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A B S T R A C T  
It is shown that, for mode-III crack in steady growth in power hardening media the near-tip singularity is not of the 
power function type but is logarithmic. By consideration of the inner boundary layer in the neighborhood of the 
unloading boundary, the asymptotic near-tip solutions for stress and strain fields are obtained, which satisfy all the 
necessary relations of elastic-plastic continuum mechanics, including the condition of continuity of the plastic parts 
of strain-rates across the unloading boundary. 

1. Introduction 

The investigation of near-tip singularity fields is necessary for the development of fracture 
criteria and has become one of the central problems in fracture mechanics. The near-tip stress 
and strain fields for growing cracks are utterly different from those for stationary cracks. After 
some distance of growth (e.g., several times the size of the plastic zone), the near-tip fields 
approach a steady state, which remains time-invarient for an observer moving together with 
the crack-tip. As the terminal state of the growing crack, the crack in steady growth has been 
studied by many authors in recent years. 

Chitaley and McClintock [1] obtained the solution for the steady state of growing mode- 
III cracks. Slepjan [2], Gao 1-3] Rice et al. [4] obtained independently the plane-strain 
solution for mode-I cracks in steady growth. For mixed mode-I-II cracks Gao and Hwang 
1-5] show that the solution for steady state does not exist. All these solutions for elastic- 
perfectly plastic materials show that the near-tip strain singularities for steadily growing 
cracks are much weaker than for stationary cracks. If we adopt as the fracture criterion a 
quantity related to the near-tip deformation (e.g., the critical strain a distance r c ahead of the 
tip, or the critical displacement a distance rc behind the tip), then the load required for steady- 
state growth (e.g., the value Jss of J-integral) will be much greater than for initiation of growth 
(e.g., the value Jlc). 

However, most engineering materials are strain hardening. Dean and Hutchinson [61 
have carried out the finite-element numerical analysis for plane strain mode-I cracks in steady 
growth in power hardening material. Adopting the fracture criterion of the critical open 
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displacement, they found that the ratio Jss/J~c is dependent upon the material exponent n. 
Hutchinson 1-7] pointed out that, since JJJ~c increases with n, resistance curve predictions 
based on elastic-perfectly plastic calculations (n = o0) may well be highly unconservative. 

The analytical solutions for the steady-state near-tip singularity fields in strain harden- 
ing materials are not many in number. Amazigo and Hutchinson [8] have obtained the 
solutions for mode-Il l  and mode-I cracks in linear hardening materials. As pointed out by 
Hutchinson [6, 7], singularity fields for a crack growing in a more realistic strain hardening 
solid such as power-hardening have been most elusive. Gao and Hwang I-9] have made an 
attempt to obtain the singularity fields for plane strain mode-I cracks in a power hardening 
medium. Some further discussions have been made for mode-Il l  cracks [10]. There is a 
deficiency in these solutions, namely, that the plastic part of the strain-rate does not vanish as 
0 (the polar angle centered at the tip) approaches the boundary between plastic loading and 
elastic unloading. This deficiency is more fully discussed in this paper for mode-III cracks 
after a brief introduction of the solution given in 1-10]. Taking into account the inner 
boundary layer near the unloading boundary, we obtain uniquely near-tip singularity fields 
without the above-mentioned deficiency. 

2. Basic equations and contiguity conditions 

In Fig. 1 the various zones in the x, y plane are shown. Take the crack-tip as origin and assume 
the crack growing along the x-direction. F a is the borderline between the elastic zone I and the 
primary plastic zone II. F8 denotes the boundary between the primary plastic zone II and the 
unloading wake zone III, and is called the unloading boundary. The unloading wake zone III 
is contiguous to the secondary plastic zone IV at Fo, which will be called the reloading 
boundary. 

Denote the shear stress components rx=, zr= simply by zx, z r, and the shear strain Yx=, ?y= 
by yx, 7y. The stress components can be expressed in terms of the stress function ~0, 

8~o c~o (2.1) 
Z x -  By'  x r -  8x 

The strain components can be split into the elastic and the plastic parts, 

7~ = Y~ + ~ ,  7y = Y~ + Y~- (2.2) 

The elastic part obeys the Hooke's law 

~x e ~y (2.3) 
= - 6 - '  Yy = 

Y 

I 

o 

Figure 1. The various zones in the x, y plane. 

