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Preface

The subject of this Master’s Thesis is Shannon-McMillan-Breiman theorem, a famous
and important result in information theory. Since the theorem is a statement about ergodic
stochastic processes and its proof utilises Birkhoff’s ergodic theorem, a whole chapter has
been devoted to ergodic theory.

Ergodic theory has developed into a large branch of mathematics, and so the Chapter
1 is only a brief glance at the subject. Nevertheless, we will prove one of the most
important theorems in ergodic theory, the before-mentioned Birkhoft’s ergodic theorem:.
This theorem is a strong statement about the average behaviour of certain stochastic
processes (or dynamical systems), and it can be seen as a generalisation of the Strong
Law of Large Numbers.

Chapter 2 discusses information theory and the Shannon-McMillan-Breiman theorem.
No previous knowledge about information theory is assumed, and therefore the chap-
ter starts with an introduction to information theory. All fundamental definitions and
theorems concerning the entropy of discrete random variables are provided. After this
introduction, we study the entropy of stochastic processes, which in turn leads us to the
Asymptotic Equipartition Property (the AEP). Informally, a stochastic process has the
AEP if almost all sample paths belong to a rather thin set, called the set of typical se-
quences, which despite having few elements contains most of the probability mass. Then
we prove that independent and identically distributed processes have the AEP, and con-
sider its consequences and applications such as data compression. After this, we present
the Shannon-McMillan-Theorem which states that stationary, ergodic processes with fi-
nite state space have the AEP. The rest of the thesis is then devoted to the rather long,
but interesting proof of the theorem.

The reader is assumed to have basic knowledge about measure-theoretic probability
theory. Familiarity with Markov chains, which form an important class of stationary,
ergodic processes, is also assumed. They will appear in numerous examples throughout
the text. However, my aim has been to make this text as self-contained as possible, and
therefore a preliminary Chapter 0 is included. Topics discussed in this chapter include
infinite dimensional product spaces and sigma-algebras, discrete-time stochastic processes,
conditional probability and discrete-time martingale convergence theory.

Nearly all theorems and lemmas presented in this Master’s Thesis are also proved.
Most notable exceptions are the Kolmogorov Extension Theorem, the -\ theorem and
the Radon-Nikodym theorem. The proofs had to be omitted in order to keep Chapter 0
reasonably short.



Frequently Used Notation

I. Sets and Spaces

(1) 0 is the empty set.

(2) N is the set of natural numbers 1,2, 3,.

(3) Ny is the set of consisting of zero and the natural numbers 1, 2, 3, .

(4) Z is the set of integers.

(5) R is the set of real numbers.

(6) R™ is the n-dimensional real space.

(7) R is the extended set of real numbers, that is, R = R U {+o00, —oc}.

(8) A(X) is the collection of Borel subsets of topological space X.

(9) If X is any set, then P(X) is the power set of X, that is, the collection of all subsets

of X.
(10) The number of elements in X is denoted by |X|. If X is infinite, then |X| =

II. o-algebras

(1) o(%) is the o-algebra generated by %, that is, the intersection of all o-algebras that
contain €.

(2) TIiz, P, or Fi X Fax---X.Fy, is the product o-algebra of o-algebras 7y, F, ..., F,.
It may be written as " if %, = % for k < n.

ITI. Limits

(1) If A, Ay, As, . .. are subsets of some set €2, then A,, 1 A means that A; C Ay C A3 C ...
and |2, A; = A. Similarly, A,, | Ameansthat A; D Ay D A3 D ...and ()2, A = A

(2) If 2,21, 7y, ... belong to R (or R), then z, T = means that the z, form an increasing
sequence and lim,, .., x, = .

(3) If £, fi, f2, ... are functions from Q to R (or R), then f, 1 f means that f,(w) 1 f(w)
holds for each w € €.



IV. Functions

(1) I, is the indicator function of set A, that is, [4(w) = 1 for w € A and 0 for w € A°.
(2) If f : Q — R is a function, then f* = max{f,0} is the positive part and f~ =
—min{f,0} is the negative part of f.

Other Comments on Notation

If (2, %) and (£, %5) are measurable spaces, we say that a function f : Q; — Qy is
measurable .7, /.%, if we have f~1A € Z for all A € .F,. If Oy = R" and %, = B(R"),
we may indicate that f is measurable .7, /%, by saying that f is Borel measurable.

If X :Qy — Qs is measurable % /%, and % is equipped with a probability measure P,
then X is called a random wvariable. Thus, since (£2,.%5) is not necessarily (R, Z(R)),
we do not assume that random variables are real-valued functions, and therefore there is
no strict distinction between random variables and vectors. But the term random vector
may be used when convenient, especially when X, Xy, ..., X,, are random variables and
we want to treat them as a single object (X1, Xo, ..., X,).

The distribution of random variable X is the probability measure Px on %5 defined by

Px(A)=P(X € A), Ac .

If (92,.#, P) is a probability space, then the space of all real-valued integrable random
variables (that is, functions f for which E[|f|] < co) is denoted by L}(Q). If Y, Y}, Vs, ... €
L'(2), then we may say that the Y;, converge to Y in L' if E[|Y,, —Y|] = 0 as n — oc.
And if sup,,cy E[|Ya|] < 0o, then we say that the Y, are bounded in L'.



Chapter 0

Preliminaries

In this chapter we discuss certain topics in probability theory that are essential prerequi-
sities for the later chapters.

0.1 The 7-) theorem and uniqueness of probability mea-
sures

Suppose that .% is a o-algebra, and we want to prove that some property holds for all
A € #. For instance, we may want to prove that probability measures P and () agree

on .#, that is, P(A) = Q(A) for all A € .#. Although it may be difficult to check
directly that the property truly holds for all A € %, it often suffices to check that the
property holds in a collection of subsets that generates .%. As we will see, this is possible
if the generating set is a m-system, and the class of sets for which the property holds is a
A-system.

Definition 0.1. Suppose that €2 is a nonempty set and & C P(Q2). Then & is called
a m-system if A;B € & implies that AN B € &2, that is, & is closed under finite
intersections.

Definition 0.2. Suppose that {2 is a nonempty set and .Z C P(2). Then .Z is a A-system
if the following conditions are met:

(1) Qe Z;
(2) A €. % implies A° € .&;
(3) if Ay, Ay, ... € & are disjoint, then |J,_, A, € Z.

Remark 0.3. Tt is clear that o-algebras are A-systems, but the converse is not true (in a
four-point space Q, let £ consist of 2, () and the six two-point sets).
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We may now present the extremely useful -\ theorem, which will be applied numerous
times in this Master’s Thesis. Its rather technical proof is omitted.

Theorem 0.4. (The -\ theorem) If & is a w-system and £ is a \-system, then & C L
implies that o(P) C L.

Proof. See [3, p. 42] . O

To illustrate how the -\ theorem is used in practice, we will now prove an importan-
tant uniqueness theorem for probability measures.

Theorem 0.5. Suppose that & is a w-system, and P and Q) are probability measures on
o(P). If P and Q) agree on &, then P = Q.

Proof. Let & ={A € o(Z): P(A) =Q(A)}. If we can show that .Z is a A-system, then
by hypothesis & C £ and the 7-A theorem implies that o(Z?) C £, that is, we have
P(A) =Q(A) for all A € 0(2).

Of course 2 € Z, and if A € &£, then P(A°) = 1— P(A) = 1—-Q(A) = Q(A°),
and thus A° € .Z. If Ay, A,, ... are disjoint .Z-sets, then P(|J)~, A,) = >, P(4,) =
Yo Q(A) = Q(U,Z, Ay), which implies that (J)~, A, € Z. Therefore, £ is a A-
system. O]

0.2 Infinite product spaces and o-algebras

Recall from probability theory that if (Qq,.%1), (22, %2), ..., (2, %,) are measurable
spaces, then the product space €2y x 9 x ---£), may be equipped with the o-algebra
[1;_, % generated by measurable rectangles, that is, sets of form Fy x Fp x - - - X F,, with
F; € %, for 1 <i <n. Morever, if each (€, %) is equipped with a probability measure
Py, then there exists a unique probability measure P on [[;_, %, called the product
measure of P, P,, ..., P,, such that

P(Fy x Fy % -+ x F,) = Pi(F))Py(Fy) - - - P (F))

for all measurable rectangles. Our aim is to extend this idea to infinite products of
probability spaces.

Suppose that T is any ordered set and (€2, Zk)rer is a collection of measurable spaces.
Let [].cr Q& be the product space formed by the sets €. For example, if 7' = Z, then
the elements of [], ., % are sequences w = (..., w_1,wo,wy, ...) such that wy € € for
all k € Z. If T = N, then the product space consists of sequences w = (wq,ws, ...) with
wp € Q forall k € N. If Q = Q for all £ € T, then we may write [[, ., Q% = Or, if
T =N, it is customary to write Q7 as Q. We want to equip [Icr % with a o-algebra.

6



Let by <ky <...<k, €T and B C [[_; Q. Define
C(B) ={w: (Wky,Why, - - -, Wk, ) € B}.

If B € [[]_, %, then C(B) is called a cylinder with base B at (ki,ka,...,k,). The
cylinder is called a measurable rectangle if B is of form By x --- x B, with B; € %, for
all 1 < i <n.

Let [[,cr Zx be the o-algebra generated by the cylinder sets. If %, = % forallk € T,
then we may write [[, .. %, = Z7 (if T =N, then #T may also be written as .#*°). By
the following lemma, [], ., % is also generated by measurable rectangles.

Lemma 0.6. The o-algebras generated by cylinder sets and measurable rectangles coincide
with each other.

Proof. Since measurable rectangles are cylinders, it is clear that it is enough to show that
the o-algebra # /g generated by the measurable rectangles contains the cylinder sets.
Foreachn e Nand k1 < ks < ... <k, €T, put

Cg]ﬂ’b ..... k, = {A C Hle : C(A) € yMR}

i=1

It is easy to check that €y, , .k, is a o-algebra. But sets of form Fy x Fyx---x F,, F; € %,
clearly belong to @, k,,. .. These sets generate the o-algebra [, %, which implies
that all cylinder sets with bases at (ki, ko, ..., k,) belong to Zyr. ]

Observe that cylinders do not have unique bases. For example, if B € .%#, then
C(B) = C(B x ). This idea is formalised in the next lemma.

Lemma 0.7. Let C(B) be a cylinder with base B at (ky,ka, ..., k). Suppose that
(k1 kay oo k) C (J1s 02y -5 Jm)s J1 < J2 < .. < Jm. Then there exists a base set B' at
(J1, 72 - -+ Jm) Such that C(B) = C(B’).

Proof. If B" = {w € [}, ), © (Wkys Whys - - - wk,) € B}, then clearly C(B) = C(B').
Therefore, it suffices to show that B’ € [[]", .Z,.

Let € be the class of sets C'in [ [, %, for which {w € [}, @, 1 (Wiy, Whys - -+ W) €
C} belongs to [[;, %;,. It is easy to check that € is a o-algebra. Since measurable
rectangles (which generate [["_, .%,) belong to €, it follows that [[;_, %, C € and thus
B'e%. O

Thus if C(B;) and C(By) are two cylinders with bases By and By, we may assume that
the coordinates of the base sets are the same. Now the following result is easy to prove:

Lemma 0.8. The cylinder sets form a w-system, and so do the measurable rectangles.

7



Proof. Let C(B;) and C(Bz) be two cylinders with bases By and By at (ki ko, ..., ky).
Then
C(B1)NC(Bs) ={w: (Wgyy-- wk,) € B} N{w: (Wkyy ..., wg,) € B}
= {w : (wkl, R ,wkn) € BN BQ} = C(Bl N BQ)
Since BiN By € [, Zk, C(B1)NC(By) is a cylinder with base By N By at (k1, ko, ..., k).
This proves that the cylinder sets form a m-system.
If C(B;) and C(By) are measurable rectangles, then the intersection B; N B, is again

a cartesian product, which implies that C(B; N By) is a measurable rectangle. Therefore,
the measurable rectangles form a m-system as well. ]

In the next section, we will construct probability measures on product o-algebras.

0.3 Stochastic processes

A stochastic process is a collection (X;);er of random variables defined on some probability
space (2, #, P). The random variables take values in a second measurable space (S,.7)
called the state space. The parameter set T is usually [0, 00) (a continuous time process),
Z or N (discrete time processes). We note that

e for each t € T, the function w — X;(w) is measurable .# /.7,

e for a fixed sample point w € €, the function ¢ — X,(w) is called the sample path of
the process associated with w.

From here on, we will only discuss discrete time processes with 7' = N or T' = Z. The
state space will usually be (R, Z(R)) or some countable set S in which case we may take
P(S) as the o-algebra.

Definition 0.9. If k; < ks < ... < k, and k; € T for each ¢+ < n, then the marginal
distribution of Xy, , Xk,, ..., Xk, 1s the probability distribution

PkaXkQ vvvvv an(A) = PKXklﬂka S 7an) S A]v Aesm
Observe that if =N and A" = {s € S* : (s}, Sy, .-, 5k,) € A}, then
Py XiynXn (A) = P[(X1,Xa,..., Xy,) € Al = Px, xo..x,, (A),

and we conclude that all the marginal distributions are determined by the marginal dis-
tributions of Xy, X, ..., X,,, n € N. Similarly, if 7' = Z, the marginal distributions are
determined by the marginal distributions of X_,,,..., Xq,..., X, n € N,

The concept of stationarity will play an important role later in this text. Intuitively,
it means that the probability structure of the process is independent of time.

8



Definition 0.10. Let (X;);er be a stochastic process with 7' = N or T" = Z. We
say that the process is stationary if for any n,m € N and bk < ky < ... < k, €
T, the marginal distribution of Xy, Xg,,..., Xy, equals the marginal distribution of

Xkl—i-ma Xk2+ma s >an+m-

For example, a sequence of independent, identically distributed random variables is
clearly a stationary process. Another good example of a stationary process is an aperi-
odic, irreducible Markov chain: if the initial distribution of the Markov chain equals its
stationary distribution, then the process is stationary.

Distribution of a stochastic process

Suppose that X = (Xj)ger is a stochastic process defined on (2,.%, P). The process
defines a function X : Q — ST by

(X (W)= Xy(w), teT.

