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ABSTRACT

Abstract

The properties and the functionality of materials are determined to a large
extent by their electronic structure. The electronic structure can be examined
through the electron momentum density, which is classically equivalent to the
velocity distribution of the electrons. Changes in the structure of materials induce
changes on their electronic structure, which in turn are reflected as changes in
the electron momentum densities that can be routinely measured using, e.g., x-ray
Compton scattering.

The changes in the momentum density can be linked back to the structural
changes the system has experienced through the extensive use of computational
modeling. This procedure naturally requires using a model matching the accuracy
of the experiment, which is constantly improving as the result of the ongoing devel-
opment of synchrotron radiation sources and beam line instrumentation. However,
the accuracies of the current computational methods have not been hitherto es-
tablished.

This thesis focuses on developing the methods used to compute the electron
momentum density in order to achieve an accuracy comparable to that of the
experiment. The accuracies of current quantum chemical methods that can be
used to model the electron momentum density are established. The completeness-
optimization scheme is used to develop computationally efficient basis sets for
modeling the electron momentum density at the complete basis set limit. A novel,
freely available software program that can be used to perform all of the necessary
electronic structure calculations is also introduced.
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1 INTRODUCTION

1. Introduction

Materials science is focused on the study of materials – how the structure at the atomic
level is connected to various microscopic and macroscopic properties, such as the elec-
tronic band gap in a semiconductor or the heat capacity of a substance. Practically all
of the properties1 of a material one might be interested in are caused by (or majorly
affected by) its electronic structure. To understand the function of a material it is thus
necessary to understand its electronic structure.

The Hohenberg–Kohn theorems [1] inextricably link the electronic structure to the
electron density (ED). Knowing one, it is in theory possible to computationally reproduce
the other in an exact fashion. The ED thus contains all the physical and chemical
information about a system there is to know. In consequence, changes in the ED retail
of changes in the chemical structure; for instance, the formation of chemical bonds.

The ED can routinely be measured by, e.g., x-ray diffraction techniques [2]. However,
investigating the formation of chemical bonds with x-ray diffraction requires a very high
accuracy, as the ED, and accordingly the x-ray diffraction pattern, is dominated by the
dense nuclear regions that are relatively insensitive to chemical bonding.

This thesis focuses on a quantity very much analogous to the electron density –
the electron momentum density (EMD) [3]. Whereas the ED ρ(r) gives the amount of
electrons at point r as ρ(r)d3r , the EMD n(p) yields the amount of electrons with
momentum p as n(p)d3p. The two quantities are reciprocal in the sense that the
relevant length scales are inverted: in an atom centered at the origin, the core electrons
are found at small r but large p, whereas the valence electrons have large r but small
p. In contrast to the ED, the EMD is much flatter in form: while the ED decays
exponentially [4] when r →∞, the EMD only decays polynomially [5] when p →∞. The
EMD undergoes larger changes than the ED when chemical bonds are formed, making
it an ideal tool for studying chemical structure.

The EMD can be experimentally measured with x-ray Compton scattering [6,7] (CS),
(e, 2e) spectroscopy [8] (EES) and positron annihilation spectroscopy [9] (PAS). EES can
be used to extract the momentum densities of individual orbitals [8], while x-ray CS yields
the EMD of the whole system2. However, even though EES thus yields more intricate
information, due to the prevalence of multiple scattering the method is only applicable
to small molecules in the gas phase7.

Unlike the Coulombic interactions in EES and PAS, the interaction of the probe (x-
ray photons) with the electrons in the sample is weak3, meaning that multiple scattering
events that plague EES experiments are rare in x-ray CS. Also, compared to PAS, the
probe in x-ray CS is independent of the studied system4. This feature is the main

1Excluding, e.g., the mass, which mostly comes from the atomic nuclei. However, the density
depends greatly on the electronic properties.

2under the impulse approximation [14], see Section 2
3The coupling constant is small, compared to e.g. absorption.
4PAS depends on the positronic wave function, which must be modeled in addition to the electronic

one. [10,11]
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advantage of x-ray CS: it is a simple bulk probe of the sample. For the reasons given
above only x-ray CS is considered in the rest of the current work.

As the EMD is a sensitive probe of the electronic wave function, measurements of the
EMD can be used to benchmark quantum chemical theories. Access to the EMD through
experiment also makes it possible to measure, e.g., the purely electronic contribution
to the heat capacity [12,13]. Furthermore, since the molecular structure links to the
electronic structure, measurements of the EMD can also be used to extract information
about structural changes occurring in the system through the use of computational
modeling, as illustrated in the cover. The changes in the EMD can be routinely measured
with x-ray CS at modern synchrotron radiation facilities. This approach has been recently
used in many structural studies [13,15–26] as a complementary tool for other methods of
structural determination.

The above-mentioned use of structural modeling clearly requires that the models used
for the interpretation have an accuracy equal to or better than that of the experiment.
The current statistical accuracy of the experiment is of the order of 0.02% for difference
Compton profiles of systems composed of light elements [13,16,17,24,26]. The ongoing
development of synchrotron radiation sources and beam line instrumentation will further
improve the accuracy of experiments, requiring more and more precise calculations to
be used.

However, there had been little work performed in this direction before this thesis.
Accurate mean-field calculations5 had been performed for the moments of the EMD of
diatomic and linear molecules [27–29], but studies with more complicated geometries had
used Gaussian basis sets [30–36], for which computational accuracy had not been truly
established. Basis set requirements for calculations of the moments of the EMD had
been estimated [30] and some studies had been made into the level of theory required
for accurate modeling of the radial6 EMD [33] and of Compton profiles [23,26,30,34,37], but
no systematical benchmark showing the accuracies of different basis sets and levels of
theory for the reproduction of EMD properties had been performed.

The main contributions of the current work are in the development of algorithms
for numerically exact calculations of the radial EMD within the used basis set and the
determination of the level of theory and the quality of the basis set necessary for accurate
calculations of the moments of the EMD and of CS (paper I).

Significant contributions have also been made concerning basis set development. We
have introduced novel algorithms that can perform automatic black-box optimization of
contracted basis sets tuned for computing any property at any level of theory. Applying
the algorithms, we have developed new computationally efficient basis sets with known
accuracy properties for the modeling of the EMD (papers II and III).

As part of the work, we have developed a freely available software program [38] for
modeling non-resonant inelastic x-ray scattering that is able, among other features, to
calculate the EMD and the Compton profile (paper IV).

The structure of this thesis is the following. Section 2 briefly presents the experimen-
tal method this work was motivated by – x-ray Compton scattering. Section 3 discusses
the theoretical groundwork for computational modeling of the EMD. The publications

5(Near) Hartree–Fock limit. However, in paper II these calculations were shown to be insufficient.
6Directionally averaged EMD, see eqn (2.6).
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1 INTRODUCTION

included in this thesis (list on page v) are summarized in Section 4. The thesis concludes
in Section 5.
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2 INELASTIC X-RAY SCATTERING

k1, ω1, ε̂1 θ

k2, ω2, ε̂2

q = ~k1 − ~k2

Figure 1: Schematic view of inelastic x-ray scattering. k i , ωi and ε̂i mark the mo-
mentum, energy and polarization of the photons. The scattering vector q is the recoil
momentum received by the electron.

2. Inelastic x-ray scattering

In inelastic x-ray scattering (IXS), an incoming photon with momentum ~k1, energy
~ω1 and polarization ε̂1 scatters from an electron in the target, losing the energy ~ω =

~ω1−~ω2 and exchanging an amount q = ~k1−~k2 of momentum with the electron in
the process. The outgoing photon has then momentum ~k2, energy ~ω2 and polarization
ε̂2. This process is illustrated schematically in Figure 1.

CS corresponds to the case in which qr � 1 and ~ω � E0, where r and E0 are the
relevant length and energy scales in the system (e.g., the radius of the orbital and the
binding energy). As the energy transfer is ~ω is thus large compared to the energy scale
of the system, the scattering is non-resonant. As another consequence, the impulse ap-
proximation [14] holds, and the double differential cross-section7 for Compton scattering
can be found out to be [6,7]

d2σ

dΩdω2
=

(
dσ

dΩ

)
Th

ω2

ω1

m

q

∫∫
n(px , py , pz)dpxdpy , (2.1)

where (dσ/dΩ)Th is the classical Thomson scattering cross section, n(p) is the electron
momentum density and the direction of q defines the z axis. The pz component is fixed
by the conservation of energy in the scattering as [6,7]

pz
mc

= (ω1 − ω2)±
ω1ω2

mc

1− cos θ√
ω2

1 + ω2
2 + 2ω1ω2 cos θ

. (2.2)

7Measures the amount of photons that scatter into the solid angle dΩ with an energy in the range
[ω2, ω2 + dω2].

5



Eqn (2.1) can thus be written in the form

d2σ

dΩdω2
=C(E1, E2, θ)J(pz), (2.3)

where

J(pz) =

∫∫
n(px , py , pz)dpxdpy (2.4)

is the Compton profile (CP) and

C(E1, E2, θ) =

(
e2

mc2

)2

|ε̂1 · ε̂2|2
ω2

ω1

m

q
(2.5)

is a function that only depends on the setup of the experiment. Measuring the CP
along all different directions of the sample it is in principle possible to reconstruct the
three-dimensional electron momentum density, analogously to absorption tomography8.

For the rest of the current work we switch to the atomic unit system. In isotropic
or amorphous samples the molecules are found in random orientations, and thus only a
spherical average is obtained. In this case the relevant quantities are the radial EMD

n(p) =

∫
n(p)dΩp (2.6)

and the isotropic Compton profile

J(q) =
1

2

∫ ∞
|q|
pn(p)dp. (2.7)

The Compton profile is tied to the moments of the EMD〈
pk
〉

=

∫ ∞
0

p2+kn(p)dp, −2 ≤ k ≤ 4 (2.8)

in addition to the trivial identity

J (0) =
1

2

〈
p−1
〉

(2.9)

via the sum rules [12,30,39]〈
p−2
〉

=2

∫ ∞
0

q−2 (J(q)− J(0)) dq, (2.10)

〈
pk
〉

=2 (k + 1)

∫ ∞
0

qkJ(q)dq, 0 ≤ k ≤ 4. (2.11)

The other moments, i.e.
〈
pk
〉
for k < 2 or k > 4, diverge for the exact momentum

density [3,5].

8Absorption tomography yields the electron density, not the momentum density.
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2 INELASTIC X-RAY SCATTERING

2.1. Experimental setup

Due to the small cross-section (i.e., probability) of inelastic x-ray scattering, experiments
with laboratory equipment are challenging due to the small luminosity of laboratory
sources. This is the main reason why inelastic x-ray scattering experiments are almost
exclusively performed at modern third generation synchrotron radiation facilities, which
commonly offer a 1013 fold improvement in brilliance compared to x-ray tubes [40]. Most
CS experiments are currently performed at the European Synchrotron Radiation Facility
(ESRF, located in Grenoble, France) or at SPring-8 (Hyōgo, Japan).

According to the theory of electrodynamics, an accelerating charge emits electro-
magnetic radiation. The emitted power can be found out to be inversely proportional to
the mass of the radiating particle [41]. In particle physics facilities radiation losses are a
parasitic hindrance to the proper function of the accelerator. In contrast, in synchrotron
radiation facilities these radiation losses are actually aimed at. For this reason, syn-
chrotron radiation facilities are operated with electrons (or their antiparticles, positrons)
as their small mass allows for large accelerations to be produced, resulting in the genera-
tion of powerful radiation. However, this leads to the electron beam continuously losing
large amounts of energy and thus needing to be constantly re-accelerated to produce a
stable light source.

Incident
X-rays

Compton
scattered
X-rays

Slit

Solid state
detector

Gas chamber
Ion chamber

Lead
collimator

Lead
beam stop

Scattering
position

Figure 2: The experimental setup of the xenon measurement of reference 43.

A typical experimental setup from a gas phase experiment by Sakurai et al. [43] is
shown in Figure 2. The x-rays generated by the synchrotron source enter from the left
and are finely collimated with a slit. The x-rays scatter from the sample and enter the
detector. Another slit in front of the detector allows only the radiation scattered by the
sample to be measured. The resulting spectrum for a measurement on xenon is shown
in Figure 3. At energies below the Compton peak there are five peaks corresponding to
x-ray fluorescence, notably the Xe Kα and Kβ peaks from the sample, and the Pb Kα
and Kβ peaks from the slit and radiation shielding. Also an elastic peak is seen in the
spectrum.
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2.1 Experimental setup

0 50 100 150
0

1

2[×105]

co
un

ts
/1

30
m

in
.

energy/keV

Xe Kα Compton scattered X-rays
98.3keV

elastic scattered X-rays
121.7keV

Xe Kβ

Pb Kβ
Pb Kα�

Pb Kα�

Figure 3: The measured raw spectrum in the CS experiment of reference 43.

In this particular experiment the requirements of the impulse approximation are not
fulfilled for the innermost electrons of Xe. While the incoming photon energy (121.7
keV) is large compared to their binding energies, the energy transfer isn’t (∼ 23.4 keV vs
a binding energy of 34.6 keV for K shell electrons and 5.5 keV for L shell electrons [44]).
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3 ELECTRONIC STRUCTURE THEORY

3. Electronic structure theory

Eine exakte Lösung der Schrödingerschen Wellengleichung im 3N-dimensionalen
Konfigurationsraum (N = Anzahl der Elektronen) bietet aber unüberwindli-
che matematische Schwierigkeiten, und bei der Behandlung dieses Problems
ist man auf Näherungsmethoden angewiesen.

An exact solution to the Schrödinger wave equation in 3N dimensional con-
figuration space (N = number of electrons) poses, however, insurmountable
mathematical difficulties, and one relies on approximate methods for the
treatment of this problem.

– V. Fock, Z. Phys. 61, 126 (1930).

The current section discusses the framework on which the research undertaken in this
thesis is founded on: how is the molecular structure interconnected with the electronic
structure, what kind of approximations are used in solving the electronic structure in
practice, and how the electron momentum density can be obtained from these calcula-
tions.

3.1. Molecular structure

In the systems studied in the current work relativistic effects on the electron momentum
density are of small importance [43,45]. Thus, for simplicity, only non-relativistic methods
are considered. Furthermore, as the electron momentum density is measured in the
ground state, we will only consider stationary9 states.

Although important in exceptional conditions such as temperatures near absolute
zero or extremely large10 magnetic fields [46,47], in normal situations magnetic interactions
have no effect on the structure of matter; it is only determined by the interplay of
Coulombic forces – the attraction of the electrons with the nuclei vs the repulsion of
the electrons and the nuclei with themselves – as according to the so-called molecular
Hamiltonian

Ĥmol =−
∑ ∇2

I

2MI
+ Ĥel, (3.1.1)

Ĥel =−
∑
i

∇2
i

2
+
∑
J<I

ZIZJ
rIJ

+
∑
j<i

1

ri j

−
∑
i I

ZI
ri I
, (3.1.2)

9time-independent
10∼ 109 T, which can be found on the surface of neutron stars.
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3.1 Molecular structure

where small and capital indices label electrons and nuclei, respectively. The first terms
in eqns (3.1.1) and (3.1.2) describe accordingly the kinetic energy of the nuclei and the
electrons. The last terms in eqn (3.1.2) represent the Coulombic repulsions of the nuclei
with each other, of the electrons with each other, and the Coulombic attraction of the
electrons with the nuclei.

As electrons and nuclei are distinct types of particles, a reasonable Ansatz for the
total wave function of the system is [4]

Ψ(r ,R) =Φ(r ;R)ϕ(R), (3.1.3)

where r and R are shorthand for the set of electronic and nuclear coordinates {r i} and
{RI}, respectively. This is known as the Born–Oppenheimer (BO) approximation, in
which Φk is an electronic eigenstate in the Coulomb field generated by the fixed nuclei
clamped at positions {RI}

ĤelΦk(r ;R) =Vk(R)Φk(r ;R), (3.1.4)

where k labels the electronic state. The corresponding nuclear wave function ϕk , which
describes the spatial probability distribution of the nuclei, is in turn determined by the
potential energy surface Vk (R) generated by the electrons as[

−
∑ ∇2

I

2MI
+ Vk(R)

]
ϕk(R) =Ekϕk(R). (3.1.5)

The BO approximation relies on the fact that nuclei are much heavier than electrons,
which often decouples their dynamics. The vibro-electronic coupling terms that arise
from the nuclear derivative ∇I operating on the electronic wave function are ignored;
this approximation can be usually made around the equilibrium configuration [4].

The quantum nature of the nuclei in the BO picture needs to be taken into account
for, e.g., obtaining zero-point energy corrections arising from the vibrational ground state
of a molecule, which may affect its stability, or properly describing “wobbly” molecules
which do not have a clearly defined molecular structure – such as ammonia, the NH3

molecule.
Assuming that the potential energy surfaces are well separated (as is often the case),

the system stays on a single electronic state for which the nuclear Schrödinger equation
(eqn (3.1.5)) then needs to be solved. This is usually done by constructing a local
model of the potential energy surface around the minimum geometry, involving the
solution of the electronic problem (eqn (3.1.4)) in slightly perturbed geometries around
the equilibrium. Models of the potential energy surface can also be used for classical
simulations of, e.g., the evolution of structures in molecular liquids, as done in paper V.

For a more exact treatment, the non-BO wave function can always be solved in
terms of BO wave functions. The coupling of different vibro-electronic states may need
to be taken into account, e.g., when studying [50,51] x-ray absorption or x-ray Raman
scattering11, , as the excitation of an electron may result in an excitation of the nuclear

11When the energy transfer ~ω in the inelastic scattering is similar to a core electron binding energy,
the core electron is excited to an unoccupied state, yielding information similar to x-ray absorption
spectroscopy. [48,49]
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3 ELECTRONIC STRUCTURE THEORY

wave function as well12.
However, as the electron momentum density is studied in the ground state, in the

current work we invoke the widely used molecular structure approximation, which as-
sumes that the potential wells (in which the nuclei are in) are deep, as well as steep. In
this case the nuclear probability distribution approaches a Dirac delta function, meaning
that the nuclei have well defined positions in the system and thus justifying the classical
concept of a molecular structure. As a consequence, the electronic problem only needs
to be solved for the minimum nuclear geometry13.

3.2. Hartree–Fock theory

As we have simplified the full quantum mechanical problem into solving the nuclear wave
functions from the electronic ones, we now proceed to the purely electronic problem.
Because electrons are fermions, the electronic wave function must be antisymmetric in
all of the electronic coordinates:

Φ(. . . , xm, . . . , xn, . . . ) =−Φ(. . . , xn, . . . , xm, . . . ), (3.2.1)

where the generalized coordinate x i = (r i , σi) contains both position r i and spin σi .
Expanding the N-electron wave function in an arbitrary, complete set of single-electron
states (a.k.a. orbitals) {φi} one obtains

Φ(x1, . . . , xN) =

∞∑
n1,...,nN=1

cn1...nNφn1 (x1) . . . φnN (xN). (3.2.2)

Here cn1...nN is a completely antisymmetric tensor, which makes the wave function fulfil
the Pauli exclusion principle. However, the orbitals and the elements of c are unknown.

The simplest starting point for solving the electronic Schrödinger equation (eqn (3.1.4))
is to replace the exact expansion of eqn (3.2.2) with a Slater determinant, which auto-
matically fulfills the antisymmetry requirement: Φ→ Ψ0, where

Ψ0 =
1√
N!

N∑
n1,...,nN=1

εn1...nNψn1 (x1) . . . ψnN (xN), (3.2.3)

in which ε is the N-dimensional Levi–Civita symbol. Now the optimal set of orbitals
{ψi} can be determined by minimizing the expectation value of the electronic energy

〈Eel〉 =
〈

Ψ0

∣∣Ĥel
∣∣Ψ0

〉
. (3.2.4)

This approximation is known as Hartree–Fock (HF), or self-consistent field (SCF) theory.
The theory is variational in the sense that the better the description of the orbitals is,

12The nuclear wave functions corresponding to different electronic states are non-orthogonal. When
the electronic state is excited k → k ′, the ground-state nuclear wave function corresponding to the
potential energy surface Vk has multiple components in terms of the eigenfunctions of Vk ′ .

13Naturally, finding the minimum geometry may require calculations in multiple points on the potential
energy surface.
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3.3 Basis sets

the lower the resulting energy will be. The theory leads to a set of coupled one-particle
Schrödinger equations of the form [52][

−
∇2

2
+ VC(r) + Vx(r)

]
ψi(r) =εiψi(r), (3.2.5)

where VC is the classical Coulomb potential generated by the orbital charge distributions

VC(r) =
∑
j

∫
|ψj(r ′)|2

|r − r′| d
3r ′ −

∑
I

ZI
|r − RI |

, (3.2.6)

Vx is the quantum mechanical “exchange” potential caused by the fermionic nature of
electrons

Vx(r)ψi(r) =−
∑
j

∫
ψ∗j (r ′)ψi(r

′)

|r − r′| ψj(r)d
3rj , (3.2.7)

and εi is the orbital energy. It turns out [53] that the minimum energy solution of the
HF equation is always the one in which the orbitals are occupied in order of increasing
orbital energy εi ; this is known as the Aufbau principle.

As can be seen from the equations above, HF is a mean-field theory, since the
electrons in the system feel only the average field generated by the nuclei and the other
electrons14 in the system. We will return to this in Subsection 3.4.

3.3. Basis sets

To actually solve for the orbitals, the problem must first be discretized15 so that it
can be implemented on a computer. Basis sets provide a handy tool of transforming
the integro-differential Hartree–Fock equations into algebraic form. As is known from
elementary quantum mechanics, when a complete, orthogonal basis set

∞∑
i=1

|χi 〉 〈χi | =1 (3.3.1)

is used, wave functions can be expanded exactly as

|ψi 〉 =

∞∑
i=1

ci j |χi 〉 , (3.3.2)

ci j = 〈χi |ψi 〉 . (3.3.3)

For obvious reasons, in practice the basis sets that are used in calculations contain only
a finite amount N of functions, and are thus incomplete:

N∑
i=1

|χi 〉 〈χi | ≈1. (3.3.4)

14An electron does not interact with itself as the contributions from eqns (3.2.6) and (3.2.7) cancel
out.

15Written as a problem with a finite number of degrees of freedom.
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3 ELECTRONIC STRUCTURE THEORY

The linear combination of atomic orbitals (LCAO) is the prevalent basis set by far
in molecular calculations, as qualitatively correct results can be obtained with relatively
few basis functions per atom. The interaction between atoms can be regarded as a
perturbation on the atomic states; typical bond energies being of the order of eVs, while
the ground state energy of a single atom is typically orders of magnitude larger16. Also,
the use of post-HF methods, such as Møller–Plesset perturbation or coupled cluster
theory that are discussed below, is computationally feasible when an LCAO basis set17

is used.
As the electronic structure is only given the degrees of freedom present within the

basis set, a calculation is only as good as the basis set it uses. A calculation at a very
high level of theory with a bad basis set often gives much worse results than a low level
calculation with a good quality basis set. Papers II and III focus explicitly on optimizing
the basis set {|χi 〉}Ni=1 so that all of the essential physics and chemistry (considering the
studied property) is captured in eqn (3.3.4).

The drawback in the LCAO method is that approaching the complete basis set
(CBS) limit is painstaking due to, e.g., basis set superposition errors18 (BSSE) and
over-completeness effects which cause numerical problems when the size of the basis
set is increased. A basis set free, numerical solution of the HF equations is possible
for simple systems (atoms and dimers) [55–57]. Recently, progress has also been made
into the use of adaptive, multiresolution real-space grid methods that provide uniform
convergence and guaranteed precision [58–60]. However, there are still many performance
problems that prevent a widespread application of these methods.

3.3.1. STO basis

The analytic solution of the one-electron hydrogenic atom shows that the wave functions
are of the form

ψnlm(r) =Rnl(r)Y ml (θ, φ), (3.3.5)

Rnl(r) =Nnl

(
2Zr

n

)l
L2l+1
n−l−1

(
2Zr

n

)
e−Zr/n, (3.3.6)

Nnl =

√(
2Z

n

)3
(n − l − 1)!

2n [(n + l)!]3 , (3.3.7)

where Z is the nuclear charge, Lln are associated Laguerre polynomials and Y ml are spher-
ical harmonics in the complex form. Also the many-electron HF equation (eqn (3.2.5))
retains the asymptotic behavior of exponential decay [4] seen in eqns (3.3.5) and (3.3.6).

16~10–100 eV for second row atoms, ~200–500 eV for third row atoms
17Namely, the GTO basis.
18The electrons in an atom may “borrow” the basis functions on another atom, complicating the

calculation of, e.g., bonding energies [54]. Furthermore, because the basis functions are localized on the
atomic nuclei, changing the geometry also changes the basis set, which needs to be taken into account
when forces are computed.
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3.3 Basis sets

As such it would thus be natural to use a basis set of Slater-type orbitals (STO) [61]

χnlm(r) =RSTO
nl (r)Ylm(θ, φ), (3.3.8)

RSTO
nl (r) =

(2ζ)3/2√
Γ(2n + 1)

(2ζr)n−1e−ζr , (3.3.9)

where ζ is a positive real number and Ylm are spherical harmonics in the real form, as
these constitute the analytic solution to the one-electron Schrödinger equation for the
hydrogenic atom.

Unfortunately, the evaluation of integrals necessary for HF theory is rather difficult
when an STO basis set is used: many integrals need to be computed numerically [62,63],
which hinders the use of post-HF methods that require a large set of accurate integrals.
Staying at the HF level of theory, calculations on molecular systems with STO basis
sets can be routinely performed with, e.g., the ADF code [63,64].

3.3.2. GTO basis

Boys suggested the use of Gaussian functions instead of Slater functions in quantum
chemical calculations [65]. The method gained wider acceptance and soon became the
standard tool of quantum chemistry, as it was shown that STOs can be analytically
expanded in terms of Gaussian type orbitals (GTOs), since [66]

exp(−ζr) =
2√
π

∫ ∞
0

exp(−t2) exp

(
−
[
ζr

2t

]2
)
dt

≡
∫ ∞

0

w(t) exp
[
−α(t)t2

]
dt, (3.3.10)

where w(t) := 2 exp(−t2)/
√
π has been identified as the weighting factor of the

GTO with exponent α(t) := ζ2/4t2. More importantly, the full integral transform
of eqn (3.3.10) is not necessary, as a good accuracy for the molecular integrals can be
achieved with relatively few functions [67–69]:

exp(−ζr) ≈
N∑
n=1

wi exp(−αi r2). (3.3.11)

This is illustrated by the expansion [69] of the radial part of the hydrogen ground state
wave function in Figure 4. As can be seen, the finite expansion is problematic both near
the nucleus (wrong cusp condition) and far away from it (decay is too fast). However,
the calculation of the necessary integrals is much simpler [65] and can be performed
efficiently using recursion relations [70–72] when a GTO basis set is used, because the
basis functions and the integrals factorize.

