios are not well known, measurement metrics are unclear, and epidemiological

studies are incomplete (Schulte et al., 2010; van Broekhuizen et al., 2012).

The first epidemiological studies have not shown any human illnesses to be related to

ENM exposure (Schulte et al., 2009; Liou et al., 2012). However, exposure risks have

been estimated using the dose-response model devised by Hill for workers using TiO2

NPs (Liao et al., 2008, 2009; Ling et al., 2011) and workers in carbon black production

(Ling et al., 2011). These studies detected an excess in health risks but they were

criticized mainly for their inappropriate dose response assessment and exposure data

(Tomenson and morfeld, 2010a,b; Morfeld et al., 2012).

Recently, improved exposure and risk assessment tools have been developed with which

to estimate the potential ENM exposure and risk in different work scenarios (for ex-

ample Stoffenmanager and NanoSafer exposure modules; the model is described by

Shneider et al., 2011). However, these tools have not been validated and tested due to

the lack of quantitative and representative ENM exposure and release measurements

(Clark et al., 2012).

In summary, the quantitative ENM exposure levels are key factors if one wishes:

- to identify relevant ENM exposure scenarios (Brouwer, 2010)

- to define ENM exposure metrics in different exposure scenarios (Maynard and

Aitken, 2007; Brouwer et al., 2009)

- to estimate the regional dose to provide a basis for defining metrics of the dose-

biological response (Maynard and Aitken, 2007)

- to define OELs (van Broekhuizen et al., 2012)

- to conduct epidemiological studies (Liou et al., 2012)

- to undertake risk assessment modelings (Ling et al., 2011)

- to validate risk assessment tools (Clark et al., 2012)
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In order to obtain high quality and comparable exposure data, several guidelines and

harmonized measurement strategies have been developed for ENM exposure analysis

(e.g. ISO, 2007; Brouwer et al., 2009; Methner et al., 2010; Kuhlbusch et al., 2011;

OECD, 2009b; NIOSH, 2009; ECHA, 2012a). All of these strategies emphasize that it

is difficult to discriminate background particles from their ENM counterparts (see dif-

ferent discrimination methods from Kuhlbusch et al., 2011). The background particles

are classified as particles originating from natural sources and incidental anthropogenic

sources. The personal exposure to ENMs occurs mainly in the indoor environment

where the air quality depends on the penetration of pollutants originating from both

outdoor and indoor sources.

Several studies have shown that the indoor sources govern the indoor concentrations

irrespective of the type of the built-up environment (see e.g. concentration studies for

homes: Hussein et al. (2005a,b); Afshari et al. (2005); Géhin et al. (2008); Bhangar et

al. (2011), offices: Koponen et al. (2001); He et al. (2007); McGarry et al. (2011); Paper

I, and industry: Hämeri et al. (2003, 2009); Elihn and Berg (2009); Heitbrink et al.

(2009); Brouwer (2010); Buonanno et al. (2011); Koponen et al. (2011); Vosburgh et al.

(2011); Papers III, IV). The exposure to background particles should be considered

also when a worker’s risk is being estimated. In some cases, background particles

may be even potentially more hazardous for human health than manufactured or used

ENMs (Paper IV).

This thesis describes how to assess source specific exposure and dose (Papers I, III,

IV). It can be used in the assessment of risks from specific emission source if one

knows the biological responses evoked by the emitted particles. An exposure protocol

was introduced to estimate the biological response of synthesized NPs from murine

inhalation studies (Paper II). The source specific risk assessment provide causality

information for use in epidemiological studies and to enable targeted risk control mea-

sures. This thesis provides quantitative exposure data for the open questions listed

above. It is shown how to exploit indoor aerosol modelings to characterize particle

emitters and estimate their influence on indoor concentrations (Paper I). This is ben-

eficial in predictive source specific exposure and risk assessment which can be used to

design building environments with better air quality. This thesis describes the methods

that are essential for conducting source specific risk assessment of inhaled particles.

10



2 Methods

The work included measurements in the laboratory and in workplaces. Both physical

and chemical properties of aerosol particles were analyzed with electron microscopy.

Indoor aerosol modelings were used to resolve particle emission rates and to estimate

source influence on the indoor particle concentrations. This section provides a theo-

retical background for the methods used in this thesis.

2.1 Measurement techniques

Airborne particle concentrations were measured with on-line methods and particles

were collected from the workstations air. Particle samples were analyzed in an elec-

tron microscope. Time resolved particle concentration measurements may be generally

divided into two types; size integrated and size-resolved (Kuhlbusch et al., 2011). In

this work, the most important quantity is particle size-resolved concentration which

was used to characterize particle emission sources, to assess source-specific exposure,

and to calculate the deposited dose of inhaled particles.

2.1.1 Measurement principles of size-resolving instruments

The definition of the particle size is not self-evident because it depends for example

on particle morphology and dielectric properties (see e.g. Seinfeld and Pandis, 1997;

Sorensen, 2000). Thus, especially for non-uniform atmospheric aerosol, the size of the

particle will depend on the detection technique (Zhang et al., 2008). In this work,

particles were size classified according to their diffusity (mobility diameter), inertia

(aerodynamic diameter), and optical properties (light scattering).

Mobility sizing

The mobility of a particle is defined as the speed at which it moves in response to a

steady force. The mobility is one of the most fundamental of the aerosol properties

because it determines the particle diffusivity and coagulation kinetics. In an electric

field, a charged particle moving at constant velocity experiences an electrostatic force

11



which is exactly equal and opposite of the aerodynamic drag force. The electrical

mobility of a singly charged particle may be expressed as

Z =
eC(Kn)

3πηDb

(1)

where e [C] is elementary charge, C(Kn) is the Cunningham slip correction factor as

a function of Knudsen number Kn (Kn defined as 2λ/Dp, where λ [m] is the mean

free path of the carrier gas), Db [m] is the particle’s mobility diameter, λ [m] is the

mean free path of the carrier gas, and η [kg m−1s−1] is the viscosity of the gas (Baron

and Willeke, 2001a). In this work, particle number mobility size distributions were

measured with a mobility spectrometer, also known as a scanning electrical mobility

spectrometer (SMPS). For example, the SMPS has been described by Wang and Flagan

(1990).

