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1 Introduction 

 When we say that something happens “in the blink of an eye”, we mean it is over very 

quickly—so quickly we barely notice it. It is true that a single blink is short in duration, 

only about two tens of a second, but we certainly would notice if the lights went out for 

the same time. However, when we blink, the world seems continuous to us as if our 

sight had not been obscured. What is more, we remain happily unaware of losing about 

5% of all visual information coming to our eyes because of blinking: blinks, each 

lasting for about 0.2 s, occur on average 15 times per minute (Doughty, 2001), meaning 

about 3 s of lost input each minute. Perhaps clever tricks performed by our brains make 

the eye blink appear even shorter than it is, because we actually fail to detect the event 

that went past while we blinked.  

Considering that we do not usually pay attention to our own blinks, what about our 

friend’s blinks? A person who does not blink at all but just stares at us appears strange 

or even hostile. In the same way very frequent blinking may give a sign to the 

interacting partner that the blinker is nervous or that something is wrong. Blink rate can 

indeed serve as an indicator of the cognitive or emotional state of the blinker (e.g., 

Ousler et al., 2008). Blinking might also contribute to social interaction by 

strengthening mutual synchronization in movements and gestures (Cummins, 2012). 

Therefore it is intriguing to study what happens in the brain when we see someone 

blinking.  

In a wider perspective, motivation for this study arises from the pursuit of two-person-

neuroscience with magnetoencephalography (MEG)(Baess et al., 2012; Hari & Kujala, 

2009). In ongoing and future experiments, MEG signals are recorded from two 

participants simultaneously while they are interacting via video connection. In those 

experimental settings simulating face-to-face encounters, small conversational 

expressions and gestures, potentially blinks as well, enhance mutual understanding and 

even affect the smoothness and pleasantness of the interaction. However, the brain 

mechanisms of non-verbal communication are not well-known, for instance, how the 

small expressions or eye blinks are registered in the brain.  

When MEG signals are recorded during a conversation, many features of the stimulus 

may elicit responses. Thus, the brain responses to small expressions are not feasibly 
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distinguishable from the data, and therefore those small factors should be first studied in 

separate experiments. Neural correlates of blink viewing have been studied with 

electroencephalography (EEG) by Brefczynski-Lewis and co-workers (2011), but the 

topic has not been addressed using MEG, which provides a better spatial resolution for 

source localization.  

The purpose of this thesis is to investigate with MEG how the brain reacts to viewed 

blinks, presented with normal speed and in slow motion.  

2 Background 

This chapter will review literature concerning blinking first from a physiological and 

behavioral perspective. Then some methodological issues are considered, especially the 

basics of electro-oculography (EOG) and MEG. It is also examined how visual and 

moving stimuli, in general, affect MEG responses. The third chapter states the research 

questions and hypotheses. 

This thesis will examine eye blinks from two viewpoints: one is the viewer’s and the 

other is the blinker’s. It is thus important to distinguish between these two and keep in 

mind which blink we are talking about. From here on, viewed blink refers to the blink of 

another individual, shown for example in a stimulus video, whereas the term self-

performed blink is used for blinks that people make themselves. 

2.1 Behavioral aspects of eye blinks 

2.1.1 Definition and classification of eye blinks 

The following section on blink classification concerns self-performed blinks. First of 

all, what is an eye blink? A blink is simply performed by closing and opening the 

eyelids. The primary, physiological function of blinking is to moisten the cornea, 

thereby cleaning and protecting it with a thin tear film (e.g., Ousler et al., 2008). Despite 

the apparent simplicity, all blinks are not the same. Different kinds of blink taxonomies 

have been suggested, among which a common one distinguishes between three types of 

blinks: reflexive, spontaneous, and voluntary (proposed by Stern & Dunham, 1990). 

Reflexive blinks usually occur as an automatic reaction to an external stimulus, e.g., to 

an air puff to the cornea, to a speck in the eye, or to an object closely approaching the 

eye. They can also be part of the startle reflex.  Spontaneous blinks, also referred to as 
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endogenous or involuntary, are unconscious but may be cortically inhibited according to 

a given ongoing task; they may thus have social importance. Voluntary blinks might 

have a conscious social function. Measured with EOG, the mean amplitude and duration 

of spontaneous blinks are shorter than those of voluntary or reflex blinks (Kaneko & 

Sakamoto, 1999).  

Ousler and co-workers (2008) also divided eye blinks into three categories, but now into 

incomplete blinks, complete blinks, and twitch blinks. “Twitch” seems to correspond to 

the reflex blink of Stern and Dunham (1990). Herrmann (2010), on the other hand, 

investigated the prosodic use of eye blinks in German Sign Language, classifying the 

blinks in seven groups according to their placement with respect to the grammatical 

structure of the utterances: Prosodic blinks comprise blinks marking intonational phrase 

(IP) boundaries, blinks marking phonological phase (PP) boundaries, and sentence 

initial blinks, whereas non-prosodic blinks include lexical blinks, reflexive blinks, 

cognitive triggers (blinks during slips of the hand, pondering, fingerspelling etc.), and 

blinks to moisten the eyes. Cummins (2012) criticized the idea of defining blinks as 

voluntary or conscious; he argues that it is not feasible to decide objectively whether a 

blink is conscious or not. For the purposes of his study, he proposed a classification 

which uses two parameters: gaze direction and blink duration. The gaze, before and 

after the blink, can be directed away or towards the partner, and blinks are either short 

(less than 240 ms) or long (240–400 ms). In his taxonomy, an eye closure longer than 

400 ms does not count as a blink. 

In Cummins’s study, the recording of blink duration started when the eyelid covered the 

major portion of the cornea. This view differs slightly from that of Herrmann (2010), 

who considered a blink to begin when the upper lid starts to fall down and to end when 

the eye is completely open again.  

2.1.2 Implications of blink rate 

Humans usually blink 8–21 times per minute (Doughty, 2001). The reported averages 

vary greatly among studies and obviously depend on the subjects, on the circumstances, 

and on what is counted as a blink in the measurement. Blink rate is affected by external 

physical conditions, such as humidity, temperature, lighting, and air flow (Ousler et al., 

2008). More importantly, blink rate depends on the mental state and activity of the 

individual: blink rate decreases during a task that implies increased cognitive load, for 
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instance reading (Bentivoglio et al., 1997), lipreading (Lesner & Hardick, 1982), 

memorizing series of digits (Holland & Tarlow, 1972) or internal counting (Holland & 

Tarlow, 1975). In addition, lying in an authentic situation is associated with suppressed 

blinking, which has been attributed to increased cognitive demand (Leal & Vrij, 2010; 

Mann et al., 2002). Blink rate rises immediately after telling the lie, whereas after truth 

telling the blink rate does not change (Leal & Vrij, 2008). A stimulus discrimination 

task also affects blink frequency; when more attention is required, blink rate is 

attenuated before the stimulus, and higher processing load results in higher blink peaks 

after the stimulus (Fukuda & Matsunaga, 1983). A possible explanation for the varying 

blink rates is that blinking interrupts cognitive processes and therefore reduced blinking 

could be beneficial during cognitive tasks (Holland & Tarlow, 1972).   

On the other hand, more frequent blinking occurs during emotional excitement, for 

instance when one is angry (Ponder & Kennedy, 1927). Harrigan and O’Connell (1996) 

monitored facial movements of participants who were describing an anxious event from 

their past. When the participants experienced more anxiety, they blinked more often. 

Hirokawa and co-workers (2000) compared blink rates in three conditions varying in 

stressfulness: a telephone conversation either in Japanese, English, or French. The 

participants were native Japanese speakers with intermediate skills in English, but they 

were not able to speak French. They reported the highest nervousness levels during the 

conversation in English; the conversation in French was considered the least stressful. 

Accordingly, blink frequency was at its highest when the subjects were discussing in 

English.   

However, conversation is in any situation accompanied by more frequent blinks than a 

relaxed resting state (Karson et al., 1981; Bentivoglio et al., 1997; see Doughty, 2001 

for a review). Even the blind have blink rates similar to those of the normal-sighted 

when they are having a conversation with a stranger (Hall, 1945).   

In addition to cognitive and emotional factors, mental diseases and neurological 

disorders can affect the blink rate. Mackintosh and colleagues (1983) found that 

depressed patients blinked more frequently than healthy control subjects; however, the 

patients’ blink rates returned to normal when they recovered from depression. Blink 

rates are also augmented in schizophrenia (Chan & Chen, 2004; Karson et al., 1990; 

Swarztrauber & Fujikawa, 1998). In Tourette’s syndrome, blink rates are higher than 
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usual during resting or watching videos, but during conversation the blink rate does not 

increase in Tourette patients in contrast to healthy control subjects (Tulen et al., 1999).   

It has been widely suggested that the blink rate is related to the dopaminergic system—

higher blink rate predicts higher dopaminergic activity (Dreisbach et al., 2005; Karson, 

1983). Even recreational cocaine use, reducing dopaminergic function, can manifest 

itself in reduced blink rates (Colzato et al., 2008b). The blink rate can predict 

dopaminergic activation in more complex settings. For instance, higher blink rate has 

been associated with a longer “attentional blink”, i.e., the difficulty to recognize a 

rapidly succeeding stimulus among distractors after the preceding target (Colzato et al., 

2008a). In other words, those who blink more fail to detect the second visually 

presented target after detecting the first one. This association is thought to be mediated 

by dopaminergic function and its influences on working memory systems.  

In another study, subjects with higher blink rate—indicating higher dopaminergic 

function—were more influenced by positive priming stimuli when they were supposed 

to think what kind of outcomes would result from their actions; baseline blink rate thus 

indicated how much positive priming would affect the sense of agency of the subject 

(Aarts et al., 2012). Nevertheless, van der Post and colleagues (2004) obtained 

conflicting results on the relationship of blink rate and dopaminergic function, showing 

that drugs affecting the dopaminergic system had no impact on the blink rates of the 

participants. 