The integrals in GTO basis sets are computed in terms of cartesian GTOs [61]

χGTO
klm (r) =χGTO

k (x) χGTO
l (y) χGTO

m (z), (3.3.12)

χGTO
k (x) =

(
2α

π

)1/4
√

(4α)k

(2k − 1)!!
xk exp(−αx2), (3.3.13)
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3 ELECTRONIC STRUCTURE THEORY
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Figure 4: Expansion of the hydrogen ground state radial wave function (STO) in terms
of GTOs. As can be seen, the expansion converges rather quickly.

the forms of χGTO
l (y) and χGTO

m (z) being analogous to eqn (3.3.13). As a consequence,
quantum chemistry programs typically operate with shells of functions with the same
cartesian angular momentum19 λ = k + l + m. The functions with cartesian angular
momentum λ span the spherical harmonics with angular momentum l = λ, but possibly
contain also contaminants with l = λ− 2 (and lower ones as well)20.

In order to avoid the problems caused by these contaminants and to reduce the
amount of functions, most commonly spherical harmonics GTOs are used (also in papers
I–IV). They can be expanded exactly in terms of cartesian GTOs [61,73], thus retaining
the capability of fast integral evaluation via recursion relations. The general form of
spherical harmonic GTOs is [61]

χαnlm(r) =RGTO
nl ;α (r)Ylm(r̂), (3.3.14)

where the radial function is

RGTO
nl ;α (r) =

2 (2α)n−l/2−1/4

π1/4

√
22n−l−2

(4n − 2l − 3)!!
r2n−l−2e−αr

2

. (3.3.15)

19For example the λ = 2 shell with exponent αi contains the functions (k, l, m) ∈
{(0, 0, 2) , (0, 1, 1) , (0, 2, 0) , (1, 1, 0) , (2, 0, 0) , (1, 0, 1)}, each with the same exponent.

20For instance, a cartesian D shell has 6 functions, corresponding to the 5 pure D functions, plus
one S-type contaminant with a higher primary quantum number n.
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3.3 Basis sets

As varying exponents are used to span the necessary degrees of freedom, the factor n
is n = l + 1 for spherical harmonic basis sets. In contrast, when cartesian GTOs are
used as the basis set, the common exponent of r in eqn (3.3.15) can be identified as
2n − l − 2 = λ. Solving for n = (l + λ) /2 + 1 gives upon substitution

χαλl ;m(r) =RGTO
λ;α (r)Ylm(r̂), (3.3.16)

RGTO
λ;α (r) =

2 (2α)λ/2+3/4

π1/4

√
2λ

(2λ+ 1)!!
rλe−αr

2

. (3.3.17)

This result, necessary for the lower angular momentum contaminants, will be used in
Subsection 3.8.

3.3.3. Formation of basis sets

The parametrization of basis sets traditionally begins by optimizing an sp set to produce
the smallest atomic HF energy with a fixed amount of basis functions. Additional
functions of higher angular momentum, depicting the polarization of bonds in molecules
or effects of electron correlation, are then added using additional molecular or post-HF
calculations of the energy. Finally, diffuse functions are added by hand21 to properly
describe other properties, such as the dipole moment – or the electron momentum
density. This approach has been used, e.g., in the parametrization of the Dunning-style
correlation-consistent cc-pVXZ series [74–78] and Jensen’s polarization-consistent pc-N
series22 [79–83].

It was noted early on that elements with similar electronic shell structures can be
described with the same “universal” basis set [84,85]. The reason for this is that basis
sets are just a mathematical tool for the representation of the electronic structure. The
connection between the basis set and the energy criterion can thus be severed altogether,
e.g., by the process of completeness-optimization [86], a procedure based on the concept
of completeness profiles [87].

3.3.3.1. Completeness profiles

The completeness profile is a graphical tool for visualizing eqn (3.3.4) as [87]

Y (α) =
∑
µν

〈α |µ 〉S−1
µν 〈ν |α 〉 , (3.3.18)

where |α〉 is a scanning function used to probe the completeness of the basis set, |µ〉
and |ν〉 are functions in the basis set and all of the functions are centered on the same
atom. S−1

µν denotes the (µ, ν) element of the inverse overlap matrix, where the elements
of the overlap matrix are Sµν = 〈µ |ν 〉.

21Diffuse functions are not procured by energy optimization because of their small importance for
energetics, unless very large basis sets are used.

22Jensen’s basis sets have been parametrized and contracted using density-functional theory instead
of Hartree–Fock discussed in the text, but the two theories share similar basis set requirements.
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Figure 5: Completeness profile for the S shell of the aug-pc-4 basis set for oxygen. The
solid line depicts the profile for the basis set in the normal, contracted form, whereas
the dashed line shows the profile of the decontracted basis set. The placing of the
exponents is shown as bars.

If the basis set is flexible enough to accurately represent the scanning function |α〉,
then Y (α) ≈ 1. On the other hand, if the basis set is unable to represent the scanning
function, then Y (α) ≈ 0. When Gaussian basis sets are used, the scanning function
conventionally used is

〈r |α 〉 =χαλm(r), (3.3.19)

where the function χαλm was defined in eqn (3.3.16). A separate profile is obtained for
all the values of the angular momentum present in the used basis set, while all values
of the z-component m yield an identical profile. The completeness profile is commonly
visualized in a (lgα, Y (α)) plot, as illustrated in Figure 5.

3.3.3.2. Completeness-optimization of exponents

As can be seen from Figure 5, a plateau where Y (α) ≈ 1 is commonly seen in the
completeness profile of the primitive basis set23, with dips occurring where the exponents

23The basis set in decontracted form.
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Figure 6: Width of the completeness plateau lgαmax − lgαmin plotted as a function of
the amount of functions N for two values of τ1 = τ .

are placed more sparsely. The idea of completeness-optimization [86] is to optimize the
primitives, i.e., the exponents in the basis set so that the resulting completeness plateau
is as flat as possible on the wanted exponent interval. The measure we use in the
optimization is (paper IV)

τn =

(
1

lgαmax − lgαmin

∫ lgαmax

lgαmin

[1− Y (α)]n d lgα

)1/n

, (3.3.20)

in which αmin and αmax are the lower and upper limits of the used interval (for the
current value of the angular momentum) and n > 0. The exponents which minimize the
value of τn can be straightforwardly obtained with standard minimization techniques; in
this work (papers II, III and IV) we have used the Nelder–Mead “amoeba” method [88].

The special case n = 1 in eqn (3.3.20) corresponds to the maximization of the
area, while n = 2 corresponds to the minimization of the root-mean square deviation
from completeness. However, as in the limit τn → 0 all values of n lead to a complete
basis set24, the value n = 1 is commonly used in practice25 (references 86,89–92 and
papers II and III). Accordingly, for the rest of the thesis we denote τ1 with a plain τ .
The proper functionality of the minimization algorithm is demonstrated by the smooth
increase of the width of the completeness plateau with fixed τ , presented in Figure 6.

3.3.3.3. Completeness-optimization of basis sets

The completeness-optimization of the exponents provides a systematical way to
approach the complete basis set in the limit αmin → 0, αmax → ∞ and τ → 0. This

24Y (α) → 1 when τn → 0 for α ∈ [αmin, αmax], because xn and x1/n are monotonically increasing
functions for n > 0.

25n = 2 places more weight on the edges, leading to closer spacing of the exponents near the limits at
αmin and αmax, which can cause problems due to linear dependencies arising in molecular calculations.
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Figure 7: Illustration of the completeness-optimization scheme. The completeness pro-
file of the starting point basis set is in black. The red dash-dotted curves on the right
represent expansion of the completeness profile to the steep end, whereas the blue
dashed curves on the left that to the diffuse end.

makes it straightforward to find out the necessary completeness of the exponent space
for computing the wanted property at the wanted accuracy by the method of trial and
error. This process is known as completeness-optimization [86], which is a method for
forming computationally efficient basis sets for any property at any level of theory.

Starting with a minimal basis set, one can calculate the change in the computed
property caused by an expansion of the basis set to the steep and diffuse areas (larger
αmax or smaller αmin, illustrated in Figure 7) while keeping τ constant. The procedure
is repeated for all values of angular momentum l . When the change in the property that
is evaluated is small enough upon extension of the existing shells or the addition of new
polarization shells, the CBS limit has been reached. Completeness-optimization is used
extensively in papers II and III.

3.4. Configuration interaction

Once a basis set has been adopted, one can solve the HF equations and thus obtain a
mean-field description of the physics in the system. Although the HF picture is often
a good starting point, the method only accounts for the average interaction of the
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3.5 Møller–Plesset perturbation theory

electrons with each other – the correlation of the electrons26 is not included in the
theory. To describe correlation effects, it is necessary to go beyond HF theory to post-
HF methods. As the HF orbitals span a complete space, the exact electronic wave
function can be expanded in terms of the HF orbitals similarly to eqn (3.2.2) as27

|Φ〉 ∝ |Ψ0〉+
∑
ia

c ia |Ψa
i 〉+

∑
i j,ab

c i jab
∣∣Ψab

ij

〉
+ . . . , (3.4.1)

in which |Ψ0〉 is the Hartree–Fock determinant,
∣∣Ψa

i

〉
is the determinant with an electron

excited from the occupied orbital i to the virtual orbital a and c ia is the relevant amplitude,
and analogously for higher excitations. This is known as configuration interaction (CI)
theory. If all possible determinants are included in the expansion, one obtains the full
configuration interaction (FCI) theory.

Alas, the amount of excited determinants grows factorially in the amount of or-
bitals [61], which limits the application of FCI to very small systems. A recently in-
troduced stochastic Monte-Carlo approach has made calculations on somewhat larger
systems possible [93–102], the largest calculations performed so far containing 10108 Slater
determinants [102].

To overcome the factorial scaling, the infinite series in eqn (3.4.1) is conventionally
truncated at some excitation level, yielding for example the configuration interaction
single and double excitations (CISD) theory, which has been used in the parametrization
of the Dunning-style basis sets [74,76,78]. Although all versions of configuration interaction
theory are variational, the truncation breaks size extensivity28 and alternative methods
(see below) are used instead.

3.5. Møller–Plesset perturbation theory

Møller–Plesset (MP) theory [103] handles the correlation problem by treating the differ-
ence of the exact two-electron interaction and the mean-field interaction as a perturba-
tion to the system. The excitation amplitudes in eqn (3.4.1) are then obtained from a
perturbation expansion. As is true for perturbation theories in general, the perturbation
expansion may not always converge29. MP works well for single-reference systems30,
such as most molecules around their equilibrium geometry.

26Hartree–Fock theory predicts the probability of finding an electron at r and another of opposite spin
at r′ to be P (r, r′) ∝ ρα(r)ρβ(r′) + ρβ (r) ρα (r′). However, when |r − r′| → 0 the mean-field description
of HF theory is no more valid. Because the Coulombic repulsion of the two electrons increases without
limit when |r − r′| → 0, in reality the probability of finding two electrons close to one another is smaller
than HF theory predicts. The aim in post-HF methods is to properly describe this correlation hole
around electrons.

27The proportionality sign is used in eqn (3.4.1) because of the use of intermediate normalization on
the right hand side, the norm of which is 1 +

∑
ia |c ia|2 +

∑
i j,ab |c

i j
ab|

2 + . . . .
28The performance of the model decays with increasing system size.
29Theories truncated at different orders give results that differ by an arbitrarily large amount from

each other.
30A system which is described well by a single HF determinant. For systems with significant mul-

tireference character the use of multireference perturbation theory (MRPT) (or multireference coupled
cluster theory) yields better convergence.
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3 ELECTRONIC STRUCTURE THEORY

As a perturbation theory, truncated MP is non-variational. However, it is size ex-
tensive and is often used thanks to its favorable scaling. Whereas Hartree–Fock theory
scales conventionally31 as N4, N representing the system size, Møller–Plesset theory
truncated at the nth order (MPn) scales as [104] Nn+3. The use of MP methods trun-
cated above the second order (MP2, used in papers I and III) such as MP3 or MP4 is
generally considered fruitless in quantum chemistry, as coupled cluster theories, which
yield better results, have the same or even better scaling properties.

3.6. Coupled cluster theory

To overcome the size extensivity problem of truncated CI, an alternative formulation is
warranted. The CI equation ((3.4.1)) can be recast in another form as [105]

|Φ〉 =eT̂ |Ψ0〉 , (3.6.1)

in which the excitation operator is

T̂ =t0 + t1
i ,aτ̂

i ,a
1 + t2

i j,abτ̂
i j,ab
2 + t3

i jk,abc τ̂
i jk,abc
3 + . . . , (3.6.2)

where τ̂ i ,a1 excites the electron from the occupied i orbital to the virtual a orbital, t1
i ,a

being the related cluster amplitude (and analogously for higher excitation orders), and
summation over repeated indices is implied. This reformulation is known as coupled
cluster (CC) theory. Thanks to the exponential parametrization, CC theory clearly is
size extensive, and also leads to faster convergence in the truncation order than CI
theory [61] as can be seen from the apparition of higher order excitations in a series
expansion of eqn (3.6.1).

Unfortunately, solving the CC amplitudes is non-trivial. In the commonly used projec-
tion approach the amplitudes are obtained by projecting the CC wave function onto the
HF ground state and the singly, doubly, etc., excited determinants. Although this pro-
cedure yields workable equations, the variationality of the theory is lost [61]. The coupled
cluster single and double excitations (CCSD, used in paper I) method scales conven-
tionally as N6, whereas if triple excitations are also included (CCSDT) the scaling is
N8. If triples are treated only perturbatively, yielding CCSD(T), the golden standard of
quantum chemistry [61], the scaling is N7.

3.7. Density-functional theory

In addition to the ab initio, wave function based methods discussed above, there is also
another, completely different way of approaching the electronic structure problem. As
was mentioned in Section 1, the Hohenberg–Kohn theorems state that the ground state
density uniquely determines all of the properties of a system of N electrons [1]. This is
the foundation of Kohn–Sham density-functional theory [106,107] (KS-DFT), in which the
real electronic system is replaced with a fictitious system of non-interacting electrons,

31The theory can be made to scale (quasi)linearly in large non-metallic systems by using integral
screening and multipole methods. Similar speedups can also be made for MP. [61]
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3.8 Electron momentum density

the density of which is postulated to coincide with that of the real, interacting system.
The theory leads to a group of single-particle equations as in HF, yielding notable speed
benefits compared to the post-HF methods described above, while still capturing all of
the features of the real electronic system.

KS-DFT works relatively well for many properties such as core electron spectro-
scopies (for instance in paper VI), but its use in modeling the absolute EMD is problem-
atic. In addition to the general problem of KS-DFT – the exact exchange-correlation
functional32 is not known33 – there is also another problem in the application of KS-DFT
to modeling of the EMD. Even if the exact ED could be calculated, it is not clear how
the EMD could be obtained from it [3]. The straightforward process of taking the square
norm of the Fourier-transformed orbitals, which works in HF theory, yields unsatisfactory
results in KS-DFT [108,109]. This feature was explained by Lam and Platzman [110], who
argued that while the real-space density produced by KS-DFT

ρ(r) =
∑
i

ni |ψi(r)|2 , (3.7.1)

where ψi and ni are the KS orbitals and their occupation numbers, is that of independent
particles, in the momentum space the particles are correlated :

n(p) 6=
∑
i

ni
∣∣ψ̃i(p)

∣∣2 , (3.7.2)

where the tilde denotes the Fourier transform. Thus, a correction term must be added
to the right hand side of eqn (3.7.2) – the form of which is unknown34. However, even
though KS-DFT fails to reproduce absolute EMD properties, it often reproduces the
correct shape of difference Compton profiles [reference 37 and paper I].

3.8. Electron momentum density

The EMD can be obtained in atom-centered basis sets as [111]

n(p) =
∑
µν

Pµνχ̃µ(p)χ̃ν(p), (3.8.1)

where Pµν is the one-electron density matrix, χµ (r) is the µ:th basis function and the
overline denotes complex conjugation. In the following we will present an algorithm
for computing the radial EMD in any atom-centered basis set, further developing the
algorithm presented in paper I35.
Expanding the basis functions around their centers Rµ as

χµ(r) =

∞∑
l=0

l∑
m=−l

c lmµ Rµl(|r −Rµ|) Y ml
(
r −Rµ
|r −Rµ|

)
, (3.8.2)

32The functional maps the behavior of the non-interacting system to that of the interacting one.
33There are a variety of semi-empirical approximations to the exchange-correlation functional. Con-

trary to post-HF methods, there is no way to systematically approach the correct result.
34Lam and Platzman suggested an approximate correction in reference 110.
35In paper I only GTO basis sets were considered.
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3 ELECTRONIC STRUCTURE THEORY

where Rµl are normalized radial functions, Y ml are spherical harmonics in the complex
form and c lmµ are complex expansion coefficients, the Fourier transforms can be calcu-
lated using the expansion

e ip·r =4π

∞∑
L=0

iLjL(pr)

L∑
M=−L

Y ML (r̂)Y ML (p̂), (3.8.3)

where jL is the spherical Bessel function of order L and r̂ is the unit vector in the direction
of r. Using the orthonormality of spherical harmonics, we get

χ̃µ(p) =
1

(2π)3/2

∫
χµ(r)e−ip·rd3r (3.8.4)

=e−ip·Rµ
∑
lm

c lmµ R̃µl(p)Y ml (p̂), (3.8.5)

where the phase factor exp(−ip · Rµ) in eqn (3.8.5) comes from the change of origin
and the transformed radial function is

R̃µl(p) =

√
2

π
(−i)l

∫ ∞
0

r2Rµl(r)jl(pr)dr. (3.8.6)

The forms of the radial functions in STO and GTO basis sets are presented below.
However, the same procedure can in principle also be applied to numerical atomic orbitals
as used by, e.g., the SIESTA and GPAW codes [112], for which the integral in eqn (3.8.6)
needs to be calculated numerically. Inserting eqn (3.8.5) into eqn (3.8.1) we obtain the
EMD as

n(p) =
∑
µν

Pµνe
−ip·(Rν−Rµ)

∑
lm

c lmµ R̃
ζµ
nµl

(p)Y ml (p̂)
∑
l ′m′

c l
′m′

ν R̃ζνnν l ′(p)Y m
′

l ′ (p̂). (3.8.7)

The radial EMD (eqn (2.6)) then becomes

n(p) =
∑
µν

Pµν
∑
l l ′

∑
mm′

c lmµ R̃
ζµ
nµl

(p)c l
′m′

ν R̃ζνnν l ′(p)

∫
e−ip·(Rν−Rµ)Y ml (p̂)Y m

′

l ′ (p̂)dΩp.

(3.8.8)

We perform the angular integral in eqn (3.8.8) as∑
mm′

c lmµ c
l ′m′

ν

∫
e ip·RµνY ml (p̂)Y m

′

l ′ (p̂)dΩp

=
∑
mm′

c lmµ c
l ′m′

ν

[
4π

∞∑
L=0

iLjL(pRµν)

L∑
M=−L

Y ML (R̂µν)

]∫
Y ML (p̂)Y ml (p̂)Y m

′

l ′ (p̂)dΩp

(3.8.9)

=
∑
mm′

4πc lmµ c
l ′m′

ν

l+l ′∑
L=L0

iLjL(pRµν)G
m(m−m′)m′
lLl ′ Y m−m

′

L (R̂µν),
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3.8 Electron momentum density

where we have used eqn (3.8.3) and notated Rµν = Rµ − Rν . The lower limit of the
sum is L0 = max {|l − l ′| , |m −m′|} and GMmm′Lll ′ is the Gaunt coefficient

GMmm
′

Lll ′ =

∫
Y ML (r̂)Y ml (r̂)Y m

′

l ′ (r̂)dΩr (3.8.10)

which can be obtained as

GMmm
′

Lll ′ = (−1)M
√

(2L+ 1) (2l + 1) (2l ′ + 1)

4π

(
L l l ′

0 0 0

)(
L l l ′

−M m m′

)
,

(3.8.11)

where
(
L l l ′

M m m′

)
are Wigner 3j-symbols. Furthermore, by performing the sums

with respect to m and m′ as

CµνLM;l l ′ = 4πiL
∑
mm′

c lmµ c
l ′m′

ν GmMm
′

lLl ′ (3.8.12)

the radial EMD is obtained in the form

n (p) =
∑
µν

Pµν
∑
l l ′

R̃
ζµ
nµl

(p)R̃ζνnν l ′(p)

l+l ′∑
L=|l−l ′|

jL(pRµν)
∑
M

CµνLM;l l ′Y
M
L (R̂µν). (3.8.13)

Now the Compton profile and the moments of the EMD can be integrated numerically
from eqns (2.7) and (2.8).

It must be noted here that the radial expansion of eqn (3.8.4) only needs to be
performed once in the calculation, and only for the non-equivalent basis functions (dif-
fering only in the phase factor exp (ip ·Rµ)). As a consequence, the necessary amount
of radial functions Rζµnµl and coupling coefficients CµνLM;l l ′ is reduced tremendously. The
computation can then be grouped into the final expression

n (p) =
∑

group τ

∑
group σ

max lτ+max lσ∑
L=min|lτ−lσ |

∑
M

(∑
lτ lσ

R̃ζτnτ lτ (p)R̃ζσnσ lσ(p)CστLM;lτ lσ

)
(3.8.14)

×

∑
µ in τ

∑
ν in σ

Pµν jL(p |Rµ −Rν |)Y ML (R̂µν)

 .
The current implementation in ERKALE [38] is based on this formalism.

3.8.1. STO basis

The Fourier transform of the STO radial function (eqn (3.3.9)) is given by [113]

R̃ζnl(p) = (2π)3/2 2n−1 (n − l)!

π2
(−ip)l

ζn−l (2ζ)n+1/2√
(2n)!

×

b(n−l)/2c∑
k=0

(
−

1

4ζ2

)k
(n − k)!

k! (n − l − 2k)!

1

(p2 + ζ2)n+1−k , (3.8.15)
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3 ELECTRONIC STRUCTURE THEORY

Currently, the most commonly used STO program, ADF [64], does not use pure spherical
functions; cartesian STOs are used, instead36. However, the cartesian STOs can be
expanded in spherical harmonics (as was done in paper I), making it possible to use
eqn (3.8.15) for the Fourier transforms of the cartesian basis functions.

3.8.2. GTO basis

The Fourier transform of the Gaussian function in eqn (3.3.16) is found using eqn (3.8.6)
as

R̃αλl(p) = (−ip)l 2(λ−l)/2

(
2

π

)1/4

α−l/2−3/4×

(l + λ+ 1)!!

(2l + 1)!!
√

(2λ+ 1)!!
1F1

(
l + λ

2
+

3

2
; l +

3

2
;−

p2

4α

)
, (3.8.16)

in which n!! is the double factorial and 1F1 is the confluent hypergeometric function
given by

1F1(a; b; z) =

∞∑
k=0

Γ(a + k)

Γ(a)

Γ(b)

Γ(b + k)

zk

k!
. (3.8.17)

Here Γ (z) is the Euler Gamma function. As shown in paper I, eqn (3.8.16) can generally
be written as a product of a polynomial and an exponential. When n = l + 1 the radial
function simplifies to

R̃αl (p) = (−ip)l 21/4α−l/2−3/4π−1/4 1√
(2l + 1)!!

e−p
2/4α. (3.8.18)

36The lower angular momentum contaminants are projected out at a later stage in ADF.
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3.9 Illustrative calculation

3.9. Illustrative calculation

The rather extreme difference between the change in the ED and that in the EMD upon
the formation of chemical bonds is demonstrated by a HF calculation on the fluorine
dimer, using the decontracted aug-pc-4 basis set [79–81]. The atoms are placed on the z
axis, symmetrically about the origin, with the bond distance being 2.668 a.u.

The changes in the ED from the superposition of the two monomers to the bonded
dimer (shown in Figure 8) are minute, only ∼ 0.02% on the x and y axes (perpendicular
to bond axis) and ∼ 0.2% on the z axis (along the bond), as compared to the maximum
electron density (at the nuclei). In comparison, the EMD undergoes a dramatic change
(Figure 9): it changes by ∼ 7% on the px and py axes and by ∼ 26% on the pz axis, as
compared to its maximal value.

The isotropic Compton profile of the fluorine dimer is shown in Figure 10. However,
as experimental determination of absolute Compton profiles is difficult, difference pro-
files are often used, instead. Difference profiles between the same sample in different
environmental conditions, or between two different samples can be routinely measured
with Compton scattering experiments at modern synchrotron radiation facilities. The
difference profile of the F2 molecule above, which we define as

∆J(q) =
Jdimer(q)− Jmonomer 1(q)− Jmonomer 2(q)

Jdimer(0)
· 100%, (3.9.1)

is shown in Figure 11. As the covalent bond between the fluorine atoms is quite strong,
the amplitude of the difference profile is unusually large. The differences measured in
experiments are usually an order of magnitude smaller, as there are usually no changes
in the strong chemical bonds.
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Figure 8: Electron density of the fluorine dimer. The solid line represents the dimer
quantity, whereas the dashed line represents the superposition of the monomer quanti-
ties. Quantities along the z axis are plotted in red, whereas quantities orthogonal to
the bond axis, i.e., along the x and y axes are in blue. Note the logarithmic scale.
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Figure 9: Electron momentum density of the fluorine dimer. The notation is analogous
to the one in Figure 8.
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Figure 10: Isotropic Compton profile of the fluorine dimer.
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Figure 11: Difference Compton profile of the fluorine dimer.
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4 SUMMARY OF PAPERS

4. Summary of papers

This thesis includes four publications on the computational modeling of the electron
momentum density. Paper I focuses on developing a novel method for calculating the
radial electron momentum density, and studies the electron momentum density produced
by different basis sets at different levels of theory. Papers II and III focus on developing
novel basis sets especially adapted for electron momentum density studies through the
use of completeness-optimization. Paper IV presents the computer program that can
be used, among other features, for computing the electron momentum density.

4.1. Paper I: Calculation of isotropic Compton profiles with Gaussian basis sets

We devised an algorithm for the calculation of the Compton profile on an adaptive
grid, and introduced an algorithm for computing the radial electron momentum density
analytically in Gaussian basis sets of arbitrary angular momentum. Using these, we were
able to achieve machine accuracy for the calculation of isotropic Compton profiles within
the used basis sets.

We chose two model systems for studying the basis set convergence of the Compton
profile: the water dimer and the helium dimer. Water was chosen due to the recent
interest in its experimental study using Compton scattering [13,15–17,20,23–25,37], whereas
helium was chosen to represent weakly bound systems in which dispersion effects are
dominant. Calculations were performed using HF and KS-DFT, but also with CC and
MP theory. Only the valence electrons were correlated in the post-HF calculations.

We studied the basis set convergence, and noted the usual behavior: HF and KS-
DFT behave similarly to each other, converging the fastest with regard to the basis set.
Differently to the former methods, post-HF methods are more stringent about the used
basis set, but share similar convergence properties within themselves.

We showed that an estimated accuracy of 0.01% of J (0) in the Compton profile
could be achieved with the aug-cc-pVTZ basis set at all levels of theory. Whereas
KS-DFT fails for absolute profiles and the difference profiles of helium, in the case
of water KS-DFT was found to produce similar difference profiles to those of wave-
function methods – some hybrid KS-DFT functionals reproducing the difference profile
even better than MP2, when compared to the CCSD reference.

