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1 Introduction

One of the most important decisions for individuals is the choice about the
rate of savings, i.e. about the share of income to be devoted to investment
and hence not available for consumption. In this paper, we study the optimal
saving decisions within the context of endogenous economic growth modeled as
a Ramsey model.

In contrast to the common wisdom, the Ramsey model is capable of gener-
ating endogenous growth. In this paper, we explore the conditions sufficient for
persistent growth in an otherwise standard Ramsey model. We also show that,
in the case of persistent growth, much of the ingenious phase diagram can be
preserved, even though the saddle path and steady state structure disappears
because the optimal path shows up as a separator in the phase portrait. Be-
neath this separator, over-saving diminishes consumption, ultimately leading to
a sub-optimal situation where all incomes are saved. On the other hand, above
the separator under-saving suddenly collapses the economy as its productive
capital vanishes to zero.

The paper is organized as follows: Section 2 introduces the standard optimal
saving model and the sufficient condition for persistent growth is given in Section
3. In Section 4, numerical examples for CRRA preferences and CES and Cobb
Douglas technologies show both the phase portrait and the time paths of the
endogenous variables. A sensitivity analysis is also provided. Section 5 discusses
the results. Technical details are placed in the Appendix.

2 Standard Optimal Saving Model

Consider infinitely lived consumers maximizing total lifetime utility. The re-
presentative consumer has a time additive intertemporal utility function

U =

∫
∞

0

u[c(t)]e−ρtdt, c = C/L (1)

where the decision variable, c, is per capita consumption and ρ is the constant
subjective rate of time preference (discount rate). The contemporaneous utility
(felicity) function, u(c), is concave, increasing, and satisfies the Inada conditions

lim
c→0

u′(c) = ∞, lim
c→∞

u′(c) = 0. (2)

In an economy with exogenous population (labor) growth, L(t) = L0e
nt, a social

planner may maximize the objective (welfare) function,

V =

∫
∞

0

u[c(t)]L(t)e−ρtdt = L0

∫
∞

0

u[c(t)]e−(ρ−n)tdt (3)

With ρ > 0 and ρ − n > 0, total utility, U and V , are bounded, if u(c) with
(2) is also bounded over time. In principle, there is no difference between the
problem of an individual, (1), or a society (planner), (3). Hence we stick with
(3) as in Barro & Sala-i-Martin (2004, p.87). But an upper bound imposed on
u(c) is a critical assumption that we shall dispense with and elaborate on below.
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The technology, F (L,K), is described by a smooth concave homogeneous
production function with constant returns to scale in labor and capital,

Y = F (L,K) = Lf(k) ≡ Ly, L 6= 0; F (0, 0) = 0 (4)

where the function f(k), is strictly concave and monotonically increasing in the
capital-labor ratio k ∈ [0,∞[, i.e., f(k) has the properties

∀k > 0: f ′(k) > 0, f ′′(k) < 0 (5)

lim
k→0

f ′(k) ≡ b̄ ≤ ∞, lim
k→∞

f ′(k) ≡ b ≥ 0, f ′(k) ∈
[
b, b̄

]
(6)

For the macro (one-sector) model, factor accumulation is given by, cf. (1), (4)

K̇ = Y − C − δK = L [f(k)− c− δ ] , L̇ = nL (7)

Hence

k̇ = f(k)− c− (n+ δ)k = h(k, c). (8)

Thus the Ramsey optimization problem is (with L0 = 1),

maxV = max
c(t)

∫
∞

0

u[c(t)]e−(ρ−n)tdt (9)

s.t. k̇ = f(k)− c− (n+ δ)k = h(k, c), c ≥ 0, (10)

which is equivalent to maximizing the current value Hamiltonian function

H = u[c(t)] + λ(t) [f(k)− c− (n+ δ)k ] , (11)

with the costate variable, λ(t), and the transversality conditions:

k(0) = k0, lim
t→∞

λ(t)k(t)e−(ρ−n)t = 0. (12)

Besides, ∂H/∂λ = h(k, c), cf. (11), (8), the first order (necessary) condition is,

∂H

∂c
= u′(c)− λ(t) = 0, (13)

The maximum principle also gives a necessary costate equation (“Euler”) as,

λ̇(t) = −
∂H

∂k
+ (ρ− n)λ(t). (14)

In addition to necessity, the sufficiency of (9)–(14) can be proved simply. It
is observed that the objective function u [c(t)] e−(ρ−n)t is a concave function in
(k, c)-space, cf. (2). Furthermore, it can be shown, by using (13) and (2), that
λ(t) = u′(c) > 0, and that the function, h(k, c), in (10) is also concave in c, k.
Therefore the necessary conditions provided by the maximum principle are also
sufficient for obtaining the optimal solutions of [k(t), λ(t) ; c(t)].

