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Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migra-
tion of a deformable liquid drop immerged in an immiscible bulk liquid with a temperature gradient is
simulated numerically with constant material properties of the two phases. Steady terminal state of
the motion can always be reached. The dimensionless terminal migration velocity decreases monoto-
nously with the increase of the Marangoni number. Good agreements with space experimental data
and most of previous numerical studies in the literature are evident. The terminal topological structure
of flow field, in which a recirculation identical to Hill’s vortex exists inside the drop, does not change with
the Marangoni number. Only slight movement of the location of vortex center can be observed. On the
contrary, bifurcations of the terminal topological structure of temperature field occur twice with increas-
ing Marangoni number. At first, the uniform and straight layer-type structure of temperature field at
infinitesimal Reynolds and Marangoni numbers wraps inside of the drop due to convective transport
of heat as the Marangoni number increases, resulting in the emergence of an onion-type local cooler zone
around the center of the drop beyond a lower critical Marangoni number. Expanding of this zone, partic-
ularly in the transverse direction, with the increasing of the Marangoni number leads to a cap- or even
shell-type structure. The coldest point within the liquid drop locates on the axis. There is a middle critical
Marangoni number, beyond which the coldest point will jump from the rear stagnation into the drop,
though the topological structure of the temperature field does not change. The second bifurcation occurs
at an upper critical Marangoni number, where the shell-type cooler zone inside drops ruptures from the
central point and then a torus-type one emerges. The coldest point departs from the axis, and the so-
called ‘‘cold-eye’’ appears in the meridian. It is also found that the inner and outer thermal boundary lay-
ers along the interface may exist both inside and outside the drop if Ma > 70. But the thickness decreases
with the increasing Marangoni number more slowly than the prediction of potential flow at large
Marangoni and Reynolds numbers. A velocity shear layer outside the drop is also introduced formally,
of which modality may be affected by the convective transports of heat and/or momentum.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A fluid particle (gas bubble or liquid drop) floating in an
immiscible bulk fluid with a temperature gradient can be moved
by the non-uniform interface tension at the particle interface. This
motion is well known as the thermocapillary or Marangoni migra-
tion. It plays an important role in many natural physical processes
as well as a host of industrial activities, particularly in space mate-
rial processing and many other scientific and engineering applica-
tions in microgravity, and attracts much more interests of
researchers all over the world along with the progress of human
space activities. The progress in this field has been summarized
ll rights reserved.
in the monograph by Subramanian and Balasubramaniam [1].
Thus, only studies relating to the thermocapillary migration of li-
quid drop are briefly reviewed here.

Thermocapillary migration was first analyzed by Young et al. [2]
in the case of infinitesimal Reynolds and Marangoni numbers, in
which convective transport of momentum and heat can be
neglected comparing to molecular transport of these quantities
and the governing equations can then be linearized. They derived
the so-called YGB theory predicting the following steady migration
velocity

VYGB ¼
2U

ð2þ 3l2=l1Þð2þ k2=k1Þ
ð1Þ

where U ¼ �rTrT1R=l1 is the named thermocapillary velocity, R is
the drop radius, l is the dynamic viscosity, k is the thermal
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Nomenclatures

Ca capillary number
Cp specific heat at constant pressure
H Heaviside function
k thermal conductivity
j interfacial curvature
n unit interface normal vector
P pressure
Pr Prandtl number
R characteristic length
Re Reynolds number
u velocity vector
u r-directional velocity
v z-directional velocity
U characteristic velocity
V thermocapillary velocity
VYGB YGB velocity
We Weber number
T temperature

Greek symbols
u level set function
rT1 temperature gradient imposed
l dynamic viscosity
q density
r interface tension
rT interface tension coefficient
a viscosity ratio
b thermal conductivity ratio
v specific heat ratio
n density ratio
d delta function
dT thickness of T boundary layer
dV thickness of V shear layer

Subscripts
1 continuous phase
2 particle phase
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conductivity, rT is the rate of change of interfacial tension with
temperature, rT1 is the temperature gradient imposed in the con-
tinuous bulk fluid. The subscripts 1 and 2 denote the material prop-
erties of the continuous bulk fluid and the fluid particle,
respectively. The Reynolds and Marangoni numbers are defined as
Re = UR/m1 and Ma ¼ UR=k1: Here, m denotes the kinematic viscosity,
k denotes the thermal diffusivity. If the Prandtl number is defined as
Pr ¼ m1=k1, one can obtain Ma = PrRe.

