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Kappale 1 käsittelee ergoditeoriaa. Koska ergoditeoria on hyvin laaja matematiikan osa-alue, tämä
kappale on aiheeseen vain lyhyt johdatus. Eräs alan tärkeimmistä tuloksista, Birkhoffin ergodilause
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godinen stokastinen prosessi, joita Shannon-McMillan-Breiman -lauseen väite koskee.
Kappaleen 2 aiheena on informaatioteoria ja Shannon-McMillan-Breiman -lause. Koska lukijalta ei
oleteta minkäänlaista etukäteistietoa informaatioteoriasta, kappale alkaa johdatuksella informaa-
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Preface

The subject of this Master's Thesis is Shannon-McMillan-Breiman theorem, a famous
and important result in information theory. Since the theorem is a statement about ergodic
stochastic processes and its proof utilises Birkho�'s ergodic theorem, a whole chapter has
been devoted to ergodic theory.

Ergodic theory has developed into a large branch of mathematics, and so the Chapter
1 is only a brief glance at the subject. Nevertheless, we will prove one of the most
important theorems in ergodic theory, the before-mentioned Birkho�'s ergodic theorem.
This theorem is a strong statement about the average behaviour of certain stochastic
processes (or dynamical systems), and it can be seen as a generalisation of the Strong
Law of Large Numbers.

Chapter 2 discusses information theory and the Shannon-McMillan-Breiman theorem.
No previous knowledge about information theory is assumed, and therefore the chap-
ter starts with an introduction to information theory. All fundamental de�nitions and
theorems concerning the entropy of discrete random variables are provided. After this
introduction, we study the entropy of stochastic processes, which in turn leads us to the
Asymptotic Equipartition Property (the AEP). Informally, a stochastic process has the
AEP if almost all sample paths belong to a rather thin set, called the set of typical se-
quences, which despite having few elements contains most of the probability mass. Then
we prove that independent and identically distributed processes have the AEP, and con-
sider its consequences and applications such as data compression. After this, we present
the Shannon-McMillan-Theorem which states that stationary, ergodic processes with �-
nite state space have the AEP. The rest of the thesis is then devoted to the rather long,
but interesting proof of the theorem.

The reader is assumed to have basic knowledge about measure-theoretic probability
theory. Familiarity with Markov chains, which form an important class of stationary,
ergodic processes, is also assumed. They will appear in numerous examples throughout
the text. However, my aim has been to make this text as self-contained as possible, and
therefore a preliminary Chapter 0 is included. Topics discussed in this chapter include
in�nite dimensional product spaces and sigma-algebras, discrete-time stochastic processes,
conditional probability and discrete-time martingale convergence theory.

Nearly all theorems and lemmas presented in this Master's Thesis are also proved.
Most notable exceptions are the Kolmogorov Extension Theorem, the π-λ theorem and
the Radon-Nikodym theorem. The proofs had to be omitted in order to keep Chapter 0
reasonably short.
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Frequently Used Notation

I. Sets and Spaces

(1) ∅ is the empty set.

(2) N is the set of natural numbers 1, 2, 3, . . ..

(3) N0 is the set of consisting of zero and the natural numbers 1, 2, 3, . . ..

(4) Z is the set of integers.

(5) R is the set of real numbers.

(6) Rn is the n-dimensional real space.

(7) R is the extended set of real numbers, that is, R = R ∪ {+∞,−∞}.
(8) B(X) is the collection of Borel subsets of topological space X.

(9) If X is any set, then P(X) is the power set of X, that is, the collection of all subsets
of X.

(10) The number of elements in X is denoted by |X|. If X is in�nite, then |X| =∞.

II. σ-algebras

(1) σ(C ) is the σ-algebra generated by C , that is, the intersection of all σ-algebras that
contain C .

(2)
∏n

k=1 Fk, or F1×F2×· · ·×Fn, is the product σ-algebra of σ-algebras F1,F2, . . . ,Fn.
It may be written as F n if Fk = F for k ≤ n.

III. Limits

(1) If A,A1, A2, . . . are subsets of some set Ω, then An ↑ Ameans that A1 ⊂ A2 ⊂ A3 ⊂ . . .
and

⋃∞
i=1Ai = A. Similarly, An ↓ Ameans that A1 ⊃ A2 ⊃ A3 ⊃ . . . and

⋂∞
i=1 Ai = A.

(2) If x, x1, x2, . . . belong to R (or R), then xn ↑ x means that the xn form an increasing
sequence and limn→∞ xn = x.

(3) If f, f1, f2, . . . are functions from Ω to R (or R), then fn ↑ f means that fn(ω) ↑ f(ω)
holds for each ω ∈ Ω.
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IV. Functions

(1) IA is the indicator function of set A, that is, IA(ω) = 1 for ω ∈ A and 0 for ω ∈ Ac.
(2) If f : Ω → R is a function, then f+ = max{f, 0} is the positive part and f− =
−min{f, 0} is the negative part of f .

Other Comments on Notation

If (Ω1,F1) and (Ω2,F2) are measurable spaces, we say that a function f : Ω1 → Ω2 is
measurable F1/F2 if we have f−1A ∈ F1 for all A ∈ F2. If Ω2 = Rn and F2 = B(Rn),
we may indicate that f is measurable F1/F2 by saying that f is Borel measurable.

If X : Ω1 → Ω2 is measurable F1/F2 and F1 is equipped with a probability measure P ,
then X is called a random variable. Thus, since (Ω2,F2) is not necessarily (R,B(R)),
we do not assume that random variables are real-valued functions, and therefore there is
no strict distinction between random variables and vectors. But the term random vector
may be used when convenient, especially when X1, X2, . . . , Xn are random variables and
we want to treat them as a single object (X1, X2, . . . , Xn).

The distribution of random variable X is the probability measure PX on F2 de�ned by

PX(A) = P (X ∈ A), A ∈ F2.

If (Ω,F , P ) is a probability space, then the space of all real-valued integrable random
variables (that is, functions f for which E[|f |] <∞) is denoted by L1(Ω). If Y, Y1, Y2, . . . ∈
L1(Ω), then we may say that the Yn converge to Y in L1 if E[|Yn − Y |] → 0 as n → ∞.
And if supn∈NE[|Yn|] <∞, then we say that the Yn are bounded in L1.
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Chapter 0

Preliminaries

In this chapter we discuss certain topics in probability theory that are essential prerequi-
sities for the later chapters.

0.1 The π-λ theorem and uniqueness of probability mea-

sures

Suppose that F is a σ-algebra, and we want to prove that some property holds for all
A ∈ F . For instance, we may want to prove that probability measures P and Q agree
on F , that is, P (A) = Q(A) for all A ∈ F . Although it may be di�cult to check
directly that the property truly holds for all A ∈ F , it often su�ces to check that the
property holds in a collection of subsets that generates F . As we will see, this is possible
if the generating set is a π-system, and the class of sets for which the property holds is a
λ-system.

De�nition 0.1. Suppose that Ω is a nonempty set and P ⊂ P(Ω). Then P is called
a π-system if A,B ∈ P implies that A ∩ B ∈ P, that is, P is closed under �nite
intersections.

De�nition 0.2. Suppose that Ω is a nonempty set and L ⊂ P(Ω). Then L is a λ-system
if the following conditions are met:

(1) Ω ∈ L ;

(2) A ∈ L implies Ac ∈ L ;

(3) if A1, A2, . . . ∈ L are disjoint, then
⋃∞
n=1 An ∈ L .

Remark 0.3. It is clear that σ-algebras are λ-systems, but the converse is not true (in a
four-point space Ω, let L consist of Ω, ∅ and the six two-point sets).
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We may now present the extremely useful π-λ theorem, which will be applied numerous
times in this Master's Thesis. Its rather technical proof is omitted.

Theorem 0.4. (The π-λ theorem) If P is a π-system and L is a λ-system, then P ⊂ L
implies that σ(P) ⊂ L.

Proof. See [3, p. 42] .

To illustrate how the π-λ theorem is used in practice, we will now prove an importan-
tant uniqueness theorem for probability measures.

Theorem 0.5. Suppose that P is a π-system, and P and Q are probability measures on
σ(P). If P and Q agree on P, then P = Q.

Proof. Let L = {A ∈ σ(P) : P (A) = Q(A)}. If we can show that L is a λ-system, then
by hypothesis P ⊂ L and the π-λ theorem implies that σ(P) ⊂ L , that is, we have
P (A) = Q(A) for all A ∈ σ(P).

Of course Ω ∈ L , and if A ∈ L , then P (Ac) = 1 − P (A) = 1 − Q(A) = Q(Ac),
and thus Ac ∈ L . If A1, A2, . . . are disjoint L -sets, then P (

⋃∞
n=1An) =

∑∞
n=1 P (An) =∑∞

n=1Q(An) = Q(
⋃∞
n=1An), which implies that

⋃∞
n=1An ∈ L . Therefore, L is a λ-

system.

0.2 In�nite product spaces and σ-algebras

Recall from probability theory that if (Ω1,F1), (Ω2,F2), . . . , (Ωn,Fn) are measurable
spaces, then the product space Ω1 × Ω2 × · · ·Ωn may be equipped with the σ-algebra∏n

k=1 Fk generated by measurable rectangles, that is, sets of form F1×F2×· · ·×Fn with
Fi ∈ Fi for 1 ≤ i ≤ n. Morever, if each (Ωk,Fk) is equipped with a probability measure
Pk, then there exists a unique probability measure P on

∏n
k=1 Fk, called the product

measure of P1, P2, . . . , Pn, such that

P (F1 × F2 × · · · × Fn) = P1(F1)P2(F2) · · ·Pn(Fn)

for all measurable rectangles. Our aim is to extend this idea to in�nite products of
probability spaces.

Suppose that T is any ordered set and (Ωk,Fk)k∈T is a collection of measurable spaces.
Let

∏
k∈T Ωk be the product space formed by the sets Ωk. For example, if T = Z, then

the elements of
∏

k∈T Ωk are sequences ω = (. . . , ω−1, ω0, ω1, . . .) such that ωk ∈ Ωk for
all k ∈ Z. If T = N, then the product space consists of sequences ω = (ω1, ω2, . . .) with
ωk ∈ Ωk for all k ∈ N. If Ωk = Ω for all k ∈ T , then we may write

∏
k∈T Ωk = ΩT ; if

T = N, it is customary to write ΩT as Ω∞. We want to equip
∏

k∈T Ωk with a σ-algebra.
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Let k1 < k2 < . . . < kn ∈ T and B ⊂
∏n

i=1 Ωki . De�ne

C(B) = {ω : (ωk1 , ωk2 , . . . , ωkn) ∈ B}.

If B ∈
∏n

i=1 Fki , then C(B) is called a cylinder with base B at (k1, k2, . . . , kn). The
cylinder is called a measurable rectangle if B is of form B1 × · · · × Bn with Bi ∈ Fki for
all 1 ≤ i ≤ n.

Let
∏

k∈T Fk be the σ-algebra generated by the cylinder sets. If Fk = F for all k ∈ T ,
then we may write

∏
k∈T Fk = F T (if T = N, then F T may also be written as F∞). By

the following lemma,
∏

k∈T Fk is also generated by measurable rectangles.

Lemma 0.6. The σ-algebras generated by cylinder sets and measurable rectangles coincide
with each other.

Proof. Since measurable rectangles are cylinders, it is clear that it is enough to show that
the σ-algebra FMR generated by the measurable rectangles contains the cylinder sets.
For each n ∈ N and k1 < k2 < . . . < kn ∈ T , put

Ck1,k2,...,kn = {A ⊂
n∏
i=1

Ωki : C(A) ∈ FMR}.

It is easy to check that Ck1,k2,...,kn is a σ-algebra. But sets of form F1×F2×· · ·×Fn, Fi ∈ Fi,
clearly belong to Ck1,k2,...,kn . These sets generate the σ-algebra

∏n
i=1 Fki , which implies

that all cylinder sets with bases at (k1, k2, . . . , kn) belong to FMR.

Observe that cylinders do not have unique bases. For example, if B ∈ F1, then
C(B) = C(B × Ω2). This idea is formalised in the next lemma.

Lemma 0.7. Let C(B) be a cylinder with base B at (k1, k2, . . . , kn). Suppose that
(k1, k2, . . . , kn) ⊂ (j1, j2, . . . , jm), j1 < j2 < . . . < jm. Then there exists a base set B′ at
(j1, j2, . . . , jm) such that C(B) = C(B′).

Proof. If B′ = {ω ∈
∏m

k=1 Ωjk : (ωk1 , ωk2 , . . . , ωkn) ∈ B}, then clearly C(B) = C(B′).
Therefore, it su�ces to show that B′ ∈

∏m
k=1 Fjk .

Let C be the class of sets C in
∏n

i=1 Fki for which {ω ∈
∏m

k=1 Ωjk : (ωk1 , ωk2 , . . . , ωkn) ∈
C} belongs to

∏m
k=1 Fjk . It is easy to check that C is a σ-algebra. Since measurable

rectangles (which generate
∏n

i=1 Fki) belong to C , it follows that
∏n

i=1 Fki ⊂ C and thus
B′ ∈ C .

Thus if C(B1) and C(B2) are two cylinders with bases B1 and B2, we may assume that
the coordinates of the base sets are the same. Now the following result is easy to prove:

Lemma 0.8. The cylinder sets form a π-system, and so do the measurable rectangles.
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Proof. Let C(B1) and C(B2) be two cylinders with bases B1 and B2 at (k1, k2, . . . , kn).
Then

C(B1) ∩ C(B2) = {ω : (ωk1 , . . . , ωkn) ∈ B1} ∩ {ω : (ωk1 , . . . , ωkn) ∈ B2}
= {ω : (ωk1 , . . . , ωkn) ∈ B1 ∩B2} = C(B1 ∩B2).

Since B1∩B2 ∈
∏n

i=1 Fki , C(B1)∩C(B2) is a cylinder with base B1∩B2 at (k1, k2, . . . , kn).
This proves that the cylinder sets form a π-system.

If C(B1) and C(B2) are measurable rectangles, then the intersection B1 ∩ B2 is again
a cartesian product, which implies that C(B1 ∩B2) is a measurable rectangle. Therefore,
the measurable rectangles form a π-system as well.

In the next section, we will construct probability measures on product σ-algebras.

0.3 Stochastic processes

A stochastic process is a collection (Xt)t∈T of random variables de�ned on some probability
space (Ω,F , P ). The random variables take values in a second measurable space (S,S )
called the state space. The parameter set T is usually [0,∞) (a continuous time process),
Z or N (discrete time processes). We note that

• for each t ∈ T , the function ω 7→ Xt(ω) is measurable F/S ,

• for a �xed sample point ω ∈ Ω, the function t 7→ Xt(ω) is called the sample path of
the process associated with ω.

From here on, we will only discuss discrete time processes with T = N or T = Z. The
state space will usually be (R,B(R)) or some countable set S in which case we may take
P(S) as the σ-algebra.

De�nition 0.9. If k1 < k2 < . . . < kn and ki ∈ T for each i ≤ n, then the marginal
distribution of Xk1 , Xk2 , . . . , Xkn is the probability distribution

PXk1 ,Xk2 ,...,Xkn (A) = P [(Xk1 , Xk2 , . . . , Xkn) ∈ A], A ∈ S n.

Observe that if T = N and A′ = {s ∈ Skn : (sk1 , sk2 , . . . , skn) ∈ A}, then

PXk1 ,Xk2 ,...,Xkn (A) = P [(X1, X2, . . . , Xkn) ∈ A′] = PX1,X2...,Xkn
(A′),

and we conclude that all the marginal distributions are determined by the marginal dis-
tributions of X1, X2, . . . , Xn, n ∈ N. Similarly, if T = Z, the marginal distributions are
determined by the marginal distributions of X−n, . . . , X0, . . . , Xn, n ∈ N.

The concept of stationarity will play an important role later in this text. Intuitively,
it means that the probability structure of the process is independent of time.
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De�nition 0.10. Let (Xt)t∈T be a stochastic process with T = N or T = Z. We
say that the process is stationary if for any n,m ∈ N and k1 < k2 < . . . < kn ∈
T , the marginal distribution of Xk1 , Xk2 , . . . , Xkn equals the marginal distribution of
Xk1+m, Xk2+m, . . . , Xkn+m.

For example, a sequence of independent, identically distributed random variables is
clearly a stationary process. Another good example of a stationary process is an aperi-
odic, irreducible Markov chain: if the initial distribution of the Markov chain equals its
stationary distribution, then the process is stationary.

Distribution of a stochastic process

Suppose that X = (Xk)k∈T is a stochastic process de�ned on (Ω,F , P ). The process
de�nes a function X : Ω→ ST by

(X(ω))t = Xt(ω), t ∈ T.