Economic intuition about the implications of the necessary conditions are
well-known and easily provided. By time derivation of (13), we get

λ̇(t) = u′′(c) ċ(t) ; λ̇/λ = [u′′(c)/u′(c)] (ċ/c) ; u′′(c) < 0 , u′′(c) < 0 (15)
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Thus if consumption along the optimal solution is growing (ċ(t) > 0), the con-
cavity of u(c) ensures that marginal utility of consumption [“shadow price,”λ,
“opportunity costs” in utils of postponing consumption (saving, accumulating
capital)] is falling. The necessary condition (14) provides additional information
about the optimal time paths of this “shadow price” of consumption,

λ̇(t) = −
∂H

∂k
+ (ρ− n)λ(t) [−f ′(k) + (n+ δ) + ρ− n]

= −λ(t) [f ′(k)− δ − ρ] . (16)

Hence along the optimal consumption solution (path), the relative change (fall
/increase) in its “shadow price”, λ̇/λ, must always be equal to the net re-
turn (positive/negative) on capital. This necessary optimality condition (16) is
“Ramsey‘s rule”, cf. Ramsey (1928, p. 548, eq.(3), δ = 0, ρ = 0; p. 554, eq.(9),
δ = 0, ρ > 0). A related “Keynes-Ramsey” rule relates changes in the prod-
uct [λ(t) k̇] to attained levels of utility, but the stated rule relies on an upper
bounded u(c) function (bliss point), see, Ramsey (1928,p. 527), Wan, Jr. (1971,
p. 315), Newbery (2008). We return to the issues with unbounded u(c).

The alternative characterizations of optimal changes in the shadow price,
λ̇(t), in (15), (16), can be combined to obtain the differential equation for the
optimal changes in per capita consumption, c, as

ċ = −
u′(c)

u′′(c)
[f ′(k)− (δ + ρ)] ≡ η(c) c [f ′(k)− (δ + ρ)] (17)

or
ċ/c = ĉ = η(c) [f ′(k)− (δ + ρ)] (18)

where, η(c) = −u′(c)/[u′′(c)c], is the intertemporal substitution elasticity. As
c(t) is the “decision (control) variable” in (9)–(10), it is more convenient to have
(17) directly instead of the costate variable λ(t) needed in (11).

Thus combined the differential equations of optimal capital accumulation
and consumption (8), (17), define a dynamic system in the state variables k
and c with the governing function, h(k, c), and g(k, c) on the closed set (first

quadrant), ℜ
2

+ :

k̇ = h(k, c) = f(k)− (n+ δ)k − c, (19)

ċ = g(k, c) = η(c) c [f ′(k)− (δ + ρ)] , (20)

By (13) the transversality condition (12) becomes

u′(c)k(t)e−(ρ−n)t → 0 as t → ∞. (21)

With the solutions, k(t), c(t), of (19-20), we can form relevant (diagnostic,
performance) auxiliary time paths, e.g., saving rate s(t) as given by, cf. (4), (7),

s(t) = 1 − C(t)/ Y (t) = 1 − c(t)/ y(t) = 1 − c(t)/ f(k(t)) (22)

A realistic behavior of s(t) is often a test and hallmark for evaluating the con-
crete specifications of the optimal saving dynamics (19-20).

Steady States (Saddle Points) within the Standard Optimal Saving Model
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If they exist, steady-state values of capital-labor ratios and per capita con-
sumptions in optimal one-sector growth models are critical points of (19-20):

[ ċ = 0 ⇔ k(t) = κ ] ⇔ [ f ′(κ) = ρ+ δ ] ; MPK(κ) = ρ+ δ (23)

[ k̇ = 0 ⇔ c(t) = c(κ) ] ⇔ [ c(κ) = f ′(κ)− (n+ δ)κ ] (24)

For the utility functions, u(c), a common practice is to use the class of isoelastic
CRRA utility function. Such convenient CRRA parametric form of u(c) is, see
Barro and Sala-i-Martin (1995, p. 141), Solow (2000, p. 114) :

u(c) =
c1−θ − 1

1− θ
, θ > 0; Rr(c) = θ ; η(c) = 1/θ (25)

Consider then the CES production function Y = F (L,K) and the associated
marginal and average products of capital are (Arrow et al. 1961, p. 230, La
Grandeville 2009, p. 90):

Y = F (L,K) = γ
[
(1− a)L

σ−1
σ + aK

σ−1
σ

] σ

σ−1

; 0 < a < 1, σ > 0

APL(k) = Y/L = y = f(k) = γ
[
(1− a) + ak

(σ−1)
σ

] σ

(σ−1)

(26)

in which γ is the efficiency parameter, a is the distribution parameter and σ is
the substitution parameter, respectively.

