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Abstract 
 

Human UDP-glucuronosyltransferases (UGTs) are important in the metabolic elimination of 

xenobiotics and endogenous compounds from the body. These enzymes transfer glucuronic acid 

moiety from the cosubstrate, UDP-glucuronic acid (UDPGA), to nucleophilic groups of small 

organic molecules, such as hydroxyl, carboxylic, or amino group. The conjugation of these 

molecules with polar glucuronic acid usually diminishes their pharmacodynamic activity, 

promotes aqueous solubility and enhances recognition by efflux transporters in the cells, all of 

which contributes to the efficient metabolic elimination and excretion of the conjugate from the 

body. Due to these unique properties, UGT enzymes play major roles in drug metabolism and 

pharmacokinetics.  

The main goal of this thesis was to investigate the activity and enzyme kinetics of UGTs, as well 

as the in vitro assay conditions needed to accurately determine the enzyme kinetic parameters. 

Particular attention focused on the glucuronidation of psilocin, the enhancement of UGT activity 

by the inclusion of purified bovine serum albumin (BSA), and the enzyme kinetic mechanism of 

UGT1A9. These goals are especially important in the early phases of preclinical drug 

development, where in vitro assays serve to explain and predict the glucuronidation of the drug 

in vivo, both qualitatively and quantitatively.  

As a starting point, we studied the glucuronidation of psilocin, the hallucinogenic indole alkaloid 

from mushrooms of the genus Psilocybe, by all the human UGTs of subfamilies 1A, 2A, and 2B. 

To understand the substrate selectivity of human UGTs, we also studied the glucuronidation of 

4-hydroxyindole, a chemically simpler analog of psilocin which lacks the N,N-

dimethylaminoethyl side chain. We successfully prevented the oxidative degradation of psilocin, 

a problem we encountered early in the study, by including an antioxidant (1 mM dithiothreitol) 

in the assays. Our results showed that psilocin is glucuronidated mainly by UGTs 1A10 and 1A9, 

whereas the activities of UGTs 1A8, 1A7, and 1A6 were lower. On the other hand, 

4-hydroxyindole was glucuronidated mainly by UGT1A6, whereas the activities of UGTs 1A7–

1A10 closely correlated with their respective rates of psilocin glucuronidation. To understand in 

which human tissues psilocin glucuronidation takes place, we studied the expression levels of 

mRNA for UGTs 1A7–1A10; this work was performed in collaboration with Dr. Michael H. 

Court of the Tufts University School of Medicine, Boston, Massachusetts. The combined results 

of the activity and expression studies indicate that although the intestinal enzyme UGT1A10 

shows the highest glucuronidation clearance, UGT1A9, an enzyme abundantly expressed in both 

the liver and kidneys, may be the main contributor to psilocin glucuronidation in vivo.       

The inclusion of purified albumin is known to significantly enhance glucuronidation rates in 

vitro. In subsequent studies, we focused our attention on the scope and mechanism of this 

activity enhancement and investigated ―albumin effects‖ in a total of 11 human UGTs. Before 

proceeding with enzyme kinetic assays, we carefully measured the binding of substrates to BSA 

by either ultrafiltration or rapid equilibrium dialysis. Our results showed that the inclusion of 

BSA significantly enhances the in vitro glucuronidation activity of almost all the UGTs we 

tested, either by increasing the apparent substrate affinity (lower Km) or the reaction-limiting 

velocity (higher Vmax), or both. The nature of albumin effects, however, varied greatly and 

depended both on the UGT enzyme and the substrate employed. The highest activity increases in 
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the presence of BSA were observed in UGTs 1A7, 1A9, 1A10, 2A1, and 2B7, whereas BSA 

stimulation was comparatively less pronounced in UGTs 1A1, 1A6, 1A8, 2B4, and 2B15. On the 

other hand, depending on the substrate used, the addition of BSA to UGTs 1A1, 1A6, and 2B17 

sometimes resulted in a lack of any stimulatory effects. Moreover, the activity enhancement by 

BSA appears independently of the enzyme source used, since both native enzymes in human 

liver microsomes and recombinant enzymes expressed in Sf9 insect cells yielded similar results.   

To investigate the mechanism of albumin effects, as well as to elucidate the enzyme kinetic 

mechanism of human UGTs, we studied bisubstrate enzyme kinetics, the product inhibition, and 

dead-end inhibition kinetics of UGT1A9. For this purpose, we employed 4-methylumbelliferone 

as the aglycone substrate and investigated both forward- and reverse-direction UGT-catalyzed 

reactions. The combined results of our experiments strongly suggest that UGT1A9 follows the 

compulsory-order ternary-complex mechanism with UDPGA binding first. The addition of BSA 

quantitatively changes the enzyme kinetic parameters, presumably by removing ―internal‖ 

inhibitors that bind to binary (enzyme • UDPGA) or ternary (enzyme • UDPGA • aglycone) 

complexes, but the underlying compulsory-order ternary-complex mechanism remains 

unaffected. In addition, based on enzyme kinetic parameters measured in the forward and reverse 

reaction, we elucidated the thermodynamic equilibrium constant of the overall reaction 

(Keq = 574), as well as the relative magnitude of the individual rate constants.  

In summary, the results obtained deepen our current knowledge of UGT enzyme kinetics and set 

new guidelines for performing in vitro UGT assays. The study of psilocin and 4-hydroxyindole 

glucuronidation revealed that relatively small structural modifications, such as the loss of the 

side chain, lead to major changes in UGT substrate selectivity. And provided the substrate 

binding to BSA is accounted for, the addition of BSA significantly enhances the activities of 

almost all the UGTs tested and improves the accuracy of the measured enzyme kinetic 

parameters. These features are especially important for the prediction of UGT activity in vivo. 

Finally, our results deepen our current understanding of the UGT enzyme kinetic mechanism and 

conclusively show that UDPGA is the first, and the aglycone substrate is the second binding 

substrate to form a ternary complex in UGT1A9-catalyzed reactions.      
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1 Introduction 

The metabolism of xenobiotics and endogenous compounds is the body’s own detoxifying 

system, which is crucial for its survival. Small and lipophilic organic molecules of various 

origins, such as therapeutic drugs, secondary plant metabolites, alimentary ingredients, 

environmental pollutants, and endogenous metabolites, may accumulate to toxic levels in the 

body. To prevent this undesirable scenario, the body employs a multitude of metabolic enzymes 

in an effort to modify the chemical structure of lipophilic molecules (biotransformation), render 

them more polar and hydrophilic, and ultimately eliminate them from the body. Such metabolic 

elimination takes place in many human tissues, most notably the liver, intestine, and kidneys.  

The metabolism of endo- and xenobiotics is, in many cases, a two-phase process. In the first 

phase, lipophilic molecules usually undergo reactions of oxidation, reduction, or hydrolysis. 

These reactions are catalyzed by enzymes of the cytochrome P450 family (CYPs; Guengerich, 

2008, Nebert and Russell, 2002), flavin-containing monooxygenases (FMOs; Phillips and 

Shephard, 2008), alcohol and aldehyde dehydrogenases (Hoog et al., 2001, Vasiliou et al., 

2004), aldehyde oxidase (Pryde et al., 2010), monoamine oxidases (Strolin Benedetti et al., 

2007), and a variety of esterases (Hosokawa, 2008). Oxidoreductive or ―phase I‖ metabolic 

reactions often lead to the introduction or exposure of new functional groups, mainly hydroxyl, 

carboxylic, amino, or thiol functionalities. Although these structural changes somewhat increase 

the polarity and hydrophilicity of the parent compound, initial ―phase I‖ metabolites are often 

pharmacologically active, chemically reactive, or even toxic.  

To diminish pharmacological activity and toxicity, as well as to facilitate excretion from the 

body, ―phase I‖ metabolites are coupled with a variety of endogenous molecules, such as 

glucuronic acid, glutathione, and amino acids, or functional groups such as sulfonyl, methyl and 

acetyl. This process is generally referred to as conjugative, or ―phase II‖, metabolic reactions. 

These conjugative reactions occur at nucleophilic groups of the parent compound, such as 

hydroxyl, carboxyl, or amino groups. Nucleophilic groups may already be present in the 

structure of the molecule, as in the case of zidovudine or entacapone, which enables conjugative 

reactions without any preceding oxidoreductive (phase I) reactions. Alternatively, oxidoreductive 

metabolic reactions may introduce nucleophilic groups. A variety of metabolic enzymes, most 

notably UDP-glucuronosyltransferases (UGTs; Guillemette et al., 2010, Miners et al., 2010), 

sulfotransferases (SULTs; Lindsay et al., 2008), glutathione S-transferases (Higgins and Hayes, 

2011), and N-acetyltransferases (Sim et al., 2012) catalyze conjugative reactions. The resultant 

conjugates are usually, but not always, more hydrophilic and pharmacologically inactive, and are 

substrates for efflux transporters in the plasma membrane of the cells; all of these properties 

contribute to their efficient metabolic elimination and excretion from the body.  

Efflux transporters are also considered an important part of the metabolic elimination process 

(Eckford and Sharom, 2009, Benet, 2009, International Transporter Consortium, 2010). 

ATP-binding cassette (ABC) transporters are a large family of efflux transporters that use 

ATP-hydrolysis to excrete xenobiotics and endogenous metabolites across the plasma membrane 

of the cell (Eckford and Sharom, 2009). Important members of the ABC transporter family are 

P-glycoprotein (P-gp; ABCB1 family), breast cancer resistance protein (BCRP; ABCG2 family), 

and multidrug resistance-associated proteins (MRPs; ABCC family) (Eckford and Sharom, 2009, 

Benet, 2009). Influx (or uptake) transporters, although not directly involved in metabolite 
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excretion, may also play roles in metabolic elimination and pharmacokinetics (International 

Transporter Consortium, 2010). The family of organic anion transporting polypeptides (OATPs, 

SLC family; Niemi et al., 2011), for example, accelerates xenobiotic uptake from the blood into 

the hepatocytes, the principal cells involved in xenobiotic metabolism.  

Since xenobiotic metabolism affects both the pharmacokinetic and pharmacodynamic properties 

of therapeutic drugs, a detailed understanding of drug metabolizing enzymes is important for 

successful pharmacotherapy. From the perspective of drug discovery and development, it is 

important to fully explain and understand the fate of the drug in the human body. This 

knowledge significantly reduces the possibility of adverse drug reactions caused by unidentified 

drug metabolites, as well as identifies crucial metabolic enzymes that may mediate drug-drug 

interactions. The importance to understand the metabolic pathways is also highlighted in recent 

regulatory guidelines on drug interactions from the European Medicines Agency (EMA) and 

U.S. Food and Drug Administration (FDA) (documents can be accessed from 

http://www.ema.europa.eu/ema/ and http://www.fda.gov/). In the future, a crucial breakthrough 

would be the ability to accurately predict drug metabolism in vivo based on simple in vitro, or 

even computational in silico, experiments. The ability to understand and predict drug metabolism 

would especially benefit the early, preclinical, phases of drug development if only molecules 

with suitable metabolic profile could be selected. This early-on selection may prevent costly 

failures in the clinical stages due to undesirable drug metabolism, or help avoid drug-drug 

interactions through drug-metabolizing enzymes. Sufficiently understanding drug-metabolizing 

enzymes and accurately predicting the phenomena in vivo, however, pose considerable 

challenges. The enzyme source used, the assay conditions of in vitro experiments, the analytical 

methods available, the enzyme kinetic models used for data analysis, and subsequent scaling 

factors all contribute to the accuracy of a prediction.  

This thesis focuses on the most important enzymes of conjugative (phase II) metabolism: the 

human UGTs. These enzymes mostly exhibit broad substrate selectivity and eliminate many 

therapeutic drugs (Miners et al., 2010, Williams et al., 2004), numerous endogenous compounds 

such as bilirubin (Schmid, 1956), 17β-estradiol (Sandberg and Slaunwhite, 1957) and thyroxine 

(Kato et al., 2008), secondary plant metabolites like flavonoids and polyphenolic compounds 

(Wu et al., 2011), drugs of abuse such as 3,4-methylenedioxy-N-methylamphetamine 

metabolites (ecstasy; Schwaninger et al., 2009), and environmental pollutants such as 

benzo[a]pyrene (Dellinger et al., 2006). We studied the in vitro activity and enzyme kinetics of 

UGT enzymes in order to deepen our knowledge of the human endo- and xenobiotic metabolism. 

We trust that the new results presented in this thesis will contribute to a more complete 

understanding of UGT enzymes and, ultimately, to safer pharmacotherapy. 
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2 Review of the Literature 

Human UGTs transfer the glucuronic acid moiety from UDP-α-D-glucuronic acid (UDPGA) to 

nucleophilic groups on small organic molecules. This conjugation with glucuronic acid is also 

referred to as glucuronidation. This literature review focuses on the function and structure of 

human UGTs, with particular emphasis on the three topics studied in this Ph.D. thesis: (1) the 

glucuronidation of drugs of abuse, (2) the effects of including purified bovine serum albumin 

(BSA) in the reaction mixture, and (3) the enzyme kinetics of UGT enzymes. 

2.1 UGT enzymes 

2.1.1 Family of human UDP-glycosyltransferases 

Human UGT enzymes belong to the family of UDP-glycosyltransferases (Meech et al., 2012, 

Mackenzie et al., 2005). In general, UDP-glycosyltransferases catalyze the transfer of the hexose 

moiety from the cosubstrate, UDP-α-D-activated hexose, to the nucleophilic groups of organic 

molecules (Figure 1). The product of this reaction is β-D-glycoside, the conjugate of the 

aglycone substrate with hexose.  

Sugar moieties usually consist of glucuronic acid, glucose, galactose, xylose, or 

N-acetylglucosamine. Conjugation with the hexose moiety, usually referred to as glycosidation, 

prevents the accumulation of lipophilic molecules to toxic levels in the body and facilitates their 

excretion into the urine and bile. In humans, the family of UDP-glycosyltransferases comprises 

four subfamilies: UDP-glycosyltransferases 1, 2, 3, and 8. Enzymes from subfamilies 1 and 2 use 

UDP-α-D-glucuronic acid as the sugar donor. These enzymes are called 

UDP-glucuronosyltransferases (UGTs) and are the main focus of this thesis. The sugar 

specificity of UGTs, however, appears not absolute since UGT1A1 and UGT2B7 are also 

reported to use UDP-α-D-xylose (Senafi et al., 1994) and UDP-α-D-glucose (Mackenzie et al., 

2003), respectively. On the other hand, UDP-α-D-N-acetylglucosamine (Mackenzie et al., 2008), 

as well as UDP-α-D-glucose and UDP-α-D-xylose (MacKenzie et al., 2011) are the sugar donors 

for the enzymes of subfamily 3. Lastly, UDP-glycosyltransferase 8 uses UDP-α-D-galactose 

(Sprong et al., 1998). These subfamilies also play distinct physiological roles. While enzymes 

from subfamilies 1, 2, and 3 are involved in the metabolic elimination of endo- and xenobiotics 

(Meech et al., 2012), UDP-glycosyltransferase 8 is responsible for the glycosidation of 

ceramides, the principal constituents of the myelin layer around neurons (Sprong et al., 1998). 

Figure 1. UDP-Glycosyltransferases catalyze the transfer of the hexose moiety from 

UDP-activated hexose to the nucleophilic groups of organic molecules. Symbol Nu 

designates the nucleophilic group on the small organic molecule.   
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Human UDP-glycosyltransferases belong to glycosyltransferases, a superfamily of enzymes 

present in all kingdoms of life which play various physiological roles (Lairson et al., 2008) 

(Figure 2). Regardless of the broad variability in sequence and function, most 

glycosyltransferases adopt only two distinct structural folds, either GT-A or GT-B (Lairson et 

al., 2008, Chang et al., 2011). Moreover, according to the stereochemical course of the reaction, 

all glycosyltransferases are classified as either inverting or retaining, depending whether or not 

the anomeric carbon on the sugar moiety changes its configuration upon reaction. Based on these 

criteria, all mammalian UDP-glycosyltransferases are classified as inverting glycosyltransferases 

with a GT-B fold, and further subclassified into the GT1 family, together with related enzymes 

such as UGT71B1, from the Arabidopsis thaliana plant (Carl Linnaeus) (Brazier-Hicks et al., 

2007), or bacterial GtfB (Mulichak et al., 2001) and OleD (Bolam et al., 2007).   

 

2.1.2 The genes of human UGTs 

Based on their sequence similarity, chromosomal location and historical reasons, human UGTs 

are classified into three subfamilies: UGT1A, UGT2A, and UGT2B (Guillemette et al., 2010, 

Meech et al., 2012, Mackenzie et al., 2005). Individual enzymes are marked with an Arabic 

numeral following the subfamily name. The phylogenic tree of human UGTs is presented in 

Figure 3. Their corresponding human UGT genes are named in a similar manner to proteins, but 

denoted in Italic typeface (e.g. UGT1A9 is the human gene for the human protein UGT1A9). 

 

 

 

 

Glycosyltransferases

GT-A fold GT-B fold

Inverting

GT1

Human UDP-
glycosyltransferases

UGT1 UGT2 UGT3 UGT8

Retaining

Figure 2. Human UDP-glycosyltransferases belong to the GT1 family of inverting 

GT-B fold glycosyltransferases. Only UDP-glycosyltransferase families 1 and 2 use 

UDP-α-D-glucuronic acid as the sugar donor.  
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A single-gene locus on human chromosome 2q37 encodes the entire subfamily of UGT1A 

enzymes. The human UGT1A gene locus encodes nine functional proteins, namely UGT1A1 and 

UGTs 1A3–1A10. Functional diversity is achieved by the set of unique first promoters and exons 

that are spliced with shared exons 2–5 (Figure 4). The first exons encode the N-terminal domain, 

which is responsible mainly for substrate binding, while the shared exons 2–5 encode the 

C-terminal domain that contains the UDPGA binding site and the transmembrane helix. While 

there are 13 different first exons, only 9 of them encode functional proteins (UGTs 1A1, 1A3, 

1A4, 1A5, 1A6, 1A7, 1A8, 1A9, and 1A10); the remaining 4 contain internal stop codons in 

humans and are therefore pseudogenes (UGT1A2p, UGT1A11p, UGT1A12p, and UGT1A13p). 

Based on their sequence similarity, UGT1A genes can be grouped into A1, A2P–A5, A6, and A7–

A12P clusters (Guillemette et al., 2010, Meech et al., 2012, Mackenzie et al., 2005). Exons A1 

and A6 encode proteins that are approximately 50% identical. Within the A2P–A5 and A7–A13P 

exon clusters, however, encoded polypeptides are 75–92% identical (Mackenzie et al., 2005).  

 

3 5 

2 3 4 5A1A2PA3A4A5A6A7A9A13PA10A8A11PA12P

Unique exons (1-13) Shared exons (2-5)

Figure 3. The phylogenic tree of human UGTs (adapted from Guillemette et al., 

2010). 

Figure 4. Structure of the human UGT1A gene locus. The first 13 exons and 

corresponding promoters are unique; exons 2–5 are shared. 
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Recently, several alternative splicing events were discovered within the UGT1A gene locus 

(Guillemette et al., 2010). Most notably, the new exon 5b was located within the common region 

of the gene, between exons 4 and 5, whereas the previously called exon 5 has now been renamed 

exon 5a (Girard et al. 2007; Levesque et al. 2007). The mRNA transcribed with exon 5b leads to 

a slightly shorter protein without the transmembrane helix, but with binding sites for both the 

aglycone substrate and UDPGA. This led to the discovery of nine new UGT1A proteins known 

as isoforms 2 (i2), specifically UGT1A1_i2 and UGT1A3_i2–UGT1A10_i2. In most human 

tissues, UGT1A_i2 proteins are expressed together with their active UGT1A_i1 analogs 

(Levesque et al. 2007). The i2 variants, however, are catalytically inactive (Girard et al. 2007; 

Levesque et al. 2007). Nevertheless, if coexpressed with active UGT1A_i1 enzymes, the i2 

proteins suppressed glucuronidation activity (Girard et al. 2007). Although the physiological role 

of UGT1A_i2 proteins remains poorly understood, some researchers have suggested that they are 

involved in the regulation of UGT1A activity (Girard et al. 2007; Levesque et al. 2007; 

Bellemare et al., 2010), possibly through the formation of i1–i2 heterodimers. The existence of 

UGT1A_i2 proteins may complicate determination of the expression levels of active UGTs in 

human tissues. New studies of UGT mRNA expression levels must take this alternative splicing 

into account by, for example, designing suitable polymerase chain reaction (PCR) primers that 

can distinguish between exons 5a and 5b. 

Human UGT2A and UGT2B genes are located on chromosome 4q13 (Guillemette et al., 2010, 

Meech et al., 2012, Mackenzie et al., 2005). In contrast to the UGT1A gene locus, the enzymes 

of UGT2A and 2B subfamilies are encoded mainly by separate genes comprised of six unique 

exons (Figure 5). The exceptions are UGTs 2A1 and 2A2, which, like the UGT1A gene locus, 

are encoded by a separate exon 1 and share remaining exons 2–6, thus resulting in identical 

C-terminal domains (Sneitz et al., 2009). The genes within subfamilies UGT2A and UGT2B 

generally share more than 70% of their gene sequences (Meech et al., 2012). This high level of 

sequence similarity, resulting in a complicated orthologous relationship between species, led to 

the adoption of the sequential numbering system for UGT2A and UGT2B genes based on the 

chronological order of their discovery (Mackenzie et al., 1997). Similarly to the UGT1A genes, 

alternative splicing was also found in UGT2A and UGT2B genes (Guillemette et al., 2010). At 

the moment, however, the extent and functional significance of these phenomena remain poorly 

understood and should be addressed in future studies. 
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2.1.3 Molecular structure and membrane topology of UGTs 

Human UGTs are membrane proteins located in the endoplasmic reticulum of the cell. In 

addition, some studies have also located UGTs in the Golgi and nucleus membranes 

(Radominska-Pandya et al., 2002, Hauser et al., 1984). UGT polypeptides are synthesized as the 

precursors of approximately 530 amino acids, containing an N-terminal signal sequence peptide 

that directs the integration of the protein into the endoplasmic reticulum (Ouzzine et al., 1999b, 

Ouzzine et al., 1999a, Mackenzie and Owens, 1984). After membrane integration, although the 

order of events remains only partially understood, the signal sequence is cleaved and the protein 

is probably N-glycosylated (Nakajima et al., 2010, Barbier et al., 2000, Mackenzie, 1990). The 

mature UGT protein is approximately 505 residues long. A schematic representation of the UGT 

primary structure appears in Figure 6.  

 

The UGT polypeptide consists of two similarly sized parts: N- and C-terminal domains. Of these 

two domains, the C-terminal domain is generally more conserved across different UGTs and 

contains the UDPGA binding domain (Miley et al., 2007, Patana et al., 2007), as well as the 

3 5 

2B25P 2B4

2A1/2

2B282B112B72B26P2B27P

2A3

2B102B172B29P 2B15

2 3 4 5 62A1 2A21 2 3 4 5 6

N-terminal domain C-terminal domain

Signal

peptide

UDPGA binding

domain

Putative aglycone substrate

binding domain
Transmembrane 

helix

UGT signature 

sequence

1 530

Figure 5. Structure of human UGT2A and UGT2B family genes on chromosome 

4q13. Most of the proteins are encoded by separate genes consisting of six unique 

exons. For UGTs 2A1 and 2A2, however, similar to the UGT1A gene locus, only the 

first exon is unique; exons 2–6 are common.  

Figure 6. Schematic representation of the UGT primary structure. 
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transmembrane helix, which anchors the protein into the membrane (Meech et al., 1996, Meech 

and Mackenzie, 1998). Apart from its primary anchoring function, the transmembrane domain 

and C-terminal tail may also function as a membrane-targeting sequence (Meech and Mackenzie, 

1998, Ouzzine et al., 2006). In addition, the C-terminal domain also contains a ―UGT signature 

sequence‖, a 44-residue-long sequence within the UDPGA binding site found in all 

glycosyltransferases (sequence PDOC00359; http://prosite.expasy.org/; last accessed on 24 

October 2012). On the other hand, the N-terminal domain is more variable within the UGT 

family and contains a putative domain responsible for the binding of the aglycone substrate 

(Lewis et al., 2007, Itäaho et al., 2010, Fujiwara et al., 2009a).      

In contrast to their primary structure, the secondary and ternary structures of UGTs, as well as 

the corresponding membrane topology, remain largely unknown. Despite significant research 

efforts thus far, the full-length X-ray crystal structure of mammalian UGT is unavailable, 

presumably due to considerable difficulties in isolating and purifying fully active UGTs, as well 

as in crystallizing membrane proteins. Until now, only a partial crystal structure of UGT2B7 C-

terminal domain, without the ―envelope helices‖ (see below), the trans-membrane helix, and the 

cytoplasmic tail, was elucidated (Miley et al., 2007). That study revealed that the C-terminus of 

UGT2B7 is a globular domain with a Rossmann-type fold. The core of the protein is a single 

parallel β-sheet consisting of six individual strands surrounded by seven α-helices (Miley et al., 

2007). Due to the lack of sufficient crystallographic data from the N-terminal domain, numerous 

studies addressed the complete structure of UGTs by means of homology modeling using plant 

and bacterial glycosyltransferases from the GT1 family as templates (Lewis et al., 2011, 

Laakkonen and Finel, 2010, Fujiwara et al., 2009b, Li and Wu, 2007, Locuson and Tracy, 2007).  