For example, if T'= N, then X (w) = (X;(w), X2(w),...). Let us equip the space ST with
the o-algebra .7 generated by the cylinder sets. We want to show that X is measurable
F| ST

Lemma 0.11. Suppose that (2, F) is a measurable space and f is a function from )
to Q. Let 9 be a collection of subsets of . If f~'G € .F for all G € 4, then [ is

measurable F [o(9).

Proof. Let € = {C C Q¥ : f7'C € F}. It is easy to see that ¢ is a o-algebra. But
¢ C ¢ and therefore 0(¢) C €. This proves that f is measurable .7 /o(9). O

Now let A be a one-dimensional cylinder set, that is, A = {s € ST : s, € A’} for
some k € T and A" € .. Since measurable rectangles can be written as intersections of
one-dimensional cylinders, the o-algebra generated by the one-dimensional cylinder sets
coincides with .#7. And since

X M"A={w: X(w)eA}={w: Xi(w) e A} =X A € 7,

the previous lemma implies that X is measurable .7 /.7, Hence, stochastic processes are
random variables taking values in ST. We may now define the distribution of a stochastic
process:

Definition 0.12. The distribution of a stochastic process X is the probability distribution
Px on /7 defined by the formula Px(A) = P(X € A),A € 7.



The distribution of a process is determined by its marginal distributions. This is a
direct consequence of Theorem 0.5: if A= {s € ST : (sk,, Sky,- .-, 5k,) € A’} is a cylinder
set, then Px(A) is determined by the marginal distribution of X, Xy,,..., X, . Since
ST is generated by the cylinders, Py is uniquely determined.

Recall from probability theory that if X is a real-valued random variable and ¢ is

Borel measurable, then
/g(X)dP:/gdPX.
Q R

An analogous formula holds for our generalized random variables such as stochastic pro-
cesses.

n "

Lemma 0.13. Suppose that X : (Q1, %) — (Qo,.%2) is measurable F1/F, and g :
Qs — R is a Borel measurable function. If g(X) € LY(Q), then

/g(X)dP:/ gdPx.
Ql QQ

Proof. The general case is proved just like the special case 23 = R (start from indicator
functions, then use linearity to prove that the equation holds if g is a simple function,
etc.). O

Example 0.14. Let X = (Xj)ren be a stochastic process with state space (S,.%). If
f 5% — R is Borel measurable and f(X;, X, ...) is integrable, then

/f(Xl,XQ,...)dP: FdPy.
Q Soo

Existence of stochastic processes

We will now discuss the problem of constructing an underlying probability space (Q2,.%, P)
for a given stochastic process. First, we suppose that 7" = N. In this case, the following
theorem is often very convenient to apply.

Theorem 0.15. Let (Qy, Fr)ren be an arbitrary collection of measurable spaces, and let
Q=1L % Z =112, P, Suppose that we are given a probability measure Py on

F1, and for each n € N and each (wi,wa, ... ,w,) € [[1—; Q% we are given a probability
measure Py, w0, 0N Fni1. Assume also that for each fited A € Fpi1, Py oo (A),
considered as a function of (w1, ws, . ..,wy), is measurable [[;_, Fr/BR).

If B € [1,—, Z, we define
Pn(B) = / R / / ]B(wl, R 7wn>Pw17m7wn71(dwn>Pw17m7wn72 (dwn_l) s Pl(dwl),
0 Qn_1 J

10



which is a well-defined probability measure on [[o_; Fr.
Then there exists a unique probability measure P on % such that for any n € N and
B e Il;_, %k P[C(B)] = P,(B).

Proof. See [1, p. 114] O

Now we can use this theorem to construct probability spaces on which stochastic
processes are defined. Suppose that our process has state space S equipped with a o-
algebra .. Suppose further that we are given a probability measure P, on . and
probability measures P, ,, ., on . for each (wy,ws,...,w,) € S™ in such a way that
the measurability condition of the theorem is satisfied. Then the theorem provides us a
unique probability measure P on .. Now, put Xj(w) = wx. We have for all B € /"

Pl(Xy,Xs,...,X,) € Bl = P{w : (wy,ws,...,w,) € B}) = P,(B),
where

(0.16) Po(B) / / / L@, o) P o () Py (e 1) -+« P(deon).
S S JS

Thus, (Xi)ken is a stochastic process with marginal distributions defined by (0.16).
We shall now use Theorem 0.15 to construct stochastic processes.

1. (Independent sequences) Suppose that for each k = 1,2, 3, ... we are given an arbitrary
probability space (Q, Z, Py). Let Q = [[2, @ and .F = [[,=, %. Then there exists
a unique probability measure P on .% such that

(017) P({WGQleEAl,...,wnEAn}):ﬁPk(Ak)
k=1

for all n > 1 and all Ay € Fi, k < n. To see this, put P, u,.. w.(A) = Pr1(4),
A€ %,.1, and apply the theorem. Then

:/ L4, dPl/ I dPQ---/ I, dP, =[] Pe(Ap).
o Qo Qn Pl

If @ is any other probability measure on % with this property, then it agrees with
P on the m-system formed by the measurable rectangles. By Theorem 0.5, P = @,

11



and thus the probability measure given by Theorem 0.15 is the only one with property
(0.17). If X} (w) = wy, then we obtain a sequence of random variables X, X5, ... such
that the random variables are independent and P(X} € A) = P.(A).

. (Infinite fair coin tossing) This is a simple special case of the previous example. Put
Q=5 ={0,1}, % = ¥ = {0,{0},{1},{0,1}} and P.({0}) = Px({1}) = 0.5 for
all k. Then € is the space of all infinite sequences consisting of zeros and ones, and
if Xj(w) = wy, then P(Xy = 21, X0 = x9,...,X,, = ) = [, Pe({zx}) = 0.5" for
each n.

. (Markov chains) Let us next consider a Markov chain with finite state space S, initial
distribution u and transition probabilities p(i, j), i,7 € S. Put Qx = S, %, = P(S),
P = wand P, 4. w, ,(wn) = plwp_1,w,). Applying the theorem and putting
Xi(w) = wg,w € S, we obtain a stochastic process with marginal distributions given
by

P(X;=iy,....X, =1i,) = Plw: (wy,wa, ... ,wp) = (i1,92, ..., 1))
[ [ Tt PP
S S
[ [ ] P (@) P ) Pi(ds)
{ix} {in—1} J{in}
:/ / Wn lazn)Pwl ..... Wi — z(dwn 1) Pl(dwl)
{Zl} {’Ln 1}
:/ / wn 27Zn l)p@n 172n)Pw1 ..... W — 3(dwn 2) P1<dw1)
{Zl} {Zn 2}
— . = u(@l)p(ylb 22) . 'F(Zn—la Zn)-
Now if P(X; =i1,...,, X, =1,) > 0, we have
. . . P(Xl:i17"'a7Xn:in7Xn+1:j)
P(Xp1 = 1 X0 =iy, Xy = i) = , :
( +1 j‘ ! “ Z) P(Xlzll>-"77Xn:7/n)

_ u(in)pi, ia) - - plin—1, in)P(in, J)
u(in)p(iv, dg) - - - plin-1,%n)
Therefore, the process (Xi)ren is a Markov chain with finite state space S, initial
distribution u and transition probabilities p(z, j), i,7 € S.

= p(in, J)

Kolmogorov extension theorem

Theorem 0.15 assumes that the process has some initial probability distribution P;. But
what if the parameter set T"is Z7 Then the process has no initial point and Theorem 0.15
can not be applied. In this case, we can use the famous Kolmogorov extension theorem.

12



Suppose that for all k& < ky < ... < k, € T and n € N, we are given a probability
measure Py, j, . on the product o-algebra [[I_, .%,. Suppose further that these prob-

n

ability measures are consistent in the sense that if (ky, ko, ..., kn) C (J1,72,---,Jm) and
B e [[, Z,, then
(0.18) Pho kayecin(B) = Pjy jojon (B')
for .
B' = {(wj,,wjp, - ,wj,) € HjS : (Why, Wiy - -+, Wk, ) € B}
i=1

We may now apply the Kolmogorov extension theorem to construct probability space
for a stochastic process that has its marginal distributions determined by the probability
measures Py, r, . k,- This theorem is a very powerful one, and it actually works even in
continuous time.

Theorem 0.19. (Kolmogorov extension theorem) Let T be an ordered set. Suppose that
for all k € T, Q is a complete, separable metric space and F = B(Q). Suppose fur-
ther that for alln € N and k1 < ky < ... < k, € T, we are given a probability measure
Py, k.. ke, 01 the product o-algebra 1) Fy, and these probability measures satisfy the con-
sistency condition (0.18). Then there exists a unique probability measure P on ], . Fi
that agrees with the probabilities assigned to the cylinder sets, i.e. if B € [[;_, Zx,, then

PIC(B)] = Piy k... (B).
Proof. See [3, p. 483] O

Suppose that S is a complete, separable metric space. Let Q, = S and .%, = .¥ =
AB(S) for all k € Z. If we are given consistent probability distributions Py, g, %, on 2"
foralln >1and k; < ky < ... <k, € Z, then we may apply the Kolmogorov extension
theorem, and by putting X,(w) = w,; we obtain a stochastic process (Xj)rez with state

space (5,.7) and marginal distributions

Pl( Xk, Xiyy -y Xg,) € B] = P(w : (wky, Wiy - - - Wk, ) € B) = P[C(B)]
= Py ko, 10 (B), B e S

Thus, by virtue of the Kolmogorov extension theorem, we can construct a probability
space for a stochastic process with marginal distributions determined by any consistent
collection of probability distributions. The state space is usually (R, Z(R)) or some
finite subset of real numbers together with its power set. In the finite case, observe that
any finite subset S of real numbers, equipped with the discrete topology, is a complete,
separable metric space, and then we have Z(S) = P(S) since all subsets of S are open
sets.
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Example 0.20. Let us construct a probability space for a doubly infinite sequence of
Bernoulli trials. Let 0 < p < 1, and let Q, = S = {0,1}, %, = . = P(S) for all k € Z.
Further, let P'({1}) =p, P'({0}) = 1—p, and forall by < ky < ... <k, € Z, let Py, , . 1,
be the unique n-dimensional product measure P’ x P’ x --- x P’. Then for measurable
rectangles A; x Ay x --- x A, € .Y" we have

(0.21) Piy oy (A1 X Ay 5o x Ay) = T P'(A)).

i=1

It is easy to check that these measures are consistent (note that the consistency condition
clearly holds for measurable rectangles, and then apply the 7-A theorem), and thus we
may apply the Kolmogorov extension theorem and obtain a unique probability measure
P on (S%,.%), the space of all doubly infinite sequences consisting of zeros and ones. Let
Xi(w)=wp. kg <ky<...<kp€Zand z; € {0,1} for all i < n, then

P(Xy, =21, Xp, = 29, ..., X, = x) = H P'({x;}) = p==1%i(1 — p)"‘zln:l“.

n
i=1

If a process (Xy)ren is stationary, we may use the Kolmogorov extension theorem to
obtain a process (X} )rez such that (Xj)gen and (X))ren are identically distributed.

Theorem 0.22. Let (Xi)ren be a stationary stochastic process with state space (S,.7)
such that S is a complete, separable metric space and ¥ = PB(S). Then there ezists
a probability space (S%, .7 Q) and a stochastic process (X} )rez defined on (S, % Q)
such that (Xy)ren and (X} )gen are identically distributed, that is, Px(A) = Px:/(A) for
all A e 7.

Proof. Let k1 < ... <k, € Z, and let
Pk1,k27m,kn(B) = P[(Xh sz—kﬁ-l? s 7an—k1+1) € B]

Since marginal distributions of a stochastic process always satisfy the consistency condi-

gooe

Kolmogorov extension theorem yields the desired result (recall that the distribution of a
stochastic process is uniquely determined by its marginal distributions). O

0.4 Uniform integrability

Suppose that X is an integrable real-valued random variable on a probability space
(€2, #,P). Then |X|I{x|>q} is dominated by |X|, and the dominated converge theorem

14



implies that

(0.23) lim | X|dP = 0.

AT S X [>a}

Definition 0.24. We say that a sequence (X,,)nen of real-valued random variables is
uniformly integrable if (0.23) holds uniformly in n, that is,

a—00 n

(0.25) lim sup/ | X, |dP = 0.
{IXn|>a}

Uniform integrability implies that each X, is integrable. To see this, let a be so large
that the supremum in (0.25) is less than 1. Then

(0.26) / X, |dP — / IX,|dP +/ X,[dP < 14a < .
Q {IXn|>a} {IXn|<a}

Anyone who is familiar with the monotone and dominated convergence theorems knows
that it is often very convenient if the order of taking a limit and integration can be
reversed. Uniform integrability allows us to do it:

Theorem 0.27. Suppose that lim,, ... X, = X almost surely. Then,

(i) If the functions X, are uniformly integrable, then X is integrable and lim,,_,o [ X, dP =
[ XdpP.

(ii) If X and the X,, are nonnegative and integrable, then lim, . an dP = fXdP
implies that the X, are uniformly integrable.

Proof. (i) By Fatou’s lemma and (0.26),
/ | X|dP = / lim inf | X,|dP < hminf/ | Xp|dP <14 a < .
Q Q " " Q

Therefore, X is integrable.