The findings cited above indicate that several cognitive processes and mental states 

influence the frequency of self-performed blinks. On the other hand, viewed blinks can 

have an impact on certain kinds of mental processes, namely, how the viewer evaluates 

the characteristics of the blinker. When the viewed person blinked more frequently, she 

was rated more nervous and careless (Omori & Miyata, 2001). For ratings of 

unfriendliness, the curve followed an inverted U-shaped pattern, i.e., normal blink 

frequencies resulted in positive evaluations, but abnormal—too low or too high—blink 

rates conveyed a negative impression of the person. Throughout the different blink rate 

conditions, the viewed person maintained a neutral expression without other movements 

than blinks, which excluded other possible factors affecting the evaluations. The authors 

suggested that by experience it is possible to learn to associate high blink rates with 

nervousness and anxiousness, but that these associations are unconscious. Therefore a 
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person who blinks more is perceived as more nervous, especially when complementary 

information is lacking. 

All in all, blinking is easily observable in daily interaction, and when the blink rate is 

augmented or reduced, it can be a sign of a certain mental state. Consequently, blink 

rate might be utilized as a cue in assessing a person. This kind of assessment would 

most probably be unconscious, since people are usually unaware of someone else’s 

blinks, except when blinking is strikingly abnormal. Obviously, one cannot determine 

the mental state of the other solely on the basis of blinks, because high or low blink rate 

can have various reasons. Nevertheless, because blink rate can convey some 

information about the mental state of an individual and because it influences the 

evaluations of a person, blinks are likely to be relevant in social interaction.  

2.1.3 Timing and synchronization of blinks 

Spontaneous eye blinks are more likely to occur with certain events. As mentioned 

above, increased visual attention reduces the blink rate of readers, and interestingly, 

readers blink more likely at page turns and at punctuation marks (Hall, 1945). Nakano 

and colleagues (2009) found that blinks were synchronized between participants who 

were watching video stories without sound: the participants tended to blink more during 

scenes that were less informative, for instance at the conclusion of an action or when the 

main character disappeared. Control conditions—a video without a story and an 

auditorily presented story without any visual stimuli—did not elicit blink 

synchronization. On the basis of the results, the authors suggested that humans 

unconsciously control their blink timing to lose only the minimum amount of visual 

information.  

In accordance with the results of Nakano and colleagues (2009), Shultz and co-workers 

(2011) demonstrated that the viewers of a video blink less when they see important 

content. When viewing a video of children’s play, children with autism spectrum 

disorders (ASD) showed different blinking patterns compared with the healthy children. 

The blink rates were compared between two conditions: during affective events in the 

video (e.g., when a child became angry), and during non-affective events (e.g., when a 

wagon door was moving). The blink rate of the healthy children decreased more when 

they saw affective content, whereas the blink rate of the ASD children decreased more 

when they saw non-affective content. Thus, Shultz and co-workers concluded that the 
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affective content was more important to the healthy children than to the children with 

ASD. 

During a blink, vision is suppressed physically by the eyelid closure, although some 

light, about 5% of red and 0.3% of blue and green wavelengths, can still enter through 

the eyelid (Ando & Kripke, 1996). Moreover, vision is suppressed also at the neuronal 

level even prior to the blink; the suppression is at its strongest around 30–40 ms before 

the eye begins to close (Volkmann et al., 1980; Volkmann, 1986) 
1
. Because of the 

suppression, blinks go unnoticed for the performer and an apparently continuous visual 

awareness is maintained. Despite of the perceived continuity of vision, some visual 

input is lost during blinking, and therefore the timing of blinks requires regulation. 

Nakano and Kitazawa (2010) found that when participants view a video showing the 

face of a speaker, they spontaneously blink in synchrony with the speaker. The authors 

concluded that the synchrony did not equal to a mere imitation of an action, because the 

extent of the synchronization was related to the content of the video: blinks were more 

strongly synchronized during the pauses in speech. Blink synchrony was absent when 

only the sound was present, and the authors thus concluded that the cognitive demand as 

such did not cause the variation in the blink rate.  

The synchronization of blinks that was present in healthy subjects when they were 

viewing the face of the speaker was absent in subjects with ASD, although both the 

ASD and control groups spent the same amount of time looking at the eyes of the 

speaker (Nakano et al., 2011). Therefore the absence of entrainment of blinks in 

individuals with ASD cannot be explained by different gaze patterns. In ASD, social 

communication is impaired, including difficulties in face perception (Schultz, 2005). 

Considering that the subjects with ASD did not show synchronization of blinks, Nakano 

and co-workers (2011) suggest that blinking contributes to face-to-face interaction 

together with other facial gestures. Temporal adjustment of movements, including 

blinks, with the interacting partner would thus enhance communication. People with 

                                                 

1
 Note the distinction between blink suppression (neural insensitivity to visual input during blinking) and 

suppressed blinking (reduced blink rate during reading, for instance). 
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ASD seem to fail in the temporal attuning, which in turn may be one reason for their 

impaired interaction. 

Cummins (2012) investigated the blinking and gaze patterns in real dyadic 

conversations. The behavior of each individual was consistent across dyads with respect 

to certain aspects of the conversation: blink rate depended on speaking turn and the 

direction of gaze, i.e., whether the gaze was directed towards or away from the partner. 

Moreover, blinks were rather consistently associated with turn onsets.  However, the 

behavioral patterns differed between the participants. 

2.2 General methods in studying blinking 

2.2.1 Blink-rate measurement 

Several methods have been used for recording blink rates, blink parameters, and brain 

responses to blinks. At the time when electrical measurement devices were unavailable, 

the blink rate was recorded mechanically, for example by attaching a silk thread to the 

eyelid of the subject (Ponder & Kennedy, 1927). Later on, an infrared sensor clipped to 

the frame of eye glasses has been used for blink rate tracking, since the eyelids and the 

eyeball reflect infrared light in different ways (Caffier et al., 2003). A micro-camera, 

used together with an infrared illuminator, can also track the diameter of the pupil and 

detect blinks in that way (Ousler et al., 2008).      

A common method for monitoring eye movements has been EOG (Denney & Denney, 

1984; for a review, see Marg, 1951). The EOG electrodes for blink detection are 

normally placed above and below the eye, and one vertical pair of electrodes usually 

suffices, because in most cases the two eyes blink in synchrony. The cornea is 

positively charged in relation to the retina, and the resulting current distribution in the 

eye can be modeled with a single current dipole directed from the retina to the cornea 

(Antervo et al., 1985). When the eyelid closes, it changes the shape of the volume 

conductor: positive ions are conducted upwards resulting in a difference in the potential 

between the two electrodes (Barry & Jones, 1965; Matsuo et al., 1975).
2
 When the 

eyelid reopens, the potential returns back to the original. In consequence, a blink is 

                                                 

2
 For the same reason, blinks cause fluctuations also in MEG signal (see section 2.3.4).   
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visible in the EOG signal as a deflection with an average duration of 200 ms. The peak-

to-peak amplitude of an EOG blink is of the order of 1 mV, but the amplitudes are 

affected by lighting conditions among other factors (François et al., 1955; Miles, 1940). 

Skotte and colleagues (2007) confirmed that EOG is a reliable method for determining 

blink rates of the participants doing active computer work and moving their eyes freely: 

with EOG the researchers were able to detect 95.4% of the blinks that they had counted 

manually from a videotape. 

2.2.2 Blink viewing studied by EEG 

EEG correlates of blink viewing have been studied only recently by Brefczynski-Lewis 

and co-workers (2011). Their blink stimulus consisted of three images of a face looking 

directly at the viewer: eyes open, eyes closed, and eyes open. Those frames were 

presented at a fast pace yielding an impression of a natural blink (apparent motion; see 

section 2.4). The other stimuli they used were an eye closure—the eyes were closed for 

100 ms in contrast to the blink condition, where the eyes were closed for 33 ms—and 

gaze aversion. The frame showing the direct gaze was constantly present, yielding an 

impression of a continuous video of a face making occasional eye movements and 

always returning back to looking at the observer.  

Scalp EEG showed robust P100 and N170 responses to all eye movements in the 

temporo-occipital areas, with right-hemisphere dominance. Later deflections (P240, 

P450, and P600) had smaller amplitudes to blinks than to the eye movements. 

Brefczynski-Lewis and colleagues suggested that these late evoked potentials to blinks 

and other eye movements could be related to processing of socially significant features. 

Consequently, blinks together with other eye movements would be possible sources of 

useful information in making inferences about other people’s mental states.   

 2.3 Magnetoencephalography 

2.3.1 Generation of MEG signals 

The following discussion on MEG is mainly based on the publications of Hämäläinen 

and colleagues (1993), Hari and colleagues (2000), Hari (2005), Okada and colleagues 

(1999), Salmelin and Parkkonen (2010), and Baillet (2010). MEG, as well as EEG, has 

a millisecond-scale temporal accuracy, which is beneficial for probing quickly changing 

brain activation. Both MEG and EEG signals mainly reflect neural currents caused by 
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synchronous postsynaptic potentials of cortical pyramidal neurons. Consequently, 

results from EEG and MEG should not contradict, although the sensitivity patterns 

differ between the two methods. The differences arise from the recording technique: 

EEG measures the potential differences on the scalp, whereas MEG detects the 

magnetic fields induced by the electrical currents. The electrical conductances of the 

skull, skin, and brain affect the flow of the current, which makes the analysis of EEG 

data more complicated. On the contrary, these extracerebral tissues can be considered 

practically transparent for the magnetic field. Therefore the different properties of 

tissues do not have to be taken into account in the analysis of MEG data and only the 

shape of the used head model is essential. The lesser distortion of MEG signals also 

results in a higher spatial resolution of MEG compared with EEG—the sources of MEG 

signals can be localized more reliably. 

Importantly, the direction of the intracellular current flow can be directly deduced from 

the magnetic field patterns by applying the right-hand rule. This is often very useful for 

trying to understand the physiological events underlying the responses. 