For example, if T = N, then X(ω) = (X1(ω), X2(ω), . . .). Let us equip the space ST with
the σ-algebra S T generated by the cylinder sets. We want to show that X is measurable
F/S T .

Lemma 0.11. Suppose that (Ω,F ) is a measurable space and f is a function from Ω
to Ω′. Let G be a collection of subsets of Ω′. If f−1G ∈ F for all G ∈ G , then f is
measurable F/σ(G ).

Proof. Let C = {C ⊂ Ω′ : f−1C ∈ F}. It is easy to see that C is a σ-algebra. But
G ⊂ C and therefore σ(G ) ⊂ C . This proves that f is measurable F/σ(G ).

Now let A be a one-dimensional cylinder set, that is, A = {s ∈ ST : sk ∈ A′} for
some k ∈ T and A′ ∈ S . Since measurable rectangles can be written as intersections of
one-dimensional cylinders, the σ-algebra generated by the one-dimensional cylinder sets
coincides with S T . And since

X−1A = {ω : X(ω) ∈ A} = {ω : Xk(ω) ∈ A′} = X−1
k A′ ∈ F ,

the previous lemma implies that X is measurable F/S T . Hence, stochastic processes are
random variables taking values in ST . We may now de�ne the distribution of a stochastic
process:

De�nition 0.12. The distribution of a stochastic processX is the probability distribution
PX on S T de�ned by the formula PX(A) = P (X ∈ A), A ∈ S T .
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The distribution of a process is determined by its marginal distributions. This is a
direct consequence of Theorem 0.5: if A = {s ∈ ST : (sk1 , sk2 , . . . , skn) ∈ A′} is a cylinder
set, then PX(A) is determined by the marginal distribution of Xk1 , Xk2 , . . . , Xkn . Since
S T is generated by the cylinders, PX is uniquely determined.

Recall from probability theory that if X is a real-valued random variable and g is
Borel measurable, then ∫

Ω

g(X) dP =

∫
R
g dPX .

An analogous formula holds for our generalized random variables such as stochastic pro-
cesses.

Lemma 0.13. Suppose that X : (Ω1,F1) → (Ω2,F2) is measurable F1/F2, and g :
Ω2 → R is a Borel measurable function. If g(X) ∈ L1(Ω), then∫

Ω1

g(X) dP =

∫
Ω2

g dPX .

Proof. The general case is proved just like the special case Ω2 = R (start from indicator
functions, then use linearity to prove that the equation holds if g is a simple function,
etc.).

Example 0.14. Let X = (Xk)k∈N be a stochastic process with state space (S,S ). If
f : S∞ → R is Borel measurable and f(X1, X2, . . .) is integrable, then∫

Ω

f(X1, X2, . . .) dP =

∫
S∞

f dPX .

Existence of stochastic processes

We will now discuss the problem of constructing an underlying probability space (Ω,F , P )
for a given stochastic process. First, we suppose that T = N. In this case, the following
theorem is often very convenient to apply.

Theorem 0.15. Let (Ωk,Fk)k∈N be an arbitrary collection of measurable spaces, and let
Ω =

∏∞
k=1 Ωk,F =

∏∞
k=1 Fk. Suppose that we are given a probability measure P1 on

F1, and for each n ∈ N and each (ω1, ω2, . . . , ωn) ∈
∏n

k=1 Ωk we are given a probability
measure Pω1,ω2,...,ωn on Fn+1. Assume also that for each �xed A ∈ Fn+1, Pω1,ω2,...,ωn(A),
considered as a function of (ω1, ω2, . . . , ωn), is measurable

∏n
k=1 Fk/B(R).

If B ∈
∏n

k=1 Fk, we de�ne

Pn(B) =

∫
Ω1

· · ·
∫

Ωn−1

∫
Ωn

IB(ω1, . . . , ωn)Pω1,...,ωn−1(dωn)Pω1,...,ωn−2(dωn−1) · · ·P1(dω1),

10



which is a well-de�ned probability measure on
∏n

k=1 Fk.
Then there exists a unique probability measure P on F such that for any n ∈ N and

B ∈
∏n

k=1 Fk, P [C(B)] = Pn(B).

Proof. See [1, p. 114]

Now we can use this theorem to construct probability spaces on which stochastic
processes are de�ned. Suppose that our process has state space S equipped with a σ-
algebra S . Suppose further that we are given a probability measure P1 on S and
probability measures Pω1,ω2,...,ωn on S for each (ω1, ω2, . . . , ωn) ∈ Sn in such a way that
the measurability condition of the theorem is satis�ed. Then the theorem provides us a
unique probability measure P on S∞. Now, put Xk(ω) = ωk. We have for all B ∈ S n

P [(X1, X2, . . . , Xn) ∈ B] = P ({ω : (ω1, ω2, . . . , ωn) ∈ B}) = Pn(B),

where

(0.16) Pn(B) =

∫
S

· · ·
∫
S

∫
S

IB(ω1, . . . , ωn)Pω1,...,ωn−1(dωn)Pω1,...,ωn−2(dωn−1) · · ·P1(dω1).

Thus, (Xk)k∈N is a stochastic process with marginal distributions de�ned by (0.16).
We shall now use Theorem 0.15 to construct stochastic processes.

1. (Independent sequences) Suppose that for each k = 1, 2, 3, . . . we are given an arbitrary
probability space (Ωk,Fk, Pk). Let Ω =

∏∞
k=1 Ωk and F =

∏∞
k=1 Fk. Then there exists

a unique probability measure P on F such that

(0.17) P ({ω ∈ Ω : ω1 ∈ A1, . . . , ωn ∈ An}) =
n∏
k=1

Pk(Ak)

for all n ≥ 1 and all Ak ∈ Fk, k ≤ n. To see this, put Pω1,ω2,...,ωn(A) = Pn+1(A),
A ∈ Fn+1, and apply the theorem. Then

P [C(A1 × · · · × An)] =

∫
Ω1

· · ·
∫

Ωn

IA1×···×An(ω1, . . . , ωn)Pω1,ω2,...,ωn−1(dωn) · · ·P1(dω1)

=

∫
Ω1

· · ·
∫

Ωn

IA1(ω1) · · · IAn(ωn)Pω1,ω2,...,ωn−1(dωn) · · ·P1(dω1)

=

∫
Ω1

IA1 dP1

∫
Ω2

IA2 dP2 · · ·
∫

Ωn

IAn dPn =
n∏
k=1

Pk(Ak).

If Q is any other probability measure on F with this property, then it agrees with
P on the π-system formed by the measurable rectangles. By Theorem 0.5, P = Q,
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and thus the probability measure given by Theorem 0.15 is the only one with property
(0.17). If Xk(ω) = ωk, then we obtain a sequence of random variables X1, X2, . . . such
that the random variables are independent and P (Xk ∈ A) = Pk(A).

2. (In�nite fair coin tossing) This is a simple special case of the previous example. Put
Ωk = S = {0, 1}, Fk = S = {∅, {0}, {1}, {0, 1}} and Pk({0}) = Pk({1}) = 0.5 for
all k. Then Ω is the space of all in�nite sequences consisting of zeros and ones, and
if Xk(ω) = ωk, then P (X1 = x1, X2 = x2, . . . , Xn = xn) =

∏n
k=1 Pk({xk}) = 0.5n for

each n.

3. (Markov chains) Let us next consider a Markov chain with �nite state space S, initial
distribution u and transition probabilities p(i, j), i, j ∈ S. Put Ωk = S, Fk = P(S),
P1 = u and Pω1,ω2,...,ωn−1(ωn) = p(ωn−1, ωn). Applying the theorem and putting
Xk(ω) = ωk, ω ∈ S∞, we obtain a stochastic process with marginal distributions given
by

P (X1 = i1, . . . ,Xn = in) = P [ω : (ω1, ω2, . . . , ωn) = (i1, i2, . . . , in)]

=

∫
S

· · ·
∫
S

I{i1}×···×{in}dPω1,...,ωn−1 · · · dP1

=

∫
{i1}
· · ·
∫
{in−1}

∫
{in}

Pω1,...,ωn−1(dωn)Pω1,...,ωn−2(dωn−1) · · ·P1(dω1)

=

∫
{i1}
· · ·
∫
{in−1}

p(ωn−1, in)Pω1,...,ωn−2(dωn−1) · · ·P1(dω1)

=

∫
{i1}
· · ·
∫
{in−2}

p(ωn−2, in−1)p(in−1, in)Pω1,...,ωn−3(dωn−2) · · ·P1(dω1)

= · · · = u(i1)p(i1, i2) · · · p(in−1, in).

Now if P (X1 = i1, . . . , , Xn = in) > 0, we have

P (Xn+1 = j|X1 = i1, . . . , , Xn = in) =
P (X1 = i1, . . . , , Xn = in, Xn+1 = j)

P (X1 = i1, . . . , , Xn = in)

=
u(i1)p(i1, i2) · · · p(in−1, in)p(in, j)

u(i1)p(i1, i2) · · · p(in−1, in)
= p(in, j).

Therefore, the process (Xk)k∈N is a Markov chain with �nite state space S, initial
distribution u and transition probabilities p(i, j), i, j ∈ S.

Kolmogorov extension theorem

Theorem 0.15 assumes that the process has some initial probability distribution P1. But
what if the parameter set T is Z? Then the process has no initial point and Theorem 0.15
can not be applied. In this case, we can use the famous Kolmogorov extension theorem.
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Suppose that for all k1 < k2 < . . . < kn ∈ T and n ∈ N, we are given a probability
measure Pk1,k2,...,kn on the product σ-algebra

∏n
i=1 Fki . Suppose further that these prob-

ability measures are consistent in the sense that if (k1, k2, . . . , kn) ⊂ (j1, j2, . . . , jm) and
B ∈

∏n
i=1 Fki , then

(0.18) Pk1,k2,...,kn(B) = Pj1,j2,...,jm(B′)

for

B′ = {(ωj1 , ωj2 , . . . , ωjm) ∈
m∏
i=1

Ωji : (ωk1 , ωk2 , . . . , ωkn) ∈ B}.

We may now apply the Kolmogorov extension theorem to construct probability space
for a stochastic process that has its marginal distributions determined by the probability
measures Pk1,k2,...,kn . This theorem is a very powerful one, and it actually works even in
continuous time.

Theorem 0.19. (Kolmogorov extension theorem) Let T be an ordered set. Suppose that
for all k ∈ T , Ωk is a complete, separable metric space and Fk = B(Ωk). Suppose fur-
ther that for all n ∈ N and k1 < k2 < . . . < kn ∈ T , we are given a probability measure
Pk1,k2,...,kn on the product σ-algebra

∏n
i=1 Fki and these probability measures satisfy the con-

sistency condition (0.18). Then there exists a unique probability measure P on
∏

k∈T Fk

that agrees with the probabilities assigned to the cylinder sets, i.e. if B ∈
∏n

i=1 Fki, then

P [C(B)] = Pk1,k2,...,kn(B).

Proof. See [3, p. 483]

Suppose that S is a complete, separable metric space. Let Ωk = S and Fk = S =
B(S) for all k ∈ Z. If we are given consistent probability distributions Pk1,k2,...,kn on S n

for all n ≥ 1 and k1 < k2 < . . . < kn ∈ Z, then we may apply the Kolmogorov extension
theorem, and by putting Xt(ω) = ωt we obtain a stochastic process (Xk)k∈Z with state
space (S,S ) and marginal distributions

P [(Xk1 , Xk2 , . . . , Xkn) ∈ B] = P (ω : (ωk1 , ωk2 , . . . , ωkn) ∈ B) = P [C(B)]

= Pk1,k2,...,kn(B), B ∈ S n.

Thus, by virtue of the Kolmogorov extension theorem, we can construct a probability
space for a stochastic process with marginal distributions determined by any consistent
collection of probability distributions. The state space is usually (R,B(R)) or some
�nite subset of real numbers together with its power set. In the �nite case, observe that
any �nite subset S of real numbers, equipped with the discrete topology, is a complete,
separable metric space, and then we have B(S) = P(S) since all subsets of S are open
sets.
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Example 0.20. Let us construct a probability space for a doubly in�nite sequence of
Bernoulli trials. Let 0 < p < 1, and let Ωk = S = {0, 1}, Fk = S = P(S) for all k ∈ Z.
Further, let P ′({1}) = p, P ′({0}) = 1−p, and for all k1 < k2 < . . . < kn ∈ Z, let Pk1,k2,...,kn
be the unique n-dimensional product measure P ′ × P ′ × · · · × P ′. Then for measurable
rectangles A1 × A2 × · · · × An ∈ S n we have

(0.21) Pk1,k2,...,kn(A1 × A2 × · · · × An) =
n∏
i=1

P ′(Ai).

It is easy to check that these measures are consistent (note that the consistency condition
clearly holds for measurable rectangles, and then apply the π-λ theorem), and thus we
may apply the Kolmogorov extension theorem and obtain a unique probability measure
P on (SZ,S Z), the space of all doubly in�nite sequences consisting of zeros and ones. Let
Xt(ω) = ωt. If k1 < k2 < . . . < kn ∈ Z and xi ∈ {0, 1} for all i ≤ n, then

P (Xk1 = x1, Xk2 = x2, . . . , Xkn = xn) =
n∏
i=1

P ′({xi}) = p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi .

If a process (Xk)k∈N is stationary, we may use the Kolmogorov extension theorem to
obtain a process (X ′k)k∈Z such that (Xk)k∈N and (X ′k)k∈N are identically distributed.

Theorem 0.22. Let (Xk)k∈N be a stationary stochastic process with state space (S,S )
such that S is a complete, separable metric space and S = B(S). Then there exists
a probability space (SZ,S Z, Q) and a stochastic process (X ′k)k∈Z de�ned on (SZ,S Z, Q)
such that (Xk)k∈N and (X ′k)k∈N are identically distributed, that is, PX(A) = PX′(A) for
all A ∈ S∞.

Proof. Let k1 < . . . < kn ∈ Z, and let

Pk1,k2,...,kn(B) = P [(X1, Xk2−k1+1, . . . , Xkn−k1+1) ∈ B].

Since marginal distributions of a stochastic process always satisfy the consistency condi-
tion, the probability measures Pk1,k2,...,kn are consistent, and thus an application of the
Kolmogorov extension theorem yields the desired result (recall that the distribution of a
stochastic process is uniquely determined by its marginal distributions).

0.4 Uniform integrability

Suppose that X is an integrable real-valued random variable on a probability space
(Ω,F , P ). Then |X|I{|X|>α} is dominated by |X|, and the dominated converge theorem
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implies that

lim
α→∞

∫
{|X|>α}

|X| dP = 0.(0.23)

De�nition 0.24. We say that a sequence (Xn)n∈N of real-valued random variables is
uniformly integrable if (0.23) holds uniformly in n, that is,

lim
α→∞

sup
n

∫
{|Xn|>α}

|Xn| dP = 0.(0.25)

Uniform integrability implies that each Xn is integrable. To see this, let α be so large
that the supremum in (0.25) is less than 1. Then

(0.26)

∫
Ω

|Xn| dP =

∫
{|Xn|>α}

|Xn| dP +

∫
{|Xn|≤α}

|Xn| dP ≤ 1 + α <∞.

Anyone who is familiar with the monotone and dominated convergence theorems knows
that it is often very convenient if the order of taking a limit and integration can be
reversed. Uniform integrability allows us to do it:

Theorem 0.27. Suppose that limn→∞Xn = X almost surely. Then,

(i) If the functions Xn are uniformly integrable, then X is integrable and limn→∞
∫
Xn dP =∫

X dP .

(ii) If X and the Xn are nonnegative and integrable, then limn→∞
∫
Xn dP =

∫
X dP

implies that the Xn are uniformly integrable.

Proof. (i) By Fatou's lemma and (0.26),∫
Ω

|X| dP =

∫
Ω

lim inf
n
|Xn| dP ≤ lim inf

n

∫
Ω

|Xn| dP ≤ 1 + α <∞.