In the CES case (26), the dynamic system (19-20) becomes

k̇ = γ
[
(1− a) + ak

(σ−1)
σ

] σ

(σ−1)

− c− (n+ δ)k (27)

ċ = (c/θ)[γa
[
a+ (1− a)k

−(σ−1)
σ

] 1
(σ−1)

− δ − ρ] (28)

The steady-state values, (23), (24), for an extensive set of CD and CES pa-
rameter cases are exhibited in Table 1. The steady state values of Table 1 are
as is well-known the saddle points depicted below in Figure 1.1

Transitional Dynamics within the Standard Optimal Saving Model
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Table 1. Parametrizations for optimal one-sector growth models: CD and CES with CRRA

Parameter values - steady state models Model characteristics

case ρ n δ γ a σ κ c(κ) f(κ) MPL f(κ)/κ f ’(κ) εκ K/Y s(κ) ρ+ δ

1 0.050 0.02 0.05 1.0 0.20 1.0 2.378 1.023 1.189 0.951 0.500 0.100 0.200 2.000 0.140 0.100
2 0.050 0.02 0.05 1.0 0.25 1.0 3.393 1.119 1.357 1.018 0.400 0.100 0.250 2.500 0.175 0.100
3 0.050 0.02 0.05 1.0 0.40 1.0 10.079 1.814 2.520 1.512 0.250 0.100 0.400 4.000 0.280 0.100
4 0.050 0.02 0.05 3.0 0.40 1.0 62.898 11.321 15.724 9.435 0.250 0.100 0.400 4.000 0.280 0.100
5 0.070 0.02 0.05 1.0 0.40 1.0 7.438 1.710 2.231 1.339 0.300 0.120 0.400 3.333 0.233 0.120
6 0.075 0.02 0.08 1.0 0.40 1.0 4.855 1.396 1.881 1.129 0.388 0.155 0.400 2.581 0.258 0.155
7 0.100 0.02 0.08 1.0 0.40 1.0 3.784 1.325 1.703 1.022 0.450 0.180 0.400 2.222 0.222 0.180
8 0.120 0.02 0.08 1.0 0.40 1.0 3.175 1.270 1.587 0.952 0.500 0.200 0.400 2.000 0.200 0.200
9 0.100 0.02 0.08 2.0 0.40 1.0 12.014 4.205 5.406 3.244 0.450 0.180 0.400 2.222 0.222 0.180
10 0.050 0.02 0.08 0.3 0.40 1.0 0.875 0.197 0.284 0.171 0.325 0.130 0.400 3.077 0.308 0.130
11 0.050 0.02 0.08 1.0 0.60 1.0 45.764 5.339 9.915 3.966 0.217 0.130 0.600 4.615 0.461 0.130
12 0.050 0.02 0.08 1.0 0.40 1.0 6.509 1.464 2.115 1.269 0.325 0.130 0.400 3.077 0.308 0.130
13 0.150 0.02 0.05 1.0 0.60 1.0 15.588 4.105 5.196 2.078 0.333 0.200 0.600 3.000 0.210 0.200

1 0.050 0.02 0.05 1.0 0.25 0.5 1.775 0.999 1.123 0.945 0.632 0.100 0.158 1.581 0.111 0.100
2 0.050 0.02 0.05 1.0 0.40 0.5 2.667 1.146 1.333 1.067 0.500 0.100 0.200 2.000 0.140 0.100
3 0.050 0.02 0.05 1.0 0.60 0.5 4.624 1.564 1.888 1.425 0.408 0.100 0.245 2.449 0.172 0.100
4 0.050 0.02 0.05 3.0 0.60 0.5 9.107 5.802 6.439 5.529 0.707 0.100 0.141 1.414 0.099 0.100
5 0.075 0.02 0.05 1.0 0.40 1.5 53.718 5.624 9.384 2.669 0.175 0.125 0.716 5.724 0.400 0.125
6 0.075 0.02 0.05 1.0 0.60 1.2 820.885 67.504 124.966 22.356 0.152 0.125 0.821 6.569 0.461 0.125
7 0.100 0.02 0.08 0.3 0.40 1.5 0.385 0.174 0.212 0.143 0.551 0.180 0.327 1.814 0.181 0.180
8 0.100 0.02 0.08 0.2 0.40 1.5 0.162 0.094 0.110 0.080 0.675 0.180 0.267 1.481 0.148 0.180
9 0.060 0.02 0.05 1.0 0.40 1.7 108201.257 4478.988 12053.076 150.937 0.111 0.110 0.987 8.977 0.631 0.110

