
Analysis of RTCWeb Data Channel Transport Options

Hasan Mahmood Aminul Islam

Helsinki December 10, 2012

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14926531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Hasan Mahmood Aminul Islam

Analysis of RTCWeb Data Channel Transport Options

Computer Science

December 10, 2012 63 pages + 6 appendices

SCTP, Webkit, GStreamer, Data channel, NAT traversal, RTCWeb

The Web has introduced a new technology in a more distributed and collaborative form of commu-
nication, where the browser and the user replace the web server as the nexus of communications
in a way that after the call establishment through web servers, the communication is performed
directly between browsers as peer to peer fashion without intervention of the web servers. The goal
of Real Time Collaboration on the World Wide Web (RTCWeb) project is to allow browsers to
natively support voice, video, and gaming in interactive peer to peer communications and real time
data collaboration.

Several transport protocols such as TCP, UDP, RTP, SRTP, SCTP, DCCP presently exist for
communication of media and non-media data. However, a single protocol alone can not meet all
the requirements of RTCWeb. Moreover, the deployment of a new transport protocol experiences
problems traversing middle boxes such as Network Address Translation (NAT) box, firewall. Nev-
ertheless, the current implementation for transportation of non-media in the very first versions
of RTCWeb data does not include any congestion control on the end-points. With media (i.e.,
audio, video) the amount of traffic can be determined and limited by the codec and profile used
during communication, whereas RTCWeb user could generate as much as non-media data to create
congestion on the networks. Therefore, a suitable transport protocol stack is required that will
provide congestion control, NAT traversal solution, and authentication, integrity, and privacy of
user data. This master’s thesis will give emphasis on the analysis of transport protocol stack for
data channel in RTCWeb and selects Stream Control Transmission Protocol (SCTP), which is a
reliable, message oriented general-purpose transport layer protocol, operating on top of both IPv4
and IPv6, providing congestion control similar to TCP and additionally, some new functionalities
regarding security, multihoming, multistreaming, mobility, and partial reliability. However, due to
the lack of universal availability of SCTP within the OS(s), it has been decided to use the SCTP
userland implementation.

WebKit is an open source web browser engine for rendering web pages used by Safari, Dashboard,
Mail, and many other OS X applications. In WebKit RTCWeb implementation using GStreamer
multimedia framework, RTP/UDP is utilized for the communication of media data and UDP tun-
nelling for non-media data. Therefore, in order to allow a smooth integration of the implementation
within WebKit, we have decided to implement GStreamer plugins using SCTP userland stack..

This thesis work also investigates the way Mozilla has integrated those protocols in the browser’s
network stack and how the Data Channel has been designed and implemented using SCTP userland
stack.

ACM Computing Classification System (CCS): C.2.2 [Network Protocols]
C.2.4 [Distributed System]

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Acknowledgements

I would like show my gratitude to everyone who supported me throughout my thesis
work. I would like to specially thank my supervisor Professor Sasu Tarkoma, Uni-
versity of Helsinki, for his splendid supervision, inspiration and valuable feedback
throughout the work. I am also grateful to Toni Ruottu from University of Helsinki
for his valuable feedback to my thesis work.

I would like to show special appreciation to my instructor Salvatore Loreto, PhD.
from Nomadic Lab, Ericsson Research, Finland, for his constant supervision and
valuable feedback during the thesis period. I would like to thank all my co-workers
at Nomadic Lab, and specially Jouni Maenpaa for his constant support during the
work.

I would also like to show special gratitude to Michael Tuexen from Muenster Uni-
versity of Applied Science, Randell Jesup from Mozilla for their valuable input and
cooperation during my thesis work. I am also grateful to Tiina Niklandar and Pirjo
Moen for their valuable advice during my Master degree program.

Finally, I thank my parents for their persistent affection and moral support through-
out the period of my study. Further gratitude to my friends, family members, and
everyone else who supported and inspired me during my whole life.

