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Abstract

The causal relationships determining the behaviour of a system under study
are inherently directional: by manipulating a cause we can control its ef-
fect, but an effect cannot be used to control its cause. Understanding the
network of causal relationships is necessary, for example, if we want to
predict the behaviour in settings where the system is subject to different
manipulations. However, we are rarely able to directly observe the causal
processes in action; we only see the statistical associations they induce in
the collected data. This thesis considers the discovery of the fundamen-
tal causal relationships from data in several different learning settings and
under various modeling assumptions. Although the research is mostly theo-
retical, possible application areas include biology, medicine, economics and
the social sciences.

Latent confounders, unobserved common causes of two or more observed
parts of a system, are especially troublesome when discovering causal re-
lations. The statistical dependence relations induced by such latent con-
founders often cannot be distinguished from directed causal relationships.
Possible presence of feedback, that induces a cyclic causal structure, pro-
vides another complicating factor. To achieve informative learning results
in this challenging setting, some restricting assumptions need to be made.
One option is to constrain the functional forms of the causal relationships to
be smooth and simple. In particular, we explore how linearity of the causal
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relations can be effectively exploited. Another common assumption under
study is causal faithfulness, with which we can deduce the lack of causal
relations from the lack of statistical associations. Along with these assump-
tions, we use data from randomized experiments, in which the system under
study is observed under different interventions and manipulations.

In particular, we present a full theoretical foundation of learning linear
cyclic models with latent variables using second order statistics in several
experimental data sets. This includes sufficient and necessary conditions
on the different experimental settings needed for full model identification,
a provably complete learning algorithm and characterization of the under-
determination when the data do not allow for full model identification. We
also consider several ways of exploiting the faithfulness assumption for this
model class. We are able to learn from overlapping data sets, in which dif-
ferent (but overlapping) subsets of variables are observed. In addition, we
formulate a model class called Noisy-OR models with latent confounding.
We prove sufficient and worst case necessary conditions for the identifiabil-
ity of the full model and derive several learning algorithms. The thesis also
suggests the optimal sets of experiments for the identification of the above
models and others. For settings without latent confounders, we develop
a Bayesian learning algorithm that is able to exploit non-Gaussianity in
passively observed data.

Computing Reviews (1998) Categories and Subject
Descriptors:
I.2.6 [Artificial Intelligence]: Learning – Knowledge acquisition,

Parameter learning
G.3 [Probability and Statistics]: Multivariate statistics, Correlation and

regression analysis, Experimental design

General Terms:
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Chapter 1

Introduction

To truly understand a phenomenon is to know the underlying causes be-
hind the phenomenon. Thus, the notion of causation is built deep into
human understanding and language. Causal terms like ‘causes’, ‘prevents’,
‘inhibits’ and ‘contributes’ are often used in everyday language. But what
do we exactly mean when we say for example that ‘smoking causes can-
cer’? We certainly do not mean that smoking always results in cancer
nor that smoking is always necessary for developing cancer, the relation is
probabilistic (Suppes, 1970). We imply that there is some statistical con-
nection between smoking and developing cancer: smokers tend to develop
cancer more often than non-smokers. However, this connection may have
any number of explanations: there may exist genes inducing both nicotine
addiction and cancer. Thus, the statement ‘smoking causes cancer’ also
means something more. It means that there is some sort of physical, bi-
ological or chemical process or mechanism, from the cause (smoking) to
the effect (cancer) (Salmon, 1984). However, exactly understanding these
complicated mechanisms in detail may be very difficult, if not entirely im-
possible. Perhaps a better answer can be obtained by considering the use
of such causal knowledge: if you are not particularly keen on developing
cancer, you should not smoke. If you all of a sudden start to smoke more,
you will be more likely to develop cancer, if you start smoking less, you are
less likely to develop cancer. Thus, if we manipulate or intervene on the
cause, and determine its value independent of its respective natural causes,
we get a changed outcome of the effect (Woodward, 2003). On the con-
trary, intervening on the effect leaves the cause unchanged. These simple
clarifications using processes and manipulations allow for mathematical for-
malization and development of computational tools for scientific utilization
of the concept of causality.

As in many scientific inquiries, in this thesis we examine various kinds
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2 1 Introduction

of systems, with characteristics that can be measured and modeled with
random variables. Often we can also control or manipulate some character-
istic of such a system. From measurements in various experimental settings
we collect data, and from data we try to infer the mechanisms working in
the system and understand how the different parts of the system interact.
The systems considered may come from a number of application areas such
as biology (e.g. gene regulation in biological cells), medicine (e.g. effects
of treatments on patients), economics (e.g. interaction between different
factors such as supply and demand), or the social sciences (e.g. connec-
tions between health and wealth). These systems are often very complex,
the measurements are noisy and the workings of the system are also inher-
ently uncertain: they include a number of stochastic factors. In the first
example, it is clear that smoking only sometimes causes cancer, and the
different biological mechanisms from the cause to the effect are indeed very
complex.

Machine learning is a research field interested in modeling such com-
plex systems exhibiting uncertainty from a general point of view. Perhaps
opposed to traditional statistics, it is characteristic for machine learning to
exploit the vast computational power of modern computers and the efficient
algorithms of computer science. An often useful description of machine
learning is implied by the name: some autonomous and intelligent machine
is learning from experience, in order to predict the future and infer the best
possible next action. This is also why machine learning can be seen as sub-
field of artificial intelligence: one of the requirements for a truly intelligent
being is the ability to learn from experience and adapt the gained knowl-
edge to new scenarios. However in practice, this autonomous and intelligent
machine is perhaps more of an unachievable goal to work towards. What
we want is more understanding of the world, in a somewhat efficient and
cost effective manner. Thus, machine learning can essentially be seen as a
collection of problem settings, efficient algorithms and successful principles
for handling complexity and uncertainty.

In many machine learning settings, it is enough to model and under-
stand the dependence relations, such as correlations, between different ob-
served variables in the probability distribution generated by the system.
With the understanding of such dependencies, it is possible to predict the
behavior of the system in its natural unmanipulated state. But, such statis-
tical dependencies are most often merely manifestations of the more funda-
mental causal processes and relations working in the system (Pearl, 2000).
In causal discovery our aim is to understand these underlying causal rela-
tionships.
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What are the uses for this deeper, causal understanding? Cooper (1999)
divides the uses into three categories. First, we get insight into the struc-
ture of the causal processes working in the system. For example, we might
be interested in the structure of the regulatory network controlling expres-
sions of different genes in a biological cell. The mathematical objects used
to present this causal structure are directed graphs, where nodes depict
different random variables modeling the measured aspects of the system,
and the edges correspond to direct causal relationships (Wright, 1934). See
Figure 1.1 for some examples. Once we understand the structure of a sys-
tem, we might in some cases be able to build a better one, perhaps fix the
system if it is broken, or at least help the system to work more efficiently.

Second, causal understanding is needed for us to predict the outcomes
of any manipulations we might consider doing in the future. Often we
want to predict the outcomes of new, previously unseen manipulations.
For example, a doctor needs to know whether the new mixture of drugs he
is about to assign to a patient is likely to improve the condition or not.

Third, we need causal understanding to explain why a system produced
the observed behavior. For example, if we observe a statistical dependence
between the number of siblings a child has and obesity at a later age,
explanations for this dependence are to be given in causal terms.

In this thesis, the focus is on learning causal relationships from data,
under various different assumptions and settings. As causal relationships
form a fundamental structure of a system, learning them is also perhaps
an order of magnitude more demanding than learning of mere statistical
relationships: we have to look deeper. A simple statistical dependence
between two observed quantities in a passive observational data set might
be the result of any combination of the causal structures in Figure 1.1
(a-c): either variable might be the cause of the other, or the dependence
could be the result of a common cause of the two (Reichenbach, 1956).
Yet another reason for dependence is selection bias in Figure 1.1 (d), but
selection bias can often be ruled out with background knowledge on the
data collection process. This important principle is often formulated as
the slogan ‘correlation does not imply causation’. In situations like this,
where the causal structure is not uniquely determined by the data at hand,
we say that the causal structure is not identifiable (Fisher, 1966). Note
that observed correlation in combination with a temporal ordering is not
sufficient indication for a causal edge between variables: the correlation
might still be produced by a confounder (a third variable that is a cause of
both, see Figure 1.1 (c)).

Randomized experiments (randomized controlled trials) have been used
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a) Health // Exercise

b) Health Exerciseoo

c) Standard of Living

uu ))
Treatment Patient’s Health

Mathematical Skill
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Musical Skill

uu

d) School Admission

Figure 1.1: Some different causal structures possible for producing a de-
pendence between two measured variables. Unmeasured variables are in
rectangles. An arrow x → y represents a causal effect of x on y. Correla-
tion between health and exercise might be due to the need of good health
to do exercise (a), or exercising actually benefiting the health (b). Latent
confounding (c): standard of living may influence the access to both treat-
ment and better nutrition. Thus, people receiving treatment might survive
more often than those not receiving it, even if the treatment does not re-
ally affect the patient at all. Selection bias (d): if pupils are chosen into
a school based on combination of mathematical and musical test scores,
among the admitted pupils there might be a negative correlation between
mathematical and musical skills. Overlining is used to mark conditioning:
‘School Admission’ gets value ‘Yes’ in the considered population.
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a) Background Factors

**uu
Treatment
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Patient’s Healthnn

b) Background Factors

**
Treatment
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Patient’s Health

Figure 1.2: Causal discovery from experimental data (randomized con-
trolled trials). (a) The causal effect of the treatment on patient’s health
is obscured by the latent confounding of the background factors. (b) If we
assign the treatment to the patients randomly, for example according to a
coin flip, any influence that background factors and patient’s health have
on the treatment are broken; this is denoted by removing all edges into
the intervened variable. Then, any correlation between the treatment and
health is due to direct causal influence of the treatment on the patient’s
health.
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to discover causal relationships since the first half of the last century (Fisher,
1935; Rubin, 1974), and still provide the golden standard. Figure 1.2 shows
a simple example of this setting. By randomly assigning the treatment to
the patients, we can break the influence any other factors have on receiving
the particular treatment, thereby rendering the causal effect the treatment
has on health identifiable. However, often randomized controlled trials are
not possible due to cost or ethical reasons. Performing a randomized con-
trolled trial on every suspected causal relationship quickly becomes infeasi-
ble even for small systems. If we suspect a substance might be unhealthy,
intentionally exposing some people to it is definitely unethical. Sometimes
the interventions may not even be technically possible.

During recent decades, principles and assumptions for inferring causal-
ity also from passive observation have been formalized (Pearl and Verma,
1991; Pearl, 2000; Spirtes et al., 1993). An underlying idea in these ba-
sic results is to consider more variables than just two at the same time.
The observed joint distribution for this larger set of variables can in some
cases narrow down the possible causal structures significantly. Often used
assumptions include acyclicity of the causal structure, causal sufficiency
(no latent confounders like in Figure 1.1 (c) present), absence of selection
bias and faithfulness. With such assumptions on reality there is always a
trade-off: adding in more assumptions allows for more powerful learning
methods and more causal relations discovered, but also limits the situa-
tions the methods are applicable for. Clearly, there is no single set of
assumptions suitable for all learning settings. The field of causal discovery
considers formalization, relaxation and assessment of various assumptions
by which causal discovery is possible.

Causal sufficiency, the absence of latent confounders, is often one of the
assumptions considered to be too restricting (Spirtes et al., 1993). But as
we saw earlier, presence of latent confounders, unobserved common causes
that affect two or more observed parts of a system, is a severe difficulty
when discovering causal relations. The statistical dependence induced by
such a latent confounder often cannot be distinguished from directed causal
relationships. Latent confounding often makes causal relationships also
harder to detect. Thus, one of the key research questions in this thesis is:
How can we learn causal relationships in the presence of latent confounding
variables?

One assumption particularly investigated in this thesis is the restriction
of the parametric form of the causal relationships. In many articles we re-
strict the causal relationships to be linear (Geiger and Heckerman, 1994;
Shimizu et al., 2006). Figure 1.3 shows an example of this. The ability
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Figure 1.3: The surfaces show the values of the effect given forced values
of its two causes. The functions producing the effect from the causes are
non-linear in (a) and (b), and linear in (c). (a) Middle range values of
both causes tend to produce large values for the effect. (b) Large values of
both causes tend to produce large values for the effect individually, but if
both causes are set to large values, the value of the effect is considerably
smaller. (c) Larger values for the first cause increase (linearly) the value of
the effect, while higher values for the second cause decrease (linearly) the
value of the effect. Each cause affects the effect roughly in the same way
regardless of the value of the other cause.

to estimate the parameters of this restricted form more reliably may well
compensate for the possible bias arising from the slightly incorrect para-
metric assumptions (Koller and Friedman, 2009). By the use of different
parametric restrictions, we are able to formulate interesting identifiability
results and devise powerful learning algorithms also in settings where some
of the other common assumptions are violated. By restricting the paramet-
ric form we can also often learn causal models with cyclic structures, which
has been a recent interest in the causal discovery community (Richardson,
1996; Schmidt and Murphy, 2009). But, what exactly are the useful para-
metric restrictions for identifying the causal structure? How much do these
restrictions diminish the applicability of the learning methods exploiting
them?

After the formalization of many causal concepts and assumptions, the
field of causal discovery has again turned its eye on experimental data from
randomized controlled trials (Eberhardt, 2007; Cooper and Yoo, 1999).
This is because sometimes the assumptions needed for learning causality
from non-experimental data are too restricting or do not really hold in finite
sample data, while at other times much of the causal relations may be left
unidentified. In particular, a high number of latent confounders may cause
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the algorithms using only passive observational data to output uninfor-
mative results. In this thesis we concentrate on the somewhat unexplored
possibility of exploiting experimental data to learn full causal models in con-
ditions suffering from significant latent confounding. To accomplish this,
we are combining the methodologies of randomized controlled experiments
with assumptions exploited in causal discovery from passive observation.
In many cases we can identify much of the causal structure from only a
few different experimental settings. The important research questions are:
How to exploit the given experimental data efficiently? Which characteris-
tics should the experiments satisfy if our aim is to learn a full causal model?
How can we select the experiments optimally?

Another assumption relevant to this thesis is the causal faithfulness
assumption (Pearl, 1988). In plain terms it can be expressed as the slogan
‘no correlation implies no causation’. If the causal relationship does not
manifest itself through a statistical dependence in the data, it is considered
non-existent by this assumption. Such a preference towards simpler models
is commonly used in all fields of science in one way or another. But, how
can we effectively and reliably exploit the causal faithfulness assumption?

This thesis is structured as follows. The first six chapters provide a
general overview of the field of causal discovery, serving as necessary back-
ground material for understanding the original research presented in Chap-
ter 7 and the reprinted articles at the end of the thesis. In Chapter 2
(Causal Modeling) we describe mathematical models of real world causal
systems. In Chapter 3 (Causal Discovery) the basic approaches for causal
discovery from passive observation are introduced. Rather than describing
the learning algorithms in detail, we focus on the general principles and
the underlying assumptions. Then, Chapter 4 (Experiments) considers ex-
tending these basic learning approaches to also exploit experimental data.
In Chapter 5 (Latent Confounding) we consider what can be learned when
latent confounders may be present. The interpretations and learning al-
gorithms allowing for cyclic model structures are examined in Chapter 6
(Cycles).

The remainder of the thesis then focuses on the contributions of the
original research articles. In Chapter 7 (Contributions to the Field) we
briefly summarize the most important findings in the articles and relate
the conducted research to the general field of causal discovery. The articles
are printed in full at the end of this thesis. The contributions of the present
author are summarized in Section 7.5. Chapter 8 (Conclusion) offers final
remarks and suggests some further research possibilities.



Chapter 2

Causal Modeling

This chapter introduces causal models that formalize the concept of causal-
ity. Thus, we explain how causal relationships can be modeled mathemat-
ically. When building causal models one should always keep in mind the
more informal interpretations1 of causality laid out in the beginning of
Section 1:

• A causal relation corresponds to a physical, chemical or biological
process from a cause to an effect.

• When ideally intervening on the cause the effects and only the effects
should generally change.

Causal models should describe the generated probability distribution un-
der any possible (ideal) manipulations on the investigated system. Causal
models accomplish this by exploiting the similarities of the probability dis-
tributions observed in the different experimental settings. Note that the
causal models introduced here are in a sense static, they do not describe the
dynamic behavior of the system as a time series as such. Nor do the mod-
els explain a single chain of events (token causality), but rather stochastic
causal processes that relate different types of events.

Already in Chapter 1 we saw how complicated systems of causal struc-
tures can be described and understood using directed graphs. As it hap-
pens, most causal models use some sort of directed graph for describing
the directed causal connections. As the graph notations are fairly simple,
the definitions and concepts are introduced when needed. Another build-
ing block for causal models are probabilistic models, or simply probability
distributions. They are introduced in Section 2.1 (Probabilistic Models).

1For a comparison of different philosophical interpretations of causality, see Woodward
(2003).

9



10 2 Causal Modeling

Section 2.2 (Causal Bayesian Networks) then introduces perhaps the most
intuitive causal model family, Bayesian networks. In Section 2.3 (Struc-
tural Equation Models) we model causality using an alternative framework
called structural equation models (SEM); the original research of the thesis
is most cleanly described using this framework. Instead of building these
models by sequentially adding in assumptions and definitions, we will first
introduce the model and only then examine what sort of assumptions we
are making when using the model, and whether these are intuitive to our
understanding and applicable to the real world. This is done because the
different assumptions and definitions are inherently intertwined; they are
best understood as a whole. Finally, Section 2.4 (How Do the Models An-
swer Our Causal Inquiries?) considers how the formal causal models can
be used to answer our causal questions.

Note that alternative formalizations of causal concepts have been offered
in the potential outcome framework2 (Neyman, 1927; Rubin, 1974; Holland,
1986) and as Granger causality (Granger, 1969) in the field of time series
analysis. See for example Berzuini et al. (2012) for an up-to-date discussion.

2.1 Probabilistic Models

Probabilistic models or probability distributions are designed to model
(stochastic) uncertainty. A discrete probability distribution P () defines a
probability for all configurations of the values of a vector of discrete random
variables X1, . . . , Xn. Such a function can be represented by a probability
table, for example:

P (X1, X2) X2 = 0 X2 = 1 X2 = 2

X1 = 0 0.1 0.1 0.2
X1 = 1 0.2 0.3 0.1

For continuous random variables x1, . . . , xn the probabilities of different
events can be defined using a probability density function p(). The proba-
bility of getting any single configuration is infinitesimal, but the probability
of a set S of configurations can be calculated as

P (x1, . . . , xn ∈ S) =

∫
S
p(x1, . . . , xn)dx1 . . . dxn. (2.1)

2The potential outcome framework is mathematically equivalent to structural equation
models (Pearl, 2000).
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A common example of a probability distribution for continuous variables is
the multivariate Gaussian distribution:

p(x1, . . . , xn) = N (x;µ,Σ) (2.2)

=
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where the random variables are in a vector x = [x1, . . . , xn]T , µ is the mean
vector and Σ a symmetric positive definite covariance matrix.

If we have access to a joint distribution of two disjoint sets of variables
X and Y, we can do two basic operations. If the variables are discrete,
we can calculate the marginal distribution of a subset of variables X by
summing over the different configurations of variables Y:

P (X ) =
∑
Y
P (X ,Y). (2.3)

For continuous random variables this sum is interpreted as an integral:

p(X ) =

∫
p(X ,Y)dy1, . . . , dyk,

where Y = {y1, . . . , yk}. These formulas are often called the sum-rule of
probability.

We can also determine the conditional distribution of X given a certain
configuration of Y:

P (X|Y) =
P (X ,Y)

P (Y)
, when P (Y) > 0. (2.4)

When using the notion of conditional probability, the product-rule of prob-
abilities is often useful:

P (X ,Y) = P (X|Y)P (Y) = P (Y|X )P (X ). (2.5)

The notion of conditional probability as well as the product rule apply
also for probability density functions p() of continuous variables, keeping
in mind the (slightly) different interpretation of marginalization.

An essential part of probability theory is the concept of (marginal)
independence3 between two sets of random variables:

X ⊥⊥ Y ⇔ P (X ,Y) = P (X )P (Y). (2.6)

3The useful notation ⊥⊥ is related to ⊥ marking the orthogonality of vectors (Dawid,
1979).
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Intuitively this means that when predicting the values of X , knowing the
values of variables Y does not help in the prediction task: P (X|Y) = P (X ).
Equivalently, knowing the value of variables X does not help when predict-
ing Y: P (Y|X ) = P (Y). We define conditional independence similarly:

X ⊥⊥ Y | Z ⇔ P (X ,Y|Z) = P (X|Z)P (Y|Z), when P (Z) > 0, (2.7)

where the constraint P (Z) > 0 denies conditioning on an event of prob-
ability zero. Intuitively, when predicting the values of X , once we know
values of variables Z, knowing the values of variables Y does not help in
the prediction task: P (X|Y,Z) = P (X|Z). This condition should apply
for every configuration of the conditioning variables in Z. If the condi-
tion applies only to some configuration of the conditioning variables, we
talk about context-specific independence. Two sets of variables are inde-
pendent in some context4 Z = z if and only if their distribution factorizes
accordingly:

X ⊥⊥ Y | Z = z ⇔ P (X ,Y|Z = z) = P (X|Z = z)P (Y|Z = z), (2.8)

when P (Z = z) > 0.

