
Department of Computer Science
Series of Publications A

Report A-2013-1

Term Weighting in Short Documents for
Document Categorization, Keyword Extraction

and Query Expansion

Mika Timonen

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
XIII, University Main Building, on January 25th, 2013, at 12
o’clock.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14926551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisor
Hannu Toivonen, University of Helsinki, Finland

Pre-examiners
Pekka Kilpeläinen, University of Eastern Finland, Finland
Gaël Dias, University of Caen Basse-Normandie, France

Opponent
Timo Honkela, Aalto University, Finland

Custos
Hannu Toivonen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c⃝ 2013 Mika Timonen
ISSN 1238-8645
ISBN 978-952-10-8566-6 (paperback)
ISBN 978-952-10-8567-3 (PDF)
Computing Reviews (1998) Classification: H.2.8, H.3.4, I.5.2, I.5.4
Helsinki 2013
Unigrafia

Term Weighting in Short Documents for Document
Categorization, Keyword Extraction and Query Expansion

Mika Timonen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
Mika.Timonen@vtt.fi

PhD Thesis, Series of Publications A, Report A-2013-1
Helsinki, January 2013, 53 + 62 pages
ISSN 1238-8645
ISBN 978-952-10-8566-6 (paperback)
ISBN 978-952-10-8567-3 (PDF)

Abstract

This thesis focuses on term weighting in short documents. I propose weight-
ing approaches for assessing the importance of terms for three tasks: (1)
document categorization, which aims to classify documents such as tweets
into categories, (2) keyword extraction, which aims to identify and extract
the most important words of a document, and (3) keyword association
modeling, which aims to identify links between keywords and use them for
query expansion.

As the focus of text mining is shifting toward datasets that hold user-
generated content, for example, social media, the type of data used in the
text mining research is changing. The main characteristic of this data is
its shortness. For example, a user status update usually contains less than
20 words.

When using short documents, the biggest challenge in term weighting comes
from the fact that most words of a document occur only once within the
document. This is called hapax legomena and we call it Term Frequency =
1, or TF=1 challenge. As many traditional feature weighting approaches,
such as Term Frequency - Inverse Document Frequency, are based on the
occurrence frequency of each word within a document, these approaches do
not perform well with short documents.

The first contribution of this thesis is a term weighting approach for doc-

iii

iv

ument categorization. This approach is directed to combat the TF=1
challenge by excluding the traditional term frequency from the weighting
method. It is replaced by using word distribution among categories and
within a single category as the main components.

The second contribution of this thesis is a keyword extraction approach
that uses three levels of word evaluation: corpus level, cluster level, and
document level. I propose novel weighting approaches for all of these levels.
This approach is designed to be used with short documents.

Finally, the third contribution of this thesis is an approach for keyword
association weighting that is used for query expansion. This approach uses
keyword co-occurrences as the main component and creates an association
network that aims to identify strong links between the keywords.

The main finding of this study is that the existing term weighting ap-
proaches have trouble performing well with short documents. The novel
algorithms proposed in this thesis produce promising results both for the
keyword extraction and for the text categorization. In addition, when using
keyword weighting with query expansion, we show that we are able to pro-
duce better search results especially when the original search terms would
not produce any results.

Computing Reviews (1998) Categories and Subject
Descriptors:
H.2.8 Database management: Data mining
H.3.3 Information storage and retrieval: Query formulation
I.5.2 Pattern Recognition: Feature evaluation and selection
I.5.4 Pattern Recognition: Text processing

General Terms:
Algorithms, Experimentation

Additional Key Words and Phrases:
Keyword Extraction, Query Expansion, Term Weighting, Text
Classification, Text Mining

Acknowledgements

This work has been carried out in several projects at VTT Technical Re-
search Centre of Finland. Some of the projects were funded by the Finnish
Funding Agency for Technology and Innovation (TEKES), some by VTT
and some by Taloustutkimus Oy. The single biggest reason that made this
thesis possible is my trip to East China Normal University in Shanghai
where I spent six months as a visiting researcher. During that time I was
able to fully concentrate on my work and write publications. I wish to
thank everyone who made that trip possible.

During my work I have had two supervisors from University of Helsinki:
Dr. Roman Yangarber and Prof. Hannu Toivonen. Roman helped me to
get this process started and Hannu helped me to get this process finished.
I am thankful for their help. In particular, I wish to thank Hannu for the
great feedback he gave me regarding the papers and this thesis. He helped
me to greatly improve my work and to connect the dots.

In addition, I would not have been able to complete this thesis without
the PhD writing leave that VTT generously offers, the people (especially
professor Liang He) at ECNU, and my fiancée Melissa who has helped me
to brainstorm most of the things described in this thesis.

My gratitude to all my co-authors, Melissa Kasari, Paula Silvonen,
Timo Toivanen, Yue Teng, Chao Cheng and Liang He. In addition, I would
like to thank my managers and co-workers (in no particular order), Eero
Punkka, Lauri Seitsonen, Olli Saarela, Antti Pesonen and Renne Tergujeff
for their contributions and support. I would also like to thank Markus
Tallgren for believing in me and employing me to VTT. He also helped me
to get my work started. Jussi Ahola was a great help in my early research
when I was starting to write the papers that eventually lead to this thesis.
Without the help and support I received from Jussi this thesis may not
have ever been written.

I express my deep gratitude to the pre-examiners of this thesis, Prof.
Pekka Kilpeläinen and Prof. Gaël Dias, for their time and feedback that
helped improve this dissertation.

v

vi

Finally, I would like to thank my friend Christian Webb for his help and
support especially at the beginning of my studies. He made my life easier
when I was new in town and just starting out my studies.

I dedicate my thesis to my family, which includes my fiancée, my par-
ents and my brother who have all supported me tremendously during this
project. Without the safety net they offered this process would have been
nearly impossible. Their continuous support was the key ingredient that
kept me striving toward this goal.

Contents

List of Publications and the Author’s Contributions ix

1 Introduction 1

2 Research questions 3

3 Background 5

3.1 Term weighting . 5

3.2 Document categorization . 8

3.2.1 Classification . 9

3.2.2 Related applications 10

3.3 Keyword extraction . 11

3.4 Query expansion . 13

4 Term weighting in short documents 15

4.1 Document categorization . 15

4.1.1 Approach I: Two level relevance values 16

4.1.2 Approach II: Fragment length weighted category dis-
tribution . 19

4.2 Keyword extraction . 20

4.2.1 Corpus level word assessment 21

4.2.2 Cluster level word assessment 23

4.2.3 Document level word assessment 24

4.3 Keyword association modeling for query expansion 26

4.3.1 Association modeling 26

4.3.2 Query expansion using keyword models 29

5 Evaluation and utilization of weighted features 31

5.1 Short document data sources 31

5.2 Categorization of short documents 34

5.3 Keyword extraction and keyword models 36

vii

viii Contents

5.3.1 Experimental results of keyword extraction 37
5.3.2 User and item modeling for recommendation 38
5.3.3 Keyword association modeling for query expansion . 40

6 Contributions of this thesis 43

7 Discussion and conclusions 45

References 49

List of Publications and the
Author’s Contributions

This thesis consists of four peer-reviewed articles. Three of the articles
have been published in refereed proceedings of data mining conferences
and one in a refereed information modeling journal. Three of the articles
focus on term weighting in two different domains: text categorization, and
keyword extraction (Article I, II, III). Article IV focuses on utilization of
the keywords in information modeling. My contribution to all of these
papers is substantial as I was the main author of each of these papers.
These articles have not been included in any other thesis.

Article I

Classification of Short Documents to Categorize Consumer Opinions, Mika
Timonen, Paula Silvonen, Melissa Kasari, In Online Proceedings of 7th In-
ternational Conference on Advanced Data Mining and Applications, ADMA
2011, Beijing, China, 2011, pages 1 - 14. Available at
http://aminer.org/PDF/adma2011/session3D/adma11_conf_32.pdf.

For Article I, I designed and implemented the feature weighting ap-
proach and ran the experiments. The contribution of other authors
was mainly in experimental setup, writing some small parts of the pa-
per and proof reading.

Article II

Categorization of Very Short Documents, Mika Timonen, In Proceedings
of 4th International Conference on Knowledge Discovery and Information
Retrieval, Barcelona, Spain, 2012, pages 5 - 16.

For Article II, I was the only contributor in this paper.

ix

Article III

Informativeness-based Keyword Extraction from Short Documents, Mika
Timonen, Timo Toivanen, Yue Teng, Chao Chen, Liang He, In Proceedings
of 4th International Conference on Knowledge Discovery and Information
Retrieval, Barcelona, Spain, 2012, pages 411 - 421.

For Article III, I designed and implemented the keyword extraction
approach. The contribution of other authors was in running the exper-
iments, writing small parts of the paper and creating the test sets.

Article IV

Modelling a Query Space using Associations, Mika Timonen, Paula Sil-
vonen, Melissa Kasari, In Frontiers in Artificial Intelligence and Appli-
cations: Information Modelling and Knowledge Bases XXII, Volume 225,
2011, pages 77-96.

For Article IV, I designed and implemented the approach for keyword
weighting and information modeling with Melissa Kasari. I was the
main author of the paper; other authors wrote small parts of the paper.

x

Chapter 1

Introduction

In this thesis I propose approaches for term weighting in short documents.
I focus on three text mining tasks: text categorization, keyword extrac-
tion and query expansion. I aim to identify and tackle the challenges of
short documents and compare the performance of the proposed approaches
against a wide range of existing methods.

Text mining is a process that aims to find and refine information from
text. It is a well research field; for instance, during the 1990’s and early 2000
text categorization received a lot of attention due to its relevance to both
information retrieval and machine learning [43]. News article categorization
was one of the focus areas as it provided a large set of data and a standard
testing environment [25, 50, 51].

However, with the rise of user-created content on the Internet, the type
of interesting texts to be analyzed has changed significantly. As the focus
of text mining has been shifting toward Twitter messages, product descrip-
tions and blogs, the traditional datasets, such as Reuters-21578 [26], are
no longer as relevant as they once were in the text mining research. When
compared to classic text mining datasets, user-generated content has one
major difference: its length. For instance, an average Reuters news article
holds 160 words [44] but a tweet (Twitter message) contains at most 140
characters; i.e., around 20 words.

In addition to tweets, another relevant source of short documents is
market research data collected using surveys and questionnaires that con-
tain both bounded and open ended questions. Bounded questions have a
limited set of possible answers while open questions can be answered freely
by writing what ever the respondent feels fit. Manual categorization of this
data is laborious as a single survey is often answered by thousands of re-
spondents. This brings a need for automatic categorization of the answers.

Short documents are relevant also in information extraction. Product,

1

2 1 Introduction

event, movie and company descriptions are all often short and they contain
information that can be relevant in several fields. User modeling, for ex-
ample, can take the extracted information and use it to build models that
indicate the user’s interest.

In order to utilize the information from short documents, whether we
want to categorize the text or extract information from it, we need to
identify which words are the most important within the text. This can be
achieved with term weighting.

There are several approaches to term weighting of which the Term Fre-
quency - Inverse Document Frequency [42] (TF-IDF) is probably the most
often used. It is an approach that relies heavily on term frequency (TF);
i.e., a statistic of how many times a word appears within a document. When
using TF-IDF, words that occur both only in a few documents within the
corpus, and that occur often within a single document, are emphasized. In
many cases, TF is a good statistic to measure the importance of a word: if
it occurs often, it could be important.

This approach does not work well with short documents. When a doc-
ument contains only a few words, there are seldom words that occur more
often than once within a document. Hapax legomenon is a word that occurs
only once within a context. In our work, we call this Term Frequency=1
challenge or TF=1 challenge. As many of the traditional approaches are
based on TF, we need to find new ways to weight the terms within the
short documents.

The main research challenge I focus on in this thesis is related to the
TF=1 challenge: How to efficiently weight the terms in short documents?
As term weighting is used as part of other text mining applications, I focus
on three separate cases: document categorization, keyword extraction and
keyword association modeling.

This thesis is organized as follows. In Chapter 2, I give a detailed de-
scription of the research questions discussed in this thesis. In Chapter 3, I
summarize the background and the related approaches. In Chapter 4, I an-
swer the research questions by proposing three term weighting approaches
to combat the TF=1 challenge in the three text mining fields. In Chapter
5, I present the experimental results and the utilization of the weighted
terms. Chapter 6 summarizes the contributions of this thesis. I conclude
this thesis in Chapter 7 with discussion of my work.

