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LETTER TO THE EDITOR 

Discussion of "Scaling laws and renormalization groups for strength and toughness of 
disordered materials," Int .  J.  Sol ids  S t ruc tures ,  Vol. 31, pp. 291-302 (1994) 

The paper represents some completely new approaches for solid mechanics, i.e. fractal 
geometry and renormalization group theory. As shown in this paper, these new methods 
can provide a rational and consistent explanation of the size scale effects on tensile strength 
and fracture energy of disordered media. 

It is well known that dimensional analysis is an important tool for developing 
mathematical models of physical phenomena, and it can help us understand existing models. 
It is worth noting that, when fractal geometry is introduced into fracture mechanics, the 
dimensions of physical parameters are an important problem. Strictly speaking, the measure 
related to fractal geometry should be defined in Housdorff space. However, since the 
Housdorff measure cannot be measured directly, we still use the Euclidean measure in real 
application. Therefore, the dimension of a parameter should keep unchanging, otherwise, 
its physical meaning is not clear. For example, the length of a fractal curve is defined by 
(Mandelbrot, 1982) 

L(r)  = L~r  I - o = Loe J - o (1) 

where r is a yardstick, L0 is a character length of the curve (for example, the distance 
between the two end points of the curve), e = r/Lo is a dimensionless scaling parameter. It 
is obvious that the physical dimension of length L(r)  is still [length]. 

Using the same symbols with present author, the renormal i zed  tensile s t rength  a* is 

F, F~ 
tT* - -  1 2 e d ' -  ~ - -  b2gdo_ 2 . (2) 

It is easy to obtain 

tr(~ I)= tr(2)e d', (3) 

where, the dimensionless parameter e = rin/rout,  here, r~n and rou t are the inner and outer 
cutoff length, in which fractal or scaling exists. In formula (3), we also define tr~ l) = F i / l  2 
and a(~ 2) = F2/b 2. 

Although the expression is the same as that of the original paper, the physical dimension 
of *" au is still [force] [length]-2, not [force] [length] -t2-d-) in the original paper. 

On the other hand, it is necessary to point out that the value of e is not equal to l i b  in 
most cases. The value of e is dependent not only on the microscopic structure effects, but 
also on the macroscopic structue of specimen (Mandelbrot et  al., 1984). At the same time 
the formula (3) clearly gives its suitable range. 

Similarly, keeping the physical dimension unchanging, the formulae (7), (11) and (15) 
etc. in the original paper may be rewritten respectively 

a u = a ~ e  ~, (4) 

~ = fg~e-'~, (5) 
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'~F = ~F ~-d'~" (6) 
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