Probabilistic models handle uncertainty, but the complex structure of
the statistical relationships may not be explicitly visible. Graphical models
handle this complexity by combining some sort of a graph and a condition
that connects the graph with some independence statements among the
variables. One example of such a model class, non-causal Bayesian net-
works, is given in Section 2.2.4 (Bayesian Networks as Probabilistic Mod-
els).

2.2 Causal Bayesian Networks

The most familiar causal modeling framework is given by causal Bayesian
networks (Pearl, 1988, 2000). Usually, this model is presented using discrete
variables. For a directed graph G = (V, E), with the set of nodes as the
observed variables V = {X1, . . . , Xn} and the set of edges E ⊆ V × V, we
will also use the notion of parent set

pa(Xi) = {Xj |(Xj , Xi) ∈ E}, (2.9)

where the associated directed graph G is implicit. We present the model
here as defining the distributions in all possible experimental settings (Pearl,
2000).

4The notation Z = z represents the fact that all members of set Z obtain the given
values.
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P (W ) W = 0 W = 1

0.3 0.7

P (S|W ) S = 0 S = 1

W = 0 0.5 0.5
W = 1 0.9 0.1

W // S

!!

B

}}
H

P (B) B = 0 B = 1

0.4 0.6

P (H|S,B) H = 0 H = 1

S = 0, B = 0 0.3 0.7
S = 0, B = 1 0.6 0.4
S = 1, B = 0 0.5 0.5
S = 1, B = 1 0.8 0.2

Figure 2.1: Causal Bayesian network for curing a headache. Whether a
person is at work or not (W ) affects the possibility to sleep (S). Sleeping
and taking painkillers (B) may prevent the person having a headache an
hour later (H).

Definition 1 (Causal Bayesian Network) A causal Bayesian network
over variables V = {X1, . . . , Xn} consist of

• a directed acyclic graph G = (V, E), and

• conditional probability distributions P (Xi|pa(Xi)) defined by (a vector
of) parameters θ.

In the non-experimental setting it produces the distribution

P (X1, · · · , Xn) =
∏
Xi∈V

P (Xi|pa(Xi)) (2.10)

and when variables in set J ⊆ V are intervened on, then the remaining
passively observed variables U = V \ J have distribution

P (U) =
∏
Xi∈U

P (Xi|pa(Xi)). (2.11)

Figure 2.1 gives an example of a causal Bayesian network modeling the
causal processes for curing a headache. The parameters θ in this example
model consist of the decimal quantities placed in the conditional probability
tables.

First of all, the model formalizes the notion of causality. The model
considers variable Xi as a cause of some other variable Xj , if and only if
there is a directed path5 from Xi to Xj in the graph G. The causes from

5A path between Xi and Xj is a sequence of nodes Xi, . . . , Xj with edges between all
adjacent nodes in the sequence. A directed path from Xi to Xj is a path between Xi

and Xj where all edges are directed towards Xj .
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which there is a direct edge to the effect Y are called direct, other causes
are indirect. This interpretation of the edges postulates that causality is
transitive: if Xi is a cause of Xj and Xj is a cause of Xk, then Xi is a cause
of Xk. In the example for figure 2.1 S and B are direct causes of H, while
W is a direct cause of S and an indirect cause of H.

Since the graph is acyclic, the model also assumes that in the modeled
system no variable can be a cause of itself. Similarly if some variable Xi is
a cause of another variable Xj , then Xj cannot be a cause of Xi. Causal
relations in this type of a model are thus asymmetric.

Assumption 1 (Acyclicity) The graph of causal relations does not in-
clude any directed cycles.

For now, we take acyclicity as a working assumption. In Section 6 (Cycles)
we will discuss this assumption in more detail. One useful implication of
acyclicity is that the variables can be ordered in at least one causal order,
where a cause always precedes its effects. In the example of Figure 2.1, the
possible causal orders are W,S,B,H or W,B, S,H or B,W,S,H. Formally,
a causal order of an acyclic graph can be defined as follows:

o : {1, . . . , n} 7→ {1, . . . , n} such that ∀i,∀j > i : Xo(j) /∈ pa(Xo(i)). (2.12)

Then, Xo(1), Xo(2), . . . , Xo(n) is a causal order of the variables X1, . . . , Xn.

Now, we can examine how an individual sample of variable values is
obtained from the model. This sampling procedure should respect the
idea of real causal processes, continuous in time and space, that produce
the measured values of the variables. A sample can be generated by the
following ancestral sampling recipe (Bishop, 2006):

1. Sample Xo(1) from P (Xo(1)).
...

i. Sample Xo(i) from P (Xo(i)|pa(Xo(i))).
...

n. Sample Xo(n) from P (Xo(n)|pa(Xo(n))).

The variables are sampled here in the causal order: causes always get their
values before the effects. Then, before sampling Xi, all of its direct causes
pa(Xo(i)) have already obtained their values. The time in the sampling
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process seems to resemble the time in the modeled real processes.6 The
conditional probability distribution P (Xo(i)|pa(Xo(i))) models the stochas-
tic causal processes that bring about the value of Xi from values of its direct
causes pa(Xo(i)). As the values of the direct causes considered in the model
do not deterministically determine Xi, this is a probability distribution. We
can easily verify that the probability of sampling any single configuration
of variables V is indeed given by the right side of Equation 2.10. In the
example of Figure 2.1, we would first sample W and B from their marginal
distributions, S from the row indicated by W and finally H from the row
specified by the values of S and B.

2.2.1 Causal Markov Condition

Equation 2.10 implies that the joint distribution can be factorized: the joint
distribution is a product of the conditional distributions of each variable
given its direct causes. This factorization property is equivalent7 to the
following assumption on the causal relations of the real world (Pearl, 2000;
Spirtes et al., 1993).

Assumption 2 (Local Causal Markov Condition) A variable is in-
dependent of its non-effects conditional on its direct causes.

One of the consequences of this assumption is the following equation:

P (Xo(i)|Xo(1), . . . , Xo(i−1)) = P (Xo(i)|pa(Xo(i))). (2.13)

Here the conditioning set on the left consists of variables that are all non-
effects of Xo(i) due to the definition of the causal order. As this set includes
all direct causes of Xi, Equation 2.13 is a direct consequence of Assump-
tion 2. Previously, we already saw this property in action in the sampling
process: when sampling Xo(i) from P (Xo(i)|pa(Xo(i))) only the values of
its direct causes pa(Xo(i)) were taken into account. The indirect causes
did affect the value Xi, but only indirectly, through the sampled values of
the direct causes. The factorization of Equation 2.10 is implied by Equa-
tion 2.13 and the product rule of probabilities (Equation 2.5):

P (X1, . . . , Xn) =
n∏
i=1

P (Xo(i)|Xo(1), . . . , Xo(i−1)) =
n∏
i=1

P (Xi|pa(Xi)).

6This assumes that there is a well defined true causal order and we are sampling in
that particular order.

7The discussion hereafter shows that Assumption 2 implies the factorization. See for
example Hausman and Woodward (1999) for the other direction.
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P (W ) W = 0 W = 1

0.3 0.7

P (S) S = 0 S = 1

0 1
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P (B) B = 0 B = 1
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P (H|S,B) H = 0 H = 1

S = 0, B = 0 0.3 0.7
S = 0, B = 1 0.6 0.4
S = 1, B = 0 0.5 0.5
S = 1, B = 1 0.8 0.2

Figure 2.2: Manipulated Causal Bayesian network of curing a headache,
when a person decides to sleep (S = 1) and take a painkiller (B = 1). By
marking trivial distributions P (S) and P (B) for the intervened variables,
the manipulated situation can be cast as another causal Bayesian network.
Compare to Figure 2.1.

Note that the (local) causal Markov condition (Assumption 2) is not
merely a theoretical definition, it says something about causal relation-
ships of the real world.8 Indirect causes do not help in predicting the value
of a variable once the values of the direct causes are known: all informa-
tion is already in the values of the direct causes. However, knowing the
value of an effect might still provide additional information for the predic-
tion. The applicability of the causal Markov condition is still under some
philosophical debate (Spirtes et al., 1993; Hausman and Woodward, 1999;
Sober, 2001). In most causal systems, causal Markov condition is a use-
ful and valid modeling assumption (Spirtes et al., 1993). But there also
exist systems where the assumption is not valid or its application needs
very careful inspection: in the presence of merely accidental correlations,
when the considered population is a mixture of subpopulations, when the
variables are measured inaccurately, and in quantum mechanics (Hausman
and Woodward, 1999). In the model of Figure 2.1 the local causal Markov
condition implies, for example, that H ⊥⊥ W | S,B, which seems plausi-
ble: the headache persisting does not depend on where you are, given the
information on whether you slept or took a painkiller.

2.2.2 Manipulation

The causal model definition also describes what is common between the dif-
ferent distributions observed under different experimental settings in Equa-
tion 2.11: the conditional distributions of the passively observed variables
U given their respective direct causes. This is formalized by the following
assumption (Dawid, 2010; Woodward, 2003).

8Assumption 8 defines a global Markov condition, the discussion here applies to both.



2.2 Causal Bayesian Networks 17

Assumption 3 (Invariance/Modularity) For any variable Xi ∈ V, the
causal processes producing its value, defined by P (Xi|pa(Xi)), are unaltered
no matter which variables of the system, other than Xi, are intervened on.

Note in particular that for the conditional distribution P (Xi|pa(Xi)) deter-
mining the value of Xi it is indifferent whether a direct cause Xj ∈ pa(Xi)
gets its value by its respective natural causes or simply set by the experi-
menter.

On the other hand, Assumption 3 can be seen to define what we mean
by ideal, surgical interventions: the interventions do not disturb the con-
ditional distributions of the non-intervened variables. They only break the
influence the natural direct causes have on the intervened variables and
determine the values of these intervened variables. This edge-breaking is
shown in the manipulated model of Figure 2.2. Any edges into the inter-
vened variables are simply cut out. This reflects our intuition: the depen-
dence of a cause and effect persists when intervening on the cause (cause S
and effect H) but disappears when intervening on the effect (cause W and
effect S).

The causal modeling framework presented here does not always guaran-
tee our second intuition about causality: intervening on a cause (as defined
in the paragraph after Definition 1) might have absolutely no impact on the
effect. In the example of Figure 2.1, if the table for P (S|W ) had identical
rows, then intervening on W would have had no effect on the values of its
direct effect S, nor on its indirect effect H. The framework does guarantee
that for intervening on a variable X to change another variable Y , X has
to be a cause of Y (Hausman and Woodward, 1999). In addition, we can
say that generally, intervening on a cause does change its effects. The case9

described above is in a sense pathological. The assumption of faithfulness
discussed in Section 3.1.2, commonly assumed in causal discovery at least
in some form, forbids such problematic situations.

2.2.3 Gaussian (Bayesian) Networks

Although a Bayesian network is often used with discrete variables, the
same theory applies without major modifications also to continuous vari-
ables. The probability distributions P () are just replaced by probability
density functions p(). The framework describes the similarities of the prob-
ability density functions in different experimental setting. Instead of using

9More complicated examples of models where intervening on a cause does not influence
the effect are given in Figure 3.2.
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conditional probability tables that do not restrict the form of the causal
relationship in the discrete case, for continuous variables we resort to us-
ing some particular parametric form for the conditional probability density
functions. An often used parametric model is the following linear Gaussian
form:

p(xi|xpa(xi)) = N (xi;µi +
∑

xj∈pa(xi)

bijxj , σ
2
i ), (2.14)

where N denotes the density function of the normal distribution, and
the parameters of the conditional probability distribution are the coeffi-
cients bij , mean µi and variance σ2i . When distinction to discrete variable
Bayesian networks is needed, such networks are called Gaussian (Bayesian)
networks (Geiger and Heckerman, 1994).

2.2.4 Bayesian Networks as Probabilistic Models

Bayesian networks are often used as probabilistic models, without the
causal interpretation given in the previous section. Then from Defini-
tion 1, Equation 2.11 concerning interventions is simply dropped. Thus,
the statistical interpretation of a non-causal Bayesian network defines only
the distribution of the system in its passive observational state. This also
means that the causal Markov condition (Assumption 2) turns into merely
a definition that links the graph with the independence and factorization
properties of the passively observed joint distribution. Any edges in the
graph lose their causal meaning, they only indicate statistical dependence
relations between the variables in the model. Note that such Bayesian net-
works, like any probabilistic models can be used to model the behavior of
a system in a single experimental setting, but then a model for one exper-
imental setting does not accurately describe the system behavior in other
experimental settings.

Why then have non-causal Bayesian networks been such successful mod-
eling tools? One answer could be that Bayesian networks are so under-
standable for our causally trained minds. In addition, the independence
properties that can be exploited fit so well into the world of causal pro-
cesses. Often when using Bayesian networks, there is a hint of the causal
interpretation present: at least some edges are interpreted causally. In
other fields (e.g. image processing) undirected graphical models, able to
represent different kinds of independence properties, have been more use-
ful.
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2.3 Structural Equation Models

Another option to model the influence direct causes have on their effect
is to use functional relationships and structural equations. Such struc-
tural equation modeling (SEM) originates from genetics (Wright, 1921) and
econometrics (Haavelmo, 1943). We will consider here the interpretation of
SEMs advocated by the causal discovery community and in particular Pearl
(2000). Sometimes these models are also called functional causal models.

These models dig directly into to the idea of causal process determining
the value of the effect. We will present these models using continuous
variables. The workings of the processes producing a value for each variable
are modeled by deterministic functions and structural equations:

x1 := f1(pa(x1), e1),

...

xi := fi(pa(xi), ei), (2.15)

...

xn := fn(pa(xn), en),

where disturbances e1, · · · , en are independent random variables responsible
for making the system stochastic.

Note that we are using here the assignment sign ‘:=’ and not the equal-
ity sign ‘=’. This is because the equation is structural: xi is determined as a
function of its direct causes and the stochastic disturbance. The mathemat-
ical use of the equality sign doesn’t convey this asymmetry (Pearl, 2000).
The assignment sign used here corresponds closely to the use of the assign-
ment sign in programming languages of computer science, where a variable
on the left-hand side gets its value from the formula on the right-hand sign.

When discussing the properties of these causal models we will for sim-
plicity focus again on acyclic models, i.e. recursive structural equation
models. In addition, the functional relationships are constrained to be lin-
ear.

Assumption 4 (Linearity) Each variable gets its value by a linear com-
bination of its parents and an additive disturbance.

This way the similarity to Bayesian networks is apparent.

Definition 2 (Linear Acyclic Causal Model) A linear acyclic causal
model consists of an acyclic graph G and structural equations of the type

xi :=
∑

xj∈pa(xi)

bijxj + ei, (2.16)
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Figure 2.3: Linear Acyclic Causal Model. Edges in the graph G correspond
to non-zero entries in matrix B.

where disturbances ei are distributed independently with some distributions
p1(), · · · , pn(). This system can be written in matrix notation as

x := Bx + e, (2.17)

where x = [x1, . . . , xn]T , e = [e1, . . . , en]T , and the zero entries in the
coefficient matrix B correspond to missing edges in the graph. In the passive
observational setting the model produces the distribution

p(x1, · · · , xn) =

n∏
i=1

pi(xi −
∑

xj∈pa(xi)

bijxj) (2.18)

and when variables J are intervened on, then the remaining passively ob-
served variables U = V \ J have distribution

p(U) =
∏
xi∈U

pi(xi −
∑

xj∈pa(xi)

bijxj). (2.19)

Note that the definition leaves the exact form of the disturbance distribu-
tions p1, . . . , pn undefined. The parameters of the model are thus B and
whatever parameters are used to determine the disturbance distributions.
Figure 2.3 shows an example of the B-matrix and the corresponding graph.

Much of the discussion for Bayesian networks applies directly to these
recursive SEM models. In many ways the models are equivalent, different
ways of representing the same ideas. However, as we will see later, SEMs
allow for a neater representation of concepts such as latent confounding
and cycles. The sampling process deserves further inspection. We will
again sample the variables in their causal order (see Equation 2.12). One
sample from the model can be generated by the following procedure:

1 (a) Sample the disturbance eo(1) from po(1)().

1 (b) Determine xo(1) from its structural equation.
...
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i (a) Sample the disturbance eo(i) from po(i)().

i (b) Determine xo(i) from its structural equation.
...

n (a) Sample the disturbance eo(ni) from po(n)().

n (b) Determine xo(n) from its structural equation.

Note that again when determining the value of a variable, all the required
elements needed to evaluate the linear function have already been sampled
previously. The sampling process respects again the idea of a continuous
process in space and time. Essentially the two steps at each stage of the
sampling process perform the same action as the single step when sampling
from the Bayesian network. The sampling produces the distribution in
Equation 2.18, because Assumption 2 (Local Causal Markov Condition)
holds here as well. In matrix notation, given a drawn set of disturbances
e, x will get a value

x = (I−B)−1e, (2.20)

where the matrix (I−B) is always invertible: since the model is acyclic, B
is always permutable to a lower triangular matrix. Note that this is simply
a solution of Equation 2.17.

Similarly like Bayesian networks, SEMs define also the distribution un-
der any ideal interventions. The invariance assumption corresponds closely
to Assumption 3.

Assumption 5 (Invariance/Modularity) For any node xi ∈ V, the
causal processes defining its value, defined by the structural equations and
the distribution of the disturbance e1, · · · , en, remain unaltered no matter
which variables of the system (other than xi) are (ideally) intervened on.

The consequence of this invariance is that any structural equation corre-
sponding to an intervened variable xi ∈ J is wiped out, and replaced by
another structural equation that sets the value of the intervened variable
to some constant ci:

xi := ci. (2.21)

This corresponds to cutting all edges directed into the intervened variables
in the associated graph G. Thus, the experimental situation can be modeled
by another SEM.
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W := EW , P (EW ) = (0.3, 0.7)
B := 1
S := 1
H := fH(S,B,EH), P (EH) = (0.3, 0.3, 0.2, 0.2)

fH(S,B,EH) EH = 0 EH = 1 EH = 2 EH = 3
S = 0, B = 0 0 1 1 1
S = 0, B = 1 0 0 1 1
S = 1, B = 0 0 1 0 1
S = 1, B = 1 0 0 0 1

Figure 2.4: Structural equation model for curing a headache. The causal
graph structure is the same as in Figure 2.2, and this model produces the
exact same distribution as the Bayesian network in Figure 2.2.

When assuming some specific distribution for disturbances ei, acyclic
linear SEMs correspond to causal Bayesian networks, with conditional prob-
ability distributions defined by

p(xi|pa(xi)) = pi(xi −
∑

xj∈pa(xi)

bijxj). (2.22)

If we assume pi are univariate normal distributions, the SEM corresponds
to a Gaussian (Bayesian) network (Section 2.2.3) with the same parame-
ters. Conversely, one Bayesian network can be generally written as many
different structural equation models, that nevertheless produce the exact
same distribution in all ideal experimental settings. The structural equa-
tion model in Figure 2.4 corresponds to the Bayesian network in Figure 2.2
but defines additional structure. The headaches seem to come in four dis-
tinct unobserved types: those that do not need curing (EH = 0), those
that are cured by a painkiller (EH = 1), those that are cured by sleeping
(EH = 2) and those that persist whatever you do (EH = 3).

2.4 How Do the Models Answer Our Causal In-
quiries?

One of the aims of causal modeling was to get insight on the complicated
structure of the causal relationships working in a system. The causal models
defined in the previous sections define this structure in an interpretable and
explicit form using the associated graph. For example the Bayesian network
in Figure 2.1 spells out the structure of the processes for curing a headache.
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Now assume the causal process of curing a headache is modeled well
enough by the model in Figure 2.1. You have a headache and you would like
to know what the best action is, sleeping or taking a painkiller. Figure 2.2
gives the manipulated version of the model. Using this model we can predict
the value of H under different manipulations. The probabilities of headache
persisting (H = 1) under manipulations of S and B (denoted here by ‘||’
to distinguish from plain conditioning) are the following:

P (H = 1||S = 0, B = 0) = 0.7,

P (H = 1||S = 0, B = 1) = 0.4,

P (H = 1||S = 1, B = 0) = 0.5,

P (H = 1||S = 1, B = 1) = 0.2.

Clearly, taking a painkiller and sleeping seems the best course of action in
this case.