× 
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where G is the shear modulus. The plastic strain increments are determined by Reuss 
relations, 

dy~ = 2Zx da, dT~ = 2z r da. (2.4) 

where da denotes the crack-growth length, and 2 > 0. For steady state we have 

0 
0a-  - 0 x "  (2.5) 

From (2.4) and (2.5) we obtain 

Ox Ox 

7~ = 2zx dx, 7~ = 2zy dx. (2.6) 

F rom the relations between the strain components and the displacement w 

Ow Ow 
7x = 0 x '  7 r -  0y" (2.7) 

we can obtain the compatibility equation, 

-ffA~o + 0 7  0~- - o. (2.8) 

For  the sake of convenience, we sometimes take the x-derivative of the compatibility equation 
(2.8), and then using (2.6), obtain 

1 0 02 0q~ 02 2~o 
G Ox A(o -- 2Atp Ox Ox Oy Oy- - O. (2.9) 

For  strain hardening materials, we have 

Or Oz 
- h  ox when Ox >10 (loading). 

2 =  0x 

0, when - 0x- ~< 0 (unloading). 

(2.10) 

where h is dependent upon the strain-hardening law, h > 0, and z is the resultant shear stress, 

~\--f;~ / + \ Oy / 3 " (2.11) 

For  power hardening we have 

T 
7 = ~ -  + cr", (2.12) 

where c and n are material constants and then 

h = cnz"- 2 (2.13) 

Some contiguity conditions must be satisfied at the boundary between neighboring 
zones. We assume that the boundary,  F, is an arbitrary curve. We take  the parallel-curves 
family of F and their straight normals to be the coordinate lines, and represent the co- 
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ordinate parameters by s and n (Fig. 2). Let [~O]r denote the jump of ip across F, i.e. 
[O]r = ~kl,= +o - ~bl,= o. Then from the continuity of stresses, [ r , ] r  = [Zs]r = 0, we obtain 

[ a q ~ l  = 0 ,  (2.14) [~P]r = 0, ~ -n  r 

which will be called the first and the second contiguity conditions, respectively. From the 
continuity of the displacement w, i.e. [W]r = 0, the continuity of stresses (2.14) and hence of 
strains for strain hardening materials, we obtain the third contiguity condition, 

On J r  = O. (2.15) 

which, by use of (2.1), (2.3) and (2.6), can be written as 

I~F t3z~° l c-~-~ [2]r 0. (2.16) 
G L an2 Jr + = 

Here ,9 is the angle from the x-axis to the normals of F. The third contiguity condition, (2.15) or 
(2.16), must be supplemented in addition to the first two contiguity conditions (2.14), only 
when we solve ~o from the x-derivative of the compatibility equation, i.e. (2.9), instead of the 
compatibility equation (2.8) itself. 

For  the unloading boundary, i.e. the boundary between the primary plastic zone and the 
unloading wake zone, an unloading condition should be supplemented. We have the follow- 
ing theorem: 

THEOREM Let F be an unloading boundary (Fig. 2). 7hen for steady state in strain hardening 
materials we have 

2[rtp) = 0. (2.17) 

~Z r(e) 
Ox = 0. (2.18) 

where the subscripts F(e) and F(p) are used to denote the values on the boundary F at the sides of 
unloading and loadin9 zones, respectively. 

For  proof we refer to our previous paper [10]. Equation (2.17) is called the supplemen- 
tary condition for the unloading boundary. As to Eqn. (2.18), it is a consequence of(2.16) and 
(2.17). 

For  the reloading boundary (FD, Fig. 1), we have the following supplementary condition 
in addition to (2.14) and (2.16), 

r Iro(Y) = z Ir,(Y). (2.19) 

Y 

0 X 
Figure 2. The curvilinear coordinates (s, n) associated with the curve F. 
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3. The first version of  asymptot ic  analysis - the power singularity 

We will first t ry the power  expansion and, being confined only to the first order  approxi -  
mat ion ,  retain only the p redominan t  term. Let r, 0 denote  polar  coordinates  and put  

~o = r 1 - " f ( O ) .  