Inertial classification

Aerosol particles may be classified according to their inertia. This quantity is called an

aerodynamic diameter which is defined, for a particular particle, as the diameter of the

spherical particle having unit density (1 g cm−3) that has the same settling velocity as

the true particle (Seinfeld and Pandis, 1997). In this work, particle aerodynamic size

distributions were measured with an electrical low pressure impactor (ELPI) where

aerosol particles are charged with a unipolar diffusion charger after which the particles

enter the cascade low pressure impactor, and subsequently the current carried by the

particles is measured (Keskinen et al., 1992). Response functions of the ELPI impactor

are described in detail by Marjamäki et al. (2005).

Optical sizing

In optical sizing, single particle scatters light which is collected and measured with

a photomultiplier tube. The pulse height (or area) depends strongly on particle size,

shape, and refractive index (Sorensen, 2000). Optical particle sizer response functions

for two light scattering geometries are described by Pinnick et al. (2000). It is usual

in particle optical size measurements, the measured particles are assumed to have the

same shape and refractive index as the particles used in the instrument calibration.

12



Particle sizing uncertainties are also increased by resonances in Mie scattering, where

particles of different sizes may give the same response.

2.1.2 Metrics of size integrating instruments

Total particle number (N , [cm−3]), active surface area (S, [µm2 m−3]), and mass (M ,

[µg m−3]) concentrations were measured respectively with condensation particle counter

(CPC, see for example McMurry, 2000), diffusion charger (DC, Baron and Willeke,

2001b; Asbach et al., 2012), and tapered element oscillating microbalance (TEOM,

Patashnick and Rupprecht, 1991). These instrument responses depend mainly on con-

centration and particle size. In the particle number count, the measurement signal

weight is the same for each particle (N ∝ D0
p), while in the active surface area the

measurement signal is proportional to D2
p in the free molecular regime (Kn ≫ 1) and

to D1
p when Kn ≪ 1 (Maynard and Kuempel, 2005; Heitbrink et al., 2009), and in

mass measurement, signal is proportional to the particle volume (M ∝ D3
p). Thus,

large particles make a significant contribution to the mass concentration. For example,

one 10 µm water droplet contains the same amount of mass as 109 water droplets whose

diameter is 10 nm. On the other hand, if the mass concentration is 100 µg m−3, it

requires 190 cm−3 water droplets having a diameter of 10 µm, or 190×109 cm−3 whose

diameter is 10 nm. This indicates that large particles do not affect significantly the

total particle number concentration, and on the other hand, NP’s contribution to the

mass concentration is insignificant.

2.1.3 Metric conversions from the mobility diameter

The size-fractional number concentrations may be converted to size-fractional active

surface area and mass concentrations. This can be used to estimate the regional depo-

sition for different metrics which may be relevant information when biological effects

are considered.

Active surface area

The active surface area of a particle may be described as the area that interacts with air

molecules and ions. This comprises a fraction from geometrical surface area (Pandis

13



et al., 1991; Rogak et al., 1991; Baron and Willeke, 2001b; Keller et al., 2001; Ku

and Maynard, 2005; Heitbrink et al., 2009). The particle mobility is defined by the

aerodynamic drag force which is governed by particle-molecule collisions. Similarly,

ion attachment (or mass transfer) rate in diffusion charging is based on ion diffusivity

and coagulation with aerosol particles. In the charging calculations, hydrated protons

are often used as representatives of positive ions (Biskos et al., 2004; Ramachandran

et al., 2005). Thus, it is theoretically possible to use either quantity to measure active

surface area (Keller et al., 2001; Ku and Maynard, 2005). However, it is best to keep

in mind that the area of active surface area depends on the nature of the interacting

molecules. For example, mass transfer of hydrated lead molecules measured by the

Epiphaniometer (Gäggeler et al., 1989; Pandis et al., 1991; Rogak et al., 1991; Shi

et al., 2001) gives a different active surface area than that measured by the diffusion

charger due to differences in ions/molecules diffusivity and coagulation kinetics (see

Biskos et al. (2004) for hydrated protons and Su et al. (1988, 1990) for lead molecules).

It has been shown experimentally that the product of active surface area and particle

mobility is constant up to 750 nm (Rogak et al., 1993; Keller et al., 2001). Thus, as

described by Heitbrink et al. (2009), the active surface area s [m2] of the particle may

be calculated from the mobility diameter as

s =
3πλDb

C(Kn)δ
, (2)

where λ is the mean free path for air 0.066 µm, and the scattering parameter δ for air

is 0.905 (de la Mora et al., 1998).

Mass

As the diameter of an agglomerate is not self-evident neither is the density of an

agglomerate. The characterization and the definitions for the particle densities have

been described by DeCarlo et al. (2004). In this study, mass m [g] of the particle was

calculated from the particle mobility diameter Db [m] and effective density ρeff [g cm−3]

(DeCarlo et al., 2004; Ristimäki and Keskinen, 2006; Rostedt et al., 2009):

m = ρeff
π

6
D3

b . (3)
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Here, the effective density ρeff was defined from the differences between particle elec-

trical mobility diameter and aerodynamic diameter which reflect the particle shape

factor and Cunningham slip correction factor. In this work, the effective density was

assumed to be constant for the whole particle population. However, for an agglomerate,

the effective density usually decreases while particle size increases because the porosity

of the particles tend to increase in relation with increasing particle size (McMurry et

al., 2002; Khlystov et al., 2004). The effective density links the mobility diameter and

aerodynamic diameter as described by Kelly and McMurray (1992):

Da = Db

√

C(Kn,Db)

C(Kn,Da)

ρeff
ρ0

, (4)

where Cc is the slip correction factor for the corresponding aerodynamic or mobility

particle size Baron and Willeke (2001c) and ρ0 is unit density (1 g cm−3).