Therefore, X is integrable.
Let α be a positive real number such that P (|X| = α) = 0, and de�ne Xα

n =
XnI{|Xn|<α}, X

α = XI{|X|<α}. Since P (|X| = α) = 0, we have limn→∞X
α
n = Xα with

probability 1. And since the |Xα
n | are uniformly bounded by α, the dominated convergence

theorem implies that

lim
n→∞

∫
Ω

Xα
n dP =

∫
Ω

Xα dP.(0.28)
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Since∣∣∣∣∫
Ω

Xn dP −
∫

Ω

X dP

∣∣∣∣ =

∣∣∣∣∫
{|Xn|≥α}

Xn dP +

∫
Ω

Xα
n dP −

∫
{|X|≥α}

X dP −
∫

Ω

Xα dP

∣∣∣∣
≤
∣∣∣∣∫

Ω

Xα
n dP −

∫
Ω

Xα dP

∣∣∣∣+

∫
{|Xn|≥α}

|Xn| dP +

∫
{|X|≥α}

|X| dP,

it follows from (0.28) that

lim sup
n→∞

∣∣∣∣∫
Ω

Xn dP −
∫

Ω

X dP

∣∣∣∣ ≤ sup
n≥1

∫
{|Xn|≥α}

|Xn| dP +

∫
{|X|≥α}

|X| dP.(0.29)

Now pick a sequence (αk)k∈N such that αk → ∞ and P (|X| = αk) = 0 for all k. Such
a sequence exists because P (|X| = x) can be positive for at most countably many x.
Then supn≥1

∫
{|Xn|≥αk}

|Xn| dP → 0 as k →∞ by uniform integrability, and because X is

integrable,
∫
{|X|≥αk}

|X| dP converges to zero as well. Hence, (i) follows from (0.29).
To prove the second claim, suppose that X and the Xn are nonnegative and integrable,

and limn→∞
∫
Xn dP =

∫
X dP holds. If P (X = α) = 0, then (0.28) holds again, and

lim
n→∞

∫
{Xn≥α}

Xn dP = lim
n→∞

(∫
Ω

Xn dP −
∫

Ω

Xα
n dP

)
=

∫
Ω

X dP −
∫

Ω

Xα dP

=

∫
{X≥α}

X dP.

Since X is integrable, for each ε > 0 there exists an α such that
∫
{X≥α}X dP is less than

ε and P (X = α) = 0. This implies that for some n0 ∈ N, the integrals
∫
{Xn≥α}Xn dP are

less than ε for all n ≥ n0. Since the individual Xn are integrable, we may increase α so
that all the integrals are smaller than ε. Therefore, the Xn are uniformly integrable.

Corollary 0.30. If X and the Xn are integrable, and if Xn → X with probability 1, then
Xn → X in L1 if and only if the Xn are uniformly integrable.

Proof. Suppose that the Xn are uniformly integrable. Then the di�erences |X −Xn| are
also uniformly integrable and since they converge to 0 almost surely by our hypothesis,
the theorem implies that limn→∞

∫
Ω
|X −Xn| dP = 0, that is, Xn → X in L1.

Conversely, suppose that Xn → X in L1. Then since ||X|− |Xn|| ≤ |X−Xn|, we have
limn→∞

∫
Ω
|Xn| dP =

∫
Ω
|X| dP . But then statement (ii) of the theorem implies that the

|Xn| are uniformly integrable. Equivalently, the Xn are then uniformly integrable.
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0.5 Conditional expectation and probability

If µ and ν are two probability measures de�ned on a σ-algebra F and µ(A) = 0 implies
ν(A) = 0, then we say that ν is absolutely continuous with respect to µ, and we write
ν << µ.

Lemma 0.31. Suppose that ν << µ, and let ε > 0 be arbitrary. Then there exists a
positive real number δ such that ν(A) < ε for all A such that µ(A) < δ.

Proof. Suppose that the claim is not true. Then there exists an ε > 0 and sets A1, A2, . . .
such that µ(An) < 1

n2 and ν(An) ≥ ε for all n. Now the Borel-Cantelli lemma implies
that µ

(⋂
m≥1

⋃
n≥mAn

)
= 0, but

ν

(⋂
m≥1

⋃
n≥m

An

)
= lim inf

m→∞
ν

(⋃
n≥m

An

)
≥ ε,

contradicting the absolute continuity.

Corollary 0.32. If Y is integrable, then for each ε > 0 there exists a δ > 0 such that∣∣∫
A
Y dP

∣∣ < ε for all A such that P (A) < δ.

Proof. Put λ(A) =
∫
A
|Y | dP . Then λ << P . Let ε > 0 be given. Then by the theorem

there exists a δ > 0 such that ∣∣∣∣∫
A

Y dP

∣∣∣∣ ≤ λ(A) < ε

for all A such that P (A) < δ.

The following famous theorem states that if ν << µ, then ν can be represented as an
integral with respect to µ:

Theorem 0.33. (Radon-Nikodym Theorem) Suppose that µ and ν are probability mea-
sures de�ned on (Ω,F ). If ν << µ, then there exists a µ-measurable function g such
that

ν(A) =

∫
A

g dµ for all A ∈ F .

Moreover, if h is any other function with this property, then h = g almost surely with
respect to µ.

Proof. [1, p. 64]
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The function g is called the Radon-Nikodym derivative of ν with respect to µ. We
denote

g =
dν

dµ
.

Radon-Nikodym derivatives have the following property:

Lemma 0.34. (Chain rule) If µ1 << µ2 and µ2 << µ3, then

dµ1

dµ3

=
dµ1

dµ2

dµ2

dµ3

with µ3-probability 1.

Proof. [8, p. 241]

Let Y be an integrable random variable de�ned on (Ω,F , P ). Suppose that G is a
sub-σ-algebra of F , and de�ne a probability measure λ on G by λ(A) =

∫
A
Y dP, A ∈ G .

Since λ << P , we can de�ne the conditional expectation of Y given G , denoted by E[Y |G ],
as the Radon-Nikodym derivative of λ with respect to P . In others words, we obtain a
unique (up to P -measure 1) random variable E[Y |G ] with the following properties:

(1) E[Y |G ] is G -measurable;
(2)

∫
A
Y dP =

∫
A
E[Y |G ] dP for all A ∈ G .

Remark 0.35. If G = σ(X) for some random variable X, then it is customary to write
E[Y |X] instead of E[Y |σ(X)]. We adapt this convention.

If X : (Ω,F ) → (Ω′,F ′) is measurable F/F ′, and Y ∈ L1(Ω), then the Radon-
Nikodym theorem also implies that there exists a unique (up to PX-measure 1) function
g : (Ω′,F ′)→ (R,B(R)) such that

(0.36)

∫
{X∈A}

Y (ω)P (dω) =

∫
A

g(x)PX(dx) for all A ∈ F ′.

We denote the function g(x) by E[Y |X = x]. It is also worth noting that E[Y |X] = g(X).
To see this, let A ∈ σ(X). Then A is of form {X ∈ A′} for some A′ ∈ F ′ and∫

A

Y dP =

∫
{X∈A′}

Y dP =

∫
A′
g(x)PX(dx) =

∫
Ω′
IA′(x)g(x)PX(dx)

=

∫
Ω

IA′ [X(ω)]g[X(ω)]P (dω) =

∫
A

g(X) dP.

For any event A ∈ F , the conditional probabilities P (A|G ) and P (A|X = x) are
de�ned by E[IA|G ] and E[IA|X = x], respectively. If P (X = x) > 0, then P (A|X = x)
agrees with the elementary de�nition P (A|B) = P (A∩B)/P (B) of conditional probability.
For details, see [1, p. 201].
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Example 0.37. Suppose thatX and Y are random variables de�ned on (Ω,F , P ), taking
values in arbitrary measurable spaces. Suppose further that the random variable Z :
(Ω,F ) → (Ω′,F ′) is measurable F/F ′. By the elementary de�nition of conditional
probability, we have

P (X = x, Y = y | Z = z) = P (Y = y | X = x, Z = z)P (X = x | Z = z)(0.38)

if P (X = x, Z = z) > 0. We will now use the chain rule of Radon-Nikodym derivatives
to show that this holds even if P (X = x, Z = z) = 0. De�ne µ3 = PZ and µ1(A) =∫
{Z∈A} I{X=x,Y=y} dP , A ∈ F ′. Then

dµ1

dµ3

(z) = E
[
I{X=x,Y=y} | Z = z

]
= P (X = x, Y = y | Z = z).

If probability measure µ2 is de�ned on F ′ by µ2(A) =
∫
{Z∈A} I{X=x} dP , then µ2 << µ3,

and so the chain rule implies that

P (X = x, Y = y | Z = z) =
dµ1

dµ2

(z)
dµ2

dµ3

(z).

Clearly dµ2
dµ3

(z) = E
[
I{X=x} | Z = z

]
= P (X = x | Z = z). Note also that

µ1(A) =

∫
{Z∈A}

I{X=x,Y=y} dP =

∫
{Z∈A,X=x}

I{Y=y} dP

=

∫
A×{x}

E
[
I{Y=y} | X = x′, Z = z′

]
PZ,X(dz′, dx′)

=

∫
A×{x}

E
[
I{Y=y} | X = x, Z = z′

]
PZ,X(dz′, dx′).

Starting from indicator functions, it is easy to check that∫
A×{x}

f(z′)PZ,X(dz′, dx′) =

∫
A

f(z)µ2(dz)

holds for all integrable F ′-measurable functions f . Therefore,

µ1(A) =

∫
A

E
[
I{Y=y} | X = x, Z = z

]
µ2(dz),

and thus dµ1
dµ2

(z) = E
[
I{Y=y} | X = x, Z = z

]
= P [Y = y | X = x, Z = z]. This proves

that (0.38) holds almost surely with respect to µ3 = PZ .
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In the next theorem we list some of the most important properties of conditional
expectation. Note that since conditional expectation is not unique, the equalities and
inequalities hold only almost surely.

Theorem 0.39. Let Y ∈ L1(Ω), and let G and H be sub-σ-algebras of F . Then

(1) (Linearity) E[aX + bY |G ] = aE[X|G ] + bE[Y |G ];

(2) (Law of iterated expectation) E[E[Y |G ]] = E[Y ];

(3) (Tower property) If G ⊂H , then E[E[Y |G ] |H ] = E[E[Y |H ] | G ] = E[Y | G ];

(4) (�Taking out what is known�) If X is G -measurable and XY ∈ L1(Ω), then E[XY |G ] =
XE[Y |G ];

(5) (Role of independence) If Y is independent of G , then E[Y |G ] = E[Y ];

(6) |E[Y |G ]| ≤ E[ |Y | |G ];

(7) If X ≤ Y almost surely, then E[X|G ] ≤ E[Y |G ] almost surely.

Proof. See [1, p. 220].

0.6 Martingales

A certain amount of martingale convergence theory is involved in the proof the Shannon-
McMillan-Breiman theorem.

De�nition 0.40. Let F be a σ-algebra. A collection (Fn)n∈N of sub-σ-algebras of F is
called a �ltration if Fi ⊂ Fj for all i ≤ j. A stochastic process X = (Xn)n∈N is adapted
to the �ltration if for every n ∈ N, Xn is Fn-measurable. The natural �ltration (FX

n )n∈N
of the process X is de�ned by FX

n = σ(Xm : m ≤ n).

Note that every stochastic process is clearly adapted to its natural �ltration.

De�nition 0.41. LetX = (Xn)n∈N be a stochastic process de�ned on (Ω,F , P ). Suppose
that X is adapted to the �ltration (Fn)n∈N. Suppose further that each Xn, n ∈ N, is
integrable. If E(Xn+1|Fn) = Xn for all n ≥ 1, then we say that X is a martingale
relative to the Fn. If E(Xn+1|Fn) ≥ Xn, then X is called a submartingale, and if
E(Xn+1|Fn) ≤ Xn, then X is called a supermartingale.

The properties of conditional expectation imply that for martingales we have E[Xn] =
E[X0] for all n ∈ N. For supermartingales and submartingales we have E[Xn] ≤ E[X0]
and E[Xn] ≥ E[X0], respectively.

The martingale constructed in the following example will play an important role in
the proof of the Shannon-McMillan-Breiman theorem.
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Example 0.42. Let F1 ⊂ F2 ⊂ · · · be an increasing sequence of sub-σ-algebras of
F , and let X be an integrable random variable. Then the process Yn = E[X|Fn] is a
martingale relative to the Fn: the Yn are integrable since E[Yn] = E[E[X|Fn]] = E[X] <
∞, and

E[Yn+1|Fn] = E[E[X|Fn+1]|Fn] = E[X|Fn] = Yn

by the �tower property� of conditional expectation.
In particular, let (Xk)k∈Z be a stochastic process, and let Fn = σ(X−1, X−2, . . . , X−n).

Then the Fn form an increasing sequence of σ-algebras, and if Z = I{X0=x0}, then the
sequence E[Z|Fn] = P (X0 = x0|X−1, X−2, . . . , X−n), n ≥ 1, is a martingale.

Convergence of martingales

We will next study the conditions under which martingales converge.

De�nition 0.43. A stochastic process X = (Xn)n∈N is called predictable with respect to
the �ltration (Fn)n∈N if Xn is Fn−1-measurable for every n ≥ 2 and X1 is constant.

De�nition 0.44. Let M and X be two stochastic processes with parameter set N. The
process X ·M is de�ned by (X ·M)1 = 0 and

(X ·M)n =
n∑
k=2

Xk(Mk −Mk−1)

for n ≥ 2. The process (X ·M) is called the discrete integral of X with respect to M .

Lemma 0.45. If M is supermartingale and X is a bounded, nonnegative predictable
process, then X · M is a supermartingale as well. If M is a martingale and X is a
bounded, predictable process, then X ·M is a martingale.

Proof. Put Y = X ·M . It is clear that Yn is Fn-measurable, and since |Xn| < K < ∞
for some K ∈ R and for all n ∈ N, we have E[|Yn|] ≤ 2K

∑n
k=1E[|Mk|] < ∞. If M is a

supermartingale and X is a nonnegative predictable process, then

E[Yn|Fn−1] = E[Yn−1 +Xn(Mn −Mn−1)|Fn−1] = Yn−1 +XnE[Mn −Mn−1|Fn−1]

= Yn−1 +Xn(E[Mn|Fn−1]−Mn−1) ≤ Yn−1 +Xn(Mn−1 −Mn−1) = Yn−1.

If M is a martingale, the inequality is an equality regardless of the sign of Xn, and thus
in this case Y is a martingale.

Suppose that M is a supermartingale and consider a closed interval [a, b] ⊂ R, a < b.
The number of upcrossings of [a, b] that the process M makes up to time n, denoted by
Un[a, b], is the number of times the process moves from a level below a to a level above b.
To be precise:
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De�nition 0.46. LetM be a supermartingale, and let a < b ∈ R. The number Un[a, b](ω)
is the largest k ∈ N0 such that there exist 0 < s1 < t1 < s2 < t2 < · · · < sk < tk ≤ n with
Xsi(ω) < a and Xti(ω) > b.

Lemma 0.47. (Doob's upcrossings lemma) Let M be a supermartingale. Then for all
a < b ∈ R and n ∈ N we have

(b− a)E[Un[a, b]] ≤ E[(Mn − a)−].

Proof. De�ne a bounded, nonnegative predictable process X = (Xk)k∈N by X1 = 0, X2 =
I{M1<a} and

Xn = I{Xn−1=1}I{Mn−1≤b} + I{Xn−1=0}I{Mn−1<a}

for n ≥ 3. Let Y = X ·M . By the previous lemma, Y is a supermartingale. Note that
the process X is 0 until M drops below the level a, and then it is 1 until M gets above b,
and so on. Therefore, every completed upcrossing increases Y by at least b−a. If the last
upcrossing has not been completed at time n, this can cause Y to decrease by at most
(Mn − a)−. Hence,

Yn ≥ (b− a)Un[a, b]− (Mn − a)−.

Since Yn is a supermartingale, we have E[Yn] ≤ E[Y0] = 0, which �nally implies that

0 ≥ E[Yn] ≥ (b− a)E[Un[a, b]]− E[(Mn − a)−].

Here is our �rst martingale convergence theorem, due to J.L. Doob:

Theorem 0.48. (Doob's martingale convergence theorem) Suppose that M = (Mn)n∈N is
a supermartingale and bounded in L1. Then Mn converges almost surely to a limit M∞
as n→∞, and M∞ is integrable.

Proof. Let Λa,b = {ω : lim infn→∞Mn < a < b < lim supn→∞Mn}, and let Λ be the set
on which M does not converge. Then, clearly

Λ = {ω : lim inf
n→∞

Mn < lim sup
n→∞

Mn} =
⋃
a<b
a,b∈Q

{ω : lim inf
n→∞

Mn < a < b < lim sup
n→∞

Mn}

=
⋃
a<b
a,b∈Q

Λa,b.

22



De�ne U∞[a, b] = limn→∞ Un[a, b]. Then Λa,b ⊂ {ω : U∞[a, b](ω) = ∞}. Since the Mn

are bounded in L1, we have supnE[|Mn|] = K < ∞ for some K ∈ R. The monotone
convergence theorem and Doob's upcrossings lemma then imply that

E[U∞[a, b]] = E[ lim
n→∞

Un[a, b]] = lim
n→∞

E[Un[a, b]] ≤ K + |a|
b− a

<∞.