The analysis of Young et al. [2] was extended by many others to
include convective influence. For example, using asymptotic
expansion technique, the migration velocity of a nondeformable
gas bubble for small but non-zero convective heat transfer in the
limit of zero Reynolds number was obtained by Subramanian [3].
He found the migration speed of a gas bubble is reduced by the
inclusion of the effect of convective transport of energy when Ma
is small. In a later article, Subramanian [4] later extended this work
to liquid drops, in these papers, they concluded that the heat con-
vection may reduce the scaled migration velocity of the drop for
small Ma. Balasubramaniam and Subramanian [5] studied the ef-
fect of the convection inside the drop and found the terminal
velocity of a single drop first decreases with increasing Marangoni
number, attains a minimum and then increases with a further in-
crease in the Marangoni number.

On the other hand, numerical simulation was also used to help
understanding the phenomenon. For example, Haj-Hariri et al. [6]
calculated numerically the three-dimensional thermocapillary mo-
tion of deformable drops at finite Reynolds and Marangoni num-
bers and found that the strong heat convection may retard the
thermocapillary motion of the drop. Ma et al. [7] analyzed the ther-
mocapillary motion of a nondeformable single drop, and concluded
that the scaled migration velocity decreases with Ma, reaches a
minimum, and then increases with Ma when Ma is large enough.
Nas [8,9] adopted the front-tracking method to calculate the ther-
mocapillary interaction of two drops, Yin et al. [10] adopted the
same method to numerically investigate the thermocapillary
migration phenomena of a single nondeformable spherical drop.
Brady et al. [11] recently presented a three-dimensional numerical
simulation of the thermocapillary motion of a single deformable
drop in a confined apparatus using a refined level-set grid method.

In addition to theoretical and numerical developments, there
are some results from experiments in earth-based laboratories, as
well as in reduced gravity conditions. Because of the non-linearity
of the problem, the thermocapillary motion with finite values of
the Reynolds and the Marangoni numbers can be observed exper-
imentally only in microgravity environment in order to avoid the
buoyant convection. Hadland et al. [12] and Xie et al. [13] reported
some results on the thermocapillary migration of FC-75 droplets in
silicone oil aboard a NASA space shuttle and the Chinese spaceship
SZ-4, respectively. Both two experiments cover a wide range of the
Reynolds and Marangoni numbers.

Using the same method as in our previous work [14] on gas
bubbles, in which the level-set method is employed to catch the
interface between the fluid particle and the continuous phase, a
numerical study on the thermocapillary motion of deformable
drops at moderate to large Marangoni number is presented in this
paper. The results of the thermocapillary migration velocity will be
compared with experimental data of Hadland et al. [12] and Xie
et al. [13], as well as some previous numerical simulations re-
ported by other researchers in the literature. The motivation of
the present work, however, is to address the evolvement of the ter-
minal topological structures of flow and temperature fields of a
single deformable drop with the increasing Marangoni number in
order to help understanding the characteristic of this phenomenon.

2. Mathematical formulation and numerical method

The thermocapillary migration of a single deformable drop in an
immiscible bulk liquid is considered here with the following
assumptions: (1) the fluids in both phases are Newtonian, viscous
and incompressible; (2) the material properties are constant and
not influenced by the temperature except the interface tension;
(3) the interface tension depends linearly upon the temperature;
and (4) the motion in both phases is axisymmetric and laminar.