Chapter 2

Research questions

My work on short documents has focused on several domains and datasets.
In this section I describe the research questions we formulated and their
background.

My work with short documents started with text categorization. A
Finnish market research company had a lot of data that consisted of short
documents from their old surveys. As manual categorization of this data
has been an arduous task, they wanted to find out if there was a way
to automatically process and categorize the survey data. After the first
tries we realized that in order to produce good categorization results, we
needed to weight the terms efficiently. Due to the length of the documents,
the existing approaches, mainly TF-IDF and other term frequency based
approaches, did not perform well. From this, we formed the first research
question:

1. How to weight terms in short documents for document categorization
to overcome TF=1 challenge?

As there are usually no words that occur more than once per document,
we need to use an approach that does not rely on term frequency within
the document. In addition to term weighting, a smaller challenge is to
find a good classifier that is precise and can classify a high percentage of
documents. Both of these questions and our contributions are discussed in
both Article I and Article II.

In addition to market research data, we had a project that concen-
trated on other types of short documents: product and event descriptions.
We used them to build a recommendation system where the aim was to rec-
ommend events such as rock concerts, sporting events and exhibitions. In
order to implement a tag-based recommendation system we wanted to tag

3

4 2 Research questions

each event using the keywords found from the descriptions. This motivated
the second research question:

2. How to extract the most informative words from a short document?

This challenge focuses on keyword extraction from short documents. As
the extracted keywords are used as tags in a recommendation system we
need to extract different types of words; some of which are rare and some
are common. Therefore, the term weighting approach developed earlier in
the context of Question 1 cannot be used alone but we need to find some
other complementary methods as well. This is addressed in Article III.

In an ideal case keywords form a precise summary of the document.
This information can be used in several ways. One of the applications we
have been tackling is a search engine for company’s internal documents.
However, due to the small number of documents to be queried, sometimes
the search produced poor or even no results. In this project we had a set
of keywords for each document we wanted to search, so we decided to use
them to see if they could be utilized to alleviate this problem. Therefore,
one research challenge in the project focused on weighting keywords and
keyword pairs and finding a way to utilize them in the search engine. From
this, we get the third research question:

3. How to weight keywords and utilize them in a search engine?

This question focuses on using the keywords for search space modeling
in a limited sized search engine. The aim is to alleviate the challenge of
document retrieval in small search engines such as intranet where the search
often produces poor results due to the limited number of documents in the
search space. We use an association network to model the associations
between the keywords found from the documents and utilize the network
in a query expansion method. When building the network, the keywords
are weighted to indicate the strength of the association. This is described
in Article IV.

Chapter 3

Background

In this chapter I describe the background of our work by giving an overview
of the most relevant existing and related approaches on term weighting,
document categorization, keyword extraction and query expansion.

3.1 Term weighting

Term weighting, also known as feature weighting when it is not used with
text documents, is a method for assessing the importance of each term in
the document. A term can be a word or a set of words such as a noun
phrase (for example, a proper name). Intuitively, we would like to diminish
the impact of terms that are not important in the document (e.g., common
verbs, prepositions, articles) and emphasize the impact of others. If this
is not done, words like ”is”, ”the”, and ”in” would have a similar impact
with such words as ”Olympics”, ”concert” and ”London”. When terms are
used, for example, in categorization, this would weaken the performance of
the classifier considerably. In addition, by removing the unimportant terms
the task becomes computationally less demanding [52].

Term Frequency - Inverse Document Frequency (TF-IDF) [42] is the
most traditional term weighting method and it is used, for example, in
information retrieval. The idea is to find the most important terms for the
document within a corpus by assessing how often the term occurs within
the document (TF) and how often in other documents (IDF):

TF-IDF(t, d) = − log
df(t)

N
× tf(t, d)

|d|
, (3.1)

where tf(t, d) is the term frequency of word t within the document d (how
often the word appears within the document), |d| is the number of words

5

6 3 Background

Table 3.1: Notations used in this section.
Notation Meaning Notation Meaning

t Term ¬t No occurrence of ¬t
d Document c Category

df(t)
Number of documents
with at least one occur-
rence of t

tf(t, d)
Number of times t oc-
curs within a docu-
ment

ctf(t)
Collection term fre-
quency

ct
Categories that con-
tain t

dt
Documents that contain
t

N
Total number of docu-
ments in the collection

Nt,c
Number of times t occurs
in c

Nt,¬c

Number of occur-
rences of t in other
categories than c

N¬t,c
Number of occurrences
of c without t

N¬t,¬c

Number of occur-
rences with neither t
or c

Nt
Number of occurrences
of t

in the document, df(t) is the document frequency within the corpus (in
how many different documents the word appears in), and N is the number
of documents in the corpus. TF-IDF emphasizes words that occur often
within a single document and rarely in other documents. Table 3.1 shows
the notations used in the equations in this section.

Rennie and Jaakkola [40] have surveyed several other approaches and
their use for named entity recognition. In their experiments, Residual IDF
[9] produced the best results. Residual IDF is based on the idea of com-

paring the word’s observed IDF against predicted IDF (ÎDF). Predicted
IDF is estimated using the term frequency and assuming a random distri-
bution of the term in the documents. The larger the difference between
IDF and ÎDF , the more informative the word. Equation 3.2 presents how
the residual IDF (RIDF) is estimated using observed IDF and predicted
IDF:

RIDF (t) = IDF (t)− ÎDF (t)

= − log
df(t)

N
+ log (1− e−

ctf(t)
N),

(3.2)

3.1 Term weighting 7

where ctf(t) is the collection term frequency; ctf(t) =
∑

d tf(t, d). This
approach is similar to TF-IDF as the score will be higher when a word
occurs often in a single document. However, this approach tends to give
words with medium frequency the highest weight.

Other approaches experimented by Rennie and Jaakkola included xI

metric introduced by Bookstein and Swanson [7]:

xI(t) = Nt − df(t), (3.3)

where Nt is the total number of occurrences of t, and df(t) is the number of
documents where t appears in. However, according to Rennie and Jaakkola,
xI is not an effective way to find informative words.

Odds Ratio (OR), (Pointwise) Mutual Information (MI), Information
Gain (IG), and Chi-squared (χ2) are other often used approaches. Odds
Ratio (OR(t)) is used, for example, for relevance ranking in information
retrieval [30]. It is calculated by taking the ratio of positive samples and
negative samples; i.e., the odds of having a positive instance of the word
when compared to the negative [14]:

OR(t) = log
Nt,c ×N¬t,¬c
Nt,¬c ×N¬t,c

, (3.4)

where Nt,c denotes the number of times term t occurs in category c, Nt,¬c is
the number of times t occurs in other categories than c, N¬t,c is the number
of times c occurs without term t, N¬t,¬c is the number of times neither c
nor t occurs.

Information Gain (IG(t)) is often used by decision tree induction algo-
rithms, such as C4.5, to assess which branches can be pruned. It measures
the change in entropy when the feature is given, as opposed of being ab-
sent. This is estimated as the difference in observed entropy H(C) and the
expected entropy ET (H(C|T)) [52]:

IG(t) = H(C)− ET (H(C|T))
= H(C)− (P (t)×H(C|t) + P (¬t)×H(C|¬t))

= −
m∑
i=1

P (ci) logP (ci)

+ P (t)

m∑
i=1

P (ci|t) logP (ci|t)

+ P (¬t)
m∑
i=1

P (ci|¬t) logP (ci|¬t),

(3.5)

8 3 Background

where ¬t indicates the absence of t, m is the number of all categories, ci is
the ith category.

Chi-squared (χ2(t, c)) is a traditional statistical test of independence.
In feature weighting it is used to assess the dependency of the feature –
category, or feature – feature pairs [52]:

χ2(t, c) =
N × (A×D − C ×B)2

(A+ C)× (A+B)× (B +D)× (C +D)
, (3.6)

where A = Nt,c, B = Nt,¬c, C = N¬t,c, and D = N¬t,¬c. If the χ2 score
is large, the tested events are unlikely to be independent which indicates
that the feature is important for the category.

Pointwise Mutual Information (MI(t, c)) is similar to the Chi-squared
feature selection. The idea is to score each feature - category (or feature -
feature) pair and see how much a feature contributes to the pair:

MI(t, c) = log2
Nt,c ×N

(Nt,c +N¬t,c)× (Nt,c +Nt,¬c)
. (3.7)

Bi-Normal Separation (BNS) is an approach originally proposed by For-
man [14]. The approach uses the standard normal distribution’s inverse cu-
mulative probability functions of positive examples and negative examples:

BNS(t, c) = |F−1(
Nt,c

Nt,c +Nt,¬c
)− F−1(

N¬t,c
N¬t,c +N¬t,¬c

)|, (3.8)

where F−1 is the inverse Normal cumulative distribution function. As
the inverse Normal would be infinite at 0 and 1, Forman limited both
distributions to the range [0.0005,0.9995].

The idea of BNS is to compare the two distributions; the larger the
difference between them, more important the feature. In other words, when
a feature occurs often in the positive samples and seldom in negative ones,
the feature will get a high BNS weight. In his later work, Forman compared
the performance of BNS against several other feature weighting approaches
including Odds Ratio, Information Gain, and χ2 [15]. In his experiments
BNS produced the best results with IG performing the second best.

3.2 Document categorization

I now give the background for document categorization, a classification task
focusing on text documents.

3.2 Document categorization 9

3.2.1 Classification

Classification is a machine learning task where the aim is to build a model
that predicts labels for feature vectors. Text categorization is a classi-
fication task where the feature vectors are formed from text documents.
Classification can be divided into three steps: 1) feature vector creation, 2)
training a classifier, and 3) label prediction. A classifier is trained using a
set of vectors called training set.

In the first step, each document forms a feature vector by mapping each
term in the document into a feature. When creating a feature vector the
document is preprocessed depending on the requirements of the classifica-
tion task. This may include, for example, stemming and stop word removal.
After preprocessing, the features in the feature vectors are weighted so that
the most important features are emphasized and less important are removed
or their impact diminished.

In the second step the training process takes the set of feature vectors
with their labels as its input and outputs the classifier. The classifier is
usually a function to predict the classes of the feature vectors. The actual
type of the function differs based on the selected classification method. The
performance of the classifier is experimented with a test set where the labels
are known in advance. However, the classifier does not know these labels.
The result of the classification is analyzed and the classifier may be re-built
if the results are not satisfactory.

Finally, when the classifier produces satisfying results, it can be used
to predict the labels of unlabeled data. This step takes the classifier and
the unlabeled data as its input and predicts the category for each of the
unlabeled vectors. Output of the process is the classes for each of the
vectors.

The process and especially the models differ based on the selected clas-
sification approach. A Naive Bayes classifier uses a probabilistic function.
The idea is to assess the probabilities of each category, and of each feature
for each category, and to use the probabilities in classification [39]. Con-
sider the following simplified example, where we have two categories: car
and truck. When there is a document about cars, the word sedan occurs
80 % of times and the word trailer occurs 5 % of times. When a docu-
ment talks about trucks, the word sedan occurs 1 % of times and the word
trailer occurs 70 % of times. For the sake of simplicity, assume that both
categories have the same number of documents: P (car) = P (truck).

If an unlabeled document contains the word sedan, it is more likely to
belong to the category car as it is more probable to find this feature value
from the category car than from truck :

10 3 Background

P (car|sedan) = P (car∧sedan)
P (sedan) > P (truck∧sedan)

P (sedan) = P (truck|sedan).
A k-Nearest Neighbor classifier (kNN) is based on the idea of finding the

k nearest training vectors for the test vector and using the categories from
those k vectors as the label(s) for the test vector. The distance between the
test vector and the training vector can be calculated several ways. It can
be the number of matching features (e.g., words), Euclidean distance be-
tween the feature vectors or a cosine similarity between the feature vectors.
The label can be selected from the closest k neighbors using, for example,
weighted voting where each training document gets number of votes that is
dependent on the similarity between the two vectors. Other options include
using the label that occurs most often among the k neighbors, or using all
of the labels among the neighbors. Yang [50] experimented with several sta-
tistical classifiers and concluded that kNN produced the best results with
their test set of Reuters news articles.

Support Vector Machine classifier (SVM) [10] takes the training vec-
tors and aims to find a hyperplane that separates positive and negative
samples into different sides of the hyperplane. Usually it is impossible to
separate the samples directly using the given data in the given dimensions.
For this reason, it is often a good idea to map the original space into a
higher-dimensional space where the separation is easier to accomplish [37].
SVM classifiers use a kernel function that maps the features into higher
dimensions and creates the hyperplane; this is the model created by the
SVM classifier.