Then we have 

1 t~q~ _ r _ a f , ( O )  ' 
Zr-- r t~O 

(3.1) 

f '  { f , ,[ f , ,  + s i n O - -  + (1 -- 6)2f] + (1 -- 6)2/'2} = O, (3.3) 
9 

where 

O = f , 2  .4_ (1 -- 5)2f 2, # = (n -- 1)3. (3.4) 

Fo r  the unloading  zone, 2 = 0, we have then 

sin 0 [(1 - 6)2f ' + f " ]  + cos 0(1 + 3){(1 - 6)2f + f " }  = 0. (3.5) 

The b o u n d a r y  condi t ions are 

f ' (0 )  = 0, f (n)  = 0. (3.6) 

The equa t ion  (3.3) with the bounda ry  condi t ion if(0) = 0 can be solved only numerically.  
Since the coefficient of the highest derivative te rm in (3.3) vanishes at 0 = 0, we  are obliged to 
begin with some  small  angle 0 . The initial values f ( O o ) ,  f ' ( O o )  and f " ( O o )  at 0 = 0o must  be 
such that the value f " ( O o )  can be computed  from (3.3) with sufficient precision. For  this 
purpose  we use the following expressions f rom Taylor  expansion,  

f(O0) = f(O) + ½02f"(O) + ~40"f'v(o) + 7-~006fv'(0), 

f'(Oo) = Of"(O) + ~03f'v(o) + T~-60 ~ f l  5 v,(o), 

f"(Oo) = f"(O) + ½02f'v(o) + ~t~404fv'(o ). (3.7) 

where if(O), flY(O), fw(o )  can be de termined from (3.3) with the assumpt ion  of f(O) being 
regular  at  0 = O, 

f " ( O )  = n6(1 - -  6)./'(0), 

f ' v (o )  = n6(1 -- 6)[n6(1 -- 3) -- 2n(1 +/~)(2 + p) + 2]f(O), 

fv ' (o )  = n6(1 -- 6)f 'v(o)  -- 612n(26 + 1)(1 + p) -- 1] [fw(O) -- n6(1 -- 6)f"(O)] -- 

- -36n25[fw(O) + (1 -- 6)2f"(0)] -- 

--4n2616n6(1 + #) + 7 + 4n5(1 -- 3) -- 8n(1 +/~)(2 +/~)][ f"(O) + (1 -- 6)2f(0)] -- 

F r o m  the x-derivat ive of  the compat ib i l i ty  equat ion,  (2.9), we obta in  for the loading zone to 
the first order  app rox ima t ion  

s i n o l f ' 2 f  '' + 6cosO + sinO I f "  -- n6(1 -- 6 ) f ]  
g 

+ f ' [ l  (n - 3)sin0 9~2 + l + # ) c ° s O ~ -  - 6sinO 1 

8~ 
% -  - -  - (1 - - 6 ) r - a f ( O ) .  (3.2) 

8r 
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-24nZ(n - 3)6(1 + #)2f"(0) + 

+4[12n6(1 +/~) + 1 + n6(1 - 6) -- 2n(1 + #)(2 +/~)]f"(0) -- 

--4n(1 + #){n6(1 -- 3)(1 + / t )  - 2n(1 + #)2(2 + / t )  - (1 +/~) + 3n6(1 - 6) 2 + 

+ [1  + (4n - 1)6][n6(1 - 6) - 2n(1 + #)(2 + #) + 2] + 6n6(1 + #)2}f"(0). 

We have tried values of 6 in the interval between 0.5 and 0.015, and integrated (3.3) step by step 
from a small 0o. In our numerical calculation nowhere did f '(O) happen to be zero (except at 
0 = 0) and nowhere did unloading take place. Thus we could adhere to (3.3) straight to the 
crack flank 0 = ~. But for no value of 6 did f(rc) happen to be zero. So we conclude that  there 
are no existing solutions with power singularities of the form (3.1). 

4. The second version of asymptotic analysis - the logarithmic singularity [10] 

We assume the solution with logarithmic singularities of the form 

q~ = r l n ~ -  , f,(0) l n ~ -  , fo(O) ~ O, (4.1) 

where A is a constant  indeterminate within the scope of asymptotic analysis. Then the stress 
components  % z o and the resultant stress z can be expanded as follows, 

10q~ ( l n ~ _ ) "  ~o ( l n ~ - ) - "  "~r - -  - - -  T rn (  O) A 
r ~ n ' 

% -  ~rr - l n ~ -  ~ %.(0) l n r  ' 
n = O  

/ A \  2~ ~ / A \  ~ 
z2 2 ~ ~ - )  ~o ~ l n ~ - )  = z, + z0 z = In K,(O) , (4.3) 

where 

%,(0) = f,', (n t> 0), (4.4) 

Zoo(O) = - f o ,  zo,(O) = - f ,  + (or - n + 1)f,-1, (n ~> 1), (4.5) 

Ko(O) = fo 2 + f~2, (4.6) 

KI(O ) = 2f~c; + 2fo(fl - ~fo). (4.7) 

The prime ..... is used to denote the derivative against 0, if not  otherwise stated. After some 
trials we come to select finally 