To capture the interface of the drop, the level-set method is
used. For details of the level set method, including the solve proce-
dure and algorithm, please see our previous work [14]. Based on
the level-set function and the continuum interface model, the
dimensionless governing equations can be written as

r � u0 ¼ 0 ð2Þ

@u0

@t0
þu0 �ru0 ¼� 1

q0
rp0 �l0r � ðru0 þrT u0Þ

Re

(

þ 1�CaðT�T0Þ
We

jnþðI�nnÞ �rT
Re

� �
dðuÞ

�
ð3Þ



Fig. 1. Evolutions of the scaled migration velocity versus the dimensionless time.
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q0C 0p
@T
@t
þ u0 � rT

� �
¼ 1

Ma
r � ðk0rTÞ ð4Þ

here R, U, and |rT1|R are used as the characteristic length, velocity
and temperature, respectively. T0 is a dimensionless reference tem-
perature which is set as 0 or the value at the position of the center
of the drop in the present study. The other dimensionless parame-
ters appeared in the above equations are defined as follows

n ¼ q=q1; a ¼ l=l1; v ¼ Cp=Cp1; b ¼ k=k1; p0 ¼ p=q1U2;

Ca ¼ l1U=r0; We ¼ ReCa;

The last two dimensionless parameters are the capillary and Weber
numbers, which determine the deformation of the drop.

The unit interface normal vector, the interface curvature and
the delta function which appeared in the above equations are also
defined as follows

n ¼ ru=jruj ð5Þ

j ¼ r � n ð6Þ

dðuÞ ¼ 1þ cosð2pu
3h Þ=ð3hÞ ðjuj < 1:5hÞ

0 ðjujP 1:5hÞ

(
ð7Þ

where h is the grid spacing.
Furthermore, in order to avoid numerical instability caused by

their jumps across the interface, the material properties of the flu-
ids are smoothed by the Heaviside function

1 ¼ 12 þ ð11 � 12ÞH ð8Þ

where 1 represents q, l, and so on. The Heaviside function H is de-
fined as

H ¼
1 ðu P 1:5hÞ
1
2þ

u
3hþ sinð2pu

3h Þ=2p ðjuj < 1:5hÞ
0 ðu 6 �1:5hÞ

8><
>: ð9Þ

The projection [15] method is used to solve the above governing
equations with uniform staggered grid of equal spacing. The follow-
ing initial conditions

u ¼ v ¼ 0; T ¼ z ðt ¼ 0Þ ð10Þ

and the boundary conditions:

u ¼ v ¼ 0; T ¼ �A ðz ¼ �AÞ

u ¼ v ¼ 0; T ¼ B ðz ¼ BÞ

u ¼ @v
@r ¼ @T

@r ¼ 0 ðr ¼ 0Þ

u ¼ v ¼ 0; T ¼ z ðr ¼ CÞ

8>>>>><
>>>>>:

ð11Þ

are used, where z = �A, z = B, and r = C denote the bottom, top, and
the outer boundaries, respectively. The center of the drop locates at
the point (0, 0) at the beginning, and A is always set as 3.

The computational domain was chosen to be 15 � 5, while a
grid number of 300 � 100 is used. Comparisons between the
numerical prediction of the terminal velocity of a drop at and that
predicted by the YGB theory show that the motion of the drop is
not affected by the computational boundary, and that the compu-
tational precision can be guaranteed.

3. Compare with space experimental data

The thermocapillary motion of deformable FC-75 drops in sili-
cone oil is studied numerically using the above algorithm at the
conditions corresponding to those in the space experiments of
Hadland et al. [12] and Xie et al. [13]. Constant material properties,
however, are assumed to be independent of temperature. The fol-
lowing values are adopted for the dimensionless parameters in the
problem, namely n = 1.89, a = 0.14, b = 0.47, v = 0.69, and Pr = 83.3.
Furthermore, a slightly larger value for the capillary number, i.e.
Ca = 0.2 which is still much less than 1 to guarantee no distinct
deformation of the drop, is used here than those in the space
experiments, which are of the order of 10�1 or less, in order to pre-
vent the virtual flow caused by the strong jump of the normal
stress across the interface of drops.

Fig. 1 shows evolutions of drop migration velocities at different
Marangoni numbers. It ought to be pointed out before further dis-
cussions that the fall of the scaled velocities in the marked range is
due to the influence of the upper wall on the flow and temperature
fields. The positions of the drop center at z = 8 are also shown in
the figure to indicate this influence. It is clearly shown that this
influence will not be evident unless the dimensionless distance be-
tween the drop and the upper wall is less than about 4. Similar
conclusion can also be found in Subramanian and Balasubraman-
iam [1]. Thus, a reasonable terminating distance ought to be
adopted.