Therefore, U∞[a, b] is �nite almost surely which implies that P (Λa,b) = 0. We also have
P (Λ) = 0 since Λ is a countable union of sets of P -measure 0. Therefore, limn→∞Mn =
M∞ exists almost surely. Finally, by Fatou's lemma,

E[|M∞|] = E[lim inf
n→∞

|Mn|] ≤ lim inf
n→∞

E[|Mn|] ≤ sup
n≥1

E[|Mn|] <∞.

If we also assume uniform integrability, then Mn not only converges almost surely but
also in L1:

Theorem 0.49. Suppose that M = (Mn)n∈N is a supermartingale and bounded in L1.
Then Mn →M∞ in L1 if and only if the Mn are uniformly integrable. In this case,

E[M∞|Fn] ≤Mn

almost surely for all n ∈ N , and if M is a martingale, equality holds.

Proof. By the previous theorem,Mn converges toM∞ almost surely andM∞ is integrable.
Then, by Corollary 0.30, Mn →M∞ in L1 if and only if the Mn are uniformly integrable.
As for the second claim, suppose that Mn → M∞ in L1, and let n ∈ N. Since M is a
supermartingale, we have

(0.50) E[MmIA] = E[E[MmIA|Fn]] = E[IAE[Mm|Fn]] ≤ E[MnIA]

for all A ∈ Fn and m > n. But

|E[MmIA]− E[M∞IA]| ≤ E[|Mm −M∞|],

and E[|Mm − M∞|] converges to zero as m → ∞ by the L1 convergence. Therefore,
E[MmIA] converges to E[M∞IA] as m→∞ and by (0.50), the limit must be less than or
equal to E[MnIA]. Now∫

A

E[M∞|Fn] dP =

∫
A

M∞ dP ≤
∫
A

Mn dP

for all A ∈ Fn, and thus E[M∞|Fn] ≤Mn almost surely. Finally, equality holds in (0.50)
if M is a martingale, and in this case, E[M∞|Fn] = Mn almost surely.
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Lemma 0.51. Let Y be an integrable random variable on (Ω,F , P ), and let Fn, n ∈ N,
be a collection of sub-σ-algebras of F . Then the random variables E[Y |Fn], n ∈ N, are
uniformly integrable.

Proof. Let c > 0. First we observe that∫
{|E[Y |Fn]|≥α}

|E[Y |Fn]| dP ≤
∫
{|E[Y |Fn]|≥α}

E[ |Y | |Fn] dP =

∫
{|E[Y |Fn]|≥α}

|Y | dP.(0.52)

Then we apply the Chebyshev inequality:

P (|E[Y |Fn]| ≥ α) ≤ E[|E[Y |Fn]|]
α

≤ E[E[ |Y | |Fn]]

α
=
E[|Y |]
α

.

The upper bound does not depend on n, and it can be made arbitrarily small by increasing
α. Since Y is integrable, uniform integrability follows now from (0.52) and Lemma 0.32.

We may now prove Levy's martingale convergence theorem, which will be used later
in the proof of Shannon-McMillan-Breiman theorem.

Theorem 0.53. (Levy's martingale convergence theorem) Let (Fn)n∈N be an increasing
sequence of sub-σ-algebras of F , and let F∞ be the σ-algebra generated by

⋃∞
n=1 Fn. If

Y is integrable, then E[Y |Fn]→ E[Y |F∞] as n→∞ almost surely and in L1.

Proof. By Example 0.42 and the previous lemma, the sequence (E[Y |Fn])n∈N is an uni-
formly integrable martingale. Since E[|E[Y |Fn]|] ≤ E[E[ |Y | |Fn]] = E[|Y |] < ∞, the
sequence is bounded in L1, and thus Doob's martingale convergence theorem implies that
it converges almost surely to an integrable random variableX∞. Convergence in L

1 follows
from Theorem 0.49.

It remains to be shown that X∞ = E[Y |F∞]. First we check that the generating set of
F∞,

⋃∞
n=1 Fn, is a π-system. If F1, F2 ∈

⋃∞
n=1 Fn, then F1 ∈ Fn1 and F2 ∈ Fn2 for some

n1 and n2. Suppose that n1 < n2. Then F1 ∈ Fn1 ⊂ Fn2 , and since Fn2 is a σ-algebra,
F1 ∩ F2 ∈ Fn2 ⊂

⋃∞
n=1 Fn. Similarly, if n2 ≤ n1, then F1 ∩ F2 ∈ Fn1 ⊂

⋃∞
n=1 Fn. Thus⋃∞

n=1 Fn is a π-system.
Suppose that A ∈

⋃∞
n=1 Fn. Then A ∈ Fn for some n ∈ N, and the L1 convergence

implies that ∫
A

Y dP = lim
m→∞

∫
A

E[Y |Fm] dP =

∫
A

X∞ dP(0.54)

Thus
∫
A
Y dP =

∫
A
X∞ dP holds for all A ∈

⋃∞
n=1 Fn. If we can show that the class of

sets C for which it holds is a λ-system, then the π-λ theorem implies that it holds for all
A ∈ F∞. But this is easy:
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(1) Since Ω belongs to
⋃∞
n=1 Fn,

∫
Ω
Y dP =

∫
Ω
X∞ dP .

(2) Suppose that A ∈ C . Then∫
Ac
Y dP =

∫
Ω

Y dP −
∫
A

Y dP =

∫
Ω

X∞ dP −
∫
A

X∞ dP =

∫
Ac
X∞ dP,

which implies that Ac ∈ C .

(3) Suppose that A1, A2, . . . are disjoint C -sets. Then∫
⋃∞
n=1 An

Y dP =
∞∑
n=1

∫
An

Y dP =
∞∑
n=1

∫
An

X∞ dP =

∫
⋃∞
n=1 An

X∞ dP,

which implies that
⋃∞
n=1 An belongs to C .

Hence, C is a λ-system, and thus
∫
A
Y dP =

∫
A
X∞ dP holds for all A ∈ σ (

⋃∞
n=1 Fn) =

F∞. Since E[Y |Fn] is Fn ⊂ F∞-measurable, X∞ as a limit of F∞-measurable functions
is also F∞-measurable. Now X∞ = E[Y |F∞] by the de�nition of conditional expectation.
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Chapter 1

Ergodic Theory

1.1 Introduction

Ergodic theory could be described as the study of the long term average behaviour of
systems evolving in time. Consider the following examples.

Suppose that X1, X2, X3, . . . are independent, identically distributed random variables
with �nite mean m. Then the Strong Law of Large Numbers states that

lim
n→∞

1

n

n∑
i=1

Xi = m

almost surely.
Consider an aperiodic, irreducible Markov chain X1, X2, X3, . . . with stationary distri-

bution π and �nite state space S. Then, if j ∈ S,

lim
n→∞

#{1 ≤ k ≤ n : Xk = j}
n

= π(j)

almost surely.
Both of these results are almost immediate consequences of Birkho�'s ergodic theorem

which will be proved in this chapter.

Measure-preserving transformations

First we de�ne a basic notion of ergodic theory: the measure-preserving transformation.

De�nition 1.1. Let (Ω,F , P ) be a probability space. A function T : Ω→ Ω ismeasurable
transformation on Ω if it is measurable F/F , that is T−1A ∈ F for all A ∈ F . If T
is one-to-one and onto, we say that T is invertible. The transformation T is said to be
measure-preserving if we have P (T−1A) = P (A) for all A ∈ F .
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Remark 1.2. If (Ω,F , P ) is a probability space and T is a measure-preserving transfor-
mation, then in ergodic theory the 4-tuple (Ω,F , P, T ) is often called a dynamical system.
Also, the sequence (ω, T (ω), T 2(ω), . . .) is called the orbit of ω under T .

It follows by induction that P (T−kA) = P (A) , k ∈ N, for measure-preserving trans-
formations. In the invertible case we also have P (T kA) = P (A) for all k ∈ N.

Checking whether a given transformation preserves measure, or not, can sometimes
be di�cult. However, the following lemma is of great help:

Lemma 1.3. Suppose that C is π-system and F = σ(C ). If T is a measurable transfor-
mation and P (T−1A) = P (A) for all A ∈ C , then T is measure-preserving.

Proof. Let G be the collection of F -sets G for which P (T−1G) = P (G). We show that
G is a λ-system. Clearly P (T−1Ω) = P (Ω). If G ∈ G , then P (T−1Gc) = P [(T−1G)c] =
1 − P (T−1G) = 1 − P (G) = P (Gc) and thus Gc ∈ G . If G1, G2, . . . are disjoint G -sets,
then

P

(
T−1

∞⋃
i=1

Gi

)
= P

(
∞⋃
i=1

T−1Gi

)
=
∞∑
i=1

P (T−1Gi) =
∞∑
i=1

P (Gi) = P

(
∞⋃
i=1

Gi

)
.

Thus
⋃∞
i=1Gi ∈ G . We have shown that G is a λ-system. By hypothesis, C ∈ G and

therefore the π-λ theorem implies that σ(C ) ⊂ G .

Let us now consider some examples of measure-preserving transformations.

1. (Angle doubling) Let Ω be the semiclosed interval (0, 1], F = B((0, 1]), and let m be
the Lebesgue measure. Take T (ω) = 2ω (mod 1):

T (ω) =

{
2ω if 0 < ω ≤ 1

2
,

2ω − 1 if 1
2
< ω ≤ 1.

Let dk(ω) be the k th digit of the binary expansion of ω. Then ω has representations
ω = 0.d1(ω)d2(ω) · · · and ω =

∑∞
k=1 dk(ω)2−k. Binary expansions are not unique; for

numbers of form ω =
∑m−1

k=1 jk2
−k + 2−m, m ∈ N, jk ∈ {0, 1}, there are two equal

expansions 0.j1 · · · jm−11000 · · · and 0.j1 · · · jm−10111 · · · . Let dk(ω) correspond to the
latter nonterminating ones.

The transformation T shifts the binary digits of ω to the left: T (ω) = 0.d2(ω)d3(ω) · · · .
To see this, suppose �rst that ω ≤ 1

2
. Then d1(ω) = 0 and

T (ω) = 2 ·
∞∑
k=1

dk(ω)2−k =
∞∑
k=2

dk(ω)2−k+1 =
∞∑
k=1

dk+1(ω)2−k = 0.d2(ω)d3(ω) · · · .
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If ω > 1
2
, then d1(ω) = 1 and

T (ω) = 2 ·
∞∑
k=1

dk(ω)2−k − 1 =
∞∑
k=1

dk(ω)2−k+1 − 1 =
∞∑
k=0

dk+1(ω)2−k − 1

=
∞∑
k=1

dk+1(ω)2−k = 0.d2(ω)d3(ω) · · · .

A dyadic interval is an interval of form

(
m∑
k=1

2−jk ,
m∑
k=1

2−jk + 2−m] = {ω ∈ (0, 1] : d1(ω) = j1, . . . , dm(ω) = jm}

for some m ∈ N and j1, j2, . . . , jm ∈ {0, 1} (note that the length of the interval is
2−m). Observe that since all open sets in (0, 1] are countable unions of dyadic intervals,
B((0, 1]) is generated by the dyadic intervals. If A = {ω : d1(ω) = a1, . . . , dm(ω) = am}
is a dyadic interval, then

T−1A = {ω : d2(ω) = a1, . . . , dm+1(ω) = am}
= {ω : d1(ω) = 0, d2(ω) = a1, . . . , dm+1(ω) = am}
∪ {ω : d1(ω) = 1, d2(ω) = a1, . . . , dm+1(ω) = am}.

Thus T−1A is a disjoint union of two dyadic intervals and it is de�nitely a Borel set.
Since the dyadic intervals and the empty set form a π-system generating B((0, 1]), T
is measurable by Lemma 0.11. We also conclude that

m(A) = 2−m = 2−m−1 + 2−m−1 = m(T−1A).

Thus T is measure-preserving by Lemma 1.3.

This transformation is called angle doubling since the function f(x) = e2πix is a one-to-
one mapping of (0, 1] onto the unit circle, and T (ω) corresponds to doubling of angle
on the unit circle.

2. (Permutations) Let Ω be a �nite set {a, b, c, d} with F constisting of all subsets of Ω.
If T is the cyclic permutation (abcd) on Ω, then it is clear that T is measure-preserving
if and only P assigns equal probabilities to the four points.

If T = (ab)(cd), a product of two cycles, then T is measure-preserving if and only if
P ({a}) = P ({b}) and P ({c}) = P ({d}). In general, if T is any permutation of a �nite
set, then T can be expressed as a product of disjoint cyclic permutations. Then T is
measure-preserving if and only if P assigns equal probability to each point within each
cycle.
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Perhaps the most important transformation is the shift :

De�nition 1.4. Let Ω = S∞, the space consisting of all sequences ω = (ω1, ω2, . . .) with
ωk ∈ S for all k ∈ N; take F = S∞, and let P be any probability measure on S∞. If T
is de�ned by

T (ω1, ω2, . . .) = (ω2, ω3, . . .),

then T is called the one-sided shift transformation.
The two-sided shift transformation is de�ned analogously on SZ: (T (ω))k = ωk+1, or

T (. . . , ω−1, ω0;ω1, ω2, . . .) = (. . . , ω0, ω1;ω2, ω3, . . .).

Since the inverse images of cylinders are cylinders (it is easy to check that T−1(C(B)) =
C(S ×B)), it follows by Lemma 0.11 that the shift transformations are measurable. Ob-
serve that the two-sided shift is invertible, but the one-sided shift is not.

Whether T is measure-preserving or not depends on the stationarity of the canonical
stochastic process associated with S∞ (or SZ):

Theorem 1.5. Shift transformations are measure-preserving if and only if the stochastic
process de�ned by Xk(ω) = ωk is stationary.

Proof. Consider the one-sided case �rst. Suppose that the shift transformation T is
measure-preserving. Let k1 < k2 < . . . < kn ∈ N and B ∈ S n. Then for all m ∈ N,

P [(Xk1 , . . . , Xkn) ∈ B] = P ({ω : (ωk1 , . . . , ωkn) ∈ B})
= P (T−m{ω : (ωk1 , . . . , ωkn) ∈ B})
= P ({ω : (ωk1+m , . . . , ωkn+m) ∈ B})
= P [(Xk1+m , . . . , Xkn+m) ∈ B].

Therefore, the process (Xk)k∈N is stationary.
Conversely, suppose that the process de�ned by Xk(ω) = ωk is stationary. Let k1 <

k2 < . . . < kn ∈ N, and let C(B) be a cylinder with base B at (k1, k2, . . . , kn). Then

P (C(B)) = P ({ω : (ωk1 , . . . , ωkn) ∈ B}) = P [(Xk1 , . . . , Xkn) ∈ B]

= P [(Xk1+1, . . . , Xkn+1) ∈ B] = P ({ω : (ωk1+1, . . . , ωkn+1) ∈ B})
= P (T−1{ω : (ωk1 , . . . , ωkn) ∈ B}) = P (T−1C(B)).

Since S∞ is generated by the cylinder sets, T is measure-preserving by Lemma 1.3.
The two-sided case is proved in the same way.
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Consider the probability space (ST ,S T , PX) associated with a stochastic process X =
(Xk)k∈T de�ned on (Ω,F , P ). By Theorem 1.5, the shift operator on ST preserves PX if
and only if the stochastic process X is stationary. This fact will later enable us to apply
the ergodic theorem for stochastic processes even if the underlying probability space is
left unspeci�ed.

Example 1.6. (Markov and Bernoulli shifts) Consider an irreducible, aperiodic Markov
chain X = (Xk)k∈N with �nite state space S. If the initial distribution of X coincides with
its stationary distribution, then the process is stationary, and by the previous theorem, the
shift operator T on (S∞, (P(S))∞, PX) is measure-preserving. Moreover, if the Markov
chain is de�ned on the probability space (S∞, (P(S))∞, P ) constructed in Section 0.3,
then the shift operator on this space is also measure-preserving.

The sequence space of Bernoulli trials of Example 0.20 is stationary since it is a
sequence consisting of independent, identically distributed trials. Therefore, the shift
operators on both (SZ,S Z, P ) and (SZ,S Z, PX) are measure-preserving.

1.2 Ergodicity and mixing

It is assumed throughout this section that T is a measure-preserving transformation.

De�nition 1.7. Let A ∈ F . Then A is invariant under T if T−1A = A. If 0 < P (A) < 1,
then A is called a nontrivial invariant set. If in F there are no nontrivial invariant sets,
then T is called ergodic. If

(1.8) lim
n→∞

P (A ∩ T−nB) = P (A)P (B)

for all A,B ∈ F , then we say that T is mixing.