The consensus results of crystallography and modeling indicate that UGTs are GT-B fold 

glycosyltransferases with type I membrane topology (Figure 7). In the GT-B fold structure, both 

the N- and C-terminal domains are β/α/β Rossmann-type domains connected by a flexible linker 

(Lairson et al., 2008). UGT domains are flexibly linked and face each other; the active site lies 

positioned within the resulting cleft (Miley et al., 2007, Laakkonen and Finel, 2010, Fujiwara et 

al., 2009b). In addition to the two large domains, a recent modeling study of UGT1A1 identified 

two C-terminal ―envelope‖ helices that extend over both domains (Laakkonen and Finel, 2010) 

(Figure 7). The N-terminal domain is associated with the binding of the aglycone substrate, 

whereas the C-terminal domain binds UDPGA. The main mass of the protein, including the 

active site, is located on the luminal side of the endoplasmic reticulum membrane (for reviews, 

see Bock, 2010, Magdalou et al., 2010, Radominska-Pandya et al., 2005b). The C-terminal 

domain also contains a transmembrane helix as well as the 20- to 25-residue-long cytoplasmic 

―tail‖ (Figure 7). Apart from the C-terminal transmembrane helix, possible additional membrane-

binding regions were suggested within the N-terminal domain (Meech and Mackenzie, 1998, 

Ciotti et al., 1998).  
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The intraluminal orientation of human UGTs necessitates a number of active transporters for the 

successful catalytic function, in specific the uptake of UDPGA and efflux of formed 

glucuronides. For example, the nucleotide sugar transporters transfer the UDPGA from the 

cytosol into the lumen of the endoplasmic reticulum (reviewed by, Csala et al., 2007), whereas 

other transporters are involved in the glucuronide excretion from the lumen of the endoplasmic 

reticulum into cytosol (Battaglia and Gollan, 2001, Csala et al., 2004, Revesz et al., 2012). 

However, if activity assays are performed in vitro, for example in human liver microsomes 

(HLM), the transporters are not functional and the UGT enzymes exhibit diminished activity, 

commonly referred to as ―UGT latency‖ (for details, see Section 2.3.1). The in vitro ―UGT 

latency‖ is commonly removed by the addition of either detergent or pore-forming antibiotic 

alamethicin (Banhegyi et al., 1993, Little et al., 1997, Fisher et al., 2000, Soars et al., 2003). In 

addition, a number of studies reported that UGT enzymes form oligomers, most probably homo- 

and heterodimers (for examples, see Lewis et al., 2011, Finel and Kurkela, 2008). The 

oligomerization of human UGTs may have significant consequences with respect to substrate 

selectivity and enzyme kinetic properties (Uchaipichat et al., 2008, Zhou et al., 2010, Zhou et 

al., 2011).       

2.1.4 Catalytic mechanism of glucuronidation  

Human UGTs transfer the glucuronic acid moiety from the cosubstrate, UDP-α-D-glucuronic 

acid (UDPGA), to nucleophilic groups of small lipophilic molecules to yield exclusively β-D-

glucuronides (Figure 8). The nucleophilic groups on the aglycone substrates are usually 

hydroxyl, amino, or carboxyl functionalities. Less often, glucuronidation may also occur on thiol 

and enolate functionalities or even on carbons with a weak C–H bond (―acidic carbons‖) 

(Argikar, 2012). The catalytic mechanism resembles SN2-like nucleophilic substitution where the 

nucleophilic group of the aglycone substrate attacks the anomeric carbon of the UDP-α-D-

glucuronic acid. The SN2-like direct displacement mechanism is supported by the inversion of 

Endoplasmic reticulum 

membrane

Cytosolic side

Luminal side

C-terminal

domain

N-terminal

domain

Cytosolic “tail”

Transmembrane 

helix

“Envelope”

helices

Figure 7. Graphical representation of the putative UGT structure in the membrane 

of the endoplasmic reticulum (picture prepared by Docent Liisa Laakkonen).   
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the anomeric carbon configuration from α in the UDP-α-D-glucuronic acid to β in the resultant 

β-D-glucuronide (Axelrod et al., 1958, Johnson and Fenselau, 1978), as well as the influence of 

substituents on the reaction rate (Yin et al., 1994).  

Studies of the glucuronidation reaction suggest that UGT enzymes follow a serine protease-like 

mechanism, with a catalytic dyad — aspartate and histidine — activating the hydroxy group of 

the aglycone for the nucleophilic attack (Miley et al., 2007, Patana et al., 2008, Ouzzine et al., 

2003, Li et al., 2007). According to this mechanism, histidine acts as a general base and accepts 

a proton from the aglycone hydroxy group. A conserved acidic residue in the proximity of 

catalytic histidine, such as the aspartate, would stabilize the protonated histidine through a 

―charge-relay‖ mechanism (Figure 8). The negative charge on the β-phosphate moiety of the 

departing UDP group would be stabilized by another histidine residue (Miley et al., 2007, Li et 

al., 2007).  

 

A study of UGT1A9 identified histidine 37 and aspartate 143 as the catalytic dyad (Patana et al., 

2008). Similarly to the UGT1A9 results, histidine 35 and aspartate 151 in UGT2B7 (Miley et al., 

2007), and histidine 38 and aspartate 150 in UGT1A6 (Li et al., 2007) were identified as the key 

catalytic residues. Moreover, as expected for the amino acids responsible for the catalytic 

activity, the histidine-aspartate catalytic dyad is highly conserved among human UGTs. An 

important exception occurs in UGT enzymes specialized in N-glucuronidation, namely UGTs 

1A4 and 2B10, where a proline or leucine residue respectively replace the catalytic histidine 

(Kubota et al., 2007, Kerdpin et al., 2009).  

Figure 8. The transfer of the glucuronic acid moiety to the hydroxy group of aglycone 

substrate resembles SN2-like nucleophilic substitution. Histidine and aspartate form a 

catalytic dyad. 
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In addition, the mutation of catalytic histidine to alanine in position 37 fully abolished the 

activity of UGT1A9 with phenolic substrates but, interestingly, only moderately decreased the 

activity toward substrates with amino group (Patana et al., 2008). On the other hand, the same 

study showed that the mutations of aspartate 143 led to an inactive UGT1A9 enzyme, regardless 

of the aglycone substrate used. Taken together with the lack of catalytic histidine in UGTs 1A4 

and 2B10, these results indicate that the catalytic mechanisms of O- and N-glucuronidation may 

differ. In contrast to O-glucuronidation, histidine is not essential to deprotonate the N-

nucleophile; instead, only the aspartate is required to stabilize the developing positive charge 

during the N-nucleophile attack on the anomeric atom of glucuronic acid (Figure 9) (Patana et 

al., 2008). 

 

  

2.1.5 UGT expression in human tissues 

UGT enzymes are expressed in a variety of human tissues and organs, most notably those tissues 

that are in imminent contact with xenobiotics, such as the liver, intestine, and kidneys (Table 1). 

Unfortunately, due to the lack of UGT-specific antibodies, direct immunochemical detection and 

Figure 9. The catalytic mechanism of N-glucuronidation. In contrast to 

O-glucuronidation, the histidine residue is unnecessary for catalysis. As an 

alternative, the aspartate residue stabilizes the developing positive charge during 

the N-nucleophilic attack on the anomeric atom of glucuronic acid. 



 

23 

 

quantification of UGT proteins in tissues is rarely possible. Such antibodies are difficult to 

prepare mainly due to the high sequence similarity of UGT enzymes (Girard et al., 2004). Until 

now, the literature has reported only a few UGT-specific antibodies, most notably a recent 

monoclonal antibody for UGT1A9 (Oda et al., 2012). Polyclonal antibodies for UGTs 1A1, 1A3, 

1A4, 1A6, and 1A9 were also reported (Ikushiro et al., 2006), but examination of some of them 

in our laboratory, or in the Japanese laboratory with our recombinant UGTs 1A4 and 1A9, failed 

to yield a detectable response (Finel M., unpublished observations). In addition, several UGT-

specific antibodies are commercially available for UGTs 1A1, 1A4, 1A6, 1A9, and 2B4, 

although these products may partially cross-react with similar UGT enzymes (Oda et al., 2012, 

Izukawa et al., 2009).  

In the absence of reliable UGT-specific antibodies, most studies estimate UGT expression 

indirectly by measuring the expression of specific mRNA within the target tissue. Whereas older 

studies employed the (so-called) semiquantitative reverse transcriptase–polymerase chain 

reaction (RT-PCR) methodology (Strassburg et al., 2000, Strassburg et al., 1997, Turgeon et al., 

2001, Nakamura et al., 2008), newer studies use quantitative, real-time qRT-PCR to determine 

the exact copy-number of specific mRNAs (Izukawa et al., 2009, Court et al., 2012, Ohno and 

Nakajin, 2009, Nishimura and Naito, 2006). Although useful for approximating UGT-protein 

expression levels, particularly the lack of expression if mRNA proved undetectable, studies of 

mRNA expression may be limited by poor correlation between measured mRNA levels and 

actual protein levels (Oda et al., 2012, Izukawa et al., 2009). Recent advances in liquid 

chromatography–mass spectrometry (LC–MS) could solve this problem through direct 

quantification of UGT proteins (Harbourt et al., 2012, Fallon et al., 2008), but not even they can 

distinguish between active, inactive, or incorrectly folded UGTs (Oda et al., 2012, Zhang et al., 

2012a). The combined results of recent qRT-PCR studies of UGT mRNA expression and LC–

MS analyses are presented in Table 1.            

Enzyme Tissues Method References 

UGT1A1 

Liver > intestine >> kidney, trachea, prostate 

Liver > intestine, kidney 

Liver 

Liver > intestine 

Liver > intestine >> kidney, trachea, prostate 

qRT-PCR 

LC–MS 

qRT-PCR 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

(Harbourt et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

(Nishimura and Naito, 2006) 

UGT1A3 

Liver > intestine, trachea, kidney, adipose, 

thymus, testis, prostate, uterus, nasal 

Liver 

Liver 

Liver > intestine 

qRT-PCR 

 

LC–MS 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

 

(Harbourt et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

UGT1A4 

Liver > trachea > intestine, kidney, nasal, 

adipose, thymus, testis, prostate, uterus 

Kidney, liver 

Liver 

Liver 

qRT-PCR 

 

LC–MS 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

 

(Harbourt et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

UGT1A5 

Intestine, liver, kidney, nasal 

Intestine, trachea, kidney, esophagus, trachea, 

prostate, placenta, liver 

qRT-PCR 

qRT-PCR 

 

(Court et al., 2012) 

(Ohno and Nakajin, 2009) 

 

Table 1. Expression of UGT enzymes in human tissues.  
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UGT1A6 

Nasal, liver, trachea > kidney, intestine, prostate, 

uterus, thymus, adipose 

Liver > kidney, intestine 

Liver 

Kidney, liver > intestine, adrenal, bladder, 

trachea 

Liver, kidney > intestine, trachea 

qRT-PCT 

 

LC–MS 

qRT-PCR 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

 

(Harbourt et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

(Nishimura and Naito, 2006) 

UGT1A7 

Kidney, intestine, liver, nasal, trachea, adrenal 

Kidney, intestine 

Esophagus, cervix, kidney, trachea, intestine 

qRT-PCR 

LC–MS 

qRT-PCR 

(Court et al., 2012) 

(Harbourt et al., 2012) 

(Ohno and Nakajin, 2009) 

UGT1A8 

Nasal, intestine > adipose 

Intestine, kidney 

Intestine, adrenal > bladder, trachea, breast 

qRT-PCR 

LC–MS 

qRT-PCR 

(Court et al., 2012) 

(Harbourt et al., 2012) 

(Ohno and Nakajin, 2009) 

UGT1A9 

Liver, kidney > intestine, adipose 

Kidney > liver > intestine 

Kidney > liver >> intestine 

Liver 

Kidney > liver > intestine, adrenal, 

Kidney >> liver 

qRT-PCR 

LC–MS 

Immunochem. 

qRT-PCR 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

(Harbourt et al., 2012) 

(Oda et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

(Nishimura and Naito, 2006) 

UGT1A10 

Intestine > nasal, adipose 

Kidney > intestine 

Intestine > esophagus, trachea, adrenal 

qRT-PCR 

LC–MS 

qRT-PCR 

(Court et al., 2012) 

(Harbourt et al., 2012) 

(Ohno and Nakajin, 2009) 

UGT2A1 

Nasal 

Nasal 

Trachea > lung 

qRT-PCR 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

(Sneitz et al., 2009) 

(Nishimura and Naito, 2006) 

UGT2A2 
Nasal 

Nasal 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

(Sneitz et al., 2009) 

UGT2A3 Intestine, liver, adipose > pancreas, kidney qRT-PCR 
(Court et al., 2012, Court et al., 

2008) 

UGT2B4 

Liver >> intestine 

Liver 

Liver >> heart > kidney, prostate, esophagus, 

trachea 

qRT-PCR 

qRT-PCR 

qRT-PCR 

 

(Court et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

 

UGT2B7 

Liver, kidney > intestine, pancreas, uterus, testis 

Liver 

Liver, kidney > intestine 

Liver >> intestine > pancreas  

qRT-PCR 

qRT-PCR 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

(Nishimura and Naito, 2006) 

UGT2B10 

Liver >> testis 

 

Liver 

qRT-PCR 

 

qRT-PCR 

(Court et al., 2012) 

(Izukawa et al., 2009, Ohno and 

Nakajin, 2009, Nishimura and 

Naito, 2006) 

UGT2B11 Liver, kidney, breast > pancreas, nasal  qRT-PCR (Court et al., 2012) 

UGT2B15 

Liver > intestine >> nasal, pancreas, prostate 

Liver 

Liver >> intestine, breast, prostate > trachea, 

testis 

Liver >> intestine 

qRT-PCR 

qRT-PCR 

qRT-PCR 

qRT-PCR 

(Court et al., 2012) 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

(Nishimura and Naito, 2006) 

UGT2B17 

Adipose > nasal, liver, intestine, pancreas >> 

testis, trachea, bone marrow, thymus  

Liver 

Intestine >> liver, adrenal, lung, thymus, spleen, 

trachea, kidney 

Liver >> intestine > trachea, testis, pancreas 

qRT-PCR 

 

qRT-PCR 

qRT-PCR 

 

qRT-PCR 

(Court et al., 2012) 

 

(Izukawa et al., 2009) 

(Ohno and Nakajin, 2009) 

 

(Nishimura and Naito, 2006) 

UGT2B28 Liver qRT-PCR (Court et al., 2012) 

 

As mentioned previously, out of all studied human tissues, the overall UGT expression appears 

most abundant in liver, small intestine, and kidneys. From the perspective of drug discovery and 

development, it is very important to know the absolute and relative abundance of UGT enzymes 

in these tissues. Harbourt et al. (2012) recently employed LC–MS to measure the absolute 

abundance of UGT1A enzymes in microsomal protein digest. Authors found that absolute 
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enzyme expression varied from 3 to 96 pmol per mg of protein in liver, intestinal, and kidney 

microsomes (Harbourt et al., 2012). The relative expression of UGTs mRNA in liver, small 

intestine, and kidneys appears in Figure 10. 

 

The expression of individual UGT enzymes also exhibits interindividual variability with respect 

to age, sex, enzyme inducers, and genetic polymorphisms (Izukawa et al., 2009, Court, 2010). 

Important factors responsible for interindividual variation may include: (1) UGT polymorphisms, 

alternate splicing, and epigenetic variation; (2) liver-enriched transcription factors such as 

hepatic nuclear factors α1 and α4; and (3) ligand-activated transcription factors such as AhR, 

Nrf2, PXR, CAR, and PPARα (recently reviewed in Bock, 2010).  

A detailed list of UGT polymorphisms can be found on the following webpage 

www.pharmacogenomics.pha.ulaval.ca/cms/ugt_alleles/ (last accessed on 24 October 2012).  

2.2 UGT substrate specificity 

UGT enzymes exhibit broad and partially overlapping substrate specificity. In many cases, a 

single substrate is glucuronidated by multiple UGT enzymes, although at different affinities and 

turnover rates. The recognition of substrates by individual UGT enzymes generally depends on 

molecular size and geometry, lipophilicity (logP), acid-base properties (pKa), hydrogen bond 

acceptors and donors, and the spatial orientation of the nucleophilic group on the acceptor 

molecule (reviewed by Smith et al., 2004, Miners et al., 2004, Dong et al., 2012). Despite broad 

substrate specificity, UGTs may still exhibit a high degree of regioselectivity and 

stereoselectivity (Bichlmaier et al., 2006, Sten et al., 2006, Sten et al., 2009, Itäaho et al., 2008, 

Kaivosaari et al., 2008). One should note, however, that even if a molecule is not a substrate for 

the specific UGT enzyme, it might still bind to its active site and act as an inhibitor. Selective 

A. Liver C. KidneysB. Small intestine

2B4
43.3%

2B15
12.7%

2B10
10.4%

2B7
6.7%

1A1
6.5%

1A9
5.8%

1A4
4.7%

1A6
4.3%

Other
5.5%

2B17
18.6%

2B7
18.4%

1A10
14.7%

2A3
11.9%

1A1
10.5%

1A6
6.7%

2B15
5.2%

1A9
3.4%

1A3
3.2%

1A4
2.6%

Other
4.7%

1A9
43.2%

2B7
39.1%

1A6
6.8%

2B11
4.4%

1A4
2.2%

Other
4.3%

Figure 10. The relative expression of UGT mRNA (% of total) in (A) liver, (B) small 

intestine, and (C) kidneys. For the liver expression pie chart we have combined and 

averaged data from Court et al., 2012, Ohno and Nakajin, 2009, and Izukawa et 

al., 2009. For small intestine and kidney pie charts we combined and averaged the 

data from Court et al., 2012 and Ohno and Nakajin, 2009. To our best knowledge, 

these are the only studies that both use modern methodology (qRT-PCR or LC–MS) 

and cover a wide selection of UGT enzymes.   
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substrates and inhibitors are rarely known for UGT enzymes, especially those exhibiting high 

affinity and exclusive selectivity (for reviews, see Miners et al., 2010, Court, 2005). The list of 

both typical and selective substrates for human UGTs appears in Table 2. The list of UGT 

substrates presented is not a comprehensive review of this complex subject, but rather a general 

overview of the most common substrates. Moreover, the selectivity of the presented UGT-

selective substrates is rarely absolute and may depend on assay conditions, the observation of 

specific products formed, or tissues studied (see original references for further details).  

UGT enzyme Typical substrates Proposed selective substrates 

UGT1A1 
Bilirubin

1,5
, estrogens

2,4
, various phenols

2,3
, anthraquinones

2,3
, 

flavones
2
, coumarins

3
 

Bilirubin
5
, etoposide

6
 

UGT1A3 
Various phenols

2,3
, anthraquinones

2,3
, flavones

2
, amines

7,8
, bile 

acids
2
, coumarins

3
, carboxylic acids

2,3
, estrogens

2,4
 

Zolarsartan
8
  

UGT1A4 
Various amines and N-heterocycles

7
, estradiols

4
, sapogenins

3
, 

phenols
2,3

, aliphatic alcohols
2,3

  

1’-Hydroxymidazolam
9
, 

midazolam N-glucuronide
32

, 

trifluoperazine
10

 

UGT1A5 Orphan enzyme, substrates are currently unknown
31

  

UGT1A6 Small and planar phenols
2,3

 Serotonin
11

, deferiprone
12

 

UGT1A7 Various phenols
2,3

, estradiols
4
  

UGT1A8 
Various phenols

2,3
, flavonoids

2,3
, anthraquinones

2,3
, some 

steroids
4
  

 

UGT1A9 
Various phenols

2,3
, anthraquinones

2,3
, flavones

2,3
, coumarins

2.3
, 

amines and N-heterocycles
3,7

, carboxylic acids
3
  

Entacapone (liver)
13

, 

mycophenolic acid (liver)
14

, 

phenylbutazone
15

, propofol
16

 

UGT1A10 Various phenols
2,3

, estrogens
4
 Dopamine

17
 

UGT2A1 
Phenolic compounds

18,21
, aliphatic and monoterpene alcohols

21
, 

estrogens
4
, androgens

19  

UGT2A2 Bile acids, small phenols
18 

 

UGT2A3 Bile acids
18,20

  

UGT2B4 Aliphatic alcohols
2,3

, bile acids
2,3

, estrogens
4
, opioids

22 
 

UGT2B7 
Aliphatic alcohols

2,3
, carboxylic acids

2,3
, estrogens

4
, 

androgens
19

, bile acids
2,3

, opioids
23

 

Zidovudine
22

, epitestosterone 

(liver)
 19

, morphine 

(partially)
22-24

, denopamine
25

   

UGT2B10 Nicotine
26

, medetomidine
27

, tricyclic antidepressants 
28 Nicotine

26
, levomedetomidine 

(partially)
27 

UGT2B11 
Fatty acid metabolites

33
 (results are not confirmed by 

independent laboratory) 
 

UGT2B15 Estrogens
4
, aliphatic alcohols

2,3
, various phenols

2,3 
S-Oxazepam

29
 

UGT2B17 Androgens
19

, estrogens
4
, phenols

3
 Testosterone (liver)

19
 

UGT2B28 Steroids (poor activity)
30

  
1
Ritter et al., 1992; 

2
King et al., 2000; 

3
Tukey and Strassburg, 2000; 

4
Itäaho et al., 2008; 

5
Bosma et al., 1994; 

6
Watanabe et al., 2003, Wen et al., 2007; 

7
Kaivosaari et al., 2011; 

8
N2-glucuronidation; Alonen et al., 2008; 

9
N-

glucuronidation, Zhu et al., 2008; 
10

Uchaipichat et al., 2006; 
11

Krishnaswamy et al., 2003a; 
12

Benoit-Biancamano et 

al., 2009; 
13

Lautala et al., 2000; 
14

phenol glucuronide, Picard et al., 2005, Bernard and Guillemette, 2004; 
15

C-

glucuronidation Nishiyama et al., 2006; 
16

Soars et al., 2004; 
17

Itäaho et al., 2009; 
18

Sneitz et al., 2009; 
19

Sten et al., 

2009; 
20

Court et al., 2008; 
21

Jedlitschky et al., 1999; 
22

Court et al., 2003; 
23

Stone et al., 2003; 
24

Ohno et al., 2008; 
25

Kaji and Kume, 2005; 
26

Kaivosaari et al., 2007; 
27

Kaivosaari et al., 2008; 
28

Zhou et al., 2010; 
29

Court et al., 2002; 
30

Levesque et al., 2001; 
31

Finel and Miners, unpublished results; 
32

Hyland et al., 2009; 
33

Turgeon et al., 2003. 

Table 2. The overview of typical and selective substrates for human UGTs. If the 

substrate is UGT-selective only within the specific tissue, but not for all UGT 

enzymes expressed in the human body, the tissue is indicated within parenthesis. The 

list of literature references appears below the table.    
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As a general tendency, phenolic substrates are mainly glucuronidated by enzymes from UGT1A 

and UGT2A subfamilies, whereas aliphatic alcohols are substrates to enzymes of the UGT2B 

subfamily (Wu et al., 2011, Dong et al., 2012, King et al., 2000, Tukey and Strassburg, 2000, 

Sorich et al., 2006). Carboxylic acids, however, may be substrates to numerous UGT enzymes. 

UGTs 1A1, 1A9, 2B4, and 2B7, for example, proved to be the main enzymes responsible for 

glucuronidation of commonly prescribed non-steroidal anti-inflammatory drugs (NSAID; King 

et al., 2001, Kuehl et al., 2005, Zhang et al., 2012b), whereas UGT1A1 exclusively 

glucuronidates bilirubin, a breakdown product of heme catabolism (Bosma et al., 1994). The 

glucuronidation of bilirubin is a major detoxification pathway necessary for survival (reviewed 

by Strassburg, 2010). In contrast to bilirubin detoxification, the glucuronidation of some 

carboxylic acids may lead to chemically reactive products involved in a number of adverse drug 

reactions (reviewed by Regan et al., 2010). Amines and nitrogen-containing heterocycles are 

mainly glucuronidated by UGTs 1A4 and 2B10 (Kaivosaari et al., 2008, Kaivosaari et al., 2007, 

Zhou et al., 2010), although other enzymes, such as UGTs 1A3, 1A9, and 2B7 may also play 

significant roles in N-glucuronidation (reviewed by Kaivosaari et al., 2011). 

2.2.1 Glucuronidation of drugs of abuse 

Glucuronidation represents a significant metabolic pathway for the elimination of drugs of abuse 

and their phase I metabolites (Table 3). The list of abused drugs eliminated through 

glucuronidation consists of anabolic steroids, benzodiazepines, cannabinoids, opioids, 

hallucinogens, and widely abused substances such as nicotine and ethanol. As a result, the 

detection and analysis of glucuronides is becoming increasingly important in both forensic and 

antidoping studies (for examples, see Meyer and Maurer, 2012, French et al., 2011, Kamata et 

al., 2006). In addition, identifying the individual UGT enzymes involved in the metabolism of 

drugs of abuse may contribute to a better understanding of the tissue localization of metabolism, 

drug-drug interactions, and interindividual variability (Schwaninger et al., 2009, Kaivosaari et 

al., 2007, Mazur et al., 2009).       

Drugs of abuse Metabolism by UGTs References 

Anabolic steroids and their 

phase I metabolites 

Glucuronidated by UGTs 1A1, 1A3, 1A4, 1A8, 

1A9, 1A10, 2B4, 2B7, and 2B15. 