The major difference of MEG with respect to EEG is that in a spherical volume 

conductor it is sensitive to tangential components of the currents, whereas EEG also 

captures the radial components. Thus, the cortical sources detectable by MEG are 

typically located in the sulci, which is useful to know in practical work. The radial 

currents are not generally detected by MEG, whereas tilted sources can be observed 

because of their tangential component, especially if they are close to the sensors. The 

signal from them is weaker than a signal from a tangential current of the same strength 

and depth. In addition, MEG mostly neglects deep sources, contrary to EEG. This is 

why EEG and MEG can be regarded as complementary techniques. Figure 1 illustrates 

the field patterns of MEG and EEG. Both fields are dipolar, but the magnetic flux is 

oriented at 90° with respect to the electric potential and it is more narrowly distributed. 

Therefore the inaccuracies in localization also differ: the shadowed areas illustrate the 

uncertainty for inferring the source location on the basis of the electric or the magnetic 

field.   
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Figure 1. Differences of MEG and EEG field 

patterns, and localization inaccuracies. The 

white arrow represents the dipolar current. In 

the magnetic field, the magnetic flow comes 

out in the red area and goes into the head in 

the blue area. In the electric field, the red area 

is positively charged and blue area negative. 

(Adapted from Hari, R. 2005. 

Magnetoencephalography in Clinical 

Neurophysiological Assessment of Human 

Cortical Functions. In E. Niedermeyer, & F. 

Lopes da Silva (Eds.), 

Electroencephalography: basic principles, 

clinical applications, and related fields, 5th 

ed. USA: Lippincott Williams & Wilkins.) 

2.3.2 Evoked responses versus rhythmic activity 

Magnetic fields arising from the brain are extremely weak. A SQUID (superconducting 

quantum interference device) sensor is usually employed to detect the changes in the 

field, and yet a synchronous activation of a large population of parallel dendrites is 

needed for a reliable signal. A brain response to a single stimulus, such as an image or a 

sound, is usually too weak to be distinguished from other brain activity, “noise”, 

occurring at the same time with the stimulus. Two alternative methods are available to 

increase the signal-to-noise ratio: time-locked averaging (comparable to evoked 

potential analysis) and processing the rhythmic activity of the brain, e.g., calculating 

spectra (comparable to the study of brain oscillations in EEG). Averaging is a powerful 

means to render the stimulus-related activity visible if the activity and noise are more or 

less constant across trials. The inconvenience of this method is the necessity to repeat 

the same stimulus over and over again. As a rule of thumb, each experimental condition 

should generally have 100 accepted trials, but the appropriate number of trials depends 

on the nature of the stimuli and tasks. Even 16 trials have sufficed for averaging 

responses to painful, olfactory stimuli (Hari et al., 1997). If the experiment is too long 

and monotonous, the subject may get less alert and even drowsy, which impairs the 

quality of the data.  

The changes in the rhythmic activity of certain brain areas can be associated with 

specific events. For instance, alpha rhythm in the occipital cortex strengthens when the 

eyes are closed, but opening the eyes or even visual imagery can suppress the rhythm 

(Cohen, 1968; Kaufman et al., 1990; Salmelin & Hari, 1994a). In a similar manner, the 

magnetic mu rhythm—20 Hz in the anterior sensorimotor cortex and 10 Hz in the 
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posterior sensorimotor cortex—is suppressed by movements (Salmelin & Hari, 1994b), 

movement observation (Hari et al., 1998), and motor imagery (Schnitzler et al., 1997). 

In the present study, the evoked-responses technique is employed. 

2.3.3 Source modeling 

A common method for further analysis of averaged MEG responses is dipole modeling. 

Strictly speaking, the generators of MEG signals are never ideal current dipoles (that is, 

pointlike currents with a specified direction), but an equivalent current dipole (ECD) is 

often an adequate model. The ECD represents the electrical current resulting from the 

simultaneous activation of neurons in a certain area. Usually the activation is distributed 

to several distinct brain areas resulting in complicated field patterns. The location of the 

source can also vary as a function of time. Therefore a multi-dipole model is required to 

identify the sources separately. First, a subset of channels is selected for estimating the 

location of an ECD. One ECD thus accounts for the activation only on the selected 

channels at a given time. Other time points or subsets of channels are then selected to 

find additional sources. Besides location, the dipole parameters include direction and 

magnitude as a function of time.   

Finally, the waveforms that should emerge if the modeled dipoles really existed in the 

brain are compared with the measured waveforms to see the explanatory power of the 

created model. In addition to this kind of visual evaluation, dipoles can be ranked by 

various parameters, such as goodness-of-fit value (g), a percentage indicating how much 

of the variance of the measured signals on the selected channels the dipole accounts for. 

Another important parameter is confidence volume, the size of the volume which 

contains the source with a likelihood of, e.g., 95%. 

Inferring the source locations on the basis of the measured MEG data is an attempt to 

solve the inverse problem. From the mathematical point of view, this inverse problem 

always has several solutions, and therefore one has to set constraints according to the 

known brain anatomy and physiology. Converging evidence from other brain studies 

can also be helpful. A trivial constraint is that the sources need to reside inside the head. 

The head is usually modeled as a sphere, because the spherical head model is 

sufficiently accurate for rather superficial currents. A more realistic head model is 

possible, as well, although it can be more laborious to implement. Additionally, the 

allowed locations for the sources can be limited for instance to cortical tissue, if it is 
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generally known that the brain function in question recruits mainly the cortical areas. In 

identifying the locations for the ECDs, the participant’s magnetic resonance (MR) 

images are very useful. Namely, the ECDs can be superimposed on the structural MR 

images, revealing the precise anatomical positions of the ECDs (see Figures 10 and 11).   

2.3.4 Magnetic field patterns related to self-performed blinks  

Although MEG responses to observed blinks have not been previously investigated, the 

effects of self-performed blinking on the brain activation have been examined. The 

focus has been on the artifacts that blinking causes in the MEG recordings, because 

those artifacts may distort the results if blinks occur in a systematic relation with the 

stimuli. Hughes and colleagues (1977) reported eye blink artifacts in MEG signals over 

the frontal areas. Antervo and colleagues (1985) modeled the sources of the MEG 

artifacts, observing that voluntary blinking causes changes in the magnetic field pattern 

over the posterior parts of the orbits. Using current dipole and current quadrupole 

(current loop) modeling they concluded that eyelid closure alters the form of the volume 

conductor. The closed eyelid conducts the corneal positive charge upwards and alters 

the magnetic field pattern so that the magnetic flux enters the head on the left side and 

emerges from the scalp on the right side. In addition to the strong and short-latency 

artifact (around 80 ms after the blink) close to the eyes, Hari and colleagues (1994) 

observed another response to voluntary blinks in the parieto-occipital sulcus 220–285 

ms after the blink. This blink-related parietal response did not emerge when the lights of 

the measurement room were turned off. Therefore the authors proposed that the 

response is associated with spatial working memory and reflects the tendency to 

perceive continuity in the visual environment although the eye closure transiently 

prevents visual input from entering the eye.   

Other imaging techniques and MEG analysis methods provide complementing evidence 

for the conclusion of Hari and colleagues (1994): In a study using functional magnetic 

resonance imaging (fMRI), visual continuity was similarly associated with activation of 

the parieto-occipital fissure (Bristow et al., 2005). Bristow and co-workers also 

extended these results by showing that blink suppression (i.e., reduced sensitivity to 

visual input during blinking) corresponds to decreased activation of the lateral occipital 

visual areas. 
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2.4 MEG responses to visual stimuli 

Visual stimulation elicits clear MEG responses, as were first observed by Cohen (1975) 

and Brenner and co-workers (1975). Responses to visual stimuli appear mainly in the 

occipital cortex, but also in other brain areas depending on the features of the particular 

stimulus. Visual cortical areas are hierarchically organized, but the hierarchy does not 

necessarily imply serial processing. Response latencies in higher areas can be as short as 

in lower areas, as demonstrated by EEG and MEG (Ffytche et al., 1995; Vanni et al., 

2001) and with computer simulation (Petroni et al., 2001). The lower areas (V1, V2, and 

V3) in the hierarchy are retinotopically organized, which has also been demonstrated 

using MEG (e.g., Maclin et al., 1983). 

2.4.1 Visual motion 

Visual motion principally activates the human visual motion area V5/MT that was 

discovered with PET recordings by Zeki and collaborators (1991). With MEG and 

MEG–fMRI combination this area V5/MT has been found in the occipito-temporal 

cortex, inferior to the superior temporal sulcus (STS)(Ahlfors et al., 1999; Bundo et al., 

2000; Uusitalo et al., 1997). Besides V5/MT, several other cortical areas also react to 

visual motion. Motion-responsive areas include for instance the primary visual cortex 

V1, and other early projection cortices V2, V3, and V3A, lingual gyrus, fusiform gyrus, 

the STS, the parieto-occipital cortex and the medial posterior parietal cortex (Bartels et 

al., 2008; see Culham et al., 2001 for a review). The characteristics of the moving 

stimulus and the task determine which particular brain area is involved in the 

processing. The V5/MT complex itself has several parts that are specialized for certain 

kinds of motion (Howard et al., 1996; Watanabe et al., 2001).  

Biological motion, that is, natural movements of living creatures in contrast to artificial 

motion, is generally associated with activation of the STS (for a review, see Blake & 

Shiffrar, 2007). Especially the posterior part of the STS (pSTS) responds to human 

motion displayed for example with light dots (Bonda et al., 1996). When the recognition 

of human motion was made harder by embedding the light dots in noise, the pSTS 

response was stronger if the viewer was able to recognize the biological motion 

(Grossman et al., 2004). Accordingly, the pSTS responses are weaker for inverted 

point-light displays, which are presumably harder to recognize as biological (Grossman 
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& Blake, 2001). In contrast, if the light dots move in a scrambled order, the STS is not 

activated—instead, V5/MT responds to the incoherent, non-biological motion. 

An impression of motion can be produced beyond real motion, e.g., by flashing two 

adjacent lights one after another. The phenomenon is called apparent motion. As one 

would expect on the basis of subjective experience, apparent motion and real motion 

create similar activation patterns covering the same brain region (V5/MT)(MEG study 

by Kaneoke et al., 1997). Probably this similarity is due to the human mechanism of 

motion detection: we perceive an object at different positions, and if the time interval 

fits to the position change, we interpret it as motion. Therefore results from studies that 

use apparent motion as stimulus (such as the study on viewing blinks by Brefczynski-

Lewis et al., 2011, cited in section 2.2.2) are comparable with the results concerning 

smoother motion. Obviously, videos always present apparent motion, and the 

smoothness depends on frame rate, which is 25–30 frames per second in movies, for 

example. Real motion is encountered in real life only. 