Let « be a positive real number such that P(|X| = «) = 0, and define X =
Xn]{|Xn|<a}7 X = XI{|X‘<O¢}. Since P(|X| = a) = 0, we have limn_mo Xg = X% with
probability 1. And since the | X 2| are uniformly bounded by «, the dominated convergence
theorem implies that

n—o0

(0.28) lim Xa dP = / X*dP.
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Since

/X dpP — /XdP‘ '/ X, dP+/X“dP / XdpP - /X”dP‘
{1Xn|>a} {1X]>a)
/X‘”‘dP /XadP‘ / |Xn]dP+/ 1X|dP,
{1Xnl>a) {1X[2a}

it follows from (0.28) that

/X dpP — /XdP‘ <sup/ |Xn|dP+/ | X[ dP.
n>1 J{|Xp|>a} {IX[=a}

Now pick a sequence (ag)reny such that o — oo and P(|X| = o) = 0 for all k. Such
a sequence exists because P(|X| = z) can be positive for at most countably many x.
Then sup,,>, f{an|>ak} |X,|dP — 0 as k — oo by uniform integrability, and because X is

(0.29) lim sup

n—oo

integrable, f{‘X|>ak} | X'| dP converges to zero as well. Hence, (i) follows from (0.29).
To prove the second claim, suppose that X and the X,, are nonnegative and integrable,
and lim,, . [ X, dP = [ X dP holds. If P(X = «) = 0, then (0.28) holds again, and

lim X,dP = lim (/XndP—/ngP> :/XdP—/XadP

= / X dP.
{X=za}

Since X is integrable, for each € > 0 there exists an « such that f{X>a} X dP is less than
e and P(X = «) = 0. This implies that for some ny € N, the integrals f{Xn>a} X, dP are
less than e for all n > ny. Since the individual X,, are integrable, we may increase a so
that all the integrals are smaller than e. Therefore, the X,, are uniformly integrable. []

Corollary 0.30. If X and the X,, are integrable, and if X,, — X with probability 1, then
X, — X in L' if and only if the X,, are uniformly integrable.

Proof. Suppose that the X, are uniformly integrable. Then the differences | X — X,,| are
also uniformly integrable and since they converge to 0 almost surely by our hypothesis,
the theorem implies that lim,_, [, |X — X,|dP =0, that is, X,, — X in L.
Conversely, suppose that X,, — X in L'. Then since || X|—|X,|| < |X — X,,|, we have
limy, o0 [ [ Xn|dP = [, | X|dP. But then statement (ii) of the theorem implies that the
| X,,| are uniformly integrable. Equivalently, the X,, are then uniformly integrable. O
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0.5 Conditional expectation and probability

If 1 and v are two probability measures defined on a o-algebra % and pu(A) = 0 implies
v(A) = 0, then we say that v is absolutely continuous with respect to p, and we write
v << U.

Lemma 0.31. Suppose that v << u, and let € > 0 be arbitrary. Then there exists a
positive real number ¢ such that v(A) < € for all A such that u(A) < 4.

Proof. Suppose that the claim is not true. Then there exists an € > 0 and sets A;, Ao, ...

such that u(A,) < = and v(A,) > € for all n. Now the Borel-Cantelli lemma implies

that 11 (N1 Upsm An) = 0, but
v (ﬂ U An> zlinrri}g(l)fu (U An> > €,
m>1n>m n>m
contradicting the absolute continuity. ]

Corollary 0.32. If Y is integrable, then for each € > 0 there exists a 6 > 0 such that
|[,Y dP| <€ for all A such that P(A) < 6.

Proof. Put A(A) = [, |Y]| dP. Then A << P. Let € > 0 be given. Then by the theorem
there exists a 6 > 0 such that

/AYdP‘ <ANA) <e

for all A such that P(A) <. O

The following famous theorem states that if v << u, then v can be represented as an
integral with respect to u:

Theorem 0.33. (Radon-Nikodym Theorem) Suppose that p and v are probability mea-
sures defined on (), F). If v << u, then there exists a p-measurable function g such
that

V(A):/gdu forall Ae Z.
A

Moreover, if h is any other function with this property, then h = g almost surely with
respect to (.

Proof. [1, p. 64] O
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The function ¢ is called the Radon-Nikodym derivative of v with respect to p. We
denote

Radon-Nikodym derivatives have the following property:
Lemma 0.34. (Chain rule) If 1y << ps and py << ps, then

dpn _ dpy dps
dus  dpgdus

with ps-probability 1.
Proof. |8, p. 241] O

Let Y be an integrable random variable defined on (€,.%, P). Suppose that ¢ is a
sub-c-algebra of .7, and define a probability measure A on & by A(A) = [, Y dP, Ae ¥.
Since A << P, we can define the conditional expectation of Y given ¢4, denoted by E[Y|¥],
as the Radon-Nikodym derivative of A with respect to P. In others words, we obtain a
unique (up to P-measure 1) random variable E[Y|¢| with the following properties:

(1) E[Y|¥] is ¥-measurable;
(2) [,YdP = [,E[Y|%]dP forall Ac¥.

Remark 0.35. If 4 = o(X) for some random variable X, then it is customary to write
E[Y|X] instead of E[Y]o(X)]. We adapt this convention.

If X : (%) — (U, F) is measurable /%', and Y € L'(Q), then the Radon-

Nikodym theorem also implies that there exists a unique (up to Px-measure 1) function
g: (Y, 7)) — (R,ZA(R)) such that

(0.36) / Y (w) P(dw) = / g(z) Px(dx) for all A € &'

{XeA} A
We denote the function g(x) by E[Y|X = z|. It is also worth noting that E[Y|X] = g(X).
To see this, let A € 0(X). Then A is of form {X € A’} for some A’ € F#' and

/AYdP:/{XEA/}YdP://g(x) PX(dx)://IA/(x)g(x) Py(da)
- [ X @laX @) Plas) = [ g(x)aP

A
For any event A € .7, the conditional probabilities P(A|¢) and P(A|X = x) are
defined by E[14]9] and E[I4|X = x], respectively. If P(X = z) > 0, then P(A|X = x)
agrees with the elementary definition P(A|B) = P(ANB)/P(B) of conditional probability.
For details, see [1, p. 201].
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Example 0.37. Suppose that X and Y are random variables defined on (Q2, %, P), taking
values in arbitrary measurable spaces. Suppose further that the random variable 7 :
(Q,.7F) — (U, F#') is measurable .#/.%’. By the elementary definition of conditional
probability, we have

(0.38) PX=a2,Y=y|Z=2)=PY =y|X=0,Z=2)PX=u0|Z=2)

if P(X =ux,Z = z) > 0. We will now use the chain rule of Radon-Nikodym derivatives
to show that this holds even if P(X = 2,7 = z) = 0. Define u3 = Pz and puy(A) =
f{ZGA} I{X:$7y:y} dP, A S gl. Then

d

i (2) =E[Iixeoy—ypy | Z=2] =P(X =2,Y =y | Z =2z).
3

If probability measure s is defined on .#' by us(A) = f{ZeA} Itx—y) dP, then py << pg,
and so the chain rule implies that

P(X:x,Y:y|Z:z):%(z)%z

dpg ™ dps
Clearly gﬁ (2) =E[I{x=s} | Z=12] = P(X =2 | Z = 2). Note also that

,ul(A) :/ I{X:m,Y:y} dP :/ ]{y:y} dP
{ZcA} {ZeA,X=z}
= / Elly—y | X =2',Z =7] Psx(d7,da’)
Ax{zx}
:/ Elly—y | X =2,7Z =2'] P;x(d?,da)).
Ax{z}
Starting from indicator functions, it is easy to check that
|1 Paxtaza) = [ 1) palas
Ax{z} A
holds for all integrable .#’-measurable functions f. Therefore,
:ul(A) = / E [I{Y:y} ‘ X = .T,Z = Z:| MQ(dZ)v
A

and thus i—ﬁ;(z) =FE[Iy—y | X =2,Z=2] = P[Y =y | X =2,Z =z]. This proves
that (0.38) holds almost surely with respect to pz = Py.
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In the next theorem we list some of the most important properties of conditional
expectation. Note that since conditional expectation is not unique, the equalities and
inequalities hold only almost surely.

Theorem 0.39. Let Y € LY(Q), and let 9 and S be sub-o-algebras of F. Then

(1) (Linearity) E[aX + bY |4] = aE[X|¥Y] + bE[Y|¥Y];

(2) (Law of iterated expectation) E[E[Y|¥Y]| = E[Y];

(3) (Tower property) If ¢ C H, then E[E[Y|Y] | 7| = E[E]Y || 9] = E]Y | ¥];

(4) ("Taking out what is known”) If X is 4-measurable and XY € L'(Q), then E[XY|¥4] =
XEY |9,

(5) (Role of independence) If Y is independent of 4, then E[Y|¥] = E[Y];

(6) |EY|9]| < E[|Y]|¥];

(7) If X <Y almost surely, then E[X|9] < E[Y|¥] almost surely.

Proof. See [1, p. 220). ]

0.6 Martingales

A certain amount of martingale convergence theory is involved in the proof the Shannon-
McMillan-Breiman theorem.

Definition 0.40. Let .# be a o-algebra. A collection (%, ),en of sub-c-algebras of .7 is
called a filtration it .%#; C %, for all i < j. A stochastic process X = (X, )nen is adapted
to the filtration if for every n € N, X,, is .%,-measurable. The natural filtration (ZX),en
of the process X is defined by .Z,X = o(X,, : m < n).

Note that every stochastic process is clearly adapted to its natural filtration.

Definition 0.41. Let X = (X,,),en be a stochastic process defined on (2, %, P). Suppose
that X is adapted to the filtration (.%,),en. Suppose further that each X,,,n € N| is
integrable. If E(X,1|-%#,) = X, for all n > 1, then we say that X is a martingale
relative to the F,. If E(X,1]|%,) > X,, then X is called a submartingale, and if
E(Xn1|Z0) < X, then X is called a supermartingale.

The properties of conditional expectation imply that for martingales we have E[X,,| =
E[Xo] for all n € N. For supermartingales and submartingales we have E[X,] < E[X]
and E[X,] > E[X,], respectively.

The martingale constructed in the following example will play an important role in
the proof of the Shannon-McMillan-Breiman theorem.
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Example 0.42. Let %, C %, C --- be an increasing sequence of sub-o-algebras of
Z, and let X be an integrable random variable. Then the process Y, = F[X|.%,] is a
martingale relative to the .%,: the Y,, are integrable since E[Y,| = F[E[X|.%,]] = F[X] <
oo, and
E[Yn+1’yn} = E[E[X‘gzmrl”yn] = E[X|‘g\n] =Y,

by the "tower property” of conditional expectation.

In particular, let (Xj)gez be a stochastic process, and let .%,, = 0(X_1, X _o,..., X_,).
Then the .#, form an increasing sequence of o-algebras, and if Z = I;x,—s,), then the
sequence E[Z|.Z,] = P(Xo = xo|X_1,X_2,...,X_,),n > 1, is a martingale.

Convergence of martingales
We will next study the conditions under which martingales converge.

Definition 0.43. A stochastic process X = (X, )nen is called predictable with respect to
the filtration (%, )nen if X, is %, _1-measurable for every n > 2 and X, is constant.

Definition 0.44. Let M and X be two stochastic processes with parameter set N. The
process X - M is defined by (X - M); = 0 and

(X - M), = zn:Xk(Mk — My_1)
k=2

for n > 2. The process (X - M) is called the discrete integral of X with respect to M.
Lemma 0.45. If M is supermartingale and X is a bounded, nonnegative predictable

process, then X - M s a supermartingale as well. If M is a martingale and X is a
bounded, predictable process, then X - M s a martingale.

Proof. Put Y = X - M. Tt is clear that Y}, is .%,-measurable, and since |X,,| < K < oo
for some K € R and for all n € N, we have E[|Y,|] < 2K >} | E[|M;]] <oco. If M is a

supermartingale and X is a nonnegative predictable process, then
E[Yn’yn—l] — E[Yn—l + X’IL(MTL - Mn—l)’gn—l} — Yn—l + XnE{Mn - Mn—l’f%\n—l]
= Ynfl + Xn(E[MnLJOanl] - Mnfl) < Ynfl + Xn(Mnfl - Mn71> = Ynfl-

If M is a martingale, the inequality is an equality regardless of the sign of X,,, and thus
in this case Y is a martingale. ]

Suppose that M is a supermartingale and consider a closed interval [a,b] C R, a < b.
The number of upcrossings of [a, b] that the process M makes up to time n, denoted by
Upla, b], is the number of times the process moves from a level below a to a level above b.
To be precise:
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Definition 0.46. Let M be a supermartingale, and let a < b € R. The number U, [a, b](w)
is the largest k£ € Ny such that there exist 0 < 51 <t < 89 <ty < -+ < 5 < tp < n with
X, (w) < a and Xy, (w) > 0.

i

Lemma 0.47. (Doob’s upcrossings lemma) Let M be a supermartingale. Then for all
a<beR andn € N we have

(b — a)E[Unla, b]] < E[(M; —a)7].

Proof. Define a bounded, nonnegative predictable process X = (X )ren by X7 =0, Xo =
[{M1<a} and

X = Iix, o= g, y<ey + Lix, =0y (a1 <a)
forn > 3. Let Y = X - M. By the previous lemma, Y is a supermartingale. Note that
the process X is 0 until M drops below the level a, and then it is 1 until M gets above b,
and so on. Therefore, every completed upcrossing increases Y by at least b —a. If the last

upcrossing has not been completed at time n, this can cause Y to decrease by at most
(M,, — a)~. Hence,

Y, > (b—a)Uy,la,b] — (M, —a)".
Since Y,, is a supermartingale, we have E[Y,,] < E[Yy] = 0, which finally implies that

0> E[Y,] > (b— a)E[Un]a,b]] — E[(M, — a)7].

Here is our first martingale convergence theorem, due to J.L. Doob:

Theorem 0.48. (Doob’s martingale convergence theorem) Suppose that M = (M,,)pen is
a supermartingale and bounded in L*. Then M, converges almost surely to a limit M.
as n — 00, and M., 1s integrable.

Proof. Let Ayp = {w : liminf, oo M,, < a < b < limsup,,_,. M,}, and let A be the set
on which M does not converge. Then, clearly

A ={w: liminf M,, < limsup M, } = U {w : liminf M,, < a < b < limsup M, }
n—oo

n—o0

n—oo a<b n—oo
a,beQ
= U Aw
a<b
a,beQ
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Define Uyla,b] = lim, oo Upla,b]. Then A, C {w : Uxla,b](w) = oco}. Since the M,
are bounded in L', we have sup, E[|M,|] = K < oo for some K € R. The monotone
convergence theorem and Doob’s upcrossings lemma then imply that

ElUnla,t]] = B[ lim Unfa,8]] = lim E[Uy[a,8] < 2219 o

n—00 n—00 - b—a

Therefore, Uy|a, b] is finite almost surely which implies that P(A,p) = 0. We also have
P(A) = 0 since A is a countable union of sets of P-measure 0. Therefore, lim,,_,., M,, =
M, exists almost surely. Finally, by Fatou’s lemma,

E[|M|] = Eliminf |M,]|] < liminf E[|M,|] < sup E[|M,|] < cc.

n>1

]

If we also assume uniform integrability, then M,, not only converges almost surely but
also in L

Theorem 0.49. Suppose that M = (M,)en S a supermartingale and bounded in L.
Then M, — M. in L' if and only if the M, are uniformly integrable. In this case,

E[M.| %, < M,
almost surely for all n € N, and if M s a martingale, equality holds.