The early transients of the motion, caused by the preternatural
initial conditions used in the numerical simulations, show the
same characteristics as those reported by Haj-Hariri et al. [6],
Nas [8,9], Yin et al. [10], and Brady et al. [11]. Here, however, we
are mainly concerned with the terminal state of the thermocapil-
lary motion. It is evident that a steady terminal state can always
be reached, which can also be observed in the three-dimensional
numerical simulations of Brady et al. [11] with constant material
properties. The predicted dimensionless terminal velocity is a
monotonically decreasing function of the Marangoni number at
steady state. Fig. 2 shows the steady terminal migration velocities
scaled using the corresponding values predicted by the YGB theory.
The experimental data of Hadland et al. [12] and Xie et al. [13], la-
beled respectively as HBWS-1999 and XHZLH-2005 for the brevity
of the figure are also shown in the same figure for comparison.
Generally, good agreements are evident.

Some previous numerical results, such as Haj-Hariri et al. [6],
Ma et al. [7] and Yin et al. [10], labeled respectively as HHSB-
1997, Ma-1998 and YGHC-2008, are also shown in Fig. 2. Except
the prediction of Ma et al. [7], the other numerical simulations
including the present work all show that the predicted dimension-
less terminal velocity is a monotonically decreasing function of the
Marangoni number. The differences among the present results and
those of Haj-Hariri et al. [6] and Yin et al. [10] may be caused by
the different values of material parameters used in the calcula-
tions. For example, Haj-Hariri et al. [6] used n = a = b = v = 0.5,
and Ca = 0.1, while Yin et al. [10] used n = a = b = v = 1, and nonde-



Fig. 2. Comparison of the predicted of the steady terminal migration velocity with
space experimental data and other numerical data reported in the literature.
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formable drop. The terminal migration velocities can be affected by
the change of material parameters. Thus, the differences are rea-
sonable and may be diminished if these influences are taken into
account.

Some typical streamlines of flow field at the steady terminal
state are plotted in Fig. 3, in which the left part is those in the local
reference frame attached to the center of the drop and the right
part is those in the laboratory reference frame. The terminal topo-
logical structure of flow field, in which a recirculation identical to
(a) Ma=5

(c) Ma=50

Fig. 3. Streamlines at differe
Hill’s vortex exists inside the drop, does not change with the
Marangoni number. The center of the vortex locates near the inter-
face of the drop. As shown in Fig. 4, the transverse position of the
vortex in the local reference frame is not changed with the
Marangoni number, however, in the laboratory reference frame it
moves outward with the Marangoni number; the longitudinal
positions in both two reference frames move downstream with
the increase of the Marangoni number. The reason for this fact
should be found in the distribution of temperature. The tempera-
ture gradient is nearly uniform along the drop interface at small
Marangoni number, while a much uneven distribution of temper-
ature will be observed at high Marangoni number, these can be
seen in Fig. 5. Although the interface temperature gradient over
whole interface decreases at high Marangoni number, it becomes
larger along the rear part than that along the front part. Larger
temperature gradient means larger driving force and faster motion,
so the center of the vortex inside drops moves with the increase of
the Marangoni number.

Fig. 5 provides an evolution process of the isotherm with
increasing Marangoni number. The right part of each figure shows
isotherms of the temperature, while the left one shows those of the
perturbed temperature, namely the difference between the termi-
nal temperature and the initial temperature at the same position.
And the isotherms of the terminal temperature field are also
shown in the right part. An equal dimensionless temperature
increment of 0.5 is adopted for all isotherms. Obviously, the en-
hanced convective transport of momentum and heat with the in-
crease of the Marangoni number results in the wrapping of the
isotherms toward the rear of the drop, leading to a substantial
reduction in the interface temperature gradient and diminishing
(b) Ma=10 

(d) Ma=300 

nt Marangoni numbers.



Fig. 4. The locations of the center of the vortex inside drops relative to the center of
drops. (Left: local reference frame. Right: laboratory reference frame.)
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the driving force for the motion of the drop. That is the reason of
the fact that the migration velocity decreases monotonically with
the increase of the Marangoni number.