The effect of movement speed on brain responses has been examined with simple light 

dots and sinusoidal gratings. The latencies of the MEG responses are longer when the 

visual motion is slower, and the amplitudes are higher for fast than slow motion 

(Kawakami et al., 2002; Maruyama et al., 2002; Wang et al., 2003). 

2.4.2 Perception of faces 

Faces surround us from the beginning of our lives, providing us with crucial 

information regarding social interaction. Nearly all of us become experts in identifying 

individual faces, and not in vain, since recognizing familiar people among strangers is 

difficult without discerning facial features correctly. Moreover, facial expressions 

convey information about the person’s emotional state in a fast and vivid way. This 

section reviews the brain mechanisms contributing to face perception. 

Haxby and colleagues (2000) proposed a model (updated by Haxby & Gobbini, 2011) 

for separate face-sensitive brain areas and their distinctive functions. According to this 

model, mainly built on the basis of fMRI data from different studies, the core system 

comprises the fusiform gyrus which deals mainly with the permanent features of faces, 

such as identity, and the STS which reacts to temporal aspects of faces, such as 

expressions, eye gaze, and facial motion. Moreover, the inferior occipital gyri 
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participate in the early processing of facial forms. In addition to the core system, the 

model includes an extended system, which recruits other brain areas useful in processing 

further information retrieved from the faces, for instance emotion-related information or 

semantic knowledge about the person in question.  

Consistently with fMRI (Puce et al., 1995) and PET results (Sergent et al., 1992), face-

sensitive MEG responses appear mainly in the fusiform face area (FFA) of the fusiform 

gyrus (Halgren et al., 2000; Sams et al., 1997). Among others, Gauthier and colleagues 

(1999; 2000) and McGugin and colleagues (2012) have argued that the FFA would 

participate in identification at expert level rather than in recognition of faces per se, but 

the existing evidence is controversial (Grill-Spector et al., 2004; Rhodes et al., 2004; 

Tong et al., 2008). The review by Kanwisher and Yovel (2006), for instance, defends 

the face-specificity of the FFA. However, the main conclusion is that faces activate the 

fusiform gyrus. MEG studies have also shown that other brain areas involved in face 

processing include the occipitotemporal junction, the inferior parietal lobe and the 

middle temporal lobe (Lu et al., 1991), as well as the posterior extrastriate cortex (peak 

at 120 ms) and the inferior temporal gyrus (peak at 170 ms) (Liu et al., 2002).  

As it comes to the timing of the face-sensitive brain activations, MEG recordings have 

shown—in accordance with previous EEG literature (e.g., Jeffreys, 1989)—that 

responses to observed faces usually peak around 140–170 ms after the stimulus onset 

(Halgren et al., 2000; Linkenkaer-Hansen et al., 1998; Liu et al., 2002; Lu et al., 1991). 

However, face-sensitive deflections may peak around 100 ms at the earliest, and around 

700 ms at the latest (Allison et al., 1999). More specifically, the different deflections 

may reflect different degrees of face recognition:  a peak at 100 ms (M100) is higher if a 

stimulus is recognized as a face among non-face stimuli, whereas a response at 170 ms 

is related to the correct recognition of the identity of a face (Liu et al., 2002). This 

finding implies that faces are processed at different stages. The robust face-sensitive 

response found across studies occurs at 140–170 ms. 

Many factors modulate the amplitudes and latencies of the face-sensitive responses, for 

instance the luminance, contrast and other features of the face stimulus. For an inverted 

face, the deflections in MEG signals have larger amplitudes (37% at 120 ms and 42% at 

170 ms) and latencies (120 vs. 124 ms and 170 vs. 180 ms) than for upright faces 

(Linkenkaer-Hansen et al., 1998), possibly indicating that more effort is required for the 
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processing of inverted than upright faces. Interestingly, the N160 evoked response is 

stronger to faces that the participants rate more pleasant (Pizzagalli et al., 2002). 

Moreover, familiarity of a face increases the N170 response, and the influence of 

familiarity can extend to deflections with a latency of 250 ms (Caharel et al., 2002).  

N170 and later face-sensitive deflections are affected by spatial attention, as was 

demonstrated in a setting where the subject was guided to attend a certain location and 

to ignore stimuli at other locations (Holmes et al., 2003). On the other hand, when the 

location of the stimuli is the same across conditions, the early deflections are unaffected 

by the task: the N170 response is similar, whether the face stimulus is a target or not 

(Carmel & Bentin, 2002; Cauquil et al., 2000). Thus, in this case the face stimulus is 

probably further processed to determine if it is a target and should be reacted to, 

whereas in the spatial attention task, the location conveys the necessary information to 

ignore the face.  

2.4.3 Viewing eye gaze 

When faces are observed, the eye region attracts the attention of the viewer more than 

other facial features (Janik et al., 1978). Static images of eyes evoke N170 responses 

comparable with the responses to faces. Nevertheless, the N170 responses to eyes 

presented alone peak about 16 ms later and are stronger (−5.9 vs. −3.6 μV; Bentin et al., 

1996) than responses to whole faces, but other facial features shown in isolation do not 

elicit such N170 response. Accordingly, the neuromagnetic M170 response peaks later 

to eyes than to faces (200 ± 5 vs. 183 ± 2 ms), but the amplitudes are of the same 

magnitude in both situations (Taylor et al., 2001a). 

With static stimuli, it has remained controversial whether the N170 response is affected 

by gaze direction (Conty et al., 2007; Taylor et al., 2001b; Watanabe et al., 2002). Also 

MEG responses to faces with different eye gaze directions differ only slightly (Taylor et 

al., 2001a). The response amplitudes in the study by Taylor and colleagues were lower 

to faces with eyes closed (247.5 ± 20 fT) compared with faces with eyes open (263.9 ± 

17 fT).     

In two MEG studies, the participants viewed eyes shifting from direct to averted gaze 

(“away”) or from averted to direct gaze (“back”) (Watanabe et al., 2001; 2006). Both 

gaze shifts—away and back—evoked responses in V5/MT, peaking on average at 160 
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ms. The response to the gaze shifts was located posterior and inferior to the response in 

the control condition, namely, to motion that was displayed in the background of the 

face stimulus (Watanabe et al., 2001). The locations also varied between the gaze shift 

conditions: the ECDs for away were more posterior than the ECDs for back (Watanabe 

et al., 2006). On the basis of these data, Watanabe and colleagues suggest that V5/MT 

has specialized sub-areas, although it generally responds to several types of motion. 

Further, the responses in V5/MT were stronger for back compared with away 

(Watanabe et al., 2006).  

Puce and colleagues (1998), using in an fMRI study stimuli similar to those by 

Watanabe and colleagues (2001), observed activation also in the STS in addition to 

V5/MT. The STS activation during viewed eye gaze motion is consistent with the 

model of Haxby and colleagues (2000, reviewed in the previous section). The failure to 

detect responses to eye gaze motion in the STS with EEG and MEG might be explained 

by the differences in the sensitivity of the imaging techniques. However, in MEG 

studies the STS has been found to respond to still images of implied biological motion, 

for example to facial expressions of pain (Kujala et al., 2009).  

The general differences in the processing of direct versus averted gaze can be 

interpreted by means of the behavioral implications: seeing an averted gaze can guide 

the viewer’s attention to the direction of the gaze, whereas direct gaze creates social 

contact between the persons. When mutual gaze is established, gaze aversions, as well 

as blinks, disrupt the eye contact. If the gaze is averted, it can still remain visible, but 

during a blink the gaze totally disappears. Usually the disappearance is very brief, 

lasting about 200 ms, but in the present study also slow blinks (950 ms) are presented. 

Because of this slowness, the reopening might be interpreted as re-establishing of 

mutual gaze.   
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2.5 Influence of the dynamic aspects on the interpretation of facial 

movements and expressions 

Relatively little research exists on how the perception of facial expressions changes if 

the expressions are presented in motion rather than in static images. Neuroimaging 

studies with fMRI and PET have shown that dynamical faces expressing emotions elicit 

stronger activation in several brain areas compared with stationary faces with the same 

emotional expressions (Kessler et al., 2011; Kilts et al., 2003; LaBar et al., 2003; Sato et 

al., 2004; Trautmann et al., 2009); these areas include V5/MT, the amygdala, the 

fusiform gyrus, and the STS. 

Behavioral studies agree with neuroimaging studies on the importance of dynamics for 

the perception of facial expressions. Kamachi and collaborators (2001) investigated the 

effect of presentation speed on the recognition of emotional expressions from videos 

showing faces. The expression of sadness was better recognized from slow videos 

(duration 3367 ms), whereas happiness was better recognized from the videos presented 

at fast speed (duration 200 ms). Thus, dynamic properties are important in emotion 

recognition, and presentation speed can influence the interpretation of the expressions. 

Moreover, presentation speed has an impact on the perceived intensity of an emotional 

expression (Yoshikawa & Sato, 2008). When participants were shown videos of 

unfolding emotional expressions and they had to choose the image they thought to be 

the last frame of the video they had seen, they picked up images with more emotional 

intensity than the image that they had seen as the last one in reality. The effect was 

stronger at the higher presentation speed, speeds ranging from 12.5 to 100 frames per 

second.  

Besides recognition accuracy and perceived intensity, presentation speed influences the 

perceived naturalness of an emotional expression (Sato & Yoshikawa, 2004). More 

precisely, when the videos of unfolding basic expressions were presented at the fastest 

speed of the four speeds, with duration of 255 ms, surprise was judged the most natural 

among the expressions, whereas sadness was evaluated the most natural in the slowest 

condition, where the duration of the expression was 2040 ms. 