3.2.2 Related applications

Yang has compared several of the approaches using Reuters news article
data [50, 51]. In these experiments k-Nearest Neighbors (kNN) was one
of the top performers. In several other studies Support Vector Machine
(SVM) has been reported to produce the best results [22, 25, 51].

Naive Bayes classification has also been able to produce good results.
Rennie et al. [39] describe Transformed Weight-normalized Complement
Naive Bayes (TWCNB) approach that can, according to them, produce
comparable results with SVM. They base the term weighting mostly on
term frequency but they also assess term’s importance by comparing its
distribution among categories. Kibriya et al. [24] extended this idea by
using TF-IDF instead of TF in their work.

In text categorization, most research has used text documents of normal
length, such as news articles, but there are a few instances that use short
documents such as tweets. Pak and Paroubek [35], for example, use linguis-
tic analysis to mine opinions and conclude that when using part-of-speech

3.3 Keyword extraction 11

tagging it is possible to find strong indicators for emotion in text.

Spam detection from tweets is also a popular topic. For example, Moh
and Murmann [31] describe an approach for spam detection from tweets
that is mostly based on the links between users. They include several fea-
tures that are related to the user statistics in Twitter. Their approach re-
quires very little analysis of the actual tweets. Benevenuto et al. [4] describe
an approach where they use several features from tweets, such as content
and user behavior, to classify tweets as spam. These features include the
contents of the tweets. McCord and Chuah [28] evaluate the use of several
traditional classifiers for spam detection in Twitter. They use user-based
and content-based features. User-based features include number of friends
(which are known as following and followers in Twitter) and distribution of
tweets within a given time period. Content-based features include URLs,
keywords and word weights, and hashtags. McCord and Chuah use SVM,
Naive Bayes, kNN and Random Forest in their experiments. Random For-
est produced the best results in their experiments, with kNN and SVM
producing the next best results. Naive Bayes produced clearly the worst
results.

Garcia Esparza et al. [13] aim to categorize and recommend tags to
tweets and other short messages in order to combat the different tagging
conventions of users and to facilitate search. They use TF-IDF term weight-
ing and a kNN classifier with k = 1. Ritter et al. [41] describe an approach
for modeling Twitter conversations by identifying dialog acts from tweets.
Dialogue acts provide shallow understanding of the type of text in ques-
tion; for example, the text can be identified as being statement, question or
answer. They use a Hidden Markov Model to create conversation models
and Latent Dirichlet Allocation (LDA) [6] to find hidden topics from the
text. The topics are used to follow the dialogue and predict when the topic
changes; this helps to identify the different dialogue acts.

Spam detection in tweets is a interesting topic but not directly applica-
ble to categorization of text into several categories. Of the work we have
reviewed, only the work done by Esparza et al. [13] uses term weighting
and focuses on document categorization. However, they use TF-IDF and
kNN which we will show to be ineffective in Article I and Article II.

3.3 Keyword extraction

Several authors have presented keyword extraction approaches in recent
years. The methods often use supervised learning. In these cases the idea
is to use a predefined seed set as a training set and learn the features for

12 3 Background

keywords. The training set is built manually by tagging the documents
with keywords.

An example that uses supervised learning is called Kea [16, 49]. It uses
Naive Bayes learning with TF-IDF and normalized term positions, i.e., the
first occurrence of the word divided by the number of words in the text,
as the features. The approach was further developed by Turney [47] who
included keyphrase cohesion as a new feature. One of the latest updates to
Kea is by Nguyen and Kan [32] who included linguistic information such
as section information as features.

Before developing the Kea approach, Turney experimented with two
other approaches: decision tree algorithm C4.5 and an algorithm called
GenEx [46]. GenEx has two components: a hybrid genetic algorithm Gen-
itor, and Extractor. The latter is the keyword extractor that needs twelve
parameters to be tuned. Genitor is used for finding these optimal parame-
ters from the training data.

Hulth et al. [21] describe a supervised approach that utilizes domain
knowledge found from Thesaurus, and TF-IDF statistics. Later, Hulth
included linguistic knowledge and different models to improve the perfor-
mance of the extraction process [19, 20]. The models use four different
attributes: term frequency, collection frequency, relative position of the
first occurrence, and part-of-speech tags.

Ercan and Cicekli [12] describe a supervised learning approach that uses
lexical chains for extraction. The idea is to find semantically similar terms,
i.e., lexical chains, from text and utilize them for keyword extraction as
semantic features.

There are also approaches that do not use supervised learning but rely
on term statistics instead. KeyGraph is an approach described by Ohsawa
et al. [33] that does not use part-of-speech tags, large corpus, nor super-
vised learning. It is based on term co-occurrence, graph segmentation and
clustering. The idea is to find important clusters from a document and as-
sume that each cluster holds keywords. Matsuo and Ishizuka [27] describe
an approach that uses a single document as its corpus. The idea is to use
the co-occurrences of frequent terms to evaluate if a candidate keyword is
important for a document. The evaluation is done using Chi-squared (χ2)
measure. All of these approaches are designed for longer documents and
they rely on term frequencies.

Mihalcea and Tarau [29] describe an unsupervised learning approach
called TextRank. It is based on PageRank [34] which is a graph-based
ranking algorithm. The idea is to create a network where the vertices are
the terms of the document and edges are links between co-occurring terms.

3.4 Query expansion 13

A term pair is co-occurring if they are within 2 to 10 words within each
other in the document. The edges hold a weight that is received using
the PageRank algorithm. The edges are undirected and symmetric. The
keywords are extracted by ranking the vertices and picking the top n ones.
This approach produced improved results over the approach described by
Hulth.

There are some approaches developed that extract keywords from ab-
stracts. These abstracts often contain 200-400 words making them consid-
erably longer than documents in our corpus. One such approach, proposed
by HaCohen-Kerner [17], only uses term frequencies to extract keywords.
Andrade and Valencia [2] use Medline abstracts to extract protein functions
and other biological keywords. The previously mentioned work by Ercan
and Cicekli [12] also uses abstracts as the corpus.

Wan and Xiao [48] describe an unsupervised approach called CollabRank
that clusters the documents and extracts the keywords within each clus-
ter. The assumption is that documents with similar topics contain similar
keywords. The keyword extraction has two levels: first, the words are eval-
uated in the cluster level using a graph-based ranking algorithm similar to
PageRank [34]. After this, the words and phrases are scored at the doc-
ument level by summing the cluster level saliency scores. In the cluster
level evaluation, part-of-speech tags are used to identify suitable candidate
keywords. The part-of-speech tags are also used when assessing if the can-
didate keyphrases are suitable. Wan and Xiao use news articles as their
corpus.

3.4 Query expansion

Query expansion is a process that aims to reformulate a query to improve
the results of information retrieval. This is important especially when the
original query is short or ambiguous and would therefore give only irrelevant
results. By expanding the query with related terms the reformulated query
may produce good results.

Carpineto and Romano [8] has surveyed query expansion techniques.
According to them, the standard methods include: semantic expansion,
word stemming and error correction, clustering, search log analysis and
web data utilization.

In semantic expansion, the idea is to include semantically similar terms
to the query. These words include synonyms and hyponyms. When using
word stemming, the idea is to use a stemmed version of the word so that
different types of spellings can be found (e.g., singular and plural). Term

14 3 Background

clustering is a way to find similar terms by using term co-occurrence. Search
log analysis is another way of finding similar terms. In this case, the logs
are analyzed to identify terms that often co-occur with the given query
terms. Finally, web data utilization is an approach where an external data
source (e.g., Wikipedia1) is used for query expansion. The idea here is to
use hyperlinks in Wikipedia to find related topics for the query terms.

Bhogal et al. [5] also reviewed query expansion approaches. They mainly
focus on three areas in their review: relevance feedback, corpus dependent
knowledge models and corpus independent models. Relevance feedback
is one of the oldest methods for expansion. It expands the query using
terms from relevant documents. The documents are assessed as relevant if
they are ranked highly in previous queries or identified as relevant in other
ways (e.g., manually). Corpus dependent knowledge models take a set of
documents from the domain and uses them to model the characteristics
of the corpus. This includes the previously mentioned stemming and co-
occurrence approaches. Corpus independent knowledge models includes
semantic expansion and the web data utilization as it uses dictionaries
such as WordNet2 to include synonyms and hyponyms into the search. For
more information, we refer the reader to the original articles by Carpineto
and Romano [8] and Bhogal et al. [5].

In our work, we focus on term co-occurrence. We use an approach
called association network to model the links between the terms. When
expanding a query, we need to search the network for the associative terms.
For this, we use an idea from spreading activation [11]. Spreading activation
is a technique to search a network by starting from a node and iteratively
traveling to the neighboring nodes using a predefined condition and the
weights between the nodes.

The actual implementation of the spreading activation technique can
be done using a best first search approach [36] which is a graph search
algorithm that expands the most promising node. The node is chosen
according to a specified rule. The idea is to start from the node that maps
to the query term and add new nodes (i.e., terms depicted by nodes) to
the query using a function f(t). The function selects the best nodes to
the query using the weight between the query node and the other nodes.
The actual function will depend on the type of graph and the weights.
Top n nodes are added to the query where n is a predefined number or the
number of nodes that fulfill the function. Our implementation of this query
expansion approach is described in Section 4.3.

1http://www.wikipedia.org/
2http://wordnet.princeton.edu/

Chapter 4

Term weighting in short
documents

In this chapter, I describe our work on term weighting in short documents
and propose three novel approaches. Here, a document is considered short
when it has at most 100 words. However, most documents used in our
studies can be very short, i.e., contain less than 20 words. Twitter messages
and market research data are examples of this.

The approaches we have used for term weighting differ depending on
the task at hand. The tasks we have studied are document categorization,
keyword extraction, and keyword association modeling.

For document categorization we propose two different term weighting
approaches that were developed to be used with two different classifiers: a
Naive Bayes classifier (Article I) and a Support Vector Machine classifier
(Article II).

For keyword extraction we propose an approach that weights the terms
on three levels: corpus level, cluster level and document level (Article III).
Finally, for keyword association modeling we propose a weighting approach
that uses keyword co-occurrence (Article IV). Here the aim is to find strong
links between keywords and use them for query expansion.

4.1 Document categorization

Document categorization is one of the main areas where term weighting has
been used. The aim is to assess the importance of each word and emphasize
the more important words over the unimportant ones. When using only the
more important words, the classifier will usually require less computational
power than when using all the words.

15

16 4 Term weighting in short documents

4.1.1 Approach I: Two level relevance values

The approach presented in this section was introduced in Article I. It
uses four components that may not be novel by themselves but by com-
bining them we get a novel feature weighting method. This approach is
loosely based on the work by Rennie et al. [39] called Transformed Weight-
normalized Complement Naive Bayes (TWCNB).

TWCNB uses Naive Bayes classifier and weights features by: 1) Term
Frequency, 2) Inverse Document Frequency, 3) Length Normalization, and
4) Complement class weighting. The first three are standard weighting
methods used for example in TF-IDF weighting. The fourth is an ap-
proach that uses the distribution among categories. That is, it compares
the difference in frequency among positive examples and negative exam-
ples. We use this idea of distribution comparison in our work. In addition,
we use a component that is similar with Inverse Document Frequency. The
other two (1 and 3) are not used in our work.

The aim of our approach is to assess the information value of each
word by estimating its relevance in the corpus level and category level. We
will define the following statistics to calculate the weights: inverse average
fragment length where the word appears in, category probability of the word,
document probability within the category, and inverse category count. The
hypothesis is that as these do not rely on term frequency within a document
these are better for weighting the terms within short documents. More
detailed descriptions of these components and of the equation for combining
them can be found in Article I, pages 7 – 11.

Inverse average fragment length

Inverse average fragment length is based on the assumption that a word
is informative when it can occur alone. That is, we assume that on aver-
age there are fewer surrounding words around the informative words than
uninformative ones.

A fragment is a part of the text that is broken from the document using
predefined breaks. We break the text into fragments using predefined stop
words and break characters. We use the following stop words: and, or,
both. We use the corresponding translated words when the text is not in
English. In addition, we use the following characters to break the text:
comma (,), exclamation mark (!), question mark (?), full stop (.), colon
(;), and semicolon (;). For example, sentence ”The car is new, shiny and
pretty” is broken into fragments ”The car is new”, ”shiny”, ”pretty”.