According to the linear YGB theory, a uniform and straight
layer-type structure of temperature field exists at infinitesimal
Reynolds and Marangoni numbers. The coldest point locates on
the rear stagnation, namely the bottom intersection between the
drop’s axis and its interface. At small but finite Marangoni number,
wrapping of isotherms caused by the convective transport of heat
results in a distorted layer-type structure and negative perturbed
isotherm appearing (Fig. 5a). Further increasing of the Marangoni
number will lead the emergence of an onion-type local cooler zone
around the center of the drop, as shown in Fig. 5b. This is the first
bifurcation of the topological structure of the terminal temperature
field, and the corresponding value of the Marangoni number is
then called as the lower critical Marangoni number. The coldest
point, however, still locates on the rear stagnation at first. Expand-
ing of this zone, particularly in the transverse direction, with the
increasing of the Marangoni number leads to a cap-type structure
(Fig. 5c). This cooler zone also moves upwards with the increasing
Marangoni number. There is a middle critical Marangoni number,
beyond which the coldest point will jump from the rear stagnation
into the drop, though the topological structure of the temperature
field does not change. Perturbed temperature field also expands
bidirectionally along the axis, especially downward to the rear of
the drop due to the strengthening convective transport.

With further increasing Marangoni number, the cap-type struc-
ture of the local cooler zone moves upwards with a transverse
expanding and a longitudinal shrinking, leading to a shell-type
one. The center part of the shell-type cooler zone inside drops will
be thinned and thinned. It will finally rupture from the central
point and then form a torus-type one (Fig. 5d). It is the second
bifurcation of the topological structure of steady terminal temper-
ature field, and thus the upper critical Marangoni number is intro-
duced here. Beyond it, the coldest point split departs from the axis
to form a coldest line, and the so-called ‘‘cold-eye’’ appears in the
meridian. On the contrary, no change occurs in the topological
structure of the perturbed temperature field, and the negative zone
continues to expand downwards, but its center part shrinks
adversely. Slight transverse expanding of the negative zone also
occurs with the increasing Marangoni number, resulting in the
emergence of a shell-type structure, similar to the terminal
temperature field. Thus, the second bifurcation of the topological
structure of terminal perturbed temperature field may also occur
at a much larger Marangoni number.

The above thermal structures have also been obtained in the
previous numerical simulations, but no allegation on the evolution
process has been made in the literature. It is observed that the evo-
lution of the topological structure of temperature field reported
here is consistent with that in Haj-Hariri et al. [6] in the same
range of the Marangoni number. However, a relatively slower evo-
lution was found in Yin et al. [10], while a much quicker one in Ma
et al. [7]. In the latter work, the second bifurcation of the topolog-
ical structure of temperature field occurs at a much smaller
Marangoni number, and then the thermal structure at Ma = 100
(shown in Fig. 9 of Ma et al. [7]) is close to that at Ma � 500 in
the present work. Thus, much quicker decrease of the thickness
of thermal boundary layers both inside and outside the drop can
be observed in Ma et al. [7]. Although it is not clear for the reason
of the differences, the validity of the present results may be guar-
anteed by the agreements with other numerical simulations as
well as experimental data.

The movement of the coldest point within the drop at different
Marangoni number is shown in Fig. 6. If Ma 6 11, the coldest point
within the drop locates on the rear stagnation. If Ma P 12, it will
jump into the drop, even locate at a position above the center of
the drop. Then it moves upwards along the axis due to wrapping
of isotherms caused by the enhanced convective transport of heat.
As the torus-type local cooler zone is formed, the coldest line, not a
sole point, within the drop will depart from the axis of the drop.
According to the above analysis, the middle critical Marangoni
number in our present condition may be located in the range from
11 to 12, while the lower and upper critical ones are approximately
10 and 100, respectively.