2 
ct -- - - .  (4.8) 

n - - 1  

Then from (2.10) and (2.13) we obtain 

r l ( l n A ~ 2  ® \  -r--/ ( A)-"~_ 2 = ,-~o 2,(0) In , (4.9) 

where 

20(0) = lncK~o"- 3)/2K~) sin 0, (4.10) 

21 (0) = ½ncK~o "-  5)/2 {½(n -- 3)K'oK 1 sin 0 + Ko(K'~ sin 0 + 2ct cos 0Ko) } (4.11) 
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For  the x-derivative of the compatibi l i ty equat ion (2.9), in plastic loading zones (II or IV, Fig. 
1) the first three asymptot ic  expansions will be the following, 

[2o(O)fd(O)]' = 0. (4.12) 

(2of;) '  + (2,/d)'  - ~nfo2o = 0. (4.13) 

and 

{(2of~ + 2,f; + 22f~)' + (1 - an)(2of 1 + 21fo) - <x(1 - ~n)2ofo} + 

1 
+ ~ -  {(f~" + f¢;) sin 0 + (f~' + fo)cos  O} = O. (4.14) 

Due to f(;(0) = 0 for zone II and 2o(r0 = 0 for zone IV (Fig. 1), from (4.6), (4.10) and (4.12) we 
have both  zones 

20(0) = 0. (4.15) 

K'o(O) = 2f~(O){f~'(O) + fo(0)} = 0. (4.16) 

N o w  we turn to the solution for each zone. 
1. The  pr imary plastic zone II (Fig. 1), 0 ~< 0 < 0p. Take as the solution of(4.16) 

fo(O) = const = - F. (4.17) 

Then  (4.4)-(4.6) will give 

"r,o(O ) = O, %0(0) = F, Ko(O ) = F 2, "~ 
(4.18) J rxo(0) = - F sin 0, Zro(0 ) = F cos 0. 

Equa t ion  (4.13) is satisfied identically, and (4.14) becomes 

1 
{2*(O)f*'(O)}' + (~ + 1)2"(0) - ~ - c o s  0 = 0. (4.19) 

where the following nondimensional  quantities are introduced,  

= cFn-'G, f*(O) = l f1(0), (4.20) S 

1 
2*(0) - cF"- 1 21(0) = -- n{f*'(O) sin 0 -- ~ cos 0} ~> 0. (4.21) 

Here in the derivat ion of(4.21), Eqns. (4.7) and (4.11) have been used. F rom the Reuss relations 
(2.6) and using (4.2), (4.9), (4.15) and (4.18), we obtain the asymptot ic  expressions for plastic 
strains in zone II, 

( A ) = + '  ~ ( l n - ~ - ) - "  7~=  In y~,(0) , 
n = O  

//. A ' ~ + 2  ~o A -n 
'rP = t l n ~ )  ,=~0 Yrv,(0) ( l n T )  • 

where j.o 
7~o(0) = -- cF" 2*(0) dO, y~o(0) = cF". 

0 

(4.22) 

(4.23) 
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The integral appearing in (4.23) for 0 = 0p can be obtained by integrating (4.19) and taking 
into account the condition of symmetry fl*'(0) = 0, 

f? s,n t 2,(0) dO - - -  Op - 2*(Op) f* ' (Op)  . (4.24) 
e + l  

2. The unloading wake zone III (Fig. 1). In the zone III the compatibility equation (2.8) 
reduces to 

1 dy~ 
A,p + W = 0. (4.25) 

Assume the asymptotic expansion for the plastic strains in the zone III in the form, 

/ A\~+I  o~ A -" ] 
Y P = ~ l n - 7 )  .=o~a"( ln- -~  y I 

, ~ =  I n - -  . ob./lnT) . 

From the continuity of plastic strains across unloading boundary FB(O = 0j,, Fig. 1) and by 
comparison of (4.22) and (4.26), we obtain 

ao = 7~o(Op) = - c F  ~ 2*(0) dO, bo = cF" .  (4.27) 

Substitution of (4.1) and (4.26) into (4.25) gives the first asymptotic expression of the 
compatibility equation (4.25), 

[f•'(0) a° +/o(0)]  - (~ + 1) s i ~ -  = 0. (4.28) 

Its solution is 

fo(O) = G a o ( e  + 1)[A~ sin0 + B~ cos 0 + f*(0)], (4.29) 

where 

f * ( O )  = sin 01n(sin 0) -- 0 -- ~-  cos0. (4.30) 

Then (4.4)-(4.6) will give the stresses. 
3. The secondary plastic zone IV (Fig. 1), ~ - 0~ < 0 ~< m Noticing the free crack surface 

condition z0o(r0 = - fo ( r0  = 0 and the supplementary condition (2.19) for the reloading 
boundary FD, we take as solution of (4.16) 

fo(O) = F sin 0. (4.31) 

And (4.4)(4.6) will then give 

z,o(O) = F cos 0, zoo(O) = - F sin O, Ko(O)  = F 2, ~ 
(4.32) l Txo(0) = F, Z~o(0) = O. 