Proof. By the previous theorem, M, converges to M., almost surely and M, is integrable.
Then, by Corollary 0.30, M, — M., in L' if and only if the M, are uniformly integrable.
As for the second claim, suppose that M, — M., in L', and let n € N. Since M is a
supermartingale, we have

for all A € .%, and m > n. But
|E[MmIA] - E[MOOIAH < EHMm - MOOHv

and E[|M,, — M|] converges to zero as m — oo by the L' convergence. Therefore,
E[M,,14] converges to E[M14] as m — oo and by (0.50), the limit must be less than or
equal to E[M,I,]. Now

/E[Mooyyn] dP:/MOOdngMndP
A A A

for all A € .%,, and thus E[M|%#,] < M, almost surely. Finally, equality holds in (0.50)
if M is a martingale, and in this case, F[My|.%,] = M, almost surely. O
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Lemma 0.51. Let Y be an integrable random variable on (0, %, P), and let #,,n € N,
be a collection of sub-o-algebras of F. Then the random variables E[Y|%#,],n € N, are
uniformly integrable.

Proof. Let ¢ > 0. First we observe that

(0.52) / |E[Y|ﬁ’n]|dP§/ El|Y| |ﬂn]dP:/ Y| dP.
{|E[Y|Fn]|2a} {lIEY|Fn][>a} {IE[Y|Zn]|Za}

Then we apply the Chebyshev inequality:
BVl ELE[Y]Z0] _ E[Y]]

P(EY|#,)| 2 @) < 2L . :

The upper bound does not depend on n, and it can be made arbitrarily small by increasing
«. Since Y is integrable, uniform integrability follows now from (0.52) and Lemma 0.32.
]

We may now prove Levy’s martingale convergence theorem, which will be used later
in the proof of Shannon-McMillan-Breiman theorem.

Theorem 0.53. (Levy’s martingale convergence theorem) Let (Fy)nen be an increasing
sequence of sub-o-algebras of F, and let F be the o-algebra generated by \J,~ | F,. If
Y is integrable, then E[Y|.Z,] — E[Y|.Z] as n — oo almost surely and in L.

Proof. By Example 0.42 and the previous lemma, the sequence (E[Y].%,])nen is an uni-
formly integrable martingale. Since E[|E[Y|%,]|] < EE[|Y]||Z.]] = E[|Y]] < oo, the
sequence is bounded in L', and thus Doob’s martingale convergence theorem implies that
it converges almost surely to an integrable random variable X,,. Convergence in L' follows
from Theorem 0.49.

It remains to be shown that X, = E[Y|%,]. First we check that the generating set of
Foor U P, is a m-system. If [y, F, € |J)~ | F,, then Fy € %, and F; € .%,, for some
ny and ny. Suppose that ny < ny. Then F} € %, C #,,, and since %, is a o-algebra,
FNFE e %, cU2, %, Similatly, if ny < ny, then Fy N Fy, € %, C U~ #,. Thus
U, %, is a m-system.

Suppose that A € |J), #,. Then A € %, for some n € N, and the L' convergence
implies that

(0.54) /de: im [ E[Y|Z] dP:/XOOdP
A A

m— 00 A

Thus [, Y dP = [, Xoc dP holds for all A € |J;”, .#,. If we can show that the class of
sets € for which it holds is a A-system, then the 7-\ theorem implies that it holds for all
A € Z,,. But this is easy:
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(1) Since Q belongs to U, Zn, [, Y dP = [, X dP.
(2) Suppose that A € €. Then

/ YdP:/YdP—/YdP:/XOOdP—/XOOdP: X dP,
c Q A Q A Ae

which implies that A¢ € €.
(3) Suppose that Ay, Ay, ... are disjoint €-sets. Then

YdP = /YdP: /XoodP:/ X dP,

which implies that |~ A, belongs to %

Hence, ¢ is a A-system, and thus [, Y dP = [, XocdP holds for all A € o (U,~, %) =
Foo- Since E[Y|Z,] is Z, C F.-measurable, X, as a limit of .%,,-measurable functions

is also .Z-measurable. Now X, = E[Y|.Z] by the definition of conditional expectation.
[
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Chapter 1

Ergodic Theory

1.1 Introduction

Ergodic theory could be described as the study of the long term average behaviour of
systems evolving in time. Consider the following examples.

Suppose that X, X5, X3, ... are independent, identically distributed random variables
with finite mean m. Then the Strong Law of Large Numbers states that

almost surely.
Consider an aperiodic, irreducible Markov chain X, X5, X3, ... with stationary distri-
bution 7 and finite state space S. Then, if j € S,
1<k<n:X,=j
lim #{l <k <n:Xp=j} _

n—00 n

(j)

almost surely.
Both of these results are almost immediate consequences of Birkhoft’s ergodic theorem
which will be proved in this chapter.

Measure-preserving transformations

First we define a basic notion of ergodic theory: the measure-preserving transformation.

Definition 1.1. Let (2, .#, P) be a probability space. A function T : Q — Q is measurable
transformation on Q if it is measurable . /%, that is T'A € F forall Ae Z. If T
is one-to-one and onto, we say that 7T is invertible. The transformation 7T is said to be
measure-preserving if we have P(T"*A) = P(A) for all A € .Z.
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Remark 1.2. If (Q,.%, P) is a probability space and T is a measure-preserving transfor-
mation, then in ergodic theory the 4-tuple (Q2,.%, P, T) is often called a dynamical system.
Also, the sequence (w, T(w), T?(w),...) is called the orbit of w under T.

It follows by induction that P(T~*A) = P(A) ,k € N, for measure-preserving trans-
formations. In the invertible case we also have P(T*A) = P(A) for all k € N.

Checking whether a given transformation preserves measure, or not, can sometimes
be difficult. However, the following lemma is of great help:

Lemma 1.3. Suppose that € is w-system and % = o(€). If T is a measurable transfor-
mation and P(T7'A) = P(A) for all A € €, then T is measure-preserving.

Proof. Let & be the collection of F-sets G for which P(T~'G) = P(G). We show that
4 is a A-system. Clearly P(T71Q) = P(Q). If G € ¢, then P(T7'G¢) = P[(T7'G)‘] =
1—P(T7'G) =1— P(G) = P(G°) and thus G¢ € 4. If Gy, G, ... are disjoint Z-sets,
then

P (T—l G Gi> =P (G T‘lGi) = i P(TT'G)) = i P(G) =P (G GZ-) :

Thus ;2, G; € 4. We have shown that ¢ is a A-system. By hypothesis, ¢ € ¢ and
therefore the -\ theorem implies that (%) C ¥. [

Let us now consider some examples of measure-preserving transformations.

1. (Angle doubling) Let © be the semiclosed interval (0, 1], % = %((0,1]), and let m be
the Lebesgue measure. Take T'(w) = 2w (mod 1):

] 2w if0<w§%,
T(w)_{Zw—l ifi<w<l.

Let di(w) be the kth digit of the binary expansion of w. Then w has representations
w = 0.d1(w)da(w) -+ and w = >_;7, dp(w)27*. Binary expansions are not unique; for
numbers of form w = Z;”:_ll Jk27F + 2™ m € N,j. € {0,1}, there are two equal
expansions 0.j; - -+ j,,—11000 - -+ and 0.j; - - - j,,_10111---. Let dy(w) correspond to the
latter nonterminating ones.

The transformation 7" shifts the binary digits of w to the left: T'(w) = 0.da(w)ds(w) - - -
To see this, suppose first that w < % Then d;(w) = 0 and

T(w)=2-Y de(w)2F =) dp(w)27" = " di1(w)27F = 0.day(w)ds(w) - - - .
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If w > 3, then dy(w) = 1 and
T(w)=2-Y de(w)2 ¥ =1=) dp(w)2" = 1= dpa(w)27" — 1
k=1 k=1 k=0

- de+1(w)2_k = 0.dy(w)dz(w) - .

k=1

A dyadic interval is an interval of form
(2275, 3 27 4277 = fw € (0,1] : dy(w) = jis- -, (@) = i}
k=1 k=1

for some m € N and j1,72,...,75m € {0,1} (note that the length of the interval is
27™). Observe that since all open sets in (0, 1] are countable unions of dyadic intervals,
A((0,1]) is generated by the dyadic intervals. If A = {w : dy(w) = ay,...,dn(w) = an}
is a dyadic interval, then

T'A={w:doy(w) =ay,...,dp1(w) = an}
={w:di(w) =0,dy(w) = ay,...,dps1(w) = an}
U{w:di(w) =1,de(w) = ay,...,dpi1(w) = am}.

Thus T7'A is a disjoint union of two dyadic intervals and it is definitely a Borel set.
Since the dyadic intervals and the empty set form a 7-system generating %((0, 1]), T
is measurable by Lemma 0.11. We also conclude that

m(A) =27 =271 4 27 = (T A).

Thus T is measure-preserving by Lemma 1.3.

This transformation is called angle doubling since the function f(z) = €?™* is a one-to-

one mapping of (0, 1] onto the unit circle, and T'(w) corresponds to doubling of angle
on the unit circle.

. (Permutations) Let  be a finite set {a, b, c,d} with . constisting of all subsets of €.
If T' is the cyclic permutation (abed) on €2, then it is clear that T is measure-preserving
if and only P assigns equal probabilities to the four points.

If T'= (ab)(cd), a product of two cycles, then T is measure-preserving if and only if
P({a}) = P({b}) and P({c}) = P({d}). In general, if T is any permutation of a finite
set, then T' can be expressed as a product of disjoint cyclic permutations. Then 7' is
measure-preserving if and only if P assigns equal probability to each point within each
cycle.
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Perhaps the most important transformation is the shift:

Definition 1.4. Let Q = 5, the space consisting of all sequences w = (wy, ws,...) with
wi € S for all k € N; take .# = ., and let P be any probability measure on .. If T
is defined by

T(CUl,WQ, .. ) = (CUQ,Wg, .. .),

then T is called the one-sided shift transformation.
The two-sided shift transformation is defined analogously on SZ: (T'(w))x = Wiy1, OF

T( o, W1, Wy W, Wa, .. ) = ( .o, W, WryWo, W3, .. )

Since the inverse images of cylinders are cylinders (it is easy to check that T7!(C(B)) =
C(S x B)), it follows by Lemma 0.11 that the shift transformations are measurable. Ob-
serve that the two-sided shift is invertible, but the one-sided shift is not.

Whether T' is measure-preserving or not depends on the stationarity of the canonical
stochastic process associated with S (or SZ):

Theorem 1.5. Shift transformations are measure-preserving if and only if the stochastic
process defined by Xy (w) = wy is stationary.

Proof. Consider the one-sided case first. Suppose that the shift transformation T is
measure-preserving. Let kb < ky < ... <k, € Nand B € .". Then for all m € N,

Pl( Xk, ..., Xk,) € Bl = P{w: (wky, .- wg,) € B})

(
= P(Tﬁm{w : (wkl, ... ,wkn) € B})
= P({w : (wk1+m, e ,wkHM) < B})
ZPKXlirm,...,aner) GB]

Therefore, the process (Xj)ren is stationary.
Conversely, suppose that the process defined by Xj(w) = wy is stationary. Let k; <
ko < ... <k, € N, and let C(B) be a cylinder with base B at (ki, ko,...,k,). Then

P(C(B)) = P({w : (e, ... ,wp.) € BY) = P[(Xs., ..., Xy.) € B]
= P[(Xkl-i-h .. 7an+1) € B] = P({w : (wle, o ,wk"H) € B})

=P(T"Hw: (why, .-, wk,) € B}) = P(T7'C(B)).

Since .7 is generated by the cylinder sets, T' is measure-preserving by Lemma 1.3.
The two-sided case is proved in the same way. ]
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Consider the probability space (ST,.#7T, Px) associated with a stochastic process X =
(X )rer defined on (2,.%, P). By Theorem 1.5, the shift operator on ST preserves Py if
and only if the stochastic process X is stationary. This fact will later enable us to apply
the ergodic theorem for stochastic processes even if the underlying probability space is
left unspecified.

Example 1.6. (Markov and Bernoulli shifts) Consider an irreducible, aperiodic Markov
chain X = (X )ren with finite state space S. If the initial distribution of X coincides with
its stationary distribution, then the process is stationary, and by the previous theorem, the
shift operator 7' on (S*°, (P(S))>, Px) is measure-preserving. Moreover, if the Markov
chain is defined on the probability space (S, (P(S))>, P) constructed in Section 0.3,
then the shift operator on this space is also measure-preserving.

The sequence space of Bernoulli trials of Example 0.20 is stationary since it is a
sequence consisting of independent, identically distributed trials. Therefore, the shift
operators on both (SZ,.#% P) and (S%,.#%, Px) are measure-preserving.

1.2 Ergodicity and mixing
It is assumed throughout this section that 7" is a measure-preserving transformation.

Definition 1.7. Let A € .#. Then A is invariant under T if T7*A = A. If0 < P(A) < 1,
then A is called a nontrivial invariant set. If in .% there are no nontrivial invariant sets,
then T is called ergodic. If

(1.8) lim P(ANT"B) = P(A)P(B)

n—oo

for all A, B € ., then we say that T is mizing.
Mixing is stronger condition than ergodicity, as we shall now see.

Theorem 1.9. If T' is muixing, then T s ergodic.