Parameters - persistent growth models Limits for k → ∞

1 0.100 0.02 0.05 1.0 0.60 1.5 ∞ ∞ ∞ ∞ 0.216 0.216 1.000 4.630 0.324 0.150
2 0.100 0.02 0.05 1.0 0.40 2.0 ∞ ∞ ∞ ∞ 0.160 0.160 1.000 6.250 0.438 0.150
3 0.060 0.02 0.08 1.0 0.40 3.0 ∞ ∞ ∞ ∞ 0.253 0.253 1.000 3.952 0.395 0.140
4 0.070 0.02 0.08 1.0 0.40 7.0 ∞ ∞ ∞ ∞ 0.343 0.343 1.000 2.915 0.292 0.150
5 0.080 0.02 0.05 1.0 0.40 3.0 ∞ ∞ ∞ ∞ 0.253 0.253 1.000 3.952 0.395 0.130
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3 Persistent growth: Solutions - Phase Portrait

With no critical points of (19-20), persistent per capita growth will prevail.

Assumption 1. Technology : The per capita function f(k), (5), has the con-
tinuity and differentiability properties as follows,

(i) f(k) ∈ C0([0,∞[) ∩ C1(]0,∞[), (ii) f(0) ≥ 0. (29)

It is further assumed that

(iii) ∀k > 0 : f ′(k) > δ + ρ. (30)

For a concave function with f(k) → ∞ as k → ∞, (30) becomes, cf. (6),

(iv) lim
k→∞

f ′(k) ≡ b > δ + ρ. (31)

It follows from (29)–(30) or (29) and (31) that the dynamic system (19)–(20)

has no stationary solutions in closed first quadrant, ℜ
2

+, [except possibly for
(0, 0)], and that the positive k-axis (c = 0) is a trajectory (orbit).

With regard to Ramsey (optimal) saving, it has been incumbent on us to
obtain sufficient conditions – applicable to a general GNP-function, f(k) and a
general utility function u(c) – that ensure persistent per capita growth.

✲

✻
c

k

a)

✲

✻
c

k

b)

ċ = 0

κ

k̇ = 0

q

A
■✌
✍❥

✲ ✲ ✲ ✲

k̇ = 0

■
■

■ ■

✶ ✶ ✶ ✶

✲✻ ✲✻

✛✻

✏✏✶
✏✏✶

I

II

Γ(t)

Figure 1: Dynamics with optimal saving

To characterize such situation, we give

Theorem 1. With optimal (Ramsey) saving, persistent (endogenous) per
capita growth is obtained if the concave per capita function f(k) and the in-
tertemporal substitution elasticity η(c) of u(c) or the rate of time preference ρ
satisfies, respectively

lim
k→∞

f ′(k) ≡ b > ρ+ δ, (32)

η = sup
c>0

η(c) <
b− (n+ δ)

b − (ρ+ δ)
⇔ ρ > (b− δ)

[η − 1

η

]
+

n

η
(33)

The two sufficient conditions, (32), (33), ensure the existence – below the isocline
k̇ = h(k, c) = 0 – of a separator, Γ(t), the particular orbit, depicted in Figure 1.2:

Γ(t) ≡ [k∗(t), c∗(t)], (34)
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This existence of the separator, (34) depicted in Figure 1.2, is required (neces-
sary) for persistent (endogenous) per capita growth.
With nondecreasing utility functions, u(c), satisfying (33), this separator (34)
in Figure 1.2 is the unique optimal solution satisfying (9)–(12) or (19) - (21) .

Proof.

Lemma 1. Separator Existence. If there exists a number d > 0 and a k0 > 0
such that ∀k ≥ k0, ∀c > 0:

f(k)/k − (n+ δ)− η(c) [f ′(k)− (δ + ρ)] ≥ d, (35)

then there exists to the system (19)–(20) an orbit –Γ(t) ≡ [k∗(t), c∗(t)], t ∈ ℜ,
such that k∗(t) → ∞, c∗(t) → ∞, as t → ∞ – which separates the first quadrant
into two regions I and II in Figure 1.2.
A solution (orbit), [k(t), c(t)], t ∈ ℜ, starting in the lower region I has the same
behavior as Γ(t) for t → ∞ - whereas an orbit, [k(t), c(t)], t ∈ ℜ, starting in the
upper region II eventually meets the c-axis, k = 0.