Causal models can in some cases explain the outcomes of certain events.
Say again you got a headache and you took a painkiller and slept for one
hour. This chain of events is given by the structural equation model in
Figure 2.4. Say that after the course of action the headache was gone (H =
0). Was it the sleeping or the painkiller that cured your headache? Thus
if you would have just slept or just taken a painkiller would the headache
still be present? Pearl (2000) describes a procedure for answering this type
of counterfactual queries given a structural equation model. We simply
update the disturbance distribution of EH (in this case EW is irrelevant)
by the observed evidence using the Bayes-formula:

P (EH |S = 1, B = 1, H = 0) =
P (S = 1, B = 1, H = 0|EH)P (EH)∑
E′

H
P (S = 1, B = 1, H = 0|E′H)P (E′H)

⇒ P (EH |S = 1, B = 1, H = 0) = (0.375, 0.375, 0.2, 0).

Clearly, the headache wasn’t the incurable type EH = 3. Then the prob-
ability of the headache can be evaluated under different actions using this
updated disturbance probability distribution:

P ′(H = 1||S = 0, B = 0) = 0.375,

P ′(H = 1||S = 0, B = 1) = 0.375,

P ′(H = 1||S = 1, B = 0) = 0.2,

P ′(H = 1||S = 1, B = 1) = 0.0.

Thus, with a probability of 37.5% your headache would have been cured
without any actions, with a 37.5% probability your headache would have
been cured by the painkiller alone, and with 20% probability sleeping was
the effective measure taken.



24 2 Causal Modeling



Chapter 3

Causal Discovery

This chapter discusses the learning of causal models from data, collected
from a system in its natural passive observational state under certain sim-
plifying assumptions. Although many methods learn a full causal model
of the form described in the previous section, we will mostly focus on the
subproblem of structure discovery : finding the directed causal graph struc-
ture of the underlying model, ignoring the parameters defining the causal
relations. This is because the structure of the causal relations is often
what interests us the most. Finding the structure is also perhaps the most
cumbersome part.

An inescapable fact is that we are very rarely able to observe all the
important variables. In a sense, we are always observing only a subset of
variables involved in the data generating process. Nevertheless, we would
like to understand the causal structure among the variables we have ob-
served; what happens when intervening on a quantity that is not measured
is not in our immediate interest. Fortunately, the causal models under
consideration are closed under marginalization of variables connected with
many types of structures (see Figure 3.1 (a-c)). This means that if the data
generating process over some ‘original’ set of variables can be described by
a causal model in a given class, there is also a causal model in the same
model class accurately describing the causal relations over a subset of the
original variables.

However, in Figure 3.1 (d) the situation is more difficult: an unobserved
variable U confounds X and Y , and is thus called a latent confounder. Be-
cause of the confounder X and Y are found dependent in the marginalized
distribution P (X,Y ). The dependence should disappear when intervening
on X and when intervening on Y . This is not possible by the simple model
structures used in Section 2, if only the observed variables X and Y are
considered in the model. The assumption of causal sufficiency denies the

25
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Figure 3.1: Marginalizing the structure. If the variables in the squares hap-
pen to be unobserved, in the first three cases (a), (b) and (c) this is entirely
unproblematic: the structure learned is still a valid causal structure, just
among the observed variables. The latent confounder in (d) and selection
bias in (e) cannot be modeled by simple directed graphs.

existence of such problematic variables.

Assumption 6 (Causal Sufficiency) There are no unobserved common
causes (latent confounders) of two or more of the observed variables.

As we will see, this assumption simplifies the learning methods a great
deal. In Chapter 5 (Latent Confounding) the possibilities of learning causal
models without such a restrictive assumption are considered.

Another type of variable troublesome when unobserved is U in Fig-
ure 3.1 (e). Note that such a variable is only troublesome when conditioned
on, as the variable V connected with a similar structure in Figure 3.1 (a)
is not problematic: it does not affect the distribution P (X,Y ) in any way.
Thus, the following simplifying assumption is often made as well.

Assumption 7 (No Selection Bias) No common effects of two or more
of the variables1 are conditioned on.

For selection bias to occur, values of the variables influence whether the
sample is included in the data set or not. In many cases this can be ruled
out by the properties of the data collection process.

Thus, in this chapter we will cover the most basic algorithms for causal
discovery from passive observational data, assuming causal sufficiency and

1The variables are here either observed variables or latent confounders (if their pres-
ence is allowed).
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parametric
restrictions

Score-Based
with Linear
Gaussian CPDs
(Section 3.2)

LiNGAM, Additive
Noise Models etc.
(Section 3.3)

non-
parametric

PC (Section 3.1) Score-Based with
Discrete Variables
(Section 3.2)

independence
relations

2nd order
statistics

full distribution

Table 3.1: One classification of causal discovery methods when assuming
causal sufficiency.

the absence of selection bias. One way of classifying the different methods
is along the different parametric assumptions on the data generating model
and the extent to which the joint distribution is exploited (Table 3.1). Some
discovery methods make some assumptions about the parametric forms of
the causal relations and the way noise affects the system, some try to man-
age without making any such restricting assumptions. On the whole these
parametric restrictions aid in causal discovery, but sometimes diminish the
applicability of the algorithms. Often data sets with discrete variables can
be analyzed without restrictions, but with continuous variables some re-
strictions are commonly made.

The different methods exploit different aspects of the observed distri-
bution. Some methods exploit the independence relations detected in the
data, others use only 2nd order statistics (mean and covariance informa-
tion), some exploit the whole distribution. Generally, more samples are
needed for accurately describing the more intricate structure in the distri-
bution, such as higher order statistics. This more detailed structure can
in some cases be used to identify the causal structure uniquely, whereas
methods using only independence relations may leave (part of) the struc-
ture underdetermined.

The chapter is divided into three parts: first we will discuss find-
ing causal models from detected independence relations in Section 3.1
(Constraint-based Approach). Then, Section 3.2 (Score-based Approach)
describes a more Bayesian approach based on calculating posterior prob-
abilities for graph structures. Finally, we will present methods that make
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up a third category in Section 3.3 (Exploiting Higher Moments in Continu-
ous Data) and use higher order statistics of continuous data together with
assuming parametric restrictions on the causal relations.

3.1 Constraint-based Approach

As perhaps already hinted at in Chapter 2 (Causal Modeling), lack of causal
relations in causal models produces conditional independence relations in
the generated distributions. Thus, independence relations observed in the
generated distribution may allow us to infer the absence of some causal
relations. On the other hand, any dependence is an indication of structures
able to produce such a dependence. By considering the independence and
dependence relations between a larger group of variables, we might be ca-
pable of narrowing down the set of possible causal structures. This is the
underlying idea of constraint-based causal discovery. In the following, the
data generating process is assumed to be a Bayesian network or a recursive
structural equation model, and the variables may be discrete or continuous.

3.1.1 From Graphs to Independence Relations

Which independence relations do the models of Section 2 then produce?
Some independence relations are always observed in the generated distribu-
tion as a consequence of Assumption 2 (Local Causal Markov Condition).
However, Assumption 2 implies also additional independence properties
that are not explicitly given by its definition. For example, any causal
model with the structure in Figure 2.1 will necessarily yield the indepen-
dence2 W ⊥⊥ B | S,H. This independence relation is not given by Assump-
tion 2 explicitly since the conditioning set {H,S} is not the parent set of
either W nor B.

Thus, let us aim for a sufficient condition on the causal graph structure
of the true data generating model, such that a conditional independence
statement X ⊥⊥ Y | C holds in the generated distribution. First, the condi-
tion should not hold between the observed variables in the causal structures
of Figure 1.1 (p. 4). Second, the condition should imply the independence
relations entailed by the local causal Markov condition both explicitly and
implicitly. A concept called d-separation (d for directed) has been intro-
duced for this purpose (Pearl, 1988).

2By a straight-forward calculation one can verify that P (W |S,B,H) = P (W |S,H).
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X ⊥⊥G Y | C X \⊥⊥G Y | C
X ⊥⊥ Y | C OK UNFAITHFUL
X \⊥⊥ Y | C NOT POSSIBLE OK

Table 3.2: Correspondence between the graphical criterion of d-separation
on graph G and conditional independence relations in the probability dis-
tribution generated by a model with causal structure G. Models producing
extra independence relations that are not consequences of the global causal
Markov condition are labeled as unfaithful.

Definition 3 (D-separation) An (undirected) path p between nodes X
and Y is said to be blocked (or d-separated) by a set of nodes C ⊆ V\{X,Y }
if and only if p contains

• a chain U → Z → V such that Z ∈ C, or

• a fork U ← Z → V such that Z ∈ C, or

• a collider U → Z ← V such that neither Z nor any effect of Z are in
C.

Nodes X and Y are said to be d-separated by set C, denoted by X ⊥⊥G Y | C,
if and only if all paths between them are d-separated by the set C.

Given this graphical definition we can reformulate the local Markov
condition (Assumption 2) in an alternative form.3

Assumption 8 (Global Causal Markov Condition) If two variables
X and Y are d-separated by a set C in the graph describing the true causal
relations, then they are independent in the generated distribution given C.

Table 3.2 shows further implications of the satisfaction and dissatisfaction
of the d-separation condition. If the d-separation condition does not apply
for a pair with respect to a conditioning set, this does not yet guarantee that
the corresponding dependence is found in the generated distribution. But,
for every graph structure there exists a causal model (Bayesian network)
that produces only the independencies given by the d-separation condition
and no other (Pearl, 1988). The models that generate distributions with
independence relations that are not implications of the global Markov con-
dition are termed unfaithful and assumed unlikely models for generating

3Assuming the causal models of Section 2, one can prove that independence follows
from d-separation. As an alternative to Assumption 2, the global causal Markov condition
is an assumption on reality.
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Figure 3.2: Two unfaithful models. On the left a linear model where the
paths from x to y cancel out exactly, thus x ⊥⊥ y. On the right the influence
of X on Y is completely randomized by variable Z, thus X ⊥⊥ Y .

the observed data (see Section 3.1.2 for justification of this). This char-
acterization of independence properties can be trivially extended to the
experimental distribution produced by a manipulated model, by examining
the corresponding manipulated graph.

3.1.2 The Faithfulness Assumption

If two variables are found to be independent in some distribution, we are
often tempted to draw the conclusion that there is no causal influence
between the variables.4 This sort of deduction can also be seen as a version
of the Occam’s razor principle: if several models fit the data equally well,
choose the simplest one (see Rasmussen and Ghahramani (2001)). If there
is no indication of a causal relation between some pair variables in the data,
the simplest model fitting the data postulates that the causal connection is
not there. The assumption generalizing such deductions, commonly made
in all fields of science at least in some form, can be formalized here nicely
using global causal Markov condition (Pearl, 1988, 2000; Spirtes et al.,
1993).

Assumption 9 (Faithfulness) A causal model is faithful if all (condi-
tional) independence relations in the probability distribution produced by
the model are consequences of the global causal Markov condition.

Assuming faithfulness of the underlying data generating model ensures that
if the variables are independent in the generated distribution, there is no

4The overlying idea of faithfulness might be easily remembered as the inadequate but
useful slogan ’no correlation implies no causation’.
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unblocked path in the true causal graph structure (Table 3.2). This is in
converse to the causal Markov condition (Assumption 8) which ensures the
existence of an unblocked path between any variables observed to be depen-
dent in the distribution. For faithful models the concepts of d-separation
and conditional independence are equivalent, this allows us to infer causal
structure from detected independence relations.

Another interpretation of faithfulness states that the independence re-
lations present in the generated distribution do not disappear with (small)
perturbation of the model parameters (while keeping the causal structure
fixed). Thus, the independence relations are consequences of the model
structure. This interpretation leads to measure theoretic reasons to assume
faithfulness: under many sampling procedures determining the parameters
of causal model with a fixed structure, drawing an unfaithful model con-
stitutes a set of measure 0 (Spirtes et al., 1993; Meek, 1995b). This means
that if we draw the parameters of the model randomly, as opposed to care-
fully fixing them by hand, we will never create unfaithful models. How
much such a measure theoretic claim says about causal systems in nature
is debatable.

Figure 3.2 shows two ‘pathological’ examples of models that violate the
faithfulness assumption. The parameters for these two models are hand-
picked to get a non-structural independence relation X ⊥⊥ Y (or x ⊥⊥ y). If
the parameters are perturbed even a little bit, this independence relation
disappears. Both cases are examples of a more general setting where param-
eters are not independently drawn at random, instead, they have equality
constraints (such as c = −a · b). Also, if the variables are deterministically
(instead of stochastically or probabilistically) related, faithfulness should
not be assumed (Richardson and Spirtes, 1999).

Although the causal model can often be safely assumed to be faithful,
finite sample data may appear to contain (conditional) independence rela-
tions not due to the structure of the model. This effective unfaithfulness
leads to errors when detecting independence relations in sample data. Gly-
mour et al. (1999) call the assumption denying such problematic models
and data sets the ‘sample causal faithfulness assumption’. Often large,
dense models may be effectively unfaithful: almost exact canceling of the
unblocked paths between variables often occurs for some of the 2n−2 possi-
ble conditioning sets. Methods not assuming faithfulness are better suited
for such situations.
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3.1.3 The Hunt for an Independence Oracle

The technical part of the puzzle concerns detecting the independence rela-
tions in the observed data. For deriving some of the theoretical results and
explaining the algorithms, it is useful to assume we posses an independence
oracle: from the data produced by a causal model we can infer without
error the truth value of the statement X ⊥⊥ Y | C. However, detecting
independence relations from sample data is not a totally straight-forward
task.

Currently, perhaps the best candidate for an independence oracle is
traditional statistical testing. In such tests we usually have two competing
hypotheses:

H0 : X ⊥⊥ Y | C, H1 : X \⊥⊥ Y | C,

one hypothesizing independence and one hypothesizing dependence. Then,
a test statistic t(X), a function of the generated data X, is formulated
measuring how incompatible the data is with the hypothesis H0. The dis-
tribution of the test statistic t(X) is derived under H0, often exploiting the
Central Limit Theorem. Now, if the test statistic t(X) calculated from the
data X lands on an unlikely region in the distribution of p(t|H0), then the
null-hypothesis H0 may be rejected as implausible. This unlikely region is
judged by some assigned significance level.

One caveat here is that in causal discovery based on faithfulness, we
need to recognize independence relations and an orthodox statistician might
argue that the statistical test only gives evidence for significant dependence
relations. When the test statistic happens to land on the likely region
according to H0, we just don’t have any evidence against H0. One can
then resort to the Occam’s razor principle: one should not assume a more
complicated model if a simpler model explains the data. Here the structure
corresponding toH0 is simpler than the structure corresponding toH1. Not
obtaining any evidence of dependence is perhaps sufficient for accepting H0

in many cases. We can still consider what would happen if we would only
be allowed to reject H0 and never accept it. We would not be able to
detect any independence relations, and thus, we would never be able to
reject full (acyclic) graphs as the data generating structure. The output
from a learning algorithm would not be very informative.

With finite number of samples the independence tests are bound to
produce at least some errors. A type I error occurs when the variables are
independent but the test indicates that they are dependent. The probabil-
ity of this type of errors is fixed by the significance level. A type II error
occurs when the variables are in reality dependent but the statistical test
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indicates independence. This is a more troublesome error type for causal
discovery, as mistaken independence judgments may result in deleting im-
portant edges from the learned graph structure. In addition, the rate of
errors of type II cannot be directly controlled. Causal discovery algorithms
may also be prone to various multiple testing complications. When the
number of data samples increase towards infinity, the independence test
works like an independence oracle: when the significance threshold is low-
ered systematically with increasing sample size, the probabilities of both
types of error approach zero (Richardson and Spirtes, 1999).

Different independence tests have been designed for various different
situations. When testing X ⊥⊥ Y | C with discrete variables, an often
used independence test is the Pearson’s χ2-test for goodness of fit. Let
Nijk denote the number of samples when X gets its i:th value, Y gets
its j:th value and the variables in the conditioning set C get their k:th
configuration. UnderH0 the conditional probability distribution P (X,Y |C)
should factorize as P (X|C)P (Y |C). Thus, we can calculate the expected
number of samples of each configuration of X, Y and variables in C under
H0 using the sample probability estimates:

Eijk :=

∑
j′ Nij′k∑
i′,j′ Ni′j′k

·
∑

i′ Ni′jk∑
i′,j′ Ni′j′k

·
∑
i′,j′

Ni′j′k. (3.1)

The test statistic measuring the deviation of the observed counts Nijk from
the expected counts Eijk used is then the following:

t =
∑
i,j,k

(Nijk − Eijk)2

Eijk
. (3.2)

Under H0 and for sufficiently large sample sizes, the test statistic t will be
distributed as χ2 with (mX −1)(mY −1)mC degrees of freedom, where mX

is the number of categories for X, mY is the number of categories for Y
and mC is the number of configurations for the conditioning set C.

When testing x ⊥⊥ y | C for continuous variables, it is common to fit a
linear regression model explaining y with x and the variables in the con-
ditioning set C. Then assuming Gaussian conditional probability distribu-
tions, testing conditional dependence x ⊥⊥ y | C corresponds to testing the
significance of the regression coefficient of x with the commonly used t-test.
There exist also independence tests that aim to detect more complicated,
non-linear dependencies between continuous variables (Gretton et al., 2008;
Zhang et al., 2011).
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Figure 3.3: Causal discovery from independence and dependence relations
detected in passive observational data, assuming causal sufficiency. The
d-separation condition implies only one independence, and by assuming
faithfulness of the data generating model, this is the only independence
present in the passively observed distribution. In this particular case there
are no other (faithful) models with different structure that would produce
exactly these independence and dependence relations.

3.1.4 From Independence Relations to Graphs

It should now be clear that different causal structures produce different
independence and dependence properties in the joint, passively observed
distribution. Figure 3.3 shows an example setting where the learning works
out nicely, we are able to detect a causal structure just from the indepen-
dence relations in passive observational data. First, we can read off the
independence facts from the true causal structure on the left using the
d-separation criterion (Definition 3). Only one independence, X ⊥⊥ Y is
present, and (assuming faithfulness) for all other pairs and conditioning
sets we have dependence. This is shown in the middle. Then, consider
not knowing the true structure on the left, but only the independence facts
in the middle. One way of deducing the structure from independence fact
goes as follows. Since X and Y were marginally independent, according
to faithfulness there should not be edges between them. Since X and Z
are marginally dependent, there should be a path between them. As this
path cannot go through Y , we must have an edge between X and Z, and
symmetrically between Y and Z. Finally, since X and Y were marginally
independent, both edges must be oriented towards Z, otherwise the inde-
pendence would be the unfaithful kind. Note that this simple structure
actually allows orienting the causal edges. The structure is called an un-
shielded collider (or a v-structure) and it plays an important part in struc-
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Figure 3.4: All 11 Markov equivalence classes of the 25 directed acyclic
graphs (DAGs) over three variables, represented by partially oriented
DAGs. Forming the actual, fully oriented DAGs in each equivalence class is
easy: the unoriented edges of the partially oriented DAG may be oriented in
either direction, as long as no new unshielded colliders or cycles are formed.
Here, the unoriented edges should not be confused with undirected edges
used for example in undirected graphical models.

ture discovery from independence relations. An edge X → Y would in a
way ‘shield’ this collider, and there would no longer be any independence
relations present in the data.

More commonly, we are only able to recognize a possible group of graph
structures; such a group is called a Markov equivalence class. Graphs inside
a Markov equivalence class produce the exact same sets of dependence and
independence relations. Two graphs belong to the same equivalence class
if and only if they have 1) the same skeleton (unoriented structure) and
2) the same set of unshielded colliders (Pearl, 2000). Figure 3.4 shows
all such equivalence classes for graphs with three nodes. The equivalence
classes are represented by partially oriented DAGs: any unoriented edges
can be oriented in either direction as long as no directed cycles or additional
unshielded colliders are formed.

The characterization of equivalence classes suggest a two phase proce-
dure (Pearl, 2000) for searching for causal structures compatible with the
data. First, we try to find the skeleton: the causal structure without the
edge orientations. In fact, we can determine the existence of any edge
given an independence oracle: conditioning for example on all true parents
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of both variables (variables themselves excluded), the variables are depen-
dent if and only if there is an edge between them. Thus, if the edge is not
present and we test all possible conditioning sets, we will eventually find
an independence. After finding the skeleton, we continue to orient edges
by adding v-structures where the detected independence and dependence
relations indicate. For this second phase there exists four rules that are nec-
essary and sufficient for orienting all edges that have the same orientation
in a equivalence class (Meek, 1995a). Such an algorithm is thus complete:
all possible information in the independence relations is utilized.

In practice, with finite sample data, the situation is a little more com-
plicated. The order in which the independence queries are performed can
greatly impact the learned structure. Spirtes et al. (1993) define an opti-
mal strategy in their PC-algorithm (the authors’ first names are Peter and
Clark). First we can run all marginal independence tests, then conditional
tests with singleton conditioning sets and so on. The subsequent tests with
larger conditioning sets are run only when needed. The tests with larger
conditioning sets tend to be less reliable. In addition, if we can place a limit
on the (undirected) degree of nodes in the true graph, the PC-algorithm will
have a polynomial time complexity (Spirtes et al., 1993).