Proof. Suppose that B is an invariant set. Then P(B) = P(BNB) = P(BNT"B) for
all n > 1. Therefore,

P(B) = lim P(BNT"B) = P(B)P(B).

n—o0

Thus P(B) must be either 0 or 1, and we conclude that 7" is ergodic. ]
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Example 1.10. Consider again the permutation 7" = (ab)(cd) on {a,b,c,d}. We con-
cluded that if T is measure-preserving, then P({a}) = P({b}) and P({c}) = P({d}). If
both of these probabilities are positive, then since the sets {a, b} and {c, d} are invariant, T’
is not ergodic. By the previous theorem, 7" can not be mixing. However, if P({a,b}) = 0,
it is easy to check that T is ergodic, but since P({c} N T~ "{d}) varies between zero and
%, T is not mixing.

If T = (abed), then T is ergodic since the only invariant sets are {a,b,c,d} and the
empty set. But 7" is not mixing: since 7' is measure-preserving, equal probabilities i must
be assigned to all points and thus P({a} NT~"{b}) varies between zero and ;.

It is very convenient that it is enough to check that the mixing condition holds on a
generating m-system:

Theorem 1.11. Suppose that & is a m-system and F = o(P). If
lim P(ANT"B) = P(A)P(B)

n—oo

forall A, B € &, then T is mixing.

Proof. Let A € & be fixed, and let €4 be the class of #-sets B for which the mixing
condition (1.8) holds. We will now check that €4 is a A-system. Of course,

lim P(ANT"Q) = P(A) = P(A)P(Q),

n—oo

which implies that €2 € €4. Suppose then that B € €4. Now we have
P(ANT™B¢) =PAN(T™"B)°) = P[(A°U(T""B))|=1—-P(A°UT"B)
=1-P[AUANT"B)|]=1—P(ANT "B) — P(A°).
Letting n — oo, we obtain

lim P(ANT "B =1— P(A)P(B) — P(A°) = P(A) — P(A)P(B) = P(A)P(B°),

n—oo

which implies that B¢ € ¥4. Next, suppose that By, Bs, ... are disjoint sets in 4. Then

lim P (AmT-” U Bm) = lim P (Am L_Jl T‘”Bm> = lim Z_1P (ANT™"B,,)

m=1

I
[M]¢

lim P(ANT"By) = > P(A)P(B,,)
1 m=1

P(A)P <G Bm> .

m=1

3
[
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The third equality is justified by the Weierstrass M-test, a well-known result in analysis
(P(ANT"B,,) < P(I'""B,,) = P(B,,) and >_~°_, P(B,,) converges). We conclude
that |J-_, By, € €a. Thus €4 is a A-system and by the 7-A theorem, .# = 4.

In a similar fashion one shows that the class of .%-sets A for which the mixing condition
holds for all B € .% is a A-system. The 7-) theorem then implies that the mixing condition
holds for all A, B € .%, and we conclude that 7" is mixing. ]

The easiest way to prove ergodicity is often to show that the given transformation is
mixing. Let us now consider some examples.

Example 1.12. The previous theorem will now be used to show that the Markov shift
is ergodic and mixing given that the Markov chain is irreducible and aperiodic, and its
initial distribution coincides with its stationary distribution.

Consider the space (S, .7, P) constructed in Section 0.3, that is, the sequence space
in which Xj(w) = wy, w € O,k € N, defines a Markov chain with finite state space S,
initial distribution u(i),7 € S, and transition probabilities p(i, j), 4, j € S. Suppose further
that the Markov chain is irreducible and aperiodic, and denote the unique stationary
distribution by 7(i),7 € S. We also assume that u(i) = 7 (i) for all ¢ € S.

Since the state space S is finite, it is clear that all measurable rectangles in S*° can
be written as finite disjoint unions of thin cylinders, that is, sets of form

oo . . — .
{weS¥:w =x1,wy=2o,...,wp =T}, n €N, z1,29,..., 2, €S.

Therefore, if the mixing condition holds for all thin cylinders, it must hold also for all
measurable rectangles. And since the measurable rectangles form a w-system generating
°°, it is enough to show that the mixing condition holds for all thin cylinders.

Let T be the shift operator on S, and let A = {w : w; = a4,...,w,, = a,,} and
B={w:w =by,...,wn, = by, } be thin cylinders. First, note that if n > ny4, then

P(A)P(B) = ﬂ-(al)p(ah a2) t 'p<anA*17 anA)ﬂ-(bl)p(blv b2) v 'p(an*h an)?
P<A N T—TLB) — W(GI)p(ah a?) T 'p(anA—h a”A)p(n—TLA-Fl) (anA> bl)p(b17 b2) o 'p(bn3—17 an)J

where p™(i,7) = P(X14m = j|X1 = i). Since the chain is irreducible and aperiodic,
lim,, o p™ 4+ (a,, ,, by) = 7(b1) (for a proof, see [3, p. 125]). Therefore,

lim P(ANT™"B) = P(A)P(B),

n—oo

for all thin cylinders A and B. We conclude that 7" is mixing, and by Theorem 1.9, it is
also ergodic.
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Example 1.13. Let X = (X})ren be a sequence of independent, identically distributed
real-valued random variables. In this case, it is easy to show that the shift operator T’
defined on (R*°, Z(R*>), Px) is mixing. Let A = C(A’) and B = C(B’) be cylinders with
bases A" at (ay,as,...,a,,) and B" at (by,bs,...,b,,). Then, if n € N is chosen so large
that by +n > a,,, we have

Px(ANT™B)=P[(Xu, s Xa,,) €A, (Xpy4n,--- ,anBM) € B

Y anA

= P[(Xer, . X ) € AIP[(Xpinr- Xy ) € B
= PX(A)P[(Xbl, .. ,anB) S Bl] = Px(A)Px<B)

Since Z(R>) is generated by the cylinders, Theorem 1.11 implies that 7" is mixing.

Example 1.14. The angle doubling transformation we considered before is also mixing.
fA={w:di(w)=ai,...,dy,(w) =a,,} and B are dyadic intervals, it is easy to check
that P(ANT"B) = P(A)P(B) for all n > n4. Since A(R) is generated by the m-system
consisting of dyadic intervals and the empty set, Theorem 1.11 again implies that 7T is

mixing.

1.3 Birkhofft’s ergodic theorem

Before stating and proving Birkhoff’s ergodic theorem, we first prove a preliminary result,
the mazimal ergodic theorem. Its statement and proof is most convenient to express in
terms of functional operators.

Let (2, #, P) be a probability space, and let T" be a measure-preserving transforma-
tion. Define the operator U : L'(Q) — L'(Q) by Uf = f o T, that is,

(Uf)w) = f(Tw), f € L'(Q),w € Q.

Observe that the operator U is nonnegative in the following sense: if f < g (pointwise),
then Uf < Ug.
The fact that 7' is measure-preserving implies that U preserves expectation:

Lemma 1.15. For all f € L'(Q), E[Uf] = E[f].

Proof. If f is a simple function, then it has representation f =Y " | x;14,, where the z;
are distinct real numbers and the sets A; are disjoint. But Uf = )", 2;I7-14, and thus

Elf] = Z 2, P(A;) = inP(T‘lAi) = E[Uf].
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Therefore, the claim is true for simple functions. If f is a nonnegative measurable function,
then we can pick an increasing sequence ( f,)nen of simple functions such that f,, 1 f. But
then also U f,, T U f, and the monotone convergence theorem implies that

E[f] = lim E[f,] = hm ElUf.] = E[Uf].

n—oo

Therefore the claim is true for all nonnegative measurable functions. Finally, if f € L'(Q),
then it has decomposition f = f* — f~ where f* and f~ are nonnegative integrable
functions. For every w € (2, we have

(Uf)"(w) = max{(Uf)(w),0} = max{f(Tw),0} = fT(Tw) = (Uf")(w),
and thus (U f)" = U f*. Similarly, (Uf)” = Uf~, and therefore
E[f] = E[f"] - E[f ] =EUf] - EUf 1= E[(UN] - E(Uf)"] = E[Uf].
O]

Define S, f = Y0 U~'f = 37" foT ! forn > 1, Sof = 0 (as usual, U" is
interpreted as identity operator). Put

M, f = Jnax Sk.f, Moof—supS f=supM,f.

<k<n n>0

Then:

Theorem 1.16. (The mazimal ergodic theorem) If f € L' (), then

/ fdP > 0.
{Me f>0}

Proof. Put B, = {M,,f > 0}, B, = {Myf > 0}. Now it is clear that B, 1 B, as
n — 00. Suppose that we are able to prove that an fdP > 0 for all n > 1. Since
f € LY(Q), the dominated convergence theorem implies that

!/ fdP = lim fdp > o0.
(Moo >0}

N0 JIM, £>0}

Hence, it is enough to show that f fdP >0 for alln > 1.
Observe that (M, f)Ip, = (max1<k<n Sef)Ip,. And since U is nonnegative, we have

Skf=f+USkf < f+UM,f
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for all 1 < k < n. These facts imply that (M, f)Ig, < (f+UM,f)Ip,. Since M, f and
UM, f are nonnegative,

/MnfdP: Mnfdng (f+UM,f)dP
Q By,

n

g/nfdP+/ﬂUMnfdP:/andp+/QMnfdP.

The last equality of course follows from Lemma 1.15. Finally, we show that M, [ is
integrable:

k k
— — i—1 i—1
M f| = ’Jgggn Sif| < max |S4f] = max Zl U] < Ogggnz U
n k n k
< U <Y Y UL
k=1 i=1 k=1 i=1
and the right-hand side is integrable by Lemma 1.15. [

Definition 1.17. A measurable function f is invariant if f(Tw) = f(w) for all w € Q.
(Observe that, by induction, f(T*w) = f(w) for all k> 1.)

We have now reached the culmination point of this chapter. Here it is:

Theorem 1.18. (Birkhoff’s Ergodic Theorem) Suppose that T is a measure-preserving
transformation on a probability space (Q,#,P). If f € L'(Q), then there ewists an
wwvariant and integrable function f such that

n

with probability 1. Moreover, Em = E[f], and if T is ergodic, then f = E[f] with
probability 1.

Remark 1.19. Let A be an invariant set and f = I4. Then clearly
R w1 1 ifwe A,
JE&E;J%T w) = { 0 ifwe A,
and so the limit function f can certainly be nonconstant if 7" is not ergodic.
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Proof. Suppose that A is any invariant .%-set. Then I, is an invariant function, and for
every w € () we have

n n

[Sn(f1a)] (w) = Z[UH(fIA)](w) = Z(ffA)(THw)

=5 AT w) (T w) Zf (T w)La(w) = (Suf) (@) La(w).

i=1

We also have

(Moo (fLa)J(w) = sup [Sn(f1a)] (w) = sup(Spf)(w)la(w) = (Moo f)(w)la(w).

n>1 n>1

Hence, by the maximal ergodic theorem,

(1.20) 0< / fIdP = / fdP = / fdP.
{Mx(fI4)>0} AN{I4Ms f>0} AN{M f>0}

Let A € R be a constant. Then

{Mao(f = X) > 0} = [ J{Su(f =) > 0} = [ J{Suf —nA >0} = ] {%Snf>/\}

n=1 n=1

:{Suplsnf>/\}:{w sup — Zf Tk }::F,\.

n>1 N n>1 N

By (1.20), fAﬁFA(f — A)dP > 0, or equivalently,

(1.21) )\P(AQFA)S/ fdP.
ANFy

This holds for all invariant sets A and real numbers \.
Define a,(w) = 2>, f(T" 'w). We want to prove that the a, converge with prob-
ability 1. Let a < (3, and consider the set

Ay p ={w:liminfa,(w) < a < f < limsupa,(w)}.
_)

n—00 n—00

It is clear that

{w : a,(w) does not converge} = U A, .
a€Q,BeQ

a<f
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Hence, it is enough to prove that P(A,3) = 0 for all & < 8. Observe that

Zf (T Tw)

liminf @, (Tw) = liminf a,_; (Tw) = lim inf
n—00 n—00 n—oo 1, —

Zf (TF w M:liminfL1 Y f(TF1w)

= lim inf
-1 noee (n—1)n &~

n—oo 1 — 1

= llgg}fan( w).

Similarly, limsup,, .. a,(Tw) = limsup,,_,., a,(w), which implies that T7'A, 5 = A, .
Since A, 5 = An s N Fp, (1.21) implies that

(1.22) 8P(Aos) = BPUaa ) < [ fap= [ pap
Aa ﬁﬂFﬁ A&,ﬁ

And since —f < —a, applying the same reasoning to —f gives

(1.23) —aP(A7,; ) < / —fdP,
—B,—a

where A: o is the analogue of A, s for —f. But

"4 = {w : liminf — Z —f(T"'w) < =B < —a < limsup — Z —f(T*'w)}

n—oo M
n—00 k 1

= {w: —limsup — Z —f(TF'w) < a < B < —liminf — Z —f(TF'w)}

n—oo M
n—00 1

= {w : liminf - Zkal <a<f<limsup— Zkal)}

n—oo N n—oo
= A, 5.

Therefore, (1.23) and (1.22) imply that aP(A, ) > anzB fdP > BP(A,p). But since
a < (3, this is possible if and only if P(A,3) = 0. ’

We have shown that £ > | f(T*'w) = a,(w) converges on a set with probability 1.
Define g(w) = lim,,_,o a,(w) on the set where a,, converges, and let g(w) = 0 elsewhere.
Observe that g(w) may assume the values oo and —oo at certain values of w. We will
show that E[g] = E[f], which implies that |g(w)| < oo almost surely.

By Lemma 1.15,

Flos) = -3 Bl o 7] ZE
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for all n > 1. If we can show that the functions a,, are uniformly integrable, then it follows
from Theorem 0.27 that E[f] = lim, . E[a,] = FE[g] and g is integrable (and thus finite
almost surely).