2.1.4 Electron microscopy

The electron microscope can be used to characterize the particle projected surface

area, primary particle size, composition, and crystalline structure. The diameter of the

particle can depend upon the definition. For example, the projected area equivalent

diameter is defined as the diameter of a circle that has the same area as the projected

area of a particle seen under the microscope (Baron and Willeke, 2001c). Samples for

the electron microscope were collected directly on a copper grid or with an electrostatic

sampler (Dixkens and Fissan, 1999).

2.2 Calculation of inhaled dose

The regional dose of the particles during inspiration and expiration can be calculated by

multiplying particle aerodynamic size concentrations by the International Commission

on Radiological Protection human respiratory tract model deposition fractions (ICRP,

1994), respiratory minute volume, and exposure time. However, the exposure time can

be left as an open parameter in order to obtain the regional dose rate (or minute dose)

ṅ(t) = dn(t)/dt [min−1] which is a more useful quantity for risk assessment modeling.
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The mathematical expression of the regional dose rate is:

ṅ(t) =

n
∑

i=1











DFHA

DFTB

DFAlv

DFtotal











×
dNi(t)

d log(Dp,i)
× d log(Dp,i)×RMV × ǫ , (5)

where the deposition fractions in head-airways DFHA, trachea bronchi DFTB, alveolar

regionDFAlv, and total deposition DFtotal were calculated by using simplified equations

for the ICRP model as described by Hinds (1999) which are shown in Figure 1, Ni(t)

[cm−1] is the particle number concentration at size-section i, d log(Dp,i) is logarithmic

width of the size bin i, RMV [min−1] is the respiratory minute volume, and ǫ is the

respirator particle penetration factor (ǫ =(protection factor)−1 6 1, see AIHA (2002)

for definition of protection factor). In this work, the particles were assumed to preserve

their size during inspiration. However, it has been shown that the particles may grow

in the high relative humidity of the lungs which can influence the deposition region

and probability (Anselm et al., 1990; Schum and Phalen, 1997; Löndahl et al., 2007,

2009; Keskinen et al., 2011).

Figure 1: Predicted total and regional deposition probabilities for light exercise (nose
breathing) according to Hinds (1999) simplified equations for the ICRP deposition
model. (Reprinted with permission and adapted from Oberdörster et al (2005). Copy-
right Environmental Health Perspectives).
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2.3 Indoor aerosol modelings

The dynamics of indoor aerosol particles were described with a general dynamic equa-

tion of aerosol particles (Hussein and Kulmala, 2008). The model is based on a mass

balance of aerosol particles which in this work incorporated ventilation, deposition,

coagulation and particle sources as follows (Nazaroff, 2004; Hussein et al., 2005a):

dNi(t)

dt
= Nout,i(t)λvPi − (λv + λd,i)Ni(t) + Si(t) +

dNi(t)

dt

∣

∣

∣

∣

∣

coagulation

(6)

where Ni(t) and Nout,i(t) [cm−1] are the particle number concentrations indoors and

outdoors, λv [h
−1] is the ventilation rate, Pi is the penetration factor of outdoor particles

to indoors, λd,i [h
−1] is the deposition rate of aerosol particles onto indoor surfaces (Lai

and Nazaroff, 2000), the coagulation process is implemented from the UHMA aerosol

model (Korhonen et al., 2004), and the subscript i refers to certain size-sections. In

this simplified model, particles are treated as primary particles and it does not take

into account gas-particle interactions.
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3 Risk assessment of airborne particles

In toxicology, risk is defined as the probability that exposure to a hazard will damage

human health. Figure 2 displays schematic for risk assessment of airborne particles.

It is divided into five sections where the first step is hazard identification (Figure 2A).

Emission sources include penetration of outdoor pollutants to indoors and emissions

from incidental sources and processes. Emission sources may be characterized with

chamber measurements and indoor aerosol modelings (Paper I). The indoor environ-

ment characterization includes parameters that can influence indoor concentrations,

such as ventilation and spatial properties. The workers’ activity includes information

about the use of emission sources and personal protection.

Source specific exposure and dose (Figure 2B) are defined by linking work activity with

size-resolved concentrations measured both from the work station and representative

background concentration, such as the incoming ventilation air, far from the worksta-

tion, or outdoors. The emission rates from different processes may be resolved from

measured concentrations with the indoor aerosol modelings, in units of cm−3 s−1 or

s−1, depending on the knowledge of spatial distribution of the concentrations (Hussein

et al., 2005a; Koivisto et al., 2012). The emission rates may be utilized in exposure

analysis, risk control measures, and in the exposure modelings (Paper I, Koivisto

et al., 2012). The regional inhalation dose can be calculated from the size-resolved

concentrations by using the ICRP respiratory tract model (e.g. Paper III).

Risk may be characterized (Figure 2D) from the exposure concentrations and by using

occupational exposure limits (OELs). However, if there are no OELs available, the risk

may be estimated with a dose-response model (Liao et al., 2009; Ling et al., 2011).

This requires information about dose-response profiles in the sources, which can be

defined with toxicological studies, or from epidemiological data (Figure 2C). Paper II

shows an exposure protocol that was used to study synthesized TiO2 NPs pulmonary

inflammation (Rossi et al., 2010) and the genotoxic response in mice (Lindberg et al.,

2011).

In risk control measures (Figure 2E), source emission rates and their toxicities provide

valuable data to estimate the best method with which to decrease the risk. The pri-

ority is to reduce exposure concentrations and then to increase personal protection.