Noting (4.15), we obtain the solution of the second asymptotic expansion of the compatibility 
equation (4.13), 

b 
21(0) - . (4.33) 

cos 0 
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Substi tut ing (4.32) and (4.33) into the Reuss relations (2.6) and noticing the continui ty of 
plastic shear strains across the reloading boundary  FD(O = zt -- 0~, Fig. 1), we obtain the 
constant  b = 0, and the plastic shear strains for zone IV, 

a -"  
?~ = ( In  ~ - ) ' +  1 ~o 7~,(0) ( l n ~ - )  , 

(4.34) 
/" A'~ "+2 ~ ( A ) - "  

y~ = ~ l n ~ - )  .~o ?~.(0) I n -  r -  , 

where 

),xPo (0) = ao, ?fo(0) = bo = cF", 
(4.35) J ?~1(0) = -(ct  + 2)cF"ln(sin 0) + const. 

It is seen from (4.18) and (4.32) that  the constant  F characterizes the intensity of singularity for 
the resultant  shear stress in plastic zones II and IV (Fig. 1). 

We next  turn to the determinat ion of the constants  ao, A1, B1 and angles 0p, 0~. We 
define the nondimensional  parameter  

F 
T - (4.36) 

Gao(~ + 1) " 

F r o m  the first and the second contiguity condit ions (2.14) at the unloading boundary  
F R (0 = 0p, Fig. 1) and the reloading boundary  F D (0 = g -- 0~, Fig. 1), respectively, i.e. 

fo(Op) = -- F, f6(Op) = O, ] 
(4.37) 

J fo(g - Os) = F sin 0,, f6(rt -- 0~) = -- F cos Os, 

we obta in  

~ -  0 ~ -  0~, 
T - (4.38) 

COS O p ' 

sin 0," exp[T(1 + sin 0p)] -- sin 0p = 0, (4.39) 

A1 _ Ccos0~ + D c o s 0 p ,  Bt = Cs in0 ,  - D s i n 0 p ,  (4.40) 
sin(0p + 0,) sin(0p + 0,) 

where 

C =  T - -  sinOpln(sinOp) -- ( 2 - -  Op)cosO p, 

D =  -- T sin Os -- sin Os ln(sin Os) -- ( 2 - Os) cos O s. 

By use of the first of (4.20), (4.24) and (4.36), the first of Eqn. (4.27) can be written in the form, 

T{sin 0p -- S2*(Op)f*'(Op)} -- 1 = 0. (4.41) 

In the unloading wake zone III, the following unloading condit ion is required to be satisfied, 

Ko(O ) <<. F 2, Op <<. 0 ~ ~z - 0~. (4.42) 

Subst i tut ion of(4.38) into (4.39) gives 0s as a function of 0p, which is shown in Fig. 3. Assign an 
arbi t rary  value of S. Starting from 0 = 0 with initial condit ion f*'(O) = 0, we can integrate 
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i X--xNa 
I \ 
I "" 
I \ \  

TR 22 24 26 28 30 32 
~p(DEG) 

Figure 4. S versus 9p curves for different n. 

(4.19) to obtain  f*'(O) and then determine Op from (4.41). In Fig. 4 a family of S versus Op curves 
are shown, each corresponding to a parametr ic  value of  n. 

Whatever  the value of n m a y  be, there exists the following trivial solution (denoted by the 
subscript "tr"), which satisfies all the above relations, 

1 1 
St, nct(~ + 1) '  Ttr sin Or, = 

, t  f~,,,(0) -- 0, 2", =(0) = n~ cos 0, 

Op,,~ = 0.344026 Rad = 19.7112 ° = 19°42'40"7 

0s, t~ = 0.0063982 Rad = 0.36659 ° = 22'00". (4.43) 