As extremely accurate calculations are possible for two-electron systems such as the
helium atom, we compared our highest level calculations on the helium atom to a large
basis set FCI calculation performed in the literature. The difference in the calculations
was around 0.04% of J (0), hinting towards a substantial remaining basis set error even
with quintuple zeta basis sets.
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4.2 Paper II: Completeness-optimized basis sets: Application to ground-state
electron momentum densities

1 2

H He
3 4 5 6 7 8 9 10

Li Be B C N O F Ne
11 12 13 14 15 16 17 18

Na Mg Al Si S P Cl Ar

Table 1: Assembly of the elements of the first three rows of the periodic table into five
groups with similar electronic shell structures. The coloring illustrates the grouping.

4.2. Paper II: Completeness-optimized basis sets: Application to ground-state
electron momentum densities

We decided to tackle the basis set convergence problem using completeness-optimiza-
tion, which was presented Subsection 3.3.3. As conventional basis sets are energy-
optimized, they are often sub-optimal for computing other (such as magnetic) proper-
ties. Completeness-optimized basis sets offer a systematical and cost-effective approach
to the complete basis set limit. The purpose of our study was twofold: to establish the
CBS limit and to form computationally efficient basis sets with known levels of accuracy.

We introduced a novel algorithm for the automatic formation of basis sets adapted
for any property at any level of theory, realizing the original procedure of Manninen
and Vaara [86], and applied it to the electron momentum densities of the atoms and
homoatomic dimers of the first three rows of the periodic table (elements H–Ar). For
simplicity, the HF level of theory was used and only primitive basis sets were considered.

Test calculations showed that the CBS limit of 〈pn〉 is attainable in practice with four
digit accuracy only for n ∈ {−1, 1, 2, 3} due to numerical problems. Concentrating on
these values we proceeded with the completeness-optimization. Inspired by the idea of
universal basis sets, the elements were assembled into five groups with similar electronic
shell structures, the same basis set being used for all the elements in the group. The
grouping is illustrated in Table 1.

Motivated by the current experimental accuracy of difference Compton profiles of
0.02% of J0 = 1

2

〈
p−1
〉
, the CBS limit coemd-ref basis set was parametrized so that

the addition of a single exponent at any value of angular momentum would result in a
relative change in the values of the moments of any element in the group by less than
10−4. Additionally, the CBS set was reduced to form the coemd-4, coemd-3, coemd-2
and coemd-1 capable of reproducing the CBS limit values within the relative accuracies
of 10−4, 10−3, 10−2 and 10−1, respectively. Comparison of the results obtained with the
completeness-optimized coemd basis sets with the Dunning-style correlation-consistent
cc-pVXZ [74–77] and Jensen’s polarization-consistent pc-N [79–82] basis sets proved that
the completeness-optimized sets are notably more computationally efficient than the
standard, energy-optimized basis sets. The contracted versions of the pc-N basis sets
were found to converge to incorrect values, which we interpreted as an artifact of using
contraction coefficients obtained from KS-DFT calculations.
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4.3. Paper III: Contraction of completeness-optimized basis sets: Application to
ground-state electron momentum densities

We continued the work started in paper II to forming contracted basis sets. Minor
improvements were introduced in the automatic completeness-optimization algorithms
presented in paper II, but as a larger difference to the preceding work, the SCF solutions
were diagnosed for saddle point convergence [114] during the optimization. Due to this,
reparametrization of the polarization-consistent basis sets of uncontracted primitives
suggested in paper II resulted in minor changes to the composition of the completeness-
optimized basis sets. However, test calculations did not show major differences between
the results reproduced by the new un-pcemd and the old coemd parametrizations of the
basis sets.

An automatic algorithm, applicable for any property, was suggested for forming the
contractions. Contracting the primitive un-pcemd sets to the pcemd sets resulted in
major reductions in the number of functions, while not significantly compromising the
accuracy of the basis set.

The work was then continued to the post-HF level of theory. The MP2 level of
theory was chosen due to its good accuracy in reproducing the moments of the EMD [30]

and its lighter computational requirements compared to higher level theories. While the
previously proposed algorithms could be straightforwardly applied to the basis set opti-
mization, it was found out that the 10−4 relative accuracy is computationally unfeasible,
as the resulting basis sets would be too large for any use in practice.

Accordingly, the target accuracy for the correlation-consistent un-ccemd-ref CBS
limit basis set was increased to εt = 5 × 10−4. The primitive basis set was then
reduced to form the un-ccemd-3 and un-ccemd-2 basis sets, reproducing the estimated
CBS limit with the relative accuracies of 10−3 and 10−2, respectively. Contrary to the
case of the polarization-consistent pcemd basis sets, the contraction to the correlation-
consistent ccemd basis sets was not found to produce a notable reduction in the amount
of functions in the basis set due to the higher basis set requirements of the level of theory.

Benchmark calculations were performed on a set of 45 diatomic molecules. The
results unequivocally showed that the completeness-optimized basis sets outperform
conventional basis sets both at the SCF and MP2 levels of theory.

4.4. Paper IV: ERKALE – A Flexible Program Package for X-ray Properties of
Atoms and Molecules

Fundamentally a standard HF and KS-DFT code operating with Gaussian basis sets,
ERKALE includes special features not available in other program packages, such as the
calculation of Compton profiles, using the algorithms introduced in paper I. Furthermore,
as accurate modeling of the EMD requires the use of post-HF methods currently not
available in ERKALE, the program includes interfaces to, e.g., Gaussian [115], which was
applied in papers I and III.

The program also includes tools for completeness-optimization of basis sets, which
were used in papers II and III. The minimization algorithm used in the completeness-
optimization tools of ERKALE (Subsection 3.3.3.2) is more efficient than the ones in
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4.4 Paper IV: ERKALE – A Flexible Program Package for X-ray Properties of Atoms
and Molecules

the Kruununhaka program suite, [116] which has been used in previous work applying
completeness-optimization [86,89–92].
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5. Discussion and conclusions
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Figure 12: The strive towards the exact solution to the electronic problem.

The methodology of quantum chemistry is often illustrated as the cube shown in
Figure 12. The figure has three axes. The basis set, which describes the quality of the
one-electron picture from the double-ζ (2Z) to the sextuple-ζ (6Z) basis sets, continu-
ing to the CBS limit at infinity, is on the horizontal axis. The vertical axis describes the
quality of the N-electron picture, i.e., the description of electron correlation. On the
perpendicular axis is the Hamiltonian used to portray the physics of the system, rang-
ing from the non-relativistic (NR) level of theory to scalar (spin-free) relativistic (SR),
two-component relativistic (2C-R) and full four-component relativistic (4C-R) levels of
theory, and going further on to corrections from quantum field theory, which result in,
e.g., the Lamb shift.

In this work we have only studied systems consisting of light elements, thus sticking
to the back-lying plane of the non-relativistic level of theory, and strived towards the
exact NR solution. We have investigated the computational requirements for accurate
modeling of the electron momentum density by determining what kinds of basis sets and
levels of theory are necessary for achieving sufficient convergence in the Compton profile
for comparison with experimental results. The next logical step in the research would
be to continue to heavier elements, where also relativistic effects need to be taken into
account.

A notable part of the work has dealt with the development of novel basis sets through
the completeness-optimization procedure. We have introduced automatic algorithms for
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black-box formation of computationally efficient contracted basis sets that are straight-
forwardly applicable to any property at any level of theory. Applying the algorithms, we
have developed novel, computationally efficient basis sets for calculating the EMD near
the CBS limit at the SCF and MP2 levels of theory.

Furthermore, as a result of this thesis, we have introduced a novel, freely available
software program, ERKALE [38], which can be used to model non-resonant inelastic x-ray
scattering experiments.

The results obtained in this thesis should be of great practical importance in the
modeling of Compton scattering experiments, as the basis sets developed in this work
yield significant speed improvements to calculations, and the program is freely available.
Due to the general nature of the program and the basis set formation algorithms we
have suggested, we believe that the work performed as part of this thesis will also have
an impact outside the field of non-resonant inelastic x-ray scattering spectroscopy.
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In this paper we present an adaptive algorithm for calculating the isotropic Compton profile

(ICP) for any type of Gaussian basis set. The ICP is a measure of the momentum density of

electrons and it can be obtained from inelastic X-ray scattering experiments employing

synchrotron radiation. We have performed calculations of the ICP for water and helium

monomers and dimers using density-functional theory, Hartree–Fock and post-Hartree–Fock

methods, with Dunning-type ((d-)aug-)cc-p(C)VXZ basis sets. We have examined the convergence

of the Compton profile as a function of the basis set and the level of theory used for the

formation of the density matrix. We demonstrate that diffuse basis functions are of utmost

importance to the calculation of Compton profiles. Basis sets of at least triple-z quality appended

by diffuse functions should be used in Compton profile calculations in order to obtain sufficient

convergence with regard to the current, experimentally feasible accuracy for systems consisting

of light elements.

1. Introduction

The electron density (ED) is a quantity that is at the heart of

materials science, as it is inextricably linked with the structure

and behavior of matter. The Hohenberg–Kohn theorems1

show that the ground-state ED unambiguously defines the

quantum mechanical system. Thus, in principle, when the exact

ED is known, any property of the system can be calculated

exactly. Furthermore, the ED is a quantity that is easy to grasp

and intuitive, as it is high near atomic nuclei and covalent

chemical bonds. As chemical interactions affect the ED,

studies of the ED using, e.g., X-ray diffraction can be used

to obtain information about chemical bonds.2 Experimental

information about the ED can be used to verify ab initio

calculations, which are often necessary for a complete under-

standing of the behavior of materials. The effect of the

inclusion of electron correlation in the calculation of ED has

been studied3 and found to be necessary for the proper descrip-

tion of systems that are poorly described by a single Hartree–

Fock (HF) determinant, such as the ozone molecule O3.

The momentum space counterpart of the ED, the electron

momentum density (EMD), N(p), can be similarly used to

study chemical bonding. Whereas the ED is higher along

covalent bonds, the EMD oscillates along the bonding direc-

tion (in reciprocal space). A fitting procedure for extracting

EMD properties from the ED has been recently suggested.4

However, EMD properties are more traditionally obtained

directly from calculations, or measured with techniques such

as (e, 2e) spectroscopy, positron annihilation spectroscopy or

X-ray Compton scattering (CS). CS refers to a process where

an incident X-ray photon scatters inelastically off an electron

from the target sample, exchanging a large amount of energy

and momentum.

The theory of CS is well known, for reviews see, e.g.,

refs. 5 and 6. Assuming that the impulse approximation7

holds, the double differential cross section, which measures

the amount of photons scattered by the sample into the solid

angle dO with energy E2, can be written as5,6

d2s
dO dE2

¼ CðE1;E2;fÞJðpqÞ: ð1Þ

Here E1 is the energy of the incoming photon, f is the

scattering angle and C(E1,E2,f) only depends on the setup

of the experiment. pq is the projection of the initial momentum

of the electron onto the scattering vector. The function J(pq) is

the Compton profile (CP)

J(pq) =

ZZ
N(px,py,pz = pq)dpxdpy, (2)

which measures5 the projection of the EMD along the direction

of the scattering vector q.

CS can be used to obtain experimental information about

the EMD, and hence on the chemical bonds and the ionic

configuration. To circumvent various experimental difficulties

with the determination of absolute CPs, it is usual to compare

CPs in different conditions, such as the profile along different

directions of crystalline samples, or the profile of the same

sample in different thermodynamic environments. In crystal-

line systems the anisotropy of the CP along crystal axes has
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been recently used in studying the nature of the hydrogen

bond in ice,8 the hydrogen bond signature in NH4F
9 and the

metal–insulator transition in La2�2xSr1+2xMn2O7.
10

In isotropic materials, in which no directional information

can be obtained, comparisons can be made, for instance, at

different temperatures or in various pressures, as well as

between isomers. Recently, this method has been used in experi-

ments in the study of the hydrogen bond length and angle

correlation,11 intra- and intermolecular effects,12 isotope

quantum effects13 and local hydrogen bond geometries14 in

water, configurational energetics in ice15 and charge localiza-

tion in alcohols,16 for example.

Currently the experimental precision of the measurements

of light molecular systems (e.g., those composed of carbon,

oxygen and hydrogen) is such that CP differences of roughly

0.02% of the peak height of the CP, J(0), can be seen.12–16 The

ongoing development of synchrotron radiation sources and

beamline instrumentation will further increase the statistics,

and thus the precision, of CS experiments. This progress

presents a challenge to the theoretical calculation of the CPs,

as the interpretation of the experimental results leans heavily

on modeling.

Kohn–Sham density-functional theory (KS-DFT)1,17 is a

widely used method in chemistry and physics, as it is com-

putationally less demanding than high-level ab initio wave

function methods while it still takes electron correlation

into account via the use of the exchange–correlation (XC)

functional. Lam and Platzman (LP) showed18 that the expres-

sion the EMD acquires an extra term (compared to HF) in the

case of KS-DFT, due to the assumption that the fictitious KS

one-electron states do not interact. The LP correction to the

peak of the absolute CP is of the order of 2% for atomic Ne

and Ar19,20 and 3% in crystalline Li21 in the local density

approximation (LDA).

The LDA correction proposed by LP uses the free-electron

Fermi distribution, resulting in an isotropic correction. This

can be somewhat dubious in the gas phase or systems where

the Fermi sphere can be heavily deformed. Furthermore, the

LP correction term is in fact seldom included at all in the

analysis, and as far as the authors are aware, it has never been

used within the context of the generalized-gradient approxi-

mation (GGA). An alternative method for calculating an

anisotropic correction to the EMD is discussed in ref. 21.

The momentum-space performance of DFT without

LP-type corrections has been investigated in several works.

Studies of exact KS-DFT results have been made by examining

closed-shell two-electron systems that are exactly solvable, or

for which full configuration interaction (FCI) results are

available. The exact KS orbital is formed from the ED

produced by the reference calculation (exact or FCI), and is

then Fourier transformed to form the EMD. Jarzęcki and

Davidson investigated22 the He atom, for which the ED was

produced with a Kinoshita-type wave function, and saw that

the Fourier transformed KS orbital does not reproduce the

correct EMD. Ragot compared23 the Fourier transforms of

exact KS-DFT and HF orbitals for the Moshinsky atom and

Hooke’s atom, and concluded that the exact KS orbitals

produce better momentum-space results than HF as compared

to the exact EMD. He noted, however, that in actual DFT

calculations of light two-electron ions the momentum space

performance strongly depends on the choice of the XC functional.

For molecular systems Ghanty et al.24 studied the CP

anisotropy in the water dimer and found that HF and DFT

give similar results, whereas Hakala et al.25 found significant

deviations between the HF, MP2 and DFT results for the

difference CP between the water dimer and two free monomers.

Hart and Thakkar calculated26 moments of the EMD for a

large set of closed-shell molecules at HF, various post-HF

and DFT levels, also studying the effect of the used basis set.

They found that DFT methods provide poor results for the

moments; in fact often worse than plain HF when compared

to high-level theory (coupled-cluster singles and doubles,

CCSD) data. The work of Hart and Thakkar was continued

by Miguel and Garcı̀a de la Vega27 who analyzed the effect

of electron correlation on the radial EMD with similar

conclusions. Erba et al. studied28 the performance of the

second-order Møller–Plesset (MP2) method versus DFT for

the calculation of the directional CPs in crystalline urea. They

noted that while the DFT results are generally satisfactory,

there is some disagreement with the experimental profile

anisotropies, which is better accounted for by the MP2

calculations.

In this work we perform a comprehensive study of the basis

set requirements for the calculation of isotropic Compton

profiles using different levels of theory by studying two

systems: the water and the helium dimers. The first experi-

mental and calculated CPs for the systems under study in this

work were reported some 40 years ago,29–31 and they have also

been studied more recently.11,12,24,25,32–34 Our work represents

an extension of high-level EMD studies of hydrogen bonded

systems, and systems the energetics of which is dominated by

dispersive interactions. The study of dimers makes it possible

to look at the basis set effects in detail, as, e.g., counterpoise

calculations can be performed. Sufficient convergence with

respect to the basis set is determined by the current experi-

mental accuracy, which for light systems is of the order of

0.02% of the height of the Compton peak.11,13–16,35

The layout of this paper is as follows. First, in section 2 we

present the method we use in the calculations of the CPs. In

section 3 we discuss the details of the calculations, and present

and discuss the results in section 4. Finally, in section 5 we

draw the conclusions of this study.

2. Theory

In isotropic systems the CP can be calculated as36

JðpqÞ ¼
1

2

Z 1
jpqj

pNðpÞdp ð3Þ

N(p) =

Z
N(p)dOp (4)

where N(p) is the EMD integrated over all of the directions of

p. For the rest of the manuscript, we streamline the notation

by denoting pq in eqn (3) with a plain q. The CP has an

intricate connection to the moments of the EMD

hpki =
Z 1
0

pk+2N(p)dp.
(5)



5632 Phys. Chem. Chem. Phys., 2011, 13, 5630–5641 This journal is c the Owner Societies 2011

As can be directly seen from eqn (3)

hp�1i = 2J(0), (6)

and one can also show that26,37

hpki = 2(k + 1)

Z 1
0

qkJ(q)dq, k Z 0, (7)

and38

hp�2i = 2

Z 1
0

q�2[J(q) � J(0)]dq. (8)

In any given basis the EMD can be obtained by a straight-

forward Dirac-Fourier transform as36

NðpÞ ¼
Xbasis
a;b

~XaðpÞGab ~XbðpÞ; ð9Þ

where Gab is the one-particle density matrix (OPDM) in the

atomic-orbital basis, X̃a(p) is the Fourier transform of the

ath (atomic) basis function, the overline denotes complex

conjugation and the sums over a and b run over all basis

functions in the basis set. The OPDM Gab can be formed

at any level of theory, be it single- (HF, DFT), or multi-

determinantal (post-HF methods such as MP2 and CCSD).

With DFT, however, a Lam-Platzman-type correction18

should be added to eqn (9), as discussed in the Introduction.

Inserting eqn (9) in eqn (4) we see that the task of calculating

the CP reduces to evaluating the angular integrals over

products of basis functions in the momentum space:

NðpÞ ¼
Xbasis
a;b

GabIabðpÞ; ð10Þ

IabðpÞ ¼
Z

dOp
~XaðpÞ ~XbðpÞ: ð11Þ

The calculation of eqn (11) in a Gaussian basis involves

evaluating integrals of the typeZ
dOp p

l
x p

m
y p

n
z e
�bp2+ipr. (12)

The calculation of these integrals has been examined before by

many authors,36,39,40 most recently by Thakkar and Sharma41

who showed that evaluating eqn (12) can be reduced to the

evaluation of derivatives of spherical Bessel functions. In a

Gaussian basis set where the maximum angular momentum is

lmax one needs to calculate the integrals of eqn (12) for the set

l, m, nZ 0: l + m + n = 0,. . .,2lmax. This is because the

angular momentum type of a Gaussian basis function does not

change in the Fourier transform, although lower order terms

may also be produced. Our calculations use up to I-type basis

functions (lmax = 6) in sextuple-z oxygen. Thus, there are

455 integrals that need to be calculated, although by using

symmetry considerations the necessary amount is reduced to

102. We decided to approach the problem by writing the

product in eqn (11) in terms of spherical harmonics36 and

use their group-theoretical properties to formulate the integra-

tion rule. We discuss the specifics in Appendix A and give here

the result

NðpÞ ¼
X
l

clp
nl e�bl p

2 þ
X
l

dl jnl ðpDrlÞpmle�al p
2 ð13Þ

in which cl and dl are real numbers, Drl, al, and bl positive real
numbers, ml and nl non-negative integers and jnl is a spherical

Bessel function. The first term in eqn (13) comes from the

one-center integrals and the second from the two-center

integrals.

To obtain the CP itself one needs to perform the radial

integration in eqn (3). As the integrand contains special

functions (see eqn (13)) and the lower limit of the integral is

not fixed, we decided to use an adaptive algorithm based on

the Simpson rule, which is presented in Appendix B.

The results of the algorithm are very satisfactory: numerical

integration over the EMD on the radial grid differs from

the number of electrons in the system by as little as

B10�10 electrons, which is of the same order as the numerical

error in the density matrix Gab. Furthermore, the estimated

integration error for the CP J(q) in the typically studied range

with q t 10 a.u. was o10�9 electrons per a.u. To our

knowledge this is the best numerical precision ever reported

for CPs.

3. Calculations

We have studied the water and helium dimers with fixed

geometries, with the internuclear distance in He2 being

rHe–He = 3.01 Å and the O–O distance in water rO–O = 3.07 Å

(see Appendix C for the full geometry that was used for the

water dimer). The density matrices for these systems were

calculated with Gaussian 09.42 Calculations were performed

using HF, Møller–Plesset perturbation theory43 truncated at

the second (MP2) and third order (MP3), the coupled-clusted

methods QCISD,44 CCD45 and CCSD,46 and also with DFT

using the BLYP,47,48 B3LYP,48–50 BHandHLYP, BP86,47,51

PBE,52,53 PW9154–58 and SVWN1,17,59 XC functionals.

Dunning-type correlation consistent cc-p(C)VXZ, aug-cc-

p(C)VXZ and d-aug-cc-pVXZ basis sets,60–64 where the cardinal

number X = D,T,Q,5,6 for water and X = D,T,Q,5 for

helium, obtained from the ESML basis set exchange,65,66 were

used in the calculations. The sizes of the used basis sets are

given in Table 1.

As was already pointed out in the Introduction, difference

Compton profiles (DCPs) are often used in the analysis of

experimental results. In this study, we examine the DCP
obtained from the relative difference of the dimer and monomer

profiles

DJ(q) = [Jdimer(q) � 2Jmonomer(q)]/Jdimer(0), (14)

which can be understood as a measure of the change of the CP

due to the bonding in the water dimer, for example. This

system makes it possible to study basis set superposition errors

(BSSE) in detail, as the counterpoise67 corrected DCP can be

straightforwardly defined as

DJdimer basis(q) = [Jdimer(q) � 2Jdimer basis
monomer (q)]/Jdimer(0), (15)

where the superscript emphasizes that the monomer calcula-

tion is performed using the same basis set as for the dimer. As

the basis set size is increased the BSSE is expected to vanish,

that is, DJ(q) � DJdimer basis(q) - 0. In the case of the water

dimer, there are two nonequivalent possibilities for choosing

which molecule is removed in the counterpoise calculation.
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Being pedantic, one would calculate both possibilities and take

their average. However, we examine the counterpoise calcula-

tion only as a means to obtain insight about the magnitude of

the basis set effect in the CPs. Thus, for simplicity, we chose to

calculate only the first molecule, including the basis functions

of the second in the calculation.

Before presenting the results, we review a simple system to

acquire some insight on what can be seen in the CP. A model

wave function for a simple diatomic molecule in a minimal

basis can be written as6

c(r) = (2 � 2S)�1/2(ca(r) � ca(r � R)), (16)

where ca(r) is the solution to the one-atom Schrödinger

equation and S is the overlap between the basis functions

centered at the origin and at R. Assuming that ca(r) is

spherically symmetric, the spherically integrated EMD can

be found out to be

N(p) = 4p| ~ca(p)|
2(1 � j0(pR))(1 � S)�1. (17)

A general version of this equation for the EMD of an

Nel-electron system modeled using any Gaussian basis set

was already given above, in eqn (13). As can be seen from

the Bessel function in the equation, the EMD of the dimer

exhibits a damped oscillation as a function of p, with a period

of 2p/R. This is known as the bond oscillation principle68,69

and it demonstrates the usefulness of CP as a local structural

probe: bonding and antibonding orbitals cause oscillations in

the CP with a period that is related to the bond length.

4. Results and discussion

We were able to perform the calculations for helium for all the

studied basis sets. In the case of the water dimer, results for the

most advanced post-HF methods (coupled-cluster and MP3)

were attainable only up to quadruple-z basis sets due to their

computational demands.

Since the sum rule (eqn (7)) fixes the integral of the CP to the

number of electrons, the study of the convergence of the CP is

a non-trivial task. If the absolute CP increases at some value of

q as the basis set is improved, it must decrease at some other

value of q: the convergence of the value of the CP at q does not

imply convergence at q0. For completeness we will thus study

the convergence for all values of q. However, for illustrative

purposes, we start by examining the evolution of J(0) as a

function of the basis set in Figs. 1 and 2. The horizontal axis in

the figures shows the basis set used in the calculations, the sizes

of which were given above in Table 1. The size of the basis set

increases monotonically from cc-pVDZ to cc-pV6Z (5Z for

helium), is then reduced to aug-cc-pVDZ from which it grows

again monotonically to d-aug-cc-pV6Z (5Z for helium).

An earlier study showed that27 the radial EMD is more

affected by the correlation part than the exchange part of the

used DFT XC functional. Although the values of J(0) produced

by different functionals differ, the basis set dependence is similar

for each one of them. This behavior is demonstrated by the

B3LYP curves in Figs. 1 and 2. The basis set requirements of

HF are much like those of DFT methods. A different type of

behavior is seen for the set of post-HF methods, as shown by

the MP2 and CCSD results in the same figures.

As can be seen fromFigs. 1 and 2, the non-augmented cc-pVXZ

basis sets are insufficient for modeling the CP accurately; the value

of J(0) changes by several percents as the cardinal number of the

basis set is increased. Furthermore, there is a large difference in the

CP peak value of the monomer and the corresponding counter-

poise calculation, which as well implies the basis set is insufficient.

We also find that DCPs calculated with the cc-pVXZ basis

sets change radically as the basis set grows. The results for the

cc-pCVXZ basis sets are unsatisfactory in the same manner. The

augmented (d-)aug-cc-p(C)VXZ basis sets give better results than

the cc-p(C)VXZ basis sets, with a smaller number of basis

functions (see Table 1).

Part of this basis set convergence behavior is certainly due to

the extreme nature of the comparison (the isolated dimer versus

the isolated monomer). Additional calculations show, in fact,

that the same kind of phenomenon can be seen by comparing

water dimers at different oxygen–oxygen distances rO–O. As the

average length of the hydrogen bonds in condensed phase is

typically temperature dependent, this kind of modeling can be

used to understand difference profiles of the same sample at two

different temperatures. This type of calculation has been used in

the literature, e.g., in the study of bond geometries.12 When the

intermolecular distance is increased by an appreciable amount,

the inclusion of diffuse functions is very important. We demon-

strate this effect by increasing the intermolecular distance by

0.5 Å to rO–O = 3.57 Å and calculating the difference profile

dJðqÞ ¼ J3:07 Å
dimer ðqÞ � J3:57 Å

dimer ðqÞ
J3:07 Å
dimer ð0Þ

Table 1 Sizes of the used basis sets for the helium atom and the water
monomer. nbas denotes the number of basis functions and nprim the
number of primitive Gaussians

nbas nprim

(a) Helium atom
cc-pVDZ 5 7
cc-pVTZ 14 18
cc-pVQZ 30 38
cc-pV5Z 55 73
aug-cc-pVDZ 9 11
d-aug-cc-pVDZ 13 15
aug-cc-pVTZ 23 28
d-aug-cc-pVTZ 32 38
aug-cc-pVQZ 46 58
d-aug-cc-pVQZ 62 78
aug-cc-pV5Z 80 108
d-aug-cc-pV5Z 105 143

(b) Water monomer
cc-pVDZ 24 47
cc-pVTZ 58 86
cc-pVQZ 115 163
cc-pV5Z 201 295
cc-pV6Z 322 497
aug-cc-pVDZ 41 65
d-aug-cc-pVDZ 58 83
aug-cc-pVTZ 92 126
d-aug-cc-pVTZ 126 166
aug-cc-pVQZ 172 238
d-aug-cc-pVQZ 229 313
aug-cc-pV5Z 287 421
d-aug-cc-pV5Z 373 547
aug-cc-pV6Z 443 693
d-aug-cc-pV6Z 551 861
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as shown by the HF calculation in Fig. 3; DFT and post-HF

calculations give similar results. Interestingly, the same kind of

basis set behavior as in Fig. 3 is also seen with smaller

displacements than the used 0.5 Å, the strength of the signal

is just smaller. The maximum absolute value of the DCP is

0.17% for the displacement of 0.5 Å, 2.8 � 10�2% for 0.05 Å

and 5.8 � 10�3% for 0.01 Å. This means that the cc-pVXZ

basis sets may yield a closely enough converged result, when the

difference between the geometries that are compared is

small. What can be furthermore noted is that when gas-phase

monomers of different isomers are compared (e.g., n-propanol

vs. isopropanol), the diffuse functions are not as important for

the calculation of the DCP. Our interpretation for this is that

the features of the DCP in this case are mainly caused by the

differences in intramolecular bonds, which are sufficiently well

described by a non-augmented basis set.