Let A be an arbitrary nonnegative real number. By (1.21), AP(F\) = AP(Q N F)) <
Jonm, fAP = [ fdP < E[|f[] < co. If Gy = {sup,>1 an| > A}, then

Gy = {supa, > A} U{supa, < —A} = F\ U {sup —a, > A}.
n>1

n>1 n>1

But the set {sup,~, —a, > A} is the analogue of F for —f. Again by (1.21),

AP({sup —a, > \}) < / —fdP < E[|f]] < oo,
{sup,,>1 —an>X}

n>1

and we conclude that AP(G)) < 2E[|f]]. If a and A are positive, then

1 n
/ \an|dP§/ |an|dP§—Z/ foTH1|dP
{lan|>A} G N JGy

:lz/ [foT*"|dP

N5t Y (GanflfeT =1 >aU(Grn{| foT*~!|<a})

IR (/ k1
<= |f o TF1|dP + aP(G,) ) .
n ,; {|foTk1[>a)

But [yyopsspooy [0 T5 AP = o U [T o LA 4P = fo(Ty o /DI AP =
f{|f‘>a} |f| dP by Lemma 1.15. Hence,

| wldp< [ jflapvap@ < [ isjap+2SE(L
{lan|>A} {IfI>a} {If>a}

Put @ = V/A. Then, if A — oo, the final expression goes to zero since f is integrable. We
may conclude that the a,, are uniformly integrable.

Now since E[g] = E[f] < oo, lim,,_, a,, exists and is finite on a set with probability
1. Define f(w) = lim,_ o0 an(w) on this set, and let f(w) = 0 elsewhere. Then f = g
almost surely and so E[f] = E[g] = E[f]. Since liminf, . a,(w) = liminf, . a,(Tw)
and limsup, ,__ a,(w) = limsup,, . an(Tw), we have f(w) = f(Tw): f is invariant as
proposed.

Finally, suppose that 7' is ergodic. Observe that the set {w : f(w) < 2} is invariant,
which implies that its probability is either 0 or 1. Let xg be the infimum of the x for which
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it is 1. By the well-known properties of cumulative distribution functions, P( f< x9) =1
and

Therefore, f is constant xg almost surely and thus zo = E|[f] = E[f]. We conclude that
in the ergodic case, f = E[f] with probability 1. This completes the proof. O

It is easy to check that the collection of invariant .#-sets forms a o-algebra. Let this
o-algebra be denoted by .#. The function f will now be identified as the conditional
expectation of f given 7.

If G is any invariant set, then

1 & . RN 4
/ PIUORELLEESS [ 5@t to(w) P

- %Z/ﬂf(T’“_lw)]G(T’“_lw)P(dw)

: > ElfI¢] = E[fI¢].

n
k=1

= > B (o)

But since the averages = >/ | f(T*'w) converge to f(w) almost surely and they are
uniformly integrable, we have

f = i l - k—1 _
LfdP—JL%Ln;f<T w) P(dw) /GfdP.

Therefore, F[f|.7] = f by the definition of conditional expectation.

Example 1.24. Let Q = {a,b,c,d, e}, and let T = (abc)(de), a product of two cycles.
Let equal probabilities be given to a,b,c and d,e so that T is measure-preserving. If
A ={a,d} and f = I4, then the limit function f is § on {a,b,c} and § on {d, e}.

Example 1.25. Let us now use the ergodic theorem to prove an interesting fact about
the unit interval: for almost every number, the proportion of ones in the binary expansion
up to the nth digit tends to % as n — oo, that is,

P ({w ; nh_{go%idk(w) = %}) =1,
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where dj(w) is the kth digit of the nonterminating binary expansion of w.

Let T be the angle doubling transformation on ((0, 1], Z((0,1]), m), where m is the
Lebesgue measure. As we have already proved, T shifts the binary digits of w to the left:
dip(Tw) = dg11(w) for all w € (0,1] and k € N. Therefore,

RS RS k—1
dim D dele) = lim 3 4 (T)
Since T is ergodic and E[d;] = 3, the ergodic theorem then implies that

o1
lim —
n—,oo N,

S dilw) = Eldy] = %

with probability 1.

1.4 Ergodic stochastic processes

Ergodicity of a stochastic process is defined in terms of its distribution:

Definition 1.26. Let T'=Z or T'= N. We say that a stochastic process X = (X )ker
with state space (S,.7) is ergodic, if the shift transformation on (ST, .7 Py) is ergodic.

Suppose that the shift transformation 7”7 on ST (the usual labeling T is now reserved
for the parameter set) is indeed ergodic, and further suppose that X is stationary so that
T’ is also measure-preserving by Theorem 1.5. If f : ST — R is measurable .7/ %(R)
and integrable, then the ergodic theorem implies that

1O -
(1.27) lim = " f(1"'z) = / f(z) Px(dz)
n—oo M, 1 ST
for all = on a set of Py-measure 1. By Lemma 0.13 we have
o) Paldn) = [ F(X(w) P(d).
ST Q
Since (1.27) holds with Py-probability 1, we have

1
(1.28) lim —

n—oo M,

Zf(T’k_lX(W))I/Qf(X(w))P(dw) = E[f(X)]
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with P-probability 1. To see this, simply note that if A C ST is the set on which (1.27)
holds, then 1 = Px(A) = P(w: X(w) € A). Note also that if "= N, then (1.28) becomes

(1.29) Tim =37 ), X (@), ) = BF(X1, X, )]
k=1

Example 1.30. The Strong Law of Large Numbers is an immediate consequence of the
ergodic theorem. Let (Xj)ren be an independent sequence of identically distributed real-
valued random variables with finite expectation m. Then the shift transformation 7" on
R is measure-preserving and ergodic as we have previously concluded. Let f : R*® — R
be the first coordinate function, that is, f(z1,z9,...) = x1. Then f is certainly Borel
measurable, and since

| J@) Pxdr) = /Qf(X) 4P = /QX1 dP =m < oo,

it is integrable. By (1.29) we have

Jim % S Xy(w) = JLH;O%Zf(Xk(w),XkH(w), )= Blf(X1, X, .. )] = B(X1) = m
k=1 k=1

with probability 1.

Example 1.31. Suppose that (Xj)ren is an irreducible, aperiodic Markov chain with
finite state space S and stationary distribution m which coincides with the initial dis-
tribution of the process. Again, the shift transformation 7" on (S*°, (P(S))*>, Px) is
measure-preserving and ergodic as we have previously seen. If j € S and f(z) = I (21),
x € S, then f is clearly Borel measurable and integrable. By (1.29) we have

o LS R <0 o) = 5}

n—oo n

- r}g{}o % Z J(Xi(w), X1 (w), . ..)
k=1

= B[f(X1, Xa,...)] = E[I;(X1)] = P(X, = j)
= (j)

with probability 1.
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Chapter 2

Shannon-McMillan-Breiman Theorem

In this chapter we will apply the ergodic theorem to prove a famous result in information
theory, the Shannon-McMillan-Breiman theorem.

All random variables in this chapter will be discrete. This means that if X : Q) — S
is a random variable, then the probability mass function px : S — R defined by px(z) =
P(X = z) satisfies ) _¢px(x) = 1. This of course implies that the set on which px is
positive is at most countable. Usually px(z) will be simply denoted by p(z) if it is clear
from context that p is the probability mass function of X. Similarly, if X, X5,..., X, are
discrete random variables, then the value of the joint probability mass function px, x,
at point (1, s, ...,2,) is denoted by p(x1,za, ..., 2,).

We will apply similar notation for conditional probabilities as well. If X and Y are
random variables, then P(X = z|Y = y) is denoted by px|y (z|y) or p(z|y) if the meaning
is clear from context. Similarly, if X, X5,..., X,, are discrete random variables, then
p(zn|Tn_1,Tn_2,...,21) means P(X,, =z, | X, .1 = x,_1,...,X1 = 21), and so on.

We will also often consider random variables such p(X), which of course means the
random variable that maps w to px(X(w)). Conditional probabilities such as P(X, =
Zp | Xn_1,...,X1) may also be written as p(z, | X,_1,..., X1).

-----

2.1 Basic concepts of Information Theory

We begin this chapter with a brief introduction to information theory. The most funda-
mental quantity in information theory is called entropy:

Definition 2.1. Entropy of a discrete random variable X with probability mass function
p(z) is defined as

H(X) == p(x)logy(p(x)) = —E[log, p(X)].

€S
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In information theory, it is customary to use base 2 logarithms. From here on, log
always means base 2 logarithm unless stated otherwise. We also define 0log (0 = 0, which
is justified by the fact that lim, ,o+ xlogx = 0. Thus we don’t have to assume that
p(z) > 0 forall z € S.

Observe that entropy depends only on the probabilities p(z),z € S, but not on the
actual values that X assumes. It is also worth noting that entropy always exists, since
the summands are always negative. But entropy may well be infinite.

Definition 2.2. Suppose that X, Xs, ..., X, are discrete random variables such that X}
takes values in Sg, 1 < k < n. Then the joint entropy of X1, X, ..., X, is defined as

H(X1,Xs,..., X,) = — Z p(T1, @2, ..., T0) log p(1, Ta, . )

r1E€S1,..., TpE€Sn

= —FEflogp(Xy, Xo, ..., X,)]

Observe that since the the random variables X, X5, ..., X,, can be treated as a single
random vector (X7, Xs,...,X,) taking values in S; X --- x S,,, nothing new is actu-
ally involved here. The joint entropy of X, Xs,..., X, clearly equals the entropy of
(X1, Xoy .o, Xn).

Definition 2.3. Suppose that X : Q@ — Sy and Y : Q@ — Sy are discrete random
variables. Then the conditional entropy of Y given X = x is defined as

HY | X =x2)==> plylz)logp(y|z),
yESy
and the conditional entropy of Y given X, denoted by H(Y|X), is defined as the weighted
average of the H(Y | X = z), that is,
HY|X)= Y HY|X=z)px)=- > plz,y)logpylr) = —Ellogp(Y|X)].
TESx r€SX,YESY

Claude E. Shannon, who laid the foundations of information theory, called the number
H(X) entropy since he recognized some analogies between it and the concept of entropy
in statistical mechanics. Entropy can be seen as a measure of uncertainty associated with
a random variable[5, p. 3]. This is illustrated by the following example.

Example 2.4. Let X be a Bernoulli(p) distributed random variable such that P(X =
1) =pand P(X =0) =1—p. In this case,

H(X) = —p(logp) — (1 — p)log(1 — p).
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H(p)
00 04 0.8
|

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.1: The graph of binary entropy function H(p)

This entropy as a function of p, denoted by H(p), is called the binary entropy function.

As the figure shows, the binary entropy function attains its maximum value 1 at p = 0.5,
and is zero at p = 0 and p = 1. This makes a lot of sense if entropy is interpreted as a
measure of uncertainty. If p is zero or one, there is no uncertainty and thus entropy is
zero as one would expect. On the other hand, if we toss a fair coin (so that p = 0.5),
more uncertainty concerning the outcome is involved than in the case of a weighted coin.

Example 2.5. Let X denote the number of heads before the first tail in a fair coin tossing.
Then P(X = k) = 5+ and

o o

HX) == silongi == > g (k=1 =3 (1) (%)

k=0 k=0 k=0
1S NN 1 1
SE0 1)

2; 2 2\(1-3)

Kullback-Leibler distance and mutual information

N | —

Before we prove the basic properties of entropy, we will briefly discuss the concepts of
Kullback-Leibler distance and mutual information. Their nonnegativity will turn out
extremely useful in the proofs.
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Definition 2.6. Suppose that p and ¢ are probability mass functions on a set S. Then
the Kullback-Leibler distance between p and ¢, denoted by D(p||q), is defined as

D(pllg) = p(x IOg

xeS
Remark 2.7. We adapt the conventions here: Olog% = 0,010g% = 0 and clog ¢ = 0.
These are all justified by considering appropriate limits.

Even though D(pl|q) is called distance between p and g, it is not a metric since it does
not fulfill the triangle equality and it is not symmetric. However, the next theorem shows
that D(p||q) = 0 if and only if p = ¢ and D(pl||q) is always nonnegative. Later, many
proofs will be based on this important fact.

Theorem 2.8. Let p and q be probability mass functions on a set S. Then

D(pllg) = 0
with equality if and only if p(x) = q(x) for all x € S.

Proof. If for some = € S we have p(z) > 0 and ¢(z) = 0, then D(p||q) = co > 0 by the
convention that clog § = oo. Therefore, we may assume that such x does not exist.

Let 8" = {x € S : p(x) > 0} be the support of p. Suppose that X is any random
variable with probability mass function p. Then

D(pllg) = = plx )log 242 == p() log%

z€eS q zes’
—;p i E[logf%]z—l?[—log}%].

The mapping = — —logz is strictly convex on (0,00) and P( E g > O) = 1. Thus, by
applying Jensen’s inequality, a well-known result in probability theory, we obtain

e (£[129)) < £ - 2],

or equivalently, — F [ log %] < log (E [;I»E_X;D Therefore,

—D(pllg) = —F [— log %} < log (E L%D = log ZP(%)%
=log Y q(z) <log» g(z) =logl=0.

zeS’ zeSs
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This proves that Kullback-Leibler distance is nonnegative.

What remains to be proven is that we have equality if and only if p(z) = ¢(z) for all
x € S. Suppose first that we have D(p||g) = 0. Then the two inequalities above must
actually be equalites. By the strict convexity of the mapping z — — log x, this is possible

in Jensen’s inequality only if the random variable @ is constant almost surely. This is

p(X)
equivalent to having }% = ¢ for some real number ¢ and for all x € S’. Summing over all

x € S’ we obtain
S gl) =S pla) =

zes’ zes’

But we must also have equality in log} .o q(z) < log) . .qq(x), which implies ¢ =

Y owes @) = > coq(x) = 1. Thus ¢ = 1 and we have p(z) = ¢(z) for all z € S’. Now

having > o q(x) = Y, . q(x) further implies that p(z) = ¢(z) for all all z € S.
Conversely, if p(z) = g(x) for all z € S, then we have

log ¥ q(x) =log » p(x) =log» p(x) =log ) q(x)

z€eS T€S zes’ zes’
Also the random variable p(—Xg is constant almost surely, which implies that we also have
equality in Jensen’s inequality. Thus D(pl||q) = 0. O

Definition 2.9. The mutual information of discrete random variables X and Y, denoted
by I(X;Y), is the Kullback-Leibler distance between the joint probability mass functions
pxy(z,y) and px(x)py (y) defined on Sx x Sy.

Mutual information measures how much information one random variable contains
about another random variable. This is clarified by the fact that if X and Y are in-
dependent, then their product distribution equals their joint distribution and we have
I(X;Y) = 0 by the previous theorem. The theorem also states that we always have
I(X;Y) > 0 with equality if and only if X and Y are independent.