Here 0p,= and 0s, tr are exactly the angles given by Chitaley and McClintock [1] for elastic- 
perfectly plastic materials (n --* ~) .  In Fig. 3 the trivial solution is denoted by the point  M, 
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which has a max imum value of  0~, and in Fig. 4 by the point  M~, which varies with n. In  Fig. 4 
the segment M,N~ is the possible range of variat ion of(0p, S). M~ is the extreme state, beyond 
which the unloading condi t ion (4.42) does not  hold true. N,  is the other extreme, with its Op 
value denoted  by Ob. Ob is the max imum bounda ry  for the differential equat ion (4.19). In  other 
words,  the coefficient of the highest derivative term f:'"(O) vanishes at 0 = Ob, 

-- n{2f*'(Ob) sin 0b -- ~ cos 0b} = 0. (4.44) 

Let 0sb denote  the value of 0s which corresponds to Op = 0b. F r o m  (4.21), (4.38), (4.41) and (4.44) 
we obta in  the values off*'(Op), 2*(0p), T and S corresponding to the extreme state N~, i.e. for 

Op = Oh: 

f*'(Ob) = ½C~ cot Oh, 2*(Ob) = ½ncz cos Oh, 

Tb--n--Osb--Obcos Ob ' S b = n ~ - t a n 2 O b ( 1  T b sinl 0b ) .  (4.45) 

The values of  0p, 0, and S for the extreme states M, and N, are shown in Table 1 for several 
values of  n. 

TABLE 1 
Values of Op, 08 and S for the extreme states M. and N.. 

n M~ N, 

Op.t, 0~, t, St, Ob Osb Sb C* e- o* 

1 19°42'40 " 22'00" 0 32°50'40 " 16'51" 0 oo 
1.3 as above as above 0.01505 31°58'11" 17'25" 0.01021 0.1343.1016 
3 as above as above 0.1667 28°50'56" 19'16" 0.1255 4.981 
5 as above as above 0.2667 26°54'14 " 20'14" 0.2149 0.7909 
9 as above as above 0.3556 24°52'31 " 21'03" 0.3083 0.4153 

13 as above as above 0.3956 23°47'06" 21'23" 0.3570 0.3678 
21 as above as above 0.4329 22°36'00" 21'41" 0.4076 0.3578 
51 as above as above 0.4713 21°06'23" 21'55" 0.4649 0.3887 
91 as above as above 0.4838 20°32'09 " 21'58" 0.4824 0.4145 

as above as above 0.5000 19°42'40 " 22'00" 0.5000 0.4884 

The near-t ip stress fields and the resultant stress corresponding to the extreme states M, 
and N, are shown in Figs. 5 and 6, the near-tip strain fields in Fig. 7. It is clear f rom Fig. 6 that  
the unloading condi t ion (4.42) is satisfied. The solution obtained by Chitaley and McClintock 
for elastic perfectly plastic material  results as a limiting case (n --+ oo) of  our  solution, when 
M,N,  shrinks to a point. 

The  stress fields for the trivial solution (i.e. the extreme state M,) do not  depend upon  the 
material. They coincide exactly with those given by Chitaley and McClintock [1] for elastic- 
perfectly plastic materials, whatever  the value of  n may be. For  n = 13 the two extreme states 
M, and  N, are very near to each other  and are hardly distinguishable in Fig. 5 and 6. As to the 
strain fields for the trivial solution, they do depend upon n. 

For  the momen t  in this section we could not  determine uniquely the solution, which 
corresponds  to some one state between the extremes M,  and N,. In the next section we shall 
show that  the AT, state is just  the true solution. 

It  should be ment ioned that  in the solution given in this section the supplementary 
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Figure 7. The near-tip strain fields for extreme states M, and N,. 

condi t ion (2.17) for the unloading bounda ry  FB, i.e. 2*(0p) = 0, is not  satisfied. We note  f rom 
(4.44) tha t  

2f*'(Op)sinOp - ~cos0p  < 0, for Op.= <~ Op < Oh, (4.46) 

= 0, for 0p = 0b. (4.47) 

It  follows then f rom (4.21) that  

2*(0p) = -n{f*'(Op)sinOp - atcos 0p} ~> ½n~cos 0p > 0, Op.t, <<. Op <~ Oh. (4.48) 

Hu tch inson  [7] pointed  out  in commen t s  on the paper  I-9] that,  while 2*(0p) = 0 is not  
necessary for the elastic-perfectly plastic p rob lem*,  it is a requirement  when hardening  is 
present.  This  deficiency was explained in 1-10] by the fact that  the compat ib i l i ty  equat ion  
degenerates  f rom the elliptic to the parabol ic  type as the crack- t ip  is approached ,  and it was 
predicted tha t  there would be a boundary- l aye r  type solution in the ne ighborhood  of the 
unloading  bounda ry  FB (Fig. 1). In  the next section we will work  out  this boundary- l aye r  type 
solut ion in more  detail. 

