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Résumé ~ En vue de comprendre le mécanisme d'initiation de 1'écaillage dans
les métaux laminés, un modéle statistique unidimensionnel de 1'évolution des
microfissures lors de 1'écaillage est proposé. Pour cette description
statistique la longueur de fissure semble étre la variable fondamentale. Deux
processus dynamiques, la nucléation des fissures et leur croissance, sont
associés dans le modéle d'évolution du dommage.

Un cas simplifié est examiné et des corrélations préliminaires avec les
observations expérimentales de 1'écaillage sont données.

Abstract — In order to understand the mechanism of the incipient spallation in
rolled metals, a one dimensional statistical model on evolution of microcracks
in spallation was proposed. The crack length appears to be the fundamental
variable in the statistical description. Two dynamic processes, crack nuclea-
tion and growth, were involved in the model of damage evolution. A simplified
case was examined and preliminary correlation to experimental observations of
spallation was made.

1 - INTRODUCTION

Spallation resulted from tensile stress pulse in impacted materials, provides a con-
venient approach to the study of the damage evolution. In fact, damage is almost
always dynami¢ and hence rate - dependent, as shown in the empirical formula in
spallation /1/

(CA DL (1)

o

o

where o is stress, AT is the duration of the tensile loading,m and K are 'parameters.
In addition, it was shown that the parameters are dependent on the degree of damage
of spalled specimens /2/. Therefore, how to reveal and describe the implication of
this rate-dependent process arouses great interest in mechanical study and engineer-
ing practice.

There are some models deliberating about the damage accumulation in spallation /3/.
Particularly, the statistical models of microdamage are showing greater promise /4,
5/, for instance, the approach of microstatistical fracture mechanics /6,7/. In
these works, there are detailed descriptions of empirical distribution functions and
the actual counts and measurements of microcrack numbers, sizes and orientations.

But there is just a little mentioned about the evolution law of the system of micro-
cracks. Therefore it scems that there is a need to establish some general formulation
of the evolution of microdamage, according to the fundamentals of statistics.

In this paper, it is intended to set up a simplified one dimensional statistical

model on damage due to microcracks in spallation, based on the equation of evolution.
This concerns a system, consisting of a variable number of microcracks with various
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length. In addition, the statistical system ol microcracks is neither Hamiltonian
nor quantum ones, since the motions of microcracks are different from thosc of c¢las-
sical Newtonian particles or quantum.

In section 2, a briet review is given on the observations of microcracks occuring in
the spalled rolled aluminium alloy specimens in planar impact tests. The observed
phenomenon provides the initiative of the present statistical study. Then the deri-
vation of a one dimensional statistical model of microcracks is given in section 3,
In particular, some implications of the eguation of evolution will be emphasized.
Finally, in section 4 a very simple system of microcracks will be studied as an il-
lustrative example.

2 -~ OBSERVATION OF INCIPIENT SPALLATION IN A ROLLED ALUMINIUM ALLOY

All the specimens are circular thin sheets, less than 10mm thick, and taken from a
rolled aluminium alloy plate. The specimens were tested under planar impact loading
with a 10lmm bore light gas gun. This configuration of testing guarantees the uni-
axial strain loading on the central part of the target specimens. After impact, the
tested specimens were softly recovered in a specially designed catcher to prevent
from secondary damage owing to undesirable hitting. The recovered specimens were
sectioned and carefully polished for microscopic observation.

The damage in the spalled specimens, under tensile stress wave loading resulted fron
the stress wave reflection, is in the form of distributive and rounghly parallel
microcracks on the sectioned surface, see Fig.l. The longer and wider the micro-
cracks are, the more severe the damage is, thercupon the tested specimens present
lower residual strength /2/.

However, as far as the incipient spallation is concerned, its main feature is a nu-
mber of fairly distributive microcracks, and it seems that the nucleation and growth
of individual microcracks are predominant, whilst the linkage or the interaction of
the microcracks appears to be negligible at this stage. Our following statistical
model is just limited to this kind of incipient spallation.

Some special observations were made recently in our laboratory. The technique of
very short stress pulse, hundreds ns long {(see Fig.2), was used in the tests /8/, in
order to reveal the mechanism of nucleation of microcracks in spallation /9/. The
tests show that both period and strength of the stress pulse significantly affect
the level of the incipient spallation. It also shows that at this stage of incipi-
ent spallation nearly all the microcracks nucleate within or arround the second phase
particles in the aluminium alloy, see Fig.3 /9/. Therefore it is quite believable
from the observation that the size distribution of the inhomogeneities in the materi-
al predominately governs the distribution of the nucleation of microcracks as well
as the growing cracks in the incipient spallation.