As an example of our assumption, consider the previous example. Words

4.1 Document categorization 17

shiny and pretty are alone where as words the, car, is, and new have sev-
eral other words in the same fragment. As the words new, shiny, and pretty
form a list, they can appear in any order (i.e., in any fragment) whereas the
words the, car, and is may not. When we have several documents about
the same topic (e.g., car reviews), the same words can occur often. By
taking the average fragment length for each word, three words (new, shiny,
pretty) will stand out from the less important ones (the, car, is).

The inverse average fragment length ifl(t) for the word t is calculated
as follows:

ifl(t) =
1

1
|ft|

∑
lf (t)

, (4.1)

where ft is the collection of fragments where the word t occurs in, and lf is
the length of the fth fragment where the word t occurs in. In other words,
we take the average length of the fragments the word t occurs in. If the
word occurs always alone, ifl(t) = 1.

If the example sentence occurs two additional times in the form ”The
car is shiny, pretty and new”, the word shiny would have occurred alone
once, word new two times, and the word pretty three times. The unim-
portant words of this example (the, car, is) occur with three other words
in every instance making their inverse average fragment length smaller. In
this example the inverse average fragment lengths for each of the words
are: ifl(car) = 0.25, ifl(is) = 0.25, ifl(new) = 0.5, ifl(shiny) = 0.33, and
ifl(pretty) = 1.0. As can be seen, this approach gives emphasis on the
words that often occur alone.

Inverse category count

Another component of feature weighting for assessing the words in the
corpus level is inverse category count. Here, the idea is to emphasize words
that occur in fewer categories. That is, the fewer categories include the
word, the more informative it is. Inverse category count is defined as:

icc(t) =
1

ct
, (4.2)

where ct is number of categories where word t occurs in.
If a word appears in a single category, its inverse category count is 1.0

and if it appears in more categories, its inverse category count approaches
0.0 quite quickly. However, this is dependent on the classification task as,
e.g., in binary classification the discrimation power of this approach is not
strong.

18 4 Term weighting in short documents

Category probability

The probability of finding the word within a category is the key component
of our weighting approach. It is based on the idea that the words that occur
often in a single category and rarely in others are the most important ones.

Category probability P (c|d) uses the distribution of the word among the
categories. If the word occurs only in a single category, the corresponding
category probability is 1. The probability of other categories is 0. This
indicates the word’s importance for the given category.

The conditional probability P (c|d) is estimated simply by taking the
number of documents in the category that contain the word t (|{d : t ∈
d, d ∈ c}|) and dividing it by the total number of documents that contain
word t (|{d : t ∈ d}|):

P (c|d) = |{d : t ∈ d, d ∈ c}|
|{d : t ∈ d}|

=
Nd,c

Nd,c +Nd,¬c
. (4.3)

Here we use similar notations with Table 3.1, but instead of term counts
(e.g., Nt,c) we use document counts: Nd,c which is the number of times
document d with word t occurs within category c, and Nd,¬c which is the
number of times the document d with word t occurs in other categories
than c. This equation corresponds Equation 4 in Article I.

Document probability

The probability that a document in category c contains word t is the final
component of the weight:

P (d|c) = |{d : t ∈ d, d ∈ c}|
|{d : d ∈ c}|

=
Nd,c

Nd,c +N¬d,c
, (4.4)

where Nd,c is the number of times document d with word t occurs within
the category c, and N¬d,c is the number of documents without the word
t that occur in the category c. This equation corresponds Equation 5 in
Article I.

The intuition with this component is that a word is important if it occurs
often within the category and unimportant if it occurs seldom. However, if
this approach would be used alone it would not find the important words as
it would emphasize words that occur often. These words include common
verbs (”is”), prepositions (”through”), and articles (”the”). But by combin-
ing this probability with category probability, the combination emphasizes
words that occur in few categories often. Common verbs, prepositions and
articles occur often in several categories which will make their weight small.

4.1 Document categorization 19

Feature weight I

The weight is calculated for each category - word pair separately using the
factors described above. I.e., if the word occurs in two different categories
its weight is in general different in both of those categories. The weight
w(t, c) for word t and category c is the combination of the four component
described previously:

w(t, c) = (ifl(t) + icc(t))× (P (c|d) + P (d|c)). (4.5)

The weight has two parts: corpus level, which consists of the average
fragment length and inverse category count, and category level, which con-
sists of the two probabilities. The weights are combined in the levels by
summing them; this approach was selected as it gives equal emphasis on
both components and small values have a lesser effect than, for example,
in multiplication.

The two levels are combined by multiplying them. This was selected for
the opposite reason; a small score on either of the levels reduces the weight
more than two medium sized scores.

The weight is normalized using either l2-normalization or category nor-
malization. The former is the standard vector length normalization:

wl2(t, c) =
w(t, c)√∑
w∈dw(w, c)

2
. (4.6)

With l2-normalization the weight of each word is normalized for each
document d separately. The normalized weight wl2(t, c) of the word t is
calculated by dividing the old weight w(t, c) of the word t in the document
d with the length of the vector of the document d.

Another way to normalize the weight is to use the maximum weight
within the category:

wn(t, c) =
w(t, c)

maxwi∈cw(wi, c)
. (4.7)

The idea here is to divide each weight within a category with the max-
imum weight of the category. Here the weight of a word remains the same
for the category in each document.

4.1.2 Approach II: Fragment length weighted category dis-
tribution

The second approach is the result of further development of the first ap-
proach. It was introduced in Article II and we call it Fragment Length

20 4 Term weighting in short documents

Weighted Category Distribution (FLWCD). As we decided to use a SVM
classifier we also decided to make some updates to the initial term weight-
ing method. The result of the update was an approach that substituted
the document probability with Bi-Normal Separation and left out inverse
category count.

Equation 3.8 in Chapter 3 described how BNS is calculated. It is based
on the comparison of two distributions: word’s occurrences in positive and
negative samples. When compared with document probability P (d|c), in
Equation 4.4, both approaches use distribution of the word (or document
with the word) in the positive sample, i.e., within the category, but BNS
uses also the distribution of negative samples, i.e., documents that do not
contain the word. In other words, when BNS compares the difference it
emphasizes words that occur often in a single category. If the word is evenly
distributed among several categories, BNS produces a smaller weight.

The weight is calculated by multiplying BNS, conditional probability of
the category (P (c|d)), and inverse fragment length:

w(t, c)

= BNS(t, c)× P (c|d)× ifl(t)

= |F−1(
Nt,c

Nt,c +N¬t,c
)− F−1(

Nt,¬c
Nt,¬c +N¬t,¬c

)|

×
Nd,c

Nd,c +Nd,¬c
× 1

1
|ft|

∑
lf (t)

,

(4.8)

where (using the notations from Table 3.1) Nt,c is the number of times
word t occurs in category c, Nd,c is the number of times document with
term t occurs in category c, and N¬d,¬c is the number of documents that are
neither in the category c nor contain the word t. This equation corresponds
Equation 11 in Article II.

The benefit of this approach is that it emphasizes the words that occur
only in few categories (P (c|d)), in short fragments (ifl), and often in a
single category and seldom in others (BNS).

Normalization can be done using either of the approaches presented
in Equation 4.6 or Equation 4.7. Experimental results with both weight
functions will be given in Section 5.

4.2 Keyword extraction

In this section I propose an approach for keyword extraction from short
documents. This approach was originally presented in Article III. Keyword

4.2 Keyword extraction 21

extraction is the task of finding the most important words of the document.
This is useful in several domains: keywords can be used as a summary of
the text, or text summarization can find the most important sentences by
using the keywords [3]. The keywords can also be used in a tag-based rec-
ommendation system as tags. Keywords can also summarize the document
collection and they can be used in query expansion.

To extract the keywords, the importance of each word needs to be
evaluated. We use three levels of word assessment to identify the keywords:
corpus level, cluster level and document level. The idea of multi-level word
assessment is based on the work by Wan and Xiao [48]. The utilization of
the extracted keywords is discussed in Section 5.3.

4.2.1 Corpus level word assessment

Corpus level word evaluation is described in detail in Article III, page 5.
The aim of the corpus level evaluation is to find words that are important
in the more abstract level. These words tend to be more common than
the more expressive words but they should not be too common either. For
example, we want to find terms like ’Rock and Roll’, ’Elvis’ and ’Metallica’
instead of just ’event’ and ’music’. Therefore, we concentrate on words that
are neither too common or too rare in the corpus; however, an informative
word will more likely be rare than common.

In order to find these types of words we use word frequency in the
corpus level (tfc). As in most cases when using a corpus of short documents,
the term frequency within a document (tfd) for each term is 1. We base
our approach on Residual IDF; however, we do not compare IDF against
expected IDF but instead we compare IDF against expected optimal IDF
for the document collection.

We call the IDF used here Frequency Weighted IDF (IDFFW). It is
based on the idea of comparing the observed IDF with Frequency Weight
(FW):

IDFFW (t) = IDF (t)− FW (t), (4.9)

where FW(t) is the assumed optimal IDF which is described below. The
most important terms receive IDFFW (t) = IDF(t), i.e., they receive no
penalty with FW (t).

The idea behind IDFFW is to give smaller weights to words when the
corpus level term frequency has a larger difference from the assumed opti-
mal frequency no. Equation 4.10 shows how FW is calculated:

22 4 Term weighting in short documents

Table 4.1: Examples how IDFFW changes when tfc = df , no = 93, and
|D| = 3100. This corresponds to one of the datasets used in our experiments
presented in Article III.

α\tfc 1 5 10 50 95 250 500 1000

1.0 5.06 5.06 5.06 5.06 5.00 2.21 0.21 -1.79

1.1 4.40 4.64 4.74 4.97 4.99 2.06 -0.04 -2.14

1.5 1.79 2.95 3.45 4.61 4.98 1.49 -1.01 -3.51

2.0 -1.48 0.84 1.84 4.16 4.97 0.78 -2.22 -5.22

FW (t) = α× | log2
tfc(t)

no
|, (4.10)

where tfc(t) is the corpus level term frequency of word t and no is the
assumed optimal frequency.

The penalty is estimated as IDF but we use no instead of the document
count N and tfc(t) instead of df(t). This affects the IDF so that all the
term frequencies below no will get a positive value, when tfc(t) equals no

the value is 0, and when tfc(t) is greater than no the value will be negative.
To give penalty on both cases, we need to take the absolute value of the
penalty.

Even though FW will be larger with small term frequencies, IDF will
be also larger. In fact, when tfc(t) = df(t) and tfc(t) < no, we have
IDFFW (t1) = IDFFW (t2) even if tfc(t1) < tfc(t2) for all tfc(t) < no. This
can be seen in Table 4.1 when α = 1.0. We use α to overcome this issue
and give a small penalty when tfc(t) < no. We have used α = 1.1 in our ex-
periments. Table 4.1 shows how the different α values and term frequencies
affect the IDFFW scores.

An important part of the equation is the selection of no. We use a
predefined fraction of the corpus size: no = 0.03 × N , where N is the
number of documents in the corpus. That is, we consider that a word is
optimally important in the corpus level when it occurs in 3 % of documents.
We decided to use this number after evaluating the characteristics of our
experimental data. This has produced good results in all of the experi-
ments. However, it may be beneficial to change this value when datasets
have different characteristics than the datasets described in Article III.

This informativeness evaluation has two features that we consider im-
portant: first, in the rare occasions when df(t) < tfc(t) < no these words
are emphasized by giving a higher weight. Second, as we consider less
frequent terms more informative than more frequent terms, the IDFFW

4.2 Keyword extraction 23

is smaller when tfc(t) = no + C than when tfc(t) = no − C for any C,
0 < C < n0. For example, using the same parameters as in Table 4.1,
when tfc(t) = n0 − 43 we get IDFFW = 4.97, and when tfc(t) = n0 + 43
we get IDFFW = 3.91. Here we can see how the less frequent words are
emphasized over more frequent ones which is the desirable result in most
of the cases when identifying the important words in the corpus level.

4.2.2 Cluster level word assessment

Cluster level assessment is introduced in Article III, pages 5 – 6. In the
cluster level we want to emphasize words that occur often within a set of
similar documents and rarely in other documents. That is, words that have
high category probability P (c|d), shown in Equation 4.3, are important in
this level. This includes rare words, i.e., words with small corpus level
term frequency tfc. With event data, these types of words are often per-
formers (”Elvis”, ”The White Stripes”), team names (”Tottenham”, ”FC
Barcelona”), and directors and actors (”Tim Burton”, ”Johnny Depp”).
These words are important when considering the document or the cluster
level document collection as they indicate to the reader the exact contents
of the event.