Fig. 1 The evolution of the peak value J(0) of helium for DFT and

post-HF methods. ‘‘Dimer/2’’ in the figure indicates that the quantity

plotted for the dimer is J(0)/2. The notation ‘‘(dim)’’ refers to

the dimer basis used in the monomer calculation. The results for the

(aug-)cc-pCVXZ are similar to the corresponding (aug-)cc-pVXZ

results shown above.

Fig. 2 The evolution of the peak value J(0) of water for DFT and

post-HF methods. The notation is the same as in Fig. 1. The results for

the (aug-)cc-pCVXZ are similar to the corresponding (aug-)cc-pVXZ

results shown above.
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Next, we proceed by defining some error metrics for the

analysis of the basis set convergence of the absolute and

difference CPs. For absolute profiles the error is defined as

sJX ¼ max
q
jJXðqÞ � JrefðqÞj=Jrefð0Þ � 100%; ð18Þ

where JX is the profile computed with basis set X and Jref is the

reference profile. As reference we use the CP calculated with

the best basis set, which is d-aug-cc-pV5Z in the case of

helium, and d-aug-cc-pV6Z in that of water with the exception

of high-level calculations, for which a d-aug-cc-pVQZ reference

is used. For DCPs we define the error as

sDJX ¼ max
q
jDJXðqÞ � DJrefðqÞj ð19Þ

We also define

d ¼ max
q
jDJXðqÞ � DJdimer basis

ref ðqÞj ð20Þ

as a measure of BSSE in the DCP. Note that the error given by

eqns (19) and (20) is in %-units, as the DCPs are measured in

percent. In order to establish a scale for the error in the DCP, we
use a reference defined by the absolute magnitude of the

reference DCP

e ¼ max
q
jDJrefðqÞj ð21Þ

which is system-specific and is a limiting factor for both calcula-

tions and experiments; the signal must be greater than the noise.

The errors defined by eqns (18) and (19) are shown in Figs. 4

and 5 for the same systems as were shown in Figs. 1 and 2.

When diffuse basis sets are used, the absolute Compton

profiles converge monotonically as the basis set size is increased.

It is also seen from the figures that, as expected, the influence

of the counterpoise correction vanishes as the basis set grows.

However, it does not diminish monotonically; there is a

plateau at triple- and quadruple-z level. The sudden reduction

Fig. 3 Difference profile of the water dimer with O–O distance

rOO = 3.07 Å vs. that with rOO = 3.57 Å, calculated at HF level

using different basis sets. The results for the (aug-)cc-pCVXZ are

similar to the (aug-)cc-pVXZ results shown above.

Fig. 4 The convergence of the CPs and DCPs of helium. The symbols

are: blue upward triangles, red downward triangles and black circles

for sJX (eqn (18)) of the monomer, its counterpoise calculation and the

dimer, respectively, blue hexagrams and red squares for sDJX (eqn (19))

and its counterpoise calculation, and black diamonds for d (eqn (20)).

The dashed line represents e (eqn (21)).
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of the size of the basis set (Table 1) used as the vertical axis can

be seen in the post-HF plots, where the error of the absolute

profiles jumps up at aug-cc-pVDZ. However, it is rather

interesting that the accuracy of the DCP stays the same even

though the error of the absolute profiles is increased almost an

order of magnitude by the reduction of the size of the basis set.

In the case of water the aug-cc-pVDZ DCP is of similar quality

as that of cc-pV6Z, even for post-HF calculations.

A polarized triple-z basis has been found sufficient26 to

converge hpki within 0.1% of the HF limit for k = �1,1,2,3,

where hp�1i= 2J(0) as discussed in section 2. It was found in

the present work that the accuracy of the DCPs of approxi-

mately 0.01%-units is obtained with the aug-cc-pVTZ basis

set, with and without counterpoise corrections.

For the simple case of the helium atom it is possible to

obtain an estimate of how far one is from the Gaussian basis set

limit by comparing our best results (CCSD (d-)aug-cc-pV5Z)

to a highly accurate Gaussian geminal calculation.32 As CCSD

corresponds to FCI for two-electron systems such as the

helium atom, the difference between the CCSD and the

geminal calculation arises purely from basis set effects. We

find that the CPs differ by approximately 4.5 � 10�4 electrons

per a.u., i.e., roughly 0.04% of J(0) (see Fig. 6). This is a rather

large difference as compared to the experimental accuracy.

Thus, if absolute profiles are used in future work, one must be

extremely careful in choosing the basis set.

In the case of water the basis set requirement for the

computation of difference profiles is not completely clear, as

high-level calculations with large basis sets were not com-

putationally feasible. Nonetheless, the MP2 calculation does

suggest that the aug-cc-pVTZ basis set is sufficient also in the

case of water.

Now, as we have determined sufficient convergence with

respect to the basis set, we can proceed with the comparison

between the results obtained using different levels of theory.

We determine the deviation from the CCSD results using the

error metrics defined by

dCP ¼ max
q
jJmethod

dimer ðqÞ � JCCSD
dimer ðqÞj=JCCSD

dimer ð0Þ ð22Þ

for absolute CPs and

dDCP ¼ max
q
jDJmethodðqÞ � DJCCSDðqÞj ð23Þ

for difference profiles, both errors being measured in %-units.

The notation Jmethod(q) and DJmethod(q) in eqns (22) and (23)

stresses that the CP J(q) and DCP DJ(q) are calculated using

DFT, HF and post-HF methods, and the result is compared to

the CCSD one. The relevant numbers are shown in Table 2,

whereas some of the corresponding DCPs are shown in Fig. 7.

Fig. 5 The convergence of the CPs and DCPs of water. The symbols

are the same as in Fig. 4.

Fig. 6 Deviations of the CCSD (d-)aug-cc-pV5Z helium monomer

Compton profile calculations from the accurate Gaussian geminal

result. The data points are denoted by circles, with the dashed lines

drawn as aids for the eye.
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First of all, it can be seen that absolute profiles are not

reproduced well by DFT. This was expected, as earlier studies

have shown that EMD properties are not reproduced by

DFT.23–28 The systematic behavior of the sequence BLYP -

B3LYP - BHandHLYP - HF makes it rather tempting

to attribute a major part of the DFT error to the lack of a

LP-type correction: the more weight is given to HF exchange

the smaller the error of the absolute CP becomes, both in the

case of water and helium. The error is also of the same order

of magnitude as the LP correction in Li, Ne and Ar.19–21

However, the same kind of systematics with respect to the

weight attributed to HF exchange is often seen also in the

calculation of other kinds of properties. CCD and QCISD are

seen to produce practically CCSD-level results for the DCPs,
as compared to the experimental precision. A similar observa-

tion has been made before in relation to the moments of

the EMD.26

The helium dimer is clearly problematic for DFT as the

magnitude of the DFT DCPs is almost twice as big as that

produced with CCSD. BHandHLYP is much closer to the

reference DCP. What is rather striking is that the form of the

DCPs for the He dimer produced by the DFT functionals PBE,

PW91, BLYP and B3LYP is very much different from the

ab initio result; similar differences have been noticed for radial

EMDs.27 Still, the numerical value of the difference is of the

order of 0.02%; differences of the same magnitude can be seen

in the case of water, where the magnitude of the DCP signal is

just larger. HF outperforms all DFT methods (in the absence

of an LP-type correction), both for absolute CPs and DCPs of
He. In the case of water, HF is still superior to DFT methods

when absolute profiles are considered. However, in the case of

difference profiles BLYP, B3LYP and BHandHLYP fare

better than HF. What is rather interesting, is that BHandHLYP

outperforms MP2, as well.

It is found that the core region is well enough described by

the aug-cc-pVXZ basis sets, as the addition of more functions

to the core region of oxygen as in the aug-cc-pCVXZ basis sets

did not result in any notable changes in the profiles. The

differences in the absolute profiles were of the order 0.01% of

the Compton peak height. In the DCPs the difference between
the results was smaller by an order of magnitude (0.001%-units)

and thus of little relevance regarding the analysis of experi-

mental data (although taking core correlation into account

may be more important for systems containing second row

or heavier atoms). Furthermore, we found that the removal of

the higher-than d-type (l > 2) basis functions from the basis

sets changes the DCPs in the case of water by less than 0.01%,

which is extremely advantageous as larger systems can be

calculated with smaller computational effort.

In this work we have used Dunning-type correlation consis-

tent basis sets for DFT calculations in order to be able to compare

them to high level wave function based methods on an equal

footing. However, as the basis set requirements of DFT are

less demanding than those of high level methods, smaller basis

sets, such as the minimally augmented maug-cc-pVXZ70–72 or

Table 2 Differences of CPs and DCPs calculated with DFT, HF and
post-HFmethods from the CCSD results. The notation isA(n) =A� 10n.
The error measures dCP and dDCP have been defined in eqn (22) and
(23), both quantities being given in %-units

dCP (dimer) dDCP

(a) d-aug-cc-pV5Z helium
SVWN 4.25 3.89(�2)
PBE 3.17 2.78(�2)
PW91 3.16 5.51(�2)
BP86 2.55 5.80(�2)
BLYP 3.18 3.73(�2)
B3LYP 2.36 1.84(�2)
BHandHLYP 1.40 5.16(�3)
HF 2.22(�1) 4.33(�3)
MP2 6.16(�2) 8.26(�4)
MP3 3.06(�2) 6.15(�4)
CCD 7.54(�3) 1.04(�4)
QCISD 2.13(�6) 5.28(�3)

(b) d-aug-cc-pVQZ water
SVWN 1.51 9.72(�2)
PBE 1.28 3.86(�2)
PW91 1.25 4.04(�2)
BP86 1.14 3.98(�2)
BLYP 1.45 1.67(�2)
B3LYP 9.86(�1) 1.43(�2)
BHandHLYP 5.00(�1) 7.17(�3)
HF 4.61(�1) 1.98(�2)
MP2 3.91(�1) 1.11(�2)
MP3 8.25(�2) 4.41(�3)
CCD 2.50(�2) 2.12(�3)
QCISD 1.61(�2) 4.26(�4)

Fig. 7 Difference profiles for the helium and water dimers using

eqn (14).
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Jensen’s aug-pc-N DFT basis sets,73–78 should be tested in

future work for the calculations of DCPs using DFT.

5. Conclusions

In this paper we have implemented an adaptive method for the

calculation of isotropic CPs and applied it to calculations of

the helium and water dimers. We have studied the convergence

of the CPs as a function of the basis set used in the calculation,

and the level of theory used to form the density matrix.

We have found that the CPs are extremely sensitive to the

presence of diffuse basis functions and that basis sets of at least

aug-cc-pVTZ quality are necessary to calculate DCPs to obtain

an accuracy of circa 0.01% of J(0), in comparison to the results

obtained with the largest basis set. Hybrid XC functionals were

found to produce better results for the CPs and DCPs than

pure XC functionals, as compared to the CCSD results. We

tentatively attribute this behavior to the lack of an LP-type

correction in the treatment.

It has been found out in previous work that DFT does not

provide an accurate description of EMD properties,23–28 but

also that differences in the EMD may be approximately

reproduced by DFT.24,25,28 Our results demonstrate that it is

possible to benchmark DFT XC functionals against post-HF

methods by using a sufficiently small system, so that the XC

functional that best describes the system can be chosen.

Appendix A

A general Gaussian basis function can be written in the form

XaðrÞ ¼
X
a

caðx� xaÞlaðy� yaÞmaðz� zaÞna
" #

�
X
b

dbe
�zbr2

" #
;

in which ra = (xa,ya,za) are the coordinates of the center of the

a:th basis function. The first bracket contains the angular

momentum type of the basis function (a single term when a

cartesian basis is used, many terms when spherical harmonics

are used) and the second bracket contains the exponential

contraction. Because of the Gaussian exponent, the Fourier

transform factorizes to

~XaðpÞ ¼
1

ð2pÞ3=2
Z

XaðrÞe�iprd3r

¼ e�ipra
X
a;b

cadbð2zbÞ�ðlaþmaþnaþ3=2ÞRlaðpx;zbÞ

�Rmaðpy;zbÞRna ðpz;zbÞe�p
2=4zb

and the one-dimensional transforms can easily be calculated

using the recursion relation31

R0(pi;z) = 1

R1(pi;z) = �ipi

Rl(pi;z) = �ipiRl�1(pi;z) + 2z(l � 1)Rl�2(pi;z)

where pi = px,py,pz. Now that we have the expression for the

Fourier transforms of the basis functions, we can proceed by

the evaluation of the integral in eqn (11), which is trivial to do

when spherical harmonics are used. In the Condon–Shortley

phase convention

1 ¼
ffiffiffiffiffiffi
4p
p

Y0
0 ð24Þ

px ¼ p

ffiffiffiffiffiffi
2p
3

r
ðY�11 ðp̂Þ � Y1

1 ðp̂ÞÞ ð25Þ

py ¼ ip

ffiffiffiffiffiffi
2p
3

r
ðY�11 ðp̂Þ þ Y1

1 ðp̂ÞÞ ð26Þ

pz ¼ p

ffiffiffiffiffiffi
4p
3

r
Y0

1 ðp̂Þ ð27Þ

where Ym
l are (complex) spherical harmonics and p̂ is the

unit vector in the direction of p. The spherical harmonics

expansions of the polynomials plxp
m
yp
n
z (12) can be calculated

using the group-theoretical properties:79

Ym1
l1
ðp̂ÞYm2

l2
ðp̂Þ ¼

Xl1þl2
l¼jl1�l2j

X1
m¼�1

Gm1m2;l
l1l2;m

Ym
l ðp̂Þ;

in which Gm1m2 ;l
l1 l2;m

is the Gaunt coefficient

Gm1m2;l
l1l2;m

¼ ð�1Þ�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l þ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4p

r

�
l1 l2 l

m1 m2 �m

 !
l1 l2 l

0 0 0

 !

and
l1 l2 l3
m1 m2 m3

� �
are Wigner 3-j symbols. Now we are

able to expand the product in eqn (11)

~XaðpÞ ~XbðpÞ ¼ eip�ðra�rbÞ
X
l;m

Cl
ab;mðpÞYm

l ðp̂Þ;

where Cl
ab,m is a complex expansion coefficient. Using the

spherical wave expansion of plane waves for the case p�x a 0

eip�x ¼ 4p
X1
l¼0

il jlðpxÞ
Xl
m¼�l

Ym
l ðp̂ÞYm

l ðx̂Þ

we can integrate over the angles in eqn (11), obtaining the result

IabðpÞ ¼

ffiffiffi
p
p

2
C0

ab;0ðpÞ; whenDr ¼ 0 or p ¼ 0

4p
P
l

il jlðpDrÞ
P
m

Cl
ab;mðpÞYm

l ðcDrÞ
0B@

where Dr= ra � rb. Performing the contractions in eqn (10) we

end up with the final result as was already given in section 2

NðpÞ ¼
X
l

cl jnl ðpDrlÞpmle�al p
2 þ

X
l

dlp
nl e�bl p

2
; p40 ð28Þ

in which cl and dl are real numbers, Drl, al, and bl positive
numbers and ml and nl non-negative integers. Although it was

assumed in the calculation that p a 0, it is clear from eqn (28)

that it is also valid for p = 0.

The important thing to note here is that the integration rule

of eqn (28) to be calculated only once. Also, the expansion

coefficients only depend on the type of the basis function

(not on the coordinates of its center). Since in typical calcula-

tions the number of elements (types of basis functions) is much
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smaller than the amount of atoms, the formation of the

integration rule is rather fast. This method is applicable

to any Gaussian basis set. The only requirement for the

implementation is that the values of the Bessel functions and

the 3j symbols can be calculated. The method can also be

straightforwardly extended to calculate the integrals in a

Slater-type orbital basis.

We have used the GNU Scientific Library80 for calculating

the values of the Bessel functions and the Wigner coefficients

and C++ to implement the algorithm. Copies of the program

are available upon request.

Appendix B

We have used an adaptive method for calculating the radial

integral in eqn (3), which minimizes the necessary number of

radial points (angular integrals) needed to obtain the wanted

precision for the Compton profile. The method is based on a

combined use of the 3-point and 5-point Simpson rules

I3 ¼
b� a

6
f ðaÞ þ 4f

aþ b

2

� �
þ f ðbÞ

� �
ð29Þ

I5 ¼
b� a

12
f ðaÞ þ 4f

3aþ b

4

� �
þ 2f

aþ b

2

� ��

þ 4f
aþ 3b

4

� �
þ f ðbÞ

� ð30Þ

in which f(x) is the integrand and a and b are the lower and

upper limits of integration, respectively. The integration error

of the 3-point rule is81

Z b

a

f ðxÞdx� I3

���� ���� � ðb� aÞ5

2880
jf ð4ÞðZÞj; Z 2 ½a; b�;

where f (4) denotes the fourth derivative of f. As the 5-point

rule (eqn (30)) is in fact the 3-point rule (eqn (29)) on a finer

grid, the integration error can be estimated asZ b

a

f ðxÞdx � I5

���� ���� r |I3 � I5|/15 = e. (31)

This estimate can be used for adapting the integration grid.

The algorithm we have used for the calculation of the Compton

profile is as follows:

(1) Fill out an initial grid from p = 0 to p: I(p) = 0 by

adding 4 points each time to the end of the grid, using a

constant spacing.

(2) Evaluate the charge in the system by calculating

Q = hp0i =
R
N

0 p2N(p)dp (32)

on the grid, using eqn (29)–(31).

(3) If the charge obtained from eqn (32) differs by more than

the tolerance from the number of electrons in the system, add

4 more points to the interval with the largest error estimate

e and return to step 2.

(4) To make sure that the integration grid is fine enough in

regions where the EMD changes, repeat the procedure to

converge the physical moments82,83 of the EMDR
N

0 pn+2N(p)dp, n = �2,. . .,4

by adding more points to the area of maximum estimated

error, until the relative error is smaller than the tolerance.

(5) The calculation has converged. Calculate the CP.

(6) Finally, to make the comparison of profiles possible in

spite of the use of an adaptive grid, interpolate the CP and its

error on a uniform grid.

In this paper we have used spline interpolation, which seems

to be well suited for the purpose, as the difference profiles

obtained with it are smooth. Linear interpolation was found

not to be enough, as unphysical spikes were seen in the

differences. The spline interpolation error can be assumed

small, as the grid produced by the adaptive method above is

quite dense in the interval used for the interpolation.

Appendix C

The used geometry for the water dimer is given in Table 3.
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14 K. Nygård, M. Hakala, S. Manninen, A. Andrejczuk, M. Itou,
Y. Sakurai, L. G. M. Pettersson and K. Hämäläinen, Compton
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In the current work we apply the completeness-optimization paradigm [P. Manninen and J. Vaara,
J. Comput. Chem. 27, 434 (2006)] to investigate the basis set convergence of the moments of the
ground-state electron momentum density at the self-consistent field level of theory. We present a
black-box completeness-optimization algorithm that can be used to generate computationally effi-
cient basis sets for computing any property at any level of theory. We show that the complete basis
set (CBS) limit of the moments of the electron momentum density can be reached more cost effec-
tively using completeness-optimized basis sets than using conventional, energy-optimized Gaussian
basis sets. By using the established CBS limits, we generate a series of smaller basis sets which can
be used to systematically approach the CBS and to perform calculations on larger, experimentally
interesting systems. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749272]

I. INTRODUCTION

Conventional, commonly used energy-optimized basis
sets, such as the Dunning-style correlation consistent cc-
pVXZ1–4 or Jensen’s polarization-consistent pc-N series,5–9

may not be optimal for computing other properties than the
energy. For instance, although extremely important for the
dipole moment, diffuse functions have very little effect on
the energy and thus do not appear automatically in energy-
optimized basis sets (unless extremely large basis sets are
used). Instead, the necessary additional diffuse functions need
to be determined manually for forming efficient basis sets ca-
pable of accurately computing properties such as the dipole
moment.

Furthermore, whereas the error in the energy is second or-
der in the error in wave function, errors in one-electron prop-
erties such as the dipole moment are only first order and are
thus much more sensitive to deficiencies in the wave func-
tion. Also because of this, in contrast to, e.g., the Hartree-Fock
(HF) energy, many experimentally relevant properties are not
variational with respect to the basis set, making the applica-
tion of conventional basis set optimization methods unattrac-
tive for generating basis sets tuned for particular properties.

Completeness optimization10 was introduced in order to
approach the complete basis set (CBS) limit of also non-
variational properties in a systematic fashion. In contrast to
other basis sets where the exponents are typically fine-tuned
to produce optimal energies for the element in question, in
the completeness-optimization paradigm the exact values of
the exponents are of no interest—the only thing that matters
is that they span the relevant part of the exponent space, in
the necessary precision, to accurately procure the property
being modeled. Although so far only applied for magnetic
properties,10–13 completeness optimization is a completely
general, black-box method that can be used for any property

a)Electronic mail: jussi.lehtola@helsinki.fi.

at any level of theory. Current applications have shown the
resulting basis sets to be computationally more efficient than
conventional, energy-optimized basis sets.10–13

Despite the extending use of ground-state (GS) electron
momentum density (EMD)14 methods in materials science,
there has been surprisingly little research into the basis set
requirements for its accurate modeling. In the current work
we employ completeness-optimization to calculations of the
GS-EMD, which is a first-order property highly sensitive to
diffuse functions. Introducing a novel, computerized opti-
mization algorithm, we investigate the basis set convergence
of the moments of the GS-EMD at the self-consistent field
(SCF) level of theory. We demonstrate that the CBS limit can
be easily reached using completeness-optimized Gaussian
type orbital (GTO) basis sets, as shown by the comparison to
near HF values produced with Slater type orbital (STO) basis
sets. Furthermore, we generate cost efficient basis sets for
the computation of the moments of the GS-EMD at the SCF
level of theory for the first three rows of the periodic table,
i.e., the elements H–Ar.

Classically equivalent to the velocity distribution of the
electrons, the GS-EMD is a computationally interesting quan-
tity as it can be measured by using (e, 2e) spectroscopy,15

x-ray Compton scattering,16, 17 or positron annihilation spec-
troscopy. The EMD n (p) can be calculated in any atom-
centered basis set as18

n (p) =
∑
μν

Pμνχ̃μ (p)χ̃ν (p) , (1)

where p is the momentum, Pμν is the one-particle density ma-
trix, χ̃μ is the Fourier transform of the μth basis function, and
the overline denotes complex conjugation. A similar expres-
sion to Eq. (1) applies in periodic systems.19

X-ray Compton scattering experiments are usually per-
formed using highly energetic x-rays at modern synchrotron
radiation sources. When the impulse approximation20 holds,

0021-9606/2012/137(10)/104105/8/$30.00 © 2012 American Institute of Physics137, 104105-1
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the resulting differential cross section for Compton scattered
photons is found out to be16, 17

d2σ

d�dE2
=C(E1, E2, φ)J (pq), (2)

where d2σ /d�dE2 measures the amount of photons detected
in the solid angle d� with the energy in the range E2, . . . ,
E2 + dE2, E1 is the energy of the incoming photon, φ is the
scattering angle, and C(E1, E2, φ) only depends on the setup
of the experiment. The function J(pq) is the Compton profile,
which measures the projection of the EMD along the scatter-
ing vector q,16

J
(
pq

) =
∫∫

n
(
px, py, pz ≡ pq

)
dpxdpy. (3)

By measuring the Compton profiles from single crystal sam-
ples and aligning the scattering vector along certain crystal-
lographic directions it is possible to obtain anisotropic infor-
mation about the EMD.21, 22 However, in the rest of the paper,
we will discuss only isotropic systems, in which the relevant
quantities are the radial EMD

n (p) =
∫

n (p) d�p (4)

and the isotropic Compton profile

J (pq) = 1

2

∫ ∞

|pq|
pn (p) dp. (5)

The radial EMD can be characterized using its moments

〈pk〉 =
∫ ∞

0
pk+2n (p) dp, −2 ≤ k ≤ 4. (6)

The k range is limited as the moments with other values of k
diverge with the exact momentum density.14, 23

Even though absolute Compton profiles can be
measured,24–26 differences of Compton profiles (so called
difference profiles) are often used for studying the structure of
materials. Recent studies include covalent bonding in liquid
silicon,27 oxygen disorder in ice,28 doped holes in cuprate
superconductors,29 solvation in water-ethanol solutions,30

and energetics in tetrahydrofuran clathrate.31 While x-ray
Compton scattering within the impulse approximation yields
collective GS-EMD properties, (e, 2e) scattering can be
used to extract the GS-EMD of individual orbitals.15 Recent
(e, 2e) studies include the orbital momentum profiles of
naphthalene,32 isobutane33 and n-butane,34 as well as the
study of the conformers of n-propanol.35

Near HF results using large STO basis sets have been re-
ported in the literature for diatomic and linear molecules.36, 37

For diatomics a numerical solution of the HF equations is pos-
sible as well, allowing one to obtain results directly at the HF
limit.38 As usual, calculations on more complicated molecules
and post-HF studies for investigating the effect of correlation
have been performed using GTO basis sets.39–41 Also crys-
talline systems can be studied at the HF and post-HF levels us-
ing GTOs.42–45 While correlation effects have been shown to
be important, relativistic effects are insignificant for the first
three rows of the periodic table.26, 46

TABLE I. Deviation of the CCSD d-aug-cc-pV5Z moments of the helium
atom47 from the 40 Gaussian geminal (40 GG) calculation from Ref. 49.