(Kuuranne et al., 2003) 

(Hintikka et al., 2008) 

Benzodiazepines 
Midazolam, lorazepam, and oxazepam are 

glucuronidated. 

(Hyland et al., 2009) 

(Turfus et al., 2011) 

(Court et al., 2002) 

Cannabinoids (classical and 

synthetic)  

Phase I metabolites of classical cannabinoids are 

glucuronidated by UGTs 1A1, 1A3, 1A8, 1A9, 

1A10, and 2B7. 

Synthetic cannabinoids are glucuronidated mainly 

by UGTs 1A1, 1A3, 1A9, 1A10, and 2B7 

(Mazur et al., 2009) 

 

 

(Chimalakonda et al., 2011) 

Codeine 

Codeine 6-glucuronide was reported as the main 

metabolite in urine. Codeine is glucuronidated by 

UGTs 2B4 and 2B7. 

(Yue et al., 1991) 

(Court et al., 2003) 

(Raungrut et al., 2010) 

Ethanol 

Ethyl-glucuronide is a biomarker of ethanol 

intoxication. Ethanol is glucuronidated mainly by 

UGTs 1A1 and 2B7. 

(Walsham and Sherwood, 

2012) 

(Foti and Fisher, 2005) 

Table 3. The list of drugs of abuse eliminated by glucuronidation (in alphabetical 

order). 
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Lysergic acid diethylamide 

(LSD) 
14-Hydroxy-LSD glucuronide is detected in urine. (Canezin et al., 2001) 

MDMA (3,4-

methylenedioxy-N-

methylamphetamine, 

Ecstasy) 

Metabolites are glucuronidated by UGTs 1A1, 1A3, 

1A8, 1A9, 2B4, 2B7, 2B15, and 2B17. 

(Schwaninger et al., 2009, 

Shoda et al., 2009) 

5-Methoxy-N,N-

diisopropyltryptamine 

(Foxy-methoxy) 

Phase I metabolites are excreted as glucuronides.  (Kamata et al., 2006) 

Morphine 

UGTs 2B7, 2B4, 1A1, and many others form 

morphine 3- and 6-glucuronides, the latter of which, 

is a potent analgesic. 

(Stone et al., 2003) 

(Court et al., 2003) 

(Ohno et al., 2008) 

Nicotine Glucuronidated by UGTs 2B10 and 1A4. 
(Kaivosaari et al., 2007) 

(Chen et al., 2007) 

Oxymorphone Oxymorphone 3-glucuronide is reported in urine. 
(French et al., 2011) 

(Dickerson et al., 2012) 

Psilocin 
Psilocin glucuronide is the main metabolite in 

serum and urine. 

(Hasler et al., 2002) 

(Kamata et al., 2003) 

(Kamata et al., 2006) 

Testosterone Glucuronidated mainly by UGT2B17. (Sten et al., 2009) 

Tramadol 
O-Desmethyltramadol is glucuronidated by UGTs 

1A7, 1A8, 1A9, 1A10, 2B7, and 2B15. 
(Lehtonen et al., 2010) 

 

For some drugs of abuse, glucuronidation represents a major route of elimination, such as in the 

cases of morphine (Court et al., 2003, Stone et al., 2003, Ohno et al., 2008), MDMA phase I 

metabolites (Schwaninger et al., 2009, Pirnay et al., 2006), psilocin (Kamata et al., 2006, Hasler 

et al., 2002, Kamata et al., 2003), or even nicotine and its phase I metabolites (Kaivosaari et al., 

2007, Chen et al., 2007). On the other hand, as in the cases of ethanol (Walsham and Sherwood, 

2012, Foti and Fisher, 2005), calassical cannabinoids (Mazur et al., 2009), or lysergic acid 

diethylamide (LSD; Canezin et al., 2001), the relative contribution of glucuronidation to the 

overall drug metabolism appears small. However, even if they are relatively minor metabolites, 

glucuronides may still serve as valuable markers of substance abuse in forensic or antidoping 

studies. Good examples are provided by glucuronides of ethanol (Walsham and Sherwood, 2012) 

and testosterone isomers (Sten et al., 2009) used in the analyses of alcohol intoxication and 

testosterone doping, respectively. 

2.2.2 Glucuronidation of psilocin 

Psilocybin and its dephosphorylated active metabolite, psilocin, are hallucinogenic indole 

alkaloids present in mushrooms of the genus Psilocybe, colloquially referred to as ―magic 

mushrooms‖ (Stamets, 2003). The Swiss chemist Albert Hofmann first isolated psilocybin in 

1958 from Psilocybe mexicana (Hofmann et al., 1958). Although prohibited in most countries, 

―magic mushrooms‖ are commonly used as recreational drugs (Tsujikawa et al., 2003, Halpern, 

2004, Bjornstad et al., 2009). Following ingestion, psilocybin is quickly dephosphorylated to 

psilocin (Hasler et al., 1997), an active metabolite that acts as an agonist of serotonin presynaptic 

5-hydroxytryptamine2A (5-HT2A) receptors (Gonzalez-Maeso et al., 2007). Psilocin is eliminated 

mainly by glucuronidation, and psilocin glucuronide proved to be the major fraction of 

administered dose in both serum and urine (Kamata et al., 2006, Hasler et al., 2002, Kamata et 

al., 2003, Hasler et al., 1997, Sticht and Kaferstein, 2000, Grieshaber et al., 2001). Alternative 
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metabolic routes include oxidation via an assumed intermediate, 4-hydroxyindole-3-

acetaldehyde, to yield 4-hydroxyindole-3-acetic acid and 4-hydroxytryptophol (Hasler et al., 

1997, Holzmann, 1995) (Figure 11). 

 

2.2.3 Glucuronidation of endo- and xenobiotics with the indole scaffold 

The indole scaffold is present in endogenous molecules, therapeutic and abused drugs, and 

natural products. Due to the high prevalence of the indole structure in a broad range of molecules 

with different pharmacodynamic effects, the indole scaffold is commonly referred to as the 

―privileged structure‖ (Welsch et al., 2010, de Sa Alves et al., 2009). In the body, the essential 

amino acid L-tryptophan is precursor for the synthesis of the neurotransmitter serotonin and 

hormone melatonin, as well as for a number of intermediates and downstream metabolites 

(Figure 13). Serotonin is exclusively glucuronidated by UGT1A6 (Krishnaswamy et al., 2003a, 

King et al., 1999), although the measured affinity toward the enzyme is very low (Km ≈ 5–9 

mM). N-Acetylserotonin and 5-hydroxytryptophol, two endogenous metabolites of serotonin, are 

also predominantly glucuronidated by UGT1A6, even though there is a smaller contribution 

from UGTs 1A9 and 1A10 (Krishnaswamy et al., 2004). In contrast to these results, 

6-hydroxymelatonin, a degradation product of melatonin, is mainly glucuronidated by UGTs 

1A9 and 1A10, whereas the activity of UGT1A8 was much lower (Krishnaswamy et al., 2004). 

Two endogenous indoles with a carboxylic acid functional group, 5-hydroxytryptophan and 

5-hydroxyindoleacetic acid, exhibited no glucuronidation activity in the preliminary assays with 

HLM (Krishnaswamy et al., 2004). Structural analysis of the serotonin glucuronide by nuclear 

magnetic resonance (NMR) revealed that glucuronidation occurs exclusively on the hydroxyl 

group of the indole ring; no N-glucuronides were detected (Krishnaswamy et al., 2003b).  

Figure 11. Metabolic pathways of psilocybin and psilocin in humans. The enzymes of 

oxidoreductive (phase I) metabolism are omitted for clarity. 
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The indole scaffold is also widely present in both therapeutic drugs and drugs of abuse (Figure 

13). The relative contribution of glucuronidation to the overall metabolism of these drugs and 

their phase I metabolites varies considerably, however. Indomethacin, a prescription NSAID 

commonly used for the treatment of pain and fever, is subject to extensive acyl glucuronidation 

and is a substrate mainly for UGTs 1A9, 1A10, 2B7, and 2A1, although many other UGT 

enzymes may also offer a significant contribution (Kuehl et al., 2005, Zhang et al., 2012b). 

Triptans are agonists of serotonin 5-HT1B and 5-HT1D receptors that are used to treat acute 

migraine (for a review, see Johnston and Rapoport, 2010). After phase I metabolic reactions, 

indoleacetic acid metabolites of sumatriptan (Dixon et al., 1993) and almotriptan (McEnroe and 

Fleishaker, 2005) are glucuronidated and excreted into the urine. ―Setrons‖ are antagonists of 

serotonin 5-HT3 receptors used mainly to treat nausea and vomiting, especially in cancer patients 

undergoing chemotherapy (for a review, see Thompson and Lummis, 2007). Ondansetron is 

predominantly oxidized by CYPs to 8-hydroxyondansetron, which is glucuronidated further 

(Musshoff et al., 2010). Alosetron, a 5-HT3 antagonist predominantly used for the treatment of 

irritable bowel syndrome, is similarly oxidized to 6-hydroxyalosetron and is glucuronidated 

further (Lotronex
®
 prescribing information, Prometheus Laboratories Inc., San Diego, CA, 

USA). Dolasetron undergoes stereoselective reduction of the carbonyl group in the octahydro 

quinolizin ring to yield predominantly (R)-reduced dolasetron (Reith et al., 1995). Both (R)- and 

(S)-reduced dolasetron are glucuronidated further to form the major metabolites excreted in 

urine; the glucuronidation apparently favors the (S)-isomer (Reith et al., 1995). Similar to the 

Figure 12. Metabolism of endogenous indoles in the human body. For clarity, this 

figure omits individual enzymes involved in the interconversion of metabolites. 

Serotonin (Krishnaswamy et al., 2003a, King et al., 1999, Krishnaswamy et al., 

2003b), N-acetylserotonin (Krishnaswamy et al., 2004), 5-hydroxytryptophol 

(Krishnaswamy et al., 2004), and 6-hydroxymelatonin (Krishnaswamy et al., 2004) 

are substrates for UGT enzymes (indicated in bold; if known, Km values are 

presented below the name of the UGT enzyme).  
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metabolism of ondansetron and alosetron, tropisetron is first oxidized to 5-hydroxytropisetron 

and further glucuronidated to the major metabolite 5-hydroxytropiseton glucuronide (Fischer et 

al., 1992).    

 

Tadalafil, a selective inhibitor of phosphodiesterase type 5 used to treat erectile dysfunction, is 

sequentially metabolized by CYPs and UGTs to form a major metabolite, methylcatechol 

glucuronide (Forgue et al., 2007). Glucuronides were identified as minor metabolites of 

Figure 13. Chemical structures of therapeutic and abused drugs with indole scaffold. 



 

32 

 

fluvastatin, a drug used to lower cholesterol levels by inhibiting 3-hydroxy-3-methyl-glutaryl-

CoA reductase, an important enzyme in the biosynthesis of cholesterol (Dain et al., 1993). 

Bufotenin, 5-methoxy-N,N-dimethyltryptamine, and 5-methoxy-N,N-diisopropyltryptamine 

(Foxy-methoxy) are hallucinogenic indoles that occasionally serve as recreational drugs (Kamata 

et al., 2006, Shen et al., 2010, McBride, 2000) (Figure 13). These compounds are subjected to 

glucuronidation either directly (bufotenin) or after O-demethylation reaction (5-methoxy 

derivatives) (Kamata et al., 2006, Shen et al., 2010, Raisanen, 1984). 

2.3 Measurement and prediction of UGT activity based on in vitro 
assays 

Studies of UGT function and structure frequently use in vitro activity and inhibition assays. Most 

notably, in vitro UGT assays are employed in preclinical drug development to estimate drug 

glucuronidation in vivo, both qualitatively and quantitatively, as well as to investigate possible 

drug-drug interactions (Miners et al., 2010). These requirements are also reflected in recent 

regulatory guidelines from EMA and FDA on drug interactions (see Section 1 for document 

links). Moreover, in vitro assays should provide reliable answers to questions about UGT 

substrate selectivity, catalytic mechanisms, or the activity of polymorphic enzymes. Therefore, 

careful optimization of in vitro assay conditions is not only an integral part of the drug discovery 

and development process, but also a crucial step in successful studies of UGT structure and 

function.  

In vitro UGT assay are usually performed with either human microsomal fractions, recombinant 

human enzymes, or, more recently, with hepatocytes. Microsomal fractions, such as human liver 

microsomes (HLM), intestinal microsomes (HIM), or kidney microsomes (HKM), contain 

several UGT enzymes (see Table 1) and commonly serve to determine whether or not the 

compound of interest undergoes glucuronidation, and if so, what types of glucuronides are 

produced, if more than one is detected. If a compound undergoes glucuronidation, enzyme 

kinetic assays are employed to quantitatively determine the rate of glucuronidation. Next, the 

reaction rate measured in vitro is extrapolated to estimate the glucuronidation in vivo (Miners et 

al., 2010). Though highly helpful in the initial phases of the study, the complex composition of 

the microsomal fractions makes them less useful in mechanistic studies of glucuronidation, 

especially in identifying individual UGT enzymes responsible for the reaction (reaction 

phenotyping), and in estimating the effects of polymorphic mutations in the enzymes on their 

activity. Recombinant human enzymes, most commonly expressed in insect Sf9 or human 

HEK293 cells, are used to examine the activity of individual UGTs and their mutants (reviewed 

by Radominska-Pandya et al., 2005a).     

Despite the widespread use of microsomal fractions and recombinant UGT enzymes, several 

studies have reported that in vitro glucuronidation assays often result in large underestimations 

of UGT activity in vivo (Soars et al., 2002, Boase and Miners, 2002, Mistry and Houston, 1987). 

Variability in experimental conditions, nonspecific microsomal binding, inappropriate 

physiological scaling factors, and unsuitable kinetic modeling may all influence the reliability of 

in vitro–in vivo extrapolation. Some researchers have suggested isolated hepatocytes as a 

superior model for studies of glucuronidation (Engtrakul et al., 2005), even despite their greater 

complexity, technical difficulties, and higher cost (Hewitt et al., 2007). The poor in vitro–in vivo 
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correlation for drugs eliminated by glucuronidation prompted intensive research seeking a 

detailed understanding, improvement, and standardization of UGT assays. Numerous 

experimental factors were found to affect in vitro UGT enzyme activity, including buffer type, 

pH, ionic strength, UGT latency, organic solvent, glucuronide stability, atypical kinetics, and the 

nonspecific binding of substrates. Recent studies, however, have found that the addition of 

purified fatty acid-free bovine serum albumin (BSA) significantly enhances the in vitro activities 

of several human UGTs and CYPs and improves the in vitro–in vivo extrapolation. This 

phenomenon, commonly referred to as the ―Albumin effect‖, is becoming increasingly important 

in drug metabolism studies and will be described in further detail in Section 2.3.2.        

2.3.1 Experimental conditions of the in vitro UGT assay 

In vitro UGT assays are typically performed in 50- to 100-mM phosphate or TRIS 

[tris(hydroxymethyl)aminomethane] buffer at pH 7.4. Although these two buffers are generally 

interchangeable, some studies have reported higher UGT activity with TRIS buffer (Boase and 

Miners, 2002, Mutlib et al., 2006, Walsky et al., 2012) or, alternatively, bicarbonate buffer 

(Engtrakul et al., 2005). Lower pH values (pH < 7.4) proved beneficial in assays with acidic 

substrates such as diclofenac, indomethacin, or mycophenolic acid (Zhang et al., 2012b, Chang 

et al., 2009), whereas higher pH values (pH > 7.4) stimulate the glucuronidation of basic 

substrates such as raloxifene (Chang et al., 2009). Divalent metal ions increase UGT activity, 

and 1–10 mM of Mg
2+

 ions is typically added to in vitro UGT incubations (Fisher et al., 2000, 

Boase and Miners, 2002, Walsky et al., 2012). Since β-glucuronidase, a mammalian enzyme that 

hydrolyzes β-D-glucuronides could be present in microsomal fractions or hepatocytes (Levvy, 

1952), an inhibitor of this enzyme, D-saccharic acid 1,4-lactone (saccharolactone), was 

commonly added to UGT incubations. The tetrameric intraluminal β-glucuronidase was located 

in the endoplasmic reticulum and shown to hydrolyze bilirubin monoglucuronides in vivo, thus 

potentially contributing to the futile cycling of glucuronides (see Bock and Kohle, 2009 and 

references therein). However, due to observations of only minute β-glucuronidase activity in 

vitro and the potential inhibition of UGTs by saccharolactone, a recent study has suggested that 

the addition of saccharolactone offers no real benefit in assays with microsomal fractions 

(Oleson and Court, 2008).  

DMSO (1–10%) is commonly included in glucuronidation assays in order to improve the 

aqueous solubility of substrates and inhibitors. Although some studies have found that the 

inclusion of a low concentration of DMSO benefits certain glucuronidation assays (Uchaipichat 

et al., 2004, Zhang et al., 2011), preliminary tests are recommended for best results, especially 

with respect to the fine balance between the substrate solubility and potential inhibition of UGTs. 

The use of other organic solvents such as methanol, ethanol, and acetonitrile has been tested as 

well (Kuuranne et al., 2003, Uchaipichat et al., 2004).                

The active site of UGTs is on the luminal side of the endoplasmic reticulum membrane and is 

therefore enclosed behind a lipid bilayer (see Section 2.1.3). In vivo, this luminal membrane 

location requires a number of transporters for the proper catalytic function of UGTs, most 

notably to actively transport UDPGA (for a reviews, see Csala et al., 2007, Bock and Kohle, 

2009). In microsomal fractions, however, these transporters are not fully active, and the UGTs 

show reduced activity, sometimes referred to as ―UGT latency‖. As a result, microsomal 

fractions require disruption of the membrane in vitro, or ―activation‖, to facilitate the access of 
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UDPGA to the active site. The pore-forming peptide antibiotic alamethicin is currently the 

preferred activator of UGTs, as it inhibits neither UGT nor CYP activity (Little et al., 1997, 

Fisher et al., 2000, Walsky et al., 2012). On the other hand, available evidence suggests that 

alamethicin does not stimulate the activity of recombinant UGT enzymes (Kaivosaari et al., 

2008, Walsky et al., 2012, Zhang et al., 2011), possibly due to the higher permeability to 

UDPGA of the membranes in such preparations.  

2.3.2 Albumin effect in human UGTs and CYPs 

Numerous recent studies have found that the addition of albumin significantly enhances the 

activities of some human UGTs and CYPs, regardless of whether microsomal fractions or 

recombinant enzymes serve as an enzyme source. The selection of the albumin purity grade is 

important, because only the use of fatty acid-free BSA or HSA led to maximal activation 

(Rowland et al., 2007, Rowland et al., 2008a, Rowland et al., 2008b). To reduce the high 

nonspecific binding of drugs to BSA and HSA, human intestinal fatty acid binding protein 

(IFABP) was proposed as a suitable alternative (Rowland et al., 2009). Since only the free 

fraction of the drug is available for interaction with the enzyme, the nonspecific binding of 

substrates to macromolecules should always be measured and taken into account, regardless of 

whether BSA, HSA, or IFABP are used for activation (see Section 2.3.5). The reported optimal 

concentration of albumin in assays is 1–2% (Rowland et al., 2007), although concentrations as 

low as 0.1% proved sufficient (Shiraga et al., 2012). The enhancement of activity observed in the 

presence of BSA manifests mainly through apparent increases in the substrate affinity for the 

enzyme (decrease of the reaction Km) and, to a lesser extent, changes in Vmax. Moreover, the 

addition of albumin leads to more potent inhibition of the enzymes affected, which manifests as 

apparently lower IC50 or Ki values. If substrate depletion assays are used, the albumin affect is 

observed as an increase in the apparent intrinsic clearance (CLint) (Kilford et al., 2009, Gill et al., 

2012).    

Although albumin effects in UGTs and CYPs are usually discussed separately, these two 

phenomena share similar manifestation and mechanistic backgrounds. Therefore, to provide 

greater clarity and a better understanding of these phenomena, I present an integrated overview 

of the albumin effects in both UGTs and CYPs together. The effects of albumin on 

glucuronidation enzyme kinetics in microsomal fractions and recombinant UGTs appear in Table 

4 and Table 5, respectively. The consensus result of these studies is that the addition of albumin 

significantly enhances the glucuronidation rates of UGTs 1A9, 2B4, and 2B7, mainly through a 

decrease in apparent Km or S50 and mostly regardless of the source of the enzyme (Raungrut et 

al., 2010, Walsky et al., 2012, Rowland et al., 2007, Rowland et al., 2008a, Shiraga et al., 2012, 

Kilford et al., 2009, Gill et al., 2012, Uchaipichat et al., 2006). On the other hand, the activities 

of UGTs 1A1, 1A4, and 1A6 are generally less affected despite some changes in the enzyme 

kinetic model (Walsky et al., 2012, Rowland et al., 2008a, Kilford et al., 2009, Rowland et al., 

2006). In addition, a few UGT studies included albumin in the glucuronidation assays, but failed 

to account for the non-specific binding of substrates, thus yielding inconclusive results (Loureiro 

et al., 2011, Trdan Lusin et al., 2011, Ma et al., 2012, Klecker and Collins, 1997, Trapnell et al., 

1998). 
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Enzyme 

source 

Substrate 

(principle UGT enzyme) 

Observed effects of albumin 

addition 
References 

HLM 

17β-Estradiol (1A1) 
Km moderate increase, Vmax moderate 

increase 
(Walsky et al., 2012) 

Buprenorphine (1A1) CLint unaffected
a
 (Kilford et al., 2009) 

Ezetimibe (1A1) CLint moderate increase
a
 (Gill et al., 2012) 

Lamotrigine (1A4, 2B7) S50 decrease, Vmax unaffected
b
 (Rowland et al., 2006) 

Trifluoperazine (1A4) Km decrease, Vmax moderate decrease (Walsky et al., 2012) 

5-Hydroxytryptophol (1A6) 
Km unaffected, Vmax moderate 

decrease 
(Walsky et al., 2012) 

Raloxifene (1A9, 1A1) CLint increase
a
 (Kilford et al., 2009) 

Propofol (1A9) 
Km decrease, Vmax increase 

(Rowland et al., 2008a) 

(Walsky et al., 2012) 

CLint increase
a
 (Gill et al., 2012) 

Darexaban (1A9) Km decrease, Vmax unaffected (Shiraga et al., 2012) 

Mycophenolic acid (1A9) CLint increased
a
 (Gill et al., 2012) 

Zidovudine (2B7) 
Km decrease, Vmax unaffected 

(Uchaipichat et al., 2006) 

(Rowland et al., 2007) 

(Rowland et al., 2009) 

(Kilford et al., 2009) 

Km decrease, Vmax increase (Walsky et al., 2012) 

Codeine (2B4, 2B7) Km decrease, Vmax unaffected (Raungrut et al., 2010) 

Diclofenac (1A9/2B7), 

gemfibrozil, ketoprofen, 

naloxone, zidovudine (2B7) 

CLint increase
a
  

(Kilford et al., 2009) 

(Gill et al., 2012) 

HKM 

Ezetimibe (1A1), telmisartan 

(1A3), mycophenolic acid 

(1A9), propofol (1A9), 

diclofenac (1A9, 2B7), 

naloxone (1A8, 2B7), 

gemfibrozil (2B7) 

CLint increase
a
  (Gill et al., 2012) 

HIM 

Ezetimibe (1A1), telmisartan 

(1A3), mycophenolic acid 

(1A8, 1A9, 1A10), propofol 

(1A8, 1A9), diclofenac 

(1A9, 1A10, 2B7), naloxone 

(1A8/2B7), gemfibrozil (2B7) 

CLint increase
a
  (Gill et al., 2012) 

a 
Substrate depletion assays; 

b 
Data were analyzed with a hybrid of the Michaelis-Menten and the Hill equations. 

Enzyme 

source 
Substrate 

Observed effects of albumin 

addition 
References 

UGT1A1 
4-MU 

No activation. Change in the enzyme 

kinetic model. 
(Rowland et al., 2008a) 

17β-Estradiol Km increase, Vmax unaffected (Walsky et al., 2012) 

UGT1A4 
Lamotrigine Km increase, Vmax increase (Rowland et al., 2006) 

Trifluoperazine Km increase, Vmax increase (Walsky et al., 2012) 

Table 4. Albumin effects on glucuronidation enzyme kinetics in human microsomal 

fractions. 

Table 5. Albumin effects on the glucuronidation enzyme kinetics in recombinant 

human UGTs. 
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UGT1A6 

4-MU 
No activation. Change in the enzyme 

kinetic model. 
(Rowland et al., 2006) 

5-Hydroxytryptophol 
No activation. Km unaffected, Vmax 

unaffected 
(Walsky et al., 2012) 

UGT1A9 
4-MU, propofol Km decrease, Vmax unaffected 

(Rowland et al., 2008a) 

(Walsky et al., 2012) 

Derexaban Km decrease, Vmax unaffected (Shiraga et al., 2012) 

UGT2B4 Codeine S50 decrease, Vmax decrease
c
 (Raungrut et al., 2010) 

UGT2B7 

Zidovudine 
Km decrease, Vmax unaffected 

(Uchaipichat et al., 2006) 

(Rowland et al., 2007) 

Km decrease, Vmax increase (Walsky et al., 2012) 

4-MU S50 decrease, Vmax unaffected
c
 (Rowland et al., 2007) 

Codeine S50 decrease, Vmax unaffected
c
 (Raungrut et al., 2010) 

a 
Substrate depletion assays; 

b 
Data were analyzed with a hybrid of the Michaelis-Menten and the Hill equations; 

c 

Data were analyzed with the Hill equation. 