Cluster level evaluation is based on the feature weighting approach pre-
sented in Section 4.1.1. However, as the data used for keyword extraction
rarely holds labels, we need to use clustering to identify document sets that
have similar topics.

We use Agglomerative CompleteLink clustering in our work which is
the same approach used by Wan and Xiao [48] in their work for keyword
extraction. It is a bottom-up clustering approach where at the beginning,
each document forms its own cluster. The clusters are joined iteratively
so that in each iteration the most similar clusters are combined as long
as the similarity between the two clusters is above a given threshold tc.
The similarity between the clusters cn and cm is the minimum similarity
between any two documents dn ∈ cn and dm ∈ cm:

sim(cn, cm) = min
dn∈cn,dm∈cm

sim(dn, dm), (4.11)

where similarity sim(dn, dm) is the cosine similarity of the documents. Co-
sine similarity measures the similarity between two vectors by assessing the
cosine of the angel between them:

cos(dn, dm) =
dn · dm

∥dn∥∥dm∥
. (4.12)

24 4 Term weighting in short documents

Here, the dot product of dn and dm is the number of matching terms, and
∥dn∥ and ∥dm∥ is the length of the documents.

The algorithm stops when there are no more clusters to be joined, i.e., if
there are no clusters with similarity above tc. The optimal value for tc can
be found using, for example, cross validation and it varies among datasets.

It is possible to use the term weighting approach without clustering so
that each document is considered to belong to its own cluster/category.
In this case, the rarest words are emphasized as they occur only in a few
documents. This does not produce optimal results but it still can identify
important words from text.

We get the cluster level score scluster(t, c) by using Equation 4.5 pre-
sented in Chapter 4. The result of the cluster level evaluation is a score for
each word and for each of the clusters it appears in. If the word appears
only in a single cluster, the weight will be considerably higher than if it
appear in two or more clusters.

4.2.3 Document level word assessment

The final step of the process is to extract the keywords from the documents.
This step is described in detail in Article III, pages 6 – 7. In this level we
use the word scores from the previous levels. The idea is to extract the
words that are found informative on either the corpus level or the cluster
level; or preferably on both.

First, to make the scores of corpus and cluster level comparable, the
corpus level scores need to be normalized to fall between [0,1]. This is
done using Equation 4.7; i.e., the maximum corpus level word score in the
document is taken and used as the denominator.

The document level score sdoc(t, d) for word t in document d (that be-
longs to cluster c) is calculated by taking the weighted average of the cluster
level score scluster(t, c) and the normalized corpus level score scorpus(t):

sdoc(t, d) =
β × scluster(t, c) + (1− β)× scorpus(t)

2
, (4.13)

where β (0 ≤ β ≤ 1) indicates the weight that is used for giving more
emphasis to either cluster or the corpus level score. The weighted average
is used for two reasons: 1) we get scores that fall within [0,1], and 2) as
we want to extract words that are important in either corpus or cluster
level, the effect of a low score on either levels does not exclude the word as
it would if the scores would be multiplied. That is, we want to emphasize
words that have a high weight on either of the levels instead of two medium

4.2 Keyword extraction 25

weights on both levels. The optimal β values can be found using k-fold cross
validation. The values we used are described in Article III.

Using this approach, if the document level score is close to 1, the word
is informative both in corpus and in cluster level. If the score is close to
0.5, the word is informative either in the cluster level or in the corpus level.
Such a word could be, for example, a performer that appears in a single
document; this is an important word in the document level.

We noticed when examining the datasets that it is more probable that
a keyword occurs often in the beginning of the document instead of the
end; this was true especially with the event data. Therefore, we included a
distance factor d(t) that is based on an idea used in Kea keyword extraction
system [16]. The distance is calculated by taking the number of words that
precede the word’s first occurrence in the document and dividing it with
the length of the document:

d(t) = 1− i(t)

|d|
, (4.14)

where |d| is the number of words in the document and i(t) is the index of
word’s first occurrence in the document. The index starts from 0 making
d(t) = 1 for the first word in the document.

We also include part-of-speech tags (POS-tags) in the document level
word evaluation as another weighting option for words: different tags get a
different POS-weight (wPOS) in the final score calculation. This is useful
when we want to emphasize different types of words in different domains.
For example, in some domains adjectives may be important while in others
they are not needed.

The simplest approach is to give weight 1.0 to all tags that are accepted,
such as NP and JJ (nouns and adjectives), and 0.0 to all others. To empha-
size some tags over the others, weights wPOS(tag1) > wPOS(tag2) > 0 can
be used. If POS-tags are not available, wPOS = 1.0 is used for all words.

Finally, all words in the document d are scored by combining sdoc(t, d),
wPOS and d(t):

s(t, d) = sdoc(t, d)× d(t)× wPOS(t), (4.15)

where wPOS(t) is the POS weight for the word t. If t has several POS-tags,
the one with the largest weight is used.

Each word t in the document d now has a score s(t, d) that indicates
its informativeness for the document. The top k words that receive the
highest score are then extracted as keywords from the document. As the
documents are short we do not always want to extract all k words as some

26 4 Term weighting in short documents

may have a very small score. Therefore we use a threshold td to select n
(n ≤ k) informative words from the document that have a score above td.
The threshold td is relative to the highest score of the document:

td = max
t∈d

s(t, d)× r (4.16)

where r is the predefined cutoff variable. We use r = 0.5. That is, the key-
words that have a score at least 50 % of the highest score in the document
are acceptable.

4.3 Keyword association modeling for query ex-
pansion

In this section I describe the approach we have used for modeling associa-
tions between keywords and how we used the model for query expansion.

4.3.1 Association modeling

In Article IV, we propose an approach for modeling the relations between
keywords by building an association network. The network is used in
a search engine for query expansion. Even though keyword association
focuses on keyword and keyword pair weighting we consider this a term
weighting challenge.

The idea behind association network is to model the relations between
concepts. In our case, these concepts are keywords that describe the con-
tents of a document in a concise way. The method is based on the psy-
chological theory that when two concepts appear often with each other,
they tend to get a stronger association between them [38]. However, the
associations are not the same every time. For example, we may usually
associate the concept car to driving, but we may also think hundreds of
other concepts, like road, wheel and pavement among other things.

To model the associations we use a network that consists of nodes
and edges. The nodes in the network represent the concepts that can be
words, terms or phrases. The nodes are linked together with directed edges
that represent the strength of the association. Figure 4.1 from Article IV
presents a small example of an association network.

Humans form associations between concepts when experiencing some-
thing [18, 38]. This can link together concepts that have no semantic re-
lations between them. The strength of the experience also affects to the
strength of the association. In human brain, this can be seen as having
more neural pathways between the stronger associations [18].

4.3 Keyword association modeling for query expansion 27

Figure 4.1: An example of an association network.

We used this theory when implementing the association network: an
edge between two nodes holds a weight that indicates how strong the as-
sociation is. We use documents as experiences and the keywords from the
documents as the concepts. That is, a document is considered as a single
experience that consists of concepts presented as keywords.

From a machine learning perspective, it is usually difficult, if not impos-
sible to identify how strong an ”experience” is. Therefore, we use confidence
from association rule mining [1] to weight the associations. Confidence is
the conditional probability of concept A occurring when the concept B oc-
curs. For instance, when a document’s topic is cars, it may contain the
word tyres 25 % of times, making the confidence of tyres given cars 0.25.
This is not symmetric, i.e., the confidence will be different when the topic
is tyres; cars may occur about 50% of the times, making the confidence
of cars given tyres 0.5. This example is arbitrary but it illustrates the
antisymmetric properties of confidence and associations.

We use the following equation to compute the confidence of keyword c2
given the keyword c1, i.e., link from c1 to c2:

confidence(c1 → c2) =
freq(c1 ∩ c2)

freq(c1)
, (4.17)

where freq(c1 ∩ c2) is the number of times c1 occurs with c2, and freq(c1) is
the number of times c1 occurs in total.

In addition to confidence, we included two other features for associa-
tions: first, we assumed that the association is stronger between concepts
that occur closely together. Second, we want to emphasize newer experi-
ences and make their association stronger; i.e., we assume that the associ-
ations gradually deteriorate as time passes. The former is addressed with
a distance function that indicates how closely together the concepts were
experienced. Distance is an attribute that can vary depending on the data
source. In an unstructured text, distance can be measured as the number of
words, noun phrases, sentences or even paragraphs between the concepts.

28 4 Term weighting in short documents

As the concepts we are using are keywords, we use the location of key-
words in the keyword list to measure the distance:

distance(c1, c2) = average(|ic1 − ic2 |), (4.18)

where icn is the index of the concept cn in the keyword list. If the con-
cepts always occur next to each other, the distance is 1. As log10(1) = 0,
we use 0.01 as the distance factor when distance(c1, c2) = 1. When dis-
tance(c1, c2) ≥ 10, we use 1.0 as the distance factor.

Now, the distance factor for concepts c1 and c2, when distance(c1,c2)
falls within]1,10[, is:

DistanceFactor(c1, c2) =
1

log10(distance(c1, c2))
. (4.19)

We also include time function that indicates the age of the concept
pairing. If the age of the experience, i.e., document, can be deduced or
extracted from the data, we simulate the natural deterioration of neural
pathways by using the time function. The time function for concept c1
takes the age of the documents it appears in:

TimeFactor(c1) = 1− ln age(c1)

γ
, (4.20)

where γ is used to shape the function to produce desirable results, age(c1)
is the average age of the documents the concept appears in. Due to the
nature of the data used in our experiments we used years but the age can
also be calculated in days. If age is 0, we use 0.01 as the age. For example,
if the document was created a month ago, its age is 30 days and TimeFactor
= 0.94, when γ = 60. This means that the association has lost 6 % of its
strength in one month when 60 days is used as γ. The γ can therefore be
seen as an indicator of an old document.

The strength of the association from c1 to c2 is the combination of these
three components:

Strength(c1 → c2) =
freq(c1 ∩ c2)

freq(c1)
×

(1− ln age(c1)
γ)

log10(distance(c1, c2))
. (4.21)

In other words, the strength is the combination of association, time and
distance.

The strength is normalized to fall between [0, 1] by using the normal-
ization presented in Equation 4.7. The normalization is done to all of the
node’s out-going edges so that the strongest weight is scaled to 1.0.

4.3 Keyword association modeling for query expansion 29

Our approach is somewhat similar with TextRank [29] algorithm as
we consider co-occurrence as the main component of the weight between
keywords. However, we weight the edges differently and the edges are
antisymmetric.

4.3.2 Query expansion using keyword models

We use a spreading activation technique that is implemented using best
first search. Here, the nodes are the keywords and the weight between two
nodes is the association between the two keywords. The weights w fall
between 0 ≤ w ≤ 1. The best first search uses a function to select the top
n nodes from the network by assessing the association between the query
node q and the node k. Association between nodes q and k is the maximum
value of the product of the weights in any of the paths from q to k.

As an example of spreading activation, consider Figure 4.1. Query
Sentiment analysis would first expand Opinion mining as the weight is
1.0 > 0.9 (Information extraction). Then Information extraction is ex-
panded as it is the only neighbor left. From Information extraction, Text
analysis is expanded as when compared to Ontologies its weight is larger:
0.9× 0.9 = 0.81 versus 0.9× 0.6 = 0.54. If there were a node from Opinion
mining with the weight 0.54 < w < 0.81 it would be expanded after Text
analysis but before Ontologies.

The top n nodes with the highest association are used for expansion,
where n is the predefined number of nodes. However, we also use a threshold
for expansion; if the association is under the threshold the node will not be
added to the expanded list even if there are less than n expanded nodes.

The result of this process is a set of nodes that are used to create a new
query. The keyword from each of the nodes is added to the original query
and this new query is then used to search the database. The results of
the search are then weighted using the weights from the expansion. That
is, the results received using the original query terms will get a higher
relevance score and will be shown in the result set before the results from
the expansion. Biggest benefit from expansion is received when the original
search would result documents with poor or no match to the query. In those
cases the expansion can produce results that have higher relevance to the
original query.