Helsinki, December 10, 2012

Hasan Mahmood Aminul Islam

iii

Contents

List of Figures 1

List of Tables 1

Abbreviations and Acronyms 2

1 Introduction 3

1.1 Motivation . 3

1.2 Problem Definition . 4

1.3 Research Goals and Contributions 5

1.4 Thesis outline . 6

2 Congestion Control and Avoidance 7

2.1 Transmission Control Protocol (TCP) 7

2.2 User Datagram Protocol (UDP) . 11

2.3 Datagram Congestion Control Protocol (DCCP) 11

2.4 Stream Control Transmission Protocol (SCTP) 13

2.5 Comparison . 16

3 NAT Traversal 19

3.1 NAT . 19

3.2 Session Traversal Utilities for NAT (STUN) 20

3.3 Traversal Using Relays around NAT (TURN) 21

3.4 Interactive Connectivity Establishment (ICE) 22

4 Real Time Communication for Web Browsers 25

4.1 Overview . 25

4.2 NAT traversal . 29

4.3 SCTP NAT Traversal . 30

4.4 Congestion Control . 34

iv

5 RTCWeb Data Channel Protocol Analysis 35

5.1 Data Channel Requirements . 35

5.2 Data Channel Protocol . 36

5.3 Data Channel Connection . 40

5.4 Congestion Control . 42

6 Design and Experiment 43

6.1 WebKit . 43

6.2 GStreamer . 44

6.3 Design and Implementation . 45

6.4 Result Analysis . 48

6.5 Data Channel in Mozilla . 49

6.6 Challenges . 51

6.7 Critique . 52

7 Conclusions and Future Work 55

8 References 58

Appendices

1 Data Channel in Mozilla

A Checkout Mozilla Source Code 1

B Download source code 1

C Compilation 2

2 Data Channel Use Cases

D Use Cases for Unreliable Data Channels 1

E Use Cases for Reliable Data Channels 1

v

3 GStreamer Plugin Creation Step

1

List of Figures

3.1 Simplified Network Topology for ICE. 23

3.2 Candidate Address Relationship [Ros10]. 24

4.1 RTCWeb Architecture . 26

4.2 NAT Tranversal through Single Path [XSHT07]. 30

4.3 NAT Traversal through Multi-Path [XSHT07]. 30

4.4 Network Address Translation for SCTP packet. 32

4.5 UDP encapsulation using IPv4 (originally from [TS11]). 33

4.6 UDP encapsulation using IPv6(originally from [TS11]). 33

5.1 RTCWeb/WebRTC Basic Protocol Stack. 37

5.2 RTCWeb/WebRTC Protocol Stack using TCP. 37

5.3 RTCWeb/WebRTC Basic Protocol Stack using SCTP over DTLS. . . 38

5.4 Adding a data channel. 42

6.1 WebKit Architectural View . 43

6.2 GStreamer with three linked elements. 44

6.3 Design for porting SCTP plugin with Congestion Control functionality. 45

6.4 Design for porting SCTP plugin. 46

6.5 Wireshark output while chatting on Mozilla browsers. 50

6.6 Bidirectional chat between two browsers. 51

6.7 Bidirectional chat between two browsers. 52

List of Tables

2.1 Feature comparison of Transport Protocols. 17

5.1 Feature List of Transport Protocol or Protocol stack. 39

2

Abbreviations and Acronyms

DCCP Datagram Congestion Control Protocol
DTLS Datagram Transport Layer Security
ICE Interactive Connectivity Establishment
IP Internet Protocol
MTU Maximum Transfer Unit
ROAP RTCWeb Offer/Answer Protocol
RTCP Real-time Control Protocol
RTP Real-time Transport Protocol
SACK Selective Acknowledgement
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SIP Session Initiation Protocol
SRTP Secure Real-Time Transport Protocol
SSN Stream Sequence Number
STUN Session Traversal Utilities for NAT
TCP Transmission Control Protocol
TSN Transmission Sequence Number
TURN Traversal Using Relays around NAT
UDP User Datagram Protocol

