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ABSTRACT

Phytoplankton constitute the autotrophic, photosynthesizing component of the plankton
community in freshwaters as well as in oceans. Today, phytoplankton account for about
half of Earth’s primary production (PP). Carbon and energy fixed by phytoplankton are
transported further in the aquatic food web to heterotrophic zooplankton and finally to
fish or, alternatively, are decomposed by heterotrophic bacteria that also act as food for
higher trophic-level organisms. Since phytoplankton fix inorganic carbon (IC), they are
highly important in lake carbon cycling and balance.

Many of the lakes in the boreal area are characterized by heavy loadings of
brown-coloured humic matter, mostly dissolved organic carbon (DOC), that diminishes
light penetration in the water column. This is problematic for phytoplankton which, as
photosynthetic organisms, are dependent on solar radiation. The phytoplanktonic life in
boreal humic lakes is also hampered by strong thermal stratification patterns that due to
nutrient uptake, lead to inorganic nutrient limitation in the illuminated epilimnion.
However, nutrients are often plentiful in the dark hypolimnion.

Since phytoplankton are ubiquitous in aquatic ecosystems, they must have several
adaptations to help them survive in various environments, including boreal humic lakes.
The present study focused on the traits of motility and cell size, both of which affect
phytoplankton capability to not only obtain nutrients and light, but also to avoid
zooplankton grazing. Special attention was given to the group of autotrophic
picoplankton (APP), which are nonmotile, small (cell size 0.2—2 pum) and less studied
than the larger phytoplankton. The seasonal dynamics of APP and larger phytoplankton
were associated with changes in the abiotic environment, especially parameters prone to
the ongoing climate change. In addition, the associations between phytoplankton and
their competitors and grazers in the microbial food web (MFW), as well as the possible
top-down effects of fish on the MFW, phytoplankton and surface water carbon dioxide
(CO,) concentrations were studied in more detail. Four of the five studies were
undertaken in situ in the small, strongly stratified, humic headwater Lake Valkea-
Kotinen. The fifth study was a fish biomanipulation experiment conducted in enclosures
in the humic Lake Pajarvi and the clearwater Lake Vesijarvi.

The most successful phytoplankton taxa in Lake Valkea-Kotinen in terms of PP as
well as biomass were flagellated. However, motility was really advantageous only when
combined with large cell size (> 20 um): Peridinium dinoflagellates dominated in PP
and the biomass in spring and autumn, whereas in summer Gonyostomum semen (Ehr.)
Diesing took over. This was probably because only the large cells were able to migrate
long distances between the illuminated epilimnion and nutrient-rich hypolimnion.
Interestingly, the most abundant phytoplankton taxa in Lake Valkea-Kotinen were the
nonmotile and tiny (~ 2 um) Choricystis (Skuja) Fott-like eukaryotic APP. The strength
of the APP was in isopycny, i.e. the capability to remain at the boundary layer between
the epi- and hypolimnion, where they obtained access to light and nutrients. Both G.
semen and APP correlated positively with high water column stability, which also
indicates that they benefitted from strong stratification patterns.

There were changes in the water quality in Lake Valkea-Kotinen during the study
period of 1990-2006, most importantly, as increases in DOC and water colour, whereas
phosphorus, which was the limiting nutrient, decreased. This was problematic for the
large flagellates (studied in 1990-2003) and prokaryotic APP (Merismopedia
warmingiana Lagerheim; in 2002-2006). However, the eukaryotic APP (in 2002—-2006)
were favoured by the increased water colour.



APP abundance correlated negatively with heterotrophic bacteria in the
epilimnion of Lake Valkea-Kotinen, which indicates nutrient competition between these
two groups. The bacteria correlated positively with large phytoplankton (measured as
chlorophyll a), and probably were partly sustained by G. semen, which was associated
with high extracellular organic carbon (EOC) release. However, both the APP and
bacterial numbers were in general low in Lake Valkea-Kotinen, which was explained by
the high nanoflagellate (NF) and ciliate abundance. Nevertheless, the NFs did not graze
on the APP, and the APP as well as the larger phytoplankton were able to avoid ciliate
grazing during the strongest stagnation by remaining in the anoxic parts of the water
column, where algivorous ciliates were less abundant.

The enclosure experiment in lakes Paajarvi and Vesijarvi showed no top-down
effects of fish on APP or any other components of the MFW. This was probably due to
the low abundance of cladocerans, especially the large daphnids. However, in the humic
Lake P&gjarvi, fish influenced the food web via nutrient enrichment, i.e. through
bottom-up effects. The total phytoplankton biomass did not change, but the PP
increased and led to increments in bacterial production (BP) and ciliates, which took
advantage of the enhanced phytoplankton production. Therefore, although unexpected,
the higher PP did not translate into lower water CO, concentration, but the BP and
ciliate algivory increased concurrently and produced more CO,. Thus, the net ecosystem
production (NEP) remained stable.
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1. INTRODUCTION
1.1Lacustrine food webs

The description of the food web of an
ecosystem is essential for understanding
how the ecosystem works (Pimm et al.
1991). The food webs are comprised of
trophic levels that describe the number of
steps an organism is from the start of the
chain. Classically, it is believed that
carbon (C) and energy in lake pelagic
areas are transported from the autotrophic
level, i.e. photosynthetic phytoplankton
(size > 2 um), to heterotrophic
zooplankton (size > 200 um) and further
to planktivorous fish (Fig. 1; Sieburth et
al. 1978; Carpenter et al. 1987; Hansson
et al. 1993). However, this classical
grazer food chain theory was challenged
in the 1980s when Azam et al. (1983)
published the concept of ‘microbial loop’,
first introduced by Pomeroy already in
1974. In the microbial loop - or more
precisely - the microbial food web
(MFW), the first trophic level is
comprised of tiny autotrophic and
heterotrophic picoplankton (APP and
bacteria, respectively; size 0.2—2 pum) that
are grazed by microzooplankton (2-200
pum), i.e. heterotrophic nanoflagellates
(NFs) and ciliates, which are further
grazed by meso- and macrozooplankton
(> 200 pm) and finally by planktivorous
fish (Fig. 1). Since fish are the top grazers
in the classical food chain as well as in
the MFW, it has been postulated that
there is a trophic cascade from fish to the
lowest trophic level, i.e. to phytoplankton
and bacteria (Jurgens et al. 1994).

One of the greatest differences between
the classical food chain and the MFW is
that the initial source of C in the classical
chain is inorganic, but in the MFW it can
be either inorganic or organic.
Furthermore, the organic carbon (OC) can
be either of autochthonous or
allochthonous origin, i.e. derived from the
phytoplankton primary production (PP) or

from the surrounding catchment area
(Tranvik 1992). The MFWs currently are
widely studied in marine habitats as well
as lakes of varying trophic status and
geographical areas (e.g. Arndt 1993;
Amblard et al. 1995; Hadas & Berman
1998; Zingel et al. 2006; Gobler et al.
2008; Pestova et al. 2008). However,
MFWs in lakes with deep thermal
stratification and hypolimnetic oxygen
(O,) depletion are still poorly defined.
One fairly large group of lakes
undergoing seasonal hypolimnetic
hypoxia and finally anoxia are the humic
lakes in the Boreal Zone. The special
characteristic of humic lakes is the high
content of allochthonous OC deriving
from the forests and peatlands of the
catchment. Thus, MFW studies in boreal
humic lakes have focused on bacterial
utilization of OC. Since they do not
comprehensively describe the trophic
structure, the role of APP in the MFWs of
these lakes is still largely unknown.

1.2Phytoplankton

Phytoplankton constitute the autotrophic,
photosynthesizing component of the
plankton community in freshwaters as
well as in oceans. Today they account for
about half of Earth’s PP (Litchman &
Klausmeier 2008 and references therein),
and since they fix inorganic carbon (IC),
they are key players in carbon dioxide
(CO,) exchange between the lake/ocean
and the atmosphere (Schindler et al.
1997). Phytoplankton are comprised of
unicellular (cell size 0.2-200 pm)
prokaryotic and eukaryotic taxa and,
depending on the species, are either
solitary or colonial. The various
phytoplankton species have different
environmental requirements, but
primarily they are bottom-up-controlled
by nutrients, mainly nitrogen (N) and
phosphorus (P), and light (Reynolds
2006; Callieri 2007). The photosynthetic
characteristics, light requirements and C
fixation patterns of phytoplankton differ
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Figure 1. A simplified schema of carbon and energy transfer in lakes. In the ‘classical grazer
chain’, phytoplankton fix dissolved inorganic carbon (DIC) into organic compounds through
photosynthesis; the energy comes from the sun. In the ‘microbial food web’ (MFW), the carbon
and energy are obtained either from DIC and solar radiation by autotrophic picoplankton (APP)
or from organic compounds (dissolved organic carbon, DOC) by heterotrophic prokaryotes
(bacteria). The DOC derives from the catchment or is released by aquatic organisms. In both
grazer chain and MFW, the carbon and energy are transported to meso- and macrozooplankton;
however, in the MFW the route is via protozoa, i.e. heterotrophic nanoflagellates and ciliates.
Finally, zooplankton are grazed by planktivorous fish. The black arrows show carbon flow in

the food web.

according to cell size, and the responses
of small phytoplankton species to the
physical and chemical conditions of the
water column are different from those of
larger species (Malone 1980; Glover et al.
1985; Frenette et al. 1996; Mei et al.
2003). Small cells are considered to have
shorter cell cycles and higher growth
rates than the large cells (Raven 1998;
Reynolds 2006). Furthermore, small
phytoplankton species with higher surface
area-to-volume (SA:V) ratios are more
effective in nutrient uptake and light
acquisition than larger species. However,
it is not all about the cell size, since
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several phytoplankton  species are
flagellated and therefore able to actively
ameliorate nutrient and light acquisition
by swimming towards these resources
(Sommer 1988; Reynolds 2006). Flagella
and the potential for independent
movements are actually considered to be
among the most important adaptations of
phytoplankton against ecological stress,
because the flagellated phytoplankton can
enhance their growth by up to 50% and
attain growth rates close to the maximal
through vertical migrations into deep
nutrient-rich water layers (Raven &
Richardson 1984; llmavirta 1988; Ojala



et al. 1996). Large phytoplankton species
can, in general, resist zooplankton
grazing better than the smaller species
(Reynolds 2006), but for flagellates the
large cell size is also advantageous for
other reasons. Large flagellates swim
faster than the small flagellates and they
also have wider maximal migration
amplitudes than their small counterparts:
large flagellates such as Peridinium
dinoflagellates and the raphidophyte
Gonyostomum semen (Ehr.) Diesing have
5-10-m migration amplitudes, whereas
flagellates smaller than 5 pum can migrate
vertically only about 2 m (Sommer 1988
and references; Salonen & Rosenberg
2000).