The inclusion of albumin in UGT inhibition assays yielded lower apparent Ki or IC50 values 

when substrates for UGTs 2B4 and 2B7 were used (Raungrut et al., 2010, Uchaipichat et al., 

2006, Rowland et al., 2006, Uchaipichat et al., 2011) (Table 6). Changes observed in the 

inhibitory parameters reflect the increased apparent affinity of tested inhibitors for UGTs 2B4 

and 2B7. These results, together with an increased apparent substrate affinity (lower Km), 

indicate that both substrates and inhibitors of UGTs 2B4 and 2B7 exhibit an apparently higher 

affinity in the presence of albumin. In addition, Walsky et al. (2012) tested the inhibition of a 

number of UGT enzymes in the presence of 2% BSA, but unfortunately failed to account for the 

nonspecific binding of the inhibitors to BSA.   

Enzyme source 

Substrate 

(Principle UGT 

enzyme) 

Inhibitor Albumin effects References 

HLM 

Zidovudine (2B7) Fluconazole Ki decrease (Uchaipichat et al., 2006) 

Codeine (2B4/2B7) Many Ki or IC50 decrease (Raungrut et al., 2010) 

Codeine and morphine 

(2B4/2B7) 
Ketamine Ki decrease (Uchaipichat et al., 2011) 

Lamotrigine (1A4/2B7) Valproic acid Ki decrease (Rowland et al., 2006) 

UGT2B7 Zidovudine Fluconazole Ki decrease (Uchaipichat et al., 2006) 

 

The effects of albumin on CYP-catalyzed reactions in HLM and recombinant CYPs appear in 

Table 7. In general, the addition of albumin enhanced the rate of reactions catalyzed by CYPs 

1A2, 2C8, and 2C9, mainly through a Km decreases and irrespective of the source of the enzyme 

(Rowland et al., 2008b, Ludden et al., 1997, Carlile et al., 1999, Tang et al., 2002, Zhou et al., 

2004, Wattanachai et al., 2011, Wattanachai et al., 2012). The reaction Vmax was usually less 

affected. 

 

Table 6. Albumin effects on the inhibition of glucuronidation in HLM and 

recombinant UGTs. 
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Enzyme 

source 

Substrate 

(principle CYP enzyme) 
Observed effects of albumin addition References 

HLM 

Phenacetin 

(mainly 1A2) 

Km1 decrease, Vmax1 unaffected 

Km2 unaffected, Vmax2 moderate increase
a
 

(Wattanachai et al., 2012) 

Lidocaine 

(mainly 1A2) 

Km1 decrease, Vmax1 unaffected 

Km2 unaffected, Vmax2 unaffected
a
 

(Wattanachai et al., 2012) 

Paclitaxel (2C8) Km decrease, Vmax unaffected (Wattanachai et al., 2011) 

Phenytoin (2C9) Km decrease, Vmax unaffected 

(Ludden et al., 1997) 

(Carlile et al., 1999) 

(Tang et al., 2002) 

(Rowland et al., 2008b) 

Tolbutamide (2C9) 

Km decrease, Vmax slight decrease (Carlile et al., 1999) 

Km decrease, Vmax unaffected 
(Tang et al., 2002) 

(Zhou et al., 2004) 

CYP1A2 
Phenacetin Km decrease, Vmax unaffected (Wattanachai et al., 2012) 

Lidocaine Km decrease, Vmax moderate decrease (Wattanachai et al., 2012) 

CYP2C8 Paclitaxel 
Km modest decrease, Vmax moderate 

increase 
(Wattanachai et al., 2011) 

CYP2C9 Phenytoin Km decrease, Vmax unaffected (Rowland et al., 2008b) 
a 
Data were analyzed with the two-enzyme model. 

2.3.3 Significance of the albumin effect for in vitro–in vivo extrapolation  

The addition of albumin to UGT and CYP in vitro assays led to more accurate predictions of 

metabolic elimination in vivo, usually because of elevated apparent CLint in vitro, which reduced 

the underprediction bias. For UGT substrates, including albumin improved the in vitro–in vivo 

extrapolation mainly for drugs that are glucuronidated by UGTs 1A9 and 2B7. In the case of 

UGT1A9 substrates, the addition of albumin improved the in vitro–in vivo extrapolation for 

propofol (Rowland et al., 2008a, Gill et al., 2012), raloxifene (Kilford et al., 2009), and 

mycophenolic acid (Gill et al., 2012). In the case of UGT2B7 substrates, in vitro–in vivo 

extrapolation was enhanced for zidovudine (Rowland et al., 2007, Kilford et al., 2009, 

Uchaipichat et al., 2006), codeine (Kilford et al., 2009), diclofenac (Kilford et al., 2009, Gill et 

al., 2012), ketoprofen (Kilford et al., 2009), and naloxone (Kilford et al., 2009, Gill et al., 2012). 

Adding albumin, however, resulted in overestimation of the in vivo CLint for gemfibrozil 

(substrate of UGT2B7), perhaps due to errors related to high nonspecific binding to albumin or 

the instability of gemfibrozil acyl glucuronide (Kilford et al., 2009, Gill et al., 2012).        

The addition of albumin also enhanced the accuracy of predictions of drug-drug interactions for 

the fluconazole inhibition of zidovudine glucuronidation (Uchaipichat et al., 2006), the valproic 

acid inhibition of lamotrigine glucuronidation (Rowland et al., 2006), the inhibition of codeine 

glucuronidation by several drugs (Raungrut et al., 2010), and the ketamine inhibition of codeine 

and morphine glucuronidation (Uchaipichat et al., 2011) (see Table 6). 

For drugs that are metabolized by CYP-catalyzed reactions, the addition of albumin to HLM 

incubations enhanced in vitro–in vivo extrapolation for the substrates of CYPs 1A2, 2C8, and 

2C9. Specifically, the in vivo CLint of phenacetin O-deethylation and lidocaine N-deethylation by 

CYP1A2 (Wattanachai et al., 2012), paclitaxel 6α-hydroxylation by CYP2C8 (Wattanachai et 

Table 7. Albumin effects on the enzyme kinetics of CYP-catalyzed reactions in HLM 

and recombinant CYPs.  
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al., 2011), and phenytoin hydroxylation by CYP2C9 (Rowland et al., 2008b, Ludden et al., 

1997, Carlile et al., 1999) were better predicted in the presence of albumin. In addition, 

including albumin and using cofactors for both UGT and CYP-catalyzed reactions in HLM 

incubations reduced the bias for in vivo CLint estimates for ketoprofen and diclofenac, most 

likely due to the simultaneous activation of UGT2B7- and CYP2C9-mediated pathways (Kilford 

et al., 2009). However, the inclusion of albumin in tolbutamide hydroxylation by HLM resulted 

in the overprediction of in vivo CLint (Carlile et al., 1999). 

2.3.4 Mechanism of the albumin effect 

Initial studies of the albumin effect focused on phenytoin and tolbutamide hydroxylation by 

HLM, a reaction catalyzed almost exclusively by CYP2C9 (Ludden et al., 1997, Carlile et al., 

1999, Tang et al., 2002, Zhou et al., 2004). The observed Km decrease was hypothesized to be a 

result of albumin effects on the ternary and quaternary structure of CYP2C9 (Ludden et al., 

1997, Tang et al., 2002), or on the albumin-mediated removal of CYP2C9 internal inhibitors, 

such as fatty acids present in the microsomal preparation (Carlile et al., 1999, Tang et al., 2002). 

The latter alternative was in line with the result that fatty acid-free HSA, but not crude HSA, can 

stimulate tolbutamide hydroxylation in HLM (Zhou et al., 2004). For drugs eliminated by 

glucuronidation, initial reports of the albumin effect found that including 2% BSA significantly 

increases the rates of zidovudine and fenoldopam glucuronidation by HLM (Klecker and Collins, 

1997, Trapnell et al., 1998), even without accounting for the substrate binding to BSA. Some 

authors have proposed that BSA disrupts the membranes of the endoplasmic reticulum, thereby 

eliminating UGT latency (Trapnell et al., 1998).   

More recent studies have found that albumin enhances UGT and CYP activities by removing 

internal inhibitors from in vitro assays, a mechanism that both UGT- and CYP-catalyzed 

reactions share, independently of the source of the enzyme (Raungrut et al., 2010, Rowland et 

al., 2007, Rowland et al., 2008a, Rowland et al., 2008b, Wattanachai et al., 2011, Wattanachai et 

al., 2012). The inhibitors that are removed by albumin were identified as long-chain unsaturated 

fatty acids, most notably oleic (18:1n-9; 18:1-Δ
9
), linoleic (18:2n-6; 18:2-Δ

9,12
), and arachidonic 

acid (20:4n-6; 20:4-Δ
5,8,11,14

) (Rowland et al., 2007, Rowland et al., 2008a, Rowland et al., 

2008b) (Figure 14). These fatty acids proved to be potent inhibitors of UGTs 1A9 and 2B7 

(Rowland et al., 2007, Rowland et al., 2008a, Tsoutsikos et al., 2004), as well as of CYPs 1A2, 

2C8, and 2C9 (Rowland et al., 2008b, Wattanachai et al., 2011, Wattanachai et al., 2012). 

Although the inhibition studies were not comprehensive, the inhibitory potencies of fatty acids 

toward UGTs and CYPs are generally in the low-µM range. For example, linoleic was a 

competitive inhibitor of 4-MU glucuronidation by UGT1A9 with Ki value of 4.1 µM (Tsoutsikos 

et al., 2004). Arachidonic acid exhibited even more potent inhibition of UGT1A9, but displayed 

―atypical inhibition behavior‖ which prevented the authors from determining the Ki (Tsoutsikos 

et al., 2004). Moreover, arachidonic acid competitively inhibited phenytoin hydroxylation by 

HLM and E. coli-expressed CYP2C9 with Ki values of 3.8 and 1.6 µM, respectively (Rowland et 

al., 2008b), whereas the Ki values for arachidonic acid, linoleic acid, and oleic acid inhibition of 

CYP1A2-catalyzed phenacetin O-deethylation were 4.7, 13.6, and 16.7 µM, respectively 

(Wattanachai et al., 2012).   

In addition to being inhibitors, oleic, linoleic, and arachidonic acid are also substrates for 

UGT2B7 (Turgeon et al., 2003, Rowland et al., 2007) and CYP2C9 (Rowland et al., 2008b), 



 

39 

 

suggesting a competition between the fatty acids and the drugs tested for binding to the active 

sites of the enzymes. As shown by the radiometric thin layer chromatography method, UGT2B7 

glucuronidated a broad variety of fatty acids, both saturated and unsaturated, with average 

glucuronidation rate of 10–100 pmol·min
–1

·mL
–1

 (Rowland et al., 2007). On the other hand, in 

incubations with NADPH-generating system, as measured by tandem mass spectrometry, 

CYP2C9 produced mono- and dihydroxylated metabolites of several fatty acids (Rowland et al., 

2008b).     

 

The inhibitory fatty acids are presumably released from disrupted cell membranes during the 

preparation of microsomal fractions or recombinant UGTs and CYPs (Rowland et al., 2007, 

Rowland et al., 2008b). This hypothesis is supported by the fact that apparent Km value for 

zidovudine glucuronidation by UGT2B7 was high in HLM (760 µM) but low in isolated 

hepatocytes (87 µM) (Engtrakul et al., 2005). If fatty acid-free BSA or HSA is added to in vitro 

assays, the effective concentration of fatty acids decreases, leading to a reversal of the inhibitory 

effect (Rowland et al., 2007, Rowland et al., 2008a, Rowland et al., 2008b). The structures of 

both BSA and HSA have at least 2–3 high affinity and 4–5 intermediate affinity fatty acid-

binding sites (recently reviewed by Van der Vusse, 2009). The comparable removal of fatty acid 

inhibitors can also be achieved if UGT2B7 and HSA are coexpressed in HEK293 cells (Rowland 

et al., 2007). 

Since inhibitory fatty acids originate from disrupted cell membranes, differences in lipid 

composition between different enzyme sources may affect the magnitude of the albumin effect. 

Available data suggests that the relative abundance of fatty acids is highest in HLM (Rowland et 

al., 2007), lower in HEK293 cells expressing UGT enzymes (Rowland et al., 2007), and lowest 

in Escherichia coli (E. coli) cells expressing CYP enzymes (Rowland et al., 2008b). Measured 

concentrations of inhibitory fatty acids in these enzyme sources were approximately 10–60 µM 

(Rowland et al., 2007), 1–8 µM (Rowland et al., 2007), and 0.1–5 µM (Rowland et al., 2008b), 

for HLM, HEK293 cells expressing UGTs, and E. coli cells expressing CYPs, respectively, all 

assayed at enzyme source concentration of 1 mg/mL. The activity data in the presence of 

albumin corresponds fairly well with fatty acid abundance, as the highest relative decrease in Km 

occurred in HLM (Rowland et al., 2007, Rowland et al., 2008a, Rowland et al., 2008b), a 

smaller decrease occurred in UGTs 1A9 and 2B7 expressed in HEK293 cells (Rowland et al., 

2007, Rowland et al., 2008a), and the lowest decrease occurred in CYPs 1A2, 2C8, and 2C9 

expressed in E. coli cells (Rowland et al., 2008b, Wattanachai et al., 2011, Wattanachai et al., 

2012). The fatty acid composition of Sf9 cells, the cell line that is commonly employed for 

Figure 14. Chemical structures of fatty acids identified as principal inhibitors of 

UGTs and CYPs. 
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expressing recombinant UGTs, appears to be quantitatively similar to HEK293 cells, even if Sf9 

cells contain comparatively less linoleic and arachidonic acid, but more oleic and palmitoleic 

acid (16:1n-7; 16:1-Δ
9
) (Marheineke et al., 1998).              

2.3.5 Drug binding to albumin and enzyme sources 

Apart from interacting with the active site of UGTs, substrates may also bind to macromolecules 

present in the incubation mixture, most notably externally added albumin and enzyme sources, 

either microsomal fractions or recombinant UGTs. This process, commonly referred to as 

―nonspecific binding‖, may significantly reduce the actual concentration of the substrate 

available for interaction with the enzyme. If unaccounted for, nonspecific binding may lead to 

the underprediction of both the substrate affinity and inhibitor potency, all leading to poor in 

vitro–in vivo extrapolation (Miners et al., 2010, Obach, 1997, McLure et al., 2000). In addition, 

unaccounted nonspecific binding may result in misinterpretation of the enzyme kinetic model 

(McLure et al., 2000).  

Drug binding to albumin and enzyme sources is typically measured by ultrafiltration or 

equilibrium dialysis. Equilibrium dialysis is considered the ―gold standard‖ method employed by 

many laboratories (reviewed by Banker and Clark, 2008). Although ultrafiltration is a rapid 

method suitable for automation, the non-specific adsorption of drugs to the ultrafiltration 

membrane may limit its practical usefulness (Lee et al., 2003). Rapid equilibrium dialysis (RED) 

was recently been introduced as a faster and high-throughput alternative to classical equilibrium 

dialysis (Waters et al., 2008).        

2.3.6 Principles of in vitro–in vivo extrapolation  

HLM or hepatocytes are typically used as the enzyme source for in vitro–in vivo extrapolation. 

The in vitro intrinsic clearance (CLint, in vitro), the principle in vitro parameter used for in vitro–in 

vivo extrapolation, can be calculated as the Vmax/Km ratio (Eq. 1) or, alternatively, determined 

from substrate depletion assays at low concentrations of substrate ([S] << Km) (Jones and 

Houston, 2004) (Eq. 2): 

(1)                
    

  
; or (2)                

  

  
 

where Vmax is the reaction limiting velocity, Km is the Michaelis-Menten constant, k is the 

substrate depletion rate constant, V is the volume of incubation, and mp is the amount of 

microsomal protein in the assay. Usually, CLint, in vitro is expressed in µL∙min
–1

∙mg
–1

 of 

microsomal protein. Next, CLint, in vitro is scaled-up to the whole-liver intrinsic clearance 

(CLint, liver) by using the published values of HLM protein abundance (approx. 40 mg∙g
–1

) or 

hepatocellularity per gram of liver (approx. 10
8
 cells∙g

–1
 liver), as well as the average weight of 

the human liver (approx. 20 g∙kg
–1

) (Barter et al., 2007, Houston and Galetin, 2008). The use of 

microsomal fractions from other organs, such as HKM or HIM, will require specific scaling 

factors. CLint, liver is extrapolated to hepatic clearance (CLH) with physiologically-based models 

of hepatic clearance, most commonly the well-stirred model (Eq. 3): 

(3)     
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where QH is the liver-blood flow (approx. 20 ml∙min
–1

∙kg
–1

), fu is the fraction of unbound drug in 

the blood, and CLint, liver is the whole-liver intrinsic clearance. To simulate the in vivo situation, 

the well-stirred model assumes that (1) distribution into the liver is limited only by the perfusion 

rate and has no diffusion barriers, (2) only unbound drug crosses the cell membrane and interacts 

with the enzymes, (3) metabolic enzymes are homogenously distributed in the liver, and (4) the 

concentration of the drug in the liver is equal to the outflow concentration (Houston and Galetin, 

2008). Additional physiologically-based models of hepatic clearance, such as the parallel-tube 

model and the dispersion model, may offer an advantage in the prediction of CLH (Houston and 

Galetin, 2008). The hepatic extraction ratio (EH), the percentage of the dose that is metabolized 

during the first pass through the liver, is calculated as CLH/QH. Other clearance terms, such as 

intestinal, renal, or biliary metabolism and excretion, may be required in order to obtain the total 

body clearance of the drug. 

2.3.7 Prediction of inhibitory drug-drug interactions 

The inhibition potency of the drug is usually quantified through the inhibitory dissociation 

constant Ki, which is determined experimentally (see Section 2.4.3). Alternatively, assuming the 

inhibition modality is known, measured IC50 values can be converted to their corresponding Ki 

values (Cheng and Prusoff, 1973). The magnitude of drug-drug interactions in vivo is estimated 

by the ratio of the area under the plasma drug concentration vs. time curve in the presence 

(AUCi) and absence of an inhibitor (AUC) (Miners et al., 2010):  

(4) 
    

   
 

 
  

  
   
  

       
 

where [I] is the concentration of the inhibitor at the enzyme site (usually the unbound 

concentration in plasma or the hepatic input concentration), Ki is the inhibitory dissociation 

constant, and fm is the fraction of the dose metabolized by the enzyme of interest. The high 

numerical value of AUCi/AUC ratio indicates that significant drug-drug interaction in likely to 

be observed in vivo. The review by Williams et al. (2004) suggests that the AUCi/AUC ratios 

observed in the presence of UGT inhibitors are typically less than two, indicating the relatively 

modest significance of drug-drug interactions for drugs metabolized by UGTs. Generally, similar 

modestly elevated AUCi/AUC ratios were recently obtained in the fluconazole inhibition of 

zidovudine glucuronidation (Uchaipichat et al., 2006), the valproic acid inhibition of lamotrigine 

glucuronidation (Rowland et al., 2006), the inhibition of codeine glucuronidation by several 

drugs (Raungrut et al., 2010), and the ketamine inhibition of codeine and morphine 

glucuronidation (Uchaipichat et al., 2011). The possible risk for drug-drug interactions (high 

AUCi/AUC ratios), however, rises if a drug is glucuronidated by a single UGT enzyme, the EH is 

high, and the inhibitor [I]/Ki ratio is high (Williams et al., 2004). The extensive list of clinically 

observed and in vitro proposed UGT drug-drug interactions is compiled by Kiang et al. (2005).   

2.4 Enzyme kinetics of UGT-catalyzed reactions 

Enzyme kinetic assays are widely used to estimate the substrate affinity and enzyme activity of 

UGT-catalyzed reactions. Although UGTs catalyze a two-substrate two-product reaction 

(see Figure 1), enzyme kinetic assays are commonly performed at a saturating concentration of 

UDPGA (2–5 mM), essentially simplifying the system to a single substrate analysis (Luukkanen 

et al., 2005). UGT enzyme kinetic assays are usually performed by measuring the initial rates of 
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glucuronidation under steady-state conditions, under the assumption that the concentrations of 

intermediate enzyme • substrate complexes are constant over the time period of the assay 

(d[E•S]/dt = 0). In order to fulfill these criteria, the concentrations of substrates should be much 

higher than the enzyme concentration ([S] >> [E]), and both enzyme concentration and 

incubation time should be optimized in order to minimize both substrate depletion and product 

formation (because products of the enzyme reaction often act as inhibitors of the enzyme). In 

practice, in order to measure the initial rates, ≤ 10% of substrate depletion or product formation 

is usually acceptable.  

Initial glucuronidation rates, measured and plotted over the range of different aglycone substrate 

concentrations, are usually fitted to the Michaelis-Menten equation via nonlinear regression. This 

equation simplifies the enzyme reaction to two distinct steps: (1) the enzyme and substrate first 

interact to form a non-covalent complex (E + S  E•S) and (2) the actual catalytic step occurs 

and the product is released (E•S  E + P) (Figure 15). The first step of the reaction is described 

by two rate constants: the second-order rate constant k1 for the association reaction 

(E + S  E•S) and the first-order rate constant k–1 for the dissociation reaction (E•S  E + S). 

The ratio of the dissociation rate constant to association rate constant is the equilibrium 

dissociation constant (Ks) for the first step of the enzyme reaction, the non-covalent interaction 

of enzyme with substrate (E + S  E•S; Ks = k–1/k1). The second, catalytic, step of the reaction 

(E•S  E + P) is described by the first-order rate constant kcat, usually known as the catalytic 

constant (Cornish-Bowden, 2012, Copeland, 2000).  

 

The mathematical forms of the Michaelis-Menten equation appear in Eq. 5:  

(5)   
       

      
 

          

      
 

          
       

  
    

 

where v is the initial reaction rate measured (usually nmol∙min
–1

∙mg
–1

), [S] is the concentration 

of the aglycone substrate (corrected for nonspecific binding to albumin and the enzyme source; 

see Section 2.3.5), and [E] is the concentration of the enzyme in the assay. Vmax is the limiting 

reaction velocity asymptotically approached at high concentrations of the substrate (Figure 16A). 

According to the definition kcat = Vmax/[E]. The kcat is, however, determined rarely in 

glucuronidation assays, mainly because the exact concentration of UGT enzymes is difficult to 

measure, an issue closely related to the absence of purified and fully active UGT enzymes, as 

well as to the lack of specific UGT antibodies (Oda et al., 2012).  

Km is the Michaelis-Menten constant, graphically defined as the [S] at half of the Vmax (Figure 

16A). Moreover, because Km = k–1∙kcat/k1, it serves as the pseudo-affinity constant for the 

substrate binding to the enzyme and is closely related to the corresponding equilibrium 

dissociation constant Ks = k-1/k1. If k–1 is much larger than kcat, Km is equivalent to Ks. If, 

E E·S

k1

S+
k–1

E P+
kcat

Figure 15. A simplified scheme of the enzyme reaction used to derive the Michaelis-

Menten equation. 
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however, the magnitudes of the individual rate constants are unknown, one cannot assume that 

Km will be equal Ks. Therefore, Km is best described as an empirical quantity relating v to [S] 

rather than as a measure of the thermodynamic stability of the enzyme • substrate complex. The 

ratio of Vmax/Km, commonly referred to as the intrinsic clearance (CLint), is a second-order rate 

constant for the overall reaction at low concentrations of the substrate (E + S  E + P; 

[S] << Km). This parameter widely serves as a starting point for the in vitro–in vivo extrapolation 

of glucuronidation activity (see Section 2.3.6). 
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The linear transformations of the Michaelis-Menten equation often appear in the literature, most 

notably Eadie-Hofstee (Figure 16B) and Lineweaver-Burk (Figure 16C) plots. Although they 

offer no advantage in determining enzyme kinetic parameters, these linear plots are useful for 

visualizing the relationship between several enzyme kinetic experiments, especially in inhibition 

assays and bisubstrate kinetic studies (Cornish-Bowden, 2012). Moreover, the Eadie-Hofstee 

plot is commonly used to detect deviations from Michaelis-Menten kinetics.   

Similar to studies of aglycone kinetics, the enzyme kinetics of UPDGA can be studied at 

saturating concentration of the aglycone substrate (Luukkanen et al., 2005). However, since 

many UGT reactions exhibit substrate inhibition with respect to the aglycone substrate 

(Luukkanen et al., 2005; see Section 2.4.2), these experiments are more complex than commonly 

perceived and may yield unreliable results. In addition, the aqueous solubility of many aglycone 

substrates may be insufficient to reach full saturation, thus leading to overestimation of the Km 

for UDPGA.    

2.4.1 Enzyme kinetic mechanism of UGT-catalyzed reactions 

Human UGTs catalyze glucuronic acid-transfer reactions with two substrates and two products. 

Schematically, glucuronidation can be presented as the transfer of group X (glucuronic acid) 

from substrate A to substrate B: AX + B  BX + A, where AX stands for UDPGA, B for the 

aglycone substrate, BX for the glucuronide conjugate, and A for UDP. Knowledge of the enzyme 

kinetic mechanism is important to understand the function and structure of UGTs, especially 

with respect to UGT inhibition, to the design of in vitro assays, and for studies of substrate 

selectivity and the catalytic mechanism. In order to understand the enzyme kinetic mechanism of 

Figure 16. The theoretical saturation profile for the Michaelis-Menten equation 

presented as the initial rate vs. the [S] plot (A), the Eadie-Hofstee plot (B), and the 

Lineweaver-Burk plot (C). 
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UGT-catalyzed reactions, one must take into account both substrates and both products. In 

general, such reactions are classified into two distinct mechanisms: (1) the ternary-complex 

mechanism, which proceeds through the formation of a single ternary complex with both 

substrates bound to the enzyme (Figure 17A), and (2) the substituted-enzyme mechanism, which 

proceeds through the formation of two binary complexes (Figure 17B) (Cornish-Bowden, 2012, 

Copeland, 2000). According to the substrate binding order, one can further subdivide the ternary-

complex mechanism into compulsory-order and random-order mechanisms. On the other hand, 

the substituted-enzyme mechanism is always compulsory-ordered, since reaction has only one 

mechanistically reasonable pathway along which to proceed (Cornish-Bowden, 2012).                           