3

1 Introduction

1.1 Motivation

The Web has introduced a new technology in Web Architecture with a vision to pose
a more distributed and collaborative form of communication, where the browser and
the user replace the web server as the nexus of communications. Internet Engineering
Task Force (IETF) and World Wide Web Consortium (W3C) are working together
on extending the web architecture. In particular the Real Time Collaboration on
the World Wide Web (RTCWeb) project aims to allow browsers to natively support
interactive peer to peer communications in the form of voice-video or gaming, and
real time data collaboration. In such architectures, browsers become the source
and sink of both media packets that flow directly from one browser to another
while web server are only involved during the ”setup” phase of the communication.
The servers are used for call establishment and transporting control information.
Once the connection is established, the communication is performed directly between
browsers without intervention of the web servers. RTCWeb is the initial attempt
to introduce peer to peer communication in the Web Architecture. The server is
still required as a rendezvous point for the browsers and to download the JavaScript
that contains the application logic. Once the JavaScript is downloaded, "everything"
happens in a peer to peer fashion among the browsers involved in the application.
HyperText Markup Language HTML version 5 (HTML5) is transforming browsers
to become a rich, integrated service environment that natively supports audio and
video, persistent local storage, and offline web applications.

RTCWeb includes media data (e.g., audio, video) as well as non-media data (e.g.,
character screen position within an multiplayer HTML5 video game, text file, text
chat). The communication path for media data is referred as media channel and
for non-media data is referred as data channel. Data channel is designed to provide
a generic transport service allowing web browsers to exchange generic data in a
bidirectional peer to peer fashion that supports in-sequence, out-of-sequence, reliable
and unreliable data transmission. The issue investigated in this work is how to
handle non media data in the best suitable way in the context of RTCWeb. This
issue is still under consideration among the researchers of RTCWeb.

Presently, there are several transport protocols suitable for media as well as data
channel such as TCP [Pos97], UDP [Pos80], Real-time Transport Protocol (RTP)
[SCFJ03], Secure Real Time Transport Protocol (SRTP) [BMN+04], Stream Con-

4

trol Transmission Protocol (SCTP) [SXM+07], and Datagram Congestion Control
Protocol (DCCP) [KHF06]. However, still there is no such protocol which is best
suitable for browser to browser data communication following all the requirements
in the context of RTCWeb. While RTP over UDP is mostly used in real time com-
munication, only UDP is not preferable for several constraints requested by data
communication such as reliability, ordering, data integrity and especially lack of
congestion control mechanism. TCP based protocol presents more security risk as
it could be used by the web implementers to run attacks against Domain Name
System (DNS), or other HTTP elements by opening many connections and leaving
them dormant under heavy load [Bel10]. Therefore, a suitable transport protocol
stack that provides reliability, ordering, congestion control mechanism, NAT traver-
sal solution, and authentication, security and privacy, is highly appreciated for data
channel.

1.2 Problem Definition

If RTCWeb media and data channels are used in parallel within RTCWeb connec-
tion, the data channels may create substantial negative impact on the media streams
since a web user can generate as much data as the user decides to do. consequently,
data channel may create congestion on the network. Therefore, a suitable conges-
tion control mechanism is required for RTCWeb connection so that data channel
could fairly compete with media streams. Congestion control mechanism could able
to provide fairness to all traffic involved in the network. Congestion control mech-
anism for data channel is highly essential when there exist multiple data channels
used in parallel with media channel in order to lessen queuing delay, and fairly
compete with available bandwidth.

Therefore, congestion-control mechanisms in RTCWeb should consider the following
issues during transmission [TLJ12b, AJ12]:

• There should be suitable congestion control mechanisms either individually or
in conjunction with the media streams so that data transport cannot create
congestion on media streams.

• Both reliable and unreliable, ordered and unordered data transmission should
be supported.