* We have come to the conclusion in I-5] that for elastic-perfectly plastic problem the condition 2*(0p) = 0 is 
necessary when the unloading boundary does not coincide with the slip line. 
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Figure 8. Boundary layer near the unloading boundary F B. 

5. The inner boundary layer near the unloading boundary 

We assume the equation of the unloading curved boundary FB (Fig. 8) to be 

0 = 0 v - O* ln- 7- . (5.1) 

Here the value of the constant 0* may be either positive or negative. The curve FB, arbitrarily 
assumed concave downward in Fig. 8, corresponds to positive 0". We mention in passing that 
Dean and Hutchinson [6] have computed the mode III crack for steady growth in elastic- 
perfectly plastic materials, and obtained the unloading boundary, which is concave upward 
and corresponds to negative 0". 

The solution (4.1) with fo(O) and f l(O) determined, respectively, by (4.17) and (4.19), 
denotes the outer solution for zone II (Fig. 8). It is valid or accurate enough outside a narrow 
transition zone adjacent to the unloading boundary F B. The outer variables are r and 0. In 
order to find the boundary-layer type solution, we must use the inner variables r and (instead. 
Let ( be defined as 

A 
= (0 -- O p ) I n - - .  (5.2) 

r 

Then the unloading boundary FB is characterized by ( = - 0". We assume the inner solution 
of the form 

t p = r  In ( In + f o ( O ) +  In f~ (0 )+0  In (5.3) 

6(C) = o(O, / 
d"~b _o(1), (n>/1) / a s ( ~ - ~  (5.4) 
d(" 

By use of the transformation (5.2), fo(O) and f l  (0) appearing in (5.3) can be expressed in terms 
of inner variables as 

where, 
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A -2 
fo(O)=fo(Op)+f~(Op)((ln-A-)-X+OI(2(ln-r -)  ] ,  

[( f,(O) = fl(Op) 4- 0 ( In . (5.5) 

From (5.3) and noting (4.17), i.e. f o ( O )  = - F for zone II, we can obtain immediately the inner 
solution for the stresses "c r, zo, and then from (2.10), (2.13), for 2, 

= Oq~ A • 1 , d~O A -1 ] 
z, r--~= ( l n T )  {f~(0P'+ ~ - + 0  [ ( l n f f - )  ]} ,  

] Oq~ A " A -1 A -2 
zo -~ - r  = ( l n - - / - ) { F - [ f l ( O p ) + ~ F ] ( l n - ~  -) - ~ k ( l n f f - )  + 

+ 0 [ ( In  A ) -  2]}, 

(5.6) 

{[ ]( d~b - F  + + 2 = In F "-3 f;(Op) + ~ -  ~ y - )  sm 0p 

+o~FZcosOp+ 0 [ ( l n A ) -  x]}. (5.7, 

The first asymptotic expansion of the compatibility equation (2.9) can be obtained after a 
lengthy calculation, 

ncF" 3 d21~ sin 0p (0p) 4- - F 4- 4- ~F  2 cos 0p 4- 
d(2 - ~  d(2 J 

+ ncF"-S sin 0, '(Or) + ~ -  ~ d( 2 \ -  F + -d~ - )  + 

Ifx . d~b ] d3~O ] sin 0 v dS~k 0. (5.8) 
+ '(o,) + + T d T  - 

We define 

±r d*' ] !P(O = F L d~ + f~(Op) . (5.9) 

Then (5.8) can be reduced to 

1 
n--S-~"(0 + [~z (0~ ' (0 ] '  - [~z(0] '  + ~ cot 0p ~'(#) = 0, (5.10) 

where ' = d/d(. Letting ( ~ - ~ in (5.9) and noticing (4.20) and (5.4), we obtain 

7t(--~) = f*'(Op), ~'(--  ~ )  = 0. (5.11) 

Integrating (5.10) and noticing (5.11), we get 

E 1 1 ~u (0 ~ -  + 7~z(O = [~u(O -- f*'(0,)] [q'(~) + f*'(Op) -- ~ cot Op]. (5.12) 

We distinguish the two cases in compliance with (4.46) or (4.47). 
1. The first case, 0~ ~ Oh, i.e. 0~,,, ~< 0p < 0b. Then it follows from (4.46) that 2f*'(0p) 