30 4 Term weighting in short documents

Chapter 5

Evaluation and utilization of
weighted features

In this chapter I summarize experimental evaluations of the three term
weighting methods presented in the previous chapter. I use three cases: 1)
categorization of market research data, 2) keyword extraction from event
descriptions, and 3) keyword association modeling for query expansion.

First, in Section 5.1, I describe the short document data sources we
have used in our work. In Section 5.2, I describe the categorization of short
documents where we use the weighted terms for building the classifier. In
addition, I show the experimental results of document categorization. In
Section 5.3, I present the evaluation of the keyword extraction and how we
used keywords to build keyword models for both user and item modeling,
and query expansion.

5.1 Short document data sources

In our work we have several different datasets. Market research data is
used in text categorization research and it contains the shortest documents.
This data is important as there is a pressing need from the industry for a
classifier that can automatically categorize the data as precisely as possible.
The data is short as it is written by random respondents who often do not
want to use much time when completing a survey. The average word count
in the market research datasets we have used is between 4 and 12 words. We
also collected a set of tweets from Twitter and use them for experimental
evaluation.

Datasets consisting of event, movie and company descriptions are usu-
ally proof-read. That is, the information found from the descriptions is

31

32 5 Evaluation and utilization of weighted features

Table 5.1: Characteristics of the datasets used in our work.

Dataset
Number
of docu-
ments

Average
number of
words per
document

Average
TF per
document

Market research 7,200 6 1.01

Twitter 2,650 15 1.05

Event descriptions 5,000 32 1.04

Movie descriptions 7,000 63 1.07

Velo data 1,000 80 1.09

often more reliable than, for example, in tweets. We use this type of data
for keyword extraction. This type of data is longer than tweets or mar-
ket research data but it is still short. Their shortness is due to the fact
that the data is often accessed using a mobile device and the user wants
to find the relevant information quickly. Extracting information from the
short descriptions is important for three reasons: 1) this may be the only
information we have on the subject, as is the case with the event data, 2)
we want to extract the concepts from the documents we know the user has
seen (as opposed to the complete descriptions) and use them for building
user models, and 3) when a description is written, the writer wants to in-
clude all the relevant information about the topic in the description. That
is, the short document may contain as much relevant information as the
longer version but in a more concise form.

Table 5.1 shows the characteristics of data we have used in our work.
As can be seen, even though some of the datasets contain over 50 words
per document, it is rare that a word occurs more than once within a single
document. For example, even in Velo data (Velo is a company based in
Shanghai, China that maintains coupon machines), which contains 80 words
per document, the average term frequency is only 1.09.

The market research data, the event descriptions and the Velo data
are from actual applications for which these methods have been developed.
The Twitter dataset and movie descriptions are public datasets we have
used for additional experiments. Next, I will briefly describe each of these
datasets.

The market research dataset consists of over ten sets of answers to
different questions and surveys. This dataset was received from a market
research company located in Finland. This is actual data they have used in
their studies. Each dataset contains between 200 and 1,050 documents (i.e.,

5.1 Short document data sources 33

answers). The average number of words per document varies between 3.5
and 12 making the documents very short. The data was collected between
2009 and 2011.

Twitter dataset was downloaded from Twitter in September 2011. We
created three different datasets from the data and used them for evaluating
the text categorization approaches. We downloaded only tweets that were
written in English.

The event dataset consists of approximately 5,000 public events from
the Helsinki Metropolitan area. The events were collected between 2007
and 2010 from several different data sources. After preprocessing, where
stop words and noisy characters are removed, the documents hold 32 words
on average. The average term frequency per document in this dataset
was 1.04, i.e., almost all the words occur on average only once within a
document.

Velo dataset contains 1,000 descriptions of companies and their products
stored in the Velo databases. These descriptions are used in Velo coupon
machines in China. The data was gathered in June 2010. The descriptions
hold 80 words on average and they are written in Chinese. This data was
used for keyword extraction experiments.

Movie descriptions are abstracts downloaded from Wikipedia. The
dataset contains approximately 7,000 Wikipedia pages that hold informa-
tion about different movies. We use MovieLens dataset1 when selecting the
movies: if a movie is found from MovieLens dataset, we downloaded its
Wikipedia page. We only use the abstracts found at the beginning of the
Wikipedia page. If the abstract is longer than 100 words, we remove the
last full sentences to shorten the document under the given limit. The av-
erage word frequency per document in this dataset is 1.07. The Wikipedia
pages were retrieved in May 2010.

When we compare these datasets to the Reuters-21578 set, we can see
that the statistics differ greatly. The Reuters set contains 150 words per
document on average after the stop words are removed and its average term
frequency is 1.57 [44].

We use a dataset of 9,000 project descriptions for keyword association
modeling. The descriptions have a short abstract what the project is about
and a set of keywords that describe the concepts of the project.

1http://www.grouplens.org/node/12

34 5 Evaluation and utilization of weighted features

5.2 Categorization of short documents

One of the ways a market research company collects data from consumers
is using online questionnaires. Often these questionnaires hold open ended
questions; these questions do not have a predefined set of answers but the
respondent can write anything they feel fit. These answers are usually
labeled manually by market research professionals by reading each of the
answers and selecting suitable labels [45]. As each questionnaire can get
thousands of answers this is an arduous task.

Our aim has been to automatize the labeling process by using supervised
learning approaches. When implementing a classifier the biggest challenge
has been to weight the terms to emphasize the most important words. This
is important to get more precise classification results; if each word would
have the same impact in classification the common words would misdirect
the classifier and produce poor results.

The process of classification is done in three steps: first, the features
(i.e., words) are weighted and the weighted features are used to build the
feature vectors that are used for training the classifier. The second step,
classifier training, depends on the selected classification method. Finally,
the test documents, i.e., documents that do not have a label, are classified
using the trained classifier.

We experimented with two different classifiers for market research data.
First, we used a Naive Bayes like classifier that uses the weights to assign
a category for each text fragments [45]:

class(fn) = argmax
c

(

|fn|∑
i=1

wi(c) +

|fn|∑
i=1,j=2

wi,j(c)), (5.1)

where fn is the nth fragment of document d, wi is the weight of the ith
word in fn, and wi,j the weight of the word pair i, j in fn for the category
c. The weight for the word pair is the summed weight of both words in the
category.

The idea is to sum the weights of each word and word pair in the
fragment for each category and assign the fragment to the category that
receives the highest score.

The second classifier we used was a Support Vector Machine classifier
that uses a linear kernel. We used an implementation called SVM light

[23] of the classifier. We used the feature weighting approach described in
Section 4.1.2 and l2-normalization.

In addition to market research data, we also experimented by catego-
rizing Twitter messages [44]. The Twitter data we collected hold 15 words

5.2 Categorization of short documents 35

Table 5.2: Comparison of the feature weighting methods from Article II.
Compared approaches are Approach I (A I), Approach II (A II), Bi-Normal
Separation (BNS), Chi-squared (χ2), Information Gain (IG), Odds Ratio
(OR), Residual IDF (RIDF), and Term Frequency - Inverse Document Fre-
quency (TFIDF).

Dataset A II A I BNS χ2 IG OR RIDF TFIDF

Market 0.72 0.70 0.70 0.66 0.65 0.70 0.67 0.67
Twitter 0.73 0.69 0.64 0.70 0.59 0.67 0.46 0.47

Average 0.73 0.70 0.67 0.68 0.62 0.69 0.57 0.57

per message on average. We use SVM classifier with the feature weighting
approach presented in Section 4.1.2.

The experiments were made by dividing the data into two sets: training
set and the test set. The test set was held separate during the whole train-
ing process, i.e., the parameter tuning was done using only the training set.
Both the market research and the Twitter datasets were manually anno-
tated for categories. However, we did conduct cross-annotator evaluation
for these datasets.

We use F-score as the metric for comparing the results. This is the
standard measure for test accuracy used in several research articles in this
area [14, 15, 22, 50, 52]. It is the harmonic mean of precision (the number
of correct categories out of all the predicted categories) and recall (the
number of correct categories out of all the categories of the document). As
we want to emphasize precision, we use the F0.5-metric:

F0.5 = (1 + 0.52)× precision× recall

0.52 × precision + recall
. (5.2)

The emphasis on precision was done due to the real world requirements
of the market research company. As they stated, the classifier can miss
some classifications but the ones it makes should be accurate.

We compared the performance of the following term weighting ap-
proaches: Approach I, Approach II, BNS, Chi-squared, Pointwise Mutual
Information, Information Gain, Odds Ratio, Residual IDF, TF-IDF, and
Term Frequency. We used 15 different datasets of the two domains as the
test sets. We used SVM classifier in the comparison.

Table 5.2 shows the results of the evaluation. In the table, Market
shows the average F0.5-scores of the experimental evaluation of the market
research data, and Twitter the averages of Twitter data. Average is the
average of the two test cases. We omitted Mutual Information and Term

36 5 Evaluation and utilization of weighted features

Frequency from Table 5.2 due to space limitations but they can be found
from Table 4 in Article II. The results of Mutual Information is on the level
with Information Gain and the results of Term Frequency are on the level
with TF-IDF.

The comparison showed that Approach II produced the best results
when used in a Support Vector Machine classifier. In Market research
experiment there is only a little variance between the results of different
approaches. In our opinion, this is due to the shortness of the documents.
When the documents are short enough, the impact of term weighting is
smaller as there are only a few features for SVM. However, when the docu-
ments are a bit longer, like in Twitter experiment, the impact of the term
weighting is greater. This can also be seen when comparing the results of
market research test set of different length (Article II).

As selecting the best classifier is an important challenge, we compared
three classifiers in Article I and extended the comparison in Article II
with more test sets and more classifiers. The compared classifiers were:
k-Nearest Neighbors, two Naive Bayes classifiers and a Support Vector Ma-
chine classifier. The average score of the classifiers using Approach II in the
two domains were: SVM 0.73, Naive Bayes 0.64, kNN 0.57, and TWCNB
(Naive Bayes) 0.23 (Article II). TWCNB is the Naive Bayes approach we
used as the starting point in our work in Article I. Its poor result is most
probably due to its strong relation to term frequency.

Even though this comparison does not include all the possible classifiers,
it is safe to assume that SVM is the best option for short document cate-
gorization in most cases as it is the best classifier in several other domains
and usually with long documents as well [22].

5.3 Keyword extraction and keyword models

Next, I present the experimental evaluation of the proposed keyword ex-
traction approach and two ways we have utilized the extracted keywords.
The first use is for user and item profiling for recommendation, where the
extracted keywords are used as tags. This was done as a more objective
evaluation of the extracted keywords. The second use is for creating key-
word association models that are used in a search engine. The aim is to
expand a search so that highly associative keywords are added to the query.

The approaches we use for both keyword extraction and keyword associ-
ation modeling require some parameter selection. Even though the selected
parameters have an effect on the results I leave the more detailed evaluation
on their effects out of scope of this thesis. The parameters we used and the

5.3 Keyword extraction and keyword models 37

reasons for their selection can be found from Article III and Article IV.

5.3.1 Experimental results of keyword extraction

The evaluation of the proposed keyword extraction approach is described
in Article III. In this section I give a short summary of the evaluation.

The evaluation was done by comparing the keyword extraction preci-
sion of several approaches. We used a number of documents from different
datasets that were manually tagged for keywords. We evaluated the anno-
tator agreement rate which in the end was quite low, between 64 % and
70 % depending on the dataset. We updated the annotations after the
disagreements were resolved. We used F -score as the metric of accuracy.

We included the following keyword extraction approaches into our eval-
uation: CollabRank, KeyGraph, χ2 based keyword extraction from Matsuo
and Ishizuka [27], Chi-squared feature weighting, and TF-IDF. We use the
extraction of all nouns and adjectives as the baseline in our studies. This
baseline was selected as it is the simplest approach and can be effective if
the document is so short that it will produce only a few keywords.

The performance comparison is done using three different datasets. The
datasets we used were: event descriptions in Finnish, Velo coupon descrip-
tions in Chinese, and Wikipedia movie descriptions in English. From each
of these datasets we manually picked keywords for 300 documents to be
used as a gold standard. As the keywords were picked manually, they tend
to be subjective; i.e., someone’s opinions for the most important words for
the document.

Table 5.3 shows the results of this experiment. As can be seen, with
movie descriptions our approach (IKE) produced the best result with F -
score of 0.57. Second best were Chi-squared feature weighting and TF-IDF
with the score of 0.35. Rest of the approaches produced scores under 0.3.
With event descriptions our approach produced the F -score of 0.56. TF-
IDF and Chi-squared tied again for the second with the score of 0.49. Col-
labRank scored 0.46. Rest were under 0.40. With Velo data our approach
produced again the best result with the F -score of 0.31. Chi-squared was
second with the score of 0.26 and the rest were under 0.25. The baseline
results were: 0.22, 0.39, 0.15 for movies, events and Velo, respectively. In
this comparison our approach clearly out-performs the competition.