CCSD 40 GG Error (%)

〈p−2〉 4.1056 4.0986 0.17
〈p−1〉 2.1394 2.1386 0.04
〈p〉 2.8140 2.8146 − 0.02
〈p2〉 5.8050 5.8074 − 0.04
〈p3〉 18.387 18.406 − 0.10
〈p4〉 105.06 106.56 − 1.41

GTO basis set requirements for the calculation of GS-
EMD properties of gas-phase molecules have been discussed
recently by Hart and Thakkar41 and Lehtola et al.47 The
former studied basis set convergence of the moments of the
GS-EMD at HF level of theory using a pruned version of
Jensen’s augmented triple-ζ polarization-consistent basis set
(aug-pc-3)5, 7 as the reference, and drew conclusions about
the accuracy and necessary basis sets by comparing the
results obtained with the reference basis set to those obtained
with smaller basis sets. In the latter study the basis set
convergence of the isotropic Compton profile (Eq. (5)) was
investigated at HF, density-functional theory (DFT), Møller-
Plesset perturbation theory48 truncated at the second order
(MP2), and coupled-cluster singles and doubles (CCSD)
levels of theory using the Dunning-style basis set series. A
notable difference was found in the Compton profiles for the
helium atom produced by the CCSD calculation using the
doubly augmented quintuple-ζ correlation consistent (d-aug-
cc-pV5Z) basis set1, 3 and a highly accurate Gaussian geminal
based calculation.49 The difference was found to be of the
order of 5 × 10−4 a.u. (corresponding to ∼0.05% of J(0)),
while an accuracy of 0.02% of J(0) can often be achieved for
difference Compton profiles in experiment.50–54 Rather large
differences can also be seen in the moments of the GS-EMD,
as shown in Table I; this was the original motivation for this
work.

The organization of the paper is the following. In
Sec. II, we discuss completeness optimization in more detail
and suggest an automatized algorithm for the generation of
novel basis sets. In Sec. III we present the algorithm applied
in the current work, and describe how the calculations were
performed. Then, in Sec. IV we investigate the basis set
convergence of the moments of the GS-EMD and present
efficient basis sets, concluding in Sec. V.

II. METHODS

A. Completeness profiles

The idea of completeness optimization is founded on the
concept of completeness profiles, which were introduced by
Chong55 as a graphical tool for evaluating the completeness
of one-electron basis sets. The completeness profile of an
atomic basis set can be calculated as55

Y (α) =〈G(α)|
∑
μν

|μ〉S−1
μν 〈ν|G(α)〉, (7)
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where |μ〉 and |ν〉 are functions in the studied basis set and
S−1

μν denotes the (μ, ν) element of the inverse of the overlap
matrix. G(α) is a scanning function, α being a parameter
used to scan the basis set. The profile is (nearly) unity when
the basis set is flexible enough to faithfully represent the
scanning function, whereas Y(α) vanishes if the basis set is
unable to do so.

In principle any normalizable function can be used as a
scanning function. However, only Gaussian primitives have
been used as probes so far. This choice is advantageous when
GTO basis sets are used, as the overlap between a primitive
function in the probed basis set and the scanning function
is unity when the exponents match and decays rapidly when
their difference grows. As a result, assuming no contractions
and no linear dependencies in the basis set, a well-defined re-
gion where Y(α) ≈ 1 is seen in the profile; this is called the
completeness plateau. For the reasons stated above, the scan-
ning function used in the current work is

〈r |G (α) 〉 =NrlYlm (r̂) exp (−αr2), (8)

where N is a normalization constant, Ylm are real spherical
harmonics, r̂ denotes the unit vector in the direction of r, and
the scanning parameter α has been identified with the Gaus-
sian exponent. When pure spherical functions are used in the
basis set, it is easily seen that a different profile is obtained for
every value of the angular momentum l, whereas all values of
the z component m yield an identical profile.

B. Completeness optimization

As the completeness profile visualizes the flexibility of
the basis set, it can also be used to maximize it: the idea is
to place the exponents on every angular momentum shell so
that the completeness profile becomes as flat as possible, i.e.,
so that the ripples in the plateau are minimized.10 Technically,
the measure used for the optimization is56

τn =
(

1

lg αmax − lg αmin

∫ lg αmax

lg αmin

[1 − Y (α)]n d lg α

)1/n

,

(9)

where lg is the ISO standard notation for the 10-base loga-
rithm, αmin and αmax are the lower and upper limits of the
plateau, and n ≥ 1 is a parameter. It is easily seen that by
letting τ n → 0, αmin → −∞, and αmax → +∞ a truly l-
complete57 basis set is obtained, proving that the method is
mathematically rigorous.

While the ranges lg α ∈ [αmin, αmax] for all values of l
that are necessary to accurately calculate the wanted property
are a priori unknown, they can be determined by varying the
limits αmin and αmax for each value of l while examining the
evolution of the wanted property.10 An arbitrary minimal ba-
sis set (for instance a small s set for H–Be and a small sp set
for B–Ar) is taken as the starting point. Now, by fixing the
value of τ n to a small (positive) number one is able to system-
atically examine the effect of the completeness of the basis
set on the studied property, for which no variationality is re-
quired. This is done by extending the range of completeness
of the basis set to the steep (larger αmax) and/or to the diffuse

end (smaller αmin). Once the property does not change any
more when the limits of existing shells are extended or shells
with higher angular momentum are added, the CBS limit has
been achieved.

The special case n = 1 in Eq. (9) corresponds to maxi-
mization of the area of completeness, and n = 2 to minimiza-
tion of the root mean square deviation from completeness.
Qualitative analysis of the completeness profiles produced by
the two metrics reveals that n = 2 is stricter on the deviation
from completeness at the edges of the plateau, leading to ex-
ponents placed closer by near the edges. However, as in the
limit τ n → 0 both cases lead to a CBS, in analogy to earlier
work,10–13 we will use maximization of the area and denote
τ 1 with a plain τ in the rest of the paper.

C. Expansion of completeness

As the overlap of Gaussian functions is invariant under
scaling of the exponents (which corresponds to translation in
log α), the completeness-optimized exponents for an angular
momentum shell corresponding to an interval of length
λ := lg αmax − lg αmin are equivalent up to a scaling factor.
Thus, for a fixed value of τ , the width of the completeness
plateau attainable with N exponents for the angular momen-
tum l is uniquely defined by Eq. (9). The width λN – and
the corresponding values of the exponents – can be easily
found from Eq. (9), e.g., by using the bisection method. As
a consequence of the uniquely defined width, one is able to
define a step size σ related to the addition or to the removal
of a single exponent on the angular momentum shell as
σ := λN + 1 − λN. Correspondingly, a set criteria for the
addition or removal of a single exponent can be easily placed
for the formation of the basis set.

Trials are made to extend the completeness plateau of
each value of angular momentum l in the basis set to the
steep or the diffuse end by σ . Another trial is to make the
existing plateau even flatter by adding a single exponent to
the current interval, thereby reducing the value of τ on the
current shell. The trial that leads to the largest change � in
the computed property is then accepted. With this method, a
(quasi)monotonically reducing change in the property is ob-
served as the basis set grows more complete. The necessity of
further correlation/polarization shells is evaluated by adding
a new shell with a single exponent, and maximizing � with
respect to the additional exponent. Once the change induced
in the property by the addition of more functions is small
enough, the CBS limit can be said to have been effectively
reached.

III. IMPLEMENTATION

Although the method presented above in Sec. II for the
formation of completeness-optimized basis sets can be ap-
plied to any property at any level of theory, for simplicity we
will consider the restricted open-shell Hartree-Fock (ROHF)
level of theory58 in this paper. The completeness-optimization
procedure outlined in Sec. II has been summarized in
Algorithm I. The measure of the change � used in the current
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ALGORITHM I. Generation of completeness-optimized basis sets.

1. Pick the wanted target tolerance εt and the initial tolerance εi > εt.
2. Pick an initial completeness tolerance τ � 10−3.
3. Choose an initial range of completeness: Y(α) ≈ 1 (within τ ) for α ∈

[αmin, αmax] for all occupied values of the angular momentum l.
4. Set the current tolerance value ε = εi.
5. Refine the atomic basis set(s).

Loop over values of angular momentum in the basis set
l = 0, . . . , lmax:
(a) Compute the step size σ corresponding to the addition of an ex-

ponent to the shell l.
(b) Form trials by expanding the range of completeness and reopti-

mizing the exponents by minimizing τ in Eq. (9):
i. αmin = 10−σ αmin .
ii. αmax = 10σ αmax .
iii. Keep limits, but add one function to the current shell (reducing

τ for the current value of l).
(c) Compute the quantity in the trial basis sets.
(d) Compute the maximum change � from the current reference

value.
(e) If � ≥ ε, accept the trial corresponding to �, update the current

reference value, and go back to step 5a. Otherwise, continue to
next value of l.

6. Refine the polarization shells using the dimer(s).
(a) Check that all existing polarization shells are sufficiently filled by

looping over the polarization shells in the basis set analogously to
step 5.

(b) All existing shells have been refined. Check if the addition of a
further polarization shell is necessary:

Compute the step size σ corresponding to l = lmax + 1 and set
the range of completeness of the polarization shell to αmin = 10x ,
αmax = 10x+σ , where x is an (arbitrary) offset. Determine x by maxi-
mizing �.
If the resulting � ≥ ε, add the shell and return to step 6(a).

7. If ε > εt, set ε → ε/10 and go back to step 5. Otherwise, end the
loop.

work is

� := max
k∈K

∣∣∣∣∣
〈
pk

new

〉 − 〈
pk

ref

〉
〈
pk

ref

〉
∣∣∣∣∣ , (10)

where 〈pk
new〉 is the new value and 〈pk

ref〉 the current refer-
ence value, K being the set of moments considered in the
optimization. The tolerance ε for the change in the computed
property � is tightened slowly towards its final value in
Algorithm I in order to guarantee that the shells with different
l values are balanced, as done in Jensen’s basis sets.5

When the CBS limit has been determined using
Algorithm I, the completeness-optimization method can be
used in reverse, as presented in Algorithm II, to prune unim-
portant functions in order to obtain computationally efficient
basis sets for practical calculations on large systems. As it is
now available, the CBS value is used as the reference during
the reduction of the basis set. Since the estimated accuracy of
the CBS value is εt, we start the reduction by forming a set
with a similar accuracy, after which sets of decreasing accu-
racy are formed. Although presented here in the current scope
of SCF calculations, Algorithms I and II can be straighfor-
wardly generalized for post-HF calculations.

The recently published ERKALE program56, 59 is used
to perform the fully automatized completeness-optimization

ALGORITHM II. Reduction of completeness-optimized basis sets.

1. Pick the wanted final tolerance εf.
2. Set the current tolerance value ε = εt.
3. Reduce the completeness of the shells.

(a) Loop over the values of angular momentum l = lmax, . . . , 0:
i. Compute the step size σ corresponding to the removal of an

exponent.
ii. Form trials by reducing the range of completeness and reopti-

mizing the exponents by minimizing τ in Eq. (9):
A. αmin = 10σ αmin .
B. αmax = 10−σ αmax .
C. Keep limits, but remove a function, increasing τ for the cur-

rent value of l.
iii. Compute the quantity in the trial basis sets.
iv. Compute the minimal change δl from the CBS reference value.

(b) Find out the minimal change δ = min lδl. If δ < ε, accept the trial
corresponding to δ and go back to step 5.

4. If ε < εf, set ε → 10ε and go back to step 3. Otherwise, end the
loop.

procedure, including the necessary Hartree-Fock calculations.
ERKALE uses the Nelder-Mead simplex algorithm60 for the
completeness optimization of the exponents in Eq. (9).56 The
algorithm used by ERKALE to compute the radial momentum
density and the moments of the GS-EMD has been discussed
extensively in Ref. 47.

We form basis sets of uncontracted primitives for the first
three rows of the periodic table. Since the completeness op-
timization of primitives contains no chemical information in
itself – it is just a mathematical method – we group the el-
ements of the first three rows into five groups with similar
atomic electronic structures and use the same basis set for
each of the elements in the group; this grouping is given in
Table II.

In analogy to the polarization-consistent basis sets of
Jensen5 we obtain polarization functions by studying ho-
moatomic molecules. The completeness-optimized basis set
is then required to reproduce the moments of the GS-EMD
both of the individual atoms and the homoatomic dimers. As
the dimers represent rather different chemical environments,
one can be assured of the transferability of the resulting ba-
sis sets. Experimental geometries for the dimer ground states
were used,61 their details are given in Table III.

Canonical orthonormalization62 with a cutoff of 10−5

for the eigenvalues of the overlap matrix was used both
in the completeness optimization and in the SCF calcula-
tions. Closed-shell species were computed using restricted
Hartree-Fock during the completeness optimization of the ba-
sis sets, whereas a recently introduced ROHF formalism63

TABLE II. The grouping of electronic structures.

Atomic configuration Elements

Group I 1sn H–He
Group II [He]2sn Li–Be
Group III [He]2s22pn B–Ne
Group IV [Ne]3sn Na–Mg
Group V [Ne]3s23pn Al–Ar
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TABLE III. The dimers used in the parametrization of the basis set. The
used bond lengths, given in atomic units, are re values from the NIST
database.61 The Be2 molecule is not stable, thus the (fictitious) bond length
was adopted from Ref. 37.

Bond length State

Group I H2 1.401 1�g

He2 5.612 1�g

Group II Li2 5.051 1�g

Be2 4.000 1�g

Group III B2 3.005 3�g

C2 2.348 1�g

N2 2.074 1�g

O2 2.282 3�g

F2 2.668 1�g

Ne2 5.858 1�g

Group IV Na2 5.818 1�g

Mg2 7.351 1�g

Group V Al2 4.660 3�g

Si2 4.244 3�g

P2 3.578 1�g

S2 3.570 3�g

Cl2 3.755 1�g

Ar2 7.102 1�g

was used for open-shell species. The Broyden method64 was
used for Fock matrix updates. In cases where the Broyden
method failed to converge, the calculation was performed
with the trust-region Roothaan-Hall (TRRH) method.65 The
direct SCF scheme66 was used with Schwarz prescreening of
electron repulsion integrals with a threshold of 10−15 for the
upper limit of the absolute value of the integrals. The used rel-
ative precision for the numerical integration of the GS-EMD
moments (Eq. (6)) was 10−8.

IV. RESULTS

Initial test calculations on the helium atom demonstrated
that modeling 〈p−2〉 and 〈p4〉 with the accuracy aimed at in the
current work using a Gaussian basis set is unfeasible due to
numerical problems. This is not surprising, as these moments
probe exactly the asymptotic regions where Gaussian type ba-
sis functions are inherently deficient, notably the nuclear cusp
and the asymptotic decay.41 However, this limitation is not a
theoretical one, since STOs can be expanded exactly using
GTOs as67

exp (−ζ r) = 2√
π

∫ ∞

0
exp(−t2) exp

(
−

[
ζ r

2t

]2
)

dt

≡
∫ ∞

0
w(t) exp

[−α(t)r2] dt, (11)

where w(t) = 2 exp(−t2)/
√

π has been identified as the
weighting factor and α(t) = ζ 2/4t2 as the Gaussian exponent.
Instead, the limitation is caused by the use of a finite number
of functions and finite precision arithmetic, and it been ob-
served before in the case of helium with energy-optimized
GTOs;68 with energy-optimized STOs all of the moments
converge rapidly.68

Therefore, we decided to concentrate on the moments
〈pk〉 for k ∈ K = {−1, 1, 2, 3},69 of which the experimentally
interesting quantities are the height of the Compton peak J(0)
= 〈p−1〉/2 and the kinetic energy of electrons T = 〈p2〉/2.70

Accordingly, in the rest of the paper we will refer to 〈p−1〉,
〈p〉, 〈p2〉, and 〈p3〉 simply as the moments.

We started the completeness optimization from a set with
a completeness plateau similar to that of the uncontracted pc-
0 basis set.5 Algorithm I was then applied with the parameter
values εi = 10−2, εt = 10−4, and τ = 10−4 to find the CBS
limits, yielding the coemd-ref set. Finally, the production ba-
sis sets were formed by reducing the full basis sets using Al-
gorithm II to the accuracies εf ∈ {10−4, 10−3, 10−2, 10−1},
compared to the results obtained with the coemd-ref basis
set. We label the resulting production basis sets as coemd-
4, coemd-3, coemd-2, and coemd-1, respectively. The coemd

TABLE IV. Estimated HF limits for the moments of the EMD of the
molecules studied in the current work.

Bond length
Molecule (a.u.) 〈p−1〉 〈p〉 〈p2〉 〈p3〉

H2 1.400 3.115 (0) 1.820 (0) 2.252 (0) 3.964 (0)
Near HFa 3.115 (0) 1.820 (0) 2.252 (0) 3.964 (0)
Near HFb 3.115 (0) 1.821 (0) 2.252 (0) 3.964 (0)

Li2 5.051 1.059 (1) 9.822 (1) 2.978 (1) 1.421 (2)
Near HFa,b 1.053 (1) 9.825 (1) 2.978 (1) 1.421 (2)

Be2 4.000 1.086 (1) 1.513 (1) 5.853 (1) 3.708 (2)
Near HFa,b 1.077 (1) 1.514 (1) 5.855 (1) 3.707 (2)

B2 3.005 1.062 (1) 2.158 (1) 9.829 (1) 7.657 (2)
Near HFa,b 1.063 (1) 2.158 (1) 9.829 (1) 7.660 (2)

C2 2.348 1.041 (1) 2.922 (1) 1.508 (2) 1.379 (3)
Near HFa 1.042 (1) 2.922 (1) 1.508 (2) 1.379 (3)
Near HFb 1.042 (1) 2.922 (1) 1.508 (2) 1.380 (3)

N2 2.068 1.070 (1) 3.804 (1) 2.176 (2) 2.264 (3)
Near HFa,b 1.069 (1) 3.804 (1) 2.176 (2) 2.265 (3)

O2 2.282 1.070 (1) 4.767 (1) 2.988 (2) 3.482 (3)
Near HFa 1.069 (1) 4.767 (1) 2.988 (2) 3.483 (3)
Near HFb 1.069 (1) 4.767 (1) 2.989 (2) 3.483 (3)

F2 2.680 1.076 (1) 5.839 (1) 3.971 (2) 5.099 (3)
Near HFa,b 1.075 (1) 5.839 (1) 3.972 (2) 5.101 (3)

LiH 3.015 5.660 (0) 5.902 (0) 1.598 (1) 7.264 (1)
Near HFa,b 5.660 (0) 5.902 (0) 1.598 (1) 7.266 (1)

HF 1.7328 6.470 (0) 3.037 (1) 2.000 (2) 2.546 (3)
Near HFa,b 6.469 (0) 3.037 (1) 2.001 (2) 2.547 (3)

NaH 3.566 ∼9.3 (0)c 4.169 (1) 3.248 (2) 4.894 (3)
Near HFa,b 9.305 (0) 4.169 (1) 3.248 (2) 4.893 (3)

HCl 2.4087 1.134 (1) 8.188 (1) 9.202 (2) 2.022 (4)
Near HFa,b 1.134 (1) 8.188 (1) 9.202 (2) 2.022 (4)

LiF 2.955 7.941 (0) 3.468 (1) 2.140 (2) 2.614 (3)
Near HFa,b 7.897 (0) 3.472 (1) 2.140 (2) 2.615 (3)

LiCl 3.825 1.301 (1) 8.613 (1) 9.341 (2) 2.029 (4)
Near HFa,b 1.294 (1) 8.615 (1) 9.341 (2) 2.029 (4)

NaF 3.62883 1.128 (1) 7.050 (1) 5.228 (2) 7.434 (3)
Near HFa,b 1.127 (1) 7.051 (1) 5.227 (2) 7.433 (3)

AlF 3.126 1.485 (1) 8.238 (1) 6.829 (2) 1.099 (4)
Near HFa,b 1.475 (1) 8.239 (1) 6.829 (2) 1.099 (4)

NaCl 4.4609 1.638 (1) 1.220 (1) 1.243 (3) 2.511 (4)
Near HFa,b 1.630 (1) 1.220 (1) 1.243 (3) 2.511 (4)

aThe near HF values are from Ref. 36.
bThe near HF values are from Ref. 37.
cThe HF limit value for 〈p−1〉 could not be determined.



104105-6 Lehtola et al. J. Chem. Phys. 137, 104105 (2012)

basis sets, along with their completeness profiles, are avail-
able in the supplementary material.71

To demonstrate the computational efficiency of the gen-
erated basis sets, for comparison we have also performed cal-
culations using conventional energy-optimized sets obtained
from the EMSL basis set exchange,72, 73 i.e., the Dunning-
style (d-)aug-cc-p(C)VXZ basis sets1–4 and Jensen’s aug-
mented polarization-consistent aug-pc-N basis sets5–9 of sim-
ilar size to the coemd sets. We also included the atpc3 set
used by Hart and Thakkar, which is obtained from aug-pc-3
by deleting f functions from hydrogen and g functions from all
atoms.41 Calculations with the energy-optimized cc and pc ba-
sis sets were performed not only with the original sets but also
by decontracting them completely, i.e., using only the corre-
sponding primitive set. These uncontracted sets are denoted
with the prefix “un-.” The large set of calculations performed
with different style basis sets approaching the CBS limit en-
abled us to estimate the HF limits of the moments studied in
the current work with an accuracy of four digits.

Demonstration calculations were performed for ho-
moatomic dimers for which near HF values have been pre-
sented in the literature. As the basis sets were parametrized
for homoatomic molecules, we also examined the transfer-
ability of the coemd basis sets by calculating the heteroatomic
molecules LiH [I–II], HF [I–III], NaH [I–IV], HCl [I–V], LiF
[II–III], LiCl [II–V], NaF [III–IV], AlF [III–V], and NaCl
[IV–V], for which near HF values are available as well. For
the sake of clarity, in the following we will present only a
summary of the full set of results, which is available as a part
of the supplementary material.71 The HF limits estimated for
the molecules along with near HF values from Refs. 36 and
37 are shown in Table IV. As seen from the table, we propose
new HF limit values for 〈p−1〉 and 〈p〉 of Li2, LiF, and LiCl;
〈p−1〉 of Be2, AlF, and NaCl; and 〈p3〉 of B2.

Double augmentation with diffuse functions (d-aug-cc-
pVXZ) or the addition of more core functions (aug-cc-pCVXZ)

is not necessary, as the results are qualitatively the same as in
the aug-cc-pVXZ set. The moments produced by the atpc3 and
the aug-pc-3 are practically identical, pointing to the small
importance of higher order polarization functions to the EMD
at the SCF level of theory. More interesting is the comparison
of the effect of the contraction of the polarization-consistent
basis sets. In most cases the moments produced by the nor-
mal, contracted forms of the aug-pc sets converge to incorrect
values, the difference being most clearly seen for 〈p3〉. The de-
contraction of the basis sets restores the compatibility of the
results with those obtained with the coemd and aug-cc sets.
Thus, we conclude that moments calculated at the HF level of
theory using the aug-pc sets41 are not accurate.

The accuracy of the results obtained with the aug-cc sets
suffers slightly from the contractions as well, but to a smaller
extent than with the aug-pc sets. Obviously, this feature is
caused by an incomplete description of the HF core orbitals
in the contracted pc sets, which have been formed with DFT
calculations,6 whereas the less problematic Dunning sets have
been contracted using HF.1

The coemd-ref and coemd-4 sets correctly reproduce the
estimated CBS limits for all molecules studied.74 A similar
amount of systematical accuracy can be achieved using the
un-atpc3 set or the aug-cc-pVQZ set, in the latter case with
the exception of the hydrogen molecule for which a decon-
tracted aug-cc-pV6Z set is necessary. However, in the best
case the un-atpc3 set contains the same amount of functions
as the coemd-ref set, whereas often even the coemd-ref set is
much smaller.

On a molecule by molecule basis the coemd sets com-
pare even more favorably to the aug-pc and aug-cc sets. The
minimal size of the basis sets required for reproducing the
HF limits of the moments (Table IV) within an accuracy of
one unit in the last decimal are shown in Table V. With the
exception of the molecules containing a chlorine atom, the
coemd sets reproduce the CBS limit with a smaller amount of

TABLE V. Minimal necessary basis sets and the resulting amounts of basis functions for reproducing the HF
limits shown in Table IV. The second column shows the number of basis functions in the coemd-ref set. aThe
HF limit value for 〈p−1〉 of NaH could not be determined and thus it was not used in determining the basis set
convergence.

Molecule coemd-ref Minimal coemd Minimal aug-cc Minimal aug-pc

H2 74 coemd-4 54 un-aug-cc-pV6Z 262 un-atpc3 80
Li2 114 coemd-3 52 aug-cc-pVTZ 92 un-aug-pc-2 72
Be2 114 coemd-3 52 aug-cc-pVTZ 92 un-atpc3 130
B2 182 coemd-4 138 aug-cc-pVQZ 160 un-atpc3 182
C2 182 coemd-3 86 aug-cc-pVTZ 92 un-atpc3 182
N2 182 coemd-3 86 un-aug-cc-pVTZ 116 un-aug-pc-2 122
O2 182 coemd-3 86 aug-cc-pVQZ 160 un-atpc3 182
F2 182 coemd-3 86 aug-cc-pVQZ 160 un-atpc3 182
LiH 94 coemd-4 74 un-aug-cc-pVQZ 141 un-atpc3 105
HF 128 coemd-3 61 aug-cc-pVQZ 126 un-atpc3 131
NaHa 101 coemd-4 85 aug-cc-pVTZ 73 un-aptc3 126
HCl 143 coemd-4 105 aug-cc-pVDZ 36 un-aug-pc-2 102
LiF 148 coemd-3 116 aug-cc-pVQZ 160 un-atpc3 156
LiCl 163 coemd-4 125 aug-cc-pVDZ 50 un-aug-pc-2 112
NaF 155 coemd-4 127 aug-cc-pVQZ 164 un-atpc3 177
AlF 197 coemd-4 147 un-aug-cc-pVTZ 133 un-aug-pc-2 137
NaCl 170 coemd-3 93 aug-cc-pVDZ 54 un-aug-pc-2 130
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functions than the aug-pc or aug-cc sets in either contracted
or decontracted form. Whereas normally a quadruple-ζ basis
set (aug-cc-pVQZ or decontracted atpc3) is required, surpris-
ingly for the chlorine systems the aug-cc-pVDZ set already
yields a converged result. This is likely caused by the closely
ionic nature of HCl, LiCl, and NaCl, and as a special case
does not raise concerns about the performance of the coemd
basis sets; the aug-pc sets of comparable performance are of
similar size to the coemd sets.

V. CONCLUSIONS

We have shown that the CBS limit of the moments of
the GS-EMD at the SCF level of theory can be achieved at a
modest computational cost by using completeness-optimized
GTO basis sets. Using the established CBS limits, we have
generated cost efficient, completeness-optimized basis sets
for the calculation of GS-EMD properties at the wanted ac-
curacy at the SCF level of theory. The generated basis sets
are much more compact than conventional energy-optimized
sets, while producing more accurate results (at the SCF level
of theory), hence enabling calculations to be performed near
the CBS limit even in large systems.

We summarize this and previous studies on the suitable
level of theory for computing EMDs as follows.

i. MP2 accounts for most correlation effects on the
EMD,41 as compared to a CCSD reference.

ii. A basis set equivalent to the Dunning-style aug-cc-
pVQZ basis set is generally capable of reproducing the
moments of the EMD at the SCF level of theory with a
four-digit accuracy.