Let us derive a handy formula for the mutual information 7(X;Y):

x,y)lo oY x,y)lo (zly)
Zp ylg ol Zp y)log® o)

:_pr y) log p(z +Zp$ y)logp(z|y))

T,y

_ —Zp ) log p(x < > plzy logp(xly)>

z,y

- H(X) — H(X]Y).
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And since I(X;Y) > 0, we have the following inequality:
(2.10) H(X) > H(X|Y).

Properties of entropy

We will now prove the basic properties of entropy. We start with the following theorem
which illustrates the relationshop between joint and conditional entropy:

Theorem 2.11. If X : Q) — Sx and Y : Q — Sy are discrete random variables, then

H(X,Y)=H(X)+H(Y | X).

Proof.
Z Z x,y)logp(z,y) Z Z z,y)log [p(z)p(y|z)]
rESx YESY TESx YESY
:—ZZ (x,y)logp(x ZZ (z,y)log p(y|x)
r€Sx YyeSYy r€Sx YeSy
= — Z z)log p(x Z Z z,y)log p(y|z)
TESx zeSx yeSy

= H(X)+ H(Y | X).
0

Corollary 2.12. Suppose that X1, Xs,...,X,_1 and X, are discrete random variables
and n > 2. Then

H(X1, Xoy o, X)) = H(Xp | X1, Xieos- .., X1).
k=1

Proof. We prove the claim by induction. By the theorem, the claim is true if n = 2.
Suppose then that it holds for n — 1 random variables. In this case,
H(Xy, Xo,..., X)) = H[(X1,...,X01), X,
=H(Xy,...,. X 1)+ HX, | Xoo1,..., X7)

n—1
=Y H(Xi | Xpmr, Xp—o, o, X0) + H(X | Xy, X))
k=1
=Y H(Xi | Xemr, Xpma, o, X0).
k=1
By induction, the claim holds for all n > 2. [

47



Theorem 2.11 has an analogue for conditional entropy:

Theorem 2.13. If X : Q — Sx,.Y : Q — Sy and Z : Q@ — Sz are discrete random
variables, then

HX,Y|Z)=H(X|2)+HY | X, 2).

Proof. Since px y|z(x,y|2) = px|z(x|2)py|x,z(y|x, 2) whenever px z(z,z) > 0, we have

H(X,Y | Z) ==Y pla,y,2)logp(x,ylz) = = > plx,y,2)log [p(z|2)p(y|z, 2)]
T,Y,2 T,Y,2
==Y p(z,y,2)logp(x|z) = > plx,y,2)logp(yl, 2)
T,Y,2 Z,Y,z
== plx,2)logp(z|z) = > plz,y,2)logp(ylz, 2)
T,z T,Y,2

—H(X|Z)+H(Y | X,2).
O

Recall that always H(X) > H(X|Y). As an important consequence of this fact we
have the following theorem:

Theorem 2.14. Suppose that X1, Xs,..., X,_1 and X,, are discrete random wvariables.
Then

H(X17X27"'7Xn) SZH<X

with equality if and only if the random variables are independent.
Proof. By Theorem 2.12,
H(X,Xs,...,X,) = H(Xp| X1, Xp—oy ..., X)) < H(Xy).
k=1 k=1

We have equality here if and only if H(X|X;_1, Xp_o,...,X1) equals H(X}) for each k.
But this happens if and only if X} is independent of (Xj_1,..., X;) for each k. ]

Corollary 2.15. If the X; are also identically distributed, then H(Xy,Xo,..., X,) =

An analogous result also holds for conditional entropy:
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Theorem 2.16. Suppose that X1, Xo, ..., X, and Z are discrete random variables. Then
H(Xy, X, X | 2) <Y H(X; | Z)
i=1

with equality if and only if the random variables Xy, are conditionally independent given
Z, that is,

px.x;12(612) = px (il2)px, (7]2)
for alli,j and z.

Proof. Let ¢ € Sz. Then by Theorem 2.14,

k=1

with equality if and only if the X} are independent given Z = i. The claim follows by
multiplying this inequality by pz(i) and summing over all i € S. O

The analogue of inequality (2.10) for conditional entropy is given by the following
theorem:

Theorem 2.17. If X, Y and Z are discrete random variables, then
HZ|X,)Y)<H(Z|X)

with equality if and only if Y and Z are conditionally independent given X.

Proof. By Theorems 2.13 and 2.16, we have

H(Z|X,Y)=H(Y,Z|X)-HY |X)<HY,Z|X)-H(Y,Z| X)+ H(Z | X)
= H(Z | X)

with equality if and only if Y and Z are conditionally independent given X. ]

Observe that, informally, this theorem and inequality (2.10) state that conditioning
always reduces entropy.
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2.2 Entropy and stochastic processes

Consider a sequence (Xj)ren of independent and identically distributed random variables.
Unless H(X;) = 0, we have lim,,_,, H(Xy, Hy, ..., H,) = lim, o nH(X;) = oco. How-
ever, lim,,_, %H(Xl, Hs, ..., H,) = H(X;). This justifies the following definition:

Definition 2.18. The entropy rate of a stochastic process X = (Xj)rer with parameter
set T'= N or T = 7Z is defined by

1
H(X) = lim —H(Xy, Xs,..., X,)

n—oo M,

when the limits exists.

Example 2.19. Consider a sequence X = (Xj)ren of independent Bernoulli trials such
that pr = P(X) = 1) is not constant. In this case, H(Xy, Xs,...,X,) = >, H(X)).
Let

) 05 if 2k < loglogi < 2k + 1,
10 if 2k +1 < loglogi < 2k + 2

for k = 0,1,2,.... Now H(X;) = H(0.5) = 1 for arbitrarily long segments, and these
are followed by exponentially longer segments where H(X;) = H(0) = 0. Then again, we
have an exponentially longer segment with H(X;) = 1, and so on. Hence, the average
LS H(X;) oscillates between zero and one. Entropy rate is thus not defined for this
process.

The next theorem shows that for stationary processes with H(X;) < oo, the entropy
rate always exists. We also have, in the stationary case, an alternative and often easier
formula for calculating the entropy rate.

Theorem 2.20. If X = (Xy)rer is stationary and H(X,) < oo, then

lim H(Xn | Xn—lu Xn_Q, ce ,X1>

n—oo
exists, is finite, and equals H(X).
Proof. By Theorem 2.17 and stationarity,
H(Xn+1 | Xn,...,Xl) S H(Xn+1 ’ Xn,...,X2> == H(Xn ‘ Xn_l,...,Xl).

Since H (X, 11 | X,,...,X1),n € N, is a decreasing sequence of nonnegative numbers, it
converges to a limit. And since H(X,, | X,,—1,...,X1) < H(X;) < oo, the limit is finite.
Denote this limit by H'. We will show that H' = H(X).
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Note that if a, is a sequence of real numbers such that lim,_,. a, = a, then also
lim,, 00 % > a; = a. By Corollary 2.12,

H(X1, Xo,...,X,)
n

1 n

=—Y HX| Xio1,...,X1).
n S

Therefore,

H' = lim H(X, | Xp_1,...,X;) = lim — ZHX | Xio1,..., X))

n—oo n—oo M

H(X:, Xo,..., X
— lim ( 1, A2, ) n):H(X)

n—oo n

O

Example 2.21. Consider an aperiodic, irreducible Markov chain X = (Xj)ken with
stationary distribution 7, transition probabilities p(i, j) and finite state space S. Again,
we suppose that the initial distribution is 7 and thus the process is stationary. Now

=Y w()H(Xa| Xy =) ==Y > w(i)p(i, ) logp(i, ).
€S €S jES

The significance of the entropy rate of a stochastic process should become clear in the
next section.

2.3 Asymptotic Equipartition Property

Suppose that a weighted coin with P("head”) = 0.8 is tossed 1000 times, and suppose
further that this experiment is repeated, say, 1000 times. Thus, we obtain 1000 sequences
consisting of 1000 heads or tails. It is intuitively clear that most of these sequences
contain around 800 heads. The probability of observing one such a sequence is close to
0.8890(1 — 0.8)10907800 which can be written as

980010g(0.8)+(1000-800) log(1-0.8)) _ 9—1000H (0.8)
Recall that H(0.8) is the entropy associated with a coin tossing with weight 0.8. Tt is also
the entropy rate associated with the stochastic process defined by this random experiment.

An analogous result is true more generally. If a stochastic process X satisfies cer-
tain assumptions which will be discussed shortly, the probability of observing a sequence
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(z1,,...,,) is arbitrarily close to 277(X) for most of the sequences as n grows. This
allows us to partition the space of all sequences of length n into two groups: the typical
sequences (1, s, ..., T,) With p(zy, Ts, ..., z,) close to 277X and atypical sequences.

Processes for which this is possible have the Asymptotic Fquipartition Property. We
begin this section by proving the AEP for independent, identically distributed sequences.

Theorem 2.22. If X, X,,... are independent, identically distributed random variables
such that H(X;) < oo, then

1
——logp(Xy, Xy, ..., X,) = H(Xy) in probability as n — oo.
n

Proof. The theorem is a direct consequence of the weak law of large numbers. Since the
X; are independent and identically distributed, so are the random variables — log p(X;).
For each i, we have E[—logp(X;)] = H(X;) and thus

n

—% log p(X1, Xa,..., Xy) = —% log [p(X1)p(X2) - - - p(X,)] = % > —logp(X;)

i=1
converges in probability to E|— log p(X;)] = H(X;) by the weak law of large numbers. [J

Definition 2.23. Let T = N or T" = Z. A stochastic process X = (Xj)rer has the
Asymptotic Equipartition Property if H(X) is finite and

1
——logp(Xy, X, ..., X)) = H(X) in probability as n — co.
n

Inpedendent and identically distributed processes with H(X;) < oo have this property
by Theorem 2.22 since H(X) = H(X;). But the Shannon-McMillan-Breiman theorem
states that all stationary, ergodic processes with finite state space S have the AEP. We
state the theorem now. Its rather long proof will be presented in the next section.

Theorem 2.24. (The Shannon-McMillan-Breiman theorem) Let X = (Xy)kez be a sta-
tionary ergodic stochastic process taking values in a finite set S. If H(X) is the finite
entropy rate of the process, then

1
lim ——logp(Xo, X1,..., Xp1) = H(X)

n—o0 n

with probability 1 (and thus also in probability).

It is assumed that the process has parameter set 7' = Z. But recall Theorem 0.22: any
stationary stochastic process X = (X} )reny with parameter set 7 = N has an identically
distributed counterpart process X' = (X} )gez with parameter set 7' = Z.
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Remark 2.25. The AEP actually holds for even wider class of processes. The state space
may be countable, for instance. Moreover, if the X} are continuous random variables and
entropy is replaced with differential entropy, then the AEP again holds for stationary,
ergodic processes |7]. But the proof of Shannon-McMillan-Breiman theorem in this case
is considerably more difficult and way beyond the scope of this Master’s Thesis.

The AEP is important because it enables us to divide the space of all sequences into
typical and atypical sequences. This partitioning has important applications such as data
compression, as we will soon see.

Definition 2.26. Let 7' = N or 7' = Z. Suppose that X = (Xj)rer is a stochastic process

with state space S, H(X) < oo and X has the AEP. Let € > 0. Then the typical set AM
is the set consisting of sequences (z1, s, ...,2,) € S™ with the property

9 HI+) < p(xy, 29, .., @) < 27MHE)ZO,

The following theorem shows that the probability of observing a sequence belonging to
the typical set is close to 1, all elements of the typical set are approximately equiprobable,
and the number of elements in the typical is close to 2#(X),

Theorem 2.27. The set A™ has the following properties:

(1) If (z1,x9,...,2,) € A then H(X)—e< —Llogp(xi, aa,...,0,) < H(X) +¢,
(2) P ((XI,XQ, LX) € AE”)) > 1 — € for large n,

(3) |AM| < 2o,

(4) |A™] > (1 = e)2n#H ()=o),

Proof. (1) This is immediate from the definition of A
(2) Since X has the AEP, convergence in probability implies that for every § > 0 there
exists n € N such that

(2.28) P (’—llogp(xl,xz, LX) - H(X)’ < e) ~1-5
n

If we choose § = ¢, then (2.28) says precisely that P ((Xl, Xo, ..., X,) € A£">> > 1—e.
(3) Observe that

1= Z p(x1, Te, ..., X)) > Z p(T1, T2, ..., Tn)

(01,020 ) €57 NS
> Z 277L(H(X)+6) _ ’Agn)yzfn(H(X)Jre)
(z1,22,..., ;L’n)EAin)

The claim follows by dividing both sides by 2~ (H(X)+e),
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(4) For large n, we have P ((Xl, Xo,..., X,) € AE”>> > 1 — € by (2). Therefore,

1—e<P((Xl,Xz,...,Xn)EA(n)): Z p(T1, 9, ..., Ty)
(x1,22,..., mn)eAE")
< Z 9—n(H(X)—€) _ ‘AEn)'an(H(X),G).
(xLl’Q,...,xn)eAgn)
(X)*e)‘

The claim follows again by dividing both sides by 2
O

Example 2.29. Suppose that X, Xs, ... are independent Bernoulli(0.8)-distributed ran-
dom variables as in the beginning of this section. If (z1,xs,...,2,) € A£”>, then

) A 9—nH(X) _ 9—nH(X1) _ 9—nH(0.8) _ 9—n(-0.81og0.8-0.210g0.2)

= 0.80-87( .22

p(zy, 22, . ..

Thus for typical sequences, around 80% of the X are ones. It is interesting that the most
likely individual sequence, that is, the sequence in which every X} is 1, does not belong
to the typical set if € is small enough. To see this, note that

1 1
——logp(1,1,...,1) = ——1og 0.8" = —log 0.8 ~ 0.33 < 0.72 = H(0.8).
n n

The following example illustrates why the AEP is useful.