Krumhuber and Kappas (2005) argue that “natural” expressions do not necessarily look 

authentic if people are not actually feeling the emotions they are expressing. They asked 
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the participants rate the genuineness of different smiles, and those smiles with longer 

onset and offset durations but a shorter apex duration, i.e., the time the expression stays 

at its strongest, were judged the most genuine. This finding supported the earlier 

conclusions of Ekman and Friesen (1982) about the characteristics of felt smiles. In a 

similar study, the viewed persons were considered more attractive, reliable, and less 

dominant when the onset duration of their smiles was longer (Krumhuber et al., 2007). 

These results indicate that an authentic smile has an optimal onset, offset, and apex 

duration. Hence, the dynamic aspects of a facial expression are crucial for the perceived 

genuineness of the expression. 

In the previously mentioned experiments, the dynamic aspects of the expressions had 

been artificially manipulated. Hess and Kleck (1990) demonstrated that the temporal 

characters differ also in real life depending on how the expressions are evoked. When 

the subjects were asked to pose an expression, its onset, offset, and total duration were 

of different length than in the condition that required the participants actually feel the 

emotion they were expressing.  

Eye blink closure duration is usually related to the degree of fatigue (Stern et al., 1994), 

although blinks can also be slowed down voluntarily. Caffier and colleagues (2003) 

proposed that blinks could be monitored to measure drowsiness, because in their data 

sleepiness was associated with longer closing time (i.e., how long it takes to close the 

eyelid; 71 ± 2 vs. 63 ± 2 ms) and reopening time (187 ± 7 vs. 138 ± 6 ms). 

Consequently, the blinks lasted longer in drowsy versus alert participants (259 ± 7 vs. 

202 ± 6 ms). Thus, it could be possible that people also perceive someone being drowsy 

when seeing that their blinks become slower.  
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3 Objectives  

The aim of this thesis is to explore the following questions: 

1. Do viewed eye blinks elicit measurable MEG responses?  

2. If they do, which brain regions are involved? 

3. How does the response to the slowly presented blink differ from the response to the 

normal blink?  

4. Are the self-produced blinks synchronized with the viewed blinks?   

An MEG response to a viewed eye blink is expected to emerge, because responses to 

other kinds of small visual movement have been demonstrated earlier. However, as 

responses to the small and quick normal blinks might elicit quite tiny responses, the 

blink video is presented also in slow motion to see whether the responses would then be 

more pronounced and clear.  Since previous studies have suggested synchronization in 

blink timing when the subject is viewing a speaking face, the viewers are expected to 

blink more after seeing a blink in the video. 
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4 Methods 

4.1 Participants 

Twelve healthy volunteers with no record of neurological disorders participated in the 

study. However, three of them had to be excluded from the analyses because of too 

noisy data. Four of the included subjects were men, five women. Their ages ranged 

from 20 to 42 years (mean 28 years). One participant reported to be left-handed and the 

others right-handed. The participants signed an informed consent and they were 

compensated for their lost working hours and travel expenses. The experiment had a 

prior approval by the Ethics Committee of Hospital District of Helsinki and Uusimaa.  

4.2 Stimuli 

A short video of a female face with no obvious movements other than eye blink was 

used as the stimulus (see Figure 2). The video was presented at normal speed and 

slowed down by 2.6—the durations of the videos were 2720 ms for the normal-speed 

video and 7140 ms for the slow-speed video with blink durations
3
 of 351 ms and 950 

ms. The pair of normal and slow-speed videos was shown 102 times, and the 

presentation order within each pair of videos was randomized. After pilot 

measurements, the subjects reported that the viewing of the 204 blink videos had been 

tedious. Therefore five other videos of facial expressions were added to keep the subject 

less bored. Those expressions were “thinking”, “agreeing”, “confused”, “smiling”, and 

“disgusted”. Each of them was shown only once, one expression after every 17
th

 pair of 

the normal and slow blink videos. (“Thinking” was repeated once at the end of the 

session.) For the blink videos, the onset of the subsequent stimulus was immediately at 

the offset of the preceding stimulus. Only when other facial expressions (such as 

“thinking”) were shown, a blank, gray screen appeared for 1 s before and after the 

expression. Due to the continuous presentation of the face and the late blink onset 

time—the blink started 1017 ms and 2651 ms after the video onset—any response 

related to the appearance of the face had most likely degraded before the blink (see 

                                                 

3
 A blink was considered to start when the eyelids began to move downwards and to end when the eyes 

were open again. 
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section 2.4). Thus, the responses to blinks could be examined without disturbances from 

the face-related brain activity.  

The stimuli were acquired with a high-speed camera “Fastec InLine 1000” borrowed 

from the company Infradex (Vantaa, Finland). The videos were filmed in grayscale, 500 

frames per second, in front of a white background. The author of this thesis performed a 

voluntary blink and other facial expressions while she was being filmed. Her head did 

not move during the filming. In the experiment, the videos were presented with the 

Experiment builder software version 1.10.1 (from SR Research). The frame rate was 

500 frames per second in the normal-speed video and 160 frames per second in the 

slow-speed video.
4
 The background color and luminance of the screen were adjusted to 

be similar to the background of the video. 

Figure 2. Example frames of the stimulus video. The timelines illustrate the durations of the 

normal and slow blinks. 

4.3 Data acquisition 

MEG signals were recorded with a whole-scalp neuromagnetometer (Elekta Neuromag 

Oy, Helsinki, Finland). The system contains 306 sensors: a magnetometer and two 

orthogonal planar gradiometers within each of the 102 elements. The signals were 

bandpass-filtered to 0.03–200 Hz, digitized at 600 Hz, and averaged online time-locked 

to the blinks in the videos. The analyzed period extended from –500 ms to 1000 ms 

(normal) or to 2400 ms (slow), the blink starting at 0 ms. All trials were included in the 

online averages. 

                                                 

4
 Nevertheless, showing 500 frames per second was not feasible due to the software and video projector 

restrictions, and all the frames were not shown. Despite that, the speed of the video was as fast as 

intended and it looked smooth and natural. 
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Before the MEG measurement, EOG electrodes were placed above and below the left 

eye to record vertical eye movements, and on both sides of the eyes to record horizontal 

eye movements. Four head position indicator (HPI) coils were attached to the scalp of 

the subject, and personal head coordinates were registered with a 3D digitizer by 

identifying the locations of the HPI coils together with the locations of three anatomical 

points (nasion and bilateral preauricular points) and some additional points on the scalp. 

In the beginning of the recording, small currents were led through the HPI coils, and the 

head position with respect to the sensors was determined from the produced field 

patterns. 

It was ensured that the subject did not wear anything magnetic. The subject was seated 

in the magnetically shielded room (Euroshield Ltd., Eura, Finland) of the MEG Core, 

Brain Research Unit, Aalto University, with the head inside the helmet containing the 

sensors. The screen (width 72 cm, height 54 cm) displaying the projected stimuli was 

placed 1 m in front of the subject’s eyes, and the size of the face in the video was 

approximately 14 x 20 cm (visual angle 11.5° x 8.0°). The subject was instructed to sit 

still and relaxed and to observe the facial expressions attentively, keeping in mind what 

kind of expressions were shown. Nothing was mentioned about eye blinking. The 

presentation lasted 20 min in total.   

After the experiment, the participants were asked to tell which expressions they were 

able to recall. However, the free recalling task turned out too frustrating. Therefore all 

except the first three subjects were provided with a list of ten possible expressions 

among which they had to pick the ones they had seen. They marked the remembered 

order of the videos with numbers. The instructions and the information before the 

measurement were the same for all the twelve subjects, and thus the additional memory 

task after the measurement was not supposed to affect the recorded brain responses.  

4.4 Data preprocessing  

The MEG data were preprocessed with the temporal signal-space separation method 

(tSSS)(Taulu & Simola, 2006; Taulu & Hari, 2009) using MaxFilter
TM

 software 

(version 2.2). The procedure enhanced the signal-to-noise ratio of the data by 

suppressing the effects of artifacts. It also reduced the effects of malfunctioning 

channels (2 or 3 per measurement) by replacing their signals with a signal estimated on 
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the basis of the other channels. Additionally, the signals were lowpass-filtered at 10 Hz 

for the sensor-level analysis and at 30 Hz for source modeling. 

Baseline period was defined as 500 ms before the blink onset in the video so that the 

face without movement was visible during the baseline period. Other baseline periods 

(from 200 to 1000 ms) were also tested, but changing the baseline did not visibly affect 

the results.  

The intrasubject reliability was tested visually for each subject: the averaged waveforms 

of the first half of the recording were superimposed (with Elekta Neuromag Xplotter 

software, version 4.8) with the waveforms of the second half of the recording. The idea 

was that if the subject’s responses gathered in the beginning were similar to those 

gathered in the end, the data would be reliable.  

For three subjects who had more than 45 blink-free epochs in both conditions, the 

analysis was also performed without the trials during which the subject had blinked 

(defined as trials in which the vertical EOG exceeded 250 µV). However, the results 

were not visibly changed after the rejection. After this, it was decided that not to lose 

any data, no trials should be rejected because of self-performed blinks.  

4.5 Analysis 

4.5.1 Sensor-level analysis  

Sensor-level waveforms were analyzed from the planar gradiometers. The apparent 

change in the magnetic field that is visible in a single gradiometer varies according to 

the orientation of the source current; for a current of a given magnitude, the planar 

gradiometer can detect a large deflection or no deflection at all depending on the 

orientation of the current. For the purpose of covering all possible orientations, the 

applied MEG device has two orthogonal gradiometers at each sensor position.  

To minimize the effect of current orientation on the analyzed waveforms, vector sums 

were calculated for each pair of gradiometers: the signals of each gradiometer pair were 

squared and summed together, and a square root was computed out of the sum. The 

vector sums with the strongest peaks at about 300 ms for the normal-speed blinks and at 

400 ms for the slow blinks were included in the analysis. The selected locations were 

mainly over the occipito-temporal areas of the right hemisphere (see Figure 7). Two 
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subjects in the normal-speed condition and three subjects in the slow-speed condition 

had stronger responses over the left hemisphere and therefore their channels were 

chosen on the left side. The strongest peak amplitude for each waveform and its latency 

with respect to the blink onset in the video were measured. A paired, two-tailed t-test 

was used to test the statistical significance of the differences between the normal-blink 

and slow-blink conditions.  