Proof. Consider the region Wα = {(k, c) | 0 ≤ c ≤ αk ∧ k ≥ k0}, where α is a
positive constant chosen such that Wα becomes positively invariant, cf. Figure 2.

✲

✻
c

k

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

✲ ✲ ✲ ✲ ✲
k0

k̇ = 0

c = αk

Wα

■
■

■
■

✲

✲

✲

Figure 2: The positive invariant region, Wα, with endogenous (persistent) per
capita growth

Since the vector field (19)–(20) is directed inward on the line k = k0, and since
the positive k-axis is a trajectory, the region Wα is positive invariant iff the
vector field points inward on the line c = αk, (k > k0). Since the inward
pointing normal to the line c = αk is (α,−1), we require

αh(k, αk)− g(k, αk) > 0, for k ≥ k0. (36)

Inserting the expressions for h, (19), and g, (20), into (36), and simplifying, we
find the requirement :

α < f(k)/k − (n+ δ)− η(αk) [f ′(k)− (δ + ρ)] ≡ R(k) for k ≥ k0. (37)

A positively invariant region Wα (with some α > 0) exists iff R(k), (37), is
bounded from below by a positive constant. By (35), we have for k ≥ k0

R(k) ≥ d > 0. (38)
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Choose α to be any positive constant less than d. Then Wα is positively
invariant. For any orbit in the open first quadrant, ℜ2

+, we have by (30) that ċ >
0. Accordingly, it follows that any orbit starting in Wα must satisfy k(t) → ∞,
c(t) → ∞, as t → ∞. Any orbit in ℜ2

+ must either behave as just characterized

(class I) or cross the k̇ = 0 nullcline (class II). In the latter case, the orbit will
meet the c-axis eventually, since otherwise c(t) → ∞ and k(t) → kε as t → ∞,
for some kε ≥ 0.

For t sufficiently large, i.e., k sufficiently small, say 0 < k ≤ k∗, we have
from the sytem (19)–(20)

−
dc

dk
= −

ċ

k̇
=

η(c)[f ′(k)− ρ− δ]

−(1/c)[f(k)− (n+ δ)k] + 1
≤

η̄f ′(k)

1/2
≡ af ′(k), (39)

where η̄ is an upper bound for η(c). This immediately rules out kε > 0 since then
− dc

dk
would be bounded above by a constant. If kε = 0, we find by integrating

from k to k∗ for 0 < k < k∗

c(k) ≤ c(k∗) + af(k∗), 0 < k ≤ k∗, (40)

contradicting c(k) → ∞ as k → 0+.
To get the separating orbit, Γ, consider a curve, C, connecting (k, c) = (1, 0)

with (k, c) = (0, 1) and intersecting the nullcline k̇ = 0 once (think of a circle).
We can write C = CI ∪ CII ∪ {(1, 0), (0, 1)} where CI and CII consists of
the points through which pass orbits of class I and II, respectively. CII must
be an open and connected part of C. Since CI and CII are both non-empty,
CI ∪{(1, 0)} must be closed. The separating orbit Γ goes through the end point
of CI .�

A powerful and useful extension of Lemma 1A is the simpler separator con-
dition stated in:

Corollary 1. Separator, Sufficient Condition. With the assumptions of (29)
and (31), the sufficient conditions for existence of the separating orbit, Γ(t), cf.
Lemma 1, is given by the restriction

η = sup
c>0

η(c) <
b− (n+ δ)

b− (ρ+ δ)
, (41)

where η is the upper bound of the intertemporal substitution elasticity η(c) of
u(c) and where b is given in (31).

Proof. Since f(k) → ∞ as k → ∞, it follows from (31) and l’Hospital that
y(k)/k → b as k → ∞. Thus for any number ε > 0, there exists a number, kε,
such that for k > kε, we have, cf. (35)

f(k)/k − (n+ δ)− η(c) [f ′(k)− (δ + ρ)]

≥ b− ε− (n+ δ)− sup
c>0

η(c) [b+ ε− (δ + ρ)]

= b− (n+ δ)− η [b− (δ + ρ)]− ε(1 + η) ≡ d. (42)

By assumption (31) and (41), the sum of the first three terms of d is posi-
tive. Thus, by choosing ε > 0 sufficiently small, also d is positive. Thus, the
requirements of Lemma 1 are satisfied, and hence the separating orbit Γ(t)
exists.�
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Lemma 2. Convergence. If any chosen utility function u(c) is assumed to
satisfy

∀c ≥ c0 ≥ 0 : 0 ≤ u(c) ≤ Ac, (43)

where A is any positive constant, then the convergence of the integral, (3),
V =

∫
∞

0
u[c(t)]e−(ρ−n)tdt for a solution [k(t), c(t)] to the system (19)–(20) is

assured, if

η = sup
c>0

η(c) <
ρ− n

b− (δ + ρ)
, (44)

where b is given by (31).