Fig. 7 shows the aspect ratio of the longitudinal length over the
transverse one of the deformed drop at the terminal steady state of
the thermocapillary migration. Those for bubbles obtained in our
previous work [14] are also shown for comparison. A larger defor-
mation of a bubble can be observed than that of a drop at the same
Marangoni number. The aspect ratio of drop increases quickly with
the increase of the Marangoni number. The biggest variation of as-
pect ratio, however, is no more than 1% in the present study, be-
cause both the Reynolds and capillary numbers are very small. It
ought to be pointed out here that the actual deformation may be
much smaller than the predictions since the capillary number in
space experiments has smaller values than that used here. There-
fore, no distinct influence of the deformation of drops can occur
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Fig. 5. Evolution of topological structure of temperature field at different Marangoni numbers. (Left: perturbed temperature field. Right: steady state temperature field.)
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in the thermocapillary migration, at least within the present
parameter ranges.

Fig. 8 shows the variances of the temperature and its radial gra-
dient along a radial direction starting from the drop’s center at an
angle of h = 60� with regard to the moving direction of the drop. If
the inner and outer thermal boundary layers attached to the inter-
face are introduced formally in normal sense, their thickness can
be defined straightforwardly. The big jump of the gradient between
r = 0.9 and r = 1.1 is shown here by the short dotted line due to the
physical discontinuity across the interface. There exists a difficulty
to find reasonable values of the inside and outside temperature
gradients on the interface, which is caused by the continuum inter-
face model. Thus, the difference of the maximum and the fixed gra-
dient far away from the drop is adopted as the reference for the
outer thermal boundary layer. The boundary is defined at such a
position where the radial gradient of the temperature is equal to
1% of the reference above the fixed gradient far away from the
drop. The point of zero gradient is simply used as the boundary
of the inner thermal boundary layer.

As shown in Fig. 9, both thicknesses of the inner and outer ther-
mal boundary layers increase with the increasing angle at two
Marangoni numbers. The thickness of the inner thermal boundary



Fig. 6. The coldest position inside drops.

Fig. 7. Aspect ratio of the deformable drop and bubble at different Marangoni
numbers.

Fig. 8. Definition of the inner and outer thermal boundary layer (Ma = 120, h = 60�).

Fig. 9. Thickness of inner and outer thermal boundary layer at different angle
(Ma = 120 and 300).

Fig. 10. Thicknesses of the inner and outer thermal boundary layers at different
Marangoni number.
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layer increases slowly and keeps the magnitude of O(10�1) before
some angle, while beyond this angle no thermal boundary layer,
even formally, can be observed. The thickness of the outer thermal
boundary layer keeps constant approximate to a steady value of
O(100) before an angle of about 110�, and increases sharply with
further increasing angle. Therefore, the thickness at the angle of
60� can be used to characterize the inner and outer thermal bound-
ary layer, as shown in Fig. 10. A separatrix is shown as dashed lines.
There is no doubt that the inner and outer thermal boundary layers
exist in the common meaning if Ma > 70. The thickness of the outer
thermal boundary layer varies as dT � O(Ma�2/3) in this range,
while a negative exponent much close to 0 can be found for the
inner one. A potential theory, however, of dT � O(Ma�1) was
obtained for both inner and outer thermal boundary layers by
Balasubramaniam and Subramanian [5]. There exists much a large
difference between our result and the potential theory, which can
be explained as follows. The maximum Reynolds number in the
present work is about 6, which is not large enough to preserve a
potential flow in both phases. Furthermore, the short dotted line



Fig. 11. Definition of the shear layer (Ma = 120, h = 60�).

Fig. 12. Circumferential distribution of the shear layer thickness at different
Marangoni number.

Fig. 13. The maximum of the shear layer thickness and its corresponding position
at different Marangoni number.
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shown in Fig. 10 indicates that no inner boundary layer exists even
in formal if Ma < 12.

Typical variances of the tangential velocity and its radial gradi-
ents along the radial direction are shown in Fig. 11. A big jump of
the radial gradient of tangential velocity also exists in the range
from r = 0.9 to r = 1.1, which is shown here by the short dotted line.
Large value of the gradient throughout the whole range inside the
drop, then strong shear effect exists everywhere inside the drop.
Outside the drop, the radial gradient of tangential velocity has a
negative value. The maximum of its absolute value occurs on the
interface. Because of small Reynolds number in the whole field,
there is no classical boundary layer outside of the drop. A layer
abutting the drop’s interface, however, with distinct greater values
of radial gradient of tangential velocity can be observed, which is
called as the shear layer here. The boundary of the shear layer is
defined at such a position where the absolute gradient is equal
to 1% of this maximum. In addition, a value of zero is set for the an-
gle of both 0� and 180� due to the axisymmetric assumption.