• All media streams as well as data streams should be congestion controlled

5

and congestion control mechanisms should provide streams to act fairly with
TCP. RTCWeb may include multiple data flows which would be individually
congestion controlled.

• Congestion control algorithms should work for data channels even if there exist
no media channels or those are inactive in one or both directions.

• Potential prioritization on each data stream with respect to other streams as
well as media streams.

There are some challenges in browser to browser communication since no single
transport protocol could cover all the use case requirements of RTCWeb. The de-
ployment of a new transport protocol experiences problems traversing middle boxes
such as Network Address Translation (NAT) box [SE01], firewall. Additionally,
there is lack of universal identification system such as telephone numbers or email
addresses in communication. Therefore, RTCWeb clients need to implement NAT
traversal mechanism, since most of the RTCWeb clients will be web browsers resid-
ing behind a NAT and/or firewall. NAT traversal is a general term for technologies
that set up and preserve Internet protocol connections passing through NAT boxes.

However, it is necessary to have a suitable stack of transport protocol that is able
to provide the above congestion control requirements, NAT traversal solution, and
authentication, integrity, and privacy of user data.

1.3 Research Goals and Contributions

At initial stage of this research, study on different kinds of transport layer proto-
cols such as SCTP, DCCP and other DCCP variants, TCP, RTP, SRTP etc., was
performed. Currently, there is a set of W3C JavaScript APIs available for browser
to browser communication called PeerConnection. A PeerConnection allows two
users to communicate directly through browsers. Communications are coordinated
by signaling channel via the web server. Once the connection is established, the
browsers use PeerConnection for exchanging media data as well as non-media data
directly without the intervention of the server.

The current implementation for transportation of non-media data does not include
any congestion control on the end-points. The goal of this work is to select a suitable
stack of protocols that provides congestion control on each peer, NAT traversal
solution, and authentication, integrity, and privacy of user data. This research

6

selects SCTP for data transmission. Due to the lack of universal availability of SCTP
within the OS(s), it has been decided to use the SCTP userland implementation. In
order to provide security and confidentiality SCTP will be implemented on top of
DTLS over UDP. The encapsulation over UDP facilitates the NAT traversal issue.

In this research, the WebKit implementation is investigated for browser to browser
communications. WebKit is an open source web browser engine. Currently, it is
used by Safari, Dashboard, Mail, and many other OS X applications. In WebKit
implementation, PeerConnection uses RTP over UDP for the communication of real
time media data and UDP tunneling for non-media data. The implementation uses
GStreamer for real time communication. Therefore, in order to allow a smooth
integration of the implementation within WebKit, GStreamer plugin has been im-
plemented to be able to send and receive data using SCTP over UDP.

This thesis also investigates the way Mozilla has integrated those protocols in the
browser’s network stack, and how the data channel has been designed and imple-
mented.

1.4 Thesis outline

The thesis is logically structured in a way to provide the reader with suitable back-
ground knowledge before diving deep into the details of this thesis. After intro-
ducing the work in Chapter 1, an overview of different transport protocols, which
serve different types of congestion control mechanisms, will be presented in Chapter
2. Chapter 3 will discuss basic NAT traversal technologies that is a great concern
while planning to choose a transport protocol or transport protocol stack for data
channel in RTCWeb. Then, an overview of RTCWeb architecture is presented briefly
in Chapter 4 and pointed out which part of this architecture is the main focus of this
research. In Chapter 5, this thesis focus on the analysis of data channel protocol
and how SCTP can be used for browser to browser communications resolving the
problem of legacy NAT traversal. The design and implementation of GStreamer so-
lution for data channel with result analysis will be described in Chapter 6. Finally,
the discussion will be concluded with suggestion of possible future works in Chapter
7.