Proof. Let ε > 0. Choose kε such that f ′(k) < b + ε for k ≥ kε. Choose tε
such that k(t) > kε for t > tε. Then from (20), we find

∀t ≥ tε : ċ < c sup
c>0

η(c)[(b + ε)− (δ + ρ)] ≡ αc. (45)

It follows from (45) that c(t) ≤ c(tε)e
α(t−tε), and hence, cf. (43)

u[c(t)]e−(ρ−n)t ≤ Ac(t)e−(ρ−n)t ≤ Ac(tε)e
−αtεe−(ρ−n)−α)t. (46)

Thus the convergence of the integral U is assured, if α < ρ − n, which by (45)
says

η = sup
c>0

η(c) <
ρ− n

b+ ε− (δ + ρ)
. (47)

With ε > 0 chosen sufficiently small, the requirement (47) can be satisfied by
the condition (44). �

Remark 1. The condition (44) is stronger that (41) of Corollary 1, since by
assumption (31), we have

ρ− n

b− (ρ+ δ)
<

b − (n+ δ)

b − (ρ+ δ)
. (48)

In short, the existence of separating orbit Γ is assured by η < 1, but η < 1 does
not itself ensure convergence of U . However, for isoelastic u(c) with ∀c, η(c) = η
(constant), it can be verified that the convergence of U is in fact also ensured
by the existence condition of the separating orbit, (41).

Indeed, with constant intertemporal elasticity of substitution, the separating
orbit in Figure 1.2 is the optimal solution [k∗(t), c∗(t)], satisfying the transver-
sality condition; see hereto Gandolfo (1996, p. 390).
It remains to be seen how (44) may be relaxed for general non-isoelastic u(c) in
Ramsey problems. �

Condition (32) is analogous to with a low ρ - taking over the role of a large s.
But (32) is not always enough to ensure persistent growth, as (33) is also needed.
However, if u(c) always has η(c) ≤ 1, ∀c > 0, then (33) is automatically satisfied
(Hall 1988) estimated that η is much below unity, 0.1 < η < 0.4., irrespective
of the size of ρ > 0. If η(c) > 1, then ρ must be large enough to satisfy (33).
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4 Numerical examples - CES and Cob Douglas

technologies and

CRRA preferences

In this section, we provide some numerical examples to illustrate the optimal
system dynamics (19-20) and Theorem 1. These examples are provided for two
types of production functions, namely for CES and extended Cobb-Douglas.

For CRRA (25), the two conditions, (32), (33), for the existence of both
endogenous growth and optimal solutions [a finte integral of V, (9), and the
separator, (34)] can be summarized as:

b − δ > ρ > (b − δ)(1− θ) + nθ (49)

The long-run (asymptotic) saving rate (s*) is given by

s∗ = 1 − x∗/ (z∗ = b ) = 1 −
ρ − (b − δ)(1− θ) − nθ

b θ
(50)

In the CES case (26), the isocline k̇ = 0 of the dynamic system (19-20) with
(49) becomes

k̇ = 0 ⇔ c = γ
[
(1− a) + ak

(σ−1)
σ

] σ

(σ−1)

− (n+ δ)k. (51)

4.1 Baseline CES

0 50 100 150 200 250
k0

10

20

30

40

50

c

k = 0

Separator

Over-saving

.
Under-saving

Figure 3: The phase portrait for the original space. CES-baseline.

We calculate the parametric time paths by the time elimination method sug-
gested by Mulligan and Sala-i-Martin (1993). This method takes the (known)
steady state as its fixed point and proceeds backwards in the time along the
stable saddle path to discover the route from the initial and to the asymptotic
state. In system (27-51), however, the asymptotic growth rate is positive in-
dicating that the necessary fixed point is not available. Therefore, (27-51) is
transformed into another system with a well-defined steady state by adopting

10



new variables z = f(k)/k and x = c/k (see also Barro and Sala-i-Martin 2003,
p. 230-231).1

MPK(k) = f ′(k) = γa
[
a+ (1− a)k

−(σ−1)
σ

] 1
(σ−1)

= γ
σ−1
σ a [APK(k)]