Additionally, the durations of the statistically significant responses, here called return-

to-baseline durations (Figure 3), were measured. The return-to-baseline duration 

expresses the amount of time that the activation stays stronger than two standard 

deviations from the baseline. Standard deviation was calculated on the basis of the 

values within the 500-ms baseline prior to the blink in each video. Also the mean 

amplitudes of the return-to-baseline durations were examined. 

Figure 3. The gray area marks the 

return-to-baseline duration, i.e., the 

duration of the response more than 2 

SD above the baseline.  

 

 

The same analyses were also performed for single channels without vector sums. Again, 

the channels showing the most prominent responses were selected, but these channel 

locations slightly differed from those obtained in vector sum analysis.   

4.5.2 Source modeling 

The current sources of the evoked responses were modeled as ECDs in a spherical head 

model. Only planar gradiometers were used, and 40–50 channels were selected at a 

time; the resulting goodness-of-fit values (g) expressed how well the ECD explained the 

data (100% would mean a perfect fit). Anatomical MR images were available for 6 

subjects. The estimated ECDs were superimposed on the MR images of these subjects 

so that the anatomical locations of the ECDs could be identified.    
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4.5.3 Self-performed blinks 

To examine whether the timing of the self-performed blinks varied in accordance with 

the viewed blinks, each subject’s self-performed blinks were counted from the EOG 

recordings. A blink was defined to occur when the vertical EOG exceeded the threshold 

value for the period of at least 10 and at most 300 data points (from 17 to 500 ms with 

the 600 Hz sampling rate). The threshold value was set as 150 μV. We checked visually 

that the noise level of the EOG never exceeded the threshold value but that all peaks 

resulting from complete eye closure were included in the calculation. A new data set 

was created, where a square wave of 100 ms in duration was drawn at each time point of 

a self-performed blink onset.  For each subject individually, the square waves indicating 

blinks were summed according to the stimulus onset, in a similar way than in time-

locked averaging. The resulting figure showed how many times the subject had blinked 

when viewing a particular epoch of the stimulus video.  

Since the general blink rate varied considerably between subjects, the number of blinks 

at each time point was normalized for each subject by dividing it by the total number of 

times the participant had blinked during the whole experiment, which resulted in a 

curve of blink proportions. The normalized blink proportion curves were then averaged 

across subjects. After normalization, it was more plausible to compare the subjects with 

each other, and the data of a single subject did not affect the group sum excessively. 

However, the data of one subject had to be left out from the sum, because the subject 

had blinked so rarely that the relative impact of a single blink was disproportionate.  

The mean proportions of self-performed blinks within time windows were compared 

with the baseline. The baseline was set as the mean during 100 ms (normal) or 200 ms 

(slow) from the viewed blink onset. The normal-speed condition had 13 time windows 

of 100 ms, beginning at the end of the viewed blink, whereas the slow-speed condition 

had 6 time windows of 200 ms. The altogether 19 t-test results were corrected with the 

Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995).    

Moreover, the MEG signals related to self-performed blinks were analyzed. First, the 

self-performed blinks were obtained from the EOG with the same threshold values as in 

the blink-rate analysis. The MEG signals were then averaged time-locked to the blinks. 

The resulting waveforms were inspected and the sources modeled with ECDs. 



30 

 

5 Results 

5.1 Behavioral recall of facial expressions 

The seven participants who completed the questionnaire remembered on average 4.3 

expressions (out of the six right ones with five false alternatives) that were really 

shown, but they also reported to have seen on average 0.9 expressions that were not 

actually shown. All participants recognized a smiling, a disgusted, and a thinking face. 

The confused expression was chosen by five, and the agreeing one by two participants.  

5.2 Overview of MEG data 

Both normal- and slow-speed viewed blinks elicited clear brain responses. The 

intrasubject reliability plots indicated that the reliability was good for the channels with 

the most prominent responses. Figure 4 shows channels from subject S1. The three 

subjects whose data were noisy had also poor intrasubject reliability, which supported 

the exclusion of their data.  

Figure 4. Intrasubject reliability of MEG responses in Subject S1 to the viewed normal-speed 

blink. A flattened view of the sensor helmet with pairs of planar gradiometers is seen from 

above; L stands for left. The first half (black waveform) and the second half (red waveform) of 

the averaged responses are superimposed. The blink in the video started at 0 ms. On the selected 

channel the response was the most prominent.  
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Figure 5 shows averaged responses from subject S4. This subject had salient responses 

with one clear peak on the occipito-temporal channels in both hemispheres and smaller 

deflections also on parietal channels. In contrast, some of the subjects (as S1, see Figure 

4) had two subsequent peaks in their strongest responses. Although the responses varied 

largely between the individuals, prominent responses were observed in all subjects in 

the occipito-temporal cortex of either hemisphere.  

Figure 5. Planar gradiometers showing the averaged responses to the viewed normal-speed 

blinks in subject S4. The posterior part of the head is viewed from above of the head. The red 

circles indicate the gradiometer pairs showing the most prominent responses. 

 

5.3 Sensor-level analysis 

Figure 6 shows the chosen vector sum waveforms, and the helmet-shaped sensor array 

in Figure 7 illustrates the locations of the chosen sensors, which were mainly in the 

occipito-temporal areas. The response amplitudes rise rather steeply after the viewed 

blink onset and return to baseline shortly after the viewed blink offset.  
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Figure 6. Waveforms from the individually selected vector sums of planar gradiometers for 

each subject (S1–S9). The responses were averaged with respect to the beginning of the viewed 

blink indicated by the vertical line. Black curves are for the normal-speed blink, red curves for 

the slow-speed blink. The horizontal lines mark the zero level. The gray bars indicate the 

duration of the viewed normal-speed blink, and the red bars stand for the duration of the slow 

blink.   

 

Figure 7. The sensor locations 

on the helmet-shaped arrays 

viewed from the back of the 

head. The numbers indicate how 

many subjects had the selected 

vector sum (of a gradiometer 

pair) at a given location. The 

locations differ between normal-

speed and slow-speed 

conditions, because the most 

clear and prominent responses 

were chosen individually. 

 



33 

 

0

100

200

300

400

500

600

S1 S2 S3 S4 S5 S6 S7 S8 S9 group

Peak latencies 
normal blink

slow blink

ms 

0

10

20

30

40

50

60

70

80

S1 S2 S3 S4 S5 S6 S7 S8 S9 group

Peak amplitudes 

normal blink

slow blink

Figure 8 illustrates the peak latencies and amplitudes. The vector sum waveforms in 

response to the blink in the normal-speed video peaked at 317 ± 22 ms (mean ± SEM), 

thus earlier than those to the blink in the slow video [445 ± 19 ms; paired t-test, t(8) = 

4.55, p = 0.002]. Peak amplitudes did not differ significantly between the normal (44 ± 

5 fT/cm) and the slow (45 ± 6 fT/cm) blinks [t(8) = 0.32, p = 0.76]. 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

Figure 8. Peak latencies (above) and amplitudes (below) in the selected vector sums for all 

subjects (S1–S9) for normal-speed and slow-speed conditions. The ”group” bars show the mean 

(± SEM) over subjects.    

Figure 9 shows the return-to-baseline durations for the responses to normal and slow 

blinks. The activation returned to the baseline earlier for normal blinks (537 ± 83 ms) 

than for slow blinks [921 ± 155 ms; t(8) = 3.52, p = 0.008]. However, the mean 

amplitudes of the return-to-baseline periods (normal: 21.4 ± 2.4 fT/cm; slow 21.6 ± 3.1 

fT/cm) did not significantly differ [t(8) = 0.23, p = 0.82]. The response onset times (i.e., 

(fT/cm) 

fT/cm 
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the time points where the waveform exceeds two SDs) did not significantly differ 

between the conditions, either: the onset of the response to normal blinks was on 

average at 165 ± 24 ms and to slow blinks at 136 ± 24 ms [t(8) = 1.73, p = 0.12]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Return-to-baseline durations for the selected vector sum of each subject in normal-

speed and slow-speed conditions. ”Group” bars show the mean (± SEM) over the subjects.   

The single channel analysis without creating vector sums yielded substantially similar 

results concerning response latencies, amplitudes, and return-to-baseline durations. 

Only the latency difference between normal and slow speed was slightly smaller (110 

ms) than with vector sums (128 ms), but the difference was still significant. 

5.4 Source modeling 

Figures 10 and 11 show the locations of the ECDs in two subjects. Despite the 

substantial variability across subjects, the most common locations for a dipole in the 

normal-speed condition were the middle occipital lobe (six out of nine subjects) and the 

right temporal lobe (five subjects). Some of the dipoles fitted for the data in the normal-

speed condition were also able to explain the field patterns in the slow-speed condition. 

However, the slow-speed condition also yielded field patterns that an ECD could not 

explain, particularly in subjects S4, S5, and S7. Table 1 shows the g-values and 

confidence volumes of the best fitting dipoles for each subject in both conditions.   

  

(ms) 
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Figure 10. The ECDs for two subjects (S1 and S6) in the normal-speed condition. The 

waveforms were taken from those single gradiometer channels that had the most prominent 

responses. The black vertical lines indicate the time points at which the dipoles were fitted (for 

instance, the first dipole of S6 is at its strongest 370 ms after the onset of the viewed blink). The 

field patterns are shown on the helmet-shaped sensor array, where the green arrow represents 

the ECD, and the isocontours indicate the magnetic field (red: out, blue: in). The dipoles were 

superimposed on the subject’s own 3D MR images (sagittal and coronal view shown here). The 

circle is at the location of the source and the white bar points to the direction of the estimated 

ECD.        
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Figure 11. Dipole models for subjects 

S1 and S6 in the slow-speed condition. 