The good thing about constraint-based causal discovery is that it can
be made completely non-parametric, thus we do not have to assume any
parametric restrictions on the causal relationship. On the other hand the
algorithms are based on hard judgments of dependence and independence.
If the judgments go wrong, the recovered structure may be far from the
truth. Often any constraint-based algorithms should be run several times
with different significance levels for the independence tests, in order get
some idea on which alternative structures are possible.

3.2 Score-based Approach

In Bayesian score-based5 causal discovery we assume a Bayesian network
(G,θ) as the data generating process and try to assign posterior probabil-
ities P (G|X) (or, more generally, scores) to different graph structures G
given some data X obtained in the passive observational setting. The data
X is assumed here to be in N × n matrix form with each of the N samples
in rows while the different columns represent the n observed variables.

5A score-based approach may also be non-Bayesian, then instead of posterior proba-
bility, the score is considered to be some other function of the model and the data.
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3.2.1 Derivation of the Posterior Probability

The calculation of the posterior probability P (G|X) is fairly complicated
(Cooper and Herskovits, 1992). The first step is to invert the conditional
probability using Bayes-formula:

P (G|X) =
P (X|G)P (G)

P (X)
, where (3.3)

P (X) =
∑
G
P (X|G)P (G). (3.4)

Here P (G) is a prior probability of the graph structure G. Often this is
taken to be uniform P (G) ∼ 1 for all considered graph structures, since no
graph structure is favored before observing the data. The likelihood of the
data P (X) can be calculated by summing the numerators of Equation 3.3
over all considered graph structures (Equation 3.4).

The term P (X|G) is the marginal likelihood of the data: the probability
of drawing data X from a model with graph structure G. In order to
calculate this, we have interpret the parameters θ of the model as random
variables. Then, we integrate over the parameters θ, and use the product
rule of probabilities (Equation 2.5, p. 11):

P (X|G) =

∫
P (X,θ|G)dθ =

∫
P (X|θ,G)P (θ|G)dθ. (3.5)

Here P (X|θ,G) is simply the likelihood of the data given the fully defined
model (G,θ), while the term P (θ|G) is the prior distribution on the model
parameters θ. The notation dθ represents dθ1dθ2 . . ., i.e. the integral is
taken over all individual parameters.

Since the samples, appearing in the rows of the data matrix X, are
independently and identically distributed we have that

P (X|θ,G) =

N∏
j=1

P (Xj·|θ,G). (3.6)

The probability of a single sample Xj· given a uniquely defined model (G,θ)
can be calculated6 from Equation 2.10 (p. 13):

P (Xj·|θ,G) =

n∏
i=1

P (Xji|Xj,pa(Xi),θi). (3.7)

6With slight abuse of notation Xj,pa(Xi) denotes the values the parents of Xi receive
in the j:th sample.
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Figure 3.5: Combining local scores to calculate the posterior probability of
a full graph structure.

Here, the parameters θ are divided into n groups θ1, . . . ,θn, such that θi
defines the local probability distribution P (Xi|pa(Xi)). In this expression
the graph G defines the parent sets of each variable pa(Xi). Thus, overall
we get:

P (X|θ,G) =

N∏
j=1

n∏
i=1

P (Xi = Xji|Xj,pa(Xi),θi). (3.8)

In order to further factorize and simplify Equation 3.5, it is useful if the
prior factorizes similarly as P (X|θ,G). Heckerman et al. (1995) call this
property parameter independence. The different parameter groups, each
defining one conditional probability distribution, are independent given the
graph structure:

θi ⊥⊥ θj | G.

In addition, each parameter group θi depends only on the local structure:
the parents of node Xi, denoted by pa(Xi). The other structure in G is
irrelevant to the parameters θi. With these assumptions, the prior P (θ|G)
factorizes as follows:

P (θ|G) =
n∏
i=1

P (θi|G) =
n∏
i=1

P (θi|pa(Xi)). (3.9)

Using Equations 3.8 and 3.9 the likelihood of the data given a structure
in Equation 3.5 can be written as the integral:

P (X|G) =

∫ n∏
i=1

N∏
j=1

P (Xji|Xj,pa(Xi),θi)P (θi|pa(Xi))dθ1 . . . dθn.

First consider integrating over parameters θ1. In the product over index i,
only the first term depends on the parameters θ1. The rest can be taken



3.2 Score-based Approach 39

out of the integral over θ1 as constants. Similar simplification applies to
the integrals over all parameter groups. Thus, given the obtained neat
factorizations, the total integral can be calculated as n separate integrals:

P (X|G) =
n∏
i=1

∫ N∏
j=1

P (Xji|Xj,pa(Xi),θi)P (θi|pa(Xi))dθi. (3.10)

The log-value of the integral for a given i and local graph substructure
Gi is interpreted as a local score. The logarithm of the likelihood can be
calculated as the sum of the local scores (Figure 3.5):

score(Xi,pa(Xi)) = log

∫ N∏
j=1

P (Xji|Xj,pa(Xi),θi)P (θi|pa(Xi))dθi,(3.11)

logP (X|G) =

n∑
i=1

score(Xi,pa(Xi)). (3.12)

For each variable Xi, the local score in Equation 3.11 depends only on
the local structure, defined by pa(Xi), of the associated graph. Thus, the
calculated value of a single local score can be reused for several different
full graph structures that share the same local structure. Heckerman et al.
(1995) call this property parameter modularity. This important property
makes calculation of the posterior probabilities of several structures some-
what tractable. Once we have obtained the likelihoods P (X|G) for all graph
structures, the posterior probabilities can be calculated from Equations 3.3
and 3.4.

3.2.2 Local Scores

The local scores can be calculated in closed form for discrete variables when
1) local conditional probability distributions are multinomial, and 2) the
parameters θi have Dirichlet (conjugate prior for multinomial) distributions
(Cooper and Herskovits, 1992). If Nijk marks the number of times the
variable Xi gets its k:th value, while its parents get their j:th configuration,
the local score is:

score(Xi,pa(Xi))=log

∏
j

Γ(
∑

k αijk)

Γ(
∑

k αijk +Nijk)

∏
k

Γ(αijk +Nijk)

Γ(αijk)

,(3.13)

where Γ denotes the gamma function, and αijk are hyper-parameters for the
prior Dirichlet distributions. One common option here is to use the so-called
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BDeu-prior (Bayesian Dirichlet with likelihood Equivalence, Uniform):

αijk =
α

mXi ·mpa(Xi)
, (3.14)

where mXi denotes the number of categories for Xi and mpa(Xi) denotes the
number of configurations of parents, and α is some given hyper-parameter
(for example α = 1). Note that this formulation is particularly nice: we
are not restricting the parametric form of the conditional probability dis-
tributions and still the posterior probabilities can be calculated without
approximation errors. If the discrete variables are not categorical, but for
example ordinal, other priors may exhibit better properties.

For continuous variables with linear Gaussian conditional probability
distributions, the local score can also be calculated in closed form using a
particular application of the Normal-Wishart prior (Geiger and Heckerman,
1994). In other cases we can resort to approximate the integral numerically.

Note that both local scores presented here satisfy a property of likelihood-
equivalence: graphs in the same Markov equivalence class (Section 3.1.4)
receive the same overall score. This seems natural with multinomial and
linear-Gaussian conditional probability distributions: if two graph struc-
tures can produce the exact same distributions, then no data should help
in discriminating them (Heckerman et al., 1995).

3.2.3 Search over Possible Structures

In the true Bayesian fashion, any inference problem should be solved by
marginalizing over all possible network structures. We might for example
calculate the confidence of X being a cause of Y given the data X. We
can utilize the fact that ‘X causes Y ’ is independent of the data given the
causal graph structure G:

P (‘X causes Y ’|X) =
∑
G
P (‘X causes Y ’,G|X)

=
∑
G
P (‘X causes Y ’|G)P (G|X),

where P (‘X causes Y ’|G) = 1 whenever X is an ancestor of Y in graph G,
otherwise 0. The posterior probabilities P (G|X) for all graph structures
have been obtained as described in the previous sections. Unfortunately,
this approach is often intractable due to the high number of graphs. One
option is then to use, for example, a few of the highest scoring structures
for the inference.
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Instead of model averaging we may have to resort to model selection.
Often the most informative structure is the one that maximizes the overall
score. This structure is called the MAP structure (Maximum a Posteri-
ori). Thus, given pre-calculated local scores, we try to find the structure G
solving

max
G

P (G|X). (3.15)

Note that we do not need to calculate the divisor P (X) in Equation 3.3
for finding this maximum, as it is only a normalizing factor and a con-
stant for all graphs. Even finding this MAP structure is unfortunately
NP-hard (Chickering, 1996). One complicating issue here is the acyclicity
assumption, because it is a global assumption. The highest scoring struc-
ture cannot be found efficiently considering only the local neighborhoods
separately. Current state-of-the-art exact structure discovery algorithms
find the MAP structure using dynamic programming and other optimiza-
tion techniques (Koivisto and Sood, 2004; Silander and Myllymäki, 2006;
Jaakkola et al., 2010).

Fortunately, there exists methods that are faster, and still able to offer
some guarantees on finding the maximum scoring structure. One such al-
gorithm is GES (Generalized Equivalence Search, Chickering (2002); Meek
(1997)). GES starts from the equivalence class of an empty graph, first
greedily adding edges one by one, such that the improvement on the score
is maximized in each step. After no addition improves the score, a suc-
cession of edge deletions is performed in a similar, greedy fashion. Us-
ing the Bayesian score introduced, such a greedy algorithm produces the
equivalence class of the true graph structure as an output provided that
the faithfulness assumption holds, in the infinite sample limit (Chickering,
2002; Koller and Friedman, 2009). Note that this result does not mean
that we would be guaranteed to find the maximum scoring graph with a
limited number of samples. However, GES has shown to achieve good re-
sults even when the assumptions are slightly violated (Koller and Friedman,
2009). For even larger graphs calculating the best possible edge addition
or deletion in GES may still be computationally too heavy. Markov Chain
Monte Carlo -based (MCMC) resampling methods can be used in such sit-
uations (Koller and Friedman, 2009). Another algorithm often considered
is Max-Min Hill-Climbing, which is a combination of the score-based and
constraint-based approaches (Tsamardinos et al., 2006).

In situations where score-based learning can be applied, the results are
usually better than for the constraint-based methods of Section 3.1. One
reason for this is the fact that the approach does not make hard decisions
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about existing independence relations. In addition, the method also out-
puts many alternative probable structures. However, with the common
local scores, the methods give the same score for all graphs in a single
Markov equivalence class. Thus, the power of the algorithms when exploit-
ing only passive observational data is limited to finding Markov equivalence
classes.

3.2.4 Model Complexity

The Bayesian paradigm holds a preference towards simpler models. If two
different model structures are able to produce the same dependencies in the
data, the simpler one will usually get a higher posterior probability. Thus,
there is no need to penalize complex structures in the prior for the graphs.

However, if the true model structure turns out to not be the simplest
one, the approaches usually fail to produce the equivalence class of the cor-
rect causal structure. Thus, the approaches enforce some sort of simplicity
assumption very similar to the faithfulness assumption. In fact, unfaithful
models can be problematic. If the true causal model is as Figure 3.2 (a),
score-based structure search would usually return an unshielded collider
x→ z ← y. This is because such a structure can explain the dependencies
in the joint distribution just as well as the true structure, and it is one edge
simpler. For learning the model of Figure 3.2 (b), unfaithfulness turns out
not to be a problem. Although faithfulness essentially has to be assumed
when using score-based methods, its violations may not be as critical as in
the constraint-based framework.

3.3 Exploiting Higher Order Statistics

This section describes methods exploiting the full joint distribution of con-
tinuous variables. Often methods are first crafted with restrictions on the
functional forms of the causal relations, such as linearity. Further research
has shown that the parametric assumptions can be somewhat relaxed. The
class of methods presented here are more powerful than the previous meth-
ods: they can often identify the structure uniquely from passive observa-
tional data and are thus not restricted to finding only Markov equivalence
classes. In addition, the methods can also find unfaithful or effectively un-
faithful models accurately. However, they all require some restrictions on
the parametric form of the causal relations, and produce unreliable results
when the restrictions are not respected by the data generating system.
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Figure 3.6: Principle of the LiNGAM-algorithm. The data points of x and
y are shown in (a), and same points with axis reversed are in (b). The
magenta lines show the estimated linear causal relation for both causal
directions. Plot (c) shows the estimated disturbances for the model x→ y,
and (d) for the model y → x. Because the estimated disturbances in (c)
are independent while in (d) they are not, we can deduce that x causes y.

3.3.1 Linear Non-Gaussian Acyclic Models

Consider that we have been given the passive observational data shown in
Figure 3.6 (a) (and with the direction of the axis switched in (b)). We
would like to know whether x causes y or y causes x. Since the relationship
seems to be linear, we compare two models:

x := ex
y := byx · x+ ey

x := bxy · y + ex
y := ey

The first model postulates that x causes y while according to the second y
causes x.

One can fit the first model to the data as the following simple procedure.
First, one can regress the dependent variable y on x. The least squares
solution will give an estimate on byx, this is represented by the magenta
line in Figure 3.6 (a). Then, estimates for the disturbances of both observed
variables can be obtained by setting ex := x and ey := y − byx · x. Fitting
the second model can be done similarly.

Now, according to the model definition and the causal sufficiency as-
sumption the disturbance terms of the two variables should be independent.
The disturbances of both models are plotted in Figure 3.6 (c-d). The dis-
turbances for the first model are independent in (c): the value of ex does
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not help in predicting the value of ey. On the other hand, the disturbances
for the second model in (d) are dependent: for example if ey ≈ 1, then
ex ≈ 0. Thus, we can deduce that the first model is correct, variable x
causes variable y.

Note, that due to the properties of linear regression, the disturbances
will necessarily be uncorrelated for both models. For variables in a jointly
Gaussian distribution uncorrelated variables are also independent, the dis-
turbances must have non-Gaussian distributions for this type of inference
to work.

Assumption 10 (Non-Gaussianity) The distributions of the indepen-
dent disturbances e1 . . . en are non-Gaussian.

The uniform distribution used in the example is one such a non-Gaussian
distribution.

The inference conducted in the previous example is possible using the
LiNGAM-algorithm (Linear Non-Gaussian Acyclic Model) (Shimizu et al.,
2006). The model class considered is a linear structural equation model
(SEM)

x := Bx + e, (3.16)

where each ei = e[i] is distributed independently with a Non-Gaussian
distribution pi(). The basic LiNGAM-algorithm uses numerical methods of
Independent Component Analysis (ICA) (see Hyvärinen et al. (2001)) to
find the matrix B (in Equation 3.16) such that the residuals e1, . . . , en are
as independent as possible (Shimizu et al., 2006). A very basic result is
that we can find the true B-matrix just from passive observational data
for any number of variables, in the infinite sample limit. By pruning the
obtained B-matrix we will also find the true causal structure.

Recently, Shimizu et al. (2011) have published an alternative method
called DirectLiNGAM exploiting these same principles. This method can ex-
tract the structure more reliably from a fewer number of data points. They
fit regression models, similarly as in the previous example, and compare
(general) independence of the residuals for the different models.

3.3.2 Non-linear Causal Relations

The linearity assumption of the LiNGAM-method has been relaxed in recent
literature. Hoyer et al. (2009) consider structural equation models where
the equations are of the form:

xi := fi(pa(xi)) + ei. (3.17)
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Figure 3.7: Discovery of additive noise models. The data points of x and
y are shown in (a), and the same points with axis reversed appear in (b).
The magenta lines show the estimated function causal relation for both
directions. Plot (c) shows the estimated disturbances for model x → y,
and (d) for the model y → x. Because the estimated disturbances in (c)
are independent while in (d) they are not, we can again deduce that x
causes y.

Here the functions fi are possibly non-linear. Notice that the stochastic
disturbance term ei is additive, hence the model is called an additive noise
model.

Assumption 11 (Additive Noise) The structural equations are deter-
ministic apart from an additive stochastic term.

Figure 3.7 (a-b) shows data generated by such an additive noise model
with two variables. Similarly as in Section 3.3.1 we can try to fit two models,
one postulating x→ y and the other y → x. The non-linear causal relation
(line in magenta) is discovered by non-linear regression, fitting a 5th degree
polynomial in both cases. The estimated disturbances are independent for
x → y in Figure 3.7 (c), but dependent for y → x in Figure 3.7 (d). The
additive noise model fits only for one direction of the causal relation. If the
noise was indeed additive, x→ y is the correct structure.

Hoyer et al. (2009) show that in many cases we can discover the causal
direction between two variables in this way just from passive observational
data. One exception occurs when fi is linear and the disturbances ei have
Gaussian distributions: in this case identifiability is still possible only up
to the Markov equivalence class (Section 3.1.4). But if either requirement
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is dropped (like the linearity in the previous example and Gaussianity in
Section 3.3.1), the model can in fact be identified. Thus, non-linearity of
the causal relations may actually aid in the identification of causal models
in some situations (Hoyer et al., 2009).

Zhang and Hyvärinen (2009) generalize the model to include an addi-
tional nonlinear function gi in the structural equation:

xi := gi(fi(pa(xi)) + ei), (3.18)

and show that the causal direction can be identified with these models as
well. Peters et al. (2011) generalize the identifiability results for both model
families to any number of variables. The actual learning of these models
requires the use of various non-linear optimization techniques and general
independence measures (Mooij et al., 2009). Note that these results all as-
sume causal sufficiency, and due to use of the whole continuous distribution
require a relatively high number of samples. The methods are also fairly
sensitive to the assumptions: if the underlying system cannot be described
by the structural equations allowing only additive noise, the results may be
unreliable.



Chapter 4

Experiments

Experiments are a very powerful way of finding causal relations, as causal
relations can be considered to be determined by interventions in exper-
imental settings. Discovering causal relations from passive observational
data may be considered a more risky way of obtaining causal knowledge,
as causal relations are only inferred from statistical associations under of-
ten unverifiable assumptions. On the contrary, in experiments causality
may be considered more directly observed. Experiments may also provide
confirmation of the causal relationships inferred from passive observational
data.

Experiments were also the first formalized way of obtaining scientific
causal knowledge (Fisher, 1935). However, in these traditional medical or
in some cases agricultural experiments (see Figure 1.2, p. 5) the considered
variables are often divided into treatment variables and outcome variables.
The goal is to find the causal effects the treatment variables have on the
outcomes, if there are any. In causal discovery this distinction is not made.
Instead, the goal is to discover the whole causal structure without a priori
division of variables to different groups. This is a more realistic setting for
some application areas.

The benefits of using experiments for causal discovery are twofold. First,
a surgical (i.e. ideal) experiment cuts the effects any confounders have on
an intervened variable. Thus, the association between an intervened vari-
able and an observed variable can be interpreted to be causal, directed from
the intervened variable to the observed variable (Figure 1.2). In addition,
experiments allow us to orient edges that may have been left unoriented
by constraint or score-based methods exploiting only passive observational
data. Although exploiting higher order statistics may allow us to orient
edges, in many situations experiments provide a more reliable way of ob-
taining the causal orientation. We will focus on this latter benefit in this

47
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section, since it has been covered more extensively in the causal discovery
literature. The use of experiments to break latent confounding is considered
briefly in Section 5.5 (Experiments in the Presence of Latent Confounding)
and more extensively in the original research of this thesis in Chapter 7
(Contributions to the Field).

We will formalize an experiment to be an experimental setting where a
specific set of variables J are intervened on, while the remaining variables
U = V \J are (passively) observed. The intervened variables J are consid-
ered to be randomized (independently). The number of samples extracted
in the experiment and how the values of the intervened variables are de-
termined, are not considered explicitly. This is because the experimental
settings are the most vital thing for causal discovery: they generally define
which causal relations can and which cannot be identified. We will refer to
the problem of choosing the experimental settings, in such a way that as
many as possible causal relationships can be identified, as experiment selec-
tion. After the experiments have been selected, we may want to lower the
uncertainty of our parameter estimates by optimally choosing the values of
the intervened variables. In statistics such questions are more extensively
covered under the term design of experiments.

In Section 4.1 (Combining Several Experimental Data Sets) we will
show how several experimental data set can be combined to reveal more
of the causal structure than each data set alone. In section 4.2 (Experi-
ment Selection) the choice of most informative experiments is considered
in different settings, and some general results on the number of needed ex-
periments are given. Section 4.3 (Different Types of Experiments) suggests
alternative kinds of experiments and explains how they can be modeled
with the causal modeling frameworks.

4.1 Combining Several Experimental Data Sets

First one may consider the benefits of experimental data for the constraint-
based approach. As interventions in the experiments break some of the
edges, more independencies can be found than in the passive observational
case. Since association between an intervened variable and an observed
variables can be attributed to the causal influence from the intervened
variable to the observed variable, more edges can also be oriented. However,
the independence tests run on data from different experiments are likely to
give contradictory results due to the finite number of samples available in
any realistic situation. Even with one data set the different conditional
independence tests may produce contradictory answers, but with several
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experimental data sets this complication is amplified. One option might
be to develop some sort of voting scheme for example on the conflicting
structural features implied by the different data sets (Eberhardt, 2008b).