 

The principal tool for enzyme kinetic mechanism study is bisubstrate enzyme kinetics, an assay 

in which the initial reaction rate is measured as a function of simultaneous change in the 

concentrations of both substrates. The initial rates obtained can be fitted to appropriate equations 

for either a compulsory-order ternary-complex mechanism (Eq. 6; Cornish-Bowden, 2012), a 

random-order ternary-complex mechanism (Eq. 7; Alberty, 2011), or a substituted-enzyme 

mechanism (Eq. 8; Cornish-Bowden, 2012):  

(6)   
           

                               
 

where Vmax is the limiting velocity at the saturating concentration of both AX and B, KiAX is the 

equilibrium dissociation constant for the E + AX  E•AX reaction, KmAX is the limiting 

Michaelis constant for AX when B is saturated, and KmB is the limiting Michaelis constant for B 

when AX is saturated. This steady-state equation assumes that substrate AX binds first and that 

substrate B binds second. 

(7)   
              

                                         
 

A. Ternary-complex mechanism
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B. Substituted enzyme mechanism
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Figure 17. Hypothetical compulsory-order ternary-complex (A) and substituted-

enzyme (B) kinetic mechanisms for the transfer of group X from substrate A to 

substrate B (AX + B  BX + A).  
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where KiAX and KiB are the equilibrium dissociation constants for the complexes E•AX and E•B, 

respectively. KB is the first equilibrium dissociation constant for the complex E•AX•B 

(E•AX•B  E•AX + B). KA, the second equilibrium dissociation constant for the complex 

E•AX•B (E•AX•B  E•B + AX), is not included in this equation, but can still be calculated from 

the following relationship: KiAKB = KiBKA. Due to the complexity of the random-order ternary-

complex mechanism, this equation is derived based on the rapid-equilibrium assumption, which 

assumes that only the interconversion of two binary complexes is rate-limiting (E•AX•B  

E•A•BX), whereas all other steps are much faster.  

(8)   
           

                       
 

where KmAX and KmB are the limiting Michaelis constants for AX and B, as in Eq. 6. This steady-

state equation also implicitly assumes a mechanistically reasonable compulsory-order 

mechanism, where AX and B are the first and second binding substrates, respectively. 

Based on the goodness-of-fit and characteristic intersection patterns of the primary linear plots, 

one can clearly distinguish between ternary-complex and substituted-enzyme mechanisms. If the 

reaction follows a ternary-complex mechanism, however, the bisubstrate kinetics alone are 

insufficient to discriminate between the compulsory- and random-order of substrate binding; 

both Eqs. 6 and 7 are likely to fit ternary-complex data well, regardless of binding order. Product 

and dead-end inhibition studies, together with the nature of substrate inhibition, are commonly 

used to elucidate the order of substrate binding (Cornish-Bowden, 2012, Bisswanger, 2002). If 

the kinetic parameters can be measured in both the forward and reverse directions of the enzyme 

reaction, one may use the Haldane relationship to determine the thermodynamic equilibrium 

constant of the overall reaction (Cornish-Bowden, 2012). Moreover, for reactions following the 

compulsory-order ternary-complex mechanism, a unique relationship exists between the enzyme 

kinetic parameters and individual rate constants, thus offering a possibility to quantify the rate of 

each individual reaction step (Cornish-Bowden, 2012). 

The past 40 years witnessed the extensive investigation of the UGT enzyme kinetic mechanism, 

but with variable results (Table 8). The majority of such studies found that UGT-catalyzed 

reactions follow a ternary-complex mechanism, regardless of the enzyme source or experimental 

conditions. The formation of ternary complex is also supported by evidence that glucuronidation 

resembles an SN2-type nucleophilic substitution reaction, with the inversion of the glucuronic 

acid anomeric carbon from the α-configuration in UDPGA to the β-configuration in the resultant 

glucuronide (Axelrod et al., 1958, Johnson and Fenselau, 1978; see Section 2.1.4 and Figure 8). 

Retention of the configuration is expected, but unnecessary in substituted-enzyme mechanisms 

(Cornish-Bowden, 2012). Despite broad agreement on the formation of ternary complex, 

previous studies disagree about whether or not the two substrates (the aglycone substrate and the 

UDPGA) bind in a random or compulsory order (Table 8). Disagreements over the order of 

substrate binding may have arisen from the use of liver microsomal preparations that contain 

multiple UGT enzymes (Potrepka and Spratt, 1972, Vessey and Zakim, 1972, Sanchez and 

Tephly, 1975, Rao et al., 1976, Koster and Noordhoek, 1983), or of partially purified UGT 

enzymes (Yin et al., 1994, Matern et al., 1982, Matern et al., 1991, Falany et al., 1987) that may 

have been inactivated by detergents during the purification process (Kurkela et al., 2003).   
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Enzyme source Aglycone substrate Reaction mechanism Reference 

Guinea pig liver 

microsomes 
Bilirubin 

Compulsory-order ternary-complex 

(UDPGA first, aglycone second) or 

iso-Theorell-Chance 

(Potrepka and Spratt, 

1972) 

Beef and guinea pig 

liver microsomes 
p-Nitrophenol 

Rapid equilibrium random-order 

ternary-complex 
(Vessey and Zakim, 1972) 

Rat liver microsomes Morphine 
Compulsory-order ternary-complex 

(UDPGA first, aglycone second) 

(Sanchez and Tephly, 

1975) 

Pig kidney 

microsomes 
Estrone 

Ternary-complex mechanism, iso-

Theorell-Chance (aglycone first, 

UDPGA second) 

(Rao et al., 1976) 

Purified UGT from 

rat liver 

Chenodeoxycholic 

acid and testosterone 
Ternary-complex mechanism (Matern et al., 1982) 

Rat intestinal 

microsomes 
1-Naphthol 

Compulsory-order ternary-complex 

(aglycone first, UDPGA second) 

(Koster and Noordhoek, 

1983) 

Two purified UGTs 

from rat liver 

Androsterone and 

testosterone 

Rapid equilibrium random-order 

ternary-complex 
(Falany et al., 1987) 

Purified UGT from 

human liver 
Hyodeoxycholic acid Ternary-complex mechanism (Matern et al., 1991) 

Purified UGT from 

rat liver microsomes 
Substituted phenols Random-order ternary-complex (Yin et al., 1994) 

Recombinant human 

UGTs from 1A family 

Entacapone, 

scopoletin, 

umbelliferone,  

1-naphthol,  

4-hydroxyestrone, 

ethinylestradiol 

Compulsory-order ternary-complex 

(UDPGA first, aglycone second) 
(Luukkanen et al., 2005) 

Recombinant human 

UGT1A6 
Scopoletin 

Compulsory-order ternary-complex 

(UDPGA first, aglycone second) 
(Patana et al., 2007) 

    

Until now, only two studies have used recombinant enzymes to investigate the enzyme kinetic 

mechanism of UGTs (Patana et al., 2007, Luukkanen et al., 2005). Luukkanen et al. (2005) 

concluded that UGTs follow a compulsory-order ternary-complex mechanism in which UDPGA 

binds first. It should be noted, however, that this study was performed in the absence of BSA and 

focused on UGT1A9, an enzyme recently found to be activated by BSA (Rowland et al., 2008a). 

Earlier enzyme kinetic studies were also performed without BSA.   

2.4.2 Substrate inhibition in UGT-catalyzed reactions  

A higher aglycone substrate concentration often lowers the reaction rate of UGT-catalyzed 

reactions and may lead to the underestimation of reaction’s Vmax and the erroneous determination 

of Km (Figure 18; recently reviewed by Wu, 2011). Substrate inhibition is usually modeled with 

an empirical equation that is based on a mechanism in which a second molecule of substrate acts 

as an uncompetitive inhibitor of the reaction (Eq. 9; Figure 19A): 

(9)   
       

         
   

   
 
 

where Ksi is the constant describing the substrate inhibition interaction.  

Table 8. Previous studies that investigated the enzyme kinetic mechanism of UGTs. 
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A mechanistic model with two equivalent binding sites was proposed as an alternative to the 

empirical model of substrate inhibition (Houston and Kenworthy, 2000) (Eq. 10; Figure 19B):  

(10)   
     

   

  
 

     

   
  

  
    

  
 

    

   
 

 

where Ks is a substrate dissociation constant, α describes the change in substrate binding affinity 

for the second enzyme site, and β describes the change in the rate of product formation from 

S•E•S complex in comparison to that from E•S complex. Substrate inhibition occurs if β < 1, 

which means that product formation rate from the ternary S•E•S complex is decreased compared 

to formation rate from the binary S•E complex. This model, however, does not distinguish 

between the binding of two substrates to two separate active sites or, alternatively, to a single 

large binding cavity.    

 

E E·S

k1

S+ E P+
kcat

S

Ksi

E·S

Ks

E E P+
kcat

E·S S·E·S

Ks αKs

αKs

E·S P+
βkcat

A. Empirical model of substrate inhibition 

B. Two-site model

C. Substrate inhibition in compulsory-
order ternary-complex mechanism

AX

E E·AX

B

E·AX·B



E·A·BX
E·A

A

BX

B

E·A·B

Figure 18. Theoretical saturation profiles of substrate inhibition (solid line) and the 

Michaelis-Menten equation (dotted line) presented on an initial rate vs. [S] plot (A) 

and an Eadie-Hofstee plot (B).  

Figure 19. Enzyme kinetic models that describe substrate inhibition in UGT-

catalyzed reactions.  
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Substrate inhibition may also occur due to the compulsory-order ternary-complex reaction 

mechanism of UGT-catalyzed reactions (Luukkanen et al., 2005). In the case of a general group 

transfer reaction AX + B  BX + A, the second substrate B may bind to the ―wrong‖ 

binary-complex E•A to form an unproductive ternary-complex E•A•B (Cornish-Bowden, 2012) 

(Figure 19C). Thus, substrate inhibition in the UGT-catalyzed reaction may occur if the second 

substrate (the aglycone) binds to the enzyme • UDP complex to form an unproductive 

enzyme • UDP • aglycone complex (Luukkanen et al., 2005). The following equation models 

this mechanism of substrate inhibition well, assuming a steady state (Cornish-Bowden, 2012): 

(11)   
          

                                  
   

    
 
 

where KsiB is a constant that describes the substrate inhibition interaction. This model assumes 

that AX and B are the first and second substrates in the enzyme reaction, respectively. 

2.4.3 Inhibition of UGT-catalyzed reactions   

Figure 20 presents the most common types of reversible enzyme inhibitors. Inhibitor potency is 

usually indicated by the descriptive IC50 value, the concentration of inhibitor required to inhibit 

the reaction by 50%, or the mechanistic Ki value, an equilibrium dissociation constant for the 

enzyme-inhibitor (E•I) complex (Copeland, 2005). Competitive inhibitor binds only to the free 

enzyme E, uncompetitive inhibitor binds exclusively to the E•S complex, and mixed-type 

inhibitor binds to both free E and E•S complexes, albeit with different affinities (Ki ≠ αKi). 

Noncompetitive inhibitor is a special case of mixed-type inhibitor that binds with equal affinity 

to both the free E and the E•S complexes (α = 1; Ki = αKi). In order to determine the Ki value, the 

substrate enzyme kinetics is performed in the presence of several concentrations of inhibitor and 

the data are fitted to equations for competitive (Eq. 12), mixed-type (Eq. 13), noncompetitive 

(Eq. 14), and uncompetitive inhibition (Eq. 15) (Copeland , 2000): 

(12)   
       

         
   

   
 
; (13)   

       

   (  
   

    
)      

   

   
 
; (14)   

       

        (  
   

   
)
; 

(15)   
       

   (  
   

    
)   

 

where Kic, Kim, Kin, and Kiu are the competitive, mixed-type, noncompetitive, and uncompetitive 

inhibition constants, respectively. The coefficient α in Eqs. 13 and 15 represents the relative 

difference in the inhibitor’s binding affinity between the free enzyme (competitive modality) and 

the E•S complex (uncompetitive modality).      
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However, because UGTs catalyze the two-substrate two-product reaction, the inhibition modality 

will differ with respect to both substrates. For example, Luukkanen et al. (2005) found that 

1-naphthol is a competitive inhibitor with respect to the aglycone substrate entacapone, but is 

uncompetitive with respect to UDPGA. In addition, it is important to notice that the products of 

the UGT-catalyzed reactions, glucuronide conjugates and UDP, may also inhibit UGTs; this type 

of inhibition is known as product inhibition. For instance, UDP proved to be a competitive 

inhibitor with respect to UDPGA, and a noncompetitive inhibitor with respect to the aglycone 

substrates (Luukkanen et al., 2005, Fujiwara et al., 2008). Moreover, as mentioned in 

Section 2.4.2, substrate inhibition may be considered as an uncompetitive inhibition by aglycone 

substrate with respect to itself (Figure 19A). 

2.4.4 Atypical enzyme kinetics of UGT-catalyzed reactions 

Atypical enzyme kinetics generally refers to saturation profiles that differ from Michaelis-

Menten or substrate inhibition. Despite common occurrence, however, some authors also 

consider substrate inhibition to be ―atypical‖ saturation profile (for examples, see review by Wu, 

2011). In UGT-catalyzed reactions, the most commonly observed atypical saturation profiles are 

sigmoidal and biphasic kinetics (Figure 21). Possible experimental artifacts, most notably the 

nonspecific binding of substrates (McLure et al., 2000), enzyme inactivation, or the presence of 

multiple enzymes within the assay, should be excluded before performing a detailed analysis of 

atypical kinetics. If confirmed, the presence of atypical kinetics may suggest the existence of 

multiple substrate binding sites or, at least, multiple binding domains within a single large 

binding cavity (Uchaipichat et al., 2008, Zhou et al., 2010, Zhou et al., 2011, Uchaipichat et al., 

2004). Reports of atypical kinetics in glucuronidation could be closely related to the oligomeric 

state of UGTs (Lewis et al., 2011, Finel and Kurkela, 2008), since the binding of substrate to one 

enzyme unit may affect the binding of the next substrate to another unit within the same 

oligomeric complex. 

E E·S

k1

S+ E P+
kcat

k–1

E·I E·S·I

Ki αKiI I

Figure 20. Modalities of reversible enzyme inhibition. If Ki << αKi, the inhibitor is 

mainly competitive; if Ki >> αKi, the inhibitor is mainly uncompetitive; if Ki ≈ αKi, 
the inhibitor is mixed-type; and if Ki = αKi, the inhibitor is noncompetitive.  
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Sigmoidal kinetics results in an S-shaped curve which, compared to the Michaelis-Menten 

hyperbolic profile, is steeper and approaches Vmax faster (Figure 21A). This saturation profile 

usually indicates positive cooperativity, a phenomenon that is frequently present in enzymes with 

multiple substrate binding sites. The binding of the first substrate induces a conformational 

change in the enzyme and enhances the binding affinity for the second substrate, thus resulting in 

sigmoidal kinetics. If the substrate enhances its own reaction (autoactivation), the cooperativity 

is homotropic; if, however, another molecule enhances the binding of the substrate, the 

cooperativity is heterotropic. Positive cooperativity presumably plays an important role in the 

physiological control of enzyme activity (Cornish-Bowden, 2012). This behavior is usually 

modeled with the empirical Hill equation: 

(16)   
        

   
       

 

where S50 is the concentration of the substrate at half of the Vmax (analogous to Km in the 

Michaelis-Menten model), and h is the Hill coefficient describing the degree of cooperativity. If 

h > 1, the reaction is sigmoidal and exhibits positive cooperativity. One should note, however, 

that enzymes may also exhibit negative cooperativity (h < 1), although the physiological role of 

this phenomenon is less understood (Cornish-Bowden, 2012). In addition to the Hill equation, 

Eq. 10 may also be used to model positive cooperativity (see Section 2.4.2). In that case, 

sigmoidal kinetics takes place if either α < 1 or β > 1, or both. Several UGT substrates, such as 

4-methylumbelliferone (4-MU) and 1-naphthol with UGT2B7 (Uchaipichat et al., 2004, 

Rowland et al., 2008a) and midazolam with UGT1A4 (Hyland et al., 2009), are known to exhibit 

sigmoidal kinetics. Heterotropic cooperativity also occurred in several other UGT reactions, 

most notably in UGT1A1 (Zhou et al., 2011), UGT1A4 (Zhou et al., 2010), and UGT2B7 

(Uchaipichat et al., 2008). In addition, in contrast to Michaelis-Menten kinetics, the CLint for 

sigmoidal kinetics, expressed as the Vmax/S50 ratio, depends heavily on the concentration of 

substrate and is unsuitable for in vitro–in vivo extrapolation. The maximum clearance CLmax, an 

alternative parameter that expresses the clearance of a fully activated enzyme before saturation, 

was suggested as a suitable replacement (Houston and Kenworthy, 2000): 

(17)       
    

   

     

          

Figure 21. Theoretical saturation profiles for sigmoidal (A) and biphasic (B) enzyme 

kinetics. Eadie-Hofstee plots appear as insets. 
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The biphasic saturation profile is characterized by the presence of two distinct phases: (1) the 

high affinity–low turnover phase at low concentrations of the substrate and (2) the low affinity–

high turnover phase at high concentrations of the substrate (Figure 21B). This saturation profile 

often occurs in microsomal fractions, where a drug may be a substrate to multiple enzymes with 

different affinities and turnover rates (for an example, see Rowland et al., 2006, Bowalgaha et 

al., 2005). On the other hand, if the assay contains a single enzyme, biphasic kinetics may 

indicate the existence of multiple substrate binding sites. Biphasic kinetics is usually modeled 

with the following equation (Korzekwa et al., 1998): 

(18)   
         

     
   

    

       
 

                  

       
 

where Km1 and Vmax1 describe the high affinity–low turnover phase, and Km2 and Vmax2 describe 

the low affinity–high turnover phase of the reaction. Since the low affinity–high turnover phase 

is rarely saturated, the accurate determination of Vmax2 may be difficult. For this reason, the 

Vmax2/Km2 ratio is often replaced with a single parameter, CLint, which represents the slope of the 

low affinity–high turnover phase (Figure 21B). Alternatively, biphasic kinetics can be modeled 

with the Hill equation (Eq. 16), assuming negative cooperativity (h < 1) (Gaganis et al., 2007). 

2.4.5 Substrate depletion assays 

In addition to the more common studies of metabolite formation, substrate depletion assays serve 

as an alternative method to estimate the glucuronidation rate (Kilford et al., 2009, Gill et al., 

2012, Jones and Houston, 2004). This approach may prove especially useful if glucuronide 

standards are unavailable or when the substrate is consumed in several concomitant metabolic 

pathways, for example if one employes both CYP and UGT cofactors in assays with HLM 

(Kilford et al., 2009). In order to estimate the CLint with this method (Figure 22), substrate 

disappearance is monitored over time, and the resulting data points are fitted to the following 

exponential decay equation: 

(19)           
    

where [S]t is the concentration of substrate at time t, [S]0 is the initial concentration of the 

substrate, and k is the substrate depletion rate constant. The substrate depletion half-life may be 

calculated as t1/2 = ln2/k = 0.693/k. If monoexponential decay inadequately describes the data, 

one may use the alternative biexponential decay equation (Jones and Houston, 2004). The 

resultant substrate depletion rate constant k, together with the incubation volume and microsomal 

amount, is used to calculate CLint according to Eq. 2 (see Section 2.3.6).   
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The potential problem in substrate depletion assays is that, although product inhibition is usually 

negligible in the initial-rate studies, one can rarely ignore it during the time course assay. Both 

UDP and glucuronide conjugates proved to be potent UGT inhibitors (Luukkanen et al., 2005, 

Fujiwara et al., 2008). Moreover, other problems such as the loss of enzyme activity during the 

assay, the nonspecific binding of substrates, and analytical sensitivity should be taken into 

account (Jones and Houston, 2004).    

2.4.6 Key statistical concepts used in enzyme kinetics  

The standard deviation of the sample (S.D.) quantifies the variability (i.e. scatter) of the data 

(Motulsky, 1995). If the data are sampled from a Gaussian distribution, 68% and 95% of the 

values are expected to lie within one and two S.D. from the mean value, respectively (Figure 23). 

The S.D. is usually calculated according to Eq. 20: 

(20)      √∑          
   

   
 

where N is the sample size, xm is the sample mean value, and x1, x2…xi are the values of the 

individual replicates.  

Gaussian distribution

P
ro

b
a
b

il
it

y

0.0

0.2

0.4

0.6

0.8

1.0

Mean

1S.D.

2S.D.

 

Figure 22. The theoretical representation of the substrate depletion assay ([S]0 = 1; 

k = 0.1 min
–1

; t1/2 = 6.93 min)  

Figure 23. Theoretical representation of data with a Gaussian distribution. 
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The standard error of the mean (S.E.) quantifies the precision of the mean (Motulsky, 1995) 

and is a measure of how far the sample mean is likely to be from the true population mean. The 

S.E. is calculated according to Eq. 21: 

(21)      
    

√ 
 

where S.D. is the standard deviation of the sample, and N is the sample size.  

The confidence interval of the mean (CI) quantifies how precisely the mean value was 

determined (Motulsky, 1995, Motulsky and Christopoulos, 2004). The 95% CI describes the 

interval with a 95% chance that the true population mean lies within it. In other words, there is a 

95% chance that the 95% CI includes the true population mean, and a 5% chance that it does not. 

The CI is centered on the sample mean and extends symmetrically in both directions. That 

distance is equal the S.E. multiplied by a constant from the t distribution tables (p = 0.05; 

two-tailed); the value of this constant depends only on the sample size (N). For a large sample 

size (N > 10), the 95% CI is approximately equal to the mean value plus or minus two S.E. 

The goal of nonlinear regression is to minimize the sum-of-squares of the vertical deviations 

(distances) of the data points from the fitted curve (Cornish-Bowden, 2012, Motulsky and 

Christopoulos, 2004) (Figure 24A). The sum-of-squares in nonlinear regression is calculated by: 

(22)       ∑   
  

    

where ei is the vertical deviation of the data point from the fitted curve, and n is the number of 

data points. The best-fit values of the enzyme kinetic parameters are those that jointly minimize 

the sum-of-squares of the deviation. Several methods serve to adjust the parameters in order to 

minimize the SSreg, most notably the Marquardt-Levenberg, linear descent, and Gauss-Newton 

method (Motulsky and Christopoulos, 2004). The coefficient of determination, r
2
, is commonly 

used to estimate the goodness-of-fit in nonlinear regression (Motulsky and Christopoulos, 2004). 

This parameter is expressed as: 

(23)      
     

     
 

where SStot is the total sum-of-squares of the vertical deviations (distances) of the data points 

from the horizontal line that passes through the mean of all the data points (Figure 24B). A 

numerical value of r
2
 that approaches one indicates that the fitted curve passes closely to the data 

points. On the other hand, a low or even negative value of r
2
 indicates a poor fit (r

2
 is not the 

―square‖ of anything and can be negative). One should note, however, that r
2 

cannot serve to 

compare models of different complexities. Due to its higher number of parameters, the more 

complex model will usually have a higher r
2
, even if it is incorrect.      
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A successful comparison between a simpler and a more complex model in enzyme kinetics 

should balance: (1) the decrease in SSreg and (2) the increase in the number of parameters (or a 

decrease in the degrees of freedom). Such a comparison is usually performed by the extra sum-

of-squares F-test and the corrected Akaike’s information criterion (Motulsky and 

Christopoulos, 2004). The F-test is based on hypothesis testing where the null hypothesis states 

that the simpler model (model 1) is correct, whereas the alternative hypothesis supports the more 

complex model (model 2). First, the F-ratio is calculated as follows: 

(24)        

             

       
      

   

 

where SSreg1 and SSreg2 are the sum-of-squares, and DF1 and DF2 are the degrees of freedom for 

the simpler and more complex models, respectively. The degrees of freedom equal the number of 

data points minus the number of parameters in the model. If the simpler model is correct, the F-

ratio is close to one; if, however, the F-ratio is much greater than one, the complex model is 

more probable. The p value is calculated from the F-ratio using the F-distribution tables. Usually, 

if the p value is less than 0.05, the simpler model is rejected and the more complex model is 

accepted as a better fit to the data. The F-test can only be used if kinetic models are ―nested‖, 

however, meaning that one model is a special case of another model (for example, Michaelis-

Menten model is a special case of substrate inhibition model where Ksi is infinitely large) 

(Motulsky and Christopoulos, 2004). The values of the corrected Akaike’s information criterion 

(for both the simpler and more complex models) are calculated according to the following 

equation: 

(25)         (
     

 
)     

       

     
 

where N is the number of data points, and K is the number of parameters in the equation, plus 

one. Next, the difference in AICc between the two models is calculated as follows:       

    
      

  where AICc
1
 and AICc

2
 are the corrected Akaike’s information criterions for the 

simpler and more complex models, respectively. If ΔAICc < 0, the complex model is more 

probable, whereas if ΔAICc > 0, the simpler model is more probable. In other words, the model 

with higher numerical value of AUCc is more probable. One can calculate the probability of the 

correct decision as follows:             
          

            
 (Motulsky and Christopoulos, 2004). 