The possible contraction of the completeness-optimized
primitive sets, along with the straightforward extension to
generating basis sets suitable for post-HF calculations, are left
for future work.
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Completeness-optimization is a novel method for the formation of one-electron basis sets. Contrary
to conventional methods of basis set generation that optimize the basis set with respect to ground-
state energy, completeness-optimization is a completely general, black-box method that can be used
to form cost-effective basis sets for any wanted property at any level of theory. In our recent work
[J. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, J. Chem. Phys. 137, 104105 (2012)] we
applied the completeness-optimization approach to forming primitive basis sets tuned for calcula-
tions of the electron momentum density at the Hartree-Fock (HF) level of theory. The current work
extends the discussion to contracted basis sets and to the post-HF level of theory. Contractions are
found to yield significant reductions in the amount of functions without compromising the accuracy.
We suggest polarization-consistent and correlation-consistent basis sets for the first three rows of
the periodic table, which are completeness-optimized for electron momentum density calculations.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788635]

I. INTRODUCTION

Completeness-optimization1 is a mathematical tool for
spanning the physically and chemically relevant atom-
centered one-electron basis set in the best possible way. As
the method does not rely on any specific type of calcu-
lation (single vs multiple determinants, variational vs non-
variational method) or even the use of the basis set (orbital
vs auxiliary basis), it provides a systematic, black box ap-
proach for reaching the complete basis set (CBS) limit for any
property at any level of theory.

In our previous work2 we presented an automated al-
gorithm for performing completeness-optimization of prim-
itive Gaussian basis sets at the self-consistent field (SCF)
level of theory and applied it to calculations of the mo-
ments of the ground-state electron momentum density3 n(p)
(EMD)

〈pk〉 =
∫ ∞

0
pk+2n(p)dp, −2 ≤ k ≤ 4, (1)

where the radial EMD n(p) can be obtained as4

n(p) =
∑
μν

Pμν

∫
χ̃μ(p)χ̃ν(p)d�p. (2)

Here P is the one-electron density matrix, χ̃μ(p) is the
Fourier transform of the μth basis function and the overline
denotes complex conjugation. Similarly to previous works
that have applied completeness-optimization to magnetic
properties,1, 5–7 completeness-optimization was found to pro-

a)Electronic mail: susi.lehtola@alumni.helsinki.fi.
b)Electronic mail: pekka.manninen@csc.fi.

duce basis sets that are computationally more efficient than
conventional basis sets also in the case of the EMD.

All current applications of completeness-optimization
have been restricted to the SCF level of theory and have used
only basis sets of uncontracted primitives. In the current work
we discuss the contraction of completeness-optimized basis
sets and the straightforward application of the completeness-
optimization algorithms introduced in Ref. 2 to the post-
Hartree–Fock (post-HF) level of theory, still focusing on the
EMD as the studied property.

Analogously to the polarization-consistent basis sets
of Jensen8–11 and the correlation-consistent basis sets of
Dunning and co-workers12–15 that produce systematic con-
vergence with respect to the energy, we present novel
polarization-consistent pcemd basis sets (parametrized at the
HF level of theory) and correlation-consistent ccemd ba-
sis sets (parametrized at the post-HF level of theory) that
produce systematic convergence with respect to the EMD.
The basis sets are available as part of the supplementary
information.16

The EMD was chosen for the study, because as a first-
order property it is very sensitive to the deficiencies in
the wave function, and because EMD-based structural stud-
ies using synchrotron radiation have recently become more
popular.17–29 Therefore devising accurate but computationally
feasible approaches for ab initio calculations of the EMD is
of interest and practical importance.

The structure of the manuscript is the following. In
Sec. II we briefly review the completeness-optimization
scheme. Next, in Sec. III, we discuss the implementation of
the scheme in practice. The results of the study are presented
in Sec. IV, ending in discussion and conclusions in Sec. V.
Atomic units are used throughout the manuscript.

0021-9606/2013/138(4)/044109/8/$30.00 © 2013 American Institute of Physics138, 044109-1
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II. METHOD

The method of completeness-optimization is based on
Chong’s concept of completeness profiles30, 31

Y (α) =〈G(α)|
∑
μν

|μ〉S−1
μν 〈ν||G(α)〉, (3)

which measure the flexibility of the basis set to represent the
used scanning function |G(α)〉. |μ〉 and |ν〉 are functions in
the probed basis set and S−1

μν denotes the (μ, ν) element of
the inverse overlap matrix. The scanning function used in the
current work is a Gaussian primitive

〈r|G(α)〉 = Nrl exp(−αr2)Ylm(r̂), (4)

where l is the angular momentum, Ylm are spherical harmonics
in the real form, and the parameter α has been identified with
the Gaussian exponent. A separate profile is obtained for all
values of l present in a basis set, while all values of m yield an
identical profile. When the basis set is capable of representing
the scanning function, Y(α) ≈ 1.

In contrast to the conventional method of basis set gen-
eration, i.e., optimizing a fixed amount of exponents in order
to produce the minimal possible atomic (or molecular) en-
ergy, in the completeness-optimization scheme the exponents
for each angular momentum shell are obtained by minimizing
the deviation from unity of the completeness profile.1 In the
current work the exponents are determined by minimization
of the measure2, 32

τ = 1

lg αmax − lg αmin

∫ lg αmax

lg αmin

[1 − Y (α)] d lg α, (5)

where lg is the 10-base logarithm. While the limits αmin and
αmax in equation (5) that describe the relevant exponent space
for the examined property are a priori unknown, they can be
determined by a trial and error approach.1, 2, 5–7

As the values of the exponents do not have any direct
connection to the chemistry of the element, completeness-
optimized basis sets have an universal33, 34 nature, since ad-
jacent elements often have similar electronic structures; that
is, basis set requirements.1

The method of completeness-optimization of the expo-
nents bears resemblance to the solution of the Griffin–Hill–
Wheeler (GHW) version of the Hartree–Fock (HF) equa-
tions, which leads to integration over the exponent space.35

This integral can be accurately discretized, while the exact
set of values of the used exponents do not matter as in the
completeness-optimization scheme. Even though the GHW
method is very efficient for generating atomic basis sets at
the HF level,35–39 its applicability beyond the HF atom is un-
clear. In contrast, the completeness-optimization scheme does
not rely on the used level of theory or the property calculated.

The scheme for forming the completeness-optimized ba-
sis sets is the following. Following the procedure of Ref. 2, we
collect the elements of the first three rows into five groups,
shown in Table I, and use the same primitive basis set and
contraction pattern for every element in the group. The prim-
itive set yielding the CBS limit for the moments of the EMD
of the atoms and homoatomic dimers of Table I is formed by
expanding the basis set in a trial-and-error approach until con-

TABLE I. The grouping of the elements into similar shell structures and
the dimers used in the parametrization of the basis sets.2 The primitive set is
expanded until the CBS limits of the moments of the atoms and homoatomic
dimers in the group are found. The pruned (and contracted) basis sets are then
required to reproduce these limits within the wanted accuracy.

r (bohr) State

Group I H2 1.401 1�g

He2 5.612 1�g

Group II Li2 5.051 1�g

Be2 4.000 1�g

Group III B2 3.005 3�g

C2 2.348 1�g

N2 2.074 1�g

O2 2.282 3�g

F2 2.668 1�g

Ne2 5.858 1�g

Group IV Na2 5.818 1�g

Mg2 7.351 1�g

Group V Al2 4.660 3�g

Si2 4.244 3�g

P2 3.578 1�g

S2 3.570 3�g

Cl2 3.755 1�g

Ar2 7.102 1�g

vergence is achieved as measured by2

� = max
k∈K

∣∣∣∣ 〈p
k〉new − 〈pk〉ref

〈pk〉ref

∣∣∣∣ , (6)

where the set of studied moments is K = {−1, 1, 2, 3}, to
which we will refer simply as the moments.

Next, still following Ref. 2, “production-level” primitive
basis sets are formed by pruning unnecessarily thick sampling
of the exponent space. Finally, the pruned exponents are con-
tracted to form the final basis sets, the transferability of which
is verified by calculations on a set of heteroatomic molecules.

In the current work we use slightly revised versions of the
expansion and pruning algorithms, which are available as part
of the supplementary material.16 Furthermore, as the result of
the completeness-optimization procedure is rather insensitive
to its starting point, in the current work we have introduced
Algorithm I which initializes the atomic basis set at the SCF
level of theory, one electronic shell at a time, hence quickly
providing a sensible starting point for the full completeness-
optimization procedure.

ALGORITHM I. Generation of the initial basis set for the group with max-
imum atomic number Z0.

1. Initialize the basis set with 2 s functions, starting from αmin = 0 and
ranging to the value of αmax attainable2 with the set value of τ .

2. Loop over the noble gases with Z ≤ Z0, from lightest to heaviest:
(a) If the atom has electrons on a higher angular momentum shell

than is currently contained in the basis set, add the shell with
two functions on it analogously to step 1.

(b) Expand the basis set until the CBS limit for the gas-phase atom
at the SCF level of theory is attained within εt = 10−1.
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ALGORITHM II. Contraction of completeness-optimized basis sets.

1. Compute the atomic one-electron density matrices for the atoms in
the group at the wanted level of theory.

2. For every value of angular momentum l occupied at the SCF level of
theory (s for H-Be and sp for groups B-Ar), diagonalize the density
matrix in the (ll) sublock to obtain the natural orbitals.

3. If l = 0 the MO coefficients give the exponential contraction straight
away, whereas if l > 0 an average is taken over all of the coefficients
of the orbitals with different values of the z projection m, weighed by
their respective occupation numbers.

4. Compute measures of goodness �l corresponding to the contraction
of an additional exponent in the steep end, considering both the
monomers and dimers.

5. If the minimal change is smaller than the used threshold ε, min l�l

≤ ε, accept the contraction corresponding to the minimal value of �

and return to step 4. Otherwise, end the algorithm.

In order to make the contraction method independent of
the level of theory used, we use atomic natural orbitals (NOs)
to form generally contracted basis sets,40 as summarized in
Algorithm II. In contrast to the previously published ANO
sets of Almlöf, Roos and co-workers,41–43 not all primitives
are contracted. Furthermore, while in the former scheme the
first (contracted) basis functions are simply the occupied HF
orbitals, in our scheme all orbitals are NOs, thus including
correlation effects already in the minimal basis set. At the
SCF level of theory our scheme is equivalent to the conven-
tional HF orbital contraction scheme.

Finally, we note that since 〈p2〉/2 gives the kinetic energy
of the electrons, which at equilibrium is equal to the negative
of the total energy of the system by virtue of the quantum me-
chanical virial theorem, the resulting completeness-optimized
basis sets are polarization-consistent (and also correlation-
consistent in the post-HF case) in the sense of the energy, as
well. However, while the energy holds a special place in the
Schrödinger equation and is thus variational in many mod-
els of quantum chemistry, such as HF, multi-configurational
SCF, and full configuration-interaction, this is not true for the
kinetic energy which is non-variational. In consequence, the
completeness-optimization with respect to the kinetic energy
is more stringent in terms of the basis set requirements, as the
fulfilment of the virial theorem is implicitly required as well.

III. IMPLEMENTATION

We chose to use Møller-Plesset perturbation theory44

truncated at the second order (MP2) in the current work, as
it has been found to account for most correlation effects on
the moments of the EMD.45 The truncation of the virtual or-
bital space with respect to MP2 natural orbitals has been re-
cently found to significantly speed up coupled-cluster calcu-
lations, without compromising their accuracy.46–49 Thus, al-
though the actual values of the moments produced at the MP2
level of theory may be far from correct for systems with sig-
nificant multideterminental nature such as50 N2, we expect the
parametrization at the MP2 level of theory to produce basis
sets suitable also for calculations at higher levels of theory,
such as multi-reference configuration interaction or coupled-
cluster methods.

TABLE II. Compositions of the completeness-optimized polarization-
consistent CBS limit sets.

coemd-ref un-pcemd-ref

Group nbf Composition nbf Composition

I 37 17s5p1d 31 17s3p1d
II 57 20s9p2d 83 21s10p5d1f
III 91 20s13p5d1f 87 21s13p4d1f
IV 64 23s12p1d 82 24s12p3d1f
V 111 21s16p7d1f 111 22s16p5d1f1g

The ERKALE program32, 51 was used to perform the au-
tomatical completeness-optimization procedure and to calcu-
late the moments of the EMD during the optimization.52 The
necessary density matrices were calculated using GAUSSIAN

09.53 All calculations during the optimization were performed
in the spin-unrestricted formalism. However, the calculations
of closed-shell molecules reported in Sec. IV were performed
in the restricted spin formalism. In both cases convergence
to saddle point solutions was prohibited via internal stability
analysis54 of the SCF wave function. All electrons were cor-
related in the MP2 calculations.

In addition to the calculations performed with the
completeness-optimized basis sets, we also performed calcu-
lations using Jensen’s polarization-consistent aug-pc-N basis
set series,8–11 the Dunning-style correlation-consistent aug-
cc-pVXZ basis set series,12–15 and the coemd basis sets2 ob-
tained from the EMSL basis set exchange.55, 56 Calculations
with the aug-pc-N and aug-cc-pVXZ series were performed
both in contracted and uncontracted form, the latter being de-
noted with the un- prefix. Finally, convergence with respect
to diffuse functions was checked by even-tempered extrapo-
lation of the aug-cc-pVXZ series to the doubly and triply aug-
mented d-aug-cc-pVXZ and t-aug-cc-pVXZ sets.57

IV. RESULTS

A. Polarization-consistent basis sets

Due to the slight improvements in the completeness-
optimization algorithms, the use of point group symmetry
and the use of a stability-analyzed unrestricted Hartree–Fock
(UHF) reference during the completeness-optimization, we
began by revisiting the parametrization of the polarization-
consistent primitive sets for the first three rows of the periodic
table at the SCF level of theory, analogously to the coemd ba-
sis sets of Ref. 2.

The CBS limit is obtained with the parameter values
τ = 10−4, εi = 10−1, and εt = 10−4 in the notation of Ref. 2
(meaning that the addition of a further function at any angu-
lar momentum to the final basis set causes a relative change
in the moments smaller than εt = 10−4). The composition of
the resulting un-pcemd-ref basis set, shown in Table II, differs
slightly from that of the coemd-ref set of Ref. 2: the amount
of primitives is significantly increased in groups II and IV, but
slightly reduced in groups I and III. In the un-pcemd-ref basis
set groups II, III, and IV are much more similar to each other
than in the coemd-ref set.
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TABLE III. Contraction schemes of the pcemd and ccemd basis sets. The notation is [primitive | contracted].

Group I Group II Group III Group IV Group V

pcemd-2: [6s1p|3s] [10s3p1d|3s] [10s5p|3s2p] [10s4p|4s1p] [10s7p|3s3p]
pcemd-3: [12s1p|6s] [16s5p2d|7s] [13s7p1d|6s4p] [16s7p1d1f|12s2p] [15s9p2d|5s4p]
pcemd-4: [16s3p1d|9s] [20s8p3d1f|10s] [18s11p3d1f|10s7p] [22s10p2d1f|17s3p] [19s12p3d1f|16s8p]
ccemd-2: [7s1p|3s] [10s4p1d|3s] [9s5p1d|3s4p] [12s4p1d|3s2p] [10s7p2d|3s3p]
ccemd-3: [12s3p1d1f|7s] [14s6p3d1f|8s] [13s7p3d1f1g|8s] [14s8p3d|11s] [15s9p4d2f1g|10s7p]

TABLE IV. Molecules used for the benchmark.

Groups HF MP2 Molecule r (bohr) State

I-I � � H2 1.400 1�

He2 5.628 1�

I-II � LiH 3.015 1�

BeH 2.538 2�

I-III � � BH 2.336 1�

CH 2.124 2�

NH 1.9614 3�

OH 1.8342 2�

HF 1.7328 1�

I-IV � NaH 3.566 1�

MgH 3.271 2�

I-V � � AlH 3.114 1�

SiH 2.874 2�

PH 2.708 3�

SH 2.551 2�

HCl 2.4087 1�

II-II � Li2 5.051 1�

Be2 4.000 1�

II-III � LiO 3.184 2�

LiF 2.955 1�

BeO 2.5149 1�

BeF 2.572 2�

II-V � LiCl 3.825 1�

BeS 3.291 1�

III-III � � B2 3.005 3�

BN 2.421 3�

BO 2.275 2�

BF 2.391 1�

C2 2.3481 1�

CN 2.214 2�

CO 2.132 1�

CF 2.402 2�

N2 2.068 1�

NO 2.1747 2�

NF 2.489 3�

O2 2.282 3�

OF 2.4958 2�

F2 2.680 1�

III-IV � NaF 3.62883 1�

MgO 3.3052 1�

III-V � � PN 2.818 1�

SiO 2.854 1�

AlF 3.126 1�

IV-V � NaCl 4.4609 1�

MgS 4.049 1�

The un-pcemd-ref basis set was then pruned to form
the primitive un-pcemd-4, un-pcemd-3 and un-pcemd-2 basis
sets, similarily to Ref. 2. The sets reproduce the moments of
the EMD at the UHF level of theory with maximum relative
errors of 10−4, 10−3, and 10−2, respectively, as compared to
the CBS limit given by the un-pcemd-ref set.

Finally, while the speed of SCF level calculations is
bound by the cost of integral evaluation, contractions do of-
fer some speed benefits also on the SCF level of theory: the
amount of degrees of freedom is reduced, and so is the num-
ber of two-electron integrals. The primitive un-pcemd sets

TABLE V. The amount of basis functions for elements in groups I-V,
and the mean amount of functions in the calculations of the molecules in
Table IV.

Basis I II III IV V

ccemd-2 6 20 20 14 22
un-ccemd-2 10 27 29 29 41
ccemd-3 28 48 60 50 74
un-ccemd-3 33 54 65 53 85
un-ccemd-ref 53 86 106 97 133

pcemd-2 6 17 9 7 12
un-pcemd-2 9 24 25 22 31
pcemd-3 9 32 23 30 27
un-pcemd-3 15 41 39 49 52
pcemd-4 23 56 53 43 62
un-pcemd-4 30 66 73 69 77
un-pcemd-ref 31 83 87 82 111

coemd-2 7 15 27 23 34
coemd-3 17 26 50 43 50
coemd-4 27 42 69 58 83
coemd-ref 37 57 91 64 111

aug-cc-pVDZ 9 23 23 27 27
un-aug-cc-pVDZ 11 35 35 50 50
aug-cc-pVTZ 23 46 46 50 50
un-aug-cc-pVTZ 25 59 58 79 75
aug-cc-pVQZ 46 80 80 84 84
un-aug-cc-pVQZ 48 93 93 118 112
un-aug-cc-pV5Za 83 . . . 144 . . . 162

aug-pc-2 23 24 46 28 50
un-aug-pc-2 26 36 61 54 76
aug-pc-3 50 48 89 51 89
un-aug-pc-3 54 65 109 86 124
aug-pc-4 88 83 145 85 141
un-aug-pc-4 92 106 167 129 185

aA parametrization of the aug-cc-pV5Z basis set has not been published for groups
II and IV.
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were contracted to produce the pcemd sets, while retaining the
same upper limit for the error as used in the reduction phase.61

The resulting contraction schemes are shown in Table III.

B. Correlation-consistent basis sets

The target accuracy in the polarization-consistent basis
sets εt = 10−4 leads to inconveniently large basis sets when
the post-HF level of theory is considered – unsurprisingly,
obtaining the CBS limit at the MP2 level of theory is much
harder than at the SCF level of theory due to the slow con-
vergence of the description of the electronic cusp. For this
reason, the convergence threshold of the un-ccemd-ref set
was increased to εt = 5 × 10−4. The resulting basis set was
then pruned and contracted analogously as above, yielding the
(un-)ccemd-3 and (un-)ccemd-2 sets that reproduce the mo-
ments of the EMD with maximum relative errors of 10−3 and
10−2 compared to the un-ccemd-ref reference value. The com-
position and contraction schemes of the ccemd sets are shown
in Table III.

It was found that the use of the NO-based contraction
method described in Sec. II yields slightly smaller contraction
errors compared to the use of SCF orbital coefficients. Still,
unlike the polarization-consistent pcemd basis sets, the con-
traction of the ccemd sets does not result in a significant de-
crease in the number of functions for two reasons. First, while
an atomic calculation in a minimal basis set (all functions con-
tracted) yields the same result at the SCF level as with the full
uncontracted set of primitives, at the post-HF level the ad-
ditional virtual orbitals are necessary for obtaining a proper
description of the system. Second, due to the more stringent
basis set requirements, the correlation-consistent ccemd basis
sets feature much more high angular momentum functions.
Thus, the reduction of a few s and p functions does not play
as big a role as at the SCF level of theory. We also note that
the contraction scheme produced by Algorithm II in the case
of the post-HF basis is unconventional, as in groups II and
III of the ccemd-2 basis set there are more p functions than
s functions.

C. Benchmarks

In order to perform a thorough benchmark of the basis
sets, calculations were performed for 45 diatomic molecules
with bond lengths adapted from References 59 and 60, shown
in Table IV. While near-HF calculations for the moments
of the EMD for most of these molecules have been per-
formed in the literature,58, 59 the results have been found to be
unsatisfactory.2 Most of the molecules are heteroatomic, and
thus provide a good probe of the transferability of the basis
sets.

In order to establish a compact representation, we ex-
amine the distribution of the errors in the values of the mo-
ments reproduced by different basis sets to the CBS estimate,
which for the HF level was taken to be the un-aug-pc-4 re-
sult, and for the MP2 level the un-aug-cc-pV5Z result. As
the convergence of 〈p−2〉 and 〈p4〉 with Gaussian basis sets
is not certain,2 we only examine 〈pk〉 for k ∈ {−1, 1, 2, 3}.
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FIG. 1. pcemd series, errors at HF level of theory.

The amount of functions in the used basis sets is shown in
Table V.

1. Hartree–Fock level of theory

The mean and mean absolute errors of the moments at
the HF level of theory are given in Table VI. The error his-
togram for the pcemd-N series is shown in Figure 1, the his-
tograms for the other basis sets are available in the supple-
mentary material.16

As can be seen by comparing the errors in the un-aug-cc-
pVQZ, un-d-aug-cc-pVQZ, and un-t-aug-cc-pVQZ results in
Table VI, the reference calculation is converged with respect
to the diffuse exponents. The accuracy of the chosen reference
values can be estimated from the un-aug-pc-3 errors.

Previous work1, 2, 5–7 has shown completeness-optimized
basis sets to be much more computationally efficient in repro-
ducing CBS limit results than conventional basis sets, when
the property one is interested in is not the energy. The data
in Table VI is conclusive – the completeness-optimized sets
reproduce the moments of the EMD more accurately with a
smaller amount of functions than conventional basis sets.

The reference calculations show that the completeness-
optimized (co-) basis sets systematically overestimate 〈pk〉
for k = −1 and underestimate it for k ∈ {1, 2, 3}. This
occurs because the energy is more sensitive to steep func-
tions than the EMD at the chosen convergence threshold,
and thus the energy-optimized basis sets contain tighter func-
tions. Still, the estimated error in the un-pcemd-ref results is
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TABLE VI. Mean errors (ME) and mean absolute errors (MAE) at Hartree–Fock level of theory in units of 10−4, compared to the un-aug-pc-4 reference
values. The 〈nbf〉 column gives the mean amount of basis functions in the molecular calculations using the given basis set.

〈p−1〉 〈p〉 〈p2〉 〈p3〉
ME MAE ME MAE ME MAE ME MAE Total ME Total MAE 〈nbf〉

ccemd-2 22.802 45.287 − 22.877 22.877 − 12.802 14.370 − 35.289 36.851 − 12.041 29.846 34
un-ccemd-2 18.645 21.327 − 24.364 24.364 − 18.267 18.267 − 43.499 43.499 − 16.871 26.864 53
ccemd-3 − 0.493 2.194 − 2.488 2.503 − 2.055 2.078 − 6.645 6.668 − 2.920 3.361 106
un-ccemd-3 − 0.496 2.191 − 2.493 2.508 − 2.096 2.120 − 7.142 7.142 − 3.057 3.490 118
un-ccemd-ref 0.222 0.418 − 0.344 0.358 − 0.657 0.664 − 4.975 4.975 − 1.438 1.604 191

pcemd-2 36.767 69.273 − 24.068 27.329 − 14.344 21.838 − 22.951 27.018 − 6.149 36.364 19
un-pcemd-2 24.772 30.575 − 22.194 22.194 − 17.396 17.564 − 28.412 29.190 − 10.807 24.881 44
pcemd-3 6.254 7.748 − 3.717 3.717 − 2.266 2.373 − 2.284 3.155 − 0.503 4.248 44
un-pcemd-3 5.584 6.996 − 3.998 3.998 − 2.540 2.675 − 2.574 3.476 − 0.882 4.286 73
pcemd-4 3.164 3.239 − 0.459 0.482 − 0.244 0.345 − 0.797 0.819 0.416 1.221 95
un-pcemd-4 3.054 3.129 − 0.462 0.485 − 0.231 0.304 − 0.716 0.745 0.411 1.166 127
un-pcemd-ref 2.346 2.403 − 0.205 0.243 − 0.119 0.183 − 0.654 0.671 0.342 0.875 156

coemd-2 42.989 46.577 − 29.108 29.108 − 19.418 21.983 − 16.054 37.518 − 5.398 33.797 44
coemd-3 3.378 4.513 − 2.280 2.280 − 0.900 1.039 − 3.162 3.256 − 0.741 2.772 79
coemd-4 1.324 1.477 − 0.261 0.321 − 0.134 0.197 − 0.788 0.791 0.035 0.696 116
coemd-ref 0.908 1.085 − 0.173 0.200 − 0.113 0.134 − 0.781 0.783 − 0.040 0.550 153

aug-pc-2 6.626 7.052 − 0.677 8.620 6.635 12.649 20.499 28.245 8.271 14.141 75
un-aug-pc-2 2.775 3.401 − 0.887 0.887 − 0.991 0.991 − 7.562 7.562 − 1.666 3.210 104
aug-pc-3 1.621 1.985 3.033 5.555 11.340 11.400 30.049 31.367 11.511 12.577 146
un-aug-pc-3 0.214 0.409 − 0.042 0.042 − 0.037 0.038 − 0.577 0.577 − 0.110 0.266 185
aug-pc-4 0.945 1.298 4.066 4.456 8.663 8.699 12.714 12.884 6.597 6.834 241

aug-cc-pVDZ 11.611 12.100 − 7.365 7.854 − 11.765 13.116 − 35.161 36.046 − 10.670 17.279 42
un-aug-cc-pVDZ 10.336 10.697 − 6.578 6.578 − 7.772 7.772 − 21.222 21.222 − 6.309 11.567 66
aug-cc-pVTZ 3.710 3.968 − 1.845 1.948 − 3.192 3.346 − 12.100 12.102 − 3.357 5.341 84
un-aug-cc-pVTZ 3.379 3.592 − 1.540 1.540 − 1.666 1.666 − 7.725 7.725 − 1.888 3.631 110
aug-cc-pVQZ 1.602 1.679 − 0.260 0.464 − 0.288 0.720 − 2.760 2.872 − 0.427 1.434 148
un-aug-cc-pVQZ 1.506 1.602 − 0.432 0.432 − 0.424 0.424 − 2.412 2.412 − 0.440 1.218 176
un-d-aug-cc-pVQZ 1.535 1.837 − 0.419 0.419 − 0.445 0.445 − 2.424 2.424 − 0.438 1.281 222
un-t-aug-cc-pVQZ 1.575 1.586 − 0.386 0.386 − 0.428 0.428 − 2.421 2.421 − 0.415 1.206 269

extremely satisfactory compared to the used CBS conver-
gence threshold.