Mixing is stronger condition than ergodicity, as we shall now see.

Theorem 1.9. If T is mixing, then T is ergodic.

Proof. Suppose that B is an invariant set. Then P (B) = P (B ∩ B) = P (B ∩ T−nB) for
all n ≥ 1. Therefore,

P (B) = lim
n→∞

P (B ∩ T−nB) = P (B)P (B).

Thus P (B) must be either 0 or 1, and we conclude that T is ergodic.
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Example 1.10. Consider again the permutation T = (ab)(cd) on {a, b, c, d}. We con-
cluded that if T is measure-preserving, then P ({a}) = P ({b}) and P ({c}) = P ({d}). If
both of these probabilities are positive, then since the sets {a, b} and {c, d} are invariant, T
is not ergodic. By the previous theorem, T can not be mixing. However, if P ({a, b}) = 0,
it is easy to check that T is ergodic, but since P ({c} ∩ T−n{d}) varies between zero and
1
2
, T is not mixing.
If T = (abcd), then T is ergodic since the only invariant sets are {a, b, c, d} and the

empty set. But T is not mixing: since T is measure-preserving, equal probabilities 1
4
must

be assigned to all points and thus P ({a} ∩ T−n{b}) varies between zero and 1
4
.

It is very convenient that it is enough to check that the mixing condition holds on a
generating π-system:

Theorem 1.11. Suppose that P is a π-system and F = σ(P). If

lim
n→∞

P (A ∩ T−nB) = P (A)P (B)

for all A,B ∈P, then T is mixing.

Proof. Let A ∈ P be �xed, and let CA be the class of F -sets B for which the mixing
condition (1.8) holds. We will now check that CA is a λ-system. Of course,

lim
n→∞

P (A ∩ T−nΩ) = P (A) = P (A)P (Ω),

which implies that Ω ∈ CA. Suppose then that B ∈ CA. Now we have

P (A ∩ T−nBc) = P (A ∩ (T−nB)c) = P [(Ac ∪ (T−nB))c] = 1− P (Ac ∪ T−nB)

= 1− P [Ac ∪ (A ∩ T−nB)] = 1− P (A ∩ T−nB)− P (Ac).

Letting n→∞, we obtain

lim
n→∞

P (A ∩ T−nBc) = 1− P (A)P (B)− P (Ac) = P (A)− P (A)P (B) = P (A)P (Bc),

which implies that Bc ∈ CA. Next, suppose that B1, B2, . . . are disjoint sets in CA. Then

lim
n→∞

P

(
A ∩ T−n

∞⋃
m=1

Bm

)
= lim

n→∞
P

(
A ∩

∞⋃
m=1

T−nBm

)
= lim

n→∞

∞∑
m=1

P
(
A ∩ T−nBm

)
=

∞∑
m=1

lim
n→∞

P
(
A ∩ T−nBm

)
=

∞∑
m=1

P (A)P (Bm)

= P (A)P

(
∞⋃
m=1

Bm

)
.
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The third equality is justi�ed by the Weierstrass M-test, a well-known result in analysis
(P (A ∩ T−nBm) ≤ P (T−nBm) = P (Bm) and

∑∞
m=1 P (Bm) converges). We conclude

that
⋃∞
m=1Bm ∈ CA. Thus CA is a λ-system and by the π-λ theorem, F = CA.

In a similar fashion one shows that the class of F -sets A for which the mixing condition
holds for all B ∈ F is a λ-system. The π-λ theorem then implies that the mixing condition
holds for all A,B ∈ F , and we conclude that T is mixing.

The easiest way to prove ergodicity is often to show that the given transformation is
mixing. Let us now consider some examples.

Example 1.12. The previous theorem will now be used to show that the Markov shift
is ergodic and mixing given that the Markov chain is irreducible and aperiodic, and its
initial distribution coincides with its stationary distribution.

Consider the space (S∞,S∞, P ) constructed in Section 0.3, that is, the sequence space
in which Xk(ω) = ωk, ω ∈ Ω, k ∈ N, de�nes a Markov chain with �nite state space S,
initial distribution u(i), i ∈ S, and transition probabilities p(i, j), i, j ∈ S. Suppose further
that the Markov chain is irreducible and aperiodic, and denote the unique stationary
distribution by π(i), i ∈ S. We also assume that u(i) = π(i) for all i ∈ S.

Since the state space S is �nite, it is clear that all measurable rectangles in S∞ can
be written as �nite disjoint unions of thin cylinders, that is, sets of form

{ω ∈ S∞ : ω1 = x1, ω2 = x2, . . . , ωn = xn}, n ∈ N, x1, x2, . . . , xn ∈ S.

Therefore, if the mixing condition holds for all thin cylinders, it must hold also for all
measurable rectangles. And since the measurable rectangles form a π-system generating
S∞, it is enough to show that the mixing condition holds for all thin cylinders.

Let T be the shift operator on S∞, and let A = {ω : ω1 = a1, . . . , ωnA = anA} and
B = {ω : ω1 = b1, . . . , ωnB = bnB} be thin cylinders. First, note that if n ≥ nA, then

P (A)P (B) = π(a1)p(a1, a2) · · · p(anA−1, anA)π(b1)p(b1, b2) · · · p(bnB−1, bnB),

P (A ∩ T−nB) = π(a1)p(a1, a2) · · · p(anA−1, anA)p(n−nA+1)(anA , b1)p(b1, b2) · · · p(bnB−1, bnB),

where p(m)(i, j) = P (X1+m = j|X1 = i). Since the chain is irreducible and aperiodic,
limn→∞ p

(n−nA+1)(anA , b1) = π(b1) (for a proof, see [3, p. 125]). Therefore,

lim
n→∞

P (A ∩ T−nB) = P (A)P (B),

for all thin cylinders A and B. We conclude that T is mixing, and by Theorem 1.9, it is
also ergodic.
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Example 1.13. Let X = (Xk)k∈N be a sequence of independent, identically distributed
real-valued random variables. In this case, it is easy to show that the shift operator T
de�ned on (R∞,B(R∞), PX) is mixing. Let A = C(A′) and B = C(B′) be cylinders with
bases A′ at (a1, a2, . . . , anA) and B′ at (b1, b2, . . . , bnB). Then, if n ∈ N is chosen so large
that b1 + n > anA , we have

PX(A ∩ T−nB) = P [(Xa1 , . . . , XanA
) ∈ A′, (Xb1+n, . . . , XbnB+n) ∈ B′]

= P [(Xa1 , . . . , XanA
) ∈ A′]P [(Xb1+n, . . . , XbnB+n) ∈ B′]

= PX(A)P [(Xb1 , . . . , XbnB
) ∈ B′] = PX(A)PX(B).

Since B(R∞) is generated by the cylinders, Theorem 1.11 implies that T is mixing.

Example 1.14. The angle doubling transformation we considered before is also mixing.
If A = {ω : d1(ω) = a1, . . . , dnA(ω) = anA} and B are dyadic intervals, it is easy to check
that P (A∩T−nB) = P (A)P (B) for all n ≥ nA. Since B(R) is generated by the π-system
consisting of dyadic intervals and the empty set, Theorem 1.11 again implies that T is
mixing.

1.3 Birkho�'s ergodic theorem

Before stating and proving Birkho�'s ergodic theorem, we �rst prove a preliminary result,
the maximal ergodic theorem. Its statement and proof is most convenient to express in
terms of functional operators.

Let (Ω,F , P ) be a probability space, and let T be a measure-preserving transforma-
tion. De�ne the operator U : L1(Ω)→ L1(Ω) by Uf = f ◦ T , that is,

(Uf)(ω) = f(Tω), f ∈ L1(Ω), ω ∈ Ω.

Observe that the operator U is nonnegative in the following sense: if f ≤ g (pointwise),
then Uf ≤ Ug.

The fact that T is measure-preserving implies that U preserves expectation:

Lemma 1.15. For all f ∈ L1(Ω), E[Uf] = E[f ].

Proof. If f is a simple function, then it has representation f =
∑n

i=1 xiIAi , where the xi
are distinct real numbers and the sets Ai are disjoint. But Uf =

∑n
i=1 xiIT−1Ai and thus

E[f ] =
n∑
i=1

xiP (Ai) =
n∑
i=1

xiP (T−1Ai) = E[Uf ].
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Therefore, the claim is true for simple functions. If f is a nonnegative measurable function,
then we can pick an increasing sequence (fn)n∈N of simple functions such that fn ↑ f . But
then also Ufn ↑ Uf , and the monotone convergence theorem implies that

E[f ] = lim
n→∞

E[fn] = lim
n→∞

E[Ufn] = E[Uf ].

Therefore the claim is true for all nonnegative measurable functions. Finally, if f ∈ L1(Ω),
then it has decomposition f = f+ − f− where f+ and f− are nonnegative integrable
functions. For every ω ∈ Ω, we have

(Uf)+(ω) = max{(Uf)(ω), 0} = max{f(Tω), 0} = f+(Tω) = (Uf+)(ω),

and thus (Uf)+ = Uf+. Similarly, (Uf)− = Uf−, and therefore

E[f ] = E[f+]− E[f−] = E[Uf+]− E[Uf−] = E[(Uf)+]− E[(Uf)−] = E[Uf ].

De�ne Snf =
∑n

i=1 U
i−1f =

∑n
i=1 f ◦ T i−1 for n ≥ 1, S0f = 0 (as usual, U0 is

interpreted as identity operator). Put

Mnf = max
0≤k≤n

Skf, M∞f = sup
n≥0

Snf = sup
n≥0

Mnf.

Then:

Theorem 1.16. (The maximal ergodic theorem) If f ∈ L1(Ω), then∫
{M∞f>0}

f dP ≥ 0.

Proof. Put Bn = {Mnf > 0}, B∞ = {M∞f > 0}. Now it is clear that Bn ↑ B∞ as
n → ∞. Suppose that we are able to prove that

∫
Bn
fdP ≥ 0 for all n ≥ 1. Since

f ∈ L1(Ω), the dominated convergence theorem implies that∫
{M∞f>0}

f dP = lim
n→∞

∫
{Mnf>0}

f dP ≥ 0.

Hence, it is enough to show that
∫
Bn
fdP ≥ 0 for all n ≥ 1.

Observe that (Mnf)IBn = (max1≤k≤n Skf)IBn . And since U is nonnegative, we have

Skf = f + USk−1f ≤ f + UMnf
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for all 1 ≤ k ≤ n. These facts imply that (Mnf)IBn ≤ (f + UMnf)IBn . Since Mnf and
UMnf are nonnegative,∫

Ω

Mnf dP =

∫
Bn

Mnf dP ≤
∫
Bn

(f + UMnf) dP

≤
∫
Bn

f dP +

∫
Ω

UMnf dP =

∫
Bn

f dP +

∫
Ω

Mnf dP.

The last equality of course follows from Lemma 1.15. Finally, we show that Mnf is
integrable:

|Mnf | =
∣∣∣∣max
0≤k≤n

Skf

∣∣∣∣ ≤ max
0≤k≤n

|Skf | = max
0≤k≤n

∣∣∣∣∣
k∑
i=1

U i−1f

∣∣∣∣∣ ≤ max
0≤k≤n

k∑
i=1

∣∣U i−1f
∣∣

≤
n∑
k=1

k∑
i=1

∣∣U i−1f
∣∣ ≤ n∑

k=1

k∑
i=1

U i−1 |f | ,

and the right-hand side is integrable by Lemma 1.15.

De�nition 1.17. A measurable function f is invariant if f(Tω) = f(ω) for all ω ∈ Ω.
(Observe that, by induction, f(T kω) = f(ω) for all k ≥ 1.)

We have now reached the culmination point of this chapter. Here it is:

Theorem 1.18. (Birkho�'s Ergodic Theorem) Suppose that T is a measure-preserving
transformation on a probability space (Ω,F , P ). If f ∈ L1(Ω), then there exists an
invariant and integrable function f̂ such that

lim
n→∞

1

n

n∑
k=1

f(T k−1ω) = f̂(ω)

with probability 1. Moreover, E[f̂ ] = E[f ], and if T is ergodic, then f̂ = E[f ] with
probability 1.

Remark 1.19. Let A be an invariant set and f = IA. Then clearly

lim
n→∞

1

n

n∑
k=1

f(T k−1ω) =

{
1 if ω ∈ A,
0 if ω ∈ Ac,

and so the limit function f̂ can certainly be nonconstant if T is not ergodic.
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Proof. Suppose that A is any invariant F -set. Then IA is an invariant function, and for
every ω ∈ Ω we have

[Sn(fIA)] (ω) =
n∑
i=1

[U i−1(fIA)](ω) =
n∑
i=1

(fIA)(T i−1ω)

=
n∑
i=1

f(T i−1ω)IA(T i−1ω) =
n∑
i=1

f(T i−1ω)IA(ω) = (Snf)(ω)IA(ω).

We also have

[M∞(fIA)](ω) = sup
n≥1

[Sn(fIA)] (ω) = sup
n≥1

(Snf)(ω)IA(ω) = (M∞f)(ω)IA(ω).

Hence, by the maximal ergodic theorem,

0 ≤
∫
{M∞(fIA)>0}

fIA dP =

∫
A∩{IAM∞f>0}

f dP =

∫
A∩{M∞f>0}

f dP.(1.20)

Let λ ∈ R be a constant. Then

{M∞(f − λ) > 0} =
∞⋃
n=1

{Sn(f − λ) > 0} =
∞⋃
n=1

{Snf − nλ > 0} =
∞⋃
n=1

{
1

n
Snf > λ

}

=

{
sup
n≥1

1

n
Snf > λ

}
=

{
ω : sup

n≥1

1

n

n∑
k=1

f(T kω) > λ

}
:= Fλ.

By (1.20),
∫
A∩Fλ

(f − λ) dP ≥ 0, or equivalently,

λP (A ∩ Fλ) ≤
∫
A∩Fλ

f dP.(1.21)

This holds for all invariant sets A and real numbers λ.
De�ne an(ω) = 1

n

∑n
k=1 f(T k−1ω). We want to prove that the an converge with prob-

ability 1. Let α < β, and consider the set

Aα,β = {ω : lim inf
n→∞

an(ω) < α < β < lim sup
n→∞

an(ω)}.

It is clear that

{ω : an(ω) does not converge} =
⋃

α∈Q,β∈Q
α<β

Aα,β.
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Hence, it is enough to prove that P (Aα,β) = 0 for all α < β. Observe that

lim inf
n→∞

an(Tω) = lim inf
n→∞

an−1(Tω) = lim inf
n→∞

1

n− 1

n−1∑
k=1

f(T k−1Tω)

= lim inf
n→∞

1

n− 1

n∑
k=1

f(T k−1ω)− f(ω)

n− 1
= lim inf

n→∞

n

(n− 1)n

n∑
k=1

f(T k−1ω)

= lim inf
n→∞

an(ω).

Similarly, lim supn→∞ an(Tω) = lim supn→∞ an(ω), which implies that T−1Aα,β = Aα,β.
Since Aα,β = Aα,β ∩ Fβ, (1.21) implies that

(1.22) βP (Aα,β) = βP (Aα,β ∩ Fβ) ≤
∫
Aα,β∩Fβ

f dP =

∫
Aα,β

f dP.

And since −β < −α, applying the same reasoning to −f gives

(1.23) −αP (A−−β,−α) ≤
∫
A−−β,−α

−f dP,

where A−−β,−α is the analogue of Aα,β for −f . But

A−−β,−α = {ω : lim inf
n→∞

1

n

n∑
k=1

−f(T k−1ω) < −β < −α < lim sup
n→∞

1

n

n∑
k=1

−f(T k−1ω)}

= {ω : − lim sup
n→∞

1

n

n∑
k=1

−f(T k−1ω) < α < β < − lim inf
n→∞

1

n

n∑
k=1

−f(T k−1ω)}

= {ω : lim inf
n→∞

1

n

n∑
k=1

f(T k−1ω) < α < β < lim sup
n→∞

1

n

n∑
k=1

f(T k−1ω)}

= Aα,β.

Therefore, (1.23) and (1.22) imply that αP (Aα,β) ≥
∫
Aα,β

f dP ≥ βP (Aα,β). But since

α < β, this is possible if and only if P (Aα,β) = 0.
We have shown that 1

n

∑n
k=1 f(T k−1ω) = an(ω) converges on a set with probability 1.

De�ne g(ω) = limn→∞ an(ω) on the set where an converges, and let g(ω) = 0 elsewhere.
Observe that g(ω) may assume the values ∞ and −∞ at certain values of ω. We will
show that E[g] = E[f ], which implies that |g(ω)| <∞ almost surely.