Figure 24. Theoretical representation of SSreg (A) and SStot (B) in the analysis of the 

enzyme kinetic data fitted by the Michaelis-Menten equation.  
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3 Aims of the Study 

The aims of this study were: 

1) To examine the glucuronidation of psilocin, a hallucinogenic indole alkaloid isolated from 

mushrooms of the genus Psilocybe, by HLM, HIM, and a set of recombinant human UGT 

enzymes that includes all the members of subfamilies 1A, 2A, and 2B (I). With the aim of 

deepening out insight into the substrate specificity of human UGTs, we also studied the 

glucuronidation of 4-hydroxyindole (4-HI), a simpler analog of psilocin that lacks the side chain 

in position 3 of the indole. Considering potential chemical degradation of psilocin during the in 

vitro assays, we investigated suitable methods for improving the stability of psilocin in buffered 

aqueous solutions. Another goal of this study was to specify the human tissues in which psilocin 

glucuronidation takes place. For this purpose, in collaboration with Dr. Michael H. Court from 

Tufts University School of Medicine, we used real-time qRT-PCR to examine the expression 

levels of UGTs that were most active in psilocin glucuronidation. 

2) To investigate the scope and mechanism of albumin effects in HLM, HIM, and recombinant 

human UGTs expressed in Sf9 insect cells (II, III, and IV). We aimed to identify the human 

UGTs affected by the addition of albumin, to quantify those effects, and to examine whether or 

not the albumin effects depend on the substrate. Moreover, our goal was to carefully optimize the 

assays conditions of in vitro UGT assays, especially with respect to the nonspecific binding of 

substrates and the optimal concentration of albumin. 

3) To investigate the enzyme kinetic mechanism of UGT1A9 in the absence and presence of 

albumin (IV). Our main goals were to examine whether or not UGT1A9-catalyzed reactions 

proceed through the formation of ternary-complex, what is the order of substrate binding, and 

how the addition of albumin influences the mechanism and enzyme kinetic parameters of these 

reactions. Another aim of this part of the study was to determine both the individual rate 

constants and the equilibrium constant of the overall reaction (Keq) by carrying out the reverse 

reaction in the presence of albumin.                    
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4 Materials and Methods 

A detailed description of the materials, chemicals, synthetic, analytical, and biochemical 

methods is presented in publications I–IV. This section only briefly summarizes the most 

important chemicals and methods used in this study. 

4.1 Chemicals 

In general, we used chemicals and solvents of the highest available purity. The chemical 

structures of the UGT substrates and inhibitors used in this study appear in Table 9. Psilocin 

[3-(N,N-dimethylaminoethyl)-4-hydroxyindole] and 6-hydroxyindole (6-HI) were synthesized in 

our laboratory (for a description, see Materials and Methods in publications I and III).  

Substrate  

(abbreviation) 
Structure M (g/mol) 

logP 

(logD, pH 7) 
Study 

17α-Estradiol 

 

272.38 
4.15 

(4.15) 
III 

17β-Estradiol 

 

272.38 
4.15 

(4.15) 
I and III 

Entacapone 

 

305.29 
2.12 

(0.47) 
II and III 

4-Hydroxyindole  

(4-HI) 

 

133.15 
1.95 

(1.95) 
I and III 

6-Hydroxyindole  

(6-HI) 
 

133.15 
1.95 

(1.95) 
III 

4-Methylumbelliferone  

(4-MU) 

 

176.17 
2.43 

(2.43) 

II, III, and 

IV 

4-Methylumbelliferone-β-

D-glucuronide  

(4-MUG) 

 

352.29 
–0.51 

(–4.18) 

II, III, and 

IV 

1-Naphthol 

 

144.17 
2.72 

(2.72) 

I, III, and 

IV 

Table 9. UGT substrates and inhibitors used in this study (in alphabetical order). 

The logP and logD (pH 7.0) values were calculated by ACD/Labs Software V11.02 

(Toronto, Canada) 
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Psilocin 

 

204.27 
1.46 

(–0.68) 
I 

UDP 

 

404.16 
–2.95 

(–7.76) 
III 

UDP-α-D-glucuronic acid 

(UDPGA) 

 

580.29 
–3.90 

(–9.65) 

I, II, III, 

and IV 

Zidovudine 

(AZT) 

 

267.24 
–0.58 

(N.A.) 
II 

 

4.2 In vitro glucuronidation assays 

The recombinant UGT enzymes used in this study were expressed as His-tagged proteins in 

baculovirus-infected Sf9 insect cells (Sneitz et al., 2009, Kurkela et al., 2007). In order to better 

compare the glucuronidation rates of different UGT enzymes, we employed immunodetection to 

measure the relative expression levels of each recombinant UGT enzyme by using tetra-His 

antibodies (QIAGEN, Hilden, Germany) as the primary antibody (Kurkela et al., 2007). The 

relative expression levels obtained served to ―normalize‖ the measured activities of the 

recombinant UGTs (I and III). Insect cell membranes without any human UGT, prepared by 

infecting insect cells with baculovirus that encodes no human UGT, were used as a negative 

control for all glucuronidation assays. Control insect cell membranes also served to determine 

the nonspecific binding of substrates to UGT enzymes expressed in insect cells (II, III, and IV). 

We obtained the HLM and HIM, as well as the recombinant UGT1A9 (BD Supersomes
®

 also 

expressed in Sf9 insect cells) used in study II, from commercial sources (BD Biosciences; 

Woburn, MA, USA). Due to the lack of UGT-specific antibodies (see Section 2.1.5), we did not 

compare the expression levels of our in-house prepared UGTs to expression levels of UGTs 

present in HLM, HIM, or commercial BD Supersomes
®
. In publication II, we measured the 

nonspecific binding of substrates and inhibitors to the externally added albumin and enzymes 

sources using ultrafiltration (Amicon Ultra
®

 filters with 10-kDa regenerated cellulose membrane; 

Millipore Corporation, Billerica, MA, USA). In publications III and IV, we performed binding 

assays with rapid-equilibrium dialysis (RED, Thermo Scientific, Rockford, IL, USA).  

Glucuronidation assays were performed in 50-mM phosphate buffer (pH 7.4, 50 mM) 

supplemented with 10 mM of MgCl2. The glucuronidation reactions contained 0.02–1.50 mg/mL 

of enzyme source (total protein content). Aglycone substrates and inhibitors were added as 
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methanol or ethanol solutions, and the organic solvent was evaporated in vacuo. Assays with 

HLM and HIM also contained alamethicin in order to eliminate UGT latency (Little et al., 1997, 

Fisher et al., 2000) (I and II). No alamethicin was added to the assays with recombinant UGTs, 

as it does not increase the activity in such samples (Kaivosaari et al., 2008, Walsky et al., 2012, 

Zhang et al., 2011). Assays with psilocin also contained 1 mM of dithiothreitol (DTT), a 

reducing agent that served to prevent the oxidative degradation of the substrate (I). We generally 

avoided using organic solvents; exceptions were assays with 17α- and 17β-estradiol, as well as 

assays with high concentrations of 4-MU and 1-naphthol ([S] > 1 mM), where 1% DMSO was 

added to the incubations (I and III). Based on the preliminary assays, this concentration of 

organic solvent produced a minimal inhibitory effect on the UGT enzymes (≤ 20%). The assays 

with albumin contained 0.01–2% of fatty acid-free BSA (essentially fatty acid free, ≤ 0.004%, 

Sigma-Aldrich, St. Louis, MO; II, III, and IV). First, we prewarmed the UGT reaction mixtures 

at 37 °C for 5 min, initiated reactions by the addition UDPGA, and then incubated them at 37 °C 

for 10–120 min protected from light. Reactions were stopped by adding either 4 M perchloric 

acid, 4 M perchloric acid/methanol (1:5) mix, 5% acetic acid in methanol, or pure methanol, 

depending on the preliminary assays. After reaction stopping, we kept the tubes at –20 °C for 

30–60 min and centrifuged at 16000g. Aliquots of the supernatants were transferred to dark vials 

and directly submitted to HPLC, UPLC, or LC–MS analyses. 

4.3 Enzyme kinetic assays 

Prior to the enzyme kinetic assays, we carried out preliminary assays in order to optimize the 

concentration range of substrates, the protein amount, and the incubation time. With the aim of 

preventing excessive nonspecific binding and consumption of substrates (≤ 10% allowed), we 

generally performed enzyme kinetic assays with low amounts of microsomal fractions or 

recombinant UGTs (0.02–0.2 mg/mL) and shorter incubation times (10–60 min). Exceptions 

included screening assays with psilocin and 4-HI, where we used higher concentrations of the 

enzyme (0.5–1 mg/mL). The linearity of product formation with respect to the protein amount 

and the incubation time was tested for each enzyme-substrate pair at low concentration of 

substrate ([S] < Km). The concentrations of substrates were corrected for nonspecific binding 

prior to data analysis.  

4.4 Analytical methods 

Substrates and glucuronides were generally analyzed with HPLC and UPLC equipped with UV, 

fluorescent, or radio flow detectors (I, II, III, and IV). In addition, we used LC–MS to 

qualitatively analyze the psilocin and 4-HI glucuronides (I). When available, authentic standards 

served for quantification. In the case of psilocin-β-D-glucuronide and 

4-hydroxyindole-β-D-glucuronide, however, such glucuronide standards were unavailable and 

the quantification was achieved with radiolabeled [
14

C] UDPGA and the combination of 

radiochemical and UV detection (I). In the combined radioactive-UV analysis of psilocin, a 

glucuronidation reaction containing 1.5 mg/mL recombinant UGT1A10 in a final volume of 360 

µL was carried out in the presence of 1 mM psilocin. For this purpose the cosubstrate mixture 

contained 15.4 µM radiolabeled [
14

C] UDPGA and 500 µM unlabeled UDPGA, and the 

incubation time was 120 min at 37 °C (I). In the case of 17α-estradiol-β-D-glucuronide and 

6-hydroxyindole-β-D-glucuronide, quantification was achieved based on the standard curves that 

we constructed using UV absorption of the corresponding substrates (IV). For this purpose, to 
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verify whether the substrates and glucuronides differ in their spectral properties, we compared 

the UV spectra of 17α-estradiol and 6-HI to the UV spectra of the corresponding glucuronides 

and found no significant differences in the UV absorption maxima (not shown).              

4.5 Data analysis 

The enzyme kinetic parameters were obtained by fitting the kinetic models to the experimental 

data using GraphPad Prism version 5.04 (GraphPad Software Inc., San Diego, CA, USA), 

SigmaPlot 11 (Systat Software, San Jose, CA, USA), or MATLAB version R2010a (MathWorks, 

Natick, MA, USA). We selected the most appropriate kinetic model for each reaction based on a 

visual inspection of the Eadie-Hofstee and Lineweaver-Burk plots (Section 2.4), residuals 

graphs, parameter S.E. and estimates of the 95% confidence intervals (95% CI), the calculated r
2
 

values, the corrected Akaike’s information criterion, and the extra sum-of-squares F-test (see 

Section 2.4.6). In assays containing BSA, we corrected the free substrate or inhibitor 

concentrations (fu, or fraction unbound) according to the drug binding to BSA measured under 

the specific conditions of each glucuronidation assay. In other words, the concentrations of 

substrates and inhibitors were corrected for total drug binding in UGT specific assay 

(BSA + UGT enzyme source + buffer etc.).   
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5 Results and Discussion 

5.1 Glucuronidation of psilocin and 4-HI by human UGTs (I) 

Psilocin is an active metabolite responsible for the hallucinogenic effects of ―magic mushrooms‖ 

(see Section 2.2.2). Forensic and pharmacokinetic studies identified psilocin glucuronide as the 

major metabolite of psilocin in both serum and urine (Kamata et al., 2006, Hasler et al., 2002, 

Kamata et al., 2003, Hasler et al., 1997, Sticht and Kaferstein, 2000, Sticht and Kaferstein, 2000, 

Grieshaber et al., 2001, Grieshaber et al., 2001). In order to gain mechanistic insight into the 

metabolism of psilocin, we studied the glucuronidation of psilocin HLM, HIM, and the 19 

recombinant human UGTs of subfamilies 1A, 2A, and 2B that were expressed in insect Sf9 cells. 

Moreover, to examine the substrate selectivity of human UGTs, we studied the glucuronidation 

of 4-HI, the simplified analogue of psilocin that lacks the N,N-dimethylaminoethyl side chain in 

position 3 (see Table 9 for chemical structures).   

5.1.1 Prevention of psilocin degradation in vitro  

Our preliminary experiments confirmed that psilocin is unstable in aqueous buffer solutions, 

especially in the presence of light, heat (37 °C), DMSO, and high concentrations of protein 

(Anastos et al., 2006). The degradation of psilocin, presumably due to oxidative processes, 

resulted in pronounced darkening of the solution and the appearance of numerous additional 

peaks in the HPLC-UV chromatograms. To overcome this problem, we tested the effects of two 

reducing agents (or antioxidants), ascorbic acid and DTT, on psilocin glucuronidation by 

UGT1A10 (Figure 25A). The 4-HI, on the other hand, was chemically stable under assays 

conditions.                
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The addition of up to 2.5 mM of DTT enhanced the glucuronidation rate, increased the peak area 

of the psilocin substrate, and prevented both the visual darkening and the appearance of 

additional chromatographic peaks. On the other hand, the effects of ascorbic acid were less 

favorable. Although the addition of ascorbic acid prevented the visual darkening of the solution, 

significant chromatographic interferences persisted. With an aim to verify whether or not the 

Figure 25. The influence of DTT on the glucuronidation of psilocin (A) and 

17β-estradiol (B) by UGT1A10. The results (mean ± S.E.) appear as the relative 

peak area (in %), for both substrate and glucuronide peaks, compared to control 

samples without DTT.   
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addition of DTT modulates UGT activity, we tested the influence of DTT on the glucuronidation 

of a chemically stable substrate, 17β-estradiol, by UGT1A10 (Figure 25B), and detected no 

significant inhibition or stimulation. We obtained a similar absence of a DTT effect in the 4-HI 

glucuronidation by UGTs 1A6, 1A7, 1A8, 1A9, 1A10, and 2A1 (data now shown). Although 

these results are in close agreement with those of a previous report that DTT does not affect the 

bilirubin glucuronidation by UGT1A1 (Ghosh et al., 2005), they somewhat disagree with earlier 

reports that DTT activates UGTs from rat liver microsomes (El-Bacha et al., 2000, Ikushiro et 

al., 2002). Taken together, our results suggest that DTT may serve as an efficient antioxidant in 

glucuronidation studies of substrates prone to oxidative degradation.  

5.1.2 Screening assays with HLM, HIM, and recombinant UGTs 

The incubation of psilocin and 4-HI with HLM and HIM, as HPLC and LC–MS analyses show, 

resulted in the formation of single glucuronide products. Although we did not perform the 

complete structural analysis of the products, the comparative analysis of serotonin glucuronide 

(Krishnaswamy et al., 2003b), a close structural analog of psilocin, suggests that O-glucuronides 

form. The rates of psilocin glucuronidation by HLM and HIM were approximately equal for all 

three concentrations of substrate tested, namely 100, 500, and 1000 µM (Figure 26A). On the 

other hand, the rates of 4-HI glucuronidation in HLM were 10-fold higher compared to 

corresponding 4-HI rates in HLM, and almost 20-fold higher than the psilocin glucuronidation 

rates in either HLM or HIM (Figure 26B).   
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The screening assay with the recombinant UGTs revealed that psilocin is glucuronidated mainly 

by UGTs 1A10, 1A9, 1A8, 1A7, and, to a minor extent, by UGT1A6 (Figure 27A). The UGT 

enzymes from the subfamilies UGT2A and UGT2B proved inactive. In contrast to the psilocin 

results, 4-HI glucuronidation screening showed that UGT1A6 is by far the most active enzyme, 

whereas the glucuronidation rates of UGTs 1A7–1A10 closely resembled their respective 

Figure 26. Glucuronidation of psilocin (A) and 4-HI (B) by HLM and HIM. We 

performed assays at three psilocin concentrations (100, 500, and 1000 µM) and two 

4-HI concentrations (100 and 500 µM). The bars represent an average of three 

samples ± S.E. 
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psilocin glucuronidation activities (Figure 27B). In addition, 4-HI was glucuronidated by 

UGT2A1, an enzyme expressed in the nasal epithelium (see Section 2.1.5). The lack of 

glucuronidation activity by UGTs 1A4 and 2B10, the main enzymes involved in 

N-glucuronidation reactions, suggests that only O-glucuronides form from both psilocin and 

4-HI.  
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Figure 27. Glucuronidation of psilocin (A) and 4-HI (B) by 19 human recombinant 

UGTs. The screening assays appear at two concentrations of substrate: 

100 and 500 µM. The bars represent mean ± S.E. (n = 3). The results appear as 

actual glucuronidation (measured) rates. For the active UGTs, the results also 

appear as normalized rates (corrected for the relative expression level). The 

expression level of UGT1A10 was set to 1.0 for normalization. See publication I for 

additional details. 
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The glucuronidation of psilocin by UGTs 1A7–1A10, as well as its poor activity with UGT1A6, 

are surprising in view of the previous reports of serotonin and 5-hydroxytrypthophol 

glucuronidation, close structural analogs predominantly glucuronidated by UGT1A6 

(Krishnaswamy et al., 2003a, Krishnaswamy et al., 2004). Such differences in the substrate 

selectivity of human UGTs may be attributed to structural and physicochemical differences 

between psilocin and serotonin, especially with respect to the bulkiness of the side chain, the 

position of the phenol group, and the difference in lipophilicity. Moreover, compared to psilocin, 

the 100-fold higher glucuronidation activity of 4-HI by UGT1A6, but relatively similar activities 

of UGTs 1A7–1A10, may suggest that the N,N-dimethylaminoethyl side chain of psilocin 

hinders the activity of UGT1A6, but affects UGTs 1A7–1A10 only slightly.         

5.1.3 Enzyme kinetics of psilocin and 4-HI glucuronidation 

We performed the enzyme kinetics assays of psilocin glucuronidation by UGTs 1A10 and 1A9, 

the two enzymes that exhibited the highest normalized glucuronidation rates in the screening 

assay (Figure 28). Psilocin glucuronidation by UGT1A10 followed low affinity–high turnover 

Michaelis-Menten kinetics (Figure 28). The substrate affinity for the enzyme was low, as the 

very high Km value (over 3 mM) indicates, whereas the estimated Vmax value was the highest 

among tested recombinant UGTs (Table 10). The enzyme kinetics of psilocin glucuronidation by 

UGT1A9 exhibited an atypical biphasic profile, and the data were fitted to Eq. 18 (see Section 

2.4.4). The Km1 for this reaction (estimated value: 1 mM) was also high, whereas the Km2 and 

Vmax2 values were determined only as a ratio (Vmax2/Km2 = CLint; Table 10) because no saturation 

was achieved.        
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In the case of 4-HI, we performed enzyme kinetic assays with UGTs 1A6, 1A10, and 2A1. The 

glucuronidation of 4-HI by UGT1A6 showed pronounced substrate inhibition kinetics (Figure 

29A). This substrate exhibited a relatively high affinity for UGT1A6 (Km < 200 µM) with fast 

glucuronidation rates in the lower concentration range (Table 10). UGT1A10, on the other hand, 

Figure 28. Enzyme kinetics of psilocin glucuronidation by UGT1A10 (A) and 

UGT1A9 (B). The points represent an average of three samples ± S.E. 

Glucuronidation rates appear as actual (measured) rates in nmol∙min
–1

∙mg
–1

 of 

recombinant protein. The derived kinetic constants and normalized glucuronidation 

values appear in Table 10. The Eadie-Hofstee transforms of the data appear as 

insets. 
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displayed atypical kinetics with 4-HI, revealed by possible sigmoidal kinetics at the lower 

concentration range (50–500 µM) and substrate inhibition at high concentrations of the substrate 

(Figure 29B, see Eadie-Hofstee plot; Table 10). For this reason, we fitted the data to both the 

empirical substrate inhibition equation (Eq. 9) and the Hill equation (Eq. 16). The Hill equation 

provided an arguably more accurate description of the data, since the estimated S50 is a more 

realistic value than the Km obtained with the substrate inhibition equation (Table 10). Moreover, 

we tried to fit the data from 4-HI glucuronidation by UGT1A10 to the two-site model (Eq. 10, 

see Section 2.4.2). This resulted in the poor estimate of enzyme kinetic parameters, perhaps 

partly due to the insufficiently defined substrate inhibition section of the curve, mainly caused 

the limited aqueous solubility of the substrate. The Michaelis-Menten equation most accurately 

described the kinetics of 4-HI glucuronidation by UGT2A1 (Figure 29C), and the analysis 

revealed a low affinity, as indicated by the very high Km value (> 3 mM), and a moderate Vmax 

value (Table 10).       
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Figure 29. Enzyme kinetics of 4-HI glucuronidation by UGT1A6 (A), UGT1A10 (B), 

and UGT2A1 (C). The points represent an average of three samples ± S.E. 

Glucuronidation rates appear as actual (measured) rates in nmol∙min
–1

∙mg
–1

 of 

recombinant protein. The derived kinetic constants and normalized glucuronidation 

values appear in Table 10. The Eadie-Hofstee transforms of the data appear as 

insets. 



 

65 

 

Substrate Enzyme Km 
Vmax 

(actual rates) 

Vmax 

(normalized rates) 
Kis Kinetic model (r2) 

  µM nmol∙min–1∙mg–1 nmol∙min–1∙mg–1 µM  

Psilocin UGT1A10 3851.0 ± 166.6 2.53 ± 0.06 — — 
Michaelis-Menten 

(0.997) 

 UGT1A9 
Km1 = 1017.0 ± 

249.9a 
Vmax1 = 0.38 ± 0.14a Vmax1 = 0.19 ± 0.04a — 

Biphasic  

(0.996) 

       

4-HI UGT1A10 3624.0 ± 839.7 3.36 ± 0.63 — 2603.0 ± 744.8 
Substrate Inhibition 

(0.992) 

  S50 = 631.6 ± 32.7 1.03 ± 0.02 — — 
Hill equation 

(0.986); h = 1.6 ± 0.1 

 UGT1A6 178.7 ± 14.8 9.31 ± 0.45 4.78 ± 0.23 765.1 ± 65.5 
Substrate Inhibition 

(0.991) 

 UGT2A1 3210.0 ± 235.7 1.48 ± 0.06 0.39 ± 0.02 — 
Michaelis-Menten 

(0.992) 

a
 The calculated CLint is 1.69 × 10

–4
 ± 1.04 × 10

–5
 mL∙min

–1
∙mg

–1
 (normalized, 8.29 × 10

–5
 ± 5.12 × 10

–6
 mL∙min

–

1
∙mg

-1
) and represents the linear portion of the biphasic curve (ratio Vmax2/Km2). Data were also fitted to the 

Michaelis-Menten equation, Km = 12047 ± 1428 µM, Vmax = 3.41 ± 0.31 (normalized, 1.66 ± 0.15) mL∙min
–1

∙mg
–1

, 

r
2
 = 0.996. 

 

One of the main findings of this study was that UGT1A10 appears to interact with psilocin and 

4-HI similarly, whereas UGT1A6 exhibits a clear preference for 4-HI (Figure 27). The low 

activity of psilocin glucuronidation by UGT1A6 may stem from poor binding, low enzyme 

turnover (nonproductive binding), or both. In order to determine whether or not psilocin binds to 

UGT1A6 with significant affinity, we tested psilocin as the inhibitor of 4-HI glucuronidation by 

UGT1A6 (see Figure 8 in publication I). The results showed that even high concentrations of 

psilocin only slightly inhibited 4-HI glucuronidation of UGT1A6, thus indicating poor binding 

affinity. In contrast to psilocin, 1-naphthol, a high-affinity substrate for UGT1A6, was a good 

inhibitor of 4-HI glucuronidation by UGT1A6 (IC50 = 57 µM; Ki estimate is 27 µM). 

5.1.4 Expression of UGT enzymes that glucuronidate psilocin  

To investigate the possible locations of psilocin glucuronidation in the human body, this study 

also examined the expression levels of the genes encoding UGTs 1A6–1A10 by qRT-PCR 

(Table 11). This work was performed in collaboration with Dr. Michael H. Court of the Tufts 

University School of Medicine, Boston, Massachusetts. UGT1A6 is abundantly expressed in the 

liver, trachea, kidneys, and intestine (stomach, small intestine, and colon); UGT1A9 was found 

in the liver, kidneys, and intestine, whereas expression of UGT1A10 is limited mainly to the 

intestine. On the other hand, the expression levels of UGTs 1A7 and 1A8 were markedly lower 

in all the tissues studied. The gene expression results also revealed that none of the UGTs 

examined is expressed in the brain, implying that in humans, neither psilocin nor serotonin is 

glucuronidated inside this organ. These results agree closely with those of studies published on 

UGT expression in human tissues (see Section 2.1.5). 

Table 10. Psilocin and 4-HI glucuronidation enzyme kinetic data. The values 

represent the best fit results ± S.E. The reaction velocity appears both as actual rates 

and as rates normalized to the expression level of UGT1A10 (for UGT1A10, the 

actual and normalized rates are identical). 
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 UGT enzymes 

Tissue 1A6 1A7 1A8 1A9 1A10 

 copies per 10
9
 copies of 18S rRNA, mean ± S.E. 