1
σ (52)

The transformed system is:

ż = −z[1− γ
σ−1
σ az

1−σ

σ ][z − x− (n+ δ)] (53)

= −z[1− (z/A)−Ψ][z − x− (n+ δ)]

ẋ = x[x − z(1−
1

θ
γ

σ−1
σ az

1−σ

σ ) + n+ δ −
δ + ρ

θ
] (54)

= x[x− z(1−
1

θ
(z/A)−Ψ) + n+ δ −

δ + ρ

θ
] (55)

with the isoclines and the steady state

ż = 0 ⇔ x = γa
σ

σ−1 or x = z − (n+ δ) (56)

ẋ = 0 ⇔ x = z(1−
1

θ
γ

σ−1
σ az

1−σ

σ )− (n+ δ) +
δ + ρ

θ
(57)

z∗ = γa
σ

σ−1 (58)

x∗ = z∗(1−
1

θ
)− (n+ δ) +

δ + ρ

θ
(59)

= (z∗ − δ)(1 −
1

θ
) +

ρ

θ
− n
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Figure 4: The time paths for saving and capital. CES-baseline.

Consider now parameters of values γ = 1.6, a = 0.5, σ = 1.5, δ = 0.03,
ρ = 0.12, n = 0.01, and θ = 5. For this CES-baseline parameter set we have

1But compare 55 with (4.66) in Barro and Sala-i-Martin (2003).
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x∗ = 0.15, z∗ = 0.20, and s∗ = 0.25. Figures 3 and below illustrate the CES-
baseline set, while the phase portrait for the the transformed z, x-space is given
in the appendix. Figure 3 shows the system (27-51) in the k, c-space.2 The
separator appears in the latter as the counterpart of the stable saddle path in
the former.

0 20 40 60 80 100
0

20

40

60

80

100

120

time (years)

consumption

Over-saving

Under-saving

Separator

Figure 5: The time paths for consumption, short run and long run. CES-
baseline.

Figure 4 illustrates the time paths for capital accumulation and saving, show-
ing how over-saving soon wedges the capital stock above its optimal path (sepa-
rator) and capital starts to accumulate very fast as almost all output is devoted
to saving. On the other hand, under-saving may dilute the capital stock close
to zero in some 35 − 50 years. Figure 5 for consumption thus illustrates that
under-saving collapses consumption but, on the other hand, over-saving causes
minor deviations from the optimal path in the short run. In the long run, how-
ever, over-saving starts to bite; the rightmost panel of Figure 5 shows that such
consumption which lies 0.001−0.005% below its optimal level initially, causes it
to fall some 50% below the optimum in hundred years. Nevertheless, the inter-
esting conclusion is that there exist paths in the neighborhood of the separator
which, in terms of short-run consumption, generate very similar outcomes than
the optimal path.

4.2 Sensitivity analysis for CES

Consider now variations in the CES-baseline parameter set above. Several types
of sensitivity analysis are possible, including variations of one parameter at a
time as well as simultaneous variations of several parameters. In this paper,
we provide two new parameter sets, each of which generates exactly the same
asymptotic outcome x∗ = 0.15, z∗ = 0.20, and s∗ = 0.25 as the CES-baseline.
In both parameter sets, only two parameters are varied. In the first set, denoted

2See also Barro and Sala-i-Martin (2003, fig. 4.3) and Gandolfo (1997, fig. 22.3).
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as low − θ − high− ρ, we decrease the value of θ from 5 to 2 and increase the
value of ρ from 0.12 to 0.15. In the second set (low−σ−high−γ), we decrease
the value of σ from 1.5 to 1.2 and increase the value of γ from 1.60 to 12.80.

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

Time (years)

Economic growth rate

low-σ-high-γ

low-θ-high-ρ

CES-baseline

Figure 6: The time paths for the economic growth rates and saving rates.

Figure 6 (left panel) illustrating the optimal economic growth rates for each
set, shows that considerable differences exist as the CES-baseline generates low
and stable growth rates while low−σ−high−γ generates excessive and unstable
ones and those for low− θ− high− ρ lie between these two extremes. Figure 6
(right panel) also shows the saving rates with analogous differences: for low −
σ − high − γ the saving rates are high and decreasing but for CES-baseline
low and increasing while low − θ − high − ρ again generates the intermediate
values. The time paths of consumption and capital naturally respond to these
findings. For low − σ − high − γ, for example, excessive capital accumulation
takes place initially. Later, capital accumulation levels off but it exceeds that
in the CES-baseline and low − θ − high− ρ even in the long run.