By Lemma 1.15,

E[an] =
1

n

n∑
k=1

E[f ◦ T k−1] =
1

n

n∑
k=1

E[f ] = E[f ]
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for all n ≥ 1. If we can show that the functions an are uniformly integrable, then it follows
from Theorem 0.27 that E[f ] = limn→∞E[an] = E[g] and g is integrable (and thus �nite
almost surely).

Let λ be an arbitrary nonnegative real number. By (1.21), λP (Fλ) = λP (Ω ∩ Fλ) ≤∫
Ω∩Fλ

f dP =
∫
Fλ
f dP ≤ E[|f |] <∞. If Gλ = {supn≥1 |an| > λ}, then

Gλ = {sup
n≥1

an > λ} ∪ {sup
n≥1

an < −λ} = Fλ ∪ {sup
n≥1
−an > λ}.

But the set {supn≥1−an > λ} is the analogue of Fλ for −f . Again by (1.21),

λP ({sup
n≥1
−an > λ}) ≤

∫
{supn≥1−an>λ}

−f dP ≤ E[|f |] <∞,

and we conclude that λP (Gλ) ≤ 2E[|f |]. If α and λ are positive, then∫
{|an|>λ}

|an| dP ≤
∫
Gλ

|an| dP ≤
1

n

n∑
k=1

∫
Gλ

|f ◦ T k−1| dP

=
1

n

n∑
k=1

∫
(Gλ∩{|f◦Tk−1|>α})∪(Gλ∩{|f◦Tk−1|≤α})

|f ◦ T k−1| dP

≤ 1

n

n∑
k=1

(∫
{|f◦Tk−1|>α}

|f ◦ T k−1| dP + αP (Gλ)

)
.

But
∫
{|f◦Tk−1|>α} |f ◦T

k−1| dP =
∫

Ω
Uk−1

[
(I(α,∞] ◦ |f |)|f |)

]
dP =

∫
Ω

(I(α,∞] ◦ |f |)|f |) dP =∫
{|f |>α} |f | dP by Lemma 1.15. Hence,∫

{|an|>λ}
|an| dP ≤

∫
{|f |>α}

|f | dP + αP (Gλ) ≤
∫
{|f |>α}

|f | dP + 2
α

λ
E[|f |].

Put α =
√
λ. Then, if λ→∞, the �nal expression goes to zero since f is integrable. We

may conclude that the an are uniformly integrable.
Now since E[g] = E[f ] < ∞, limn→∞ an exists and is �nite on a set with probability

1. De�ne f̂(ω) = limn→∞ an(ω) on this set, and let f̂(ω) = 0 elsewhere. Then f̂ = g
almost surely and so E[f̂ ] = E[g] = E[f ]. Since lim infn→∞ an(ω) = lim infn→∞ an(Tω)
and lim supn→∞ an(ω) = lim supn→∞ an(Tω), we have f̂(ω) = f̂(Tω): f̂ is invariant as
proposed.

Finally, suppose that T is ergodic. Observe that the set {ω : f̂(ω) ≤ x} is invariant,
which implies that its probability is either 0 or 1. Let x0 be the in�mum of the x for which
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it is 1. By the well-known properties of cumulative distribution functions, P (f̂ ≤ x0) = 1
and

P (f̂ = x0) = P (f̂ ≤ x0)− P (f̂ < x0) = 1− lim
x→x−0

P (f̂ ≤ x) = 1− 0 = 1.

Therefore, f̂ is constant x0 almost surely and thus x0 = E[f̂ ] = E[f ]. We conclude that
in the ergodic case, f̂ = E[f ] with probability 1. This completes the proof.

It is easy to check that the collection of invariant F -sets forms a σ-algebra. Let this
σ-algebra be denoted by I . The function f̂ will now be identi�ed as the conditional
expectation of f given I .

If G is any invariant set, then∫
G

1

n

n∑
k=1

f(T k−1ω)P (dω) =
1

n

n∑
k=1

∫
Ω

f(T k−1ω)IG(ω)P (dω)

=
1

n

n∑
k=1

∫
Ω

f(T k−1ω)IG(T k−1ω)P (dω)

=
1

n

n∑
k=1

E[Uk−1(fIG)] =
1

n

n∑
k=1

E[fIG] = E[fIG].

But since the averages 1
n

∑n
k=1 f(T k−1ω) converge to f̂(ω) almost surely and they are

uniformly integrable, we have∫
G

f̂ dP = lim
n→∞

∫
G

1

n

n∑
k=1

f(T k−1ω)P (dω) =

∫
G

f dP.

Therefore, E[f |I ] = f̂ by the de�nition of conditional expectation.

Example 1.24. Let Ω = {a, b, c, d, e}, and let T = (abc)(de), a product of two cycles.
Let equal probabilities be given to a, b, c and d, e so that T is measure-preserving. If
A = {a, d} and f = IA, then the limit function f̂ is 1

3
on {a, b, c} and 1

2
on {d, e}.

Example 1.25. Let us now use the ergodic theorem to prove an interesting fact about
the unit interval: for almost every number, the proportion of ones in the binary expansion
up to the nth digit tends to 1

2
as n→∞, that is,

P

({
ω : lim

n→∞

1

n

n∑
k=1

dk(ω) =
1

2

})
= 1,
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where dk(ω) is the kth digit of the nonterminating binary expansion of ω.
Let T be the angle doubling transformation on ((0, 1],B((0, 1]),m), where m is the

Lebesgue measure. As we have already proved, T shifts the binary digits of ω to the left:
dk(Tω) = dk+1(ω) for all ω ∈ (0, 1] and k ∈ N. Therefore,

lim
n→∞

1

n

n∑
k=1

dk(ω) = lim
n→∞

1

n

n∑
k=1

d1(T k−1ω).

Since T is ergodic and E[d1] = 1
2
, the ergodic theorem then implies that

lim
n→∞

1

n

n∑
k=1

dk(ω) = E[d1] =
1

2

with probability 1.

1.4 Ergodic stochastic processes

Ergodicity of a stochastic process is de�ned in terms of its distribution:

De�nition 1.26. Let T = Z or T = N. We say that a stochastic process X = (Xk)k∈T
with state space (S,S ) is ergodic, if the shift transformation on (ST ,S T , PX) is ergodic.

Suppose that the shift transformation T ′ on ST (the usual labeling T is now reserved
for the parameter set) is indeed ergodic, and further suppose that X is stationary so that
T ′ is also measure-preserving by Theorem 1.5. If f : ST → R is measurable S T/B(R)
and integrable, then the ergodic theorem implies that

lim
n→∞

1

n

n∑
k=1

f(T ′
k−1

x) =

∫
ST
f(x)PX(dx)(1.27)

for all x on a set of PX-measure 1. By Lemma 0.13 we have∫
ST
f(x)PX(dx) =

∫
Ω

f(X(ω))P (dω).

Since (1.27) holds with PX-probability 1, we have

lim
n→∞

1

n

n∑
k=1

f(T ′
k−1

X(ω)) =

∫
Ω

f(X(ω))P (dω) = E[f(X)](1.28)
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with P -probability 1. To see this, simply note that if A ⊂ ST is the set on which (1.27)
holds, then 1 = PX(A) = P (ω : X(ω) ∈ A). Note also that if T = N, then (1.28) becomes

lim
n→∞

1

n

n∑
k=1

f(Xk(ω), Xk+1(ω), . . .) = E[f(X1, X2, . . .)].(1.29)

Example 1.30. The Strong Law of Large Numbers is an immediate consequence of the
ergodic theorem. Let (Xk)k∈N be an independent sequence of identically distributed real-
valued random variables with �nite expectation m. Then the shift transformation T on
R∞ is measure-preserving and ergodic as we have previously concluded. Let f : R∞ → R
be the �rst coordinate function, that is, f(x1, x2, . . .) = x1. Then f is certainly Borel
measurable, and since∫

R∞
f(x)PX(dx) =

∫
Ω

f(X) dP =

∫
Ω

X1 dP = m <∞,

it is integrable. By (1.29) we have

lim
n→∞

1

n

n∑
k=1

Xk(ω) = lim
n→∞

1

n

n∑
k=1

f(Xk(ω), Xk+1(ω), . . .) = E[f(X1, X2, . . .)] = E(X1) = m

with probability 1.

Example 1.31. Suppose that (Xk)k∈N is an irreducible, aperiodic Markov chain with
�nite state space S and stationary distribution π which coincides with the initial dis-
tribution of the process. Again, the shift transformation T on (S∞, (P(S))∞, PX) is
measure-preserving and ergodic as we have previously seen. If j ∈ S and f(x) = I{j}(x1),
x ∈ S∞, then f is clearly Borel measurable and integrable. By (1.29) we have

lim
n→∞

#{1 ≤ k ≤ n : Xk(ω) = j}
n

= lim
n→∞

1

n

n∑
k=1

f(Xk(ω), Xk+1(ω), . . .)

= E[f(X1, X2, . . .)] = E[I{j}(X1)] = P (X1 = j)

= π(j)

with probability 1.
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Chapter 2

Shannon-McMillan-Breiman Theorem

In this chapter we will apply the ergodic theorem to prove a famous result in information
theory, the Shannon-McMillan-Breiman theorem.

All random variables in this chapter will be discrete. This means that if X : Ω → S
is a random variable, then the probability mass function pX : S → R de�ned by pX(x) =
P (X = x) satis�es

∑
x∈S pX(x) = 1. This of course implies that the set on which pX is

positive is at most countable. Usually pX(x) will be simply denoted by p(x) if it is clear
from context that p is the probability mass function of X. Similarly, if X1, X2, . . . , Xn are
discrete random variables, then the value of the joint probability mass function pX1,X2,...,Xn

at point (x1, x2, . . . , xn) is denoted by p(x1, x2, . . . , xn).
We will apply similar notation for conditional probabilities as well. If X and Y are

random variables, then P (X = x|Y = y) is denoted by pX|Y (x|y) or p(x|y) if the meaning
is clear from context. Similarly, if X1, X2, . . . , Xn are discrete random variables, then
p(xn|xn−1, xn−2, . . . , x1) means P (Xn = xn | Xn−1 = xn−1, . . . , X1 = x1), and so on.

We will also often consider random variables such p(X), which of course means the
random variable that maps ω to pX(X(ω)). Conditional probabilities such as P (Xn =
xn | Xn−1, . . . , X1) may also be written as p(xn | Xn−1, . . . , X1).

2.1 Basic concepts of Information Theory

We begin this chapter with a brief introduction to information theory. The most funda-
mental quantity in information theory is called entropy :

De�nition 2.1. Entropy of a discrete random variable X with probability mass function
p(x) is de�ned as

H(X) = −
∑
x∈S

p(x) log2(p(x)) = −E[log2 p(X)].
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In information theory, it is customary to use base 2 logarithms. From here on, log
always means base 2 logarithm unless stated otherwise. We also de�ne 0 log 0 = 0, which
is justi�ed by the fact that limx→0+ x log x = 0. Thus we don't have to assume that
p(x) > 0 for all x ∈ S.

Observe that entropy depends only on the probabilities p(x), x ∈ S, but not on the
actual values that X assumes. It is also worth noting that entropy always exists, since
the summands are always negative. But entropy may well be in�nite.

De�nition 2.2. Suppose that X1, X2, . . . , Xn are discrete random variables such that Xk

takes values in Sk, 1 ≤ k ≤ n. Then the joint entropy of X1, X2, . . . , Xn is de�ned as

H(X1, X2, . . . , Xn) = −
∑

x1∈S1,...,xn∈Sn

p(x1, x2, . . . , xn) log p(x1, x2, . . . , xn)

= −E[log p(X1, X2, . . . , Xn)].

Observe that since the the random variables X1, X2, . . . , Xn can be treated as a single
random vector (X1, X2, . . . , Xn) taking values in S1 × · · · × Sn, nothing new is actu-
ally involved here. The joint entropy of X1, X2, . . . , Xn clearly equals the entropy of
(X1, X2, . . . , Xn).

De�nition 2.3. Suppose that X : Ω → SX and Y : Ω → SY are discrete random
variables. Then the conditional entropy of Y given X = x is de�ned as

H(Y | X = x) = −
∑
y∈SY

p(y|x) log p(y|x),

and the conditional entropy of Y given X, denoted by H(Y |X), is de�ned as the weighted
average of the H(Y | X = x), that is,

H(Y |X) =
∑
x∈SX

H(Y | X = x)p(x) = −
∑

x∈SX ,y∈SY

p(x, y) log p(y|x) = −E[log p(Y |X)].

Claude E. Shannon, who laid the foundations of information theory, called the number
H(X) entropy since he recognized some analogies between it and the concept of entropy
in statistical mechanics. Entropy can be seen as a measure of uncertainty associated with
a random variable[5, p. 3]. This is illustrated by the following example.

Example 2.4. Let X be a Bernoulli(p) distributed random variable such that P (X =
1) = p and P (X = 0) = 1− p. In this case,

H(X) = −p(log p)− (1− p) log(1− p).
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Figure 2.1: The graph of binary entropy function H(p)

This entropy as a function of p, denoted by H(p), is called the binary entropy function.
As the �gure shows, the binary entropy function attains its maximum value 1 at p = 0.5,
and is zero at p = 0 and p = 1. This makes a lot of sense if entropy is interpreted as a
measure of uncertainty. If p is zero or one, there is no uncertainty and thus entropy is
zero as one would expect. On the other hand, if we toss a fair coin (so that p = 0.5),
more uncertainty concerning the outcome is involved than in the case of a weighted coin.

Example 2.5. LetX denote the number of heads before the �rst tail in a fair coin tossing.
Then P (X = k) = 1

2k+1 and

H(X) = −
∞∑
k=0

1

2k+1
log

1

2k+1
= −

∞∑
k=0

1

2k+1
(−k − 1) =

1

2

∞∑
k=0

(k + 1)

(
1

2

)k
=

1

2

∞∑
k=1

k

(
1

2

)k−1

=
1

2

(
1(

1− 1
2

)2

)
= 2.

Kullback-Leibler distance and mutual information

Before we prove the basic properties of entropy, we will brie�y discuss the concepts of
Kullback-Leibler distance and mutual information. Their nonnegativity will turn out
extremely useful in the proofs.

44



De�nition 2.6. Suppose that p and q are probability mass functions on a set S. Then
the Kullback-Leibler distance between p and q, denoted by D(p||q), is de�ned as

D(p||q) =
∑
x∈S

p(x) log
p(x)

q(x)
.

Remark 2.7. We adapt the conventions here: 0 log 0
0

= 0, 0 log 0
c

= 0 and c log c
0

= ∞.
These are all justi�ed by considering appropriate limits.

Even though D(p||q) is called distance between p and q, it is not a metric since it does
not ful�ll the triangle equality and it is not symmetric. However, the next theorem shows
that D(p||q) = 0 if and only if p = q and D(p||q) is always nonnegative. Later, many
proofs will be based on this important fact.

Theorem 2.8. Let p and q be probability mass functions on a set S. Then

D(p||q) ≥ 0

with equality if and only if p(x) = q(x) for all x ∈ S.

Proof. If for some x ∈ S we have p(x) > 0 and q(x) = 0, then D(p||q) = ∞ > 0 by the
convention that c log c

0
=∞. Therefore, we may assume that such x does not exist.

Let S ′ = {x ∈ S : p(x) > 0} be the support of p. Suppose that X is any random
variable with probability mass function p. Then

−D(p||q) = −
∑
x∈S

p(x) log
p(x)

q(x)
= −

∑
x∈S′

p(x) log
p(x)

q(x)

=
∑
x∈S′

p(x) log
q(x)

p(x)
= E

[
log

q(X)

p(X)

]
= −E

[
− log

q(X)

p(X)

]
.

The mapping x 7→ − log x is strictly convex on (0,∞) and P
(
q(X)
p(X)

> 0
)

= 1. Thus, by

applying Jensen's inequality, a well-known result in probability theory, we obtain

− log

(
E

[
q(X)

p(X)

])
≤ E

[
− log

q(X)

p(X)

]
,

or equivalently, −E
[
− log q(X)

p(X)

]
≤ log

(
E
[
q(X)
p(X)

])
. Therefore,

−D(p||q) = −E
[
− log

q(X)

p(X)

]
≤ log

(
E

[
q(X)

p(X)

])
= log

∑
x∈S′

p(x)
q(x)

p(x)

= log
∑
x∈S′

q(x) ≤ log
∑
x∈S

q(x) = log 1 = 0.
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This proves that Kullback-Leibler distance is nonnegative.
What remains to be proven is that we have equality if and only if p(x) = q(x) for all

x ∈ S. Suppose �rst that we have D(p||q) = 0. Then the two inequalities above must
actually be equalites. By the strict convexity of the mapping x 7→ − log x, this is possible
in Jensen's inequality only if the random variable q(X)

p(X)
is constant almost surely. This is

equivalent to having q(x)
p(x)

= c for some real number c and for all x ∈ S ′. Summing over all

x ∈ S ′ we obtain ∑
x∈S′

q(x) = c
∑
x∈S′

p(x) = c.