Phytoplankton species composition in
boreal lakes varies during the open-water
season in accordance with light and
nutrient availability as well as losses
caused by grazers. This variation is called
seasonal succession, and it starts all over
again every spring after ice-out. The PEG
(Plankton Ecology Group) model by
Sommer et al. (1986), which originally
depicted the seasonal succession of
phytoplankton in temperate lakes but has
often also been applied also to boreal
lakes, states that the first species
appearing in spring are small and fast-
growing, e.g. cryptophytes and diatoms,
and are rapidly grazed by herbivorous
zooplankton, which then decline in
numbers through fish predation. As a
consequence of decreased grazing
pressure, a diverse phytoplankton
community develops. Later in summer
nutrients become depleted, and the
abundance of phytoplankton species
varies in relation to their biological needs
for these nutrients (Reynolds 2006). The
components of the phytoplankton
community may be exposed to
exploitative  competition, in  which
consumption of a limiting resource by
one species makes that resource
unavailable for another (Jasser 1997,
Litchman & Klausmeier 2008). The PEG
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model states that the phytoplankton
summer crop is comprised of some edible
species as well as inedible colonies, and
later cyanobacteria, large diatoms and
dinophytes become abundant (Sommer et
al. 1986). However, in boreal humic lakes
the end of the seasonal succession differs
from that in clearwater lakes, since
diatoms and cyanobacteria are not as
numerous as in clearwater lakes and the
phytoplankton flora are comprised mainly
of flagellated species (Burns & Rosa
1980; Riebesell 1989; Lepistd &
Rosenstrom 1998).

Autotrophic picoplankton

APP are the smallest (size 0.2-2 pm)
phytoplanktonic primary producers. They
are present in all types of aquatic habitats
(Sieburth et al. 1978; Callieri 2007) and
include both solitary cells and colonial
forms of ‘nonblooming’ species (Callieri
& Stockner 2002). Probably due to their
small cell size, the APP are less studied
than the larger phytoplankton and are also
excluded from the PEG model (Sommer
et al. 1986). However, despite their small
size and thus comparatively low total
biomass, the contribution of the APP to
total PP is far from negligible: APP are
responsible for 5-90% of the 1C uptake in
freshwater lakes (Callieri & Stockner
2002; Belykh et al. 2006; Greisberger et
al. 2008). Furthermore, the
photoautotrophic CO, fixation in the
world’s oligotrophic oceans is dominated
by two pico-sized cyanobacterial genera,
i.e. Prochlorococcus and Synechococcus,
which together contribute 30-80% of
marine PP (Liu et al 1997; Price 2011).
The lacustrine APP communities vary
along trophic gradients as well as
seasonally (Callieri & Stockner 2002).
Generally, the APP communities in
oligotrophic and mesotrophic lakes are
dominated by solitary prokaryotes
(picocyanobacteria), whereas  their
colonial forms are common in eutrophic
lakes. Eukaryotic APP thrive at low pH



and in low light and thus are often more
abundant in acidic humic and eutrophic
lakes (Callieri & Stockner 2002; Callieri
2007). However, various APP taxa can
coexist due to nonoverlapping ecological
niches (Winder 2009). Most APP studies
in boreal lakes have been carried out for
single open-water periods, and thus the
existence of interannual variations and
drivers behind the variations remain so
far unclear.

Competition with heterotrophic bacteria

Prokaryotic, heterotrophic bacteria are the
main organisms responsible for organic
matter (OM) decomposition in lakes and
in aquatic ecosystems in general (Tranvik
1992; Cotner & Biddanda 2002). They
are important for fluxes of O, and C, and
bacterial respiration is the main cause of
net heterotrophy (photosynthesis to
respiration ratio < 1) in oligo- and
mesotrophic lakes (del Giorgio & Peters
1994; Cotner & Biddanda 2002). It is
well ~ known that, despite their
heterotrophy, bacteria account for large
proportions of inorganic nutrient uptake:
on average 60% of phosphate (PO,) and
30% of ammonium (NH,) are taken up by
heterotrophic bacteria (Kirchman 1994).
This creates competition between bacteria
and phytoplankton for growth-limiting
nutrients (Caron 1994). Due to their small
cell size, bacteria are often considered
more effective in nutrient uptake than
phytoplankton (Currie & Kalff 1984,
Thingstad et al. 1993; Kirchman 1994),
but the tiny APP may be able to challenge
bacteria (Cotner & Biddanda 2002).
However, the laboratory experiment of
Drakare (2002) suggests that APP can
fare in competition with heterotrophic
bacteria only if the bacteria are under OC
limitation.

Food source in the MFW

The abundance as well as vertical
distribution of grazers in MFWs is largely
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controlled by food and/or O, availability
(Guhl et al. 1996). Many studies have
reported NF grazing on bacterial-sized
particles (Sherr & Sherr 2002 and
references therein). However, not all NFs
are  bacterivorous, but feed on
phytoplankton or are  omnivorous
(Mischke 1994; Simek et al. 1997; Brek-
Laitinen & Ojala 2011). The small size of
NFs makes them incapable of ingesting
large cells, which may restrict their
grazing efficiency (Amblard et al. 1995).
However, prey size is not an obstacle for
ciliates; some algivorous ciliates can
consume phytoplankton larger than 200
pm, either by engulfing them or via
extracellular digestion (Sherr & Sherr
1994). Some of the ciliates have
specialized diets and are thus dependent
on the location of their food resources
(Amblard et al. 1995; Guhl et al. 1996;
Verni & Gualtieri 1997; Gobler et al.
2008; Brek-Laitinen et al. 2012). In
addition to the specialists, the ciliate
community is composed of omnivorous
species that have mixed diets of
phytoplankton, bacteria and NFs (Posh &
Arndt 1996; Pernthaler 2005). NFs do not
respond to anoxia (Gobler et al. 2008;
Brek-Laitinen et al. 2012), whereas the
abundance and community structure of
the ciliated protozoa differ considerably
between oxic and anoxic waters (Guhl et
al. 1996; Gobler et al. 2008; Brek-
Laitinen et al. 2012).

In addition to being prey items for the
upper trophic levels, phytoplankton can
play an important role in the food webs of
humic as well as clearwater lakes through
release of OC compounds (extracellular
organic carbon, EOC), which act as
sources of C for heterotrophic bacteria
(Sundh & Bell 1992). The average
proportion of EOC release, i.e. the
percentage of extracellular release (PER),
varies between 3% and 55% of the PP
(Sendergaard et al. 1985; Baines & Pace
1991; Sundh & Bell 1992). The EOC is
released by healthy phytoplankton cells,



but EOC production may also result from
cell lysis after the collapse of an algal
bloom. The seasonal succession of
phytoplankton leads to large seasonal
variations in PER within lakes, since
EOC release is dependent on cell size,
phytoplankton taxa and growth phase
(Berman & Holm-Hansen 1974; Lancelot
& Billen 1984; Sundh & Bell 1992;
Malinsky-Rushansky & Legrand 1996).

1.3 Boreal humic lakes

Humic lakes are typically found in the
boreal landscape of the Northern
Hemisphere. These lakes are often small
and located in the middle of forests and
peatlands, and are thus characterized by
heavy loadings of OC (mostly in the form
of dissolved organic carbon, DOC) from
the catchment. High inputs of C in
association with bacterial activity lead to
supersaturation of CO,, causing a net
diffusion of CO; from the surface water
to the atmosphere and making these lakes
conduits of terrestrial C to the atmosphere
(Cole et al. 1994; del Giorgio et al. 1999;
Huotari et al. 2011). This is significant in
areas such as Finland, where as many as
93% of the lakes are humic and the
number of lakes and ponds larger in area
than 0.05 ha is around 190 000, i.e. the
lakes cover on average 10% (locally up to
20%) of the land area (Raatikainen &
Kuusisto 1990; Kortelainen 1993).

Mixing periods and stratification

Boreal lakes are in general dimictic,
which means that each year the water
column mixes from top to bottom during
two mixing periods: in spring and
autumn. The lakes are ice-covered in
winter and stably stratified in summer
(Lewis 1983). The stable stratification in
summer derives from the temperature
dependence of the water density, which
divides the water column into warm
surface waters (epilimnion) and colder
bottom waters (hypolimnion). These two
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layers are separated by a thermocline,
where temperature decreases rapidly. In
winter the thermal stratification is weak,
and the warmest water layers are near the
bottom sediment. Despite the rather low
water  temperature, the  bacterial
decomposition of OC releases nutrients
and C gases (CO, and methane, CH,) into
the hypolimnion in winter (Tulonen 1993;
Liikanen et al. 2002).

The brownish water absorbs solar
radiation and in spring, when the amount
of  irradiance increases,  surface
temperatures in humic lakes rise rapidly.
This shortens the duration of the spring
overturn to a few days, or the spring
mixing may even be incomplete and does
not reach the bottom. In the latter case,
neither nutrients nor C gases are mixed in
the upper water column but remain in the
deep-water layers (Huotari et al. 2009).
The effective absorption of solar radiation
also results in shallow thermocline depths
and very stable thermal stratification.
Since the epilimnion and the hypolimnion
are not mixed during stratification, the
metabolic activity of phytoplankton as
well as bacteria leads to inorganic
nutrient depletion in the epilimnion
during the course of summer. In contrast,

active OM decomposition releases
nutrients and C gases into the
hypolimnion and finally results in

hypolimnetic anoxia (Salonen et al.
1984). The thermal stratification breaks
down in autumn and the nutrients and
gases are again spread over the water
column.