As shown in Fig. 12a, a good agreement of the present results of
the circumferential distribution of the shear layer thickness with
YGB theory is evident at small Marangoni number. With the
increasing Marangoni number, the configuration of the circumfer-
ential distribution of the shear layer thickness will be declined
downstream at first (Fig. 12a). The maximum thickness decreases
and its position moves simultaneity downwards. On the contrary,
further increasing of the Marangoni number after Ma > 83.3 can
cause only a slight decrease, or even slight increase, of the maxi-
mum thickness of the shear layer, while its position moves up-
wards instead (Fig. 12b). Furthermore, the first half part the
configuration of the circumferential distribution of the shear layer
thickness expands instead of shrinks. A weak jump of the position
of the maximum thickness occurs across Ma = 83.3 (Fig. 13), which
is corresponding to Re = 1 because of Pr = 83.3 in the present work.
The reason for the different behaviors mentioned above may lie on
the following fact. If Re < 1, or Ma < 83.3, the flow field will be dom-
inated by the convective transport of heat and the diffusive trans-
port of momentum, while the convective transports of both heat
and momentum dominate the flow field if Re > 1, or Ma > 83.3.
4. Conclusions

The thermocapillary migration of deformable FC-75 drops in sil-
icone oil has been studied numerically up to Ma = 500. The axisym-
metric governing equations are solved using the projection method
with a uniform staggered grid of equal spacing at appropriate ini-
tial and boundary conditions. The level-set method is used to ac-
count for finite drop deformation, and the continuum interface
model is also adopted to model the interface behaviors. Conditions
corresponding to those in the space experiments of Hadland et al.
[12] and Xie et al. [13] are used, while constant material properties
are assumed to be independent of temperature except the interface



J.-F. Zhao et al. / International Journal of Heat and Mass Transfer 54 (2011) 4655–4663 4663
tension. Steady terminal state of the motion can always be reached.
The dimensionless terminal migration velocity decreases monoto-
nously with the increase of the Marangoni number. Good agree-
ments with space experimental data and most of previous
numerical studies in the literature are evident.

Evolvement of the topological structures of the terminal flow
and temperature fields are analyzed in detail. The terminal topo-
logical structure of flow field, in which a recirculation identical
to Hill’s vortex exists inside the drop, does not change with the
Marangoni number. Only slight movement of the location of vortex
center can be observed. On the contrary, bifurcations of the termi-
nal topological structure of temperature field occur twice with
increasing Marangoni number. At first, the uniform and straight
layer-type structure of temperature field at infinitesimal Reynolds
and Marangoni numbers wraps inside of the drop due to convec-
tive transport of heat as the Marangoni number increases, resulting
in the emergence of a onion-type local cooler zone around the cen-
ter of the drop beyond a lower critical Marangoni number. Expand-
ing of this zone, particularly in the transverse direction, with the
increasing of the Marangoni number leads to a cap- or even
shell-type structure. The coldest point within the liquid drop lo-
cates on the axis. There is a middle critical Marangoni number, be-
yond which the coldest point will jump from the rear stagnation
into the drop, though the topological structure of the temperature
field does not change. The second bifurcation occurs at an upper
critical Marangoni number, where the shell-type cooler zone inside
drops ruptures from the central point and then a torus-type one
emerges. The coldest point departs from the axis to form the cold-
est circle, and the so-called ‘‘cold-eye’’ appears in the meridian.

The inner and outer thermal boundary layers along the interface
may exist both inside and outside the drop if Ma > 70. But the
thickness decreases with the increasing Marangoni number more
slowly than the prediction of potential flow at large Marangoni
and Reynolds numbers. A shear layer outside the drop is also intro-
duced formally, of which modality may be affected by the modes of
heat and momentum transports.
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