But we must also have equality in log
∑

x∈S′ q(x) ≤ log
∑

x∈S q(x), which implies c =∑
x∈S′ q(x) =

∑
x∈S q(x) = 1. Thus c = 1 and we have p(x) = q(x) for all x ∈ S ′. Now

having
∑

x∈S′ q(x) =
∑

x∈S q(x) further implies that p(x) = q(x) for all all x ∈ S.
Conversely, if p(x) = q(x) for all x ∈ S, then we have

log
∑
x∈S

q(x) = log
∑
x∈S

p(x) = log
∑
x∈S′

p(x) = log
∑
x∈S′

q(x).

Also the random variable q(X)
p(X)

is constant almost surely, which implies that we also have

equality in Jensen's inequality. Thus D(p||q) = 0.

De�nition 2.9. The mutual information of discrete random variables X and Y , denoted
by I(X;Y ), is the Kullback-Leibler distance between the joint probability mass functions
pX,Y (x, y) and pX(x)pY (y) de�ned on SX × SY .

Mutual information measures how much information one random variable contains
about another random variable. This is clari�ed by the fact that if X and Y are in-
dependent, then their product distribution equals their joint distribution and we have
I(X;Y ) = 0 by the previous theorem. The theorem also states that we always have
I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.

Let us derive a handy formula for the mutual information I(X;Y ):

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
=
∑
x,y

p(x, y) log
p(x|y)

p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y))

= −
∑
x

p(x) log p(x)−

(
−
∑
x,y

p(x, y) log p(x|y)

)
= H(X)−H(X|Y ).
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And since I(X;Y ) ≥ 0, we have the following inequality:

(2.10) H(X) ≥ H(X|Y ).

Properties of entropy

We will now prove the basic properties of entropy. We start with the following theorem
which illustrates the relationshop between joint and conditional entropy:

Theorem 2.11. If X : Ω→ SX and Y : Ω→ SY are discrete random variables, then

H(X, Y ) = H(X) +H(Y | X).

Proof.

H(X, Y ) = −
∑
x∈SX

∑
y∈SY

p(x, y) log p(x, y) = −
∑
x∈SX

∑
y∈SY

p(x, y) log [p(x)p(y|x)]

= −
∑
x∈SX

∑
y∈SY

p(x, y) log p(x)−
∑
x∈SX

∑
y∈SY

p(x, y) log p(y|x)

= −
∑
x∈SX

p(x) log p(x)−
∑
x∈SX

∑
y∈SY

p(x, y) log p(y|x)

= H(X) +H(Y | X).

Corollary 2.12. Suppose that X1, X2, . . . , Xn−1 and Xn are discrete random variables
and n ≥ 2. Then

H(X1, X2, . . . , Xn) =
n∑
k=1

H(Xk | Xk−1, Xk−2, . . . , X1).

Proof. We prove the claim by induction. By the theorem, the claim is true if n = 2.
Suppose then that it holds for n− 1 random variables. In this case,

H(X1, X2, . . . , Xn) = H [(X1, . . . , Xn−1), Xn]

= H(X1, . . . , Xn−1) +H(Xn | Xn−1, . . . , X1)

=
n−1∑
k=1

H(Xk | Xk−1, Xk−2, . . . , X1) +H(Xn | Xn−1, . . . , X1)

=
n∑
k=1

H(Xk | Xk−1, Xk−2, . . . , X1).

By induction, the claim holds for all n ≥ 2.
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Theorem 2.11 has an analogue for conditional entropy:

Theorem 2.13. If X : Ω → SX , Y : Ω → SY and Z : Ω → SZ are discrete random
variables, then

H(X, Y | Z) = H(X | Z) +H(Y | X,Z).

Proof. Since pX,Y |Z(x, y|z) = pX|Z(x|z)pY |X,Z(y|x, z) whenever pX,Z(x, z) > 0, we have

H(X, Y | Z) = −
∑
x,y,z

p(x, y, z) log p(x, y|z) = −
∑
x,y,z

p(x, y, z) log [p(x|z)p(y|x, z)]

= −
∑
x,y,z

p(x, y, z) log p(x|z)−
∑
x,y,z

p(x, y, z) log p(y|x, z)

= −
∑
x,z

p(x, z) log p(x|z)−
∑
x,y,z

p(x, y, z) log p(y|x, z)

= H(X | Z) +H(Y | X,Z).

Recall that always H(X) ≥ H(X|Y ). As an important consequence of this fact we
have the following theorem:

Theorem 2.14. Suppose that X1, X2, . . . , Xn−1 and Xn are discrete random variables.
Then

H(X1, X2, . . . , Xn) ≤
n∑
k=1

H(Xi)

with equality if and only if the random variables are independent.

Proof. By Theorem 2.12,

H(X1, X2, . . . , Xn) =
n∑
k=1

H(Xk|Xk−1, Xk−2, . . . , X1) ≤
n∑
k=1

H(Xk).

We have equality here if and only if H(Xk|Xk−1, Xk−2, . . . , X1) equals H(Xk) for each k.
But this happens if and only if Xk is independent of (Xk−1, . . . , X1) for each k.

Corollary 2.15. If the Xi are also identically distributed, then H(X1, X2, . . . , Xn) =
nH(X1).

An analogous result also holds for conditional entropy:
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Theorem 2.16. Suppose that X1, X2, . . . , Xn and Z are discrete random variables. Then

H(X1, X2, . . . , Xn | Z) ≤
n∑
i=1

H(Xi | Z)

with equality if and only if the random variables Xk are conditionally independent given
Z, that is,

pXi,Xj |Z(i, j|z) = pXi(i|z)pXj(j|z)

for all i, j and z.

Proof. Let i ∈ SZ . Then by Theorem 2.14,

H(X1, X2, . . . , Xn|Z = i) ≤
n∑
k=1

H(Xk|Z = i)

with equality if and only if the Xk are independent given Z = i. The claim follows by
multiplying this inequality by pZ(i) and summing over all i ∈ SZ .

The analogue of inequality (2.10) for conditional entropy is given by the following
theorem:

Theorem 2.17. If X, Y and Z are discrete random variables, then

H(Z | X, Y ) ≤ H(Z | X)

with equality if and only if Y and Z are conditionally independent given X.

Proof. By Theorems 2.13 and 2.16, we have

H(Z | X, Y ) = H(Y, Z | X)−H(Y | X) ≤ H(Y, Z | X)−H(Y, Z | X) +H(Z | X)

= H(Z | X)

with equality if and only if Y and Z are conditionally independent given X.

Observe that, informally, this theorem and inequality (2.10) state that conditioning
always reduces entropy.
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2.2 Entropy and stochastic processes

Consider a sequence (Xk)k∈N of independent and identically distributed random variables.
Unless H(X1) = 0, we have limn→∞H(X1, H2, . . . , Hn) = limn→∞ nH(X1) = ∞. How-
ever, limn→∞

1
n
H(X1, H2, . . . , Hn) = H(X1). This justi�es the following de�nition:

De�nition 2.18. The entropy rate of a stochastic process X = (Xk)k∈T with parameter
set T = N or T = Z is de�ned by

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn)

when the limits exists.

Example 2.19. Consider a sequence X = (Xk)k∈N of independent Bernoulli trials such
that pk = P (Xk = 1) is not constant. In this case, H(X1, X2, . . . , Xn) =

∑n
i=1H(Xi).

Let

pi =

{
0.5 if 2k < log log i ≤ 2k + 1,
0 if 2k + 1 < log log i ≤ 2k + 2

for k = 0, 1, 2, . . .. Now H(Xi) = H(0.5) = 1 for arbitrarily long segments, and these
are followed by exponentially longer segments where H(Xi) = H(0) = 0. Then again, we
have an exponentially longer segment with H(Xi) = 1, and so on. Hence, the average
1
n

∑n
i=1H(Xi) oscillates between zero and one. Entropy rate is thus not de�ned for this

process.

The next theorem shows that for stationary processes with H(X1) < ∞, the entropy
rate always exists. We also have, in the stationary case, an alternative and often easier
formula for calculating the entropy rate.

Theorem 2.20. If X = (Xk)k∈T is stationary and H(X1) <∞, then

lim
n→∞

H(Xn | Xn−1, Xn−2, . . . , X1)

exists, is �nite, and equals H(X).

Proof. By Theorem 2.17 and stationarity,

H(Xn+1 | Xn, . . . , X1) ≤ H(Xn+1 | Xn, . . . , X2) = H(Xn | Xn−1, . . . , X1).

Since H(Xn+1 | Xn, . . . , X1), n ∈ N, is a decreasing sequence of nonnegative numbers, it
converges to a limit. And since H(Xn | Xn−1, . . . , X1) ≤ H(X1) < ∞, the limit is �nite.
Denote this limit by H ′. We will show that H ′ = H(X).
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Note that if an is a sequence of real numbers such that limn→∞ an = a, then also
limn→∞

1
n

∑n
i=1 ai = a. By Corollary 2.12,

H(X1, X2, . . . , Xn)

n
=

1

n

n∑
i=1

H(Xi | Xi−1, . . . , X1).

Therefore,

H ′ = lim
n→∞

H(Xn | Xn−1, . . . , X1) = lim
n→∞

1

n

n∑
i=1

H(Xi | Xi−1, . . . , X1)

= lim
n→∞

H(X1, X2, . . . , Xn)

n
= H(X).

Example 2.21. Consider an aperiodic, irreducible Markov chain X = (Xk)k∈N with
stationary distribution π, transition probabilities p(i, j) and �nite state space S. Again,
we suppose that the initial distribution is π and thus the process is stationary. Now

H(X) = lim
n→∞

H(Xn | Xn−1, . . . , X1) = lim
n→∞

H(Xn | Xn−1) = H(X2|X1)

=
∑
i∈S

π(i)H(X2|X1 = i) = −
∑
i∈S

∑
j∈S

π(i)p(i, j) log p(i, j).

The signi�cance of the entropy rate of a stochastic process should become clear in the
next section.

2.3 Asymptotic Equipartition Property

Suppose that a weighted coin with P (�head�) = 0.8 is tossed 1000 times, and suppose
further that this experiment is repeated, say, 1000 times. Thus, we obtain 1000 sequences
consisting of 1000 heads or tails. It is intuitively clear that most of these sequences
contain around 800 heads. The probability of observing one such a sequence is close to
0.8800(1− 0.8)1000−800 which can be written as

2800 log(0.8)+(1000−800) log(1−0.8)) = 2−1000H(0.8).

Recall that H(0.8) is the entropy associated with a coin tossing with weight 0.8. It is also
the entropy rate associated with the stochastic process de�ned by this random experiment.

An analogous result is true more generally. If a stochastic process X satis�es cer-
tain assumptions which will be discussed shortly, the probability of observing a sequence
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(x1, x2, . . . , xn) is arbitrarily close to 2−nH(X) for most of the sequences as n grows. This
allows us to partition the space of all sequences of length n into two groups: the typical
sequences (x1, x2, . . . , xn) with p(x1, x2, . . . , xn) close to 2−nH(X), and atypical sequences.

Processes for which this is possible have the Asymptotic Equipartition Property. We
begin this section by proving the AEP for independent, identically distributed sequences.

Theorem 2.22. If X1, X2, . . . are independent, identically distributed random variables
such that H(X1) <∞, then

− 1

n
log p(X1, X2, . . . , Xn)→ H(X1) in probability as n→∞.

Proof. The theorem is a direct consequence of the weak law of large numbers. Since the
Xi are independent and identically distributed, so are the random variables − log p(Xi).
For each i, we have E[− log p(Xi)] = H(X1) and thus

− 1

n
log p(X1, X2, . . . , Xn) = − 1

n
log [p(X1)p(X2) · · · p(Xn)] =

1

n

n∑
i=1

− log p(Xi)

converges in probability to E[− log p(Xi)] = H(X1) by the weak law of large numbers.

De�nition 2.23. Let T = N or T = Z. A stochastic process X = (Xk)k∈T has the
Asymptotic Equipartition Property if H(X) is �nite and

− 1

n
log p(X1, X2, . . . , Xn)→ H(X) in probability as n→∞.

Inpedendent and identically distributed processes with H(X1) <∞ have this property
by Theorem 2.22 since H(X) = H(X1). But the Shannon-McMillan-Breiman theorem
states that all stationary, ergodic processes with �nite state space S have the AEP. We
state the theorem now. Its rather long proof will be presented in the next section.

Theorem 2.24. (The Shannon-McMillan-Breiman theorem) Let X = (Xk)k∈Z be a sta-
tionary ergodic stochastic process taking values in a �nite set S. If H(X) is the �nite
entropy rate of the process, then

lim
n→∞

− 1

n
log p(X0, X1, . . . , Xn−1) = H(X)

with probability 1 (and thus also in probability).

It is assumed that the process has parameter set T = Z. But recall Theorem 0.22: any
stationary stochastic process X = (Xk)k∈N with parameter set T = N has an identically
distributed counterpart process X ′ = (X ′k)k∈Z with parameter set T = Z.
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Remark 2.25. The AEP actually holds for even wider class of processes. The state space
may be countable, for instance. Moreover, if the Xk are continuous random variables and
entropy is replaced with di�erential entropy, then the AEP again holds for stationary,
ergodic processes [7]. But the proof of Shannon-McMillan-Breiman theorem in this case
is considerably more di�cult and way beyond the scope of this Master's Thesis.

The AEP is important because it enables us to divide the space of all sequences into
typical and atypical sequences. This partitioning has important applications such as data
compression, as we will soon see.

De�nition 2.26. Let T = N or T = Z. Suppose that X = (Xk)k∈T is a stochastic process

with state space S, H(X) <∞ and X has the AEP. Let ε > 0. Then the typical set A
(n)
ε

is the set consisting of sequences (x1, x2, . . . , xn) ∈ Sn with the property

2−n(H(X)+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X)−ε).

The following theorem shows that the probability of observing a sequence belonging to
the typical set is close to 1, all elements of the typical set are approximately equiprobable,
and the number of elements in the typical is close to 2nH(X).

Theorem 2.27. The set A
(n)
ε has the following properties:

(1) If (x1, x2, . . . , xn) ∈ A(n)
ε , then H(X)− ε ≤ − 1

n
log p(x1, x2, . . . , xn) ≤ H(X) + ε,

(2) P
(

(X1, X2, . . . , Xn) ∈ A(n)
ε

)
> 1− ε for large n,

(3) |A(n)
ε | ≤ 2n(H(X)+ε),

(4) |A(n)
ε | ≥ (1− ε)2n(H(X)−ε).

Proof. (1) This is immediate from the de�nition of A
(n)
ε .

(2) Since X has the AEP, convergence in probability implies that for every δ > 0 there
exists n ∈ N such that

P

(∣∣∣∣− 1

n
log p(X1, X2, . . . , Xn)−H(X)

∣∣∣∣ ≤ ε

)
> 1− δ.(2.28)

If we choose δ = ε, then (2.28) says precisely that P
(

(X1, X2, . . . , Xn) ∈ A(n)
ε

)
> 1−ε.

(3) Observe that

1 =
∑

(x1,x2,...,xn)∈Sn
p(x1, x2, . . . , xn) ≥

∑
(x1,x2,...,xn)∈A(n)

ε

p(x1, x2, . . . , xn)

≥
∑

(x1,x2,...,xn)∈A(n)
ε

2−n(H(X)+ε) = |A(n)
ε |2−n(H(X)+ε).

The claim follows by dividing both sides by 2−n(H(X)+ε).
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(4) For large n, we have P
(

(X1, X2, . . . , Xn) ∈ A(n)
ε

)
> 1− ε by (2). Therefore,

1− ε < P
(
(X1, X2, . . . , Xn) ∈ A(n)

ε

)
=

∑
(x1,x2,...,xn)∈A(n)

ε

p(x1, x2, . . . , xn)

≤
∑

(x1,x2,...,xn)∈A(n)
ε

2−n(H(X)−ε) = |A(n)
ε |2−n(H(X)−ε).

The claim follows again by dividing both sides by 2−n(H(X)−ε).

Example 2.29. Suppose that X1, X2, . . . are independent Bernoulli(0.8)-distributed ran-

dom variables as in the beginning of this section. If (x1, x2, . . . , xn) ∈ A(n)
ε , then

p(x1, x2, . . . , xn) ≈ 2−nH(X) = 2−nH(X1) = 2−nH(0.8) = 2−n(−0.8 log 0.8−0.2 log 0.2)

= 0.80.8n0.20.2n.