Effects of humic substances on
microorganisms

Lakes with high humic matter content are
traditionally termed as dystrophic, and in
terms of productivity they resemble
oligotrophic  rather than  eutrophic
conditions (Wetzel 2001). Humic lakes
are indeed harsh environments for growth
and reproduction of photosynthetic



organisms, such as phytoplankton. Since
the brownish humic substances diminish
light penetration, the photosynthetic
production is restricted to the uppermost
few metres of the water column
(llmavirta 1988; Karlsson et al. 2009).
Humic acids lower the water pH, which is
disadvantageous for many phytoplankton
species (Findlay 2003; Jasser et al. 2009).
However, due to the low pH (< 6.5), IC in
humic lakes is in the form of CO,. This is
important for phytoplankton, since all
freshwater species can use CO, as their
source of C, but only a few species are
able to employ the bicarbonate (HCOj3)
or carbonate (COs*) which predominate
at higher pH and are available for many
marine phytoplankton species (Wetzel
2001, Cassar et al. 2004, Reinfelder
2011). In addition to acids, the humic
substances are comprised of neutral and
alkaline compounds that bind inorganic
and organic nutrients and make them
unavailable for autotrophic phytoplankton
(Peuravuori & Pihlaja 1999). However,
inorganic  nutrients are released in
decomposition of OM, especially in the
hypolimnion  during  the  thermal
stratification, and since most of the
phytoplankton species in humic lakes are
motile, they are capable of vertical

migrations Dbetween the nutrient-rich
hypolimnion and the illuminated
epilimnion (Jones 1988; Lepistd &

Rosenstrém 1998). Therefore, detailed
investigations have shown that the
productivity in humic lakes may not be as
low as first thought (Wetzel 2001).
Although the high amount of brownish
DOC acts against the photosynthetic
organisms, the growth of heterotrophic
bacteria is favoured (Jones 1992).
Nevertheless, the easily available (labile)
part of the allochthonous OC is often
already degraded in the catchment, and
therefore bacteria in humic lakes are at
least partly dependent on phytoplanktonic
EOC (Kuuppo-Leinikki & Salonen 1992;
Tranvik 1992; Tulonen 1993; Arvola et
al. 1996).
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1.4Predicted effects of climate
change

The physical and chemical properties of
lakes are modified by local weather
conditions, and therefore the
phytoplankton community composition,
biomass and the timing of the
phytoplankton blooms are mediated by
climatic forces (Moss et al. 2003).
Climate change, with resulting global
warming, affects the hydrology, and thus
changes in precipitation as well as in
evaporation are expected in the Northern
Hemisphere (Intergovernmental Panel on
Climate Change, IPCC, 2007). In
Finland, the annual mean temperature and
precipitation have been increasing,
compared with the baseline period of
1961-1990, and the projected increases
by 2020 are 1-3 °C and up to 15%,
respectively (Jylhd et al. 2004). The
increase in precipitation will probably
increase lake DOC and nutrient
concentrations, because they are flushed
into the lake along with the runoff from
the catchment (Vuorenmaa et al. 2006;
Barlund et al. 2009; Einola et al. 2011).
The increment in the brown-coloured
DOC in lakes will lead to stronger light
absorption, and  thus  shallower
thermocline depth and more stable
thermal stratification (Péres-Fuentetaja et
al. 1999).

In  phytoplankton communities, the
effects of climate change have most often
been linked with the development of the
spring phytoplankton crop: an earlier ice-
out induces an earlier phytoplankton

spring bloom (Adrian et al. 2006).
However, warming in general and
changes in nutrient concentrations

through alterations in hydrology and
thermal  stratification  can  affect
phytoplankton.  For  example, De
Senerpont Domis et al. (2007) suggested
that cyanophyte densities will increase
following the temperature rise, whereas
chlorophytes and diatoms will not benefit



from warming. Moss et al. (2003), for
their part, reported that the abundance of
cyanophytes would not change, whereas
certain chlorophytes would increase and
some, together with cryptophytes, may
decrease. Furthermore, Winder (2009)
postulated that when the thermal
stratification in lakes becomes stronger,
the sinking losses of nonmotile
phytoplankton species, especially large
diatoms, will increase. This will shift the
phytoplankton ~ communities  towards
smaller species, and it may also favour
flagellates, which are not as dependent on
the water column instability as the
nonmotile species (Huisman et al. 2002).

2. OBJECTIVES OF THE
PRESENT STUDY

In this thesis, | try to gain a deeper
knowledge and understanding  of
phytoplanktonic life in boreal humic
lakes. My special emphasis is on the traits
of cell size and motility, and all my
studies were performed in situ. | focus on
the consequences of dark water colour,
strong thermal summertime stratification
and epilimnetic nutrient depletion, all of
which are limnological parameters prone
to change as a result of the ongoing
climate change. | also try to couple the
phytoplankton  with  the unicellular
grazers in the MFW and determine if
there is a trophic cascade in the food web
from planktivorous fish to large
phytoplankton and the MFW, including
APP.

The thesis begins with a study (1) of the
importance of various phytoplankton
size-classes in autotrophic PP (IC uptake)
and EOC release in the small, humic and
deeply stratified Lake Valkea-Kotinen.
The following two studies (II and I1I),
also conducted in Lake Valkea-Kotinen,
emphasize the abiotic drivers behind the
dynamics of the annual and interannual
changes in APP (1) and three dominant
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(in biomass) phytoplankton taxa (II).
These three taxa belong to the
nanoplankton (2-20 pm) and
microplankton (> 20 um) size-classes
and, in contrast to APP, are flagellated
and thus have survival strategies different
from those of APP. To consider the
effects of the climate change-related
processes on phytoplankton and further
on pelagic food webs, the phytoplankton
dynamics in 1l and Il are coupled with
meteorological and climatic drivers.
These include precipitation, water
temperature and stability of the water
column. The fourth study (1V) associates
phytoplankton with their competitors and
grazers in the MFW of Lake Valkea-
Kotinen. This study focuses on the
possible  differences  between  the
epilimnion and hypolimnion, i.e. the oxic
and anoxic parts of the water column.
Finally, the perspective is expanded to
food web interactions in general and the
trophic cascade from planktivorous fish
to phytoplankton and the MFW, and
further to  surface water CO;
concentration (IV). The last study was
conducted as an enclosure experiment in
two large boreal lakes, i.e. in the humic
Lake P&gjarvi and the clearwater Lake
Vesijarvi, and thus, there was an
opprtunity to compare a brown-water and
clearwater lake.

The main questions in this thesis are:

e Do cell size and motility matter;
which  phytoplankton taxa are
dominant in production, abundance
and biomass in a strongly stratified
humic lake with epilimnetic nutrient
depletion? (I-111)

e Are there climatic or climate-
mediated drivers behind the dynamics
of phytoplankton? (11-1V)

e What is the role of phytoplankton,
including APP, in the MFW in a
strongly stratified humic lake with an
anoxic hypolimnion? (1, 1V)



e Do fish regulate phytoplankton,
including APP, and furthermore the
surface water CO, concentrations via
trophic cascades in boreal lakes? (V)

3. MATERIAL AND METHODS
3.1 Study sites

Lake Valkea-Kotinen — a small and
sheltered humic lake

Lake Valkea-Kotinen, the main study
area of this thesis (I-1V), is a small (area
3.6 ha; maximum depth 6.5 m; mean
depth 2.5 m), humic, acidic headwater
lake located in the Evo forest area in
southern Finland (61°14°N, 25°04°E; Fig.
2). As a result of the brownish colour,
light penetration is poor (Secchi depth
1.4-1.6 m), and thus the photoautotrophic

production is restricted to the uppermost
1.5-2.5 m, which also is the depth of the
epilimnion (Table 1).

Lake Valkea-Kotinen is ice-covered for
5.5-6 months each year from November
to late April or early May. Due to the
dark water colour and sheltering by the
surrounding  forest,  the  thermal
stratification develops shortly after
thawing. Even though the lake is regarded
as dimictic, the spring overturns are often
short or incomplete and the hypolimnion
remains anoxic until the autumnal
overturn (Fig. 3; Salonen et al. 1984;
Huotari et al. 2009). In addition to
temperature, the lake is also chemically
stratified during summer. The differences
in the physical and chemical properties
between the epi- and hypolimnion are
large; e.g. the summer concentration of
dissolved inorganic carbon (DIC) is low

Lake Valkea-Kotinen

(r J.\ ::1 T Wt el N i3
ijarvi- f/ '
18 o

Iso-Eva

Hbllo

Lake Paajarvi

Lake Vesijarvi,
Enonselka basin

Figure 2. A map of Finland showing the locations of the study lakes, i.e. Lake Valkea-Kotinen,
Lake Pa&jarvi and Lake Vesijarvi and the Enonselka basin.
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Table 1. Average chemical properties of the epi- and hypolimnion during the open-water
periods (May-September) in 1990-1996 in Lake Valkea-Kotinen (data from Keskitalo et al.

1998). ND: not determined.

pH Alkalinity Conductivity Colour

Niot NH, NO; Prot PO, DIC DOC

eq m™ mSm™ g Pt m> mg m™ mg m™ mg m™ mg m? mg m? g m™ g m™
Epilimnion 5.2 0.005 3.0 137 487 121 75 18.6 <2 06 113
Hypolimnion 5.3  0.053 3.3 162 640 137 125 229 <2 52 ND
0 ' 0 o AL '
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Figure 3. Typical A) oxygen (mg I'*) and B) temperature (°C) profiles in Lake Valkea-Kotinen.
The spring overturn is incomplete and thus the hypolimnion remains anoxic until the autumnal
overturn. The thermocline is located approximately at 2 m depth throughout the summer. ©

Oxford University Press.

in the epilimnion but substantially higher
in the hypolimnion, and POy, nitrite and
nitrate (NO,&NO3) and NH, are typically
depleted in the epilimnion in early
summer (Table 1).

Lake Valkea-Kotinen is surrounded by
old-growth forest and located in a nature
reserve area (Fig. 4). Therefore, it is
regarded as a true reference site (Huotari
et al. 2009). However, the area has been
exposed to atmospheric acid deposition
(Ruoho-Airola et al. 1998), but is now
recovering (Moldan et al. 2001). The area
belongs to the network of Natura 2000 of
the European Union (EU) and the Finnish
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Long-Term Ecological Research (LTER)
network. Lake Valkea-Kotinen is also the
first lake in the world from which
accurate long-term CO; flux
measurements (eddy covariance (EC)
technique) were reported (Huotari et al.
2011). The energy flux and energy
balance of the lake were determined with
EC as well (Nordbo et al. 2011). This is a
great advantage to ecological studies,
since many biological processes are either
directly or indirectly  temperature
dependent, and also affects the water
column CO, concentration.



Figure 4. Lake Valkea-Kotinen in the Evo forest area is sheltered by old-growth forest. The red
circle illustrates the sampling point. © llpo Hakala

Lake Paajarvi and Lake Vesijarvi — large
lakes with contrasting humic matter
content

Lake Paajarvi (61°04°N, 25°08°E; Fig. 2)
is a large (area 135 km?), deep
(maximum depth 87 m, mean depth 14
m), mesohumic lake (DOC 10 mg I*;
colour 97 mg platinum (Pt) I
characterized by fairly low production
(Arvola et al. 1996). Light penetration is
poor, with Secchi depth of 1.3-3 m (Arst
& Reinart 2009). The euphotic zone (~ 4
m) remains thinner than the depth of the
epilimnion during the  summer
stratification. Lake Pa&jarvi has shown
signs of eutrophication during recent
decades, due to agricultural loading from
the catchment (Hakala & Arvola 1994).
Over 50% of the catchment area around
the lake consists of coniferous forests,
whereas nearly 20% is in agricultural use
(Ruuhijarvi 1974). The rest of the
catchment area consists of deciduous
forests, peatlands and lakes.