Contrary to the normal-speed 

condition, only one plausible source 

(instead of two) for each subject could 

be estimated. 
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Table 1  

Goodness of fit - values (%) and confidence volumes (mm
3
) for the best fitting dipoles  

 condition     

Subject  normal   slow   

 g-value volume g-value volume  

1 94.1 239.7 92.9 723.0 

2 91.7 227.6 97.6 161.4 

3 97.6 286.3 97.5 567.0 

4 69.6 174.7 87.8 113.0  

5 72.6 2357.7 82.6 1116.3 

6 93.7 824.7 91.8 3206.7 

7 88.8 1961.8 80.7 4826.3 

8 88.6 590.9 94.8 344.6 

9 88.7 4918.5 89.9 9849.2 

40–50 channels were selected at a time, and the dipoles which best explained the variation 

within those channels are reported here. In the normal condition, four ECDs have a g-value 

higher than 90%, whereas in the slow condition, five ECDs are with g-values over 90%. The 

confidence volume values show the size of the volume where the dipole is located with a 

probability of 95%. 

 

5.5 Timing of the self-performed blinking 

Figure 12 presents the proportions of self-performed blinks (i.e., what percentage of the 

total number of blinks occurred at each time point with respect to the viewed blink). 

The average blink rate is presented as proportions, because blink rates varied 

considerably across subjects. The baseline in the normal-speed condition was 3.3% and 

in the slow condition 1.1%
5
. For the normal speed, the mean blink proportion was 2.2 

percentage points higher than the baseline during the time window 651–750 ms after 

viewed blink onset (p < 0.05). For the slow speed, the mean blink proportion was 0.8 

percentage points higher than baseline during the time window 1350–1550 ms, but the 

difference (for the slow speed) was not statistically significant when the p-values were 

adjusted for multiple comparisons. Moreover, the Figure 12 shows that the blink 

proportions in normal and slow conditions seemed to peak also before the viewed blink 

onset. 

                                                 

5
 The baselines did not significantly differ from the means during the whole viewed blink (3.1% for 

normal and 1.1% for slow). 
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Figure 12. The proportion of self-performed blinks for the normal-speed video (above; black 

curve) and the slow video (below; red curve). The green curves show SEM above and below the 

mean. The gray band extends over the time period between the onset and offset of the viewed 

blink. The horizontal line indicates the baseline. The light red band indicates the time window 

where the difference from the baseline was the greatest. 
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5.6 MEG responses to self-performed blinks 

Since the timing of self-performed blinks was significantly affected by the blink in the 

video, the question arose whether the eye-movement-related artifacts in the MEG signal 

could have confounded the actual results. First of all, self-performed blinks caused no 

changes in the signal before the onset of the self-performed blink. Source modeling 

yielded a three-dipole model: the first two dipoles appeared very shortly (around 40 ms) 

after the blink onset at the orbits and the third with a latency of 200–300 ms in the 

posterior parietal cortex.  

For each subject, the averaged MEG responses to the viewed blinks were also visually 

compared with the vertical EOG waveforms averaged by the viewed-blink onset. The 

peaks in the MEG waveforms had no systematic relationship with the peaks in the EOG 

data, which suggested that the self-performed blinks (peak in the EOG averages) did not 

substantially affect the MEG signals of interest. 

6 Discussion 

The aim of this study was to investigate using MEG how the brain reacts to seeing eye 

blinks. The responses to viewed blinks were prominent. Contrary to the expectations, 

the strength of the response did not differ between the two stimulus conditions (the 

normal-speed blink video vs. the same video in slow motion). However, the peak 

latencies and return-to-baseline durations were significantly longer when viewing the 

slow blink. Although the source locations varied between individuals, the sources were 

mainly located in the occipito-temporal cortical areas. As expected, the participants 

tended to blink more after seeing a blink when compared with the average blink rate 

during the blink in the video. The results will now be discussed in more detail.  

6.1 Behavioral recall of facial expressions 

The purpose of the behavioral task was to increase the subject’s attention towards the 

face stimuli and to check whether they had been focusing on the videos. Some subjects 

still reported boredom and fatigue after the measurement, but with the additional 

expressions the experiment was less monotonous. The recall rates are challenging to 

interpret, because the subjects might have verbalized the “confused” and “agreeing” 

expressions in a manner differing from the verbalization in the questionnaire. Namely, 

the “surprised” option was chosen by three participants, which may indicate that they 
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had perceived either the intended ”confused” or the intended ”agreeing” as surprised. 

Anyhow, the participants seemed to have looked at the videos throughout the 

measurement, since all participants had recalled at least three expressions out of five.    

6.2 Brain responses to viewed blinks 

Considering that an eye blink is such a small event, it was uncertain before the current 

study whether a brain response to it would be detectable with MEG. No previous data 

on the topic were available while planning and conducting the present experiment, 

because at the time of our MEG measurements, Brefczynski-Lewis and colleagues 

(2011) had not yet published their study about EEG responses to viewed eye blinks. 

Nevertheless, responses to simple light dot motion (slowest speed 0.4°/sec) had been 

observed with a stimulus duration of 10 ms only (e.g., Kawakami et al., 2002) and 

therefore eye blinks, lasting around 350 ms at normal speed, were assumed to elicit 

observable responses. Since the visible peaks in the waveforms result from averaging of 

about a hundred responses to the same blink video, the neural process that is captured is 

probably an automatic mechanism of observing a blink rather than more demanding, 

higher-order cognitive processing.  

Contrary to the earlier evidence showing that the response amplitude increases with the 

speed of the moving stimulus (Kawakami et al., 2002), the response amplitudes for the 

slow blink were of the same magnitude as the amplitudes for the fast blink. However, 

the experiment of Kawakami and colleagues was done with simple dots as stimuli, 

whereas in the current experiment the stimuli were blinks. This suggests that blinks 

might be more important than just simple motion. On the other hand, the peak latencies 

were longer when seeing slow blinks, which was consistent with previous MEG studies 

where simpler stimuli, such as moving dots (Kawakami et al., 2002; Maruyama et al., 

2002) or sinusoidal gratings (Wang et al., 2003) were presented with varying speeds. It 

had not been previously studied how slowing down blinks or other facial motion affects 

the neural responses of the viewer. From a subjective point of view, slowing down the 

blink results in an impression of “suspension”; the viewer wonders why it is taking such 

a long time for the viewed person to close and open her eyes.   

Not only the peak amplitudes occurred considerably later in the slow-speed condition, 

but also the activation returned to baseline slower. Possibly, the responses to single 

trials have followed the stimulus pattern in duration. An alternative explanation for the 
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longer averaged responses is that the single trial responses to the slow blink were more 

widely scattered, resulting in an average waveform without a steep peak. Therefore 

slowing down the stimulus does not necessarily render the data analysis more 

straightforward. On the other hand, this finding about longer responses can be useful 

when studying brain responses that might be too fast to be reliably discerned. This can 

be the case for instance with small conversational expressions, which contribute to the 

discussion but might stay in a tiny scale compared with other factors influencing the 

brain signals. Slowing down the stimuli might then facilitate the detection of the brain 

activation.  

In some cases the response to blinks peaked twice (e.g., at 170 ms and 340 ms for S1). 

However, only the peak with the strongest amplitude was selected for the analysis of 

latencies and amplitudes, because this criterion made the selection unambiguous. The 

present data did not allow the comparison of separate deflections in the waveforms (as 

in Brefczynski-Lewis et al., 2011). Namely, saying that a small peak in the waveform of 

a given subject is an “M450”, for instance, would have been rather arbitrary labeling.  

The vector sum analysis was the principal method used here. Although the results did 

not change substantially when analyzed with single channels only, vector sum analysis 

yielded more robust and reliable results. This robustness is understandable also on 

theoretical basis: creating vector sums is a means to remove the orientation information 

that might otherwise cause ambiguity in the responses.  

6.3. Source locations 

The most prominent responses to viewed blinks were observed in the occipito-temporal 

cortical areas, mainly in the right hemisphere. This finding is consistent with the recent 

EEG study by Brefczynski-Lewis and colleagues (2011). Although the source locations 

varied substantially between the subjects, the sources were typically situated within the 

occipital, visual areas and the sulci of the right temporal lobe. 

When the normal blink was shown, the earliest source—with a latency of approximately 

350 ms— was often located in the temporo-parietal area, close to V5/MT (e.g., in 

subject S6, see Figure 10). This is in accordance with the earlier finding that the 

responses to rapid visual motion may peak earlier in V5/MT than in V1, whereas slower 

motion elicits activation first in V1 (Ffytche et al., 1995). However, in addition to the 
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responses at 350 ms, one would have expected to find also an earlier response at 170 ms 

(Brefczynski-Lewis et al., 2011). The question remains open why it emerged only in 

one subject (S1). 

According to Brefczynski-Lewis and colleagues (2011), many kinds of eye movements, 

including blinks, elicit similar N170 responses, but later ERP deflections are smaller for 

blinks than eye gaze diversions. Thus, those later deflections would better distinguish 

blinks from other eye movements. Most subjects in the present data demonstrated only 

one clear peak (around 350 ms), and for this reason the analysis did not distinguish 

between separate response deflections. In dipole fitting, the most prominent source was 

modeled first and other sources after this when possible. Figure 10 shows the dipole 

models for two subjects who actually had two clearly distinct sources at different time 

points.  

As a disadvantage, ECDs were not able to explain all of the current data. Although 

many g-values in the Table 1 appear high, they do not prove the dipole model valid. 

Especially in three subjects in the slow condition the field pattern did not look dipolar at 

all—therefore it was questionable to try to model the responses as ECDs. Additionally, 

the estimated sources had in some cases rather deep locations. Since MEG and 

especially planar gradiometers are not very sensitive to deep sources, these estimates 

appear quite unreliable. Besides, dipole fitting can produce too deep and strong 

estimates if two sources lie side by side (Okada, 1985). The relatively large confidence 

volumes (> 1000 mm
3
) in Table 1 also show that many of the dipoles are unreliable. 

Due to these difficulties and the intersubject variation, comparing the dipoles 

statistically was not plausible (otherwise a test comparing the strengths, locations or 

latencies of the dipoles in the normal and slow condition could have been made). 