Adipose 28 ± 8 18 ± 6 8 ± 2
 

86 ± 15 313 ± 57 

Adrenal gland (n = 62) 3.0 ± 0.3 43 ± 9 — 3.0 ± 0.4 — 

Brain — — — — — 

Brain, cerebellum (n = 24) — — — — — 

Colon (n = 3) 215 ± 22 79 ± 22 25 ± 8 188 ± 55 1210 ± 299 

Kidney 226 ± 19 104 ± 12 — 2157 ± 269 — 

Liver, adult (n = 47) 923 ± 9 40 ± 11 — 3239 ± 42 6.0 ± 0.2 

Lung 2 ± 1
 

— — — — 

Ovary — — — — — 

Pancreas — — — — — 

Placenta 4.0 ± 0.3 3.0 ± 0.1 — 3.0 ± 0.2 — 

Prostate (n = 47) 68 ± 2 9 ± 1 1 ± 1 8 ± 1 6 ± 1 

Small intestine (n = 5) 334 ± 77 80 ± 33 12 ± 2 319 ± 109 660 ± 254 

Stomach 184 ± 59 7 ± 1 — 4 ± 1 21 ± 3 

Testis (n = 19) 14 ± 2 2.0 ± 0.3 1.0 ± 0.3 13 ± 3 6 ± 1 

Thyroid (n = 65) 11 ± 1 3 ± 1 — 1.0 ± 0.1 — 

Trachea 693 ± 76 26 ± 9 7.0 ± 0.5 32 ± 7 27 ± 8 

Uterus (n = 10)  53 ± 13 — — — — 

—, Not detected 

The differential expression of UGTs 1A9 and 1A10, in combination with the screening and 

kinetics results for psilocin glucuronidation (Figure 27A and Figure 28), supports our finding 

that the psilocin glucuronidation rate in HIM is very similar to the rate in HLM (Figure 26A). In 

the case of 4-HI, the glucuronidation rate in HLM was much higher than in HIM (Figure 26B), 

as expected from the higher expression levels of UGT1A6 in the liver. In this study, we 

examined the glucuronidation of psilocin by the human UGTs of subfamilies 1A, 2A, and 2B. 

While UGT1A10 is the most active enzyme in psilocin glucuronidation, UGT1A9, due to its 

high expression levels in the liver and kidneys, is probably the main contributor to psilocin 

glucuronidation in humans.  

Also worth noticing is that the psilocin and 4-HI glucuronidation studies were performed in the 

absence of albumin, a substance that later proved to significantly enhance the glucuronidation 

rates of many human UGTs (see Section 2.3.2, publications II, III, and IV, and the text below). 

Specifically, the addition of albumin increased the activities of UGTs 1A7, 1A8, 1A9, 1A10, and 

2A1 through either a decrease in Km or increase in Vmax, or both (see Figure 36). For this reason, 

the enzyme kinetic parameters of psilocin and 4-HI glucuronidation by HLM, HIM, and 

recombinant UGTs would presumably differ in the presence of albumin. Our preliminary assays 

confirm this hypothesis but, unfortunately, we were unable to complete this study by the time 

this thesis was written.  

5.2 Albumin effects in human UGTs (II, III, and IV) 

Recent reports indicate that the inclusion of fatty acid-free albumin significantly enhances in 

vitro UGT activities and improves in vitro–in vivo extrapolation (see Section 2.3.2). Of the 19 

Table 11. Expression of UGTs 1A6, 1A7, 1A8, 1A9, and 1A10 mRNA in human 

tissues. The data appear as mRNA copies per 10
9
 copies of 18S rRNA, mean ± S.E. 
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human UGT enzymes of subfamilies 1A, 2A, and 2B, however, only six were tested for albumin 

effects, often with only one or two suitable substrates. Moreover, the majority of previous studies 

were performed with recombinant UGT enzymes expressed in HEK293 cells, but not with the 

commonly used and commercially available enzymes expressed in insect Sf9 cells. In addition, 

our preliminary assays showed that the manifestation of albumin effects may depend on both the 

enzyme source and the substrate used. These factors prompted us to investigate the albumin 

effects in UGTs expressed in Sf9 cells, as well as to reexamine the previous results with a more 

diverse set of substrates and optimized assay conditions.               

5.2.1 Drug binding to albumin and enzyme sources  

Due to the potential binding of drugs to macromolecules present in the in vitro assays, the total 

concentration of the drug may differ from the free concentration available for interaction with 

the enzyme (see Section 2.3.5). We used ultrafiltration and RED to measure the free, unbound 

fraction of drugs (fu) in the presence of BSA and the enzyme source (microsomal fractions or 

control insect cell membranes). The combined results for all the UGT substrates or inhibitors 

used appear in Table 12.    

Compound Method Binding data Publication 

Entacapone 
Ultrafiltration 

and RED 

1) To 0.1% BSA: fu = 0.1–0.85; increases hyperbolically in the [S] 

range 5–750 µM 

2) To 1% BSA: fu < 0.01 at [S] = 5 µM 

3) To the enzyme source (up to 0.2 mg/mL): negligible 

4) To both 0.1% BSA and the enzyme source: presence of the 

enzyme source lowers the binding of entacapone to 0.1% BSA 

(see Fig. 2 in II) 

II and IV 

17α-Estradiol RED 
1) To 0.1% BSA: fu = 0.49 ± 0.01; independent of [S] 

2) To the enzyme source (up to 0.2 mg/mL): negligible  
III 

17β-Estradiol RED 
1) To 0.1% BSA: fu = 0.48 ± 0.01; independent of [S] 

2) To the enzyme source (up to 0.2 mg/mL): negligible 
III 

6-HI RED 

1) To 0.1% BSA: fu = 0.84–0.97; increases in the [S] range 5–750 

µM 

2) To the enzyme source (up to 0.2 mg/mL): negligible  

III 

4-MU 
Ultrafiltration 

and RED 

1) To 0.1% BSA: fu = 0.62–0.91; increases in the [S] range 5–500 

µM 

2) To 1% BSA: fu = 0.15–0.30; increases in the [S] range 5–500 

µM 

3) To the enzyme source (up to 0.2 mg/mL): negligible 

II and IV 

4-MUG RED 
To 0.1 % BSA, and the enzyme source (up to 0.2 mg/mL): 

negligible  
IV 

1-Naphthol RED 
1) To 0.1% BSA: fu = 0.78 ± 0.01; independent of [S] 

2) To the enzyme source (up to 0.2 mg/mL): negligible 
IV 

UDP RED 
To 0.1 % BSA, and the enzyme source (up to 0.2 mg/mL): 

negligible  
IV 

UDPGA RED 
To 0.1 % BSA, and the enzyme source (up to 0.2 mg/mL): 

negligible  
IV 

Zidovudine  Ultrafiltration 
1) To 0.1 and 1% BSA: negligible  

2) To the enzyme source (up to 0.2 mg/mL): negligible 
II 

 

Table 12. Binding of drugs to BSA and enzyme sources (in alphabetical order). 
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Our initial efforts were aimed at developing an ultrafiltration method for zidovudine, entacapone, 

and 4-MU binding to BSA (II). The preliminary assays, however, showed that the high 

nonspecific binding of the compounds to the filter device (NSBf) may severely limit 

ultrafiltration. With 20 µM solutions of zidovudine, entacapone, and 4-MU, the NSBf was 20, 99, 

and 40%, respectively. In an effort to minimize the nonspecific binding, we pre-washed the 

filters with a solution of the mild detergent Tween 20 at 1% of the final concentration, followed 

by a phosphate buffer rinse (II). This pretreatment reduced the NSBf of 20 µM zidovudine, 

entacapone, and 4-MU solutions to the acceptable values of 1, 27, and 7%, respectively. 

Moreover, we evaluated the NSBf across the concentration range of the substrates tested and 

subtracted it from the overall drug binding measured in the presence of BSA or the enzyme 

source, or both. In contrast to the ultrafiltration assays, the NSBf in the RED assays was generally 

low (< 20%), except for estradiols, where it reached almost 40%. However, because the binding 

of estradiols to BSA was independent of estradiol concentration, the high NSBf did not affect the 

final results. Due to the generally low NSBf in RED assays, we did not perform any device 

pretreatment. The results obtained with the two different drug binding methods, ultrafiltration 

and RED, were similar for both entacapone and 4-MU, two substrates for which we applied both 

methods (see Figure 1 in publication IV).   

The binding of entacapone, 4-MU, and 6-HI to BSA depended on the substrate concentration, 

whereas the binding of estradiol isomers and 1-naphthol was generally independent of the 

substrate concentration (Table 12). On the other hand, the binding of zidovudine, 4-MUG, 

UDPGA, and UDP to BSA was negligible. The results of zidovudine and 4-MU binding to BSA 

are in fairly close agreement with the published results of a study which used the classical 

equilibrium dialysis methodology (Rowland et al., 2007, Rowland et al., 2008a), even if our 

results on 4-MU binding to 0.1 and 1% BSA were somewhat higher. Specifically, at 0.1 and 1% 

BSA published fu values are 0.89 and 0.49, respectively (Rowland et al., 2008a), whereas our 

measured fu values are 0.62–0.91 and 0.15–0.30, pespectively. In contrast to BSA binding, the 

measured binding of drugs to the enzyme sources, either microsomal fractions or control insect 

cells membranes, was generally minor at up to 0.2 mg total protein per mL, the highest protein 

concentration we used in publications II, III, and IV. The addition of MgCl2 and UDPGA to the 

drug binding assays did not significantly alter the drug binding to either BSA or the enzyme 

sources. Moreover, drug binding in the presence of both BSA and the enzyme sources (up to 0.2 

mg/mL) was generally equal to drug binding only to BSA. The important exception to this rule 

was entacapone binding to BSA, which changed significantly in the presence of the enzyme 

source (Figure 30).  
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The addition of Sf9 control membrane resulted in a dose-dependent decrease in entacapone 

binding to BSA. Similar results occurred when HLM served as the enzyme source. As a result, 

the fu of entacapone in the presence of 0.1% BSA was a function of two independent variables, 

the entacapone concentration and the amount of the enzyme source present in the assay. 

Therefore, in order to solve this problem, we interpolated an empirical three-dimensional 

function over the experimental data points (Figure 30B) that enables us to estimate the 

entacapone binding to 0.1% BSA at any given concentration of entacapone and enzyme source 

used in the in vitro assay (see publication II and corresponding supplemental material for 

details). The entacapone binding to 0.1% BSA was similarly affected in the presence of HLM 

and HIM (data now shown). These results highlight the need to carefully examine the drug 

binding across the concentration range used in the study. Not only can substrate binding to BSA 

depend on the substrate concentration, but it may also vary depending on the conditions of the 

in vitro assay, especially the amount of the enzyme source used. The binding of entacapone to 

1% BSA was very high, and estimated fu at low concentration of entacapone was below 0.01%. 

5.2.2 Optimization of in vitro assay conditions  

Although the use of 2% BSA yielded good enzyme activation (Rowland et al., 2007, Rowland et 

al., 2008a), the high binding of the substrates to 2% BSA effectively prevents the assays with 

highly lipophilic compounds, many of which are good substrates for UGTs. Therefore, prior to 
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Figure 30. Binding of entacapone to 0.1% BSA in the absence of Sf9 control 

membrane (●) and in the presence of 0.032 (▲), 0.080 (▼), or 0.16 () mg/mL of Sf9 

control membrane (A). The results appear as fu and represent the mean of three 

determinations. The S.E. was small and, for the sake of clarity in this condensed 

figure, we have omitted the S.E. bars. We fitted the data to an empirical hyperbolical 

equation (see publication II). The correlation between the measured fu and Sf9 

control membrane concentration, at different entacapone concentrations, appears as 

the inset in panel A. An identical set of data appears in the form of a 3D scatter 

plot (B). We fitted an empirical 3D function to the data points (see the supplemental 

material of publication II for further details). 
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the detailed studies of the albumin effect in human UGTs, we aimed to optimize the 

experimental conditions of the in vitro assays, especially with respect to the most favorable 

concentration of albumin and the enzyme source used. For this purpose, we tested different BSA 

concentrations on 4-MU glucuronidation by UGT2A1, an enzyme that proved highly sensitive to 

the addition of BSA in preliminary assays.  

A. 4-MU, UGT2A1
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The addition of 0.01–2% BSA to 4-MU glucuronidation by UGT2A1 resulted in sharply reduced 

Km value (Figure 31, panels A and B). The differences in the Km decrease observed were 

relatively minor between the lowest (0.01%) and highest (2%) concentrations of BSA tested. 

Although the Km decrease was most pronounced at 1% BSA, we selected 0.1% BSA as the 

optimal concentration for the subsequent assays because of the fine balance between the enzyme 

activation and the low nonspecific binding of the substrates. The reduced drug binding to 0.1% 

Figure 31. Panel A presents the influence of different BSA concentrations on 4-MU 

glucuronidation by UGT2A1. The 4-MU binding to 0.01 and 0.05% BSA was 

considered negligible. We fitted the data without BSA to the Michaelis-Menten 

equation, whereas the data in the presence of BSA were fitted to the substrate 

inhibition equation. Panel B presents the relationship between the apparent Km 

values and the added BSA concentration. Panel C presents the relationship between 

the 4-MU (50 µM) glucuronidation activity in the presence of 0.1% BSA and the 

increasing concentration of recombinant UGT2A1. The values appear as the 

mean ± S.E.   
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BSA was especially important for subsequent assays with entacapone and estradiols, the 

compounds that bind strongly to 1 or 2% BSA (Table 12; Walsky et al., 2012, Rowland et al., 

2009). The reactions with even lower concentrations of BSA than 0.1%, namely 0.01 and 0.05%, 

were excluded due to somewhat lower measured Vmax values (Figure 31A). The choice of 0.1% 

BSA was further supported by the enzyme kinetic assays of 4-MU glucuronidation by UGTs 

1A9 and 1A10, performed in the presence of both 0.1 and 1% BSA (Figure 32). 

Km values for 4-MU glucuronidation
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Since the added BSA presumably removes lipophilic inhibitors that dissociate from the disrupted 

cell membranes (Rowland et al., 2007, Rowland et al., 2008a), the concentration of the enzyme 

source may play an important role in the magnitude of the BSA effects. For this reason, we 

tested the activation of 4-MU (50 µM) glucuronidation by 0.1% BSA in the presence of 

increasing concentrations of recombinant UGT2A1 (Figure 31C). The results showed that 0.1% 

BSA was able to fully activate the 4-MU glucuronidation in the presence of up to 0.5 mg/mL of 

UGT2A1. Based on this finding, as well as necessary safety margins, we selected 0.2 mg/mL as 

the highest concentration of the enzyme source for use in combination with 0.1% BSA. The 

safety margin was implemented because different enzyme sources, such as in-house expressed 

UGTs, commercial recombinant UGTs, or microsomal fractions, may have different protein to 

lipid ratios and, therefore, exhibit different inhibitory properties toward UGTs.  

Although we generally avoided using organic cosolvents, the presence of 1% DMSO was 

necessary in the glucuronidation assays with estradiol isomers and high concentrations of 4-MU 

and 1-naphthol (>1000 µM). Addition of 1% DMSO for these substrates was required due to 

poor aqueous solubility of estradiols (Shareef et al., 2006), as well as visually observed 

precipitation of substrates and poor reproducibility that we have observed in preliminary assays 

with high concentrations of 4-MU and 1-naphthol. To verify whether or not the inclusion of 1% 

DMSO changes the effects of BSA, we tested its addition on the glucuronidation of the well 

soluble substrate, entacapone, by UGT1A8 in both the absence and presence of albumin (Figure 

33). The results showed that adding 1% DMSO has relatively little effect on the glucuronidation 

rates and, importantly, does not abolish the stimulatory effect of BSA. In the absence of BSA, 

the Km values were 73.05 ± 3.68 µM (no DMSO) and 95.97 ± 5.08 µM (1% DMSO). On the 

Figure 32. The effects of BSA concentration on the Km values for 4-MU 

glucuronidation by UGTs 1A9 and 1A10 in the absence and presence of BSA. We 

fitted the data to the substrate inhibition equation (not shown). The results appear as 

the mean value ± S.E. 
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other hand, in the presence of 0.1% BSA the Km values were 26.94 ± 1.52 µM (no DMSO) and 

30.05 ± 1.61 µM (1% DMSO). The addition of 1% DMSO, however, reduced the Vmax value in 

the presence of 0.1% BSA by 23.5%. The Vmax value in the absence of BSA was less affected by 

the addition of 1% DMSO; it was reduced by only 3.3%. These finding are in close agreement 

with those of previous reports on the use of organic solvents in glucuronidation reactions 

(Uchaipichat et al., 2004, Zhang et al., 2011).        

Enzyme kinetics of entacapone

with UGT1A8

[Entacapone], µM

v
,

n
m

o
l
m

in
-1
 m

g
-1

0 100 200 300 400 500

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0.1% BSA, No DMSO

0.1% BSA, 1% DMSO

No BSA, No DMSO

No BSA, 1% DMSO

 

5.2.3 Differences between enzyme sources 

Considering possible differences in the lipid composition of HLM, HEK293, and Sf9 cells 

(see Section 2.3.4), our initial tests aimed to investigate the effects of BSA on recombinant 

UGTs expressed in Sf9 cells and to compare the results to the corresponding effects on HLM and 

existing literature reports (Rowland et al., 2007, Rowland et al., 2008a). For this purpose, we 

used two UGT-selective substrates, zidovudine for UGT2B7 and entacapone for UGT1A9 

(liver), to probe the effects of BSA on both in-house UGTs (expressed in Sf9 cells) and HLM. In 

the case of zidovudine glucuronidation by UGT2B7 and HLM, the addition of BSA reduced Km 

in both tested samples with no significant effect on the Vmax of the reaction (Figure 34). These 

results are similar to the recently published data on zidovudine glucuronidation by UGT2B7 that 

was expressed in HEK293 cells and in HLM (Rowland et al., 2007, Uchaipichat et al., 2006). On 

the other hand, adding BSA to entacapone glucuronidation by UGT1A9 and HLM both reduced 

Km and increased Vmax (Figure 35, panels A and B). The enzyme kinetic parameters of 

entacapone glucuronidation in the absence of BSA closely agreed with previously published 

values (Lautala et al., 2000). Although the results of the tested samples, UGT1A9 and HLM 

were mutually quite similar, they differed considerably from the published reports on the effects 

of BSA on UGT1A9 (Rowland et al., 2008a), an enzyme where Km, but not Vmax, changed (i.e. 

Figure 33. Enzyme kinetics of entacapone glucuronidation by UGT1A8 in the 

absence (solid symbols) and presence (open symbols) of 0.1% BSA. The reactions 

without and with DMSO appear as full and dotted lines, respectively. We fitted the 

data to the Michaelis-Menten equation. The data points appear as the mean value ± 

S.E.   
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other researchers have found effects similar to these for the effects of BSA on UGT2B7). In 

order to confirm this finding, we also tested the effects of BSA on entacapone glucuronidation 

by commercial UGT1A9, also expressed in Sf9 cells, but without the C-terminal fusion peptide 

that our locally expressed recombinant UGTs mostly carry (Figure 35C). The results with the 

commercial recombinant UGT1A9 agreed closely with those of our previous entacapone tests, 

namely that the addition of BSA both reduced Km and increased Vmax (see Table 1 in publication 

II for detailed enzyme kinetic parameters). The equivalence of BSA effects between the in-house 

and commercial UGT1A9, as well as the consistent increase in Vmax in the presence of BSA, was 

additionally confirmed with 4-MU glucuronidation by UGT1A9 (see Figure 5 and Table 1 in 

publication II).           
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Figure 34. Enzyme kinetics of zidovudine glucuronidation by HLM (A) and 

UGT2B7 (B) in the absence and presence of 1% BSA. The binding of zidovudine to 

1% BSA is negligible. The points represent an average of three samples ± S.E. The 

Eadie-Hofstee transforms of the data appear as insets. The enzyme kinetic 

parameters appear in Table 1 of publication II.  
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Taken together, our results of zidovudine and entacapone glucuronidation strongly suggest that 

there are no major differences in BSA effects between the HLM and recombinant UGTs 

expressed in Sf9 insect cells, with or without a C-terminal fusion peptide (which includes a His-

tag). In addition, even if the BSA effects on zidovudine glucuronidation by UGT2B7 are in close 

agreement with published reports (Rowland et al., 2007, Uchaipichat et al., 2006), the BSA 

effects on UGT1A9 differ from the published results and include changes in both the Km and 

Vmax values of the reaction (Figure 35).    

5.2.4 Scope of albumin effects in human UGTs 

We tested the effects of albumin on 11 recombinant human UGTs, as well as on HLM and HIM. 

Of the 11 UGTs tested, 5 (UGTs 1A1, 1A6, 1A9, 2B4, and 2B7) had been examined previously, 

whereas, to best of our knowledge, the effects of albumin remained untested on 6 enzymes: 

UGTs 1A7, 1A8, 1A10, 2A1, 2B15, and 2B17. In order to determine whether or not the effects 

of albumin are substrate dependent, we performed enzyme kinetics in the absence and presence 

of BSA with at least two different substrates for each enzyme source tested. Moreover, to test 

whether the chemical nature of the substrate governs the appearance and magnitude of the BSA 

Figure 35. Enzyme kinetics of entacapone glucuronidation by HLM (A), in-house 

produced UGT1A9 (B), and commercial UGT1A9 (C), in the absence and presence 

of 0.1% BSA. The points represent an average of three samples ± S.E. We corrected 

the concentrations of entacapone for nonspecific binding. We fitted the data to 

Eq. 10 (see Materials and Methods of publication III and Section 2.4.2). Enzyme 

kinetic parameters appear in Table 1 of publication II. 
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effects, we used substrates of different physicochemical properties: both small and planar 

molecules such as 4-MU, 1-naphthol, and 6-HI, as well as larger and more hydrophobic 

molecules such as entacapone, 17α-, and 17β-estradiol. We generally performed the assays in the 

absence and presence of 0.1% BSA and up to 0.2 mg/mL of enzyme source, as described 

previously in Section 5.2.2. The only exceptions to this rule were assays with the poor-BSA 

binder zidovudine and the optimization assays with 4-MU (see Section 5.2.2), which we 

performed in the presence of 1% BSA. A combined overview of these results appears in Figure 

36. The enzyme kinetic parameters obtained appear in Table 1 of publication II, Tables 2 and 3 

of publication III, and the Results section of publication IV. Corresponding enzyme kinetic 

curves also appear in publications II–IV. In most cases, the addition of BSA affected both the 

reaction Km and Vmax values. For the sake of presentation clarity, the effects of BSA on the 

reaction Km and Vmax values are initially discussed separately, even though both are 

manifestations of the same phenomenon.   

The addition of BSA reduced the reaction Km or S50 in UGTs 1A7, 1A9, 1A10, 2A1, 2B4, 2B7, 

and 2B15 (Figure 36A). Conversely, the Km values of the reactions catalyzed by UGTs 1A1, 

1A6, and 2B17 appear less affected. Our results with UGTs 1A1, 1A6, 1A9, 2B4, and 2B7 are in 

close agreement with those of respective previous reports on the effects of BSA on these human 

UGTs (Walsky et al., 2012, Rowland et al., 2007, Rowland et al., 2008a, Shiraga et al., 2012, 

Kilford et al., 2009, Gill et al., 2012, Uchaipichat et al., 2006). The BSA-mediated decrease in 

Km appears to occur mainly independently of the substrate used, although we observed large 

scatter of values for UGTs 1A8, 1A9, 2B7, 2B15, and 2B17. The notable exception was 

UGT1A8. The addition of BSA to UGT1A8-catalyzed reactions reduced Km in the case of 

17β-estradiol and entacapone, whereas the reaction Km remained unaffected, or even increased, if 

the substrates were 4-MU and 1-naphthol. Further studies are needed to answer the interesting 

question of whether or not the effects of BSA on UGT1A8 depend on the size of the substrate.  
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The inclusion of BSA also sharply decreased the Km values for zidovudine and entacapone 

glucuronidation by HLM, as one should expected for substrates that are selectively 

glucuronidated by UGTs 2B7 and 1A9, respectively. In addition, the Km values for 17β-estradiol, 

4-MU, and entacapone were decreased in HIM. For 17β-estradiol and entacapone, the substrates 

Figure 36. The combined effects of BSA on the Km or S50 (A) and Vmax (B) values in 

11 recombinant human UGTs, as well as in HLM and HIM. We arbitrarily assigned 

the average values of the enzyme kinetic parameters, determined in the absence of 

BSA, to 100%. The average corresponding values of Km and Vmax in the presence of 

BSA were compared to their respective values in the absence of BSA and plotted for 

all the enzyme sources tested. The presented errors are propagated S.E. values that 

take into account the errors in the parameters determined in both the absence and 

presence of BSA (see publication III for further details about the error analysis).  
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for the intestinal UGTs 1A7–1A10, this decrease in Km was well expected. On the other hand, 

apart from the UGT1A7–1A10 group, UGTs 1A6 and 2B7 also glucuronidate 4-MU 

(Uchaipichat et al., 2004, Luukkanen et al., 2005), making the results of 4-MU glucuronidation 

by HIM more difficult to interpret (see Table 1 for the expression of UGTs in intestinal tissues). 

While the addition of BSA significantly activates UGTs 1A7–1A10 and UGT2B7, UGT1A6 

appears less affected (Figure 36).  