Lake Vesijarvi (61°05"N, 25°32°E; Fig.
2) is larger (area 110 km?), shallower
(maximum depth 40 m, mean depth 6 m)
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and more eutrophic than Lake Paajarvi.
Lake Vesijarvi is a clearwater lake (DOC
7.3 mg I""; colour 30 mg Pt 1), in which
the high DOC concentration in contrast to
the low colour value indicates that
autochthonous  colourless DOC is
abundant. The depth of the euphotic zone
in Lake Vesijérvi equals the depth of the
epilimnion (~ 10 m) and the Secchi depth
varies between 1.2 m and 3.7 m (Horppila
1997; Arst & Reinart 2009). The lake is
almost open, with a low number of
islands; thus, it is sensitive to wind-driven
mixing. The catchment area consists
mainly of forests, agricultural land,
waters and peatlands (Rantakari &
Kortelainen 2005). The lake is divided
into four main basins and the city of Lahti
with its approx. 100 000 inhabitants is
situated at the southern end of the lake
near the Enonselka basin (surface area 26
km?, maximum depth 33 m, mean depth
6.8 m); as a whole, urban areas cover
13% of the basin’s catchment area
(Kairesalo & Vakkilainen 2004). The
Enonselka basin was heavily
eutrophicated by sewage waters in the
1960s and 1970s, but was restored to a
mesotrophic state in the 1990s by large-



scale biomanipulation through coarse fish
removal (Kairesalo & Vakkilainen 2004).
However, the lake still suffers from
internal nutrient loading and lately the
relative proportion of cyanobacteria has
increased and late summer blooms have
returned.

Both of the lakes are normally frozen
from late November until late April or
early May, while the maximum water
temperature and stable  thermal
stratification occur between late June and
mid-August. Both lakes are also dimictic
and complete mixing occurs in May/mid-
June and early September. The entire
water column of Lake P&ajarvi is well
oxygenated throughout the year, while in
Lake Vesijarvi, the hypolimnetic
hypoxia/anoxia is an annual phenomenon
(Brek-Laitinen et al. 2012).

3.2 Field studies
Plankton analyses

The field studies were focused on Lake
Valkea-Kotinen. The samples were in
most cases collected weekly during the
open-water periods (I1-1V). However, for
study I, every month one week was
chosen for sampling and the samples
were collected twice during that week.
The sampling point was located in the
middle the lake, where a 6-m depth could
be reached (Fig. 4). The samples were
taken with a 2.1-1 or 2.3-I Limnos tube
sampler (length 30 cm) (I, I, IV) or 7-I
Sormunen tube sampler (length 1 m) (Il,
I1). The sampling depths varied,
depending on the scientific question.

The size-factionated phytoplankton PP (I)
was measured using the *C method
(Steemann-Nielsen  1952). The 6-h
incubations were done in situ in the
epilimnion, depths 0 m, 0.5 m and 1.5 m.
The PP was size-fractioned after
incubations sequentially through a net
and polycarbonate membrane filters to
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obtain the proportions of picoplankton
(0.2-2 pm), nanoplankton (2-20 pm),
small microplankton (20-50 pm) and
large microplankton (> 50 pum). The total
amount of phytoplankton exudates (EOC)
was measured from the final filtrate.
Chlorophyll a (Chl a) was size-
fractionated similarly to PP, and hot
extracted with ethanol (Keskitalo &
Salonen 1994). Further details on size-
fractionated PP and Chl a as well as EOC
measurements can be found elsewhere (1).

Samples for APP (11, IV) and ciliate (1V)
enumerations  were  collected from
throughout the water column (0-6 m) at
1-m intervals, whereas the bacterial
abundance and NFs (IV) were counted
from Om, 2 m, 3 mand 5 m. The
phytoplankton biomass samples (111) were
collected from the surface (0—1 m) from
two sampling points. Total Chl a was
collected simultaneously  with  the
biomass samples, but from every metre
between 0 m and 5 m (Il). All the
community samples, except APP, were
preserved immediately in the field with
acid Lugol’s solution (Ill, V). The APP
samples were kept in darkness in crushed
ice until determined within 4 h (Il, 1V).
The APP, bacteria and NFs were
enumerated under an epifluorescence
microscope (Il, 1V). For counting,
subsamples were filtered onto black
polycarbonate membrane filters with a
pore size of 0.2 um (APP and bacteria) or
1.0 pm (NFs). APP detection was based
on Chl a autofluorescence (Davis &
Sieburth  1982), whereas acriflavine
staining was used for bacteria and NFs
(Bergstrom et al. 1986). The
phytoplankton community composition
(1, 1) and ciliates (V) were determined
with inverted microscopy, using the
settling chamber technique (Utermohl
1958). The ciliates were grouped
according to their feeding preferences
into algivorous, bacterivorous,
omnivorous and predatory ciliates (see IV
for further details). The phytoplankton



biomass was calculated as wet weight,
using unpublished values of the Finnish
Environment Institute for phytoplankton
volumes. In addition to the total
phytoplankton biomass, three
phytoplankton taxa, i.e. Cryptomonas
spp. (size 12-30 um), Peridinium spp.
(20-40 pm) and Gonyostomum semen (>
50 um) were examined in further detail
(1. The samples for total Chl a were
filtered onto GF/C fibreglass filters and
hot-extracted with ethanol (Keskitalo &
Salonen 1994). Further details on
microscopy and the Chl a determinations
are found in the original articles (I-1V).

Environmental data

Most of the environmental data were
collected as a part of the International
Cooperative Programme on Integrated
Monitoring of Air Pollution Effects on
Ecosystems (ICP IM), which has been
carried out in Lake Valkea-Kotinen since
1990 (Keskitalo et al. 1998). The water
temperature and dissolved 0O,
concentration were measured in the field
at 1-m intervals from 0 m to 6 m with a
portable temperature-O, meter. The
samples for chemical water analyses, i.e.
water colour, pH, conductivity, NH,,
NO,&NOs, total nitrogen (Nit), PO,
total phosphorus (Pwt) and DIC
concentrations were taken with a Limnos
tube sampler fromOm, 1 m, 2m, 3 mand
5 m. DOC was detected from the pooled
surface sample (0 m and 1 m).

Conductivity and pH were measured in
the laboratory on the day of sampling.
The samples for NH;, NO,&NO3, POy,
DOC and water colour were filtered
through GF/C filters. The colour was
determined spectrophotometrically at 420
nm immediately after filtration, and all
the other samples were stored frozen
before the analyses, as were the unfiltered
samples for Ny and Py The nutrient
determinations were based on
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colorimetric assays (D’Elia et al. 1977;
Grasshoff 1983; Koroleff 1983), whereas
DOC and DIC were determined with
infrared C analysers (Salonen 1981). For
further details, see I-1V.

The precipitation data (II, 1) were
obtained from Lammi Biological Station
of the University of Helsinki, app. 30 km
from the study lake, where they were
measured by the Finnish Meteorological
Institute. The timing of ice-in and ice-out
was observed in situ with an accuracy of
1 day. Lake Valkea-Kotinen was
considered ice-free when there was only
some ice near the shoreline, and frozen
when it was completely covered by ice.
The completeness of the spring overturn
as well as the length of the stratified
period was interpreted, based on
temperature and O, measurements. The
intensity of thermal stratification was
estimated as the Brunt-Vaisalad thermal
stability, i.e. Ns (I1), or by subtracting the
bottom temperature from the surface
temperature (111).

3.3 Mesocosm experiment
Experimental design and sample analyses

The enclosure experiments with fish (V)
were carried out in 2005 in Lake
Vesijarvi and in 2006 in Lake P&a&jarvi
and lasted 3 weeks and 4 weeks,
respectively. The transparent enclosures
were constructed in three blocks of two,
i.e. the enclosures with fish and without
fish were run in triplicate. The top hoop
was suspended above the water surface
from a floating plastic framework that
offered protection from high waves, but
the water in the enclosures was exposed
to the atmosphere. The bottom hoop was
weighted to sink, but had no contact with
the sediment at the bottom. In Lake
Vesijarvi, the framework with the
enclosures was anchored in the Enonselka
basin 200 m from the nearest shore.



Figure 5. A) The enclosure drafts in Lake Paajéarvi were located in the forest-surrounded
western end of the lake. B) In Lake Vesijarvi the drafts were lacated in the Enonselké basin. The
city of Lahti is shown in the background. © Jussi Huotari

In Lake Padjarvi, the experimental site
was about 100 m from the shore at the
western end of the lake (Fig. 5). The fish
introduced into the enclosures were small
(8-11 cm) 1-y-old zooplanktivorous
European perch (Perca fluvialitilis L.)
(Horppila et al. 2000), and the fish
density represented the fish stock in the
lakes investigated. Enclosures were
installed 1 week before adding the fish
and filled manually with the ambient
surface lake water.

Sampling was done twice per week. The
water temperature and dissolved O,
concentration were measured with a
temperature-compensated dissolved O,
meter at 50-cm intervals throughout the
water column in every enclosure. The

secchi disc transparency was also
measured. Samples for the CO;
determinations  were taken into

polypropylene syringes from the water
surface (0 m). After removing any gas
bubbles, the syringes were closed and
kept in crushed ice until analysis. The
CO, samples were analysed in the
laboratory using the headspace technique
and gas chromatograph (GC) equipped
with a flame ionization detector and
methanizer. Samples for water chemistry,
I.e. Piot, POy, Nior, NO2&NO3, NH4, DOC,
as well as primary (**C method; 24-h
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incubations; Steemann-Nielsen 1952) and
bacterial  productivity  (**C-leucine
method; 1-h incubations; Tulonen 1993)
and microbial abundance were taken with
a 1-m long Limnos tube sampler (volume
7 1) at 1-m intervals extending throughout
the depth of the enclosures. The samples
for community  composition of
phytoplankton and zooplankton were only
taken at the onset and at the end of the
experiment. The fish were removed at the
end of the experiment and dissected to
confirm their feeding on zooplankton.
The water and plankton samples were in
general analysed as in the field studies in
Lake Valkea-Kotinen. Further details on
the experimental design and the sample
analyses can be found elsewhere (V).