Those complicated field patterns possibly reflected activation originating from several 

sources which were difficult to differentiate because they were simultaneously 

activated. Thus, analyzing vector sums turned out to be more reliable than dipole fitting 

in this study—when analyzing vector sums, all activations within a certain area are 

assumed to be summed together, whereas ECDs are supposed to model single, uniform 

sources. In conclusion, since dipole fitting was not very suitable for analyzing the 

present data, the vector sum results are more emphasized in this study.  
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6.4 Self-performed blinks 

As expected, the subjects blinked more after seeing the blink than during the blink in 

the video. They might have “responded” to the observed blink by blinking themselves; 

namely, in a listening situation, the listeners’ blinks are somewhat synchronized with 

the speakers blinks (Nakano & Kitazawa, 2010). Alternatively, they might just have 

suppressed their blinks during the viewed blink, because it was the only event in the 

whole video and they sought not to miss it. The latter explanation can be supported in 

the light of studies where blink rate decreased when something important was 

happening (e.g., Nakano et al., 2009). Since the same video was repeated about 100 

times in the current experiment, the participants may have learned to anticipate the 

upcoming blink. This learning effect could explain why the subjects’ blink rate peaked 

also before the viewed blink. In the slow-video condition the blinking pattern was not so 

clear, probably because it would have been difficult to suppress blinks during the whole 

event and because the timing of the slow blink was more difficult to predict.  

As most of the subjects did not seem to have a distinctive increase in blinking after the 

viewed blink in their individual data, the peak in blinking in the average curve might 

result from synchronized blinking between the subjects at the particular moment. The 

average curve thus showed that the subjects were more likely to blink approximately 

700 ms after seeing a blink. 

Self-performed blinks were related to activation in the posterior parietal cortex. Hari 

and colleagues (1994) had observed a similar effect, although they had measured 

voluntary blinks whereas in the current study the participants blinked spontaneously. 

Consequently, one has to be aware of the problem about the inclusion of the trials 

during which the subject has blinked. Namely, sometimes the change in the magnetic 

field caused by the subject’s blinking can be of a greater magnitude than the response of 

interest. 

Regardless of the risks, all the trials were included in the analysis for the following 

reasons: In the current study the subjects were not instructed to avoid blinking during 

stimuli, because we also sought to examine the natural timing of self-produced blinks 

with respect to the viewed blink. As a result, some of the subjects blinked so 

frequently—about 60 times per minute—during the periods included in the averages 
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that an excessive number of data should have been excluded if the trials containing 

blinks had been rejected.   

The inclusion of all trials is also motivated by the finding that the activation related to 

the possibly systematic blinking always occurred later than the actual response to the 

viewed blinks. Namely, the peak of self-performed blinks occurred around 700 ms, 

whereas the MEG responses to the viewed normal-speed blinks peaked always within 

400 ms after the viewed blink. What is more, the number of trials summed up in one 

average was considered sufficient in the sense that those blinks that occurred randomly 

should not have distorted the results. In fact, the rejection of the blink-contaminated 

trials for the subjects who did not blink excessively did not affect the averaged 

waveforms substantially. 

6.5 Caveats 

The current study adopted an explorative approach towards a novel topic. Therefore the 

experimental procedure would require some improvement before reliable conclusions 

can be made. First, the number of subjects was limited, especially because the data of 

some of the subjects had to be excluded from the analysis. Second, the experimental 

setup could have been enhanced by a control stimulus. Lacking other types of motion 

for comparison, one cannot directly conclude that the elicited responses were selectively 

typical of blink viewing processes. It remains unclear whether other eye movements, 

facial movements or any motion with corresponding velocity and duration could have 

caused similar brain activation. Moreover, the presentation speed was not implemented 

exactly as it should have been, because the projector was not able to display 500 frames 

per second. On the other hand, the high frame rate allowed smooth slow motion 

presentation. The normal speed blink turned out rather long—350 ms—compared with 

the average blink duration of 200 ms, but that might have also been due to the voluntary 

nature of the videotaped blink (Kaneko & Sakamoto, 1999).    

Since the responses varied substantially between the subjects, average waveforms or 

general dipole models would not have been plausible. The lack of consistent response 

patterns across subjects also makes it difficult to draw precise conclusions concerning 

general reactions to viewed blinks. Nevertheless, people are not similar in other 

respects, either, and other studies on brain responses to facial stimuli have also 

demonstrated individual variation (Susac et al., 2010).   
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The intersubject variation could be partly explained by differences in attention. Namely, 

attention influences the perception of visual motion (Raymond, 2000), and the 

amplitudes of neural responses increase when a stimulus is attended whereas the 

latencies or spatial distribution of the responses should not be affected by attention 

(Luck et al., 1994; Luck & Hillyard, 2000). Besides, the task assigned to the subject can 

guide their attention. In the current study, the task was perhaps too loosely defined; the 

subjects were instructed only to view the videos and to keep in mind the presented 

expressions. Nothing was mentioned about blinking or the nature of the videos (except 

that the videos would show faces with expressions). Thus, the subjects might have 

interpreted blinking as an expression, or they might have ignored the blinks because the 

blink video did not contain any “expression” and the task was to memorize facial 

expressions in particular. Additionally, the attention of the subject obviously decreased 

when they saw the same blink video a hundred times. 
6
   

Concerning the reliability of the sensor-level analysis, it might have been a risk to 

choose different channels for different subjects. For several subjects the selected 

channel was different also for normal and slow blinks. On the other hand, in this way it 

was possible to find something comparable in each subject despite the variation. It 

would not have been reasonable to select the same channel for each subject, because 

one subject could have no response on a channel where another subject had the most 

prominent response. Additionally, in some subjects the right hemisphere was more 

active, whereas in other subjects the activation was mainly in the left hemisphere. 

Nevertheless, head position normalization was not done, and head position differences 

among subjects might account for varying response amplitudes in certain sensors or 

vector sums. But after all, responses to normal and slow blinks were compared within 

individuals, not between individuals, and therefore normalization between subjects was 

less important. In the experimental setting normal and slow blinks were always shown 

in pairs; consequently, the head position of a given subject should have been adequately 

similar when viewing normal versus slow blinks.     

                                                 

6
 However, according to the intrasubject reliability check (section 3.4), the responses were sufficiently 

constant also during the latter half of the experiment.  
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6.6 Suggestions for further research 

Now that we have demonstrated a response to a viewed blink in a simple, reduced 

setting, it would be interesting to see if the effect is robust also in more natural and 

ecologically valid conditions. In the current study, the video appeared stagnant and 

monotonous because it contained no other motion than the blink and because it was 

filmed in grayscale. In contrast, in our daily lives we usually interact with more lively 

persons. A step forward would be to show a video of a natural discourse of an actor 

with blinks occurring unintentionally. The story of the speaker would involve the 

listener and the video would be more interesting to follow than the previous one. The 

blinks would not be isolated as in the current video, because other motion would also be 

present.  

To precise the current results, it would be important to create control stimuli. A 

suggested control stimulus could be the same face with other kind of motion than blink 

in the eye region, e.g., eye gaze shifts or moving dots replacing the eyes or even a 

moving background (examples of control eye movement in Watanabe et al., 2001). 

However, the face in the stimulus might give too strong an implication of eyes and 

blinks even if no eyes were visible. For that reason, simple eye-sized bars moving down 

and up could form a better control video. If a freely talking face is shown, blink timing 

could be artificially changed to see if the blinks of the listener follow the blinks of the 

speaker, or whether they are paced by something else, say, the course of the speech. 

To expand the current knowledge on social interaction, it would be useful to investigate 

the responses to other small expressions. Quite many studies have addressed basic 

emotions, but conversational expressions have not received much attention. 

Cunningham and Wallraven (2009) demonstrated that dynamic conversational 

expressions are easier to classify than static, but the question remains how those 

expressions are processed in the brain. Other presentation speeds for the expressions—

quicker or slower—could also be tested to explore the impact of dynamics.  

When using visual stimuli, it would be fruitful to measure gaze direction with an eye-

tracker together with MEG signals. Gaze direction can affect MEG responses, 

depending on whether the subject gazed the eyes when a blink occurred or whether the 

subject looked at the smiling mouth of the viewed person, for example. Nevertheless, 

eye tracking does not tell everything about the subject’s attention, since attention can be 
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directed covertly, which can in turn affect the neural responses to a given stimulus 

(Luck et al., 1994).  

Direct gaze is a rather strong signal, and even the face-sensitive N170 response is 

stronger when the eyes are staring directly at the viewer (Conty et al., 2007). In the 

current study, the viewed person was looking straight at the camera. A blink or gaze 

shift thus disrupts the mutual gaze between the blinker and the viewer. It remains open 

whether the brain response would change if the other person was looking in another 

direction while blinking. Further, Hietanen and collaborators (2008) found that direct 

gaze has a more powerful effect if the subject is viewing a real person rather than a 

photograph or a video. Also Pönkänen and colleagues (2008) compared live faces and 

photographs and suggest that the early processing of a live face differs from the 

processing of a face in a picture. It is an interesting question whether blinks, as well, 

would evoke different reactions if observed in a live person. A live person is potentially 

an interacting partner unlike a photograph or a video, and this distinction is relevant 

when seeking to address real social interaction. 

The current experimental setting was not primarily designed for measuring the timing of 

self-performed blinks or synchronization between the viewed blinks and self-performed 

blinks. Since the reported preliminary results are promising, the possible 

synchronization of blinks would be worth investigating more thoroughly. If 

synchronization exists, it evokes the question of who is following whom. If the acts of 

the viewed person are fixed as in the current stimuli, the direction of the relationship 

cannot be examined. But a study with two participants interacting could reveal the 

leader of the blink timing, should there be one.  

6.7 Conclusion   

Viewed blinks elicited clear brain responses in the occipito-temporal cortex, which has 

not been previously reported with MEG. The peak latencies were longer for the blinks 

presented in slow motion, whereas the amplitudes did not differ between the slow-speed 

and normal-speed conditions, although slower movement has previously been 

associated with lower peak amplitudes. The viewers also increased their blinking right 

after the blink had occurred in the video. Combining these results with the earlier 

findings showing that blink rate may convey information about the person’s mental 

state and that blink timing relates to certain events, one could suggest that the fleeting 
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blink be more meaningful than generally thought; its potential social significance 

remains to be further studied.  
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