The effects of BSA on the Km values of some UGTs, but not all, raises an interesting question 

about the mechanism of albumin effects. If the apparently higher affinity for the substrates in the 

presence of the BSA arises from the BSA-mediated removal of lipid inhibitors, such as 

arachidonic or linoleic acid (Rowland et al., 2007), then the lack of such effects in UGTs 1A1, 

1A6, and 2B17 would suggest that the tentative inhibitors do not inhibit these enzymes, at least 

not in any way that compromises the binding of aglycone substrate. The lack of a BSA-mediated 

decrease in Km is somewhat surprising in the case of UGT1A1, an enzyme whose active site is 

large enough to allow the binding of bilirubin (see Laakkonen and Finel, 2010) and several 

arachidonic and linoleic acid metabolites (Turgeon et al., 2003). Interestingly, the inclusion of 

BSA also reduces the Km value even if the substrate affinity is already very high, as with 

17α-estradiol and UGT2B7 (see Figure 8 and Table 3 in III), and 1-naphthol and UGT1A9 (see 

Figure 2 and the Results section in IV). Although unexpected at a first glance, these results are 

generally consistent with the theory of competitive inhibition, in particular with the fact that the 

KmI/Km ratio, the ratio of apparent substrate affinities in the presence (KmI) and absence (Km) of 

the inhibitor, depends solely on the [I]/Ki ratio rather than on the absolute magnitude of the 

substrate affinity. In line with this, the tentative UGT inhibitors that BSA removes, such as fatty 

acids, may also exhibit a high affinity for the enzymes (Turgeon et al., 2003, Tsoutsikos et al., 

2004). 

In contrast to its effects on Km values, the effects of BSA on the reaction Vmax values were mainly 

substrate dependent (Figure 36B). In general, large increases in Vmax were present mainly in the 

UGT1A subfamily, whereas minor to moderate increases in Vmax also occurred in members of 

the UGT2A and UGT2B subfamilies. The increases in Vmax in the presence of BSA were 

consistently present in UGTs 1A7, 1A9, and mostly 1A10. On the other hand, the increases in 

Vmax in UGTs 1A1, 1A6, 1A8, 2A1, and 2B7 were primarily dependent on the substrate used. A 

two-fold increase in Vmax also occurred in entacapone glucuronidation by HLM, a reaction 

almost exclusively catalyzed by UGT1A9 (Lautala et al., 2000). Interestingly, a large 10-fold 

increase in Vmax increase was observed in entacapone glucuronidation by HIM, a reaction 

catalyzed by UGTs 1A7–1A10, and mainly UGTs 1A9 and 1A10, all of which exhibited 

increases in Vmax with other substrates as well.  

The increase in Vmax in the presence of BSA may be explained by the albumin-mediated removal 

of noncompetitive or mixed-type inhibitors with respect to the aglycone substrate (see Section 

5.3). These inhibitors may be long-chain fatty acid (Turgeon et al., 2003, Rowland et al., 2007, 

Tsoutsikos et al., 2004) or other lipophilic compounds that were not identified thus far. Taking 

into account the compulsory-order of substrate binding in UGT-catalyzed reactions, such 

inhibitors would also bind to the ternary enzyme • UDPGA • aglycone complex. Because 

structurally diverse aglycone substrates may lead to slightly different ternary complexes, these 

tentative UGT inhibitors may exhibit different affinities for them, which explains the variable 

effects of BSA inclusion on Vmax values. Moreover, we found no correlation between the relative 
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Km and Vmax changes in this study (see supplementary Figure S5 in III), suggesting that the 

possible removal of different inhibitors causes these two independent effects. Regarding the 

chemical structures of these putative "Vmax-affecting" inhibitors, no data are currently available, 

but it could well be one or more of the fatty acids removed by BSA. Interestingly, arachidonic 

acid was reportedly an ―atypical inhibitor‖ of UGT1A9 (Tsoutsikos et al., 2004), indicating 

behavior beyond the simple, competitive inhibition.   

BSA-induced changes in CLint
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The overall magnitude of activity enhancement in the presence of BSA, especially at low 

concentrations of substrate, is important for studies focusing on in vitro–in vivo extrapolation. 

Such activity enhancement can be expressed through relative changes in CLint (Figure 37, note 

the log10 scale along the y-axis). These changes can simply be interpreted as the combined 

effects of Km and Vmax modulation or, from a slightly different point of view, as the overall 

enhancement of enzyme activity at low concentrations of substrate. It should be noted, however, 

that in the case of substrates that follow sigmoidal kinetics we calculated the CLmax, the maximal 

clearance that results from autoactivation (Houston and Kenworthy, 2000). The results show that 

the inclusion of 0.1% BSA leads to large CLint increases in UGTs 1A7, 1A9, 1A10, 2A1, and 

2B7. The up to 400-fold increase in CLint is especially striking in the case of UGT2A1, an 

enzyme with broad substrate selectivity and a limited tissue expression pattern. A significant 

Figure 37. The combined effects of BSA on CLint or CLmax in the 11 human 

recombinant UGTs, HLM, and HIM tested. We arbitrarily assigned the average 

values of CLint or CLmax, determined in the absence of BSA, to 100%, and the 

average corresponding values of CLint or CLmax in the presence of BSA were 

compared to the values in the absence of BSA and plotted for all 10 of the UGT 

enzymes tested. The errors presented are propagated S.E. values that take into 

account errors in the parameters determined in both the absence and presence of 

BSA (see publication III for further details). Due to large increases of CLint or CLmax 

in the presence of BSA, the values of the y-axis appear on a log10 scale. 
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increase in CLint in the presence of BSA also occurred in zidovudine glucuronidation by HLM 

(catalyzed by UGT2B7) and in entacapone glucuronidation by HLM (mainly UGT1A9) and 

HIM (UGTs 1A7, 1A8, 1A9, and 1A10).   

To the best of our knowledge, we are the first to describe the effects of albumin on UGTs 1A7, 

1A8, 1A10, 2A1, 2B15, and 2B17. Moreover, we used previously untested substrates to 

reexamine the effects of albumin on UGTs 1A1, 1A6, 1A9, 2B4, and 2B7. Altogether, our 

results indicate that adding BSA alters both the Km and Vmax values of human UGTs, although 

the effects are both enzyme and substrate dependent. This highlights the complexity and 

variability of this effect, which differs considerably from the original results with UGT2B7, 

where the effects of BSA were limited only to the reaction Km value (Uchaipichat et al., 2006, 

Rowland et al., 2006). The new results significantly deepen our current knowledge of the effects 

of BSA on human UGTs and should raise our awareness of the experimental condition of in vitro 

UGT assays. 

5.3 Enzyme kinetic mechanism of UGT1A9 (IV) 

The addition of BSA to UGT1A9-catalyzed reactions substantially changed the enzyme kinetic 

parameters, depicted by both a decrease in Km and an increase in Vmax (Figure 35). These changes 

raise an interesting question: Will the inclusion of BSA affect the enzyme kinetic mechanism of 

UGT1A9-catalyzed reactions? In other words, since previous studies of the UGT enzyme kinetic 

mechanism were performed in the absence of albumin, will the conclusions of these studies 

remain valid in the presence of BSA? As described in Section 2.4.1, studies of the UGT enzyme 

kinetic mechanism generally agree on the formation of ternary complex 

(enzyme • UDPGA • aglycone), but largely disagree about the order of substrate binding. In 

order to resolve these issues, we investigated the bisubstrate enzyme kinetics of 4-MU and 

UDPGA with UGT1A9, in both the presence and absence of albumin. Moreover, with the aim to 

measure both the equilibrium constant (Keq) of the overall reaction and the individual rate 

constants, we studied the bisubstrate kinetics of the reverse reaction, the formation of 4-MU and 

UDPGA from 4-MUG and UDP. Finally, in order to study the order of substrate binding, we 

performed dead-end and product inhibition studies with 1-naphthol and UDP.  

5.3.1 Bisubstrate enzyme kinetics of UGT1A9-catalyzed reactions 

Our initial studies focused on bisubstrate enzyme kinetics at lower concentrations of 4-MU 

(Figure 38), a region where the substrate inhibition by 4-MU is not apparent. The Eadie-Hofstee 

transforms of the primary data revealed a common intersection point in the second quadrant, a 

pattern characteristic of ternary-complex mechanisms (Figure 38, Eadie-Hofstee insets). If the 

reaction followed a substituted enzyme-mechanism, however, the expected intersection point 

would have been located in the first quadrant, on the x-axis (Cornish-Bowden, 2012). The 

formation of ternary-complex was further supported by the poor fit of the data obtained to the 

equation for the substituted-enzyme mechanism (Eq. 8 in Section 2.4.1). On the other hand, the 

bisubstrate kinetic data closely fit the equations for both compulsory-order and random-order 

ternary-complex mechanisms (Eqs. 6 and 7 in Section 2.4.1). Based on subsequent results from 

substrate inhibition, dead-end and product inhibition studies (see below), the compulsory-order 

ternary-complex mechanism with UDPGA binding first proved to be the most likely. The results 

of bisubstrate kinetic studies obtained with the equation for the compulsory-order ternary-

complex mechanism appear in Table 13.       
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Adding BSA changed the enzyme kinetic parameters of the bisubstrate kinetics, but did not 

qualitatively influence the enzyme kinetic mechanism (Figure 38). In the presence of BSA, the 

Km values for 4-MU decreased and the overall reaction Vmax increased (Table 13), as observed 

previously in the single-substrate kinetics of UGT1A9 (Figure 35). The apparent Km value for 

UDPGA, however, increased in the presence of BSA. These findings could be attributed to the 

BSA-mediated removal of competitive and mixed-type inhibitor(s) with respect to the aglycone 

substrate, 4-MU, and removal of uncompetitive inhibitor(s) with respect to UDPGA (see also 

Figure 41).               

 

The bisubstrate enzyme kinetics in the presence of BSA and at higher concentrations of 4-MU 

resulted in pronounced substrate inhibition (Figure 39, Table 13). This data set was accurately 

modeled by the compulsory-order ternary-complex mechanism with substrate inhibition (see 

Eq. 11 in Section 2.4.2). It is important to note that the Km value for UDPGA depends on both 

the concentration of 4-MU and the strength of the aglycone substrate inhibition (the strength of 

v/[4-MU]

-0.04 0.00 0.04 0.08

0.6

1.2

1.8

2.4 v

[UDPGA]

A1

-0.01 0.00 0.01

1

2
v

v/[UDPGA]

[4-MU]

A2

v/[4-MU]

-1 0 1 2

5

10

15
v

[UDPGA]

B1

-0.04 0.00 0.04

5

10

15

v/[UDPGA]

v

[4-MU]

B2

A. UGT1A9, 4-MU bisubstrate kinetics, No BSA

B. UGT1A9, 4-MU bisubstrate kinetics, 0.1% BSA

Figure 38. Bisubstrate enzyme kinetics of UGT1A9-catalyzed 4-MU glucuronidation 

in the absence (A) and presence of BSA (B). The points represent the average of two 

samples (variation between two replicates was less than 15%). Glucuronidation 

rates appear as measured initial rates in nmol·min
–1

·mg
–1

 of UGT1A9-enriched 

insect cell membranes. The kinetic constants derived appear in Table 13. The Eadie-

Hofstee transforms of the data, both from the perspectives of 4-MU (A1 and B1) and 

of UDPGA (A2 and B2), appear in the panels at right. 
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substrate inhibition may be defined by the Ksi/Km ratio; see IV for a more detailed discussion). 

Taking into account that many UGT-catalyzed reactions exhibit pronounced aglycone substrate 

inhibition, the accurate determination of the Km value for UDPGA is no trivial task, and 

bisubstrate enzyme kinetics may present a more reliable approach than the common single-

substrate assays. Moreover, the nature of substrate inhibition may provide additional information 

about the order of substrate binding. In the steady-state compulsory-order ternary-complex 

mechanism, the second substrate may bind to a binary complex between the enzyme and the 

second product, forming an unproductive reaction pathway. In UGT-catalyzed reactions, the 

aglycone substrate may bind to the ―wrong‖ enzyme • UDP complex, instead of the ―correct‖ 

enzyme • UDPGA complex, and thus forming an unproductive ternary complex 

enzyme • UDP • aglycone (see Figure 41). Substrate inhibition can also occur in the random-

order ternary-complex mechanism, where 4-MU may bind to the enzyme • UDP complex. If, 

however, the rapid-equilibrium assumption remains valid, the enzyme • UDP complex 

concentration is zero in the absence of accumulated or added products. Since 4-MU cannot bind 

to enzyme species that are absent, one can exclude the rapid-equilibrium random-order ternary-

complex mechanism based on this observation. The non-rapid-equilibrium (steady-state) 

random-order ternary-complex mechanism cannot be ruled out based on bisubstrate kinetics 

alone, however.     

 

To understand the overall enzyme kinetic mechanism, we also investigated the reverse reaction 

in the presence of BSA, an experiment which previous UGT studies rarely performed (Vessey 

and Zakim, 1972, Rao et al., 1976, Matern et al., 1991), and never with recombinant UGTs. We 

paid close attention to preventing possible non-enzymatic 4-MUG hydrolysis and excluding the 

possibility that other enzymes in the insect cell membrane would catalyze UDPGA formation 
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Figure 39. The effects of BSA on the bisubstrate enzyme kinetics of 4-MU 

glucuronidation by UGT1A9 at higher concentrations of 4-MU. The points represent 

the average of two samples (variation between two replicates was less than 15%). 

The Eadie-Hofstee transforms of the data, both from the perspectives of 4-MU (A) 

and of UDPGA (B), appear in the panels at right. The lines in the Eadie-Hofstee plot 

B at high concentrations of 4-MU, the region where aglycone substrate inhibition 

becomes pronounced, are indicated by dashed lines. 
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from 4-MUG and UDP. We examined the latter using the insect cell control membranes that lack 

recombinant UGT; the assays revealed no significant 4-MU or UDPGA formation upon addition 

of 4-MUG and UDP. The reverse reaction in the presence of BSA occurred rather rapidly under 

optimal conditions, namely in the presence of high concentrations of 4-MUG (Figure 40, Table 

13). The preliminary assays showed that reverse reaction also occurs in the absence of BSA, 

albeit at the lower rate. The results of the bisubstrate reverse reaction indicated that it also 

follows a ternary-complex mechanism, as is evident from the common intersection point in the 

second quadrant of the Eadie-Hofstee plots, just left of the y-axis (Figure 40, Eadie-Hofstee 

insets). The Km value for 4-MUG was approximately 500-fold higher than the Km value for 

4-MU, whereas, perhaps surprisingly, the Km value for UDP was approximately one order of 

magnitude lower than the corresponding value for UDPGA (Table 13). The relatively high 

affinity for UDP, compared to UDPGA, may explain why aglycone substrate inhibition occurs so 

frequently in UGT-catalyzed reactions.  

Based on the Haldane relationship for the compulsory-order ternary-complex mechanism (see 

publication IV for details), the thermodynamic equilibrium constant of the reaction in the 

presence of BSA is Keq = 574. Moreover, in the compulsory-order ternary-complex mechanism, 

a unique relationship exists between the enzyme kinetic parameters and the individual rate 

constants (Cornish-Bowden, 2012). Unfortunately, due to a lack of purified and fully active 

UGT1A9, we could determine only the relative ratio of the rate constants, not their absolute 

values. For comparison, the results were normalized by arbitrarily setting the value of V
f
max, the 

limiting reaction velocity in the forward direction, to numerical value of one and then using the 

expression V
f
max = k

f
cat [E], where [E] is the molar concentration of the enzyme (Table 14, Figure 

41). It is worth noting here that, although the first-order and second-order rate constants cannot 

be directly compared to each other, a pseudo-first-order rate constant such as k1[AX] can be 

compared to other first-order constants. These results suggest that the catalytic rate constant in 

the forward direction, k
f
cat, is about 11-fold higher than the corresponding catalytic rate constant 

in the reverse reaction, k
r
cat.  

 



 

83 

 

 

 

Bisubstrate enzyme kinetics parameters of 4-MU glucuronidation by UGT1A9 

Conditions Vmax Km (4-MU) 
Km 

(UDPGA) 

Ki 

(UDPGA) 

Ksi (4-

MU) 

Kinetic 

Model 

 nmol·min
–1

·mg
–1

 µM µM µM µM (r
2
) 

No BSA 
1.25 ± 0.04 

(1.18–1.33) 

12.0 ± 1.1 

(9.86–14.2) 

36.3 ± 8.7 

(18.7–53.9) 

136 ± 26 

(83.2–188) 
— Eq. 6 (0.99) 

0.1% BSA 
9.47 ± 0.13 

(9.20–9.75) 

2.91 ± 0.16 

(2.59–3.24) 

90.2 ± 8.6 

(72.8–108) 

445 ± 46 

(352–538) 
— Eq. 6 (0.99) 

0.1% BSA with 

substrate inhibition 

9.44 ± 0.19 

(9.06–9.83) 

3.08 ± 0.22 

(2.65–3.52) 

64.1 ± 5.4 

(53.4–74.8) 

574 ± 60 

(454–694) 

146 ± 8 

(130–162) 
Eq. 11 (0.99) 

0.1% BSA 

reverse reaction 

0.872 ± 0.023 

(0.826–0.918) 

Km (4-MUG) 

1339 ± 133 

(1071–1607) 

Km (UDP) 

2.48 ± 0.66 

(1.23–4.86) 

Ki (UDP) 

51.0 ± 9.7 

(31.3–70.6) 

— Eq. 6 (0.99) 

 

v/[4-MUG]
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B

UGT1A9, 4-MU bisubstrate kinetics, No BSA

Figure 40. Bisubstrate enzyme kinetics of the UGT1A9-catalyzed reverse reaction, 

glucuronic acid transfer from 4-MUG to UDP. We carried out the reactions in the 

presence of 0.1% BSA, and the points represent the average of two samples 

(variation between two replicates was less than 15%). Glucuronidation rates appear 

as measured initial rates in nmol·min
–1

·mg
–1

 of protein in UGT1A9-enriched insect 

cells membranes. The kinetic constants derived appear in Table 13. The Eadie-

Hofstee transforms of the data, both from the perspectives of 4-MUG (A) and of UDP 

(B), appear in the panels at right. 

Table 13. The bisubstrate enzyme kinetic parameters of 4-MU glucuronidation by 

UGT1A9. We interpreted the data using the compulsory-order ternary-complex 

mechanism based on a steady-state assumption (Eqs. 6 and 11). The values represent 

a best-fit result ± S.E. The 95% CI calculated appear in parenthesis. The reaction 

velocity is expressed per mg of total protein in UGT1A9-enriched insect cell 

membranes. 
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Individual rate constants of UGT1A9-catalyzed 4-MU glucuronidation in the presence of 0.1% BSA 

Rate constant equation 
Relative value, normalized 

to     
       

Order of rate constant 

      
    

 

    

 0.011 second-order 

       
    

 
    

    

 4.930 first-order 

      
    

 
        

      

 0.359 second-order 

       
    

 
    

     

    
 

         
     

 0.094 first-order 

      
    

 
    

    

    
         

 
   

 2.126 first-order 

       
    

         

       

 0.002 second-order 

      
    

    

   

 1.888 first-order 

       
    

 

   

 0.037 second-order 

    
         

 
 

    

     

 1.000 first-order 

    
         

  
      

       

 0.092 first-order 

 

5.3.2 Product and dead-end inhibition of UGT1A9-catalyzed reactions 

UDP proved to be a competitive inhibitor with respect to UDPGA, but a mixed-type inhibitor 

with respect to 4-MU (see publication IV for details). Although these inhibition patterns agree 

closely with previously published data (Luukkanen et al., 2005, Fujiwara et al., 2008), they are 

possible for both random-order and compulsory-order ternary-complex mechanisms. If, 

however, the reaction follows the compulsory-order ternary-complex mechanism, as the 

bisubstrate kinetic analyses and substrate inhibition indicate, the results of UDP inhibition 

support the suggestion that UDPGA is the first, and the aglycone is the second binding substrate 

in a compulsory-order mechanism. 

In contrast to the UDP inhibition results, 1-naphthol was a predominantly competitive inhibitor 

of UGT1A9 with respect to 4-MU (α = 7.38 ± 1.75) but, importantly, proved to be uncompetitive 

with respect to UDPGA (see publication IV for details). This result shows that 1-naphthol, an 

inhibitor that probably competes with 4-MU for the aglycone substrate-binding site, does not 

compete for the same enzyme species as UDPGA. The uncompetitive inhibition pattern may 

arise from 1-naphthol binding to the pre-formed enzyme • UDPGA complex, rather than to the 

free enzyme. This uncompetitive inhibition provides strong positive evidence that UGT 

substrates bind in a compulsory-order fashion such that the initial binding of UDPGA increases 

Table 14. The relative individual rate constants for the compulsory-order ternary-

complex mechanism of UGT1A9-catalyzed 4-MU glucuronidation. We normalized 

the different rate constants to the arbitrarily set value: V
f
max = k

f
cat[E] = 1. The 

superscripts f and r indicate the forward and the reverse reactions, respectively. 
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the affinity for the aglycone substrate. An affinity increase for the aglycone substrate upon 

UDPGA binding may be a consequence of a conformational change in the enzyme, the 

involvement of the bound UDPGA molecule itself in the binding of the aglycone substrate, or 

both.  

5.3.3 Conclusions about the enzyme kinetic mechanism 

The available evidence suggests that UGT1A9 follows a steady-state compulsory-order ternary-

complex mechanism, regardless of the presence of BSA. Taking into account that the presence of 

BSA increases the apparent affinity for 4-MU (lower Km for 4-MU) and decreases the apparent 

affinity for UDPGA (higher Km for UDPGA), one may propose that BSA removes internal 

inhibitors that are competitive or mixed-type with respect to the aglycone substrate, but are 

uncompetitive with respect to UDPGA. The uncompetitiveness of the BSA-removed inhibitors 

with respect to UDPGA would explain why the affinity for this cosubstrate apparently decreases 

in the presence of BSA. Such inhibitors, tentatively marked I1 and I2 in the reaction scheme 

(Figure 41), would not bind (or would bind poorly poorly) to the free enzyme, but would bind 

with a higher affinity to the binary enzyme • UDPGA complex or to the ternary complex 

enzyme • UDPGA • 4-MU complex. While the exact nature and number of these inhibitors is 

currently unknown, an improved understanding of the UGT reaction mechanism and of the 

effects of BSA may help to rationalize and predict the effects of BSA in the future.  

 

AX

E E·AX

B

E·AX·B



E·A·BX
E·A

A

k1[AX]

BX

k–1

k2[B]k–2

k3

k–3[BX]

k4 k–4[A]

Ternary
complex

B

E·A·B

I1
E·AX·I

I2 or I1
E·AX·B·I

B

Figure 41. The proposed enzyme kinetic mechanism of the UGT1A9-catalyzed 4-MU 

glucuronidation reaction. The letters represent: E = enzyme (UGT1A9), 

AX = UDP-α-D-glucuronic acid, A = UDP, B = aglycone substrate (4-MU), I1 and 

I2 = tentative inhibitors removed by BSA. 
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6 Summary and Conclusions 

This thesis explored the activity, assay conditions, and enzyme kinetics of human UGTs, 

important enzymes involved in the metabolic elimination of xenobiotics and endogenous 

compounds. Most importantly: 

1) We identified the UGT enzymes involved in the glucuronidation of psilocin and 4-HI. 

Moreover, we performed enzyme kinetic assays and studied the expression levels of the 

UGTs that are active in psilocin glucuronidation. Our results suggest that psilocin is 

glucuronidated mainly by UGT1A9 in the liver and kidneys, but also by UGT1A10 in 

the intestine. In contrast to the psilocin results, 4-HI was glucuronidated mainly by 

UGT1A6, presumably due to the lack of a flexible side chain. However, because this 

study was performed in the absence of albumin, the enzyme kinetic parameters 

measured, especially substrate affinity and Vmax, are probably underestimated. Future 

studies will need to address this issue.  

2) We studied the effects of albumin on 11 human UGTs, 5 of which were previously 

reported and 6 untested thus far. Our results show that addition of albumin enhances the 

activities of UGTs 1A7, 1A8, 1A10, 2A1, and 2B15. The effects of albumin are 

comparable to the recombinant UGTs expressed in Sf9 insect cells and microsomes 

from the human liver and intestine. The addition of albumin also resulted in an increase 

in Vmax for many UGT enzymes tested, although the effects are clearly both enzyme and 

substrate dependent. Additional studies may be needed to identify and quantify exactly 

which inhibitors albumin removes.  

3) We investigated the enzyme kinetic mechanism of UGT1A9 in both the absence and 

presence of albumin. The addition of albumin quantitatively changed the enzyme 

kinetic parameters, but did not affect the underlying compulsory-order ternary-complex 

mechanism. The nature of substrate inhibition, as well as the results of inhibition by 

1-naphthol and UDP, suggested that UDPGA binds first and the aglycone substrate 

binds second to form a ternary-complex in UGT-catalyzed reactions. Activity 

enhancement in the presence of BSA likely arises from the BSA-mediated removal of 

competitive and mixed-type inhibitors with respect to the aglycone substrate, but of 

uncompetitive inhibitors with respect to UDPGA. We determined the equilibrium 

constant (Keq) for the overall reaction of 4-MU glucuronidation and elucidated the 

relative individual rate constants. 

Taken together, we trust that these results will contribute to a deeper understanding of human 

UGTs, serve as a starting point for new studies, and ultimately contribute to safer 

pharmacotherapy.     
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