Concentrations may be reduced by changing process methods, altering material usage

in the sources, or they may be achieved via structural changes.
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Figure 2: Schematic for risk assessment of airborne particles (modified from Ling et
al., 2011). Solid arrows shows how the risk assessment proceeds and dashed arrows
shows where indoor aerosol modelings may be used for predictive risk assessment.
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4 Exposure scenarios

This section shows how workers’ ENM inhalation exposures and doses were assessed in

three different workplaces: NP synthesis (Paper III), packing of pigment and nano-

sized titanium dioxide (Paper IV), and handling of nanodiamonds (to be published).

The ENM concentrations were discriminated from background particles which were

used to assess the risk of ENM exposure. The exposure scenarios were be compared

with an average exposure to urban background particles defined by Hussein et al.

(2013).

4.1 Nanoparticle synthesis

The NPs were synthesized with a liquid flame spray process (Tikkanen et al., 1997;

Mäkelä et al., 2004). Synthesized NPs were either collected in a ventilated chamber

(see photo in Figure 3) or directly deposited on components over the flame. Figure

3 shows a layout of the work environment with information on the workers’ positions

during the synthesis and the locations of instruments.

Figure 3: Process environment where solid lines refer to NP collection and dashed
lines refer to nanocoating. The photo shows the aerosol instrumentation and the TiO2

NP synthesis in the ventilated chamber.

Figure 4a shows that in the time between the processes of synthesis, the background

particle concentration varied from 2000 up to 100 000 cm−3 which were mainly smaller
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Figure 4: Time series of (a) particle concentrations and (b) particle mobility size
distributions. Beginning and end of the processes are marked with vertical lines and
(b) white dashed rectangles show the exposure concentrations of NPs.

than 100 nm (Figure 4b). These background particles originated mainly from the main

building because the incoming ventilation air concentration was around 1000 cm−3 and

the background particles were seen both in the process room and monitoring room

(Figure 4a). The process under the hood, produced background particles over 500 nm

in diameter (Figure 4b; WS2, WS3, and WS4). These were most likely semivolatile

side product combustion particles from the process. The white rectangles in Figure 4b

show the ENP concentrations to which the workers were being exposed. Tables 1 and

2 show the workers’ exposure and dose rate of synthesized TiO2 particles (Figure 9a)

during the work session between 12:15 and 13:10.

4.2 Packing of pigment and nanoscale TiO
2
particles

Industry workers’ exposure to airborne particles were defined during packing of pigment

TiO2 (pTiO2, primary particle size ∼200 nm, Figure 9d) and nanoscale TiO2 (nTiO2,

primary particle size ∼50 nm, Figure 9b). The nTiO2 and pTiO2 packing areas were

located in separate factory buildings. Both factories were large, over 2000 m2 and

contained four to five floors. The packing areas had open pathways to other parts of

the factories.
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Packing of pTiO
2
material

Diesel powered forklifts were used to transport the pTiO2 sacks (500 or 800 kg) to a

storing room. Figure 5a shows that the forklifts increased the particle concentrations

up to 3.0× 105 cm−3 which was mainly attributable to combustion particles below 30

nm in diameter (diesel particulate matter (DPM), Figure 9d, and Figure 5b and 5c

distributions at 10:44 and 10:46). Figure 5c background particle size distributions mea-

sured at 12:00 and 15:47 total number concentrations were respectively 10× 103 cm−3

and 20× 103 cm−3. It was assumed that these were mainly secondary particles formed

from sulphuric acid originating from the TiO2 extraction process. pTiO2 agglomerates

were larger than approximately 500 nm. They were emitted into workstation air during

the bagging process and re-suspended in pressurized air cleaning and during forklift

activity. Table 3 shows the worker exposure and dose rate averaged over the time pe-

riod described in Figure 5. The average exposure concentration consists of ∼ 15× 103

cm−3 secondary sulphuric acid particles, ∼ 25 × 103 cm−3 combustion particles, and

∼ 290 cm−3 pTiO2 particles.
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Figure 5: pTiO2 packing area: (a) particle concentration time series where F is
forklift, F* is forklift and change of a large bag, PC is pressurized air cleaning and
C is the cleaning vehicle, (b) particle size distribution time series, and (c) shows the
selected particle size distributions which are plotted with the respective line color and
style in (b).
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Packing of nTiO
2
material

nTiO2 material was bagged into 25 kg sacks and stored with an automatized system.

The first phase conducted in the factory hall was a jet milling process, after which there

was a 20 minute break, and then the packing started (Figure 6a). The background

particle size distribution was defined as the average of the before packing and the

after packing distributions as shown in Figure 6c. The packing process itself did not

increase significantly the particle concentrations (compare Figure 6c blue and black

lines). However, three events were identified where a sack was poured into a silo by

a worker (red lines in Figure 6b and c). These pouring events particularly increased

over 200 nm particle concentrations which were identified in the electron micrographs

to be nTiO2 agglomerates (Figure 9b). The nTiO2 concentrations were defined by

omitting the average of the background particle size distributions from the pouring

event distributions. These concentrations were used to estimate the workers’ exposure

and dose of nTiO2 agglomerates (Tables 1 and 2).
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style in (b).
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4.3 Handling of nanodiamonds

Nanodiamonds (NDs, crystal size 4-6 nm, Figure 9c) were handled in a glove box and

percolated with a shaker that was located either in a laminar flow cabinet or a room

(Figure 7). In cleaning work, the components were washed in a ventilated washing

chamber (Figure 7). The room was a part of a modern office building. The room

ventilation rate was approximately 2 h−1 and it was maintained at 5 Pa under-pressure

compared to the corridor.

Figure 7: Layout of the work area. ND handling and cleaning areas are shown with
light red.