3.4 Statistical analyses

Pearson’s correlation analysis was used in
four cases: 1) to determine the
relationships between the APP dynamics
and the abiotic factors, as well as the
larger phytoplankton in Lake Valkea-
Kotinen (II); 2) to determine the
relationships between the ice-out, spring
overturn, length of the stratified period,
intensity of thermal stratification and the
environmental parameters measured and
the timing and height of the maximal
phytoplankton biomass as well as the




biomasses of the three flagellated
phytoplankton taxa in Lake Valkea-
Kotinen (I11); 3) to explore in Lake
Valkea-Kotinen the relationships between
the possible prey organisms of the MFW
and the abiotic environmental factors as
well as the relationships between the prey
and the grazers/predators (1V); 4) to
determine in the mesocosm experiment
the relationships between the chemical
variables (C, N, P) and fish and the
abundance or biomass of the microbial
community and dominant groups of
phytoplankton (V).

Linear regression analysis was used to
identify the importance of water column
stability to APP abundance in Lake
Valkea-Kotinen (11). A t-test was used for
zooplankton and phytoplankton results
(V), otherwise analysis of variance
(ANOVA) with its several modifications,
i.e. 1) multivariate analysis of variance
(MANOVA) (I); 2) one-way ANOVA
(1-1Vv); 3) repeated measurements
ANOVA (V) was used for detecting the
statistical significance of the results
obtained. The homogeneity of the
variances was tested with Levene’s test
and the normality of the experimental
data was tested with the Kolmogorov-
Smirnov  goodness-of-fit test. When
needed, log or square-root
transformations were used to normalize
the distribution of the data before the
statistical analyses. However, since some
variables did not meet the requirements of
ANOVA even after transformations (V),
time-weighted averages (WAs) were used
instead. When the hypotheses were
tested, p-values below 0.05 were
considered as significant.

The long-term changes in the total
phytoplankton biomass as well as in the
biomass of three flagellated
phytoplankton taxa were analysed with
time series analysis (Census Il method)
and the Mann-Kendall (MK) test, and the
relative importance of the various
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environmental parameters on these taxa
as well as the total phytoplankton was
examined with partial least square (PLS)
regression analysis. In the MK test p-
values below 0.05 were considered as
significant (). Canonical
correspondence analysis (CCA) was
applied to link the ciliate abundance data
and the environmental parameters,
including APP and Chl a (1V).

Software used for the analysis included
SPSS for Windows, versions 14.0, 15.0
and 18.0 (SPSS Inc., Chicago, IL, USA)
and PAST program, version 2.12
(Hammer et al. 2001).

4. RESULTS AND
DISCUSSION

4.1 Abiotic conditions in Lake
Valkea-Kotinen in 1990-2006

Ice-out in Lake Valkea-Kotinen occurred
in late April or early May during the
study years. There was an increasing
frequency of incomplete overturns from
1990 to 2006; the spring overturn was
incomplete in 1993, 1998, 1999 and
2002-2006. The incomplete mixing
prevented nutrient supply from the
nutrient-rich bottom to the surface, and
there was a clear gradient between the
epilimnion and hypolimnion, especially
in the NH, and DIC concentrations (Fig.
3 in I; Table 1 in II). Similarly, the
hypolimnetic anoxia that develops during
winter was not completely removed and
thus at least part of the hypolimnion was
already anoxic at the onset of summer
(Fig. 1 in I; Table 1 in II; Fig. 1 in IV).
However, the metalimnetic nutrient and
O, gradient in Lake Valkea-Kotinen was

regularly  disturbed  diurnally by
convective mixing that resulted in
variations of up to 05 m in the

thermocline depth and showed greatest
amplitude during the strongest thermal
stratification (Nordbo et al. 2011). It is



Table 2. Average phytoplankton primary production (PP), chlorophyll a (Chl a) concentration
and extracellular organic carbon (EOC) release in the epilimnion, i.e. 0 m, 0.5 mand 1.5 m, in
Lake Valkea-Kotinen in 2005. Standard errors of means are given in parentheses. * indicates
significantly different values compared with the other depths (ANOVA p < 0.01).

depth PP Chl a EOC
m mgCm?h? mg m* mg Cm3h?
0 24.1* (5.03) 20.4(3.30) 2.27*(0.17)
0.5 14.3*(4.38) 18.2(2.63)  1.16* (0.40)
15 0.89* (0.37) 13.8*(0.80) 0.24* (0.07)
also worth noting that the PO, Ilate June until late September; at that time

concentration in Lake Valkea-Kotinen
was low not only in the epilimnion, but
throughout the water column (Fig. 3 in I;
Table 1 in II; Table 1 in V).

4.2 Phytoplankton PP, Chl a and
EOC release

Phytoplankton  production in  Lake
Valkea-Kotinen was substantially higher
at the surface than deeper down in the
epilimnion (p < 0.01; Table 2), and the
epilimnetic values resembled those of
eutrophic rather than oligotrophic lakes
(Lande 1973; Schmitt & Nixdorf 1999).
Furthermore, Huotari et al. (2011)
showed that the vigorous PP in the
epilimnion resulted occasionally in water
CO, concentrations under atmospheric
equilibrium, i.e. the lake was a sink of
CO,, which is not often reported for
boreal humic lakes. There was a clear
seasonal pattern in PP with a maximum in
June and a gradual decrease towards
autumn (Fig. 4 in 1). These dynamics
were mainly due to the two largest size
fractions: the small and large
microphytoplankton (size 20-50 um and
> 50 pm, respectively). In May and
October, most PP was from small
microphytoplankton, and more precisely
Peridinium dinoflagellates (37-73% and
79-96% of the total PP, respectively).
The large microphytoplankton, mainly G.
semen, were the dominant primary
producers (46-72% of the total PP) from
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the bulk of the phytoplankton biovolume-
based biomass also consisted of G. semen
(Fig. 6). The nanophytoplankton, whose
cell numbers were highest among the
phytoplankton (> 2 um), had productivity
only one-third of that of the large or small
microphytoplankton. The percentage of
APP in production was the lowest among
the different size-classes. Nevertheless, in
September the APP replaced the large
microphytoplankton ~as  the  most
important producers at 1.5 m and 57-64%
of the PP was of APP origin (Fig. 6). This
was not because of expansion in APP
production, but because the production of
the  other  size-classes  decreased.
However, it demonstrates the APP’s
capability to survive at low light levels
(Callieri & Stockner 2002; Callieri 2007).

Phytoplankton, regardless of their size,
should to a certain extent be able to
compensate for poor light conditions by
increasing the chlorophyll content of the
cell and thus to maintain a constant C
fixation rate at low photon flux density
(Reynolds 2006). In Lake Valkea-
Kotinen, the total amount of Chl a did not
differ between 0 m and 0.5 m, but was
lower at 1.5 m (p < 0.01; Table 2). Chl a
at 0 m and 0.5 m decreased to the same
level as at 1.5 m after the maxima of
phytoplankton production and
biovolume-based biomass (Fig. 6 in I).
On average, the Chl a values were similar
to those in eutrophic lakes (Wetzel 2001).
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However, the rather constant Chl a
concentration in the epilimnion implies
that phytoplankton in Lake Valkea-
Kotinen were already at the upper limit of
adaptation and no longer able to increase
their cellular content of Chl a.
Furthermore, the volumetric PP values
were high in the upper epilimnion, but the
phototrophic layer was shallow, and thus
the phytoplankton were most probably
under light limitation. This agrees with
Karlsson et al. (2009), who showed that
due to high DOC concentrations, small
boreal lakes are mainly light-limited. In
general, small microplankton were the
most important contributors of Chl a,

with a mean proportion of 36%.
Nanoplankton and APP had mean
proportions of 28% and 23%,
respectively, whereas large

microplankton, i.e. G. semen, had the
lowest proportion (14%; Fig. 7 in 1).
There were some seasonal changes in the
distribution of Chl a between the size-
classes, i.e. occasionally from May to
July up to 72% of the Chl a originated
from the small microplankton, but
otherwise the differences among the size
fractions were minor and considerable
only in APP after the summer solstice in
July (Fig. 6; Fig. 7 in ). The increase in
Chl a in the APP did not result in
enhanced PP of this size-class, but the
proportion of APP increased later in
summer and autumn, especially at 1.5 m,
i.e. close to the oxic-anoxic boundary,
where there is little light available for
photosynthesis.

The chlorophyll-specific photosynthetic
rate, i.e. PP:Chl a ratio, varied widely in
every size-class and at all three depths,
but was in general highest near the
surface and lowest at 1.5 m (Fig. 8 in I).
The dominant primary producer, G.
semen, was also superior in terms of the
PP:Chl a ratio (Fig. 8 in 1), i.e. it had a
high level of production with a low
amount of Chl a. The chlorophyll-specific
photosynthetic rates of G. semen were so



high that they alone equalled the total
production of all phytoplankton in some
eutrophic lakes (Schmitt & Nixdorf
1999). This excellence probably stems
from the ingenious morphology of the
species; the chloroplasts of G. semen are
arranged in a tight layer immediately
under the cell membrane, which enables
maximal light harvesting (Coleman &
Heywood 1981). A bit surprisingly, APP
were not as effective as G. semen in terms
of PP:Chl a. However, occasionally in
August and September at depth of 1.5 m,
the APP had PP:Chl a ratios higher than
the other phytoplankton size fractions
(Fig. 8in ).

The amount of EOC varied temporally as
well as spatially, but in general there was
more EOC in the surface than deeper
down in the epilimnion (Table 2; Fig. 9 in
). The highest EOC production rate
coincided with the highest total PP, and
also the highest PP of G. semen, in July
and the lowest with the lowest PP in
October (Fig. 6; Figs. 4 and 9 in I). The
proportion of excreted PP (PER) was low
in June, when G. semen began to
dominate the phytoplankton biomass, but
increased considerably (up to 34% at 0 m,
to 27% at 0.5 m and to 40% at 1.5 m) in
July—August when the production of G.
semen as well as the total PP began to
slowly decrease (Figs. 4 and 9 in I). This
is in accordance with Berman & Holm-
Hansen (1974) who observed the lowest
PER values when the phytoplankton
population increased exponentially, and
Lancelot & Billen (1984) who detected
high PER values at the end of the
phytoplankton blooms. In Lake Valkea-
Kotinen, the PER was on average 1.5-2
times higher near the light-limited zone
than at the surface (p < 0.01), which was
also observed by Berman & Holm-
Hansen (1974) as well as Watanabe
(1980) at low light intensities. Even
though APP are known to excrete several
times more EOC than larger
phytoplankton (Malinsky-Rushansky &

25

Legrand 1996), the timing of high EOC
or PER values could not be coupled with
APP in Lake Valkea-Kotinen.