20 40 60 80

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Saving rate

Time (years)

s*

100

low-σ-high-γ

low-θ-high-ρ







CES-baseline

Asymptotic

Figure 7: The time paths for the

To summarize, one can say that, in spite of asymptotic similarity, differ-
ent parameter sets can produce very different temporal outcomes. Therefore,
depending upon the values of the parameters, the endogenous growth model dis-
cussed here is able to explain several historical patterns of capital accumulation,
saving and consumption.
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4.3 Extended Cobb-Douglas

Consider the extended Cobb-Douglas production function Y = F (L,K) and the
associated average and marginal products of capital:

Y = F (L,K) = AK +BKα · L1−α ,

APL(k) = Y/L = APL(k) = f(k) = Ak +Bkα , (60)

MPK(k) = f ′(k) = A+ αBkα−1 ,

where A > 0 ; B > 0 ; 0 < α < 1. The dynamics of the Ramsay system discussed
here are

k̇ = f(k)− c− (n+ δ)k (61)

ċ = (c/θ)[f ′(k)− σ − ρ] (62)

In the extended Cobb-Douglas case this implies

k̇ = Ak +Bkα − c− (n+ δ)k (63)

ċ = (c/θ)[A+ αBkα−1 − σ − ρ] (64)

The isocline for k is:

k̇ = 0 ⇔ c = Ak +Bkα − (n+ δ)k (65)

Given the transformations z = f(k)/k and x = c/k, the transformed system
becomes:

ż = −(1− α)(z −A)(z − x− n− δ) , (66)

ẋ = x[(x − ϕ)−
θ − α

θ
· (z −A) , (67)

where ϕ = (A − δ) · (θ − 1)/θ + ρ/θ − n. The isoclines and the steady state of
the transformed system are:

ż = 0 ⇔ x = z − n− δ (68)

ẋ = 0 ⇔ x = ϕ+ (z −A)−
α

θ
· [
( z

A

)1−ϕ

− 1] (69)

z∗ = A (70)

x∗ = ϕ (71)

To compare CES and Cobb-Douglas results, consider Cobb-Douglas param-
eters A = 0.20, B = 1.5, and α = 0.5 and keep other parameters as in the
CES-baseline (δ = 0.03, ρ = 0.12, n = 0.01, and θ = 5). This parameter
set generates exactly the same asymptotic values x∗ = 0.15, z∗ = 0.20, and
s∗ = 0.25 as the CES-baseline. Furthermore, Figure 8 shows that the Cobb-
Douglas phase portrait is practically identical to its CES counterpart in Figure
3, and the time paths for capital and consumption in Figure 9 closely resemble
those in Figures 5 and , indicating that, for suitable parameter sets, one can
generate identical results for these two production functions.

They were both as in natural sciences concerned with exact parametric laws
of description and motion.
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Figure 8: The phase portrait for the original space. Cobb-Douglas production
function.
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Figure 9: The time paths for capital accumulation and consumption. Cobb-
Douglas production function.

5 Final Comments and Conclusion

In this paper, we explore the conditions sufficient for persistent growth in an
otherwise standard Ramsey model. Newbery (2008) has stated: “Ramsey´s
formulation of the problem served as a model for almost all subsequent studies
of optimal economic growth, and, with the critical addition of a growing pop-
ulation, might have created neoclassical growth theory about 30 years before
Solow´s (1956) contribution.”

In contrast to the common wisdom, the Ramsey model is capable of gener-
ating endogenous growth. We also show that, in the case of persistent growth,
much of the ingenious phase diagram can be preserved, even though the sad-
dle path and steady state structure disappears because the optimal path shows
up as a separator in the phase portrait. Beneath this separator, over-saving
diminishes consumption, ultimately leading to a sub-optimal situation where
all incomes are saved. On the other hand, above the separator under-saving
suddenly collapses the economy as its productive capital vanishes to zero while
over-saving causes minor deviations from the optimal path in the short run.

The numerical examples for CRRA preferences and CES and Cobb Douglas
technologies show that under-saving seriously damages the economy, even in a
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markedly short time of 20 − 45 years. On the other hand, over-saving seekps
consumption at almost optimal level in the short run. In the long run, however,
over-saving starts to bite; our results shows that such saving, which lies 0.001−
0.005% below its optimal level initially, causes consumption to fall some 50%
below the optimum in a hundred years. Nevertheless, the interesting conclusion
is that there exist paths in the neighborhood of the separator which, in terms of
short-run consumption, generate very similar outcomes than the optimal path.
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Figure A: The phase portrait for the transformed space. CES-baseline.
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