The particle number size distributions were measured with a 3-way valve alternately

from the incoming ventilation air or at a work station. During the workday, work

station particle number concentrations were almost the same as those measured from

the incoming ventilation air (Figure 8a). Thus, the incoming ventilation air determined

the work station total particle number concentration. During ND handling in a laminar

flow cabinet and glove box, there were a few peaks in the mass concentration measured

by the DustMonitor (Figure 8a). ND handling in the room and also the cleaning

operations clearly increased the mass concentration (Figure 8a) and this was caused
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by particles roughly over 1 µm in diameter (Figure 8b). This increased also personal

particle exposure as measured by the diffusion charger (MiniDisk). Figure 8c shows the

background particle number and mass distributions measured before the work activity

and during a spill of NDs that occurred during the ND handling. During the spill

event, the workers’ ND exposure and dose were estimated (Tables 1 and 2).

Figure 8: Particle concentrations during handling of NDs: (a) shows the particle num-
ber and mass concentration (DustMonitor) time series, (b) shows the particle number
size distribution time series, and (c) shows the selected number particle size distribu-
tions which are plotted with the respective line color and style in (b), and mass size
distributions measured by the DustMonitor from corresponding events with dashed
and solid green lines.

4.4 Average exposure to urban background particles

The urban background (UBG) in Table 3 shows an average exposure and dose rate

modeled for an office worker to urban outdoor particles during a 24-hour exposure

(Hussein et al., 2013). The work day included activities such as working in indoors,

transit between locations, outdoor activity and rest at home (Hussein et al., 2012).

The UBG takes into account penetration of outdoor particles into the indoors. Thus,

the average exposure concentration is lower than the average urban outdoor particle
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concentration. The UBG values can be used as a baseline for PM exposure and to

define dose levels for adults living and working in an urban area where the exposure

to local sources is excluded.

Figure 9: Micrograph of the process particles sampled from (a) synthesis of TiO2

particles, (b) packing of nTiO2 particles, (c) handling of NDs, and (d) packing of
pTiO2 particles.
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Table 1: Workers’ background particles and ENM exposures and calculated dose rates
in units of particle number (N and ṅ) and mass (M and ṁ). Respirators’ protection
factors were not taken into account in the exposure and dose rate calculations. Work-
station concentrations were assumed to be equivalent to the exposure concentrations.

Synthesis nTiO
2
Packing ND handling

Background Synthesis Background Pouring Background Spill

Composition − TiO2 − TiO2 − ND
Size − < 200 nm − & 200 nm − & 100

N , [cm−3] 17800 1.0×105 10500 450 7000 −

M , [µg m−3] 0.15a,b 0.0018a,b 160c 1500a,d 3e 162e

ṅ, ×106 [min−1] 260 1460 208 3.6 67 −

ṁ, [µg min−1] 2.2 0.017 3.0 31 0.005 3.12
aCalculated mass from mobility diameter and effective density.
bρeff = 1.7 g cm−3 (Keskinen et al., 2007).
cMeasured by the TEOM.
dOptical and mobility diameter are assumed to be equivalent and ρeff = 0.1 g cm−3.
eSpherical particles with density of 2.6 g cm−3 (instrument default setting).

Table 2: Inhalation exposures and dose rates of ENMs when workers’ use of respiratory
protection factors of 50 in synthesis and 200 in ND handling were taken into account,
and regional distribution of deposited particles in percentages to the head airways (H-
A), the trachea bronchi (TB), and the alveolar region. Approximate exposure times
were 10 min in synthesis, 10 min in pouring, and 1 min during the ND spill event.

Synthesis nTiO
2
packing ND handling

Exposure 2000 cm−3 0.036 ng m−3 450 cm−3 1500 µg m−3 0.81 µg m−3

Dose rate 29×106 min−1 0.34 ng min−1 3.6×106 min−1 31 µg min−1 15.6 ng min−1

H-A, [%] 11 10 71 86 90
TB, [%] 19 17 5 5 4
Alveolar, [%] 70 73 24 9 6
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Table 3: Inhalation exposures, dose rates, and regional distribution of deposited
particles in percentages to the head airways (H-A), the trachea bronchi (TB), and the
alveolar region for pTiO2 packing area and urban background (UBG). pTiO2 packing
area concentrations consist mainly of diesel particulate matter (DPM) (∼ 25 × 103

cm−3), sulphuric acid background particles (∼ 15× 103 cm−3), and pTiO2 particles.

pTiO
2
packing area Urban backgrounda

Exposure 40100 cm−3 3600 cm−3 4.3 µg m−3

Dose rate 680×106 min−1 39×106 min−1 0.027 µg min−1

H-A, [%] 21 12.5 43
TB, [%] 26 20 9
Alveolar, [%] 53 67.5 48
aFor 18 - 63 years old males; size range approximately from 4 to 950 nm;
Spherical particles with density of 1.0 g cm−3.
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5 Discussion

The main points raised in this section are the definitions of the exposure metrics,

risk assessment of exposure to ENMs, and comparison of ENM exposures and dose

rates with background PM. The analysis was limited to particle number and mass

concentrations.

ENM exposure metrics

Table 1 shows that the ENM number concentration was high during synthesis (100 000

cm−3) as compared to packing (450 cm−3) and handling (value not defined). Nonethe-

less, ENM mass concentrations were 1.8 ng m−3 in synthesis, 1.5 mg m−3 in pouring,

and during the ND spill event 162 µg m−3 (Table 1). The differences in ENM con-

centrations are explained by the size of the particles (Figures 4b, 5c, 8c, and 9). In

the exposure analysis of ENMs, it is recommended that one should measure particle

number concentration in synthesis, and mass concentration in packing and handling, in

order to minimize the contribution of background particles to the ENM concentration

(Table 1). This is consistent with dustiness tests which revealed that handling of ENMs

produces large agglomerates which are sized in a range of hundreds of nanometers to

tens of micrometers (e.g. Evans et al., 2013).