4.3 Seasonal and interannual
dynamics of APP and larger
phytoplankton

Different phytoplankton size-classes may
compete with each other for inorganic
nutrients and light (Jasser 1997). In Lake
Valkea-Kotinen, the APP showed a
bimodal pattern during the study of five
open-water periods, but there was no
clear seasonality in the dynamics (Fig. 7).
However, the APP maxima usually
occurred either before or after the blooms
of larger phytoplankton (measured as Chl
a), suggesting that the seasonal pattern of
APP was different from that of larger
phytoplankton (Fig. 5 in Il). There were
two groups of APP in Lake Valkea-
Kotinen: the solitary APP consisting of
morphologically identical, ellipsoidal,
red-fluorescing Choricystis (Skuja) Fott
(Trebouxiophyceae Friedl)-type
eukaryotic cells and the cyanobacterium
Merismopedia warmingiana Lagerheim,
which is colonial, but according to its cell
size fits into the group of APP. The mean
cell numbers of these two APP groups
varied remarkably on annual basis (Table
2 in I1). In general, M. warmingiana
dominated the APP in 2002 with the
average cell numbers of 22.9 x 10° cells
ml?, but decreased suddenly, and the
solitary eukaryotic APP then increased
from 5.8 x 10° cells mI™* to 14.7 x 10°
cells ml™. Even after the increase, the
mean abundance of solitary APP was 10-
to 100-fold lower than the APP
abundance reported from the lakes in this
region, but the cell numbers observed
were in accordance with a previous study
from Lake Valkea-Kotinen (Jasser &
Arvola 2003). On average, 82% of the
APP in Lake Valkea-Kotinen were in the
uppermost 4-m layer (p < 0.02; Fig. 7),
which can be explained through isopycny
that prevents these nonmotile organisms
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from sinking below the metalimnion. The
isopycnic or near-isopycnic state can be
achieved either by being very small or
with the aid of special structures such as
mucilage (Reynolds 2006). In Lake
Valkea-Kotinen the solitary APP fulfil
the first requirement, whereas the
colonies of M. warmingiana are held
together by a mucilaginous matrix.

In contrast to APP, the bulk of the larger
phytoplankton (> 2 um) in Lake Valkea-
Kotinen were flagellated and thus capable
of retrieving nutrients from the
hypolimnion and returning to the
epilimnion to photosynthesize (I, 111). The
phytoplankton community consisted of
app. 180 taxa (II), all of which are
typical of acidic boreal humic lakes
(Lepist6 & Rosenstrom 1998), i.e.
Chrysophyceae (especially the genera
Dinobryon,  Monochrysis, Pedinella,
Uroglena), Dinophyceae (Gymnodinium,
Peridinium), Diatomophyceae
(Asterionella, Rhizosolenia/Urosolenia),
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Cryptophyceae (Cryptomonas),
Chlorophyceae (Chlorogonium,
Chrysocapsa, Oocystis), Cyanophyceae
(Cyanodictyon, Merismopedia, Snowella)
and Raphidophyceae (G. semen).
However, most of the taxa appeared only
occasionally and were low in number.
The most abundant taxa > 2 um in size
were Pedinella sp. with 12.3 x 10% cells
ml?* (32% of the total abundance) and
Monochrysis parva Skuja with 8.8 x 10
cells mI™* (23% of the total abundance) (I,
Peltomaa unpubl.). These numbers are
app. 10 times lower than the average
abundance of eukaryotic APP in Lake
Valkea-Kotinen (II).

The seasonal succession of the biomass of
phytoplankton > 2 pm in size in Lake
Valkea-Kotinen showed a pattern of two
maxima; the first, sharper maximum
occurred in May and the second, wider
and higher maximum during the strongest
stratification in July—August (Fig. 1A in
[1). It is noteworthy that there was no
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distinct clearwater phase, but the decline
after the spring peak was followed by a
sinusoidal  biomass  succession. On
average, the total phytoplankton biomass
in the surface (0—1 m) in 1990-2003 was
2.09 g m™ (range 1.41-2.87 g m®), which
indicates a mesoeutrophic or eutrophic
state (Wetzel 2001). However, there was
a trend toward decrease in the total
biomass, with a slope of -0.014 g m™ yr™
(p = 0.05; Fig. 8A). On average 48% of
the biomass was comprised of G. semen
and - as normal in lakes dominated by G.
semen (Cronberg et al. 1988; Lepistd et
al. 1994; Willen 2003) - the bulk of the
biomass consisted mainly of very few
taxa. The Peridinium dinoflagellates
comprised most of the biomass in May
and in September—October (average 0.37
g m?; 18% of the total biomass) and G.
semen in July—August (average 1.00 g m’
%) (111). Similar to the total biomass, the
biomass of Peridinium spp. and G. semen
decreased (slopes -0.006 g m™ yr', p <
0.001 and -0.024 g m™ yrt, p = 0.02,
respectively; Fig. 8). However, the
biomass of the third most closely studied
taxa, i.e. Cryptomonas spp., increased
slowly, but in a statistically
nonsignificant manner (slope = 0.0006 g
m= yr?, p = 0.29; Fig. 8D). Cryptomonas
spp. showed seasonal abundance patterns
very similar to those of Peridinium
dinoflagellates (Fig. 1 in Ill). However,
the biomass amount of Cryptomonas spp.
was only 0.02 g m™ and they were
responsible for 1% of the total
phytoplankton biomass. None of these
three more closely studied taxa had
proportions higher than 1.3% of the total
phytoplankton cell numbers (1).

~

4.4 Meteorological drivers of
phytoplankton and climate change

In temperate and boreal lakes, the effects
of climate change have most often been
linked with the development of the spring
phytoplankton crop: an earlier ice-out
induces an earlier phytoplankton spring
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bloom (Adrian et al. 2006). Warming in
general can also affect the phytoplankton
composition (Moss et al. 2003; De
Senerpont Domis et al. 2007). In Lake
Valkea-Kotinen, the timing of ice-out or
the completeness or duration of the spring
overturn did not affect the build-up of
total phytoplankton biomass or the
biomass of G. semen, Peridinium spp. or
Cryptomonas spp. (Table 1 in [1II).
However, weekly sampling was probably
insufficient for detecting the rapid
changes in the environment and in the
biota in spring. The surface water
temperature in Lake Valkea-Kotinen
showed a statistically nonsignificant trend
towards slight increase (0.029 °C yrt, p =
0.48) during the 14-yr study period in
1990-2003. The total phytoplankton
biomass and G. semen correlated
positively with temperature (r = 0.35, p <
0001 and r = 031, p < 0.001,
respectively; I1I), and there was also a
positive correlation (r = 0.20, p < 0.001)
between the colonial APP, ie. M.
warmingiana, and temperature in 2002-
2006 (IV). However, the correlation
between temperature and Peridinium spp.
biomass was negative (r = -0.25, p <
0.001; ). The PLS analysis supported
the results from the correlation analysis,
i.e. the total phytoplankton biomass and
the biomasses of G. semen and
Peridinium  spp. were related to
temperature (Fig. 5 in I1l). These results
suggest that the future increase in
temperature could cause decline in
Peridinium dinoflagellates, some of
which thrive at low temperature
(Grigorsky et al. 2003). However, the
positive correlation with temperature and
the other taxa probably reflects the annual
increase in solar radiation, which
enhances phytoplankton growth, but also
increases surface water temperature and
thus strengthens the thermal stratification.
The latter may also have had a positive
effect on total phytoplankton, G. semen
and M. warmingiana (see below).
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As a consequence of the climate change,
precipitation is probably increasing in
Finland (Jylha et al. 2004). Indeed, the
summer precipitation in the study area
increased (0.055 mm yr?*, p < 0.001;
Table 2 in [Il) in 1990-2003 (III).
However, neither the larger nor the pico-
sized phytoplankton could be directly
associated with precipitation (11, [1I).
Despite the increased summer
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precipitation, the annual precipitation
decreased by a rate of -0.066 mm yr™ (p
< 0.001; Table 2 in III). This indicates
decreasing snowfall and suggests that the
spring load from the catchment is
declining. When the spring mixing of the
water column is incomplete, as now seen
more frequently in Lake Valkea-Kotinen,
the importance of spring runoff as the
way to replenish nutrient reserves is



emphasized. The combination  of
incomplete mixing and decline in spring
loading will result in lower amounts of
available P and N. In Lake Valkea-
Kotinen, the Ny and Py concentrations
declined in 1990-2003 at the rates of -
0.149 pg I yr* (p < 0.001) and -0.071 pg
It yr* (p < 0.001), respectively. The
average N:P -mass ratio in Lake Valkea-
Kotinen was 31:1, which according to the
Redfield ratio means that the
phytoplankton production is P- rather
than N-limited (Redfield 1958). The
microphytoplankton, i.e. G. semen and
Peridinium dinoflagellates, were strongly
associated with Py in the PLS models
(Fig. 5 in I1I), and the correlation analysis
supported their dependence on P (with
Pot r =069, p=0.01land r =054, p =
0.05, respectively, 111). Unfortunately, the
dependence of these taxa - or any other
phytoplankton species - on PO, could not
be studied, because in Lake Valkea-
Kotinen the PO, concentrations were
almost undetectable throughout the water
column. This, of course, also indicates
severe P limitation. However, since PO,
is released under the anoxic conditions in
the hypolimnion, the results imply that
the newly released PO, is taken up
efficiently by phytoplankton or bacteria.
On the other hand, it is also possible that
some or even a majority of the
phytoplankton species in Lake Valkea-
Kotinen are capable of obtaining P in
organic form, a life strategy called
mixotrophy  that  combines  both
photoautotrophy and heterotrophy (Raven
1997; Jones 2000). In fact, Rengefors et
al. (2008) showed that G. semen may ease
nutrient depletion via osmotrophy. The
eukaryotic APP did not correlate with the
nutrients (Table 3 in 1), and despite their
being nonmotile, they probably obtained
enough nutrients, due to very effective
nutrient uptake (Currie & Kalff 1984;
Thingstad et al. 1993; Kirchman 1994),
under conditions of convective mixing
(Nordbo et al. 2011). In turn, the colonial
non-N-fixing M. warmingiana was
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dependent on the inorganic N (Table 3 in
I1). Merismopedia warmingiana prefers
NH; over NO,&NOj3 (Blomqvist et al.
1994), and thus it probably was
disfavoured when the dominance of NH,4
shifted to that of NO,&NO3 after some
heavy rains in 2004 (Table 1 in II).