-- ~ cot 0p < 0, and the two factors in the right-hand side of (5.12) are different. The solution 
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~e(() of  (5.12) will be implicitly defined by 

e~'t~) I ~(()  + f* ' (Op)  - ct cot Opl sl = C*  I ~u(() - f~"(Op)l s2 e ~, (5.13) 

where $1 and $2 are constants,  

f' t S 1 = - -  - ~ -  "]- [ f* (Op)  - a c o t 0 p ]  2 [2f* '(Op) - a c o t 0 p ]  -1 > 0, 

I 1 t $2 = -- ~ -  + [fl*'(0p)] 2 "[2f* ' (Op)  - -  a c o t 0 p ]  -1 > 0. (5.14) 

Let t ing ( ~ - -ov in (5.13) and noticing (5.11), we obta in  I / C *  = 0, and then 

~'(¢) = f ;"(Op),  ~u,(() = 0. (5.15) 

2. The  second case, Op = 0b. I t  follows f rom (4.47) that  2f*'(Ob) --  Ct cot 0 b = 0 and (5.12) 
becomes  

~/,,(~) + ~u2(() = ~ p ( ( ) - ~ c o t 0 b  . (5.16) 

Its  integral  is 

~tl(() ~ cot 0b ~'¢°t°b { ~ } -- ~- • exp ~u(() -- ~- cot 0~ 1 = C* e ~. (5.17) 

F r o m  (5.17) follows the asympto t ic  behavior  of  ~((), 

~(()  = ~- cot 0b - ~ + + o , as - q-cot 0b)2 
N o w  we can impose  the supp lementa ry  condi t ion 2*(0p) = 0. Equa t ion  (5.7) for 2 can be 

expressed in terms of ~(()  in t roduced in (5.9) as follows, 

( ~ - )  { [ ( l n ~ - ) - ' ] }  2 = nc  In F n-~ ~u( ( ) [ -1  + ~ ' ( ( ) ] s i n O p + c t c o s O p + O  . (5.18) 
F 

Hence,  we have 

2"(0~) = n { k U ( - 0 * ) [ -  1 + ~u ' ( -0*)]  sin0p + ~cos0p}.  (5.19) 

F o r  the first case, i.e. 0p ~ 0b, we obta in  f rom (5.15) and (5.19) nothing other  than (4.48), i.e. 
2*(0p) > 0. Therefore,  for the first case 0p ~: Ob, the supplementa ry  condi t ion 2"(0~) = 0 
remains  unsatisfied. Therefore  we conclude that  the true solution is the second case, i.e. 
Op = 0 b, which cor responds  to the extreme state N~ in Fig. 4. The  supplementa ry  con- 
di t ion 2*(0b) = 0 becomes then 

2*(0b) = n{ ~u( _ 0" ) [ - -  1 + ~ ' ( -  0")] sin 0b + ~ cos Oh} = 0. (5.20) 

Put t ing  ( = - -0* in (5.16), solving it s imul taneously  with (5.20), and  noticing the expression 
for Sb in (4.45), we obta in  

1 

~P(--0*) = ~Tbcos 0b, ~P'(--0*) = 1 Tbsin0 ~ . (5.21) 

We can compu te  the value of C* exp( - -0)  f rom (5.17) by put t ing ( = - 0 " .  The  results are 
shown in the last column of Table 1. I t  can be easily verified that  the third contiguity condition 
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(2.16), i.e. [t~2tp/t~n2]rB = 0, is automatically satisfied. Up to this step we are not able to 
compute the constants C* and 0* separately. For the moment we are contented with that due 
to the consideration of the inner boundary layer we are able to obtain uniquely the asymptotic 
near-tip solution (i.e. the state N,) with the plastic part of the strain-rate vanishing at both 
sides of the unloading boundary (Fn Fig. 1). 
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RI~SUMI~ 

On montre que pour une fissure de mode III en croissance stable dans un milieu se consolidant suivant une loi 
parabolique, la singularit6 au voisinage de l'extr6mit6 de la fissure ne suit pas une fonction parabolique mais 
logarithmique. En prenant en consid6ration la couche interne de la fronti6re qui s6pare les zones charg6es et les 
zones non charg6es, on obtient des solutions asymptotiques au voisinage de l'extr6mit6 de la fissure pour des 
champs de contrainte et de d6formation; ces solutions satisfont toutes les relations n6cessaires de la m6canique des 
milieux continus en condition 61astoplastique, y compris la condition de continuit6 de vitesse de d6formation dans 
les zones plastiques, lorsque l'on franchit la fronti6re entre zones charg6e et non charg6e. 