Risk assessment of ENM exposure

Our murine inhalation studies have shown that synthesized nTiO2 particles do not

evoke any signs of pulmonary inflammation at a retained dose of 12.6 µg in mouse lung

(Rossi et al., 2010). In fact, they seem to reduce allergic pulmonary inflammation in

a murine inhalation model (Rossi et al., 2010). In addition, they do not induce any

genotoxic effects at a retained dose of 84 µg in mice lungs (Lindberg et al., 2011). How-

ever, there are other studies showing that nTiO2 may induce pulmonary inflammation

(e.g. Chen et al., 2012) or genotoxicicity (e.g. Falck et al., 2009). Furthermore, the

International Agency for Research on Cancer (IARC) has classified TiO2 particles as

”possibly carcinogenic to humans” (Group 2B, IARC, 2010). Toxicity may also depend

on crystalline structure and structural modifications. For example, Rossi et al. (2010)
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showed that silica coated nTiO2 particles were able to induce pulmonary neutrophilia

in mice.

The human equivalent dose can be estimated by using simplified extrapolation methods

(see for example Reigner and Blesch, 2002; Reagan-Shaw et al., 2008; ECHA, 2012b).

By applying the dose translation method described by (Reagan-Shaw et al., 2008),

the human equivalent dose for 12.5 µg of nTiO2 would be 3.0 mg in human lungs,

when using conversion factors of 37 for an adult (body mass 60 kg) and 3 for a mouse

(body mass 0.02 kg). The respective human equivalent dose of 84 µg would be 20 mg

in the human lung. During the packing of nTiO2 particles, over a 10 minute period,

the worker’s dose of nTiO2 particles was 310 µg. By assuming that the biokinetics

of mice and humans would be similar, then the nTiO2 packing worker’s risk to suffer

inflammatory or genotoxic effects should be negligible. The risk is even lower if one

can assume that only the alveolar dose is hazardous. This would reduce the risk by a

factor of 10, because only 9 % of the nTiO2 dose would be deposited in the alveolar

region.

Table 2 shows that in synthesis and ND handling, the proposed OELs in Table 4

were not exceeded due to the use of respirators. The exposure during pouring of

nTiO2 material was momentarily higher than the numerical value of the proposed OEL.

However, because the activity continued for only tens of minutes and the proposed

value applies for time-weighted average concentrations for up to 10 h per day during

a 40-h workweek, the proposed OEL was not exceeded. It has to be noted that the

monthly average exposure may deviate significantly from the single day concentration

measurements. The exposure data reliability may be improved by measuring longer

periods as this would be one way to reduce statistical uncertainties.

Comparison of ENM exposures with background PM exposures

The ENM exposures and dose rates were compared with: (a) urban background (UBG)

exposure in the Helsinki area outdoor aerosol particles (Table 3), (b) the respective

workplace background levels (Table 1), and (c) concentration levels in packing of pTiO2

material (Table 3).

The number dose rate during synthesis was at the same level and during the pouring

event, ten times lower than the UBG number dose rate (see Tables 2 and 3). The
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Table 4: Proposals for occupational exposure limits (OELs) in the number and mass
concentrations as time-weighted average concentrations for up to 10 h per day during
a 40-h work week, and the calendar year average air quality limit values for PM10 and
PM2.5.

Substance OELa, [cm−3] OEL, [µg m−3] Reference

nTiO2 40000 300 IFA (2010); NIOSH (2011)
pTiO2 - 2400 NIOSH (2011)
Nanodiamonds 40000 - IFA (2010)
DPMb -c 5 EPA (2002)

Urban background:
PM10 - 40 EC (2008)
PM2.5 - 25 EC (2008)
aFor ENPs with sizes in between of 1 to 100 nm, see definition from IFA (2010)
bDiesel particulate matter, particle diameter < 2 µm, see definition from EPA (2002).
cDPM particles below < 100 nm are classified as ultrafine particles.

ENM mass dose rates during synthesis and in the spill of NDs were respectively 80

and 1.7 times lower than the UBG dose rate. The mass dose rate during the pouring

event was 1150 times higher than UBG mass dose rate. This was mainly because of the

fact that the worker did not wear a respirator. During the 10 minute pouring activity

that particular worker was exposed to approximately ten times more nTiO2 particles

in mass than UBG particles during 24-hours.

Workplace background particle number dose rates were systematically higher than

ENM number dose rates (see Tables 1 and 2). Only during the nTiO2 pouring activity

was the workplace background particle mass dose rate lower. The mass dose during

10 minute pouring activity was similar to the mass dose of background PM received

during the whole work shift. This shows that the dose of background PM, both in

terms of units of number and mass, may be significantly higher than the dose of ENMs.

ENM doses were reduced due to the use of respirators and the short duration of ENM

exposure. The workplace background PM originated during synthesis mainly from

some unknown indoor sources, in the packing area from both outdoor and indoor

sources, and in ND handling from outdoor sources. Since the nature of the background

particles was not known, their risk could be not estimated.

During packing of the pTiO2 material, the average particle number dose rate was clearly

highest (Table 3). These were mainly newly produced diesel particulate matter (DPM;
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Figure 9d) from forklifts and sulphuric acid particles. DPM is classified as carcinogenic

to humans (Group 1, IARC, 2012). This means that during an 8-h work shift, a worker

receives a 6 times higher dose in terms of particle number than the UBG particles

during 24-hours. The calculated mean mass concentration in the pTiO2 packing area

for particles below 2 µm in diameter was 90 µg m−3 (ρeff = 1 g cm−3, mobility and

optical diameters assumed to be the same). However, because this mass originated

mainly from pTiO2 particles, the proposed OEL limit was not exceeded (Table 4).