It has been pointed out in literature, for instance in /7/, that imperfections in a
variety of materials have a size distribution of the following form

n (a) = n_exp(- 24) (2)
o ao

where n(a) da is the number of imperfections per unit volume between the imperfec-
tion size a and a + da. n_and a_ are two characteristic parameters of particular
distribution. Also, there are some theoretical explanations about this quite unique
distribution function of imperfections in materials. /&4/.

More interestingly, some size distribution function of microcracks has been put for-
ward in incipient spalled specimens /6/, which has the same exponential form as
formula (2). Perhaps, this, in someway, touchs the intrinsical entity of the evolu-
tion of microcracks in spallation.

One may interpret the similarity of the two size distribution functions, by taking
into account the following facts and assumptions. Firstly, the nucleation of micro-
cracks by inclusion debonding may occur so rapidly under stress pulse loading that
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yne can consider the process instantancous compared to the tensile stress wave loading
-ime. Secondly, the above mentioned observations (Fig.3) of nucleating microcracks
yeing limited to the sizes of second phase particles offer a broad hint to correlate
-he size distribution functions of imperfections and microcracks. Nevertheless,
since not all imperfections are broken or debonded simultaneously under wave loading
ind the nucleated microcracks would grow in some way, the above seemingly similarity
sovld become groundless, unless one can find the full answer to the evolution of
nicrocracks.

[n summary, the observations of incipient spallation in the rolled aluminium alloy
sresent a need and challenge to the description of the damage in terms of a micro-
statistical model of one dimensional microcracks.

Fig.1 - Parallel microcracks on the sectioned surface of spalled specimen of
aluminium alloy (x200 ).

Fig.2 ~ The profile of input stress pulse recorded with carbon stress gauge embedded
in specimen.
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Fig.3 —~ The nucleation of microcracks within and arround the second phase particles
in the spalled specimen of aluminium alloy (x 1000 ).

3 — ONE DIMENSIONAL STATISTICAL MODEL

Generally speaking, the statictics of damage in materials should consist of sizes
orientations, spacings etc. of microcracks. This is certainly desirable and worth
investigating profoundly.

As a simplification, a plain one dimensional statistical model was proposed, in the
light of the above observations, in order to explore some essential aspects of the
evolution of micro-cracks. It is assumed in the model that all microcracks are par-
allel to each other and perpendicular to the tensile loading. Therefore, one stoch-
astic variable c, the length of microcrack, is involved in the model. Obviously,
variable ¢ is continuous in the domain of (0, ® ) and time dependent.

Clearly, the statistics of microcracks is somewhat different from that of Newtonian
particles. In the latter, the states, namely the positions and momenta qi and pj
(i=152; 55w N), in 6N dimensional phase space are the stochastic variables and the
number N of the narticles is fixed. But in the concerned case, the number of the
microcracks is variable as well, owing to the nucleation of microcracks, though the
probability density p should satisfy the normalisation condition

qu dp = 1 (3)

with the view of damage mechanics, one is interested in the evolution of the pro-
bability density p(t,c) of stochastic variable ¢ as well as the concentration of
microcracks, i.e. the number of microcracks n (t,c) dc between the length of c¢ and
¢ + dc in unit area.

The following assumptions are adopted in the model. (1) Only nucleation and growth
of microcracks are vital in the incipient spallation. (2) Microcracks can merely
grow. (3) The concentration of microcracks is just determined by the adjacent states
and the crack nucleation. (4) The microcrack velocity ¢ is a deterministic function
of crack length ¢ and time t. Then in a small region of ¢ and ¢ + dc in the phase
space, the increase of the number of microcracks is controlled by two terms: the nu-
cleation rate of microcracks and the flux of the microcracks into and out of the
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crack length interval (¢, ¢ + dc).

%% de
(c+6dc,t)

e (c+8dc) dc (4)

+ nlc,t) ¢ (c,t) - nlc+dc,t) & (c+de,t)

where 0¢ 8¢ 1, ny denotes the nucleation rate at crack length c and ¢ denotes the
crack velocity. Let dc— 0, one can obtain the basic equation

g—: +% = n(c,t) (5)

This type of equation can be found in some literature, for instance in /5/. But the
very evolution of microcracks has been seldom treated.