We can see that the baseline does not produce good results. That is,
by extracting only all the nouns and adjectives is not beneficial. As was
expected, a term frequency based approach (TF-IDF) does not produce
very good results when compared to our approach. The poor results for
KeyGraph and Matsuo’s keyword extraction approaches are the result of

38 5 Evaluation and utilization of weighted features

Table 5.3: F-scores for each of the method in keyword precision experiment.
Chi-squared is the traditional feature weighting approach, and χ2 KE is
the keyword extraction approach presented by Matsuo [27]. Due to the
Chinese character set, we were unable to evaluate KeyGraph and Matsuo’s
χ2 keyword extraction approach on Velo data. This table was originally
presented in Article III.

IKE Collab-
Rank

Chi-
squared

TF-
IDF

KeyGraph χ2 KE Baseline

Wikipedia 0.57 0.29 0.35 0.35 0.22 0.21 0.22
Events 0.56 0.46 0.49 0.49 0.36 0.35 0.39
Velo 0.31 0.18 0.26 0.22 - - 0.15

the extraction from a single document at a time; as the documents are short
the documents do not contain enough information for these two approaches.

5.3.2 User and item modeling for recommendation

As the manually tagged keywords used in the keyword extraction eval-
uation were subjective, we also wanted to do an objective evaluation of
the extracted keywords. Therefore, we used the keywords as tags for user
modeling and recommendation, and report the recommendation results.
In Article III we evaluated the keyword extraction by using the keywords
for user and item (item is an abstract term used to depict the domain in
question, e.g., movies) modeling. The aim was to carry out an objective
performance comparison between several competing approaches by using
the models for recommendation.

As the document set, we used movie descriptions downloaded from
Wikipedia that were at most 100 words long. We extracted the keywords
from the descriptions using the previously described keyword extraction
approach. The keywords were then used as tags for the movies, i.e., the
keywords formed the item model for the movies. Each movie has now a set
of tags that consists of keywords. We used MovieLens data for creating the
user model. MovieLens data holds movie ratings from users that indicate
their feelings towards the given movie. The ratings fall between 1-5, where
1 indicates dislike. We take the ratings and add tags from the item model
to user model based on the user ratings. For example, if the user has rated
a movie with five stars (out of five), the tags from the movie are added to
the user model with the maximum weight (1.0).

Formally, the item model (where items are movies) consists of the movie
title m, and a set of tags Tm linked to the title. The tag set Tm consists

5.3 Keyword extraction and keyword models 39

of tags t ∈ Tm extracted from the movie description dm. User model Un

for the user n is created by using the set of tags Tm from each movie the
user has rated. The tags are added to the user model by giving each of the
tags t ∈ Tm a weight wt which corresponds the user’s average rating for the
movies where the tag appears in. The user model consists of tag-weight
pairs (t, wt) ∈ Un.

The user model can be used for recommendation by scoring each of the
movies the user has not seen by using the item model Tx (of the unseen
movie) and comparing it with the user model Un. The score for a movie x
the user n has not seen is:

s(x, n) =
∑
t∈Tx

wt : (t, wt) ∈ Un. (5.3)

That is, the score is the sum of the weights of the matching tags. The
movies with the highest scores are then added to the top-n list of movies
in descending order.

We used this approach when evaluating the performance of the keyword
extraction approaches. The keywords were extracted using the approach
described in Section 4.2. For comparison purposes we also built models
using the other keyword extraction approaches used for evaluation in the
previous section. The performance was evaluated by using the models for
recommendation: a test set was built by taking movies the user had rated
highly (these movies were not included to the training set) and adding them
to a set of randomly selected movies the user has not seen.

The recommendation score for each movie was the combination of pre-
cision and coverage. Precision indicates the number of movies that are
recommended to the user are actually movies the user has seen and liked.
Coverage is the number of user models created from the keywords that
can be used for recommendation. We included coverage as some of the
approaches produce models that do not produce any recommendations as
they are too narrow.

Table 5.4 from Article III shows the results of the recommendation ex-
periment. Our approach produced the recommendation score of 0.43, which
is the best in the comparison. Chi-squared keyword extraction produced
0.29, and the rest of the scores were between 0.24 and 0.26. The baseline
produced the score2 of 0.35. This experiments shows that our approach
clearly out-performs the competition in this objective experiment as well.
The baseline produced quite a good result which is due to the fact that its
coverage is high even though its precision was quite low.

2In Article III, there is an error with this score. The correct score is presented here.

40 5 Evaluation and utilization of weighted features

Table 5.4: Comparison of user models for recommendation when extracted
keywords are used for user modeling. This table was originally presented
in Article III. Our method is shown in the column IKE.

IKE Collab-
Rank

Chi-
squared

TF-
IDF

KeyGraph χ2 KE Baseline

Precision 0.55 0.41 0.84 0.86 0.30 0.33 0.39
Coverage 0.75 0.59 0.27 0.29 0.86 0.85 0.89
Total
Score

0.41 0.24 0.23 0.25 0.26 0.28 0.35

5.3.3 Keyword association modeling for query expansion

We use keywords to build an association network for query expansion in a
business intelligence search engine. The idea behind query expansion using
association network is to include new search terms to the query by finding
the corresponding node for the query term from the association network
and using spreading activation described in Section 4.3.2.

In order to use the query expansion technique we need to build a model
that describes the associations between the keywords. We weight these
associations using the approach described in Section 4.3.1. The result of
this process is an association network.

To evaluate the association network we used a set of project descrip-
tions as the document set. These documents contained manually annotated
keywords, i.e., we did not use a keyword extraction approach for tagging
the documents. Table 5.5 (from Article IV) shows an example set of as-
sociations received using this approach. The table shows strength of the
association both with and without the time factor from Equation 4.20. This
indicates the effect of the time factor; for example, association between gprs
- umts drops 6.5 % from 1.0 to 0.935 due to the fact the topic is old and
not relevant any more as there are no new projects related to those topics.

We did not evaluate the performance of the query expansion formally
as our focus was on association model creation and keyword weighting.
Our query expansion evaluation focused on gathering comments from the
search engine users about the search results they received. The users were
co-workers from VTT that were doing project planning and needed some
business intelligence information. The comments were mostly positive (Ar-
ticle IV) but as the users may have been biased (less likely to give negative
feedback to a co-worker) this is only a small indication of the feasibility of
the system.

We evaluated the implemented network by manually going through the
links and weights. Our findings are shown in Table 5.6 from Article IV.

5.3 Keyword extraction and keyword models 41

Table 5.5: A sample of keyword associations from Article IV. The last
column indicates the weight after the age has been factored in. The age
indicates years since the project ended.
Concept (from) Concept (to) Weight

without age
Final
weight

satellite picture satellite image 1.0 1.0

building information
modelling

safety 1.0 1.0

waste combustion biomass 1.0 0.98

ontology reasoning 1.0 0.97

rfid tag barcode 1.0 0.96

pulping process pulping indus-
try

1.0 0.95

gprs umts 1.0 0.94

road asphalt 1.0 0.92

competitor survey SME 1.0 0.91

sun isotropy 1.0 0.91

rime ice formation 1.0 0.90

screwdriver hand saw 1.0 0.90

polymer plastic 1.0 0.85

apms paper machine 0.96 0.89

sea level climatic
change

0.93 0.88

felling pulpwood 0.90 0.85

mobile telephone local area net-
work

0.90 0.85

lightweight concrete stiffness 0.90 0.81

aerial photography aerial survey 0.83 0.76

online measurement
technology

high pressure 0.71 0.65

atmosphere scanning 0.63 0.58

testing methods failure 0.55 0.50

process simulation processes 0.52 0.49

rye wheat 0.42 0.45

energy conservation fuel consump-
tion

0.22 0.21

food processing electric device 0.09 0.07

enzyme health care 0.01 0.02

42 5 Evaluation and utilization of weighted features

Table 5.6: Results of the network evaluation originally shown in Article
IV. Positives were considered as correctly weighted, negatives incorrectly
weighted. Higher and lower indicates whether the negatives should be val-
ued higher or lower.

Weight Positives Negatives Higher Lower

1.0 92% 8% 0% 100%

0.3 - 0.7 60% 40% 85% 15%

0 < 0.1 45% 55% 100% 0%

Considering whether a link between two nodes is relevant or if the weight
is correct is difficult. However, this evaluation still gives some indication
about the feasibility of the network. In our assessment, among the links
with strong relation the link itself is often feasible even if the weight might
be too strong.

We also estimated that weaker links are less likely to be feasible. How-
ever, even among the links with small weights there are still a high percent-
age of feasible links left. As can be seen from Table 5.5, this approach can
produce links that are good for query expansion. For example, when query-
ing gprs, expanding the query with umts is feasible. The same applies, for
example, with satellite picture and satellite image pair.

Chapter 6

Contributions of this thesis

The focus of this thesis is to tackle the TF=1 challenge of short documents.
In this thesis I aimed to answer three research questions:

1. How to weight terms in short documents for document categorization
to overcome TF=1 challenge?

2. How to extract the most informative words from short documents?

3. How to weight keywords in short documents and utilize them in a
search engine?

To answer these questions we have developed term weighting approaches
that utilize such word statistics as average fragment length, category count,
distribution of categories of the word, and distribution of the word within
the category. We also utilized Bi-Normal Separation that weights the terms
based on the distribution of a word within positive and negative samples.
In addition, we have used word’s frequency among all the documents, its
location in the document and keyword co-occurrences as the components
in our term weighting approaches.

Our approaches to these challenges have been presented in Articles I -
IV and summarized in Chapters 4 and 5. Next, I give a short summary of
those answers.

Question 1. How to weight terms in short documents for docu-
ment categorization to overcome TF=1 challenge?

I proposed two approaches for term weighting that are aimed to be used
with two different classifiers. The approaches are based on each term’s
distribution within a category and among categories. These weighting ap-
proaches are described in detail in Article I and Article II. The proposed

43

44 6 Contributions of this thesis

approaches have a distinct benefit when compared to more traditional ap-
proaches such as TF-IDF: they do not rely on word’s term frequency within
a document, overcoming the TF=1 challenge. Our experiments (Section
5.2) show that the proposed approaches produced promising results when
categorizing short market research data and tweets with TF=1.

Question 2. How to extract the most informative words from
short documents?

I proposed an approach for extracting keywords from short documents (Sec-
tion 4.2). This approach weights the words on three levels and extracts the
words with the highest weight. When compared with the competing key-
word extraction approaches our approach produces the best results in both
of our experiments (Section 5.3.1 and 5.3.2). The approach and the exper-
iments are described in detail in Article III.

Question 3. How to weight keywords in short documents and
utilize them in a search engine?

I proposed an approach for weighting the links between keywords (Section
4.3). This produces a model of the keyword relations called an association
network. I presented how this network is used for query expansion (Section
5.3.3). This is originally presented in Article IV. We evaluated the resulting
network by manually assessing links in the network. The results showed
that most links with a high weight were correct. In addition, a large per-
centage of medium to low weights were also feasible (Section 5.3.3). In our
opinion, this shows that the network is feasible and can be used for query
expansion.

Chapter 7

Discussion and conclusions

In this thesis I have addressed the challenge of term weighting in short doc-
uments. The main issue I focused on is the fact that a word seldom occurs
more than once in a single document. This makes document level word
assessment, i.e., taking only the words within the document into consider-
ation, ineffective and raises the need for novel term weighting approaches
in short documents.

We have developed the term weighting methods for two different text
mining cases: categorization of market research data and keyword extrac-
tion from event, movie and company descriptions. In text categorization,
the motivation for our work came from a market research company that
needed software for automatic categorization of their surveys. We have
proposed two approaches (Article I and Article II) which both have been
used by the market research company. Currently they are using Approach
II with a SVM classifier.

The solution could be further improved in various aspects. When using
SVM as the classifier the processing time is considerably longer than when
using, for example, a Naive Bayes classifier. This is due to the binary
classification process used in the solution. Especially cases where there are
thousands of answers and tens of categories, the processing time is too long.
Even though the proposed approaches produce the best results among the
experimented approaches in terms of F-scores, the results of some of the
datasets are not good enough for real use. In our opinion, the experimental
evaluation should be extended by including various types of datasets, by
performing cross-annotator validation and by assessing the impact of each
component in the weighting methods. This way we may find the reasons
for poor performance in some cases and get a stronger validation for the
proposed approaches.