During synthesis, the TiO2 NPs were mainly deposited in the alveolar region whereas

in the nTiO2 pouring and the ND spill event, they deposited in the head airways both

in units of number and mass (Table 2). Table 3 shows that incidental particles in the

pTiO2 packing area and UBG PM were deposited mainly in the alveolar region. This

might impact on the dose potential biological response. Especially for insoluble parti-

cles such as TiO2 and soot particles, the deposition region clearly influences clearance,

e.g. via mechanisms such as particle translocation and accumulation in the extrapul-

monary organs (Geiser and Kreyling, 2010). Thus, in a worker’s inhalation exposure

risk assessment, the risk of particles from incidental sources needs to be considered in

addition to estimating the worker’s ENM exposure risk.

Perspectives on exposure assessment

PM exposure is usually considered as the fraction of particles which are smaller than

a pre-defined cut-size, such as PM10 or PM2.5. These size limits are loosely based on

health effects, i.e. particles over 10 µm in diameter do not enter efficiently into the

respiratory system during inspiration. For some pollutants, such as asbestos, there

are specific exposure limits (fibres cm−3) but this is not usually the case for different

particle pollutants. In recent years, the risks of exposure to ENMs have triggered a

demand for source specific exposure assessment in addition to the traditional PMx

exposure assessment.

A source specific exposure assessment usually requires size-resolved concentration mea-

surements and at least measurements undertaken at two sampling points. Therefore,

these kinds of measurements were conducted in this study with the SMPS and a 3-way

valve in the ND exposure assessment and with the SMPS and two CPCs during the

synthesis procedure. This requires expensive instrumentation and a well-trained user.

One solution to overcome this problem would be to identify and characterize particle
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sources or emissions from processes, and then estimate their influences on indoor air

quality from their emission strengths. Subsequently, one could measure the concen-

tration difference between background particles (from outdoor or incoming ventilation

air) and the indoor concentration (room or ventilation exhaust air), for example with a

diffusion charger. This would provide information about the indoor sources influencing

the indoor air quality.
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Figure 10: Laser printer influence on a modeled 62 m3 office room indoor parti-
cle concentration. The background concentration was 10-year average concentration
measured in Kumpula, Helsinki, and filtered with a EU7 filter. Sub-plot shows peak
particle number size distribution during the print phase (+), and after one hour (×),
with ventilation rate 1 h−1.

Source specific exposures can be defined either with measurements or with indoor

aerosol modelings when the sources have been characterized (Paper I; Koivisto et al.,

2012). An example of this kind of modeling is shown in Figure 10. Hussein et al. (2013)

performed exposure and dose modelings for a large population exposed to urban aerosol

particles. In such model emissions from local indoor or outdoor sources may be applied.
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This information in association with epidemiological studies could be used to estimate

the influence of different PM sources on human health. Indoor aerosol modelings can

be of assistance in designing indoor environments where sources of particles affecting

the indoor air quality are taken into account. For example, Figure 10 shows how the

effect of the ventilation rate on the indoor particle concentration was studied.

In a complete inhalation exposure and risk assessment, both gaseous and PM pollutants

need to be considered. In that situation, gas-particle interactions such as new parti-

cle formation, condensation and evaporation must be assessed (see research programs

funded by The Finnish Work Environmental Fund no. 112132 and no. 112133).

The optimal risk assessment measurement metrics are still an open question. The tra-

ditional forms of occupational hygiene exposure and risk assessment rely on OEL values

given in units of concentration per volume. However, currently there is a discussion

about how best to measure dose with respect to the risk or risk exposure (see Nanoso-

lutions research program and Qui, 2012). This will require the measurement of the

overall dose that should be weighted in consideration of the overall dose-response. For

example, this kind of metric could take into account the chemical activity (Neubauer

et al., 2011) or the photoemission properties (Lee and Sundheim, 1989).
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6 Review of papers and the author’s contribution

Paper I describes how an indoor aerosol model can be used to characterize particle

emissions and predict the influence of the source on indoor air concentrations. The

experiments were designed by K. Hämeri, T. Tuomi, and R. Niemelä. The modelings

were performed by T. Hussein. The author carried out the major part of the work

regarding the experimental setup, measurements, data analysis and manuscript writing

under the supervision of K. Hämeri.

Paper II presents a novel exposure protocol to study biological responses of syn-

thesized nanoparticles. The author designed and constructed in conjunction with M.

Miettinen the experimental setup used in the inhalation studies under the supervision

of J. Jokiniemi and K. Hämeri. The author along with E.M. Rossi H.K. Lindberg,

and G.-C. Falck was responsible for the inhalation studies which were designed by H.

Alenius, H. Norppa and K. Savolainen. The respiratory parameters of mice were inves-

tigated by M. Mäkinen under the supervision of A. Korpi. The particle characterization

was conducted by J. Riikonen, E. Vanhala, and M. Vippola. The author performed

instrument calibration, aerosol measurements, data analysis, lung deposition analysis

and manuscript writing under the supervision of K. Hämeri.

Paper III presents one method for estimating a worker’s calculated regional inhalation

dose. It was applied to estimate regional inhalation dose rates and doses of nanopar-

ticles to which workers were exposed. The study provides fundamental data for risk

assessment of airborne nanoparticles, regulations, dose metrics, as well as assessing

the magnitude of doses in nanoparticle synthesis. M. Aromaa was responsible for the

nanoparticle synthesis under the supervision of J. Mäkelä. T. Hussein estimated the

effect of the particles’ hygroscopic growth to lung deposition. The author was respon-

sible for the measurements, data analysis, lung deposition estimations and manuscript

writing under the supervision of K. Hämeri.

Paper IV reports titanium dioxide (TiO2) factory workers’ source specific exposure

and dose to airborne particles. The study highlights the importance of estimating a

worker’s source-specific exposure and source-specific risk assessment. The author and

J Lyyränen were responsible for measurements which were supervised by A. Auvinen,

T. Tuomi, J. Jokiniemi and K. Hämeri. Particle analysis was performed by E. Vanhala.

The author analyzed data, estimated lung depositions and wrote the manuscript under

the supervision of K. Hämeri.
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7 Conclusions

This thesis investigates the exposure of workers to engineered nanomaterials (ENMs).