It has been well known that the probability density follows similar equilibrium
equation in statistical physics, i.e.

kP . pe)

x e ~° (6)

Considering the definition of probability density

n(c,t) _ H(C,t)

(c,t) = ———= =
P J-og dec n_(t)
0 t

and substituting it into equation (5), one obtains

. n n
aP  2(pc) N t
P, L D)
it Jdc n. nt

When n, = O, fny becomes zero, hence equation (7) is reduced to equation (6). In fact,

the integration of the right hand side of equation (7) is

(s 0] . [es] (00}
nN nt 1 .
J (;— - ;—p) de = E: { J ng de - R J. p dc)
t t

0 0 0

1 Q0
=;—(JnNdc-nt) (8)

t 0

=0

in accord with the normalisation condition.

Therefore, both equations (5) and (7) are the basic equations of the evolution of
damage for the system of microcracks with deterministic law of crack motion,é&=é(c,t).
Clearly, this provides the simplest representation of microcracks system. Different-
ly, a transition probability has been taken into account in the basic equation of
evolution in an otherwise paper.

4 -~ ILLUSTRATIVE EXAMPLE

In statistical physics, the cquation of probability density p, i.e. equation (6) will
show the simple behaviour similar to incompressible fluid
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ap
L (9)

namely the probability density p remains a constant, provided the observation is
mode on a fixed 'particle' in the Hamiltonian system. This presents a clear picture
for people to understand the implication of the statistics.

Here, a preliminary and illustrative example will be presented to show what may hap-
pen in the system of microcracks.

Suppose that the tensile load be a Heaviside function, hence the crack nucleation
rate ny will become a function of single variable, crack length ¢, with a parameter
of constant stress o, ny = nN(c;cﬁ. In the present formulatio? of microstatistics,
the motion of microcracks are assumed to be deterministic ¢ = c(c,t;...). As an
illustrative example, we choose ¢ = constant. This supposition does not seem to be
a mere conceptual exercise, since there seems to be some hints to show that crack
velocdity approaches constant quickly under constant loading.

In accord with the theory of the first order partial differential equations, the
characteristic equations of the partial differential equation (5) are

ae = & (10)
¢

de dn

T nN(c) an

The general solution to the original partial differential equation (5), therefore,
has the form

é (c - &t, n - %JnN(c) de) = 0 (12)

where ¢ is an arbitarary function. The solution can be written as explicit form of
n (c,t)

n(c,t) = —3—- JnN(c) dc + 9(6 - ct) (13)

cv
To determine the arbitrary function @ , one should consider the initial and bound-
ary conditions. The initial condition is assumed that there are no microcracks at
all at initial time, i.e.
t =0, n(c) = 0 (14)
Substitution of (14) into formula (13) leads to
1
Pe) = - -é—an(c) dc (15)
So, the solution (13) has the simple formulation

n(c,t) = %(—N(c) + N(c=ét)) (16)

C

®
N(c) = - an(c) de = f nN(c) dc (17)

where N(c) denotes the total number of nucleating microcracks greater than c. When
crack length c¢ tends to infinity,

n(w) = % (-N(w ) + N -&t)) = 0 (18)

This is physical sensible. Now the implication of the evolution law in this stati-
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stics of microcracks becomes quite clear. According to some empirical rclations,
N(c) should be a decreasing function of crack length ¢. Hence, the concentration
n(c,t) of the microcracks is governed by the total number of microcracks nucleating
petween the crack length of c-¢t and ¢. 1In this example it is obvious that the nu-
cleation function of microcracks plays a significant role in the evolution of wmicro-
cracks. Particularly, if

c
ng = A exp(- E;) (19)

then equation (17) gives

N(c) = c A exp(~ %;) (20)
and
coA c .
n(e,t) = =2 exp(- Z—;)(exP(z—o £) - 1) (21)

The concentration of microcracks remains the exponential distribution, but increases
with time t exponentially.

53 - CLOSURE

A simple one dimensional statistical model was proposed in the paper, in order to
explore the actual evolution of microcracks occuring in incipient spallation analy-
tically. The principal assumption involved in the model is a certain deterministic
law of crack growth. Equation (5) is the fundamental one in the model. But both
laws of nucleation and growth of microcracks are needed in solving the evolution
equation. The assumption of constant velocity of microcracks makes the solution ex-
tremely easy. The solution, i.e. formulas (16) and (17), shows quite clear implica-
tion of the statistics: the concentration of microcracks n(c,t) is equal to the dif-
ference of the total numbers of nucleating microcracks between the length c-ét and c.
Provided that the rate of nucleation ny is an exponential function of crack length,
the concentration of microcracks will remain the same type. This is fairly in agre-
ement with observations. More realistic model, as well as laws of crack nucleation
and motion, are studied under way.
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