Thus for typical sequences, around 80% of the Xk are ones. It is interesting that the most
likely individual sequence, that is, the sequence in which every Xk is 1, does not belong
to the typical set if ε is small enough. To see this, note that

− 1

n
log p(1, 1, . . . , 1) = − 1

n
log 0.8n = − log 0.8 ≈ 0.33 < 0.72 ≈ H(0.8).

The following example illustrates why the AEP is useful.

Example 2.30. (Data Compression) Suppose that X = (Xk)k∈N is a stochastic process
with �nite state space S, and suppose further that the AEP holds for X. Consider
sequences (x1, x2, . . . , xn) ∈ Sn drawn according to P (X1 = x1, X2 = x2, . . . , Xn = xn).
Since Sn has |S|n < ∞ elements, these sequences can be represented with log |S|n =
n log |S| bits (in practice, we of course need dn log |S|e bits since n log |S| may not be an
integer). Let us call these bit representations codewords. By assigning shorter codewords
to sequences that appear often and longer codewords to rare sequences, we can reduce
the average codeword length. If l(x1, x2, . . . , xn) is the length of the codeword associated
with sequence (x1, x2, . . . , xn), then the expected codeword length is

E[l(X1, X2, . . . , Xn)] =
∑

(x1,x2,...,xn)∈Sn
l(x1, x2, . . . , xn)p(x1, x2, . . . , xn).

Since there are at most 2n(H(X)+ε) sequences in A
(n)
ε , we need no more than n(H(X)+ε)+1

bits to represent each typical sequence (the one extra bit may be needed since n(H(X)+ε)
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may not be an integer). Let us then pre�x these codewords with 0, so that no more than

n(H(X) + ε) + 2 bits are needed to represent each sequence in A
(n)
ε . Similarly, at most

n log |S|+ 1 bits are enough to represent all sequences not in A
(n)
ε , and by pre�xing these

codewords with 1 we have maximum codeword length of n log |S| + 2 for sequences that

belong to the complement of A
(n)
ε .

Let n be so large that PX1,...,Xn

(
A

(n)
ε

c
)
is less than ε. Then

E[l(X1, . . . , Xn)] =
∑

x∈A(n)
ε

l(x)p(x) +
∑

x∈A(n)
ε

l(x)p(x)

≤
∑

x∈A(n)
ε

(n(H(X) + ε) + 2)p(x) +
∑

x∈A(n)
ε

(n log |S|+ 2)p(x)

= PX1,...,Xn

(
A(n)
ε

)
(n(H(X) + ε) + 2) + PX1,...,Xn

(
A(n)
ε

c
)

(n log |S|+ 2)

≤ n(H(X) + ε) + εn(log |S|) + 2 = n(H(X) + ε′),

where ε′ = ε + ε log |S| + 2
n
can be made arbitrarily small. Therefore, on the average,

sequences in Sn can be represented with nH(X) bits. This is often considerably smaller
than the n log |S| bits needed if codewords are assigned without taking advantage of the
AEP. For example, in the coin tossing experiment we discussed in the beginning of this
section, H(X) is approximately 0.72, but log |S| = log 2 = 1.

Now it is time to �nally prove the Shannon-McMillan-Breiman theorem.

2.4 Proof of the Shannon-McMillan-Breiman theorem

Our strategy is to show that with probability 1,

H(X) ≤ lim inf
n→∞

− 1

n
log p(X0, . . . , Xn−1) ≤ lim sup

n→∞
− 1

n
log p(X0, . . . , Xn−1) ≤ Hk,

where Hk is a (nonrandom) sequence such that Hk → H(X) as k → ∞. Of course this
and the stationarity of X imply that

lim
n→∞

− 1

n
log p(X1, . . . , Xn) = lim

n→∞
− 1

n
log p(X0, . . . , Xn−1) = H(X),

and so the AEP holds for the process X. To achieve this goal, − 1
n

log p(X0, . . . , Xn−1)
will be �sandwiched� between two ergodic processes that converge to H(X) and Hk, re-
spectively.
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The sequence Hk, called the kth-order entropy, is de�ned as

Hk = E [− log p(Xk|Xk−1, . . . , X0)] = E [− log p(X0|X−1, . . . , X−k)]

= H(X0 | X−1, X−2, . . . , X−k),

where the second equation follows from stationarity. As in the proof of Theorem 2.20,
stationarity and Theorem 2.17 imply that Hk is a decreasing sequence. We also have

lim
k→∞

Hk = lim
k→∞

Hk−1 = lim
k→∞

H(X0 | X−1, . . . , X−k+1) = lim
k→∞

H(Xk | Xk−1, . . . , X1)

= H(X).

To make the proof more comprehensible, it is divided into four steps.

(1) De�ne

H∞ = E [− log p(X0 | X−1, X−2, . . .)] = H(X0 | X−1, X−2, . . .).

In this step we apply martingale convergence theory to show that limk→∞Hk = H∞.
Since limits are unique, this further implies that H(X) = H∞.

First we prove that

Hk = E

[
−
∑
x0∈S

p (x0 | X−1, X−2, . . . , X−k) log p (x0 | X−1, X−2, . . . , X−k)

]
.

Put g(x) = P (X0 = x | X−1, X−2, . . . , X−k) = p(x | X−1, X−2, . . . , X−k). Using the
properties of conditional expectation, we obtain

Hk = E [− log p(X0 | X−1, . . . , X−k)] = E

[
−
∑
x0∈S

I{X0=x0} log g(x0)

]
= −

∑
x0∈S

E
[
I{X0=x0}

]
log g(x0) = −

∑
x0∈S

E
[
E[I{X0=x0} | X−1, . . . , X−k]

]
log g(x0)

= E

[
−
∑
x0∈S

E
[
I{X0=x0} | X−1, . . . , X−k

]
log g(x0)

]

= E

[
−
∑
x0∈S

p (x0 | X−1, X−2, . . . , X−k) log p (x0 | X−1, X−2, . . . , X−k)

]
.

The same argument shows that

H∞ = E

[
−
∑
x0∈S

p (x0 | X−1, X−2, . . .) log p (x0 | X−1, X−2, . . .)

]
.
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Let x0 ∈ S. De�ne Yk = p(x0|X−1, . . . , X−k), k ∈ N. Then by the de�nition of
conditional probability,

Yk = p(x0|X−1, . . . , X−k) = P (X0 = x0|X−1, . . . , X−k) = E[I{X0=x0}|X−1, . . . , X−k].

As we saw in Example 0.42, the process Y = (Yk)k∈N is a martingale. We also observe
that

σ

(
∞⋃
n=1

σ(X−1, . . . , X−n)

)
= σ(X−1, X−2, . . .).

Therefore, we may now apply Levy's martingale convergence theorem to obtain

lim
k→∞

Yk = lim
k→∞

E[I{X0=x0}|X−1, . . . , X−k] = E[I{X0=x0}|X−1, X−2, . . .]

= P (X0 = x0|X−1, X−2, . . .) = p(x0|X−1, X−2, . . .)

with probability 1. Since −x log x ≤ 1 for x ∈ [0, 1], we obtain

−
∑
x0∈S

p(x0|X−1, . . . , X−k) log p(x0|X−1, . . . , X−k) ≤ |S| <∞

for all k ∈ N. And since the function −x log x is also continuous on [0, 1], we have
limk→∞ xk log xk = (limk→∞ xk) log(limk→∞ xk) for all convergent sequences (xk)k∈N. Thus,
the dominated convergence theorem yields

lim
k→∞

Hk = lim
k→∞

E

[
−
∑
x0∈S

p(x0|X−1, . . . , X−k) log p(x0|X−1, . . . , X−k)

]

= E

[
−
∑
x0∈S

lim
k→∞

p(x0|X−1, . . . , X−k) log p(x0|X−1, . . . , X−k)

]

= E

[
−
∑
x0∈S

p(x0|X−1, X−2, . . .) log p(x0|X−1, X−2, . . .)

]
= H∞.

This completes the �rst part of the proof.

(2) The k-th order Markov approximation to the probability p(X0, X1, . . . , Xn−1) is de�ned
for n ≥ k as

pk(X0, X1, . . . , Xn−1) = p(X0, X1, . . . , Xk−1)
n−1∏
i=k

p(Xi | Xi−1, Xi−2, . . . , Xi−k).
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In this step we use the ergodic theorem to prove that with probability 1,

lim
n→∞

− 1

n
log pk(X0, X1, . . . , Xn−1) = Hk,(2.31)

and

lim
n→∞

− 1

n
log p(X0, X1, . . . , Xn−1 | X−1, X−2, . . .) = H∞.(2.32)

To prove (2.31), observe �rst that

− 1

n
log pk(X0, . . . , Xn−1) = − 1

n
log p(X0, . . . , Xk−1)− 1

n

n−1∑
i=k

log p(Xi | Xi−1, . . . , Xi−k).

The �rst term converges to zero as n grows, and the second term can be written as

− 1

n

n−1∑
i=1

log p(Xi−1 | Xi−2, . . . , Xi−k−1) +
1

n

k−1∑
i=1

log p(Xi | Xi−1, . . . , Xi−k),

where the second term again converges to zero as n grows. The ergodic theorem can be
applied to the �rst term, since

log p(Xi−1 | Xi−2, . . . , Xi−k−1) = f
[
T i−1(. . . , X−1, X0, X1, . . .)

]
,

where f(. . . , x−1, x0, x1, . . .) = log p(x0 | x−1 . . . xi−k), and T is the shift operator on SZ.
The function f is measurable by the de�nition of conditional probability, and since

−E[f ] = E [− log p(X0 | X−1, . . . , X−k)] = Hk <∞,

it is integrable. Therefore, by (1.28), we have

lim
n→∞

− 1

n
log pk(Xn−1, . . . , X0) = lim

n→∞
− n− 1

n(n− 1)

n−1∑
i=1

log p(Xi−1 | Xi−2, . . . , Xi−k−1)

= −E [f(. . . , X−1, X0, X1, . . .)]

= −E [log p(X0 | X−1, . . . , Xi−k)] = Hk.

To prove (2.32), recall that conditional probability satis�es the equation

P (X = x, Y = y | Z = z) = P (Y = y | X = x, Z = z)P (X = x | Z = z)
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even if P (Z = z) = 0 (see Example 0.37). Therefore,

p(X0, . . . , Xn−1 | X0, X1, . . .) = p(X1, . . . , Xn−1 | X0, X−1, . . .)p(X0 | X−1, X−2, . . .)

= · · · =
n−1∏
i=0

p(Xi | Xi−1, Xi−2, . . .)

with probability 1. This implies that

− 1

n
log p(X0, . . . , Xn−1 | X−1, X−2, . . .) = − 1

n

n−1∑
i=0

log p(Xi | Xi−1, Xi−2, . . .)

= − 1

n

n∑
i=1

g
[
T i−1(. . . , X−1, X0, X1, . . .)

]
,

where g(. . . , x−1, x0, x1, . . .) = log p(x0 | x−1, x−2, . . .), and T is the shift operator on SZ.
The function g is again measurable and integrable, and thus the ergodic theorem implies
that

lim
n→∞

− 1

n
log p(X0, . . . , Xn−1 | X−1, Xi−2, . . .) = −E [g(. . . , X−1, X0, X1, . . .)] = H∞.

This completes the second part of the proof.

(3) In this part we prove two limit inequalities, namely

lim sup
n→∞

1

n
log

pk(X0, X1, . . . , Xn−1)

p(X0, X1, . . . , Xn−1)
≤ 0(2.33)

almost surely, and

lim sup
n→∞

1

n
log

p(X0, X1, . . . , Xn−1)

p(X0, X1, . . . , Xn−1 | X−1, X−2, . . .)
≤ 0(2.34)

almost surely. Observe that since (X0, X1, . . . , Xn−1) is a discrete random variable, divi-
sion by zero is not an issue here.

Let A be the support set of PX0,X1,...,Xn−1 , that is,

A = {(x0, x1, . . . , xn−1) ∈ Sn : p(x0, x1, . . . , xn−1) > 0}.
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Then

E

[
pk(X0, X1, . . . , Xn−1)

p(X0, X1, . . . , Xn−1)

]
=

∑
(x0,...,xn−1)∈A

p(x0, . . . , xn−1)
pk(x0, . . . , xn−1)

p(x0, . . . , xn−1)

=
∑

(x0,...,xn−1)∈A

pk(x0, . . . , xn−1) ≤
∑

(x0,...,xn−1)∈Sn
pk(x0, . . . , xn−1)

=
∑

(x0,...,xn−1)∈Sn
p(x0, . . . , xk−1)

n−1∏
i=k

p(xi | xi−1, . . . , xi−k)

=
∑

(x0,...,xn−2)∈Sn−1

p(x0, . . . , xk−1)
n−2∏
i=k

p(xi | xi−1, . . . , xi−k)
∑

xn−1∈S

p(xn−1 | xn−1−1, . . . , xn−1−k)︸ ︷︷ ︸
=1

=
∑

(x0,...,xn−2)∈Sn−1

p(x0, . . . , xk−1)
n−2∏
i=k

p(xi | xi−1, . . . , xi−k) = · · · =
∑

(x0,...,xk−1)∈Sk
p(x0, . . . , xk−1)

= 1.

Thus, by Chebyshev's inequality, we have

P

(
pk(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | X−1, X−2, . . .)
≥ n2

)
≤
E
[

pk(X0,...,Xn−1)
p(X0,...,Xn−1|X−1,X−2,...)

]
n2

≤ 1

n2

or equivalently,

P

(
1

n
log

pk(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | X−1, X−2, . . .)
≥ 1

n
log

1

n2

)
≤ 1

n2
.

Since the series
∑∞

n=1
1
n2 converges to a �nite number, the Borel-Cantelli lemma implies

that with probability 1 the event{
1

n
log

pk(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | X−1, X−2, . . .)
≥ 1

n
log

1

n2

}
occurs only �nitely many times. But since

lim
n→∞

1

n
log

1

n2
= lim

n→∞
2

(
1

n
log

1

n

)
= 0,

this clearly implies that (2.33) holds with probability 1.
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Let (x−1, x−2, . . .) ∈ S∞, and put

g(x−1, x−2, . . .) = E

[
p(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | X−1, X−2, . . .)

∣∣∣∣X−1 = x−1, X−2 = x−2, . . .

]
= E

[
p(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | x−1, x−2, . . .)

∣∣∣∣X−1 = x−1, X−2 = x−2, . . .

]
.

Also, let B(x−1, x−2, . . .) ⊂ Sn be the support set of p(x0, . . . , xn−1 | x−1, x−2, . . .), that
is,

B(x−1, x−2, . . .) = {(x0, . . . , xn−1) ∈ Sn : p(x0, . . . , xn−1 | x−1, x−2, . . .) > 0}.

Then

g(x−1, x−2, . . .) =
∑

(x0,...,xn−1)∈B(x−1,...)

p(x0, . . . , xn−1 | x−1, . . .)
p(x0, . . . , xn−1)

p(x0, . . . , xn−1 | x−1, x−2, . . .)

=
∑

(x0,...,xn−1)∈B(x−1,...)

p(x0, . . . , xn−1) ≤ 1.

Therefore, using the law of iterated expection, we obtain

E

[
p(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | X−1, X−2, . . .)

]
= E

[
E

[
p(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | X−1, X−2, . . .)

∣∣∣∣X−1, . . .

]]
= E [g(X−1, X−2, . . .)] ≤ 1.

From here, (2.34) follows again by applying the Chebyshev inequality and the Borel-
Cantelli lemma. This completes the third part of the proof.

(4) This is the �nal part of the proof. First, the inequality (2.33) of part 3 and equation
(2.31) of part 2 imply that

lim sup
n→∞

1

n
log

1

p(X0, X1, . . . , Xn−1)
≤ lim sup

n→∞

1

n
log

1

pk(X0, X1, . . . , Xn−1)
= Hk

with probability 1. Similarly, (2.34) and (2.32) imply that

lim inf
n→∞

1

n
log

1

p(X0, . . . , Xn−1)
≥ lim inf

n→∞

1

n
log

1

p(X0, . . . , Xn−1 | X−1, . . .)
= H∞

with probability 1. Putting these inequalities together, we obtain

H∞ ≤ lim inf
n→∞

1

n
log

1

p(X0, . . . , Xn−1)
≤ lim sup

n→∞

1

n
log

1

p(X0, X1, . . . , Xn−1)
≤ Hk
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almost surely. We proved in part 1 that limk→∞Hk = H∞. Therefore

lim
n→∞

1

n
log

1

p(X0, . . . , Xn−1)
= H∞ = H(X) (a.s.)

which completes the proof.
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