The exposure scenarios were the synthesis of TiO2 nanoparticles (NPs), the packing

of nTiO2 particles, and the handling of nanodiamonds. It was revealed how it is

possible to distinguish background particles from ENM concentrations with different

measurement techniques and indoor aerosol modelings. The regional inhalation doses

of particles to which workers were exposed were estimated from the ENM size-fractional

concentrations and by using a lung deposition model.

During TiO2 synthesis the main deposition region was the alveolar region whereas

during ENM handling it was the head airways. The proposed occupational exposure

limits (OELs) were exceeded only momentarily during packing of nTiO2 particles in

units of mass. A worker’s risk to suffer inflammatory or genotoxic effects during nTiO2

packing was assessed by estimating the dose to which the worker was exposed and

extrapolation of dose-biological response of nTiO2 in mice. It was found that in this

case the risk was negligible because the worker’s dose was 310 µg while the inflammatory

and genotoxic effects were only expected to occur at the doses exceeding 3.0 mg and 20

mg, respectively. However, the dose translation from mice to humans was preliminary

and it was mainly conducted in order to illustrate how one could exploit existing

toxicological data in a risk assessment in an occupational setting.

The ENM exposures and doses were compared with the levels of background particles

occurring in a workplace, during packing of pTiO2 particles, and a modeled 24-hour

average exposure to urban PM. This study indicated that workers were exposed to

high number concentrations in different workplaces when compared to 24-hour aver-

age urban PM exposure. The exposure concentrations were dominated by background

particles originating from local incidental sources and outdoor concentrations that pen-

etrate to indoors. During packing of nTiO2 particles, work shift dose of ENMs were

at the same level as the dose of background particles when expressed in units of mass.

In other respects, the work shift ENM doses were lower than workplace background

PM doses. This was because of the brief ENM exposure compared to whole work shift

duration and use of respirators by workers while working with ENMs. During packing

of pTiO2 material, a worker was identified to be potentially at the highest risk when

compared to the other ENM exposures in this study. This was because of he was ex-

posed to a high diesel particulate matter number concentration for a long period. This
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shows that essential to estimate source specific exposures and risks in order to identify

the most relevant risk factors in an occupational environment.

This study revealed how best to exploit indoor aerosol modelings in a characterization

of indoor particle emitters and how to estimate their influence on indoor air concen-

trations. These modeled concentrations may be used to estimate exposures, doses,

and risks attributable to particle emitters in different work scenarios. These predicted

exposure levels may be used in epidemiological studies. Indoor aerosol modelings may

also be used to design safer indoor environments by minimizing the influences of these

emitters on the indoor air concentrations.

In summary, the main outcomes of this thesis are:

- ENM exposures and doses were characterized in different workplace’s and were

compared with the workplaces background particle exposures and the exposure

to average urban background particles

- In these workplaces, it is proposed that exposure metrics in NP synthesis should

be related to D0
p and during ENM handling to the D3

p

- Regional doses revealed that synthesized NPs were deposited mainly in the alve-

olar region and in ENM handling in head airways both when assessed units of

number or mass

- An exposure protocol was introduced for studying the toxicities of synthesized

NPs and this was used to estimate the tocicity of TiO2 NPs

- Risk assessment was performed by applying proposed OELs and for nTiO2 by

using dose and dose-biological responses obtained from toxicological studies con-

ducted in experimental animals

- One can exploit indoor aerosol modelings to characterize sources and then esti-

mate how these will influence the indoor air concentrations

This study describes how to assess a worker’s risk for being exposed via source specific

inhalation exposure. It provides some methods to answer commonly asked questions,

such as ”What does this exposure mean?” or ”Are we at a high risk to suffer some

disease?”.
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Marjamäki, M., Lemmetty, M., Keskinen, J. (2005). ELPI Response and Data Reduc-

tion I: Response Functions. Aerosol Sci. Technol., 39:575–582.

Maynard, A.D., Kuempel, E.D.(2005). Airborne nanostructured particles and occupa-

tional health. J. Nanopart. Res., 7:587–614.

Maynard, A.D., Aitken, R.J. (2007). Assessing exposure to airborne nanomaterials:

Current abilities and future requirements. Nanotoxicology, 1:26–41.

Maynard, A.D., Warheit, D.B., Philbert, M.A. (2011). The New Toxicology of Sophis-

ticated Materials: Nanotoxicology and Beyond. Tox. Sci., 120:109–S129.

McGarry, P., Morawska, L., He, C., Jayaratne, R., Falk, M., Tran, Q., Wang, H. (2011).

Exposure to particles from laser printers operating within office workplaces. Environ.

Sci. Technol., 45:6444–6452.

McMurry, P.H. (2000). The history of condensation nucleus counters. Aerosol Sci.

Technol. 33:297–322.

McMurry, P.H., Xin, W., Kihong, P., Kensei, E. (2002). The relationship between

mass and mobility for atmospheric particles: a new technique for measuring particle

density. Aerosol Sci. Technol., 36:227–238.

Methner, M., Hodson, L., Geraci, C.(2010). Nanoparticle Emission Assessment Tech-

nique (NEAT) for the Identification and Measurement of Potential Inhalation Expo-

sure to Engineered Nanomaterials – Part A. J. Occup. Env. Hyg., 7:127–132.

Morfeld, P., McCunney, R.J., Levy, L., Chaudhuri, I.S. (2012). Inappropriate exposure

data and misleading calculations invalidate the estimates of health risk for airborne

titanium dioxide and carbon black nanoparticle exposures in the workplace. Environ.

Sci. Pollut. Res., 19:1326–1327; author reply 1328–1329.

46
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