For the Bayesian score-based learning algorithms the incorporation of
surgical experiments is more straight-forward (Cooper and Yoo, 1999). Ex-
perimental data induces differences only in the step of calculation of the
local scores. Equation 3.13 (p. 39) gives the correct local score when Nijk

is interpreted as the times variable Xi gets its k:th value by passive obser-
vation while its parents get their j:th configuration. That is, any samples
where Xi gets its value by intervention are disregarded in the calculation
of the local scores associated with node Xi. This is intuitive: the clamped
value of Xi does not give any information on the natural processes that
bring about the value of Xi. Note that the samples disregarded in the
calculation of local scores associated with Xi, are not disregarded in the
calculation of local scores associated with other variables. Similar modifi-
cation of local scores to account for experimental data also applies for any
scores for continuous variables.

Most of the score-based algorithms introduced in Section 3.2.3 work
straight-forwardly with the local scores considering also experimental data
as explained. Although GES has been used with experimental data (Hauser
and Bühlmann, 2012a), it is not yet clear whether this generalization has
the same performance guarantees as GES. The score-based way of learning
from experimental data sets has one clear advantage: all data are in a sense
pooled together, no hard decision are made, so no hard conflicts can arise.1

4.2 Experiment Selection

Which experiments are sufficient and necessary in order to fully learn a
causal model under the assumption of causal sufficiency? This question
has been considered in three different settings, each explained in the fol-
lowing subsections. Note that although this characterization is mostly given
considering only the constraint-based framework, it is directly applicable
to the score-based approaches as well.

4.2.1 Predetermined Set of Experiments

The first interesting characterization of experiments needed for full struc-
ture identification can be stated under the common assumptions of acyclic-

1On the other hand, it may be good for a method to report and notice conflicts: they
may indicate for example a faulty data collection process.
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ity (Assumption 1), sufficiency (Assumption 6) and faithfulness (Assump-
tion 9). Then, the graph structure can be uniquely identified if for each
unordered variable pair (X,Y ) at least two of the following options are
satisfied (Eberhardt, 2007):

• There is an experiment where X is intervened and Y is passively
observed.

• There is an experiment where Y is intervened and X is passively
observed.

• There is an experiment where X and Y are both passively observed.

This characterization of experiments is also worst case necessary: for each
set of experiments not satisfying the condition there exist model structures
that are indistinguishable from the given set of experiments.

Note in particular that the condition ensures that we can orient each
edge between the variables. For any edge X − Y the experiments will have
at least one experiment where one of the variables is intervened on and the
other one is passively observed. Say the intervened variable happens to
be X. Now if X and Y are dependent in the distribution obtained when
intervening on X, the edge can be oriented as X → Y , otherwise the edge
must be oriented as Y → X.

If we aim for full identifiability using only experiments where a single
variable is intervened on in every experiment, then n − 1 experiments are
needed (Eberhardt et al., 2006). It can also be shown that experiments
where one variable is randomized and other variables are forced to certain
constant values do not aid in this inference. On the other hand, if we can
intervene on and randomize any number of variables in each experiment
we need only dlog2(n)e experiments plus possibly an additional passive
observational data set (Eberhardt et al., 2005). One derivation of this
latter bound and instructions on how to select experiments such that this
condition is satisfied are considered in detail in Article VI.

4.2.2 Orienting Edges in a Markov Equivalence Class

Another relevant setting for selecting a set of experiments occurs when we
have previously obtained the Markov equivalence class of the true graph
from passive observational data (Figure 4.1). The partially oriented DAG
of the equivalence class defines the graph structure uniquely up to the orien-
tation of some edges (Section 3.1). The task is then to find a minimal set of
experiments that provides information sufficient for orienting all unoriented
edges.
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X W

Z V

Y U

Figure 4.1: Orienting edges by experiments from a given Markov equiva-
lence class. There are total of 72 DAGs in this equivalence class. The par-
tially oriented DAG has two maximal cliques, {X,Y, Z} and {Z,W,U, V },
and the edges may be oriented by two experiments intervening on J1 =
{Z,W} and J2 = {X,W, V } respectively.

The number of experiments needed to orient all edges is related to the
size Cmax of the largest maximal unoriented clique (Eberhardt, 2008a). An
unoriented clique is a set of nodes such that any two nodes in the set are
connected by an unoriented edge. The clique is maximal if it is not part
of any larger clique. In the partially oriented DAG of Figure 4.1 the maxi-
mal unoriented cliques are {X,Y, Z} and {Z,W,U, V }, and thus Cmax = 4.
Now, finding the orientations inside each clique using experiments is very
similar to learning a causal model over the variables in the clique as in
Section 4.2.1. The slight difference here comes from the fact that the dif-
ferent cliques may contain some common nodes, such as Z in Figure 4.1.
Apart from this, the edges in the different cliques can be oriented in paral-
lel. Then, at most dlog2Cmaxe experiments are needed (Eberhardt, 2008a;
Hauser and Bühlmann, 2012b). In the example of Figure 4.1, two experi-
ments (dlog2 4e = 2) intervening on J1 = {Z,W} and J2 = {X,W, V } are
sufficient for orienting the unoriented edges.

4.2.3 Active Learning

Another type of setting for learning causally sufficient models is termed
active learning (Tong and Koller, 2001; Murphy, 2001; He and Geng, 2008).
Active learning applies to a situation where an agent is trying to learn as
much as it can from the world by conducting various experiments. After
each experiment the agent is allowed to contemplate which next experiment
would be most informative and cost-effective. The next experiment is often
chosen to minimize some measure of uncertainty on the possible causal
structure. Due to the high number of DAGs all probable in the early stages
of the learning setting, active learning procedures resort to approximate
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sampling techniques when selecting the next experiment. Note that the
results of Section 4.2.1 and 4.2.2 give a characterization of the experiments
that an active learning procedure must perform in order to fully identify a
model structure.

4.3 Different Types of Experiments

Although surgical, ideal experiments are very useful in formalizing the no-
tion of causality, the randomized experiments performed may not live up
to this standard. In many situations it might not be possible to entirely
break the influence the natural causes have on an intervened variable. For
example in medical experiments there is sometimes non-compliance: the
patients may not always take the medicine assigned to them. Many differ-
ent types of non-ideal experiments have been considered in the literature.
Again, the application field dictates which type of experiments are possible,
useful and cost effective.

One particularly useful type of experiment has been termed (in differ-
ent contexts) a soft intervention (Eberhardt and Scheines, 2007), a quasi-
experiment (He and Geng, 2008), or a parametric intervention (Eberhardt,
2007). In such an experiment the conditional probability distributions (or
similarly the structural equations) P (X|pa(X)) of the intervened variables
are replaced by different conditional probability distributions Q(X|pa(X)).
Often at least some aspects of Q(X|pa(X)) are known to the experimenter.

One example of a soft intervention important for this thesis2 can be
given for linear causal models (Eberhardt et al., 2010). A soft intervention
corresponds to adding a vector c to the system of structural equations in
Equation 2.17 (p. 20):

x := Bx + c + e, (4.1)

where the elements of c corresponding to non-intervened variables are al-
ways zero. Note that unlike for surgical experiments, the matrix B remains
unaltered: the natural causes of the intervened variables still have some say
on determining the values of the intervened variables. For example when
analyzing biological systems, this kind of intervention would correspond to
artificially increasing or decreasing the concentration of some substances
already present in the system, without having complete control over the
variable in question.

2Eberhardt et al. (2010) show that the experimental effects heavily used in Articles
II-IV can be estimated also from experiments with this type of interventions.
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Figure 4.2: Causal discovery from a soft intervention. One soft interven-
tion is sufficient to determining the full structure between the observed
variables x, y and z. When running PC on the observed variables x and
the intervention variables c, all edges between the observed variables get
oriented.

Sometimes soft interventions may be more informative than surgical
interventions. In the example of Figure 4.2 all variables of a 3 variable
causal model are simultaneously subject to soft interventions. This one
experiment allows us to identify the full structure among the observed
variables: each edge becomes part of an unshielded collider and is thus
oriented correctly (Eberhardt and Scheines, 2007). It really depends on the
application area whether this experiment where all variables are subject to
soft intervention is cheaper than a set of surgical experiments allowing for
full identification of the structure.

In addition to soft interventions, there exist several other types of ex-
periments in the literature (Eaton and Murphy, 2007). For example, un-
certain interventions are only sometimes able to influence their target vari-
ables. Fat hand -interventions may also influence other variables than the
intended target variables.
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Chapter 5

Latent Confounding

In some sense, assuming causal sufficiency in Section 3 is ducking the real
problems in inferring causal relationships. In real situations, we often can-
not assume that there are no latent confounders present. There exists so
many potential latent confounders that it is unlikely that not a single one
is a confounder for the set of observed variables (Robins and Wasserman,
1999). In many situations the influence of latent confounding is also strong
enough for the methods assuming causal sufficiency to be unreliable. It has
been argued that in empirical studies with relatively high sample sizes one
often observes highly significant dependencies between variables that are
firmly believed not to be causally related (Robins and Wasserman, 1999).

Not only are the confounders unobserved, we also do not know how
many confounders affect the system under study. In addition these un-
observed variables may have a fairly complicated structure among them-
selves.1 Since the variables are unobserved, we usually have no hope in ob-
taining this structure. We abstract away from the causal structure between
the latent variables by using mixed graphs. In addition to directed edges,
mixed graphs include bidirected edges between pairs of observed variables
whenever there exists at least one latent confounder affecting both of the
variables (Figure 5.1 (a-c)). In this notation any latent confounder causing
three or more variables will be represented by bidirected edges between all
pairs of the affected variables (Figure 5.1 (c)). Many of the algorithms pre-
sented in this section also allow for selection bias, which can be represented
by undirected2 edges between observed variables (Figure 5.1 (d)).

Allowing for latent confounding presents several difficulties and com-

1In some cases the scientist might actually be more interested in the causal structure
between the latent variables (Silva et al., 2006).

2This notation is not to be confused with unoriented edges that indicate a causal effect
from one variable to another, with the orientation unknown, as used in Section 3.1.4.
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Figure 5.1: Representing latent confounding by bidirected edges (a-c) and
selection bias by undirected edges (d).

plications for the approaches given in Section 3 (Causal Discovery). Espe-
cially under a lot of latent confounding, the models learned from passive
observational data leave a large part of the structure unidentified. Thus
without causal sufficiency, it becomes increasingly important to incorporate
background knowledge and to combine information from several (possibly
experimental) data sets.

In Section 5.1 (FCI-algorithm) we consider the basic constraint-based
algorithm robust against latent confounding and selection bias. Then in
Section 5.2 (Data Sets with Overlapping Variables) the basic idea behind
constraint-based causal discovery is applied to a setting where we have
several data sets that do not all share the same set of variables. Sections 5.3
(Approximating the Score-based Approach) and 5.4 (LiNGAM and Latent
Variables) briefly explain how the other discovery approaches can be used
to discover causal structures under latent confounding. Finally Section 5.5
(Experiments in the Presence of Latent Confounding) considers exploiting
experimental data.

5.1 FCI-algorithm

The general idea of constraint-based causal discovery of Section 3.1 can
also be exploited under latent confounding. The detected independence
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Figure 5.2: Causal discovery from independence and dependence relations
in passive observational data, not assuming causal sufficiency. Again d-
separation implies some independencies on the observed variables, and by
assuming faithfulness of the true data generating model other independen-
cies are not present in the passively observed distribution. In the learning
result on the right panel several relations remain undetermined (dotted
edges) but existence of some relations can be inferred (missing edges and
the solid edge).

and dependence relations in the data can in some cases narrow down the
possible causal structures.

The connection between the graph notation (Figure 5.1) and the set of
independence relations is the familiar d-separation condition (Definition 3,
p. 28) with the following conventions. The bidirected edges X ↔ Y can
be interpreted like there would be an implicit latent variable in between:
X ← L → Y (Richardson and Spirtes, 1999). Similarly, any undirected
edge X − Y can be interpreted as a structure X → S ← Y and implicitly
including the variable S in each conditioning set. Given the conventions on
d-separation, the faithfulness assumption (Assumption 9, p. 30) extends to
this setting without modifications.

Figure 5.2 presents a situation where the possible causal structures pro-
ducing the detected independence and dependence relations can be nar-
rowed down to have several informative features in common. The true
causal structure is represented on the left, note that it includes a latent
confounder U . Some of the independence and dependence relations be-
tween the observed variables are shown in the middle. The right panel
shows the learning result. Even in this favorable case a significant part
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of the causal structure remains unidentified, these features are marked by
the dashed edges. For example, it is not clear whether X causes Z or if
there is a latent confounder between the variables. One of the relations
must be present. Some important features can be recovered uniquely from
the independence relations. Variable Z is discovered to be a direct cause
of W . There are no confounders or causal connections between X and Y .
Furthermore, neither X nor Y is a direct cause of W , their possible causal
influence on W must be mediated by Z.

The FCI (Fast Causal Inference) algorithm automates the inference of
the causal structure from the detected independence relations in passive
observational data (Spirtes et al., 1993). There exists variants of the proce-
dure that use Assumption 7 (No Selection Bias) and ones that do not. As
indicated in the example, even in the best case scenario FCI can infer the
graph structure only up to an equivalence class. A formal graph language
for dealing with the equivalence classes has been developed (Richardson
and Spirtes, 2002). Partial ancestral graphs (PAG) describe the common
features of mixed graphs in the equivalence classes (such as ancestral rela-
tionships) and have many favorable properties in the task of inferring the
causal structure from passive observational data. The current version of the
FCI algorithm has been shown to be complete: it can discover all aspects
of the causal structure that are uniquely determined by the independence
and dependence relations (Zhang, 2008). However, the several different
types of edges used in PAGs require a quite intricate causal interpretation.
Furthermore, the good properties of PAGs do not carry over to the learn-
ing settings vital to this thesis: experimental data, possibly cyclic causal
structure, data sets with overlapping variables (Section 5.2), or available
background knowledge (Zhang, 2008; Borboudakis et al., 2011; Tsamardi-
nos et al., 2012). Developing FCI to also be complete with background
knowledge and experimental data is worth investigating (Zhang, 2008).

Overall, FCI can give important information on the causal structure but
more often may leave the structure severely underdetermined. This is espe-
cially the case with a highly confounded set of variables. For example the
models in Figure 5.1 do not produce any conditional independencies among
the observed variables: any conditioning just unblocks new paths through
the confounders. For example in Figure 5.1 (a) conditioning on Y unblocks
the path X → Y ↔ Z and thus X \⊥⊥Z | Y . The considerably different
structures in (a-c) thus cannot be distinguished based on independence and
dependence relations in passive observational data.
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Figure 5.3: Several data sets with overlapping variables. Assume we have
observed data from the data generating model in the left panel in two
settings: in the first set we have X,Y,W and in the second X,Z,W . The
independence relations detected in the marginal distributions are given in
the two panels in the middle. The right panel shows the learning result.
This example was originally considered by Tsamardinos et al. (2012).

5.2 Data Sets with Overlapping Variables

Sometimes we may have several data sets (generated by the same system in
a passive observational state) that do not share the same set of variables,
but nevertheless there is significant overlap (Danks, 2002). The goal is to
learn the causal structure over the joint set of observed variables. It is clear
that in this setting no single data set is usually causally sufficient. Some
work has assumed joint causal sufficiency (Danks, 2002, 2005): the joint
set of observed variables are assumed to be causally sufficient. Then there
cannot be any confounders that would not be observed in any of the data
sets. In a more challenging setting, no such joint sufficiency is assumed
(Tillman et al., 2009). This way the setting is even more challenging than
when observing a single joint, causally insufficient data set. We will focus
on this latter setting here.

Figure 5.3 shows an example of such a learning setting. The single
model (on the left) is observed in two circumstances, such that in each data
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set some of the variables remain unobserved. The important observations
are shown in the two panels in the middle. Unfortunately, the different
graph structures explaining the independence and dependence facts may
have very little in common. The two data sets indicate that X and W are
only indirectly linked through Y and Z. Any unblocked path between X
and W would explain this, two examples are shown on the right panel while
the true causal structure provides a third. One of the key observations here
is that we can learn the presence of causal relations between variables that
are not observed together in any data set. In the example of Figure 5.3
we learn for example that there is at least some sort of connection between
variables Y and Z, otherwise the detected dependencies would simply not
be possible.

Some of the methods designed for this particular learning setting exploit
the theory surrounding the FCI-algorithm. The ION-algorithm (Integration
of Overlapping Networks) integrates the results of the different structures
learned by FCI for the individual data sets (Tillman et al., 2009). The ION
algorithm is similarly complete with respect to the independence relations
in the data sets (assuming acyclicity, faithfulness) as PC and FCI. A further
development called IOD (integration of overlapping data sets) gives more
accurate results from a finite number of samples (Tillman and Spirtes,
2011).

Triantafillou et al. (2010) also present an algorithm (cSAT+) for integrat-
ing the detected independence constraints into a causal structure. Their
algorithm exploits the power of a general computer science technique called
SAT-solving (satisfiability of logical statements). One benefit of this gen-
eral framework is that the methods can be more easily adapted also to
other type of learning settings.

5.3 Approximating the Score-based Approach

Ideally, one would like to learn causal models under latent confounding us-
ing a score-based approach as in Section 3.2 (Score-based Approach). Un-
fortunately, the posterior probability of different graph structures cannot be
calculated in closed form. One option then may be to select the graph struc-
ture with the maximum (passive observational) likelihood P (X|θML,G),
where θML are the parameters that maximize the likelihood function given
a fixed G. A better approximation is to use the BIC-score (Bayesian Infor-
mation Criterion, Gelman et al. (2004)), which adds an additional term to
the likelihood function penalizing unnecessarily complex structures. Calcu-
lating these objectives for all graph structures is infeasible, and some sort
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of step-wise search over structures, such as GES (see Section 3.2.3, p. 40),
must be performed. Given this basic idea, there are two different ways to
proceed: we can consider the latent variables in the causal graph either
explicitly or only implicitly.

When we explicitly mark some given number of latent variables in the
causal graph structure G, the calculation of the likelihood would require
marginalizing (integrating) over the latent variables as their values are not
observed. Thus, this is essentially a problem of missing data. The un-
knowns are the structure G, the parameters θ and the missing values for
the latent variables. One option is then to use the structural EM -algorithm
(Friedman, 1998; Koller and Friedman, 2009), which attempts to maximize
the objective function by sequentially alternating three steps, each maxi-
mizing the objective with respect to one type of unknowns while keeping
the other two fixed.

Alternatively, we may consider G to be a mixed graph, and again only
implicitly account for the latent variables. In some cases one can find
parameterization directly on the mixed graph structure, then marginaliz-
ing over the latent variables is not needed. Evans and Richardson (2010)
consider binary variables in this way, while Drton and Richardson (2004)
give an estimation procedure for linear causal models with Gaussian dis-
turbances. Silva and Ghahramani (2009) give a more Bayesian approach
based on sampling and variational approximations under some parametric
restrictions (linear Gaussian and Probit).

Unfortunately, latent confounding variables introduce several severe
complications: the objective may be multimodal and not generally decom-
posable, the complexity of the causal structure may not be well defined
and the search space may not be tractable (Richardson and Spirtes, 2002).
Learning models with latent variables often requires hand-tuned engineer-
ing (Koller and Friedman, 2009). It is unclear what sort of guarantees
the above algorithms have on finding (the equivalence class of) the true
structure.

Recently, Claassen and Heskes (2012) consider an approach without
parametric restrictions that in a way combines the score-based and constraint-
based approaches. They use score-based methods to approximate the pos-
terior probabilities of certain structural independence statements. Then, a
search (resembling that of FCI) can be performed, respecting the different
confidence measures on the different independence statements.
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Figure 5.4: Two causal structures that are indistinguishable from experi-
ments intervening only a single variable at a time. However, the models
will have different behavior when intervening on X and Y simultaneously.

5.4 LiNGAM and Latent Variables

Attempts have been made to extend the basic idea of exploiting non-
Gaussianity of the data and linearity of causal relations to the setting where
some of the variables remain unobserved. The lvLiNGAM-method (latent
variable LiNGAM) exploits an overcomplete basis ICA algorithm to find the
B-matrix (Equation 3.16) of the linear Non-Gaussian Acyclic model (Hoyer
et al., 2008b). It has been shown that the overcomplete basis of an ICA
model is identifiable (Eriksson and Koivunen, 2004). However, turning the
overcomplete ICA result into the B-matrix cannot always be done uniquely,
and the method may only return an equivalence class of possible B matri-
ces. Although the method seems theoretically promising, the estimation of
the overcomplete ICA basis is only possible for very small models and even
for small models the estimation may produce inaccurate results in practice.
The development of more reliable methods not using the overcomplete ICA
algorithms explicitly is ongoing (Entner and Hoyer, 2011; Tashiro et al.,
2012).