Another interesting task for future is to experiment with datasets of

45

46 7 Discussion and conclusions

longer texts. In this work we used only very short documents as the main
focus was on market research data. The longer documents could be, for ex-
ample, product and event descriptions that contain less than 100 words. In
addition, comparing the proposed approach with longer data (e.g., Reuters-
21578) could be interesting.

To extract keywords from short descriptions we developed a keyword ex-
traction approach that evaluates the words on three levels. The experiments
produced promising results. The main reason for the good performance was
that it extracts keywords of two different levels: lower abstraction level key-
words such as the performer of the event (e.g., Rolling Stones) and more
general keywords such as the type of the event (Rock concert).

Currently, the proposed approach is in use for keyword extractions from
tv-show descriptions where the keywords are used as tags in a prototype
recommendation system. In the future we will experiment with Approach
II for the cluster level word evaluation instead of Approach I.

The third weighting approach I proposed in this thesis is used for key-
word association modeling. The aim is to create an association network
that can be used in query expansion using spreading activation technique.
We did not evaluate the query expansion formally as we focused our efforts
on model evaluation.

We have used this approach for domain modeling in a prototype business
intelligence search engine. This modeling approach may not be feasible in
a large search engine as defining the associations between keywords of wide
range of domains is difficult. Currently, we are adopting this approach to be
used in combination with a fuzzy ontology in a search engine that focuses
on information about chemicals. The aim is to find associations between
keywords related to the chemical domain and link the keywords to a fuzzy
ontology. This model is then used for query expansion.

The main lesson I have learned when working with all of these ap-
proaches for term weighting in short documents is that approaches based
on term frequency within a document, such as TF-IDF, do not perform
well with short documents. As TF has been the corner stone for the most
previous approaches, this finding is important.

The experiments presented in this thesis support this argument: in all
of the experiments our approaches clearly out-perform the TF based ap-
proaches. In addition, when we compared the performance against a wide
range of other relevant approaches, all of our approaches out-performed the
competition. Therefore I can conclude that the novel term weighting meth-
ods presented in this thesis perform well for the tasks they were designed
for: assessing the weight or importance of words in short documents.

47

In the future, the focus of term weighting research should be on finding
a ”TF-IDF” approach for short documents; i.e., an approach that is uni-
versally effective and can be used with many languages and with a wide
variety of data sources. In this thesis I have laid the first stepping stones
on this road. I hope that some, if not most, of the components we have
used in our work can be utilized as the basis for future work in this area.

As the short document data sources such as Twitter continue growing,
one thing is for certain: short documents will continue to offer great new
challenges to feature weighting and text mining in general for years to come.

48 7 Discussion and conclusions

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data (SIGMOD’93), USA, pages
207–216, May 1993.

[2] M.A. Andrade and A. Valencia. Automatic extraction of keywords from sci-
entific text: Application to the knowledge domain of protein families. Bioin-
formatics, 14:600–607, 1998.

[3] E. D’ Avanzo and B. Magnini. A keyphrase-based approach to summariza-
tion: the LAKE system at DUC-2005. In Document Understanding Workshop
(DUC’05), Canada, October 2005.

[4] F. Benevenuto, G. Mango, T. Rodrigues, and V. Almeida. Detecting spam-
mers on Twitter. In Seventh annual Collaboration, Electronic messaging,
Anti-Abuse and Spam Conference (CEAS’10), USA, July 2010. Available at
http://ceas.cc/2010/papers/Paper%2021.pdf (accessed 10.10.2012).

[5] J. Bhogal, A. Macfarlane, and P. Smith. A review of ontology based query
expansion. Information Processing & Management, 43(4):866 – 886, 2007.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal
of Machine Learning Research, 3:993–1022, 2003.

[7] A. Bookstein and D. R. Swanson. Probabilistic models for automatic index-
ing. Journal of the American Society for Information Science, 5(25):312–318,
1974.

[8] C. Carpineto and G. Romano. A survey of automatic query expansion in in-
formation retrieval. ACM Computing Surveys, 44(1):1:1–1:50, January 2012.

[9] K.W. Clark and W.A. Gale. Inverse Document Frequency (IDF): A mea-
sure of deviation from Poisson. In Third Workshop on Very Large Corpora,
Massachusetts Institute of Technology Cambridge, USA, pages 121–130, June
1995.

[10] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[11] F. Crestani. Application of spreading activation techniques in information
retrieval. Artificial Intelligence Review, 11(6):453–482, 1997.

49

50 References

[12] G. Ercan and I. Cicekli. Using lexical chains for keyword extraction. Infor-
mation Processing and Management, 43(6):1705–1714, 2007.

[13] S. G. Esparza, M. P. O’Mahony, and B. Smyth. Towards tagging and catego-
rization for micro-blogs. In Proceedings of 21st National Conference on Arti-
ficial Intelligence and Cognitive Science (AICS’10), Ireland, September 2010.
Available at http://irserver.ucd.ie/handle/10197/2517 (accessed 10.10.2012).

[14] G. Forman. An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research, 3:1289–1305, 2003.

[15] G. Forman. BNS feature scaling: an improved representation over TF-IDF
for SVM text classification. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management (CIKM’08), USA, pages 263–270,
October 2008.

[16] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, and C. G. Nevill-Manning.
Domain-specific keyphrase extraction. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’99), Sweden, pages
668–673, August 1999.

[17] Y. HaCohen-Kerner. Automatic extraction of keywords from abstracts. In 7th
International Conference on Knowledge-Based Intelligent Information and
Engineering Systems (KES’03), United Kingdom, pages 843–849, September
2003.

[18] D. Hebb. The organization of behavior: a neuropsychological theory. New
York: Wiley, 1949.

[19] A. Hulth. Improved automatic keyword extraction given more linguistic
knowledge. In Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP’03), Japan, pages 216–223, July 2003.

[20] A. Hulth. Enhancing linguistically oriented automatic keyword extraction. In
Proceedings of the Human Language Technology Conference - North American
Chapter of the Association for Computational Linguistics (HLT-NAACL’04),
USA, pages 17–20, May 2004.

[21] A. Hulth, J. Karlgren, A. Jonsson, H. Boström, and L. Asker. Automatic
keyword extraction using domain knowledge. In Proceedings of Second Inter-
national Conference on Computational Linguistics and Intelligent Text Pro-
cessing (CICLing’01), Mexico, pages 472–482, February 2001.

[22] T. Joachims. Text categorization with Support Vector Machines: Learning
with many relevant features. In 10th European Conference on Machine Learn-
ing (ECML’98), Germany, pages 137–142, April 1998.

[23] T. Joachims. Advances in Kernel Methods - Support Vector Learning, chapter
Making large-Scale SVM Learning Practical, pages 41–56. MIT Press, 1999.

[24] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes. Multinomial Naive
Bayes for text categorization revisited. In 17th Australian Joint Conference
on Artificial Intelligence (AI’04), Australia, pages 488–499, December 2004.

References 51

[25] A. Krishnakumar. Text categorization building a kNN clas-
sifier for the Reuters-21578 collection, 2006. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.9946 (Ac-
cessed 10.10.2012).

[26] D. D. Lewis. Reuters-21578. http://www.daviddlewis.com/resources/test-
collections/reuters21578/ (accessed 10.10.2012).

[27] Y. Matsuo and M. Ishizuka. Keyword extraction from a single document
using word co-occurrence statistical information. In Proceedings of the Six-
teenth International Florida Artificial Intelligence Research Society Confer-
ence (FLAIR’03), USA, pages 392–396, May 2003.

[28] M. McCord and M. Chuah. Spam detection on Twitter using traditional
classifiers. In Proceedings of 8th International Conference on Autonomic and
Trusted Computing (ATC’11), Canada, pages 175–186, September 2011.

[29] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Pro-
ceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing, (EMNLP’04), A meeting of SIGDAT, a Special Interest Group of
the ACL, held in conjunction with ACL 2004, 25-26 July 2004, Spain, pages
404–411, 2004.

[30] D. Mladenic and M. Grobelnik. Feature selection for unbalanced class distri-
bution and Naive Bayes. In Proceedings of the Sixteenth International Con-
ference on Machine Learning (ICML 1999), Slovenia, pages 258–267, June
1999.

[31] T. Moh and A. J. Murmann. Can you judge a man by his friends? - enhancing
spammer detection on the Twitter microblogging platform using friends and
followers. In Proceedings of 4th International Conference on Information Sys-
tems, Technology and Management (ICISTM’10), Thailand, pages 210–220,
March 2010.

[32] T. D. Nguyen and M. Kan. Keyphrase extraction in scientific publications. In
Proceedings of 10th International Conference on Asian Digital Libraries Asian
Digital Libraries (ICADL’07), Vietnam, pages 317–326, December 2007.

[33] Y. Ohsawa, N. E. Benson, and M. Yachida. KeyGraph: Automatic indexing
by co-occurrence graph based on building construction metaphor. In Proceed-
ings of IEEE International Forum on Research and Technology Advances in
Digital Libraries (ADL’98), pages 12–18, April 1998.

[34] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford, 1998.

[35] A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and
opinion mining. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC’10), Malta, May 2010.

[36] J. Pearl. Heuristics - intelligent search strategies for computer problem solv-
ing. Addison-Wesley series in artificial intelligence. Addison-Wesley, 1984.

52 References

[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computing (3rd ed.), chapter 16.5. Support
Vector Machines. New York: Cambridge University Press, 2007.

[38] J. Raaijmakers and R. Schiffrin. Search of associative memory. Psychological
Review, 8(2):98–134, 1981.

[39] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger. Tackling the poor
assumptions of Naive Bayes text classifiers. In Proceedings of the Twentieth
International Conference on Machine Learning (ICML’03), USA, pages 616–
623, August 2003.

[40] J. D. M. Rennie and T. Jaakkola. Using term informativeness for named entity
detection. In Proceedings of the 28th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR’05),
Brazil, pages 353–360, August 2005.

[41] A. Ritter, C. Cherry, and B. Dolan. Unsupervised modeling of Twitter conver-
sations. In Human Language Technologies - Conference of the North American
Chapter of the Association of Computational Linguistics (HLT-NAACL’10),
USA, pages 172–180, June 2010.

[42] G. Salton and C. Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5):513–523, 1988.

[43] F. Sebastiani. Text categorization. In Laura C. Rivero, Jorge Horacio Doorn,
and Viviana E. Ferraggine, editors, Encyclopedia of Database Technologies
and Applications, pages 683–687. Idea Group, 2005.

[44] M. Timonen. Categorization of very short documents. In Internation Confer-
ence on Knowledge Discovery and Information Retrieval (KDIR’12), Spain,
pages 5–16, October 2012.

[45] M. Timonen, P. Silvonen, and M. Kasari. Classification of short
documents to categorize consumer opinions. In Online Proceed-
ings of 7th International Conference on Advanced Data Mining and
Applications (ADMA’11), China, December 2011. Available at
http://aminer.org/PDF/adma2011/session3D/adma11 conf 32.pdf (accessed
10.10.2012).

[46] P. D. Turney. Learning algorithms for keyphrase extraction. Information
Retrieval, 2(4):303–336, 2000.

[47] P. D. Turney. Coherent keyphrase extraction via web mining. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJ-
CAI’03), Mexico, pages 434–442, August 2003.

[48] X. Wan and J. Xiao. CollabRank: Towards a collaborative approach to
single-document keyphrase extraction. In Proceedings of 22nd International
Conference on Computational Linguistics (COLING’08), United Kingdom,
pages 969–976, August 2008.

References 53

[49] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-Manning.
KEA: Practical automatic keyphrase extraction. In Proceedings of the fourth
ACM conference on Digital libraries (DL’99), USA, pages 254–255, August
1999.

[50] Y. Yang. An evaluation of statistical approaches to text categorization. In-
formation Retrieval, 1(1-2):69–90, 1999.

[51] Y. Yang and X. Liu. A re-examination of text categorization methods. In
Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’99),USA, pages
42–49, August 1999.

[52] Y. Yang and J.P. Pedersen. Feature selection in statistical learning of text
categorization. In Proceedings of the Fourteenth International Conference on
Machine Learning (ICML’97), USA, pages 412–420, July 1997.