Arvola et al. (2006) showed that high
summer precipitation increases DOC
loading from the catchment and results in
increased riverine DOC concentrations.
In Lake Valkea-Kotinen, the increase in
summer precipitation during the study
period of 1990-2003 (I1) could not be
associated with increased loading of OC,
probably in part because Lake Valkea-
Kotinen is the uppermost lake in a lake
chain and thus without visible inflow. A
trend towards increase was still detected
in the surface water DOC concentration
(0.046 mg I yr*, p = 0.02) and in water
colour (1.22 mg Pt I'* yr*, p < 0.001) in
1990-2003 (I1). Similarly, the heavy
rains in summer 2004 resulted in higher
epilimnetic DOC concentrations and
water colour (p < 0.02; Table 1 in II).
These observations are similar to those
reported in Lake Valkea-Kotinen by
Vuorenmaa et al. (2006) for the total
organic carbon (TOC) concentration in
1987-2003 and by Arvola et al. (2010)
for the autumnal water colour in 1990-
2007, and may stem from the recovery of
the landscape from anthropogenic
acidification rather than climate change
(Nickus et al. 2010). It has also been
suggested that the increase in water
colour does not only stem from DOC but
also from iron (Fe) (Kritzberg & Ekstrom
2012), which could also explain the larger
increase in water colour than in DOC.
Unfortunately, Fe was not included in the
ICP IM programme, and thus this cannot
be confirmed. Since nutrients can be
bound in DOC (Peuravuori & Pihlaja
1999), the elevated soil DOC
concentration could have already affected
nutrients in the catchment and thus
assisted the Ny and Py decrease in Lake



Valkea-Kotinen. Despite the increment in
DOC, the water pH remained stable in
1990-2003 (Table 2 and Fig. 4 in 111), but
decreased in 2004 (p < 0.02; Table 1 in
I1). The eukaryotic APP and G. semen
were the only phytoplankton groups
studied, which could have been
associated with pH (r = -0.178, p < 0.02
(I and r 0.24, p < 0.001 (M),
respectively). The eukaryotic APP were
favoured by lowering the pH during
2002-2006, but, since there was no clear
trend in pH during the decline of G.
semen in 1990-2003, the results of G.
semen were inconclusive.

In general, the increment in DOC and
water colour leads to more -effective
absorption of solar radiation and thus to
stronger thermal stratification as well as
to light limitation (Salonen et al. 1984;
Keller et al. 2006; Karlsson et al. 2009).
Stronger stratification is predicted to
increase the sinking losses of nonmotile
phytoplankton species and thus shift
phytoplankton ~ communities  towards
small and flagellated species (Winder
2009). In Lake Valkea-Kotinen, the
biomass of the large flagellated G. semen
(r = 0.26, p < 0.001) as well as total
phytoplankton biomass (r = 0.22, p <
0.001) was positively related to the strong
thermal stratification (I11). However, at
the same time the increase in water colour
had a negative effect on G. semen (r = -
0.29, p < 0.001; Table 2 and Fig. 5 in 1I)
and on total phytoplankton biomass (r = -
0.21, p <0.001; Table 2 and Fig. 5 in I1I).
As predicted, the high water column
stability (Ns) was also an important
abiotic factor controlling the nonmotile
but tiny APP in 2002-2006 (total APP r =
0.413, p < 0.001; Table 3 in II). Under
low-light conditions, the eukaryotic APP
are favoured over the prokaryotic APP
(Callieri & Stockner 2002; Callieri 2007),
and the eukaryotic APP were also more
numerous in Lake Valkea-Kotinen when
the water colour increased (r = 0.112, p <
0.02), whereas the contrasting situation
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held for M. warmingiana (r = -0.124, p <
0.02). Despite the increase in water
colour after the heavy rains in 2004, the
location of the thermocline did not
change in Lake Valkea-Kotinen (Fig. 1 in
I1). However, the Chl a maximum,
resulting from the larger phytoplankton,
was located in the upper water column
(Fig. 4 in 1), thus indicating that the
phytoplankton changed their location in
response to deteriorated light conditions.
The nonmotile M. warmingiana had
access to the hypolimnetic NH, only in
the epilimnion-hypolimnion interface,
and thus it probably was under light
limitation when the water colour
increased. This means that the nonmotile
phytoplankton in humic lakes must have
their pycnoclines quite close to the lake
surface, or otherwise photosynthesis can
be severely light-limited (Karlsson et al.
2009; 1).

4.5 Role of phytoplankton in the
MFW

Competition with bacteria

Due to their better SA:V ratio, bacteria
are regarded as more effective in nutrient
uptake than phytoplankton (Thingstad et
al. 1993; Kirchman 1994). However, the
small-sized APP may challenge bacteria
in nutrient competition (Cotner &
Biddanda 2002). The average abundance
of the heterotrophic bacteria in Lake
Valkea-Kotinen in 2003 was 2.4 x 10°
cells ml™?, i.e. ~ 10°-fold higher than the
abundance of APP, and within the range
of bacterial abundance in eutrophic lakes
(Wetzel 2001). The bacteria and the
eukaryotic APP correlated negatively in
the epilimnion (r = -0.493, p < 0.001),
indicating competition for nutrients
during the epilimnetic nutrient depletion.
However, the APP and bacteria correlated
positively (r = 0.359, p < 0.05) in the
hypolimnion, and were both most
abundant at a depth of 3 m, i.e. in the
upper hypolimnion, where nutrients were



available but where light began to limit
photosynthesis (Fig. 2 in 1V). The
bacterial abundance reached a small
maximum in the hypolimnion in August
during the Chl a maximum (r = 0.752, p
< 0.01). More importantly, the bacterial
abundance followed the maximum of
phytoplankton EOC production, which in
Lake Valkea-Kotinen occurred in July-
August (). Thus, the bacteria were
probably dependent on the phytoplankton
and their exudates (Kritzberg et al. 2005;
Guenet et al. 2010).

Prey for protozoa

The heterotrophic NFs are known to
control bacterial abundance in humic
lakes (Kankaala et al. 1996), but in
addition to bacteria, NFs graze on small
phytoplankton (Sherr & Sherr 2002;
Brek-Laitinen & Ojala 2011). However,
in Lake Valkea-Kotinen the high APP
and NF abundances did not overlap (Figs.
7 [year 2003] and 9A), and there was no
correlation between the NFs and APP or
the larger phytoplankton (measured as
Chl a; Table 3 in IV). However, NFs with
surprisingly high abundance (average 6.6
x 10% cells mI™), i.e. similar to eutrophic
rather than humic lakes (Amblard et al.
1995; Kalinowska 2004; Brek-Laitinen et
al. 2012; V), correlated negatively with
small bacteria in the epi- and
hypolimnion (r =-0.265, p<0.05and r =
-0.576, p < 0.01, respectively). This
indicates that the main NF prey in Lake
Valkea-Kotinen were bacteria. The
eukaryotic APP (cell size ~ 2 pm) were
probably too large for efficient grazing by
NFs (Amblard et al. 1995) or that the NFs
simply preferred bacteria, which were
much more abundant in Lake Valkea-
Kotinen than were the APP.

Similar to the NFs, the average ciliate
abundance (7.1 cells ml") in Lake
Valkea-Kotinen was reminiscent of the
abundances in eutrophic lakes (Zingel et
al. 2002; Brek-Laitinen et al. 2012). The

31

algivorous ciliates were the most
abundant group (51% of the total ciliate
abundance) and were present in the
epilimnion throughout the summer (Fig.
9B; Table 4 in IV). Their numbers were
highest in June during the epilimnetic
APP  maximum and they correlated
positively with the APP in the epilimnion
(r = 0.401, p < 0.001), but could not be
associated with the larger phytoplankton
(Table 3 in 1V). The CCA showed that,
the algivorous ciliates did not
demonstrate clear responses to changes in
the environment (Fig. 4 in 1V). This was
probably because they were, together
with the APP, prone to convective
mixing. However, during the strongest
stratification in August the algivorous
ciliates were less abundant in the anoxic
hypolimnion (p < 0.001), which then
acted as a refugee for the APP and larger
phytoplankton (Fig. 9B). Another group
most likely feeding on the APP (r = -
0.454, p < 0.05) were the omnivorous
ciliates in early summer. The omnivores,
which made up 6.7% of the total ciliate
numbers, were the only feeding group
that formed a clear cluster in the CCA
analysis, showing specialization for
hypoxic/anoxic (O, < 2 mg I™Y) conditions
in the upper hypolimnion in early summer
(Fig. 9D; Fig. 4 in 1V).

4.6 Planktivorous fish and the
trophic cascade

Fish manipulation affected the
zooplankton in the humic Lake P&a&jarvi
but not in the clearwater Lake Vesijarvi
(Table 2 in V). In Lake Pa&ajarvi, the
zooplankton community shifted towards
small-bodied species, which is consistent
with the concepts of the food chain theory
(Fig. S2 in V; Carpenter et al. 1985) and
size-selective fish predation (Brooks &
Dodson 1965). According the food chain
theory, the strength of the trophic cascade
in dependent on the abundance of the
keystone  herbivorous  zooplankton,
namely Daphnia (Carpenter et al. 1985).
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Figure 9. Abundances of A) heterotrophic nanoflagellates (NF; 10° cells mI™) and B)
algivorous, C) bacterivorous, D) omnivorous and E) predatory ciliates (cells ml™) in Lake
Valkea-Kotinen during the open-water period in 2003. Note the different scales on the y-axis. ©

Inter Research.

However, the Daphnia numbers were in
general low, and even though the
inspection of gut contents ensured that the
fish were really feeding on zooplankton,
changes in the community composition of
the phytoplankton were only seen in the
cryptophytes, which had higher biomass
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when fish were present (Table 2 and Fig.
S3 in V). Although the effect of fish was
not strong enough to produce the
conventional trophic cascade down to the
total phytoplankton biomass or APP
abundance (Table 2 in V), the fish
affected the PP and Chl a concentration:
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Figure 10. Primary production (PP, mg C m™ d™), chlorophyll a concentration (Chl a, pg 1™
and bacterial production (BP, mg C m® d%) in L. Paajarvi (humic lake) and L. Vesijérvi
(clearwater lake) in enclosures with and without fish.

the initial PP and Chl a doubled in the
fish enclosures in Lake Pagjarvi (Fig. 10;
Table 2 in V).