5.5 Experiments in the Presence of Latent Con-
founding

In medical experiments, interventions are the primary way of obtaining
information on specific causal relationships between possibly confounded
variables. However in causal discovery, using experiments for learning full
causal models under latent confounding has only been a fairly recent in-
terest, perhaps because of the focus on learning causal relationships from
passive observation.

Figure 5.4 illustrates one example on the use of experiments under la-
tent confounding (Article IV). The figure shows two distinct causal struc-
tures of Bayesian networks. When passively observing these models, no
independence relations can be detected. In addition, the models share the
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same independence relations also in all experiments intervening on a single
variable at a time. In fact, there exist Bayesian networks with the two struc-
tures that produce the exact same distribution in the passive observational
setting and in all single intervention experiments (Article IV). To discover
whether X has a direct causal influence on Z, an experiment intervening on
X and Y simultaneously is needed. The example seems to suggest that no
interesting characterizations on the type of experiments needed to identify
the full causal structure can be developed, if we do not want to make any
parametric restrictions on the complexity of the individual causal relation-
ships. Essentially, in order to determine the direct causal links to a single
variable we always have to intervene on all n− 1 other variables.

Another difficulty is the incorporation of experimental data into the
learning procedures. Experiments may constrain the possible causal struc-
tures able to produce the independence relations in arbitrary ways, so per-
haps no nice characterization of equivalence classes (such as PAGs) can be
developed either.

Borboudakis et al. (2011) and Borboudakis and Tsamardinos (2012)
have considered experimental data in their general framework of constraint-
based causal discovery using SAT-solvers, originally developed to learn
causal models from overlapping data sets (see Section 5.2). They are able
to exploit the ancestral causal information given by experimental data.
In their MCI-algorithm, Claassen and Heskes (2010) exploit independence
relations found in multiple experimental settings, that can be seen to corre-
spond to soft interventions. One of the main themes of the original research
articles in this thesis is the use of experimental data under latent confound-
ing, together with certain parametric restrictions on the causal relationships
(Articles II-V).



64 5 Latent Confounding



Chapter 6

Cycles

In Chapter 2 we made the ‘traditional’ assumption of the causal structure
being acyclic. The assumption proved itself useful in many instances in
deriving the theory, starting from the sampling processes in the causal
order, the interpretation of the models and the description of powerful
learning algorithms, and ending with unique identifiability of many types
of models in the causally sufficient case (Section 3.3). But when can we
really assume a priori that the causal structure is acyclic?

Perhaps the acyclicity of the causal structure seems intuitive. When
considering events in time, a cause X must precede its effect Y , and if
Y happens later than X, Y cannot cause X. But this intuition applies
only to token causation, where we are considering only a single chain of
events in a single system (Richardson, 1996). The presented algorithms
in this thesis aim to detect type-level causation: when one type of event
causes some other type of event in some population. Then, although in
different individual systems one type of event caused another type of event,
in another system this may have happened in the opposite direction. For
example in Figure 6.1 (a) disease A may influence the immune system of
the patient making him vulnerable to some disease B. In another case the
disease B may cause the patient to acquire disease A in a similar way.

The previous consideration is related to the argument that the causal
structure is acyclic over time. True systems are often dynamic like in Fig-
ure 6.2 (left). X at time t can influence Y at time t+ 1 and the value of Y
at t can influence the value of X at time t+1. The structure seems acyclic.
But the practical setting is often not quite as simple. First, we may observe
only a static approximation of this dynamic process (Figure 6.2 right), per-
haps in some sort of equilibrium (Richardson, 1996). Then, although the
dynamic process may be acyclic, the static model describing our observa-
tions is inherently cyclic. But sometimes even the dynamic process cannot
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Figure 6.1: Cyclic models of causality are natural when time-series be-
haviour is not explicitly considered. (a) Disease A may influence a patients
immune system making the patient vulnerable for disease B. For another
patient this may happen in the other direction. (b) Supply of a product
affects its demand, increased demand would also yield a higher supply.
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Figure 6.2: Cyclic models arising from acyclic dynamic processes. Although
the dynamic process itself is acyclic, the causal structure of the observed
static model approximating this dynamic process is cyclic.

be accurately modeled with an acyclic model. The time steps between the
observations are often coarse such that X of time step t may have time to
influence Y at time t. If also Y has time to influence X within the same
time step, we will have a cycle in the model. One can also argue that the
measured quantities may not in fact be instantaneous but aggregate values
over time. For example any quantity measuring supply or demand of some
stock or a product (Figure 6.1 (b)) is usually an aggregate over several
weeks or months. Thus the accurate causal model for the behavior would
once again be cyclic.

In the applications of causal discovery there is definitely a demand for
cyclic models. For example, linear non-recursive SEMs are commonly used
in econometrics to represent feedback processes that have reached equilib-
rium (Spirtes, 1995). In biology, the causal structure of cellular signaling
networks are known to be inherently cyclic (Sachs et al., 2005). Thus,
several important causal relationships may be missed when using acyclic
models.

Overall, cycles in the causal structure bring about similar complications
as latent confounding. Assuming acyclicity simplifies the possible graphs
significantly: if we have discovered a causal relation X → Y we can immedi-
ately rule out the causal relation Y → X. In cyclic models both edges may
be present. If they are not, often experimental data is needed to infer the
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absence of such cycles. Also the factorization property of the joint distri-
bution exploited in the development of fast Bayesian score-based learning
methods (Section 3.2) is lost when considering cyclic structures. Due to
these extra difficulties, there is definitely also use for the methods relying
on acyclicity in some learning settings.

In Section 6.1 (Cyclic Causal Models), we will first present a way of
defining linear cyclic models. This interpretation is also used in Articles
II-IV in the thesis. We will also describe and comment on interpretations
of some other possibly non-linear cyclic causal models. Section 6.2 (Inde-
pendence Properties of Cyclic Models) explains the current understanding
of independence relations produced by cyclic causal structures. Section 6.3
(Discovery Algorithms) describes several learning algorithms.

6.1 Cyclic Causal Models

A particularly nice interpretation of cyclic models can be given when the
causal relationships are linear. Consider a linear structural equation model
(also given in Equation 2.17 on p. 20)

x := Bx + e, (6.1)

where this time there is no restrictions on matrix B, i.e. it does not need to
be permutable to lower triangularity like for the acyclic interpretation. In
the structural equation system, the variables x get their values as a linear
combination of other variables plus a disturbance term e. If the model is
cyclic there is no causal order in which to sample the elements of x in such
a way that always the parents of a variable would be sampled before the
variable itself. Then, one way to interpret Equation 6.1 is that the values
of x at time t depend causally on the values of x at time t− 1:

x(t) := Bx(t− 1) + e. (6.2)

Notice that here the disturbance term e is interpreted to stay constant
throughout the iteration. Since we often do not have access to the actual
time series of this process, one option is to assume that we obtain samples
once the system in Equation 6.2 has reached its equilibrium. Then the
following sampling process may be used.

1. Sample the disturbances e = [e1, . . . , en]T from their respective dis-
tributions p1(), . . . , pn().

2. Iterate Equation 6.2 until convergence, starting from some x(0), for
example x(0) = 0.
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Iterating Equation 6.2 t times gives the following value for x(t):

x(t) = Bx(t− 1) + e

= B(Bx(t− 2) + e) + e

...

= Btx(0) +
t−1∑
i=0

Bie.

It is clear that for some coefficient matrices B this expression will fail to
converge with increasing time t. As we hope to obtain samples in the
equilibrium the following assumption is made disallowing such divergent
systems (Fisher (1970), Article III).

Assumption 12 (Asymptotic Stability) A linear cyclic model with co-
efficient matrix B is asymptotically stable if and only if for every possible
experiment Ek = (Jk,Uk), the eigenvalues λi of the (manipulated) matrix
B satisfy ∀i : |λi| < 1.

Under this assumption we have that Btx(0)→ 0 and the equilibrium point
is completely independent of x(0). In addition, the other term converges
as a geometric matrix series

∑t−1
i=0 Bi → (I−B)−1. Thus, the equilibrium

point reached is simply

x := (I−B)−1e. (6.3)

Notice that this value for x is also a solution of Equation 6.1. As one would
expect, when B happens to be acyclic this interpretation coincides with the
simpler acyclic interpretation (Equation 2.20, p. 21). The important point
to notice here is that the mapping from a configuration of disturbances e
to equilibrium point x is a bijection under the assumption of asymptotic
stability. The produced distribution can be obtained by change of variables
for probability distributions (Gelman et al., 2004):

p(x) = det(I−B) · pe((I−B)x), (6.4)

where pe(e) =
∏n
i=1 pi(ei).

An intervention can be interpreted as follows. An intervened variable
xi is held at a constant value ci throughout the iteration. Then similarly
to acyclic models the structural equation determining the value of xi is
replaced with equation

xi := ci. (6.5)
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The asymptotically stable manipulated system is then iterated until equi-
librium.

A similar interpretation can also be given for non-linear cyclic models
with additive noise (Mooij et al., 2011). There the structural equation
system is described by

x := f(x) + e, (6.6)

where f is a nonlinear function Rn → Rn. If we assume1 that for any
configuration of the disturbances e there is a single fixed point x, then
there is again a bijection from e to x and the distribution produced is
given by

p(x) := det(I−∇f(x)) · pe(x− f(x)), (6.7)

where ∇f(x) denotes the Jacobian of f at x and again pe(e) =
∏n
i=1 pi(ei).

For discrete cyclic models, the product of conditional probability distri-
butions P (Xi|pa(Xi)) does not generally sum up to one if the graph defining
the parent relations is allowed to be cyclic. Schmidt and Murphy (2009) fix
this by adding a new normalization constant in front of the factorization:

P (X1, . . . , Xn) =
1

Z

n∏
i=1

φi(Xi|pa(Xi)), where (6.8)

Z =
∑

X1,...,Xn

n∏
i=1

φi(Xi|pa(Xi)). (6.9)

Here the terms φi(Xi|pa(Xi)) are called interventional potentials. If the
causal structure happens to be acyclic the interventional potentials reduce
to conditional probability distributions P (Xi|pa(Xi)) and Z = 1. Unfortu-
nately, Schmidt and Murphy (2009) do not give a causal sampling process
for their model formulation.2

Another interpretation of Equation 6.1 that would allow for cycles could
be

x(t) := Bx(t− 1) + e(t), (6.10)

where the disturbances are no longer constant over the iteration. Clearly,
x does not converge to any particular value. One option is to assume the
system is sampled when it has reached some sort of equilibrium distribution.

1Mooij et al. (2011) give a sufficient condition for models with 2 variables.
2When using interventional potentials φi(xi|pa(xi)) = N (xi;

∑
xj∈pa(xi)

bijxj , σ
2
i ) for

continuous variables, the distribution 1
Z

∏n
i=1 φi(xi|pa(xi)) is equal to the distribution

in Equation 6.4 under Gaussian disturbances pi(ei) = N (ei; 0, σ2
i ). At least then, the

sampling process for linear cyclic models gives a causal sampling process for the model
of Schmidt and Murphy (2009) as well.
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Figure 6.3: Failure of the local causal Markov condition. There exists
linear cyclic models with this structure that produce distributions where
X \⊥⊥Z | Y because of the unblocked path X → Y ← Z.

6.2 Independence Properties of Cyclic Models

The local causal Markov condition (Assumption 2, p. 15) does not describe
the factorization and independence properties of cyclic models. Instead,
Spirtes (1995) and Koster (1996) have shown that global causal Markov
condition (Assumption 8, p. 28) characterizes the necessary independence
relations for linear cyclic models observed in equilibrium. If X and Y are d-
separated given C in the cyclic causal structure, then X will be independent
of Y given C in joint distribution. If X is not d-separated from Y given C
then X and Y will be dependent given C at least in one model with the given
structure. Figure 6.3 shows an example of a case where the causal Markov
condition fails: variable X is not always independent of its non-effect Z
given its direct cause Y .

In nonlinear cyclic models the independence relations are a more com-
plicated issue. The intuition behind d-separation and global causal Markov
condition would seem applicable also for non-linear cyclic models in some
circumstances but there exist some pathological counterexamples. Two d-
separated variables in nonlinear cyclic causal models may still be dependent
in the joint distribution (Spirtes, 1995). Details of the independence prop-
erties of discrete cyclic models have not yet been resolved either (Pearl and
Dechter, 1996; Neal, 2000).

6.3 Discovery Algorithms

Some methods for discovering cyclic causal models have been devised as-
suming causally sufficiency. Since the global causal Markov assumption and
d-separation condition apply for linear cyclic models in the same way as for
acyclic models, the CCD (Cyclic Causal Discovery) algorithm discovers the
cyclic structures from the observed independencies in passively observed
data in a similar fashion to that presented in Section 3.1 (Constraint-based
Approach) (Richardson and Spirtes, 1999). The algorithm is not complete:
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the output PAG may not represent all features that are common to all the
graphs with the given d-separation properties. However, a weaker form of
completeness property has been shown. The equivalence classes are con-
siderably larger than for acyclic models.

Schmidt and Murphy (2009) exploit experimental data heavily in their
method for learning discrete cyclic models. Basically they maximize the
likelihood given by Equation 6.8 in the different experimental settings.
There are no completeness or identifiability results, but the approach shows
good empirical performance (Schmidt and Murphy (2009), Article III). The
numerical optimization method becomes computationally heavy with larger
models.

The basic idea of exploiting non-Gaussianity has been extended for
discovering cyclic models as well: in this case the B-matrix is not always
uniquely identifiable from passive observation, but the equivalence class
is considerably smaller than for constraint-based methods (Lacerda et al.,
2008). Mooij et al. (2011) show that in the case of additive Gaussian noise
also cyclic models with 2 variables can be discovered consistently in many
cases. The estimation of this model is also done by a numerical optimization
procedure. There is hope that these methods can be extended to general
additive noise models, similarly to when the structure is assumed acyclic.
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Chapter 7

Contributions to the Field

This chapter summarizes the original research articles of this thesis. As
the articles are reprinted at the end of this thesis in their original form, the
summaries are brief and focus on the motivation for the research, and how
the articles connect to the existing work described in earlier chapters. This
chapter also emphasizes the most important and interesting findings.

The main contributions of the original research are characterized by the
contributed learning methods and their respective learning settings. One
classification of the methods is given in Table 7.1; the articles where a par-
ticular method appears are given in parentheses. Section 7.1 (Discovery
of Linear Acyclic Models) describes the contributions of Article I on de-
veloping a score-based method able to exploit linearity and higher order
statistics in passively observed data. Section 7.2 (Linear Cyclic Models
with Latent Variables) summarizes the research conducted for a series of
articles II-IV about learning linear models under latent confounding. This
includes methods that assume faithfulness and ones that do not. Section 7.3
(Noisy-OR Models with Latent Confounding) describes a model class with
binary variables allowing for latent confounders and for which we were able
to prove similar identifiability results as for the linear models. Section 7.4
(Experiment Selection) explains how to select the experiments such that
the requirements for full causal model identification can be guaranteed. No-
tice that Article VI is not in Table 7.1 as it does not describe any specific
learning algorithms. Finally, Section 7.5 describes the contributions of the
present author in the preparation of the original articles.

73
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Table 7.1: Classification of different algorithms and learning settings con-
sidered in the research articles. The characteristics are given in the gray
cells on the same row (on the left and on the right) and column as the al-
gorithm. The distinction of the different developments of the LLC method
does not appear in the original articles in exactly this from.

7.1 Discovery of Linear Acyclic Models

Article I (Bayesian Discovery of Linear Acyclic Causal Models) considers
learning the causal structure of linear acyclic models (Definition 2, p. 19)
under causal sufficiency. The graph structure of linear acyclic models can
be learned in several ways in this setting. Constraint-based methods such
as PC (Section 3.1.4) can consistently return the Markov equivalence class
of the data generating graph structure. Score-based methods using lin-
ear Gaussian local scores (see Sections 3.2 and 2.2.3) can assign posterior
probabilities to different graph structures. Graphs in each Markov equiva-
lence class get the same score. This is because linear acyclic models with
Gaussian disturbances are inherently identifiable only up to the Markov
equivalence class. In any case, such a method suggests several alterna-
tive structures to the highest scoring one, and thus the method is able to
express its uncertainty in its output result. On the other hand, LiNGAM

(Section 3.3.1) can find the structure uniquely, when the disturbances are
non-Gaussian. Unfortunately, it is not able to express its uncertainty on

1With Gaussian data BayesLiNGAM behaves like other score-based methods (Sec-
tion 3.2.4, p. 42) and thus the assumption of faithfulness is essentially made. If all
disturbances are non-Gaussian the faithfulness assumption is not needed.
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the result, and it is not able to function consistently if the disturbances
happen to be Gaussian.

Thus, our aim in Article I is to develop a method enjoying the identi-
fication power of the LiNGAM-method for non-Gaussian data, but in such
a way that it would still be able describe its uncertainty on the output
similarly as score-based approaches. In addition, we want a method that
works consistently also for Gaussian data, similarly as the method of Hoyer
et al. (2008a). To achieve these goals, we formulate new local scores for the
Bayesian score-based approach for causal discovery. The resulting learning
algorithm is appropriately called BayesLiNGAM.

The first step in devising a local score is to assign a probabilistic model
for each conditional probability distribution p(xi|pa(xi)). When assuming
linearity of the causal relations, this amounts to assigning a probabilistic
model for the disturbances e1, . . . , en appearing in the corresponding linear
structural equations. We model the distributions in two different ways.
The goal is to have a general model able to represent any distribution, in
particular the Gaussian distribution as well as some basic non-Gaussian
distributions. The first option is to use a Gaussian-Laplacian (GL) model

pi(ei) ∼ exp(−αi|ei| − βie2i ) (7.1)

that can perfectly model the Gaussian distribution when α = 0, and the
(non-Gaussian) Laplacian distribution when β = 0. As an alternative, we
also consider the mixture of Gaussians (MoG):

pi(ei) =

K∑
k=1

πik · N (ei;µik, σ
2
ik), (7.2)

where πik ≥ 0 and
∑K

k=1 πik = 1. We generally use the mixture of two
Gaussians (K = 2) for computational efficiency, but still allowing for mod-
eling of non-Gaussian disturbances.

For both alternative disturbance models the local score can be calcu-
lated by integrating over the model parameters (see Equation 3.11, p. 39):

score(xi,pa(xi)) = log

∫
pi(xi −

∑
xj∈pa(xi)

bijxj)dθi. (7.3)

The integral is taken over the coefficients bij and the parameters defin-
ing the disturbances. For GL the parameters are αi and βi and for MoG
µi1, . . . , µiK , σ2i1, . . . , σ

2
iK and πi1, . . . , πiK . We use some fairly non-infor-

mative prior distributions for all model parameters. The integral cannot be
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Figure 7.1: One Learning Result of BayesLiNGAM. Disturbances for
x2, x3, x6 are Gaussian and for x1, x4, x5 non-Gaussian.

calculated in closed form and we resort to numerical approximations. We
use the Laplace approximation (Gelman et al., 2004) and MCMC-sampling,
both are common practices in machine learning.

With the general tools of the Bayesian score-based approach presented
in Section 3.2 (p. 36) one is able to calculate the posterior probabilities for
all directed acyclic graphs (for a fairly small number of variables). Notice
that these scores do not satisfy the principle of likelihood equivalence, so dif-
ferent graphs in a single Markov equivalence class can now receive different
scores, and identification of the structure may go beyond the equivalence
class if the data is non-Gaussian. One learning result using the MoG-
score is presented in Figure 7.1 (see Article I for technical details). The
BayesLiNGAM-algorithm is able to learn most of the structure correctly. It
is also able to express its uncertainty on the edge x5 → x1 that has a fairly
small coefficient. The method is able to utilize non-Gaussianity but still
allows for Gaussian disturbances. The two local scores performed fairly
similarly in all tests.

One future option would be to develop this method to allow for non-
linear causal relations. The identifiability results for additive noise models
suggest that such a procedure might be powerful. Note that in non-linear
additive noise models non-Gaussianity is not actually needed for unique
identifiability. Returning alternative structures for characterizing the un-
certainty would be beneficial also for the non-linear discovery methods.
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7.2 Linear Cyclic Models with Latent Variables

In the series of articles II-IV we consider learning linear causal models
from experimental data, under some different settings and assumptions.
The origin for the line of research was a previously published paper by two
of the co-authors (Eberhardt et al., 2010). Article II (Causal Discovery for
Linear Cyclic Models with Latent Variables) expands their results. Article
III (Learning Linear Cyclic Causal Models with Latent Variables) combines
and expands parts of the results by Eberhardt et al. (2010) and in Article
II into a journal article. Article IV (Causal Discovery of Linear Cyclic
Models from Several Data Sets with Overlapping Variables) generalizes the
learning methods to exploit new kinds of experimental data sets.