Example 2.30. (Data Compression) Suppose that X = (Xj)ren is a stochastic process
with finite state space S, and suppose further that the AEP holds for X. Consider
sequences (x1,Tg,...,x,) € S™ drawn according to P(X; = x1, Xo = z9,..., X, = z,).
Since S™ has |S|™ < oo elements, these sequences can be represented with log |S|" =
nlog |S| bits (in practice, we of course need [nlog |S|] bits since nlog|S| may not be an
integer). Let us call these bit representations codewords. By assigning shorter codewords
to sequences that appear often and longer codewords to rare sequences, we can reduce

the average codeword length. If I(xq, 29, ..., x,) is the length of the codeword associated
with sequence (x1,Z9,...,T,), then the expected codeword length is
Ell(Xy, Xs, ..., X,)] = Z Iz, 29, ..., xn)p(x1, Tay ..., Tp).

(11 am2v~~'7xn)esn

Since there are at most 2"(7(X)+9) gequences in A™, we need no more than n(H (X)+¢)+1
bits to represent each typical sequence (the one extra bit may be needed since n(H (X )+e€)
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may not be an integer). Let us then prefix these codewords with 0, so that no more than
n(H(X) + €) + 2 bits are needed to represent each sequence in A™ . Similarly, at most

nlog|S|+ 1 bits are enough to represent all sequences not in AE"), and by prefixing these
codewords with 1 we have maximum codeword length of nlog|S| + 2 for sequences that

belong to the complement of A™.
Let n be so large that Px, . x, (AE”)C) is less than e. Then

-----

El(Xi X)) = 3 Up0 + Y Ux)p(x)

x6A£"> xEAEn)
< Y (HX)+e) +2)p(x) + Y (nlog|S| +2)p(x)
xeA™ xeA™
= Py, (A™) (M(H(X) +€) +2) + Px,,..x, (A"°) (nlog|s] +2)

<n(H(X)+e)+en(log|S|)+2=n(H(X)+€),

where € = € + elog |S| + % can be made arbitrarily small. Therefore, on the average,
sequences in S™ can be represented with nH (X) bits. This is often considerably smaller
than the nlog|S| bits needed if codewords are assigned without taking advantage of the
AEP. For example, in the coin tossing experiment we discussed in the beginning of this
section, H(X) is approximately 0.72, but log|S| = log2 = 1.

Now it is time to finally prove the Shannon-McMillan-Breiman theorem.

2.4 Proof of the Shannon-McMillan-Breiman theorem

Our strategy is to show that with probability 1,

1 1
H(X) <liminf ——log p(Xo, ..., X,—1) < limsup ——log p(Xo, ..., Xy—1) < Hy,
n n

n—oo n—oo

where Hy is a (nonrandom) sequence such that Hy — H(X) as k — oo. Of course this
and the stationarity of X imply that

1 1
lim ——logp(Xy,...,X,) = lim ——logp(Xy,...,X,,—1) = H(X),
n n

n—oo n—o0

and so the AEP holds for the process X. To achieve this goal, —% log p(Xo, ..., Xy1)
will be "sandwiched” between two ergodic processes that converge to H(X) and Hy, re-
spectively.
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The sequence Hy, called the kth-order entropy, is defined as

Hy = E[—log p(Xg|Xk-1,...,X0)] = E [~ log p(Xo|X_1,..., X )]
= H(XO | X—laX—Qv' .. 7X—k)7

where the second equation follows from stationarity. As in the proof of Theorem 2.20,
stationarity and Theorem 2.17 imply that Hy is a decreasing sequence. We also have

khm Hk— hm Hk 1= hm H(X0|X_1,...,X_k+1):klim H(Xk ’Xk'—ly"'aXl)
—00 —00
:H(X).

To make the proof more comprehensible, it is divided into four steps.

(1) Define
Hoo =F [— lng(XO | X_l,X_Q, .. )] = H(XO ’ X_l,X_Q, .. )

In this step we apply martingale convergence theory to show that limy ,. Hy = H.
Since limits are unique, this further implies that H(X) = H.
First we prove that

Hk =F |- Z p(IO | X—laX—Qy s 7X—k‘) logp(ﬂjo | X—laX—27 s 7X—k‘)
ToES
Put g(z) = P(Xo =z | X1, X 9,..., X ) = p(z | X_1,X 9,...,X ). Using the
properties of conditional expectation, we obtain

Hy=E[-logp(Xo | Xo1,..., X k)] = E

- Z [{X():xo} log g(l'o)]

ToES
= - Z E [{Xo xo}} 10%9 350 Z E [{onwo} \ X_q,... >ka:]] logg(:vo)
xpE€S ToES
=E |- Y E[Ixy=ooy | Xo1, .. X ] logg(xo>]
L I()ES

=FE |- Z oo | Xo1, Xog, .., X p)logp (o | X1, X o, ... 7X—k:)] .

€S

The same argument shows that

Hoo =F |- Zp(l’o | X_l,X_Q, .. )logp(xo | X_l,X_Q,. . )] .

zoE€S
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Let zg € S. Define Y, = p(xo|X_1,...,X &),k € N. Then by the definition of
conditional probability,

Yk = p(l’(]’X,l, ce ,X,k) = P(XO = l’o’X,l, ce ,X,k) = E[I{X():xo}’Xfla Ce ,X,k].

As we saw in Example 0.42, the process Y = (Y;)ren is a martingale. We also observe

that .
o <U o(X_1,... ,Xn)> = o(X_1,X 4, ...).

n=1

Therefore, we may now apply Levy’s martingale convergence theorem to obtain

lim Yk = lim E[I{onwo}‘X_l, . ,X_k] = E[I{XOZI()}|X—17 X_Q, .. ]
k—o0 k—o0
= P(Xo = ZEO|X_1,X_2, .. ) = p(l‘0|X_1, X_Q, .. )

with probability 1. Since —xlogz <1 for « € [0, 1], we obtain

- ZP(QJo’X—h oy X)) log p(wo X1, .., Xog) < [S] <00

ToES

for all £ € N. And since the function —zlogx is also continuous on [0, 1], we have
limy 00 2k log 2 = (limy_y00 21 ) log(limy_,o 2 ) for all convergent sequences (zx)gen. Thus,
the dominated convergence theorem yields

Jim Hy = lim £/ |- Z p(zo| X1, ..., X_k)logp(zo| X1, ..., X )

€S n

=F |- Z klggop(de*la s 7ka) 10gp($0‘X,1, ce 7ka)

L  x0€S J

= F |- Zp(x0’X717X,27...) 10gp<x0‘X717X727"') :HOO

ToES

This completes the first part of the proof.
(2) The k-th order Markov approximation to the probability p(Xo, X1, ..., X,_1) is defined
for n > k as

n—1

pk(X07X17 s 7Xn71) = p(XU7Xl7 cee 7Xk71) Hp(Xl | Xifla Xi727 cee 7Xifk)'
i=k
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In this step we use the ergodic theorem to prove that with probability 1,

1
(231) T}Lr{.lo_ﬁlogpk<X07le"'7Xn—1) = Hk7
and
1
(232) T}LI{}Q _E logp(XO,Xl, . 7Xn—1 | X_l, X_Q, .. ) = HOO.

To prove (2.31), observe first that

n—1

1 1 1
_Elogpk(X(]? . >Xn71) = —Elogp(Xo, ce >Xk71> — E Zklogp<XZ | Xifl, e ,Xi,k).

The first term converges to zero as n grows, and the second term can be written as

n—1 k—1

1 1
—5 Z 10gP(Xi—1 ’ Xi—og,... aXi—k—l) + E Z IOgP(Xi ’ Xic1,.-. ,Xi—k),

i=1 i=1

where the second term again converges to zero as n grows. The ergodic theorem can be
applied to the first term, since

logp(Xio1 | Xicoy oo, Xip1) = f [Tiil(- oy X, Xo, X, - )} ;

where f(...,z_1,20,71,...) = logp(zo | v_1...7;_1), and T is the shift operator on SZ.
The function f is measurable by the definition of conditional probability, and since

—E[f]=FE[-logp(Xo | X_1,..., X )] = Hi, < o0,

it is integrable. Therefore, by (1.28), we have

n—oo N n—oo

n—1
) 1 . n—1
lim —— 10gpk(Xn—1, ..., Xp) = lim _m 221 logp(Xi—1 | Xico, .., Xicg—1)

= —E[f(...,X 1, X0, X1,...)]
=—Elogp(Xo | X_1,...,Xi—)] = Hg.

To prove (2.32), recall that conditional probability satisfies the equation

PX=zY=y|Z=2)=PY =y|X=x,Z=2)PX=z|Z=2)
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even if P(Z = z) = 0 (see Example 0.37). Therefore,

P(Xoy s X | Xo, Xy ) = p(Xas oo, Xt | Xoy Xo, o )p(Xo | X, Xoa, )
n—1

S p(XZ- | Xic1, Xi—a, .. )

=0
with probability 1. This implies that
1 1 n—1
—ﬁlogp(Xo, X | X X, ) = - ;logp(Xi | X1, Xica, ..

1 & :
LS ),
=1

where g(...,z 1,20, 21,...) = logp(xg | x_1,7_5,...), and T is the shift operator on SZ.
The function g is again measurable and integrable, and thus the ergodic theorem implies
that

. 1
nh_)IIOlo—ﬁlng(Xo, R 7Xn—1 | X_17Xi_2, .. ) = —E[g< .. ,X_17X0,X1, .. )] = Hoo

This completes the second part of the proof.

(3) In this part we prove two limit inequalities, namely

. 1 pk(XQ,Xl,...,Xn_l)
2.33 lim sup — lo <0
(2.33) el 18 (X, Xy X 1)

almost surely, and

_ 1 p(Xo, X1, ..., Xp1)
2.34 lim sup — lo <0
(2:34) el 18 (X X1,y X1 | X, X 9y)
almost surely. Observe that since (X, X1,...,X,,—1) is a discrete random variable, divi-

sion by zero is not an issue here.
Let A be the support set of Py, x,

,,,,,

A={(vo,21,...,2p-1) € S" 1 p(wo, 21, ..., Ty—1) > 0}
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Then

k(X Xy, ... X, _ k e Ty
E {P ( 05 <\1, s 1)} _ Z p(wo, o ,$n—1)p ($07 , T 1)
p(Xo, X1,..., Xp1) p(zo, ... Tno1)

(x()?"'?zn—l)EA

= Z pk(IO)"'amn—l) S Z pk(x()a"‘axn—l)

(20,0 Zn—1)€EA (l'Oa---vxnfl)ESn

n—1
= Z p(erw“yl'k—l)Hp(xi | Tic1, ., Tick)
i=k

(900»---,9%—1)65'”

n—2
= > p(wo, . wran) [ [ ol | @icn k) DY P | noaor - Zno1k)
($0,---7$n—2)65”71 i=k fn—lGS B
el
n—2
= Z p(xo,...,xk,l)Hp(:L‘i ‘ I‘ifl,...,{[‘i,k) — e = Z p(.flfo,...,l‘k,l)
(Io,...,xn_z)ES”’_l i=k (:Eo,...,fl'kfl)esk
=1.
Thus, by Chebyshev’s inequality, we have
pk(X()7...,Xn7 )
p pk(Xo, . 7Xn—l) > n2 < E |:p(X0,...,Xn,1|X,1,;(,2,...)i| < i
p(XOw--,Xn—l | X_l,X_Q,...) B B TL2 — n?

or equivalently,

1 B(Xy. . X, 1.1 1
n p(X(], c. 7Xn71 ’ X,l,X,Q, .. ) n n? n?

Since the series Y >, # converges to a finite number, the Borel-Cantelli lemma implies
that with probability 1 the event

{1 pk<X0,...,Xn,1) 1 1 }

—1 > Z oo —
n ng(XOw'-aanl | X,l,X,Q,...) n Ogn2

occurs only finitely many times. But since
1 1 1 1
lim —log — = lim 2 (— log —) =0,
n—oo N, n n— o0 n n
this clearly implies that (2.33) holds with probability 1.
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Let (z_1,2_5,...) € S, and put

p(X07"'7Xn—1)
T 1,T_9,...)=F
g( 1 i ) lp(X07"'7Xn—1 | X—l,X_g,..

E [ p(X(),...,Xn_l)
p(XO) s 7Xn—1 | LT_1,T—-2,..

) ‘Xl = x,l,X,Q =T_9,.. 1

)‘X_l = l’_l,X_Q =T _9,.. :| .

Also, let B(x_1,2_2,...) C S™ be the support set of p(zg,...,z,_1 | x_1,2_9,...), that
is,

B(x_1,2_9,...) ={(z0, ..., Tp_1) € S" :p(x0,...,Tp_1 | T_1,2_9,...) > 0}.

Then

) p(zoy .-y Ty_1)

9(1-7171-72" . ) e Z p(:L‘O, PN 7x’n*1 ’ xfla e p(m‘o?. B 7:(:”71 ’ x717I72,. . )

= Z p(Toy ..oy xp1) < 1.
_1)€B

Therefore, using the law of iterated expection, we obtain
Xo, ..., Xoo Xoy ooy X
p( 0 ) 1) :| :E|:E|: p( 0 1) ‘X_l,...:|:|
p(Xo,. o, Xno1 | X1, X, 00) p(Xo,. o, Xn1 | X1, X, 00)
=F [g(X_l,X_Q, .. )] S 1.

E

From here, (2.34) follows again by applying the Chebyshev inequality and the Borel-
Cantelli lemma. This completes the third part of the proof.

(4) This is the final part of the proof. First, the inequality (2.33) of part 3 and equation
(2.31) of part 2 imply that
1

1 1 1
lim sup — lo < lim sup — lo =H
n—>00pn gp(XoaXla"'7Xn—1) - n—)oopn gpk<X07X1a"'7Xn—1> ’

with probability 1. Similarly, (2.34) and (2.32) imply that

1 1 1 1
liminf —lo > liminf —lo = H
n—oo 1 gp(Xg,...,Xn_l) T n—oo N gp(Xo,...,Xn_l | X 1,...)
with probability 1. Putting these inequalities together, we obtain
| . 1 1
H, <liminf —log < limsup — log < Hy

n—oo N p(Xo,...,anl) n—oo N p<X07X17--~;Xn71> -
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almost surely. We proved in part 1 that limy_,. Hy = H. Therefore

1 1
lim —log =H.,=H(X) (as.)

n—oo T p(X(]?"'?Xn*l)

which completes the proof.
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