As has been previously noted,2 the properties of the core
electrons are not correctly reproduced by the pc-N series, as
the error in 〈pk〉 tends to increase with k. However, decontract-
ing the sets leads to much better results. Contractions do not
have a significant effect on the results of the ccemd, pcemd
and the cc-pVXZ calculations.

2. MP2 level of theory

The mean and mean absolute errors of the moments at
the MP2 level of theory are given in Table VII. The error
histogram for the ccemd-N series is shown in Figure 2, the
histograms for the other basis sets are available in the supple-
mentary material.16 Surprisingly, the aug-pc-3 and aug-pc-4
basis sets reproduce better results at the MP2 level of theory
than at the HF level of theory, although the sets have not been
parametrized for post-HF calculations. In contrast, the perfor-
mance of the completeness-optimized pcemd and coemd ba-
sis sets is much worse at the post-HF level – as the basis set
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FIG. 2. ccemd series, errors at MP2 level of theory.
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TABLE VII. Mean errors (ME) and mean absolute errors (MAE) at MP2 level of theory in units of 10−4, compared to the un-aug-cc-pV5Z reference values.
The 〈nbf〉 column gives the mean amount of basis functions in the molecular calculations using the given basis set.

〈p−1〉 〈p〉 〈p2〉 〈p3〉
ME MAE ME MAE ME MAE ME MAE Total ME Total MAE 〈nbf〉

ccemd-2 51.766 58.531 − 37.865 37.865 − 34.987 34.987 − 56.149 56.149 − 19.309 46.883 33
un-ccemd-2 41.982 49.033 − 30.185 30.185 − 24.720 24.795 − 45.145 45.714 − 14.517 37.432 52
ccemd-3 4.926 5.637 − 4.301 4.415 − 3.299 3.713 − 5.137 6.137 − 1.953 4.976 108
un-ccemd-3 4.819 5.570 − 4.069 4.190 − 2.818 3.264 − 5.632 6.601 − 1.925 4.906 120
un-ccemd-ref 1.108 2.232 − 0.068 1.443 − 0.409 1.568 − 3.429 4.605 − 0.700 2.462 193

pcemd-2 45.144 146.520 − 78.655 78.655 − 64.880 64.880 − 45.245 48.763 − 35.909 84.705 17
un-pcemd-2 81.975 81.975 − 37.967 37.967 − 24.813 24.813 − 24.302 26.059 − 1.277 42.703 43
pcemd-3 40.080 45.925 − 23.058 23.186 − 22.944 23.490 − 17.958 20.910 − 5.970 28.378 40
un-pcemd-3 32.833 39.309 − 16.217 16.582 − 9.570 10.324 − 1.358 5.869 1.422 18.021 70
pcemd-4 18.175 18.257 − 9.394 9.394 − 10.131 10.131 − 7.756 7.852 − 2.276 11.408 94
un-pcemd-4 17.201 17.327 − 7.153 7.254 − 4.808 5.411 − 1.237 2.016 1.001 8.002 126
un-pcemd-ref 14.383 14.405 − 6.015 6.092 − 4.135 4.537 − 1.162 1.667 0.768 6.675 153

coemd-2 99.512 100.618 − 51.892 51.892 − 37.956 37.956 − 15.525 34.713 − 1.465 56.295 46
coemd-3 25.666 32.889 − 13.732 14.199 − 10.077 10.870 − 7.038 7.838 − 1.295 16.449 84
coemd-4 16.816 16.816 − 7.606 7.787 − 5.743 6.431 − 2.433 3.244 0.259 8.569 121
coemd-ref 12.869 12.869 − 4.575 4.600 − 3.129 3.508 − 1.173 1.647 0.998 5.656 161

aug-pc-2 22.654 30.652 − 14.657 16.251 − 16.547 21.610 − 9.852 17.807 − 4.600 21.580 82
un-aug-pc-2 14.771 14.771 − 5.865 5.865 − 5.437 5.465 − 11.034 11.034 − 1.891 9.284 109
aug-pc-3 5.640 5.640 − 3.193 6.806 − 2.325 9.834 11.653 13.059 2.944 8.835 159
un-aug-pc-3 0.962 2.287 0.614 1.827 0.494 1.687 − 0.132 0.545 0.485 1.586 195
aug-pc-4 − 0.311 0.808 1.010 3.341 − 0.083 7.586 0.392 10.167 0.252 5.476 261
un-aug-pc-4 − 2.842 2.886 2.363 2.363 2.105 2.139 1.300 1.300 0.732 2.172 302

aug-cc-pVDZ 57.118 62.230 − 34.132 34.132 − 48.133 48.133 − 80.021 80.021 − 26.292 56.129 40
un-aug-cc-pVDZ 46.047 51.582 − 22.984 23.206 − 25.512 25.637 − 40.846 40.846 − 10.824 35.318 62
aug-cc-pVTZ 24.518 24.518 − 15.161 15.161 − 22.280 22.280 − 34.657 34.657 − 11.895 24.154 82
un-aug-cc-pVTZ 18.877 18.877 − 7.509 7.509 − 7.331 7.914 − 14.240 14.303 − 2.551 12.151 104
aug-cc-pVQZ 10.369 10.369 − 7.213 7.213 − 11.971 11.971 − 15.925 15.925 − 6.185 11.370 144
un-aug-cc-pVQZ 7.205 7.205 − 2.243 2.314 − 1.858 2.600 − 3.599 3.941 − 0.124 4.015 169
un-d-aug-cc-pVQZ 7.465 7.465 − 2.236 2.307 − 1.900 2.626 − 3.638 3.975 − 0.077 4.093 215
un-t-aug-cc-pVQZ 7.276 7.276 − 2.221 2.291 − 1.906 2.628 − 3.647 3.982 − 0.125 4.044 260

requirements of the level of theory change, so, too, must the
basis set.

The performance of the completeness-optimized basis
sets is insuperable also at the post-HF level of theory. While
the ccemd-3 set is much smaller than the aug-cc-pVQZ
set, it is more than twice as accurate. Although the same
overestimation-underestimation behavior is seen for the co-
sets also at the MP2 level of theory, the errors in the un-
ccemd-ref set compare very favorably to the used CBS limit
convergence threshold.

V. DISCUSSION AND CONCLUSIONS

Using the completeness-optimization scheme, we
parametrized contracted polarization-consistent pcemd basis
sets that are completeness-optimized for the modeling of
the electron momentum density. The introduction of the use
of stability analysis of the SCF wave function during the
optimization resulted in minor changes in the compositions
of the primitive basis sets, as compared to the coemd sets
introduced in Ref. 2. In spite of these differences, the two sets
were found to reproduce results of a similar accuracy. The

contraction of the primitive un-pcemd-n sets to the pcemd-n
sets was found to yield significant reductions in the amount
of basis functions.

Next, the completeness-optimization approach was
shown to work also at the post-HF level of theory, and to con-
verge towards the corresponding CBS limit. However, due to
more the stringent basis set requirements at the post-HF level
of theory the convergence with respect to the size of the ba-
sis set is much slower and contractions are less cost-effective
than at the SCF level of theory.

The deviation of the results computed using the CBS
limit un-pcemd-ref and un-ccemd-ref sets from the CBS lim-
its estimated with the un-aug-pc-4 and un-aug-cc-pV5Z ba-
sis sets at HF and MP2 levels of theory, respectively, were
found to be similar to the used convergence threshold of the
completeness-optimization algorithm.

The pcemd and ccemd basis sets, pruned and contracted
from the CBS limit un-pcemd-ref and un-ccemd-ref sets, re-
spectively, were found to outperform conventional basis sets
in terms of accuracy and computational performance at the
HF and MP2 levels of theory, respectively. The contraction of
the basis sets was shown not to compromise the accuracy of
the results.
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In the current and our preceding article we have demon-
strated the applicability of the completeness-optimization
paradigm to the electron momentum density. We have
introduced automatic algorithms that can be used for black-
box optimization of contracted basis sets adapted for the
computation of any property at any level of theory. Due to
the straightforward applicability of the algorithms, we ex-
pect them to be of great practical importance for the gener-
ation of compact, application-specific basis sets giving near-
CBS limit results. The used completeness-optimization algo-
rithms are freely available as part of the ERKALE program
suite.51
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ERKALE—A Flexible Program Package for X-ray Properties
of Atoms andMolecules
Jussi Lehtola,∗[a] Mikko Hakala,[a] Arto Sakko,†[a] and Keijo Hämäläinen[a]

ERKALE is a novel software program for computing X-ray
properties, such as ground-state electron momentum densities,
Compton profiles, and core and valence electron excitation
spectra of atoms and molecules. The program operates at
Hartree–Fock or density-functional level of theory and supports
Gaussian basis sets of arbitrary angular momentum and a wide
variety of exchange-correlation functionals. ERKALE includes
modern convergence accelerators such as Broyden and ADIIS

and it is suitable for general use, as calculations with thousands
of basis functions can routinely be performed on desktop com-
puters. Furthermore, ERKALE is written in an object oriented
manner, making the code easy to understand and to extend to
new properties while being ideal also for teaching purposes.
© 2012 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.22987

Introduction

Checking the reproducibility of published results is sometimes
troublesome in computational science, as the path from an
algorithm to a working program may be long and winding.
Verifying or improving on the correct functionality of existing
software packages is often not possible due to the lack of access
to the source code or its restrictive licensing. On the other
hand, developing a completely new code may be prohibitively
expensive. The easy availability of free software thus not only
increases the productivity of scientific research but also benefits
society on a larger scale, as parts of existing programs can be
reused for new purposes.

In the field of quantum chemistry, there is a multitude of
free density-functional theory[1, 2] (DFT) codes using a wide
variety of approaches to represent the molecular orbitals
(MOs), such as plane-waves (e.g., ABINIT,[3, 4] NWChem,[5, 6] and
Quantum ESPRESSO[7, 8]), wavelets (BigDFT,[9, 10] DFT++[11, 12] and
M-A-D-N-E-S-S[13]), numerical atomic orbitals (OpenMX[14] and
GPAW[15, 16]), and numerical grids (GPAW and Octopus[17, 18]),
for example. However, these approaches (with the excep-
tion of multiresolution grids) become computationally prob-
lematic when hybrid DFT functionals[19] are used, due to
the need to compute the exact exchange (see Hartree-Fock
section).

Using a basis set consisting of Gaussian type orbitals (GTOs)[20]

greatly simplifies the implementation of Hartree–Fock (HF) and
hybrid DFT, as most of the necessary integrals can be com-
puted efficiently and analytically using recursion relations.[21, 22]

The main drawback of the Gaussian basis set is its incorrect
asymptotic behavior, notably the violation of the nuclear cusp
condition and the asymptotic decay that is too fast.[23] Slater-
type orbital (STO) basis sets do not have these shortcomings
and can also be used to perform HF and hybrid DFT calcu-
lations when suitable fitting algorithms are used,[24, 25] but a
greater number of integrals need to be performed using purely
numerical quadrature. This approach has been chosen in the
commercial ADF code.[26, 27]

However, global basis sets (e.g., STOs and GTOs) often suf-
fer from linear dependence problems and nonsmooth basis set
convergence, making it hard to approach the complete basis
set limit and thus to verify the numerical accuracy of the results.
Comparing properties in different molecular geometries is also
nontrivial when a localized basis is used, as the basis set changes
with the geometry. This is known as the basis set superposition
error, which can be partly remedied by performing counterpoise
calculations.[28] Even so, the complexity of the necessary coun-
terpoise procedure increases rapidly with system size, absorbing
some of the computational gains obtained with the use of a
localized basis set.

The problems related to global basis sets can be solved by
using multiresolution grids that grant uniform convergence
and guaranteed precision, as is done, for example, in the
M-A-D-N-E-S-S code.[13] Although HF and (pure and hybrid) DFT
calculations using multiresolution grids have been reported in
the literature[29–31] and the approach holds great promise, it is
still in its infancy and has larger computational requirements
than basis set calculations performed at moderate accuracy.

Despite all their shortcomings, Gaussian basis sets predomi-
nate quantum chemical calculations, as the simplicity of integral
evaluation not only allows fast HF and DFT calculations but also
makes it straightforward to perform post-HF calculations at, for
example, Møller–Plesset[32] or coupled-cluster[33] level of the-
ory. Free GTO codes include the linear-scaling codes Ergo,[34, 35]

FreeON,[36] and CP2K,[37, 38] and the orbital-based ACES II[39, 40]

and ACES III,[40, 41] MPQC,[42] NWChem,[5, 6] and PSI3[43, 44] codes.
These programs constantly provide the usual functionalities
related to energetics and static response functions, but often
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it is difficult to find software for more specific calculations, for
example, for various spectroscopic applications.

In this article, we present a novel software program—
ERKALE[45]—that has been developed to remedy the situation,
especially in the domain of nonresonant inelastic X-ray scat-
tering (NRIXS) spectroscopy. The program shares substantial
amounts of code with, for example, PSI3, MPQC, and CP2K
through its use of the libint library[46] for the computation
of two-electron integrals, and on the other hand with ABINIT,
BigDFT, and GPAW through the use of the libxc library[47]

for evaluating exchange-correlation (XC) energy densities and
their functional derivatives in DFT calculations. The program
is freely available under the terms of the GNU General Public
License[48]‡.

The organization of this article is as follows. First, we provide
a brief review of the theoretical methods used in the program
(Theory section), and then we discuss their implementation in
practice (Implementation section). Next, we present applications
of the code (Applications section) to computing ground-state
electron momentum density (EMD) properties and the Comp-
ton profile (Electron momentum density and Compton profile
section), completeness-optimization of basis sets (Completeness-
optimized basis sets section) as well as the modeling of core
and valence electron excitations (Core electron excitation and
Valence electron excitations sections, respectively) in a simple
model system: the water dimer. Finally, we conclude with an
outlook on the future prospects of the code (Conclusion and
Outlook section). All equations in the current work are given
in atomic units. Furthermore, the coordinate representations of
the basis functions and MOs are assumed to have real values.

Theory

Basis set

ERKALE operates with a basis set consisting of segmented con-
tractions of GTOs[20, 23] in either cartesian [Eqs. (1) and (2)] or
spherical [Eqs. (1) and (3)] form.

φµ(r) = �λµ(r)
∑
p

dµpe
−ζµp(r−rµ)2

(1)

�cart
λµ

= Ncart
µ (x − xµ)lµ(y − yµ)mµ(z − zµ)nµ (2)

�
sph
λµ

= Nsph
µ |r − rµ|λµYλµM(r̂ − rµ). (3)

Here, φµ(r) = 〈r |µ 〉 is the coordinate representation of the µth
basis function, centered at rµ = (xµ, yµ, zµ). �λµ contains the
angular part of the basis function and λµ = (lµ,mµ, nµ) is its
angular momentum. dµp and ζµp are the contraction coefficient
and exponent, respectively, of the pth primitive Gaussian func-
tion in the µth basis function. Ncart

µ and Nsph
µ are normalization

constants, such that 〈µ |µ 〉 = 1.
Basis functions, which are located on the same center rµ,

share the same primitive contraction and have the same angular
momentum λµ = lµ + mµ + nµ [see Eqs. (2) and (3)], form a

‡(ERKALE is licensed under the GNU General Public License version 2, or (at your
option) any later version)

shell of functions. The functions YLM(r̂) in Eq. (3) are spherical
harmonics in the real form, r̂ denoting the unit vector in the
direction of r. The functions YLM can be expressed as a sum of
the cartesian functions of the same shell.[23] All operations with
basis functions, such as evaluation of the basis functions at a
point, are performed on a shell basis in ERKALE.

Self-consistent field equations

Expressing the spatial part of the MOs in the basis set as

ψσ
i (r) =

∑
µ

Cσ
µiφµ(r), (4)

where ψσ
i

is the ith MO of spin σ and Cσ
µi is the coefficient of

the µth basis function in its expansion, the sum running over
all basis functions µ in the basis set, one famously obtains the
Roothaan–Hall self-consistent field (SCF) equation for the MO
coefficients C[49]

FC = ESC (5)

or its spin-polarized counterpart, the Pople–Nesbet equations[50]

{
FαCα = EαSCα ,
FβCβ = EβSCβ .

(6)

α and β denote the states for spin up and spin down electrons,
respectively, and S is the overlap matrix with elements Sµν =
〈µ |ν 〉. The Fock matrix F is defined as

Fσ = Hcore + J + Kσ , (7)

where Hcore contains the kinetic energy of the electrons T and
the Coulombic attraction of the nuclei Vnuc, with matrix elements

Hcore = T + Vnuc, (8)

Tµν =
〈
µ

∣∣∣∣−1

2
∇2

∣∣∣∣ ν
〉

, (9)

Vnuc
µν =

〈
µ

∣∣∣∣∣−
∑
N

ZN

|r − RN|

∣∣∣∣∣ ν
〉

. (10)

The matrix J in Eq. (7) describes the static Coulomb repulsion
of the electrons with themselves

Jµν =
∑
ρτ

Pρτ (µν |ρτ ) , (11)

where the sums over ρ and τ are taken over all basis functions.
P is the total electron density matrix

P = Pα + Pβ , (12)

where the spin-density matrices Pα and Pβ are given by

Pσ
µν =

∑
i

nσ
i C

σ
µiC

σ
νi , (13)
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in which nσ
i

is the occupation number of orbital i of spin σ , the
sum over i running over all MOs. (µν |ρτ ) in Eq. (11) denotes
an electron repulsion integral (ERI)

(µν |ρτ ) =
∫

d3r

∫
d3r ′

φµ(r)φν(r)φρ(r′)φτ (r′)
|r − r′| . (14)

Next, we will discuss the form of the XC matrix Kσ , which is
different in HF and DFT.

Hartree–Fock

In HF, the matrix Kσ in Eq. (7) contains the exchange contribution
to the Fock matrix, and its elements are

KHF,σ
µν = −

∑
ρτ

Pσ
ρτ (µρ |τν ) . (15)

In the closed-shell case, Pσ is replaced with P/2 in Eq. (15).
The energy expressions for restricted (RHF) and unrestricted

HF (UHF) are[51]

ERHF = Tr

[
P

(
Hcore + 1

4

(
2J + KHF

))]
, (16)

EUHF = Tr

[
P

(
Hcore + 1

2

(
J + KHF,α + KHF,β

))]
. (17)

Restricted open-shell HF (ROHF) is also available in ERKALE
by the constraint of spin-contamination in the UHF Fock
operators.[52] In this approach, the energy expression retains
its UHF form.

Kohn–Sham DFT

In DFT calculations, Kσ contains both exchange and correlation.
For unrestricted DFT (UDFT) using functionals in the generalized-
gradient approximation[53] (GGA), the elements of Kσ are[54]

KUDFT,σ
µν =

∫ [
δf xc

δρσ (r)
φµ(r)φν(r)

+
(

2
δf xc

δγ σσ (r)
∇ρσ (r) + δf xc

δγ σσ ′
(r)

∇ρσ ′
(r)

)
· ∇(φµ(r)φν(r))

]
d3r

(18)

where f xc = f xc(ρα(r), ρβ(r), ∇ρα(r), ∇ρβ(r)) is the GGA XC
energy density and δf /δρ denotes the functional derivative. The
spin variable σ ′ is defined in Eq. (18) by σ ′ �= σ . The quantity
γ σσ ′

is given by

γ σσ ′
(r) = ∇ρσ (r) · ∇ρσ ′

(r), (19)

in which ρσ is the spin density

ρσ (r) =
∑
µν

Pσ
µνφµ(r)φν(r), (20)

where the sums over µ and ν run over all basis functions.

In the case of restricted DFT (RDFT), the matrix K is simply

KRDFT
µν =

∫ [
δf xc

δρ(r)
φµ(r)φν(r) + 2

δf xc

δγ (r)
∇ρ(r) · ∇(φµ(r)φν(r))

]
d3r,

(21)

where ρ(r) = ρα(r) + ρβ(r) is the total electron density and
γ (r) = ∇ρ(r) · ∇ρ(r). The energy expressions for DFT are[54]

EDFT = Tr

[
P

(
Hcore + 1

2
J
)]

+ Exc, (22)

Exc,RDFT =
∫

f xc(ρ(r), γ (r))d3r, (23)

Exc,UDFT =
∫

f xc(ρα(r), ρβ(r), γαα(r), γαβ(r), γββ(r))d3r. (24)

Although Eqs. (18), (21), (22), (23), and (24) were presented for
reasons of simplicity only for the case of GGA functionals, local
spin density[2] (LDA), hybrid[19] and meta-GGA[55] functionals are
supported in ERKALE as well. When hybrid functionals such as
B3LYP[56] are used, a part of HF exchange [Eq. (15)] is added to
Eq. (18) or (21). On the other hand, when hybrid functionals are
not used, there is no need to compute Eq. (15), so the Coulomb
term [Eq. (11)] can be approximated using density fitting[57, 58]

as[59]

Jµν ≈
∑
AB

(µν |A ) (A |B )−1
∑
ρτ

Pρτ (B |ρτ ) , (25)

where (µν |A ) and (A |B ) are three- and two-center ERIs§ and
(A |B )−1 denotes the (A, B)-element of the inverse matrix. The
sums over A and B run over the functions in the auxiliary basis
set, which is by default formed automatically[60] in ERKALE.

Implementation

Formation of matrices

The matrix elements of S, T, and Vnuc are computed in ERKALE
on a shell basis by using Obara–Saika recursion routines.[21] ERIs.
are computed with the libint library[46] that uses Obara–Saika[21]

and Head–Gordon–Pople recursions.[22] All of these integrals are
performed in the Cartesian basis and then transformed into the
spherical basis if necessary. The computation of matrix elements
over the Coulomb operator 1/r (i.e., for Vnuc and ERIs) requires
the evaluation of the Boys’ function[20]

Fm(x) =
∫ 1

0
t2me−xt2dt, (26)

which is computed in ERKALE using a Taylor series when x � 1.
Otherwise, the Boys’ function is computed as

Fm(x) = 1

2
x

−m− 1
2 �

(
m + 1

2

)
γ

(
m + 1

2
; x

)
, (27)

§The two- and three-center ERIs can be written as usual four-center ERIs as, for
example, (A |B ) = (As |Bs ), where s denotes the s-type dummy GTO given by
1 × exp(−0 · r2), respectively.
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where � and γ are Euler’s complete and incomplete Gamma
functions,[61] respectively, the values of which are computed
using the GNU Scientific Library.[62]

In DFT calculations, the elements of the XC potential matrix
KDFT need to be integrated numerically. When pure DFT methods
are used, the most computational time in large systems is spent
in forming KDFT. The formation of the XC potential matrix in
ERKALE is based on a modern variant[63] of Becke’s original atom-
centric approach,[64] in which the XC integration grid is formed
adaptively to converge the diagonal elements of KDFT within
the wanted tolerance τ . This procedure guarantees accuracy
with the minimal amount of computational time. The XC grid
formation in large systems is typically found to take less time
than a single SCF iteration.

Furthermore, as the initial guess density is often far from
the converged density, inspired by the work of Köster et al.[63]

ERKALE first performs a complete SCF cycle with a modest
integration grid (tolerance τinitial = 10−4 a.u.) and convergence
criteria. When the calculation has reached this modest stage
of convergence, the grid is reformed with an increased pre-
cision (τfinal = 10−5 a.u.), and the iteration is continued until
full self-consistency is achieved. We have found that this choice
saves computational time, while reproducing the same result
as when using τinitial = τfinal. The default values of τinitial and
τfinal correspond to energy errors of less than 2 × 10−4 and
2 × 10−5 a.u., respectively, for systems containing first and sec-
ond row elements[63] (after the grid has been reformed with
the correct SCF density). All of these control parameters can be
freely modified in the input file.

The XC energy density and its functional derivatives are evalu-
ated with the libxc library.[47] The atom-centric radial integrals in
the Becke scheme are computed using Gauss–Chebyshev quad-
rature of the second kind.[63] The angular integrals on each radial
shell are performed by default with Lebedev quadrature,[65–70]

but Lobatto quadrature[71] is available as well. The local nature
of the basis functions is used to screen and select only the
numerically significant functions in the formation of KDFT [72] by
requiring that the absolute value of the basis function is at least
ε = 10−10 a.u.[73] in the grid point¶ . The quadrature in Eq. (18)
and (21) is performed directly in the spherical basis, if applicable.

None of the aforementioned integrals have any limitation
with respect to the maximum angular momentum of the used
basis set, thus ERKALE supports basis sets of arbitrary angular
momentum‖ . Furthermore, all of the integrals are parallellized,∗∗

which is especially important when large systems are studied.

¶The screening of basis functions is performed in ERKALE shell by shell.For each
shell of basis functions (centered at Rsh) an effective radius Rε is determined by
the requirement |φi(|r − Rsh|)| ≤ ε, when |r − Rsh| > Rε , where φi are basis
functions belonging to the studied shell of basis functions. Basis functions are
prescreened on the radial grid before point-by-point screening on the angular
mesh. This is done by including the shell at Rsh for screening on the angular
points of the radial shell (radius r) of the atom at R0 only if ||Rsh − R0| − r|
≤ Rε .
‖However, when extremely high values of angular momentum are used, the
numerical accuracy of the recursion routines is not guaranteed.
∗∗The parallellization is implemented using OpenMP, which can be used to
speed up the computation on shared-memory computers, such as modern
multicore workstations.

When many basis functions are included in the calculation,
the necessary ERIs [Eqs. (11), (15), and (25)] might not fit in the
memory. Therefore, direct SCF calculations[74] with Schwarz pre-
screening of ERIs are supported both for HF and DFT methods.
Because of the parallellization and the possibility of comput-
ing integrals on-the-fly, calculations with thousands of basis
functions can be routinely performed on desktop computers.

Self-consistent solution

Equations (5) and (6) are solved iteratively until self-consistency
is attained. The iteration starts by default from an atomic ROHF
guess[75]; the core guess (eigenvectors of Hcore) is also available.
The solution is obtained in a canonically orthonormalized[76]

basis, with eigenvectors of S with eigenvalues smaller than ε

(by default ε = 10−5) removed from the basis set.
Accelerators are used to improve the convergence of the

fixed point iteration of Eqs. (5) and (6). ERKALE performs Pulay’s
direct inversion in the iterative subspace (DIIS),[77, 78] which is a
well-established tool for improving SCF convergence. As a new
feature, DIIS combined with energy estimation (ADIIS),[79] which
is based on the augmented Roothaan–Hall energy expression,[80]

can be used to speed up the initial convergence. A novel
Broyden-type secant method[81] is available as well for Fock
matrix updates. We have found the Broyden method to outper-
form DIIS and ADIIS on many occasions, especially in calculations
using the transition potential approximation (TP; see Core
electron excitations section).

Applications

In the following section, we present applications of ERKALE to
different X-ray spectroscopic methods, using a simple model
system: the water dimer, the geometry of which is given in
Table 1.