The aim of the research is to learn causal models under a severe dif-
ficulty: latent confounding. To make the situation even more challenging
we also allow the model structures to be cyclic. In order to allow for a
clear interpretation of cyclic causal models, we constrain the causal rela-
tionships to be linear. Apart from this restricting assumption, the learning
setting is very general. This challenging learning setting requires the use of
experimental data. Combining several experimental data sets under latent
confounding has not previously been extensively covered in the literature.

7.2.1 Model

We use a particularly clean and useful formulation of linear cyclic models
with latent variables (Bollen, 1989). The formulation exploits the following
observation concerning unobserved variables. Consider the following SEM
model:

x1 := b12x2 + b13x3 + e1,

x2 = b21x1 + b23x3 + e2,

x3 := e3.

If x3 is not observed, the SEM describing the causal relations between
the observed variables x1 and x2 can be obtained by inputing the third
equation into the first two, and aggregating the stochastic terms into new
disturbances e′1 and e′2:

x1 := b12x2 + e′1, where e′1 := b13e3 + e1,

x2 := b21x1 + e′2, where e′2 := b23e3 + e2.

Now the new disturbances are no longer independent, but correlated due
to the latent confounder x3. Thus, latent confounding can be represented
by allowing the disturbances to be correlated.
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Figure 7.2: (a) An example of a linear cyclic model with latent variables.
Any nonzero elements of B are represented by directed edges and nonzero
elements of the symmetric covariance matrix Σe are represented by bidi-
rected edges. (b) The model structure when x1 is intervened on.

Definition 4 (Linear Cyclic (Causal) Model with Latent Variables)
A linear Cyclic (Causal) Model with Latent Variables (B,Σe) is a structural
equation model

x := Bx + e, (7.4)

where the disturbances e are distributed with mean 0 and covariance Σe.

Figure 7.2 shows an example of such a model. Notice that in the model
definition only the covariance matrix Σe of the disturbances is given. This
is because we only consider the second order statistics in our theory: the
mean (assumed zero) and the covariance matrix. Thus, the distribution
of the disturbances can be arbitrary. Any results apply for example for a
multivariate Gaussian disturbance distribution pe = N (e; 0,Σe), then, the
second order statistics uniquely characterize the distributions and there are
no higher order statistics to exploit.

The interpretation of this linear cyclic model follows the description in
Section 6 (Cyclic Models). The difference in the sampling process is that
now the disturbances are dependent and they have to be sampled from their
joint distribution. Under suitable stability conditions2, the covariance of
the passive observational distribution is given by

Cx = (I−B)−1Σe(I−B)−T . (7.5)

This follows directly from Equation 6.3 (p. 68).

One complicating factor here are the possible self-loops, i.e. diago-
nal elements of B. Such self-loops are inherently unidentifiable from data

2Article II assumes asymptotic stability (Assumption 12, p. 68). Article III formulates
a slight generalization called weak stability. The learning setting of Article IV requires
another stability related assumption: no unit cycles.
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observed in equilibrium (Lacerda et al., 2008). This is why we consider
canonical models where any self-loops are removed. The self-loops do not
affect the equilibrium points, they only affect the convergence rate. Thus,
any prediction results we make in the equilibrium are still correct even for
models with self-loops.

7.2.2 Experimental Effects

Eberhardt et al. (2010) introduced the concept and notion of experimental
effect, particularly useful when learning linear models:

Definition 5 (Experimental Effect) An experimental effect t(xi xj ||J )
denotes the observed covariance between an intervened variable xi ∈ J and
an observed variable xj ∈ U in the infinite sample limit, when the intervened
variables J are randomized independently with unit variance.

The experimental effects corresponding to pairs (xi, xj) ∈ J ×U (where J
denotes the intervened and U denotes the passively observed variables in
the experiment in question) can be usually estimated from the conducted
experiments, even if the randomization was not done independently with
unit variance. Experimental effects can even be estimated from soft inter-
ventions (Eberhardt et al., 2010).

From the analysis of linear models (Wright, 1921), it follows that the
experimental effect t(xi xj ||J ) equals the sum-product of coefficients on
all unblocked directed paths from the intervened variable xi to the observed
variable xj . In cyclic models there may be an infinite number of such
paths, as we can go through a cycle any number of times. The stability
assumption ensures that the sum-product always converges. Consider the
experimental effects in an experiment intervening on x1 (Figure 7.2 (b)).
The experimental effects are related to the model parameters as follows:

t(x1 x2||x1) = (b21 + b23b31)(1 + b23b32 + (b23b32)
2 + . . .)

=
b21 + b23b31
1− b23b32

, (7.6)

t(x1 x3||x1) =
b31 + b32b21
1− b23b32

. (7.7)

Here we have used the familiar geometric sum formula as |b23b32| < 1 by
the asymptotic stability assumption (Assumption 12, p. 68). The experi-
mental effects are non-linear functions of the model parameters. Note that
experimental effects are always independent of the covariances between
disturbances (such as σ23 in the previous example). This property makes
them useful when learning linear cyclic models in the presence of latent
confounding.
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J1 = {x1}, U1 = {x2, x3}
t(x1 x2||x1) = b21 + t(x1 x3||x1)b23
t(x1 x3||x1) = b31 + t(x1 x2||x1)b32

J2 = {x2}, U2 = {x1, x3}
t(x2 x1||x2) = b12 + t(x2 x3||x2)b13
t(x2 x3||x2) = b32 + t(x2 x1||x2)b31

J3 = {x3}, U3 = {x1, x2}
t(x3 x1||x3) = b13 + t(x3 x2||x3)b12
t(x3 x2||x3) = b23 + t(x3 x1||x3)b21

Table 7.2: Linear equation system for solving coefficients B for a three vari-
able model. All coefficients bji are unknown, experimental effects denoted
by t(xi xj ||xi) can be estimated from the experimental data sets.

7.2.3 The Basic Learning Algorithm

Although generally one estimated experimental effect puts a non-linear con-
straint on the model coefficients bji (Equations 7.6 and 7.7), many ob-
served experimental effects can be used to construct also simpler, linear
constraints:

t(x1 x3||x1) = b31 + t(x1 x2||x1)b32. (7.8)

The formula counts the sum-product of all directed paths x1 x3 by con-
sidering the paths in two separate sets. First, the contribution of paths
that do not go through x2 is simply the edge coefficient b31. Second, the
contributions of paths that do go through x2 can be shown to sum up
to t(x1 x2||x1)b32. When this constraint is used to learn the model the
experimental effects t(x1 x3||{x1, x2}) and t(x1 x4||{x1, x2}) are consid-
ered to be estimated from the data, while the coefficients b31 and b32 are
unknown model parameters. Then, a model can be identified when enough
such linear constraints have been gathered in the conducted experiments.

This idea3 is exploited in the Direct-LLC (Linear Latents Cyclic) learn-
ing algorithm. We explain the idea behind this algorithm here with a simple
example. Consider learning a three variable model from the combination of
passive observational data and three experiments where always a different
variable is intervened on. Note that we fix the structure of the learned
model to be completely connected when learning the parameters (B,Σe).
The correct structure can be later estimated by pruning any edges corre-
sponding to close to zero parameter values.

In the first step the coefficient matrix B is estimated by forming a linear
equation system on the coefficients. The equations of this system are shown

3Eberhardt et al. (2010) formulated their original version of the LLC-algorithm by
forming linear constraints on the total effects tji = t(xi xj ||xi) and solving for coeffi-
cients bji only later. This resembles closely to Overlapping-LLC of Section 7.2.5.
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in Table 7.2. Each experiment induces two equations. The total number of
equations 3× 2 = 6 equals the number of unknown elements in B, since we
are assuming that the diagonal is zero. Under suitable stability conditions,
the system has a unique solution, and hence the B-matrix can be identified.

In the second step we estimate the covariance matrix Σe. Since the
matrix B is now known we can solve Σe from Equation 7.5:

Σe = (I−B)Cx(I−B)T , (7.9)

where Cx is the passively observed covariance matrix. The Direct-LLC-
algorithm uses only linear equations so it is very efficient compared to many
other causal discovery methods.

7.2.4 Identifiability & Completeness

What other sets of experiments would allow the Direct-LLC-algorithm to
identify the model parameters? It turns out that we can formulate intuitive
requirements on the set of experiments, that are not only sufficient but
also necessary for the model identification. The identifiability properties of
linear cyclic models with latent variables are characterized by the following
conditions.

Definition 6 (Ordered Pair Condition) An experiment satisfies the or-
dered pair condition for an ordered pair of variables (xi, xj) ∈ V ×V if and
only if xi is intervened on and xj is passively observed.

Definition 7 (Covariance Condition) An experiment satisfies the co-
variance condition for an unordered pair of variables {xi, xj} ⊆ V if and
only if both variables are passively observed.

Already Eberhardt et al. (2010) realized that experiments satisfying
the ordered pair condition for all pairs are sufficient for identifying B. In
articles II and III we show that a linear cyclic model with latent variables
is identified if and only if the set of experiments satisfies the ordered pair
condition for all ordered pairs of variables and the covariance condition for
all unordered pairs of variables. In particular, the proofs show that the
formulated equation system for coefficients B has only a single solution,
provided that the model satisfies the stability conditions.

Furthermore we show that the Direct-LLC-method is complete: it iden-
tifies as many coefficients as it is possible from the covariance information
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J1 = {x1, x2}, U1 = {x3}
t31 = t(x1 x3||x1, x2) + t21t(x2 x3||x1, x2)
t32 = t(x2 x3||x1, x2) + t12t(x1 x3||x1, x2)

J2 = {x1}, U2 = {x2} t21 = t(x1 x2||x1)
J2 = {x2}, U2 = {x1} t12 = t(x2 x1||x2)

J3 = {x3}, U3 = {x1, x2}
t13 = t(x3 x1||x3)
t23 = t(x3 x2||x3)

Table 7.3: Linear equation system for total effects T for a three variable
model from data sets with partial overlap. All total effects tji are unknown,
experimental effects denoted by t(xi xj ||J ) can be estimated from the
experimental data sets.

in the given set of experiments.4 We also consider the underdetermination
left in the model coefficients when the identifiability conditions are not met.
For example, if the ordered pair condition is not satisfied for a pair (xi, xj),
then coefficients on all edges into xj are generally unidentified. This char-
acterizes the equivalence class of models capable of producing the observed
data in the given set of experiments.

Another interesting observation is that given any two experiments inter-
vening on J1 and J2 respectively, we can deduce the second order statistics
in the union experiment, where we intervene on J1∪J2 (Lemma 9 in Article
III). With an additional passive observational data set we can also calculate
the statistics in the intersection experiment, where variables J1 ∩ J2 are
intervened on. This means that in order to predict in a novel experimental
setting we do not always have to learn the full model. Such predictions
without learning the full model may be more accurate, as noisy data irrel-
evant to the prediction task are disregarded.

7.2.5 Overlapping Experimental Data Sets

In Article IV we considered learning linear cyclic models with latent vari-
ables from several data sets that do not all share the same variables. This
resembles the situation when learning from overlapping data sets in Sec-
tion 5.2 (p. 59), but we consider the data sets to be experimental. Notice
that in this setting we are not assuming joint causal sufficiency: there can
be latent confounding variables that are not observed in any of the data
sets.

4Article III shows completeness by noting that the coefficients are underdetermined
if the ordered pair condition is not satisfied for all pairs. Article IV shows a slightly
stronger result that is only implicit in Article III: if Direct-LLC leaves a coefficient
underdetermined, it is inherently underdetermined.
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The left column in Table 7.3 shows a set of partially overlapping exper-
imental data sets. For example, in the second experiment x1 is intervened
on and x2 is observed, but x3 is unobserved. Unfortunately, here linear
equations on the coefficients B are not generally possible. For example, the
experimental effect t(x1 x3||x1) needed for Equation 7.8 is unobserved.
However, we can form equations on the total effects tji (which correspond
to experimental effects t(xi xj ||xi)). Table 7.3 shows such a system. As-
suming stability, the system can be solved for all total effects tji. These
solved total effects can be substituted into the linear system in Table 7.2
and solve for coefficients B. The general algorithm performing this infer-
ence5 is Overlapping-LLC.

In Article IV we show that satisfying the ordered pair condition for all
pairs of variables is sufficient and worst case necessary for full identification
of the coefficient matrix B. Furthermore, the Overlapping-LLC-algorithm
is shown to be complete.

7.2.6 Exploiting the Faithfulness Assumption

The rather demanding identifiability conditions suggest that we can rarely
learn the full linear cyclic model with latent variables. Especially a set
of partially overlapping data sets is not likely to satisfy the ordered pair
condition for all pairs of variables. Given that the conditions for identifi-
ability are sufficient and necessary we have to add assumptions to achieve
more powerful learning results from the data at hand. One assumption
commonly made in causal discovery is causal faithfulness (Assumption 9,
p. 30). The general idea of exploiting faithfulness here is to perform in-
dependence tests in a similar fashion as done by PC and FCI -algorithms
(Section 3.1.4 and 5.1) and deduce constraint equations that can be added
to the linear equation systems.

Consider passively observing xi ⊥⊥ xj . Faithfulness ensures that there
cannot be any unblocked paths between the variables xi and xj . A spe-
cial case of such paths would be edges xi → xj and xj → xi. Article II
considered adding constraints of the following form into the linear equation
system:

bji = 0, (7.10)

bij = 0. (7.11)

5This algorithm happens to resemble the original formulation of the LLC-algorithm for
fully observed experiments presented by Eberhardt et al. (2010). By then, the formulation
of linear equations directly on the model coefficients was not yet understood.
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The presented algorithm Faithful-LLC also uses some additional con-
straints that we were able to formulate as linear equations on the coefficients
B.

The previous constraints do not exhaust the information of a detected
independence relation xi ⊥⊥ xj . If we place constraints on general experi-
mental effects the independence implies the following constraints:

t(xi xj ||xi) = 0, (7.12)

t(xj xi||xj) = 0, (7.13)

t(xi xk||xi)t(xk xj ||xk) = 0, (∀xk ∈ V \ {xi, xj}) (7.14)

t(xk xi||xk)t(xk xj ||xk) = 0. (∀xk ∈ V \ {xi, xj}) (7.15)

Equations 7.12, 7.13 and 7.14 are implied by the absence of any directed
paths between the variables. Equation 7.15 follows from the fact that xi
and xj cannot be confounded by xk. Furthermore, the intervention sets in
each experimental effect in each equation can be extended to any supersets.
For example we have that

t(xi → xj ||J ) = 0 ⇒ t(xi → xj ||K) = 0, (7.16)

where K ⊃ J s.t. xj /∈ K. This is because the paths contributing to the
experimental effect t(xi → xj ||K) are a subset of paths contributing to the
experimental effect t(xi → xj ||J ). According to the equation on the left
there are no paths contributing to t(xi → xj ||J ), so there cannot be any
paths contributing to t(xi → xj ||K). Enforcing all of the implied equa-
tions would allow us to exploit the different faithfulness constraints quite
extensively. For example the constraints of Faithful-LLC are included:
Equation 7.10 is a consequence of Equations 7.12 and 7.16.

However, the previous constraints (such as the ones in Equations 7.12-
7.15) cannot be directly inputted to the systems of equations constraining
the coefficients B, except in a few special cases. Article IV represents
two methods for exploiting the constraints in the overlapping experimental
data sets setting: Bilinear Approach and Linear Inference. The better
performing algorithm, Linear Inference, is based on heavy use of the vast
number of equations relating different experimental effects, only some which
are presented in this section.

The power of this algorithm is highlighted in Figure 7.3. Notice that
all causal arcs between x1 and x3 are discovered to be absent, although
variables x1 and x3 are not observed together in either of the observed
data sets.
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Figure 7.3: Learning from several experimental data sets with overlapping
variables. On the left the true data generating model is displayed. In the
middle boxes the most important observations in the two data sets are
highlighted. The right panel shows the causal structure over the union of
observed variables learned by the Linear Inference -algorithm (omitting
any double-headed edges). Dotted edges indicate undetermined features.

In Article II we also suggest an experiment selection procedure simi-
lar to considerations of active learning (Section 4.2.3), where the experi-
ments are conducted in a sequence and the results of the previously run
experiments can influence the next chosen experiment. We consider the
independence induced faithfulness constraints to satisfy the ordered pair
condition for some appropriate pairs. For example, finding x1 ⊥⊥ x2 in pas-
sive observational data implies that b12 = b21 = 0 (under faithfulness) and
thus the ordered pair condition can be considered to be satisfied for pairs
(x1, x2) and (x2, x1). Then, the experiment that is guaranteed to satisfy
the ordered pair condition for most new pairs is always conducted. Such
a greedy procedure does not guarantee the identifiability with the least
set of experiments in the worst case, when no independence relations are
found in the experiments. But more often, the additional constraints due
to faithfulness save the few extra experiments this greedy procedure would
perform in the worst case.

7.2.7 Discussion

The main contributions of this line of research were theoretical identifia-
bility and completeness results and the derived learning algorithms in the
very challenging and general learning setting. Improving the algorithms to
more optimally handle the uncertainty due to finite sample data through
the use of a more Bayesian or maximum likelihood based approach would
perhaps be possible. In all articles we apply the methods to the problem
of structure learning from finite number of samples: we identify the sig-
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Figure 7.4: (a) A complete Noisy-OR model with latent confounding. (b)
The same model when variable X1 is intervened on.

nificantly non-zero coefficients corresponding to present edges for example
by using resampling based approaches. Penalized maximum likelihood or
Bayesian versions of the algorithms may give more robust structure esti-
mates. However, all of this may limit the size of the models we can learn.
The algorithms exploiting faithfulness constraints could also be developed
more towards completeness. Maybe, we could exploit these faithfulness
constraints also without assuming the linearity of the causal relations.

7.3 Noisy-OR Models with Latent Confounding

In Article V we also consider causal discovery in the presence of latent
confounding variables using experiments and parametric restrictions. The
article presents a model class called noisy-OR models with latent confound-
ing. Interestingly, the identifiability properties of the models in this class
are also characterized by the ordered pair condition (Definition 6). The
parametric restriction considered constrains the structural equations to be
noisy-OR expressions6 (Peng and Reggia, 1986; Pearl, 1988).

Definition 8 (Noisy-OR Model with Latent Confounding) A Noisy-
OR Model with Latent Confounding is a structural equation model over
binary variables X1, . . . , Xn where each structural equation obeys the form

Xi := (
∨

Xj∈pa(Xi)

(Xj ∧Bij)) ∨ Ei. (7.17)

The links Bji are distributed independently P (Bji = 1) = bji > 0 and the
leaks E1, . . . , En have a free distribution P (E1, . . . , En). The corresponding
graph G defining the parent relations is acyclic.

6Cozman (2004) shows two sets of reasonable axioms on causal relations that lead to
noisy-OR conditional probability distributions.
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Figure 7.5: Connection between linear SEM equations and noisy-OR SEM
equations.

Figure 7.4 shows the graph structure of a noisy-OR model with latent
confounding. Similarly as for linear cyclic models with latent variables we
allow the leaks E1, . . . , En to be jointly dependent to account for latent con-
founding. In Figure 7.4, all pairs of observed variables have double headed
edges between them to represent this fact. The probability distributions
in the passive observational and experimental settings are somewhat com-
plicated and not presented here. The sampling process is anyway simple:
first we sample the configuration of the leaks E1, . . . , En from their joint
distribution, then the links Bij from their independent distributions and
finally we calculate the values of the observed variables X1, . . . , Xn from
the structural equations in the causal order.

The structural equation in Equation 7.17 is further illustrated in Fig-
ure 7.5 (a). The parent Xi has the tendency of turning the child Xk ON
but this effect can be suppressed if the corresponding link Bki is OFF. The
value of the child is an OR-expression of the parents, but the leak Ek can
turn the child ON, even if all parents are OFF. Note that the structural
equations are quite similar to the linear structural equations (Figure 7.5
(a) and (b) ): the leaks of the noisy-OR expression seem to correspond to
the disturbances of the linear equation, ORs correspond to additions and
finally ANDs correspond to multiplications. In both models the influence of
each parent is aggregated by a deterministic function to produce the value
of the child (see Heckerman and Breese (1994) for a discussion on this type
of models).

Unfortunately, a similar type of linear mediation of causal effects as for
linear models does not occur in these noisy-OR models. However, another
property, a type of context specific independence (Section 2.1, p. 10), can
be used to identify the causal model. The property implies that if the
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parents Xi and Xj of some variable Xk are independent given some set
C, then further conditioning on their child Xk being zero does not destroy
this independence. The situation can be illustrated using Figure 7.5 (a).
Assume that Xi ⊥⊥ Xj . Now if Xk = 0, the we can deduce that Ek = 0,
Xj ∧ Bkj = 0 and Xi ∧ Bki = 0. Under these restrictions knowing the
value of Xj still does not aid in prediction of Xi, hence Xi and Xj are still
independent. If we had conditioned on Xk = 1, then Xi = 0 would increase
the probability of Xj = 1 as something must turn Xk ON.