The changes observed in  the
phytoplankton of the humic, P-limited
Lake Paajarvi were probably due to the
increase in PQOg4, which is released by
small planktivorous fish (Vanni & Layne
1997; Attayde & Hansson 1999, 2001;
Romo et al. 2004). In P&&jéarvi, fish
increased the NHj Py and POy
concentrations (Table 2 and Fig. S1 in V),
and also the dissolved inorganic
nitrogen:dissolved inorganic phosphorus
(DIN:DIP) ratio was better with than
without fish, ie. 472 and 1013,
respectively. Under P-limited conditions,
bacteria should rapidly increase in
response to fish addition (Vanni & Layne
1997; Pace et al. 1999; Findlay et al.
2005). Bacterial production (BP) indeed

responded strongly to manipulation of
resources, especially P (p < 0.001);
however, the bacterial abundance did not
change. The NF numbers declined in the
presence of fish, but the ciliates increased
in numbers, and the ciliate community
shifted towards dominance of algivorous
oligotrichs and prostomatids (Fig. 11;
Table 2 and Fig. S5 in V). Thus, probably
the algal food resources rather than
metazoan grazing were responsible for
the changes observed in the protozoan
community. In the clearwater Lake
Vesijarvi, fish had a significant positive
effect on PO, concentration (p < 0.01),
but otherwise the fish did not affect the
nutrient concentrations (Table 2 and Fig.
S1in V). The DIN:DIP ratio was ~ 4.7 in
all enclosures throughout the experiment,
indicating N limitation (Redfield 1958).
The diatoms and cyanophytes responded
to fish manipulation: their biomasses
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Figure 11. Components of microbial food web (cells mI™) (autotrophic picoplankton [APP],
bacteria, nanoflagellates [NF] and ciliates) in L. Padjarvi (humic lake) and L. Vesijarvi
(clearwater lake) in enclosures with and without fish.

were two times higher in the fishfree
enclosures than in the enclosures with
fish (Table 2 in V). However, there were
no effects of fish-induced P addition on
total phytoplankton biomass, PP, Chl a or
microbial community dynamics (Table 2
in V). A previous study also showed lack
of positive influence of P on the
microbial community in Lake Vesijarvi
(Brek-Laitinen et al. 2012).

CO;, exchange between the lakes and the
atmosphere designate the ecosystem
metabolism (Schindler et al. 1997), i.e.
lakes strongly CO,-supersaturated are
considered as net heterotrophic, whereas
subsaturation is a sign of autotrophy. We
did not measure the CO; flux between the
enclosures and the atmosphere directly,
but since it is known that the CO; flux is
well explained by the partial pressure of
CO; (pCOy) (e.g. Huotari et al. 2011), we
determined the pCO,. The pCO;
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exceeded the atmospheric equilibrium
value nearly every time in both lakes, and
there was no effect of fish (Table 2 and
Fig. S7 in V). This is not surprising in the
clearwater lake, where the plankton
community did not respond to fish
manipulation. However, the observed
bottom-up effect of fish on PP and Chl a
in the humic lake implies that utilization
of CO; by phytoplankton must also have
increased, which should have shifted the
community to a more autotrophic state,
but it did not show in the CO, results.
This could have been due to simultaneous
increase in respiration: BP and the
algivorous ciliates increased in the humic
lake in tandem with PP and Chl a and
resulted in unaltered net ecosystem
production (NEP). This observation is in
contrast to the study by Cole et al. (2000),
who detected positive NEP, i.e.
autotrophy, under high nutrient loading
and low abundance of large zooplankton.



5. CONCLUSIONS

The aim here was to increase our
understanding of the phytoplanktonic life
in boreal humic lakes. Humic lakes are
very numerous in Finland, but still most
phytoplankton studies focus on the
species composition of nano- and
microplankton or total PP, whereas
studies including APP or the MFW are
rather scarce. In addition, most of the
previous studies described short time
periods, i.e. covered at most a single
open-water season. Thus, | felt very
fortunate and privileged that, in addition
to my own measurements, | had access to
the long-term ICP IM data collected in
Lake Valkea-Kotinen since 1990. To my
surprise, the changes in the phytoplankton
could not be directly coupled with the
climatic variables in spring (e.g. ice-off,
spring circulation). In summer the
changes were also related to nutrient and
light availability as well as thermal
stratification, all of which are, of course,
prone to weather events, rather than
directly to parameters such as
precipitation and temperature. However,
my studies were performed in situ, and
therefore the effects of recovery from
acidification or any other ongoing
environmental changes in the lake and its
catchment area could not be ruled out.
The original idea of the ICP IM
programme was to collect data
appropriate to the organism’s life cycle
and metabolic activity, and then relate the
changes in the environment and the biota,
as well as in the food web (Keskitalo et
al. 1998). Thus, when the programme was
initiated it was considered as an
extremely high-frequency monitoring
programme  with  weekly  vertical
sampling. Such intensive programmes are
rare even today! However, in hindsight,
the sampling frequency perhaps followed
the phytoplankton life cycles in
midsummer, but definitely not in spring,
when the environment as well as
phytoplankton change most rapidly. In
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addition, the vertical frequency of 1 m
was inadequate for detection of the
delicate changes in the biota and the
environment in the thermocline, which
actually was one of the most important
regions of study in strongly stratified
lakes.  Unluckily, there were also
parameters, such as the Fe concentration,
that were not included in the monitoring
programme, but which today are known
to be behind the changes observed in
surface water quality (Kritzberg &
Ekstrém 2012). Thus, one of my major
conclusions is that it is very difficult to
design a long-term monitoring
programme that is  simultaneously
extensive, detailed, flexible and cost-
effective.

One of my main themes was to determine
whether cell size and/or motility are
among the traits that make certain
phytoplankton taxa more competitive
than others in strongly stratified lakes
with epilimnetic nutrient depletion. In
theory, the shallow epilimnion and strong
thermal and chemical summertime
stratification should favour flagellated
species. In Lake Valkea-Kotinen, most of
the phytoplankton biomass was indeed
composed of flagellates, especially the
raphidophyte G. semen and Peridinium
dinoflagellates. Furthermore, these two
taxa were responsible of most for the IC
uptake (i.e. PP), and G. semen was also
strongly coupled with the high EOC and
PER values. Due to of their large size, G.
semen and Peridinium spp. can go
through steep temperature gradients and
migrate fairly long distances, which
explains their superiority over the smaller
flagellates in strongly stratified lakes.
Compared with other species and taxa,
such as Cryptomonas flagellates, these
two are also large as prey items. Despite
their importance in biomass and IC
uptake, G. semen and Peridinium
dinoflagellates were not among the most
abundant phytoplankton species in Lake
Valkea-Kotinen. Actually, none of the



flagellated  species  surpassed  the
nonmotile, solitary, Choricystis-like APP,
which probably have more effective
nutrient  uptake and intracellular
transportation due to small (< 2 um) cell
size and high SA:V ratio. The solitary
APP do not spend energy on movements,
but apply isopycny for remaining in the
thermocline and thus benefit from the
diurnal  convective  mixing  when
obtaining nutrients (Nordbo et al. 2011).
By residing in the thermocline the APP
can, in addition to easing nutrient
competition with bacteria, escape ciliate
grazers, which in Lake Valkea-Kotinen
were very abundant, but avoided the
anoxic waters during the strongest
thermal stratification. However, as was
observed in M. warmingiana, the
isopycny was not the only key to success,
but the isopycnic species had to be able to

balance between nutrient and light
limitation.

Except for nutrient depletion, the
autotrophic life in  humic lakes is

hampered by the high concentration of
brown-coloured DOC and thus rapid
attenuation of light. In Lake Valkea-
Kotinen, the dark water colour restricts
phytoplankton photosynthesis to the
uppermost ~ 2-m layer. Dark water also
promotes the development of
stratification and high water column
stability, which favour both the large
flagellates and the tiny APP. My studies
showed that the phytoplankton production
in Lake Valkea-Kotinen was negligible
below 1.5 m. However, the surface PP
was so high that the lake rather resembled
eutrophic conditions; this also held for
Chl a, the PP:Chl a ratio and the
phytoplankton biomass, and was further
reflected in the protozoan abundance and
surface water CO, concentration (Huotari
et al. 2011). This indicates that the
present phytoplankton taxa are very well
adapted to their environment.
Nevertheless, the rather stable Chl a
concentrations imply that phytoplankton
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are at the upper limit of their
photoadaptation, and the increase in DOC
concentration and water colour that were
both occurring will cause problems, i.e.
result in light limitation. Indeed, despite
the effective light-harvesting capacity of
G. semen, the biomass of this dominant
primary producer was decreasing and,
probably due to its large proportion in the
biomass also caused a decline in the total
phytoplankton biomass. In contrast, the
eukaryotic APP, which did not have as
high PP:Chl a ratios as G. semen, but
were located near the bottom of the
euphotic zone, were effective enough at
light harvesting and increased. Therefore,
the  future increases in  DOC
concentration, water colour and water
column stability will all favour the
eukaryotic APP.

The classical grazer food chain in Lake
Valkea-Kotinen is not based on G. semen
(Jones et al. 1999), and although the
algivorous ciliates were coupled with
APP, the MFW was not driven solely by
APP but also by bacteria. Therefore, at
first glance it appears that when the
biomass of G. semen decreases and the
eukaryotic APP increase, the ciliates
feeding on APP become more abundant,
but otherwise there are no major changes
in the MFW. However, the decrease in G.
semen can result in decrease of bacterial
abundance. This is because the labile part
of the allochthonous OC is often already
degraded in the catchment and thus
phytoplankton EOC is of great
importance as a source of OC; in Lake
Valkea-Kotinen EOC was coupled with
G. semen. Furthermore, EOC can act as a
primer  for  allochthonous @ DOC
decomposition (Guenet et al. 2010), and
thus the decrease in EOC may change the
total OC decomposition in the lake. The
subsequent possible decrease in bacterial
abundance may then lower the numbers
of NFs and bacterivorous ciliates. This
can be more important for the lake
ecosystem than the increase in APP



alone. EOC reduction can also make APP

more  competitive against  bacteria
(Drakare 2002), and thus shift the
community towards autotrophy by

favouring the IC-fixing APP over the
heterotrophic bacteria. However, the
results from the enclosure experiment in
Lake Padjarvi show that the increase in
IC uptake may not necessarily make a
humic lake more autotrophic (see below).

The purpose of the enclosure experiment
in the humic Lake Pa&jarvi and the
clearwater Lake Vesijarvi was to detect
the possible trophic cascade from
planktivorous fish to the microbial
community, including phytoplankton, and
further to  surface water CO,
concentrations. Unfortunately, the effect
of fish biomanipulation was not strong
enough to produce changes in total
phytoplankton ~ biomass or  APP
abundance. Nevertheless, in the P-limited
humic Lake Pa&djarvi, the fish-induced
nutrient addition increased PP and Chl a.
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Thus, the IC uptake probably increased,
which should have made the community
more autotrophic. However, the changes
in nutrients and phytoplankton promoted
BP and growth of algivorous ciliates,
which increased respiration, i.e. CO;
release. As a consequence, there was no
change in the NEP, and the lake remained
net heterotrophic.

Clearly the phytoplankton in Lake
Valkea-Kotinen, as in boreal humic lakes
in general, are adapted to exceptional
environmental stresses. However, yearly
events are not always similar and even
though certain traits make some species
more competitive than others, there is no
guarantee that the same trait combination
would be the most beneficial year after
year. In conclusion, diverse aspects of
adaptation need to be considered when
making future predictions of
phytoplankton communities and lake food
webs under various environmental
changes.
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