EMD and Compton profile

The EMD is analogous to the electron density in momentum
space. The EMD can be computed in general in localized basis
sets as[82–84]

n(p) =
∑
µν

Pµνφ̃µ(p)φ̃ν(p), (28)

where φ̃µ is the Fourier transform of the µth basis function and
the overline denotes complex conjugation. The Fourier trans-
forms of the Gaussian basis functions are evaluated in ERKALE
with a recursion relation.[85] In isotropic or amorphous systems,
such as liquids and gases, the relevant quantity to compute is
the radial EMD

n(p) =
∫

n(p)d�p. (29)

The ground-state EMD can be measured, for example, with
Compton scattering (CS) experiments at modern synchrotron
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radiation facilities.[83, 84, 86] CS experiments on isotropic samples
yield the isotropic Compton profile

J(q) = 1

2

∫ ∞

|q|
pn(p)dp. (30)

Difference Compton profiles are often studied in experiments.
Although DFT does not reproduce the absolute momentum
density correctly,[87–91] it often reproduces these differences
well,[90, 92, 93] hybrid functionals likely faring better than pure
functionals.[90]

Figure 1. Radial EMDs of the water dimer (solid line) and the monomer (dashed
line), calculated at HF level using the aug-cc-pVTZ basis set.

Table 1. The used water dimer geometry.

x/Å y/Å z/Å

O −1.464 0.099 0.300
H −1.956 0.624 −0.340
H −1.797 −0.799 0.206
O 1.369 0.146 −0.395
H 1.894 0.486 0.335
H 0.451 0.165 −0.008

ERKALE can currently compute the EMD [Eq. (28)], the radial
EMD [Eq. (29)] and the isotropic Compton profile [Eq. (30)] as
described in reference Ref. [90] using HF or any of the DFT
methods that are implemented. As an illustration, Figure 1 shows
the radial EMDs of the water dimer and of the monomer (taken
as the first molecule in Table 1), computed using HF and the
Dunning-style aug-cc-pVTZ basis set[94–96] obtained from the
ESML basis set exchange.[97, 98] Figure 2 shows the difference
Compton profile between these systems, which we define as in
Ref. [90] as

�J(q) = Jdimer(q) − 2 Jmonomer(q)

Jdimer(0)
. (31)

The difference profile can be understood as a measure of the
change induced on the EMD by the chemical environment.

Figure 2. Difference Compton profile of the water dimer versus the monomer,
calculated at HF level using the aug-cc-pVTZ basis set.

Difference profiles have been successfully used in studying, for
example, temperature-dependent hydrogen bond networks in
water,[99, 100] configurational energetics in ice,[101] and solvation
in water–ethanol mixtures.[102]

Completeness-optimized basis sets

Completeness profiles were introduced by Chong as a graph-
ical means to study the completeness of one-electron basis
sets.[103, 104] The completeness profile for an atomic basis set is
given by

Y(α) =
〈
α

∣∣∣∣∣
∑
µν

|µ〉 S−1
µν 〈ν|

∣∣∣∣∣ α
〉

, (32)

where |µ〉 and |ν〉 are the functions centered on the atom,
the basis set of which is investigated, and |α〉 is the scanning
function. When the basis set is flexible enough to represent
the scanning function Y(α) ≈ 1. Although, in principle, any
normalizable function can be used to probe the basis set, Gauss-
ian scanning functions (also centered on the same atom) are
conventionally used:

〈r |α 〉 = NrlYlm(r̂)e−αr2 , (33)

where N is the normalization constant. In the computation of
completeness profiles, it is assumed that also the basis set
uses pure spherical functions [Eq. (3)]. A separate profile is then
obtained for each value of l present in the basis set, while all val-
ues of m yield an identical profile, as is easily seen from Eq. (32)
by using the orthogonality properties of spherical harmonics.

Conventional basis sets are energy optimized, which tends
to overemphasize the tightly bound region and neglect the
diffuse area.[104] Manninen and Vaara introduced completeness-
optimization of basis sets[105] as a systematical as well as
practical approach to the complete basis set limit. Indeed,
many molecular properties have been found to converge faster
with completeness-optimized basis sets than with conventional,
energy optimized basis sets.[105–108] As well as the Kruununhaka
basis set tool kit,[109] ERKALE can be used to plot completeness
profiles and generate completeness-optimized primitive sets.
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In the completeness optimization paradigm, the primitives in
each angular momentum shell in the basis set are optimized
so that the resulting completeness profile is as close to unity
as possible in the exponent range α ∈ [α1, α2] that is relevant
for the computed property[105]††. The optimization in ERKALE is
performed by minimizing the measure

τn =
[

1

log α2 − log α1

∫ log α2

log α1

[1 − Y(α)]nd log α

]1/n

(34)

where n = 1 corresponds to maximization of the area of com-
pleteness (as done in Refs. [105–108]) and n = 2 to minimization
of the root mean square deviation from completeness. The
completeness-optimization of the basis set using Eq. (34) is
a highly nonlinear task. However, it is greatly simplified by
the fact that the solution is independent of the ordering of
the exponents. ERKALE performs the minimization using the
Nelder–Mead simplex algorithm[110] as implemented in GSL,[62]

which in our calculations systematically provided better opti-
mized basis sets (smaller τn) than the stochastic differential
evolution algorithm[111] used in previous work.[105]

The modeling of excitation spectra discussed in the follow-
ing subsections requires rather large basis sets to be used to
obtain satisfactorily converged results. X-ray absorption and X-
ray Raman calculations (see Core electron excitations section)
often use the IGLO-III basis set[112] for describing the excited
atom, whereas Casida calculations for valence excitations often
use the Sadlej basis set.[113, 114] The contraction scheme for IGLO-
III is 6s2p/4s2p (H) and 11s7p2d/7s6p2d (O), and for the Sadlej
basis, it is 6s4p/3s2p (H) and 10s6p4d/5s3p2d (O). For compar-
ison, the aforementioned aug-cc-pVTZ basis is 6s3p2d/4s3p2d
(O) and 11s6p3d2f /5s4p3d2f (H). For this work, we have gen-
erated a 7s6p basis for hydrogen and a 10s10p5d basis for
oxygen using the root mean square metric in Eq. (34). The gen-
erated bases are more complete than IGLO-III and Sadlej basis
sets, and more sp- and spd-complete than the aforementioned
aug-cc-pVTZ basis set for hydrogen and oxygen, respectively. As
an illustration, the completeness profiles of the basis sets taken
from Ref. [98] are shown in Figure 3. The completeness-optimized
basis sets are available in Supporting Information.

Core electron excitations

In X-ray absorption spectroscopy (XAS), the energy of the incom-
ing photon beam is in the vicinity of a core orbital binding
energy of the investigated sample. Because of this, XAS is an
element-selective probe of the electronic structure. When XAS is
performed in the soft X-ray regime (e.g., K -edges of second-row
elements), it becomes highly sensitive to the sample surface.[115]

Because of the high absorption, the experiments are often
performed in high-vacuum environments. In contrast, in X-ray
Raman scattering (XRS), only the energy transfer is close to the
core electron binding energy, making XRS a bulk probe also
for excitations in the soft X-ray energy range and enabling, for
example, measurements of the oxygen K -edge in complicated

††See Refs. [105–107] on how to choose the relevant values for α1 and α2.

experimental setups, such as high-pressure measurements in
diamond anvil cells.[115, 116] The information contents of XRS is
analogous to that obtained through XAS. However, the XRS
spectrum is also dependent on the momentum transfer, which
can be used to extract supporting information not available in
XAS experiments.[117–120]

XAS and XRS spectra are computed within ERKALE in the
TP approximation,[121] which is based on Slater’s transition state
approximation.[122, 123] The same approach is also available in,
for example, the StoBe-deMon,[124] CP2K,[37, 38] and the GPAW[15]

codes for modeling XAS. Although XRS spectra have been
computed with TP in Gaussian basis sets before[125] using a post-
analysis tool to StoBe-deMon, ERKALE is to our knowledge the
first published code to perform this task as a standard feature.
We note that XAS/XRS can also be computed using the Bethe–
Salpeter equation,[126] for example, with the OCEAN code,[127]

or in the real-space multiple scattering approach[120, 128, 129] with
the FEFF code.[130]

In the TP approximation, an occupation of 0.5 is set on the
core orbital with spin σ , which is localized on the atom being
excited. The system is left with a net charge +0.5‡‡. For systems
with a closed-shell ground state, the excitation is conventionally
performed for the spin α core orbital (σ = α). On the other hand,
when the ground state is spin polarized, a separate calculation
needs to be performed for both α and β excitations. The main
advantage of TP is that all excitation energies and transition
rates are obtained with a single calculation. TP has also been
shown to reproduce experimental XAS spectra well, see Ref.
[131] for a review in the case of water.

However, TP does not produce a reliable energy scale,[131] as
it neglects the relaxation of the electrons in the presence of
the full core hole, the magnitude of which depends on the
excited center. When aggregate spectra are computed from
cluster snapshots or from nonequivalent sites in a molecule,
a uniform energy scale needs to be established. This can be
done by computing the difference in the total energy of the
first core-excited state (XCH)§§ and the ground state for each
configuration or nonequivalent center.[132] The first TP transition
is then set to occur at this energy.[132, 133] After an absolute
energy scale has been established, the resulting spectra need
still to be shifted to account for, for example, deficiencies in the
approximate DFT functional as well as relativistic and basis set
incompleteness effects.[134]

The determination of the excited core state is performed
dynamically in ERKALE during the SCF iteration process by com-
puting the centers 〈ri〉 and rms widths �ri of each occupied
orbital ψσ

i
of the excited spin σ

〈ri〉 = 〈
ψσ

i |r| ψσ
i

〉
(35)

�ri =
√〈

ψσ
i

∣∣(r − 〈ri〉)2
∣∣ ψσ

i

〉
(36)

‡‡This refers to gas-phase calculations (i.e.,molecules and clusters) as computed
by ERKALE.
§§By the first core-excited state, we mean a full core hole with the excited
electron placed on the lowest unoccupied state.
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Figure 3. Completeness profiles for the studied basis sets.The profile for hydrogen is on the left, whereas oxygen is on the right.

and then by choosing the orbital i that is the most localized
on the excited atom at R0, determined by the minimal value
of the product �ri |ri − R0|.

When calculating systems with several symmetry equivalent
sites such as benzene, localization of the excited core state

(here carbon 1s) can be enforced by freezing the other similar
(carbon 1s) states in the system.[131] The frozen core for each

atom is determined in ERKALE from a ground-state calculation
by computing the matrix elements of r around the atom (located
at RI)
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r2
ij =

√〈
ψσ

i

∣∣(r − RI)2
∣∣ ψσ

j

〉
, (37)

in the space of occupied orbitals i, j and diagonalizing the
resulting matrix to obtain the corresponding eigenvectors and
eigenvalues¶¶. The actual freezing of the orbitals is performed
in ERKALE in the SCF iteration after the formation of the Kohn–
Sham Fock matrix by transforming it into the MO basis

Fσ
MO = (Cσ )TFσ

AOC
σ (38)

and setting the (n, f ) and (f , n) elements to zero, where f and n

stand for indices of frozen and nonfrozen orbitals, respectively.
Then the Fock operator is transformed back into the AO basis
with

Fσ
AO = SCσFσ

MO(Cσ )TS. (39)

The frozen core approximation presented above has been found
to have little effect on the total and orbital energies in molecular
systems.[135] A commonly used approximation to the frozen core
is the effective core potential (ECP) approach, which has been
shown to have little effect on the ground state geometry, spec-
troscopic parameters, and the dissociation energy.[136] Although
ECPs can be used to reduce the computational demands by
removing the core electrons from the calculation and also incor-
porate relativistic effects, for light elements, the first is not
a substantial gain (as there are but few core electrons and
their integrals are effectively screened out) and the second are
not notable. Thus, in this case using ECPs just introduces an
unnecessary approximation.

Furthermore, most ECPs reported in the literature for Gaussian
basis sets have been parameterized against HF (or relativistic
Dirac–Fock) calculations. Although core orbitals are similar in HF
and DFT, being able to use (frozen) core orbitals corresponding
exactly to the used XC functional can be deemed important,
especially when developing new XC functionals. The method
summarized above is more flexible also in that the used (core
and valence) basis sets can be easily changed.

In the dipole approximation, the XAS spectrum is proportional
to the dipole oscillator strength

fi(ω) =
∑
f

(
εσ
f − εσ

i

)∣∣ 〈ψσ
f |ε · r| ψσ

i

〉 ∣∣2
δ
(
εσ
i + ω − εσ

f

)
, (40)

where ε is the polarization of the incoming photon beam,
∣∣ψσ

i

〉
and

∣∣ψσ
f

〉
are the excited initial one-particle state and the final

one-particle state with energies εσ
i

and εσ
f

, respectively, and

¶¶In the benzene example, there are 42 electrons, that is, 21 occupied orbitals
in the (restricted) ground state. Localizing the 1s states of the excited spin σ

on each of the carbons, for the first atom, the size of the diagonalized r2
ij

matrix
is 21 × 21. The occupied spin σ orbitals are updated to correspond to the
eigenvectors, and the one corresponding to the lowest eigenvalue is assigned
to be frozen and dropped from further iterations. The iteration continues over
the other centers, and the diagonalizations are then perfomed on matrices of
size 20 × 20, 19 × 19, . . ., and 16 × 16.

the sum runs over all unoccupied states f of the TP calculation.
The XRS spectrum, on the other hand, is proportional to the
dynamic structure factor

S(q, ω) =
∑
f

∣∣ 〈ψσ
f |exp(iq · r)| ψσ

i

〉 ∣∣2
δ
(
εσ
i + ω − εσ

f

)
, (41)

where q is the momentum transfer.
The TP ground state, that is, the occupied orbitals in the TP

calculation, can be accurately modelled using a much smaller
basis set than what is required for obtaining the virtual orbitals
relevant for XAS and XRS calculations [the final states in Eqs. (40)
and (41)]. For this reason, the double-basis set procedure[137, 138]

is often used to improve the description of the unoccupied
states after SCF convergence (of the occupied orbitals) has
been achieved. In this method, the basis set is augmented with
extremely diffuse functions on the excited atom, keeping the
occupied orbitals constant. The Kohn–Sham Fock operator is
then diagonalized in the unoccupied space in order to obtain
the virtual orbitals and their energies.

Equations (35), (36), and (40) are easily computed with
moment integrals.[21] However, due to its q dependence, Eq.
(41) is harder to evaluate. Writing out the troublesome matrix
element in Eq. (41) more explicitly, we see that

〈
ψσ

f

∣∣ exp(iq · r)∣∣ψσ
i

〉 =
∑
µν

Cσ
µf C

σ
νiS

q
µν , (42)

Sqµν =
∫

φµ(r) exp(iq · r)φν(r)d3r, (43)

where Sq is the momentum transfer matrix. Evaluation of Eq.
(43) through a series expansion of the exponential is practical
for q � 1; this leads once again to moment integrals, which
are readily computed. However, for larger values of q, the series
converges very slowly. Instead, the matrix in Eq. (43) can also be
formed by using the closure property of Gaussians and directly
computing the values of the Fourier transforms of the products
φµφν . Indeed, this is the default method in ERKALE of evaluating
Eq. (41), as it is both fast and accurate.

When the initial state is sufficiently localized around a nucleus
at R0, the integral in Eq. (41) can also be calculated by using a
single-center expansion for the orbitals[125]

ψσ
i (r) ≈

lmax∑
l=0

m∑
m=−l

cσm
il (ρ)Ym

l (ρ̂), (44)

ρ = r − R0. (45)

Here, Ym
l

are spherical harmonics in the complex form and lmax

is the truncation order, cσm
il

(ρ) being complex radial expansion
coefficients given by

cσm
il (ρ) =

∫
Ym
l

(ρ̂)ψσ
i (ρ + R0)d�ρ . (46)

This method allows extraction of the angular momentum dis-
tribution of the final states.[125] In contrast to Ref. [125] in which
lmax = 2, ERKALE has no limitation to the order of truncation
of the expansion in Eq. (44).
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When isotropic or amorphous systems are studied, an average
must be taken over all directions of the scattering vector q.
Although the Fourier method of Eq. (43) would allow analytical
integration along the lines of Ref. [90], it was found that the
scaling of the method is far too restrictive to allow its use
already in systems of small size. Instead, the directional average is
computed numerically using Lobatto quadrature (as introduced
in Formation of matrices section).

We demonstrate XAS/XRS calculations with ERKALE by the
spherically averaged oxygen K -edge XRS spectra of the water
monomer and the molecules in the water dimer, shown in
Figure 4. The spectra have been computed with the PBE XC
functional[139, 140] with density fitting and the (orbital) basis set
presented above in Completeness-optimized basis sets section.
The double-basis set procedure was used with a large set of
diffuse functions added on the excited atom to improve the
description of the continuum states. An absolute energy scale
correction was performed, shifting the monomer spectrum by
−3.4 eV, and the acceptor and donor spectra by −0.07 and
−0.24 eV, respectively, with respect to the monomer spectrum.
Finally, the stick spectra were convoluted with a Lorentzian with
a full width at half maximum (FWHM) of 0.15 eV, and the area of
the convoluted spectrum was normalized to unity in the range
�ω ∈ [527, 536.5] eV. The spectra display the typical pre-edge
behavior[141] at the excitation energy of roughly 529eV. As is well
known, the acceptor spectrum bears a close resemblance to the
monomer spectrum, whereas the donor spectrum is substantially
affected by the formation of the hydrogen bond[141]; the same
feature is seen also in the case of alcohols.[142] The experimental
XAS edge of water in the gas phase is roughly at 534 eV,[143] thus
the XCH method (without corrections for functional dependence,
etc.) underestimates the transition energy by some 5.5 eV.

As a further demonstration, we have reproduced the cal-
culation in Ref. [125] for the dipole limit of the dynamic
structure factor of benzene, using the geometry obtained from
the NIST Standard Reference Database[144] and the revised PBE
functional.[139, 140, 145] The IGLO-III basis set[112] was used on all
atoms, and the double-basis set method was used as above. The
localization of the core hole on the excited carbon atom was
enforced by using frozen cores for all other carbons in the cal-
culation. An absolute energy correction was performed, shifting
the spectrum by −2.19 eV. For comparison with experimental
data taken from Ref. [146], the spectrum was then convoluted
with a Lorentzian with an increasing FWHM �ω given by

�ω =




�0, ω < ω0

�0 + γ (ω − ω0) , ω0 ≤ ω ≤ ω1

�0 + γ (ω1 − ω0) , ω1 < ω

(47)

where the parameters are �0 = 0.347 eV, γ = 0.122, ω0 =
284.7 eV and ω1 = 296.3 eV, to account for finite lifetime effects,
and then a Gaussian with an FWHM of 1.1 eV to account for
instrumental broadening. Finally, the spectrum was shifted by
0.37 eV so that the computed maximum coincides with the
experimental absorption edge[146] at 285.10 eV, and the area of
the computed and experimental spectra were normalized to
unity in the region �ω ∈ [280 eV, 302 eV].

For comparison, we repeated the calculation using StoBe-
deMon[124] with the IGLO-III basis on all hydrogen atoms and

Figure 4. The oxygen K -edge XRS spectra computed for the water monomer
and the acceptor and the donor in the water dimer in the TP approximation.
The solid line is the spectrum in the dipole approximation (corresponding to
q = 0), the dashed line represents q = 5.0 a.u.

the excited carbon atom, while ECPs and corresponding valence
basis sets‖‖ were used on the other carbon atoms. The first
transition in the TP approximation occurs at 286.75 eV in
the StoBe-deMon calculation, compared to 286.93 eV in the
calculation performed with ERKALE. In XCH, the values become

‖‖L. G. M. Pettersson, unpublished. However, the used ECP and valence basis set
are part of the standard StoBe distribution.
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Figure 5. The dipole limits of the dynamic structure factor of benzene.The solid
line represents experiment, whereas the dashed and dotted lines represent the
TP calculations with ERKALE and StoBe, respectively.

284.72 eV and 284.74 eV, respectively. The StoBe-deMon spec-
trum was convoluted, normalized, and shifted to coincide with
the experimental spectrum by using the same procedure as
above. These two calculations are shown in Figure 5 accompa-
nied with experimental data taken from Ref. [146]. As expected,
the use of ECPs in the StoBe-deMon calculation has no notable
effect on the convoluted spectrum (compared to the frozen-core
calculation with ERKALE).

Valence electron excitations

ERKALE can compute electron excitation energies and oscilla-
tor strengths using linear response time-dependent DFT[147, 148]

through the Casida method,[149] which is especially useful in
simulating discrete, bound-to-bound state transitions in moder-
ately sized systems. Indeed, it has been shown to give excellent
results for valence electron excitations.[150] The Casida method
can be formulated as a matrix eigenvalue equation[151]

�FI = ω2
I FI , (48)

where ωI are the vertical excitation energies and FI are the
corresponding eigenmodes. The coupling matrix � has the
elements

�ijσ ,klσ ′ = δσσ ′δikδjl
(
εσ ′
l − εσ ′

k

)2 + fijσKijσ ,klσ ′ fklσ ′ , (49)

fijσ =
√(

nσ
i

− nσ
j

)(
εσ
j

− εσ
i

)
, (50)

Kijσ ,klσ ′ =
∫

d3r

∫
d3r ′ψσ

i (r)ψσ
j (r)ψσ ′

k (r′)ψσ ′
l (r′)

×
(

1

|r − r′| + δ2f xc

δρσ (r)δρσ ′(r′)

)
. (51)

Occupied orbitals are denoted here with i and k, whereas j and l

denote virtual orbitals. Because of this rather surprisingly simple
computational formulation, the Casida method forms a standard
part of modern quantum chemistry programs (e.g., CP2K[38] and
NWChem[6]). As the size of the matrices in Eq. (48) grows as
N2

pairs
���, but often only a small subset of the orbitals significantly

���Npairs is the amount of pairs of occupied and virtual orbitals. For restricted
calculations Npairs = NoccNvirt , for unrestricted calculations,Npairs = Nα

occN
α
virt +

N
β
occN

β

virt . Nocc and Nvirt denote the number of occupied and virtual orbitals,
respectively.

affect the response properties of the system in the investigated
energy range, it is common to make the method computation-
ally less demanding by omitting insignificant orbitals from the
Casida treatment.

The Casida formalism has been recently generalized[152] to
yield NRIXS spectra or more specifically the momentum transfer
dependent dynamic structure factor

S(q, ω) =
∑
I

δ(ω − ωI)

∣∣∣∣∣∣
∑
ijσ

〈
ψσ

i

∣∣eiq·r∣∣ψσ
j

〉
fijσ FI,ijσ

∣∣∣∣∣∣
2

, (52)

which can be computed by ERKALE as well. The evaluation of the
matrix element in Eq. (52) is performed using the same Fourier
method described before in Core electron excitations section.
As for XRS spectra, directionally averaged, momentum trans-
fer dependent Casida spectra are computed in ERKALE using
Lobatto quadrature (Formation of matrices section). The calcula-
tions in Ref. [152] were done using Octopus,[17, 18] which uses a
numerical real space grid to represent the Kohn–Sham orbitals.
While real space grids offer a straightforward way for improving
the accuracy of the calculation by reducing the grid spacing, the
benefit of a localized basis set (as in ERKALE) is the significantly
smaller number of degrees of freedom that makes spectrum
calculations very fast. Localized basis sets also easily provide
explicit description of core orbitals and thereby automatically
enable calculations of core excitations as well (i.e., XAS/XRS
spectra). Despite some promising results (for instance, see Ref.
[153] for a recent application to XAS calculation on liquid water),
this approach does not provide very reliable spectra for deeper
excitations with conventional DFT XC functionals; TDDFT heav-
ily underestimates core excitation energies†††, which has been
shown to be caused by the self-interaction error[154] at short
distances.[155] As a result, contrary to TP calculations,[134] the XAS
spectra predicted by TDDFT with conventional functionals show
large dependence on the functional used.[153] A perspective on
TDDFT calculations for core electron spectroscopies has recently
been published, see Ref. [156].

ERKALE currently supports calculations only at the time-
dependent LDA (TDLDA) level‡‡‡. However, the orbitals used for
the calculation can be obtained with HF or any supported DFT
method§§§ . The Coulombic term in Eq. (51) is computed using
Eq. (25) as in the work of Jamorski et al.[151] However, contrary
to their work, fitting of the XC term in Eq. (51) is not performed
in ERKALE, as the Coulomb part is often found to dominate
the computational cost. We demonstrate the Casida method by
computing the momentum transfer-dependent NRIXS spectrum

†††According to a commonly used rule of thumb, when the excitation energy
approaches the negative of the orbital energy of the highest occupied MO,
TDLDA will likely underestimate the excitation energy.
‡‡‡Calculations can also be done in ERKALE in the random phase approximation
(RPA) and the independent particle approximation (IPA), which are a subset of
TDLDA.
§§§It must be noted that a time-dependent formulation of Hartree–Fock the-
ory (TDHF) exists as well. TDLDA performed with Hartree–Fock orbitals is not
equivalent to TDHF.
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Figure 6. NRIXS spectra of the water monomer, calculated using Casida’s equa-
tion.The solid line is the spectrum in the dipole approximation (corresponding
to q = 0), the dashed line represents q = 5.0 a.u.

corresponding to valence electron excitations in Figure 6a. As
a further illustration, an XRS spectrum of the water monomer
at the oxygen K -edge, produced by the same Casida calcu-
lation, is shown in Figure 6b. The MOs were computed using
the PBE exchange-correction functionals[139, 140] using density fit-
ting, after which the Casida equation was solved using the first
75 orbitals, with LDA exchange[157, 158] and VWN correlation.[159]

Finally, the spectrum was convoluted and normalized analo-
gously to the procedure in Core electron excitations section.
From the discussion above, it is not surprising that TDLDA
underestimates the energy of the first K edge transition by
almost 30 eV. Another issue to be analyzed is the incompatibil-
ity of the TP and TDLDA spectra. However, specially designed
functionals (e.g., Refs. [154, 155]) have been shown to produce
good compatibility of TDLDA near-edge X-ray absorption fine
structure spectra with experiment.[155]

Conclusion and Outlook

We have presented a novel code, ERKALE,[45] for electronic struc-
ture calculations of atoms and molecules using HF or DFT level of
theory with Gaussian basis sets of arbitrary angular momentum.
In addition to a large selection of supported XC functionals,
the program features modern convergence accelerators and is

thoroughly parallellized, making calculations with thousands of
basis functions routine on desktop computers.

The main advantage of the program is its direct applicability
to computing X-ray properties, such as Compton profiles and
NRIXS spectra of core and valence electronic excitations. We have
demonstrated the code by performing sample calculations of
the electronic structure and excitations of a simple, well-known
model system, the water molecule and the water dimer. Thanks
to the free availability and simple organization of the program,
it can easily be modified to suit the user’s needs. Because of
its clarity, the code is also ideal for teaching purposes.

We have introduced a new way to localize the core hole for
XAS and XRS calculations in the TP approximation. We have also
introduced a fast and accurate method of computing elements
of the momentum transfer matrix Sqµν = 〈µ |exp(iq · r)| ν〉 in
a Gaussian basis. The method is based on the direct Fourier
transform of the products of basis functions, and we have used
it to implement the first readily available momentum transfer
dependent NRIXS spectrum calculators for Gaussian basis sets,
both in the TP approximation and Casida method.

The development of ERKALE will further continue to include
new features, mainly focusing on X-ray spectroscopic appli-
cations. One of the future goals is the implementation of
self-interaction error corrected XC functionals for more accurate
TDDFT calculations of core electron spectroscopies. ERKALE will
also be used in shortly upcoming X-ray studies and basis set
work.
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