The general problem when discovering causal models under latent con-
founding is that conditioning on variables generally induces dependen-
cies through the latent confounders. The context specific independence
property of noisy-OR expressions has the consequence that conditioning
on nodes being zero does not induce any dependencies through the con-
founders. In Figure 7.4 (b), conditioning on X2 = 0 does not unblock
the path X1 → X2 ↔ X3. Then, an arc X1 → X3 exists if and only if
X1 \⊥⊥X3 | X2 = 0 in the distribution where X1 is intervened on. Note
that this deduction still requires that X1 is intervened on to break the
confounding edge X1 ↔ X3.

The basic identifiability result states that the noisy-OR model with la-
tent confounding can be identified if the set of experiments satisfies the
ordered pair condition for all pairs and we have an additional passive ob-
servational data set. The passive observational data is needed to uncover
the distribution of the leaks P (E1, . . . , En). This condition is also worst
case necessary: for each set of experiments not satisfying the ordered pair
condition for all pairs there exists models that cannot be distinguished from
this set of experiments. In addition Article V shows that these result apply
also for slight generalization of the basic noisy-OR models where a cause
being OFF may induce its effect to be ON.

Noisy-OR models can be learned in several ways from data sets satisfy-
ing the identifiability conditions. The basic idea of the identifiability proof
was to condition on various variables being zero. Note however, that such
conditioning reduces the available sample size for estimating the model pa-
rameters, as we are essentially throwing away samples not in line with the
conditioning. The Efficient Conditioning -algorithm (EC) conditions
on as few variables as possible when estimating the model parameters. A
more accurate and robust option is to use the EM-algorithm (Expectation
Maximization, Dempster et al. (1977)) for maximizing the likelihood (this
is referred to as Noisy-OR-EM), but this optimization procedure is slow and
can be run only for models with up to 8 variables.
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Figure 7.6: Sufficient and necessary number of experiments needed to sat-
isfy the unordered pair condition (blue) and the ordered pair condition
(red). The ticks on the x-axis appear only when an additional experiment
is needed.

One interesting way of extending this model class would be to allow
for cycles in the structure. It would also be interesting to know how good
of an approximation the noisy-OR type of expression provides in various
situations. Using some parametric form on P (E1, . . . , En) would allow for
faster convergence and more accurate estimation of the model parameters.
Another interesting question which remains is finding the general property
of the causal models that can be identified from data satisfying the ordered
pair condition for all pairs of observed variables.

7.4 Experiment Selection

Article VI considers selecting experiments such that the identifiability of
various causal models is guaranteed. In particular we show how to select
experiments for the models considered in this thesis. The article applies
different results previously established by the combinatorics community.
The focus is on finding optimal sets of experiments, such that the total
number of experiments is minimized. We also consider situations where
the number of intervened variables per experiment is constrained.

Our previous articles presented conditions for the experiments sufficient
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and (worst case) necessary for full model identifiability. They are most
easily described in relation to each other when we assume that passive
observational data is always available (this trivially satisfies the covariance
condition for all variables). Linear cyclic models with latent variables can
then be identified if and only if the ordered pair condition is satisfied for
all pairs (Section 7.2). Satisfying the ordered pair condition for all pairs
is then also sufficient and worst case necessary for fully identifying Noisy-
OR models with latent confounding (Section 7.3). In addition, assuming
causal sufficiency and faithfulness, acyclic causal models can be identified
if and only if the set of experiments satisfies the following unordered pair
condition for all unordered pairs (Section 4.2.1, p. 49).

Definition 9 (Unordered Pair Condition) An experiment satisfies the
unordered pair condition for an unordered pair of variables {xi, xj} ⊆ V if
and only if either xi is intervened on and xj is passively observed, or xj is
intervened on and xi is passively observed.

The unordered and ordered pair conditions seem intuitive enough to char-
acterize the identifiability of causal models in other types of settings and
under different assumptions as well. For example, three experiments inter-
vening on

J1 = {x2, x4, x6},J2 = {x3, x4, x7},J3 = {x5, x6, x7}

satisfy the unordered pair condition for all unordered pairs among seven
variables, while four experiments intervening on

J1 = {x1, x2, x3},J2 = {x1, x4, x5},J3 = {x2, x4, x6},J4 = {x3, x5, x6}

satisfy the ordered pair condition for all ordered pairs among six variables.
Figure 7.6 shows the number of experiments necessary and sufficient

for satisfying either pair condition for all pairs. These numbers along with
the procedures for finding the actual sets of experiments can be found in
the combinatorics literature under the term (completely) separating sys-
tems. Note that the x-axis is in logarithmic scale, so the number of ex-
periments needed for full identification grows only logarithmically with in-
creasing number of variables. Another observation is that only a few more
experiments are needed to satisfy the ordered pair condition compared to
the unordered pair condition.

Although relatively few experiments are needed to satisfy the pair con-
ditions, the experiments for these optimal designs may be unrealistic: the
experiments require us to intervene on quite many variables at the same
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time. For example the optimal design that uses 13 experiments for satis-
faction of the ordered pair condition for all pairs of 1024 variables, needs
to intervene on average on more than 380 variables per experiment (Ar-
ticle VI, Figure 9 middle). To find more realistic experiments, Article VI
also describes procedures that output sets of experiments such that the
(unordered or ordered) pair condition is satisfied for all pairs, but the num-
ber of intervened variables per experiment is bounded or minimized. For
example there exists a set of 50 experiments with at most 41 intervened
variables per experiments that satisfies the ordered pair condition for all
ordered pairs of 1024 variables (Article VI, Figure 9 top).

Sometimes when learning causal models we may have background knowl-
edge that narrows down the possible causal structures and relations. Such
background knowledge often allows satisfaction of the pair conditions for
some specific pairs of variables. Then we would like to select the experi-
ments such that the pair conditions are satisfied for some variable pairs.
Such problem settings have been considered in graph theory. This more
complicated setting does not allow for simple construction of optimal ex-
periment selection procedures. Basically, finding the set of experiments
with minimum size is NP-hard. Algorithms for finding such sets of ex-
periments may be constructed using, for example, different graph coloring
algorithms. If our aim is also to limit the number of intervened variables,
the situation is even more complicated. No non-exhaustive solutions for
this general problem seem to exist at present.

7.5 Contributions of the Present Author

For Article I, the present author derived and applied the general theory to
the specific setting based on an original idea by Dr. Hoyer during 2008-2009.
The present author also implemented and tested the method. Furthermore,
the present author took part in the writing and editing process with Dr.
Hoyer.

The theory for the Article II, building on then recently published work
of the two other writers of the paper (Eberhardt et al., 2010), was de-
rived in co-operation with a large influence from the present author during
2010. Especially the characterization of the underdetermination, the proof
of the sufficient and necessary identifiability conditions, and the proof of
completeness originated from the research of the present author. In ad-
dition, the present author implemented and tested the learning methods,
and participated in the writing process with the other authors. Although
some of the results in this paper are presented in more detail in Article III,
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the article also contains results that are not in Article III, for example on
faithfulness and experiment selection.

Article III gives a more detailed journal version of part of the research
presented in preliminary form in Article II and by Eberhardt et al. (2010).
The present author implemented and tested the learning method, and per-
formed the realistic data analysis. Theoretical details appearing in the the-
orems and their proofs were also mostly worked out by the present author.
The three authors co-wrote the paper.

Article IV applied the previously derived theory appearing in Article III
to a new learning setting. The present author was responsible for proving
many of the theoretical results. This time all three authors contributed
equally to the derivation, implementation and testing of the learning meth-
ods. The best performing algorithm (Linear Inference) for processing
the different faithfulness constraints was conceived, derived and imple-
mented by the present author. The three authors co-wrote the paper in
2012.

Article V was conceived during 2011. From an example of identifiability
for a three variable model by the other authors, the present author derived
the general identifiability result, and noticed the connection to the context
specific independence property of noisy-OR expressions. Especially the
possibility for a free distribution for the leaks (instead of a less general form)
was found by the present author. The present author derived, implemented
and tested the discovery methods. Again the article was co-written by all
authors.

The research for Article VI started in autumn 2011 by considerations
of the present author on how to optimally select experiments such that
the identification of the models used in our previous research would be
guaranteed. The previously used experiment selection methods were sub-
optimal. Although an optimal solution for the simplest scenario was found
independently, we also found a rather large range of existing combinatorics
research considering equivalent problems. As the connection of this re-
search to problem of causal discovery was not totally straight-forward and
largely unknown to the causal discovery community, an article was prepared
in spring 2012. A large part of the literature review and the application
of the combinatorics results to the experiment selection problem was con-
ducted by the present author. Again, all three authors contributed equally
to the writing process. The implementation of the selection procedures was
the present author’s work.



Chapter 8

Conclusion

This thesis presented methods for learning causal relationships from data.
Rather than learning specific single causal relationships the aim was on
learning the full causal structure among the observed variables and charac-
terizing the underdetermination when the full structure cannot be learned.
The learning settings included causally sufficient situations but mainly fo-
cused on discovering causal models in the presence of latent confounding.
Some of the learning algorithms also allowed for cyclic causal structures.
The results suggest that if our aim is to learn the full causal structure in
these challenging settings, several experimental data sets and parametric
restrictions on the individual causal relations are needed. Care should be
taken in selecting the experiments in order to achieve informative learning
results from limited number of experiments and interventions.

The introductory part of the thesis included a quite broad description
of the field of causal discovery. This was provided in order to show the
principles and motivation for the research as well the connections of the
original research to the existing literature. The original research papers
can be seen to generalize and provide connections between different ap-
proaches previously considered, as well as develop new ways of learning
causal models.

Perhaps the main contribution of the thesis is the general theory for
learning linear cyclic models with latent variables from experimental data
sets without assuming faithfulness. We formulated necessary and sufficient
conditions on the set of experiments such that the causal model could be
fully identified. The ordered pair condition was shown to be the important
condition characterizing the identifiability properties and possible underde-
termination of the learned model. We also updated, modified and applied
the LLC learning method to different learning settings, and proved its com-
pleteness when faithfulness is not assumed. These different versions of the

93
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basic idea exploit linear equations and are thus fast and scalable. Unlike
most other algorithms, the presented methods are able to exploit and com-
bine experimental data sets while still allowing for latent confounding. We
also considered learning linear cyclic models with latent variables from over-
lapping experimental data sets. This kind of data has not been commonly
exploited previously.

We introduced a new model class called noisy-OR models with latent
confounding. We showed that satisfying the ordered pair condition for all
pairs is sufficient and worst case necessary also for the identification of the
models in this class. Thus, restricting the parametric form of the causal
relations to be linear or to follow a noisy-OR parameterization proved to
be useful in discovering the presence and absence of causal relations.

In addition to showing how to exploit experimental data efficiently in
many settings, we also provided guidelines on selecting the experiments to
be conducted. These sets of experiments minimize the number of experi-
ments and the number of variables needed to be intervened on in the ex-
periments. The experiment selection procedures were given in the causally
sufficient case and when allowing for latent confounding. For the complete-
ness of the thesis, we thus provided the optimal sets of experiments for the
models which we provided learning algorithms for.

The causal faithfulness assumption was a common theme in the re-
search. We showed how to efficiently use the faithfulness assumption when
learning linear cyclic models with latent variables. The use of the faithful-
ness assumption helps to achieve more informative learning results when
the underlying structure is sufficiently sparse. On the other hand, some of
our methods did not use this assumption, and are thus more applicable for
learning denser causal structures, from data sets with limited number of
samples. With the use of experiments and parametric restrictions on the
causal relationships, we are able to learn models also without the faithful-
ness assumption.

We also developed the LiNGAM method appearing in the causal discovery
literature to a more Bayesian direction. This allowed the new method to
be robust against situations where the non-Gaussianity assumption fails.
Bayesian inference allowed us to output several alternative structures in ad-
dition to the most probable one. This research shows a fruitful combination
of two somewhat separate causal discovery principles: assigning posterior
probabilities for graph structures while still exploiting the information in
the higher order statistics of the possibly non-Gaussian data.

The research conducted was theoretic and it had a somewhat theoretical
motivation. Various difficulties may arise when applying the methods in
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application fields because of the simplifying assumptions on the parametric
form. However, as we showed in this thesis, without some parametric re-
strictions not a whole lot of causal relations can be learned, if we still want
to allow for latent confounding and cycles. In addition, when learning from
a limited amount of data, the causal models with simpler relationships may
provide better predictions than more complicated models in which all pa-
rameters cannot be estimated accurately. On the other hand, research is
often conducted by starting from simpler parametric models and only later
aiming at models with fewer parametric constraints. Machine learning has
experienced several cases where linear methods have been generalized to al-
low for non-linear characteristics: principles behind LiNGAM led to additive
noise models, linear classification methods can now be used with non-linear
kernels, and the ideas in the linear models of Wright (1921) led to Bayesian
networks. So the hope is that at least some of the ideas and methods in
the thesis can be exploited also without the parametric restrictions.

In particular, developing the ideas for exploiting faithfulness induced
constraints in the Linear Inference -method to a more non-parametric
direction deserves more consideration. Such a method would allow for
learning causal models in an even more general setting, allowing for the
incorporation of background knowledge and experimental data. While we
were able to utilize much of the independence information in the Linear

Inference -procedure, developing the procedure to completely and prov-
ably utilize all independence and dependence information is an interesting
research direction.

The benefits of the Bayesian approach for learning causal models are
clear: no hard decision about the existence or nonexistence of causal rela-
tions need to be made. Thus, one future research opportunity would be to
develop the different existing methods presented in this thesis and in the
original research to a more Bayesian direction. The major challenges in-
clude for example the efficiency of the procedures, especially when allowing
for cyclic structures and latent confounding.

The identifiability properties of linear cyclic models with latent vari-
ables and noisy-OR models with latent confounding were based on the
satisfaction of the ordered pair condition. These model classes have their
similarities: in both models the direct causes influence the effect through
their respective independent stochastic mechanisms; the influences are then
aggregated by a deterministic function to produce a value for the effect. But
surprisingly, the theoretical properties leading to the essentially same iden-
tifiability results were quite different. Finding a general property of models
allowing for identifiability when the ordered pair condition is satisfied for
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all pairs is thus a very interesting question.
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Hauser, A. and Bühlmann, P. (2012b). Two optimal strategies for active
learning of causal models from interventions. In Proceedings of the The
6th European Workshop on Probabilistic Graphical Models, pages 123–
130.

Hausman, D. M. and Woodward, J. (1999). Independence, invariance and
the causal Markov condition. British Journal of Philosophy of Science,
50:521–583.

He, Y. and Geng, Z. (2008). Active learning of causal networks with inter-
vention experiments and optimal designs. Journal of Machine Learning
Research, 9:2523–2547.



References 101

Heckerman, D. and Breese, J. S. (1994). A new look at causal indepen-
dence. In Proceedings of the 10th Conference on Uncertainty in Artificial
Intelligence, pages 286–292. Morgan Kaufmann.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning
Bayesian networks: The combination of knowledge and statistical data.
Machine Learning, 20(3):197–243.

Holland, P. W. (1986). Statistics and causal inference. Journal of the
American Statistics Association, 81:945–960.

Hoyer, P. O., Hyvärinen, A., Scheines, R., Spirtes, P., Ramsey, J., Lacerda,
G., and Shimizu, S. (2008a). Causal discovery of linear acyclic models
with arbitrary distributions. In Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence, pages 282–289. AUAI Press.

Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., and Schölkopf, B. (2009).
Nonlinear causal discovery with additive noise models. In Advances in
Neural Information Processing Systems 21, pages 689–696.

Hoyer, P. O., Shimizu, S., Kerminen, A. J., and Palviainen, M. (2008b).
Estimation of causal effects using linear non-Gaussian causal models
with hidden variables. International Journal of Approximate Reasoning,
49:362–378.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component
Analysis. John Wiley and Sons.

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M. (2010). Learn-
ing bayesian network structure using lp relaxations. In Proceedings of
the 13th International Conference on Artificial Intelligence and Statis-
tics, Journal of Machine Learning Research Workshop and Conference
Proceedings 9, pages 358–365.

Koivisto, M. and Sood, K. (2004). Exact Bayesian structure discovery in
Bayesian networks. Journal of Machine Learning Research, 5:549–573.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Prin-
ciples and Techniques. MIT Press.

Koster, J. T. A. (1996). Markov properties of nonrecursive causal models.
The Annals of Statistics, 24(5):2148–2177.

Lacerda, G., Spirtes, P., Ramsey, J., and Hoyer, P. O. (2008). Discovering
cyclic causal models by independent components analysis. In Proceedings



102 References

of the 24th Conference on Uncertainty in Artificial Intelligence, pages
366–374. AUAI Press.

Meek, C. (1995a). Causal inference and causal explanation with background
knowledge. In Proceedings of the 11th Conference on Uncertainty in
Artificial Intelligence, pages 403–410. Morgan Kaufmann.

Meek, C. (1995b). Strong completeness and faithfulness in Bayesian net-
works. In Proceedings of the 11th Conference on Uncertainty in Artificial
Intelligence, pages 411–418. Morgan Kaufmann.

Meek, C. (1997). Graphical Models: Selecting Causal and Statistical Models.
PhD thesis, Carnegie Mellon University.

Mooij, J. M., Janzing, D., Heskes, T., and Schölkopf, B. (2011). On causal
discovery with cyclic additive noise models. In Advances in Neural In-
formation Processing Systems 24, pages 639–647.

Mooij, J. M., Janzing, D., Peters, J., and Schölkopf, B. (2009). Regression
by dependence minimization and its application to causal inference in ad-
ditive noise models. In Proceedings of the 26th International Conference
on Machine Learning, pages 745–752. ACM.

Murphy, K. P. (2001). Active learning of causal Bayes net structure. Tech-
nical report, U.C. Berkeley.

Neal, R. (2000). On deducing conditional independence from d-separation
in causal graphs with feedback. Journal of Artificial Intelligence Re-
search, 12:87–91.

Neyman, J. (1927). On the application of probability theory to agricultural
experiments: essay on principles. Rocniki Nauk Rolniiczych, 10:1–51.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge
University Press.

Pearl, J. and Dechter, R. (1996). Identifying independencies in causal
graphs with feedback. In Proceedings of the 12th Conference in Un-
certainty in Artificial Intelligence, pages 420–426. Morgan Kaufmann.

Pearl, J. and Verma, T. (1991). A theory of inferred causation. In Princi-
ples of Knowledge Representation and Reasoning: Proceedings of the 2nd
International Conference, pages 441–452. Morgan Kaufmann.



References 103

Peng, Y. and Reggia, J. (1986). Plausibility of diagnostic hypotheses: The
nature of simplicity. In In Proceedings of the 5th National Conference on
AI, pages 140–145. AAAI.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B. (2011). Identifi-
ability of causal graphs using functional models. In Proceedings of the
27th Conference on Uncertainty in Artificial Intelligence, pages 589–598.
AUAI Press.

Rasmussen, C. E. and Ghahramani, Z. (2001). Occam’s razor. In Advances
in Neural Information Processing Systems 13, pages 294 – 300. MIT
Press.

Reichenbach, H. (1956). Direction of Time. University of California Press.

Richardson, T. and Spirtes, P. (1999). Automated discovery of linear feed-
back models. In Glymour, C. and Cooper, G. F., editors, Computation,
Causation & Discovery, pages 253–302. AAAI / MIT Press.

Richardson, T. and Spirtes, P. (2002). Ancestral graph markov models.
Annals of Statistics, 30(4):962–1030.

Richardson, T. S. (1996). Feedback Models: Interpretation and Discovery.
PhD thesis, Carnegie Mellon University.

Robins, J. M. and Wasserman, L. (1999). On the impossibility of inferring
causation from association without background knowledge. In Glymour,
C. and Cooper, G. F., editors, Computation, Causation & Discovery,
pages 305–321. AAAI / MIT Press.

Rubin, D. (1974). Estimating causal effects of treatments in randomized
and non-randomized studies. Journal of Educational Psychology, 66:688–
701.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., and Nolan, G. (2005).
Causal protein-signaling networks derived from multiparameter single-
cell data. Science, 308(5721):523–529.

Salmon, W. (1984). Scientific Explanation and the Causal Structure of the
World. Princeton University Press.

Schmidt, M. and Murphy, K. (2009). Modeling discrete interventional data
using directed cyclic graphical models. In Proceedings of the 25th Confer-
ence Conference on Uncertainty in Artificial Intelligence, pages 487–495.
AUAI Press.



104 References

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. J. (2006).
A linear non-Gaussian acyclic model for causal discovery. Journal of
Machine Learning Research, 7:2003–2030.

Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y.,
Washio, T., Hoyer, P. O., and Bollen, K. (2011). DirectLiNGAM: A
direct method for learning a linear non-Gaussian structural equation
model. Journal of Machine Learning Research, 12:1225–1248.
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