7

2 Congestion Control and Avoidance

Transmission Control Protocol (TCP) is the most popular transport layer protocol
in Internet applications. The congestion control mechanisms provided by TCP work
well specially in the wired networks but often deteriorates performance in wireless
environment, where packets can be lost for various reasons other than congestion
[BPSK97]. Moreover, TCP is too aggressive in terms of in-sequence and ordered de-
livery for multimedia applications that demands congestion control without ordered
reliable delivery, since TCP follows strict ordering of user data. Therefore, currently
most multimedia applications use UDP as transport layer protocol, but UDP is not
preferable for several constraints necessary for data communication such as relia-
bility, ordering, data integrity, and especially lack of congestion control mechanism.
Some new transport protocols such as SCTP, DCCP have been standardized to sa-
tiate the requirements of multimedia applications. In this chapter, different types
of congestion control mechanisms will be outlined for several familiar transport pro-
tocols.

2.1 Transmission Control Protocol (TCP)

TCP [Pos97] is a connection-oriented, reliable standard transport protocol. TCP
is highly preferable to Internet applications such as world wide web, email, remote
administration, and file transfer. TCP is also referred to as byte oriented transport
protocol i.e., TCP segment is organized as a continuous sequence of bytes. TCP is
able to recover data that is damaged, lost, duplicated, or delivered out of order by
the Internet communication system. For this purpose TCP uses sequence numbers
and acknowledgements from a receiver. The basic idea is that each octet is assigned
a sequence number in a segment that is transmitted. TCP sender keeps a copy
on a retransmission queue after sending it over the network and starts a timer. If
the acknowledgement is received before the timer expires, the segment is dequeued.
Otherwise, the segment is retransmitted.

TCP provides flow and congestion control mechanisms through the use of congestion
window [Pos97]. TCP starts a retransmission timer when an outbound segment is
passed down to IP. If there is no acknowledgement from the receiver for the data in
a given segment before the timer expires, then the segment is retransmitted. TCP
retransmissions occur on the network all the time. If the network is not under
congestion, the sender increases the window size by a fixed number every round trip

8

time. In response to congestion detection, the sender decreases the transmission rate
by a multiplicative factor, for instance, the congestion window is decreased by half.
This algorithm is known as Additive increase, multiplicative decrease (AIMD) of
the sending rate. The acknowledgement (ACK) number from receiver determines a
range of acceptable sequence numbers beyond the last segment successfully received.

TCP Reno is a variant of basic TCP congestion protocol [APB09]. It applies four
congestion control mechanisms: slow-start, congestion avoidance, fast retransmit
and fast recovery [Jac88, Jac90]. Slow-start and congestion avoidance algorithms are
utilized to control the amount of outstanding data being pushed into the network.
TCP sender uses congestion window (cwnd) to limit the amount of data in sender
side to be injected into the network before receiving an acknowledgement (ACK).
Flow control is achieved through receiver’s advertised window (rwnd) on the amount
of outstanding data. Another state variable, the slow start threshold (ssthresh),
defines the margin to promote the sender switching from the slow-start to congestion
avoidance algorithm.

At the beginning of transmission into a network with unknown conditions, TCP
applies slow-start algorithm to determine the available capacity of the network in-
stead of injecting large burst of data congesting the network. This algorithm is also
used after loss recovery by the retransmission timer. A non standard, experimental
TCP extension states that the initial value of cwnd can be defined as the following
equation [AFP02]:

cwnd = min(4× SMSS,max(2× SMSS, 4380bytes)) (2.1)

where sender maximum segment size (SMSS) is the size of the largest segment that
the sender can transmit. This value can be based on the maximum transmission
unit of the network, largest segment the receiver is willing to accept or other factors.
The size does not include TCP/IP headers and options [APB09]. The initial value
of ssthresh is set arbitrarily high and reduced upon congestion detection. Algo-
rithm 1 is used to determine whether slow-start or congestion avoidance algorithms
are applied. Algorithm 1 shows that the adjustment of cwnd is performed on every
incoming non-duplicate ACK. The slow start algorithm continues until the value of
cwnd exceeds the value of ssthresh and cwnd is increased by SMSS.

Congestion avoidance algorithm allows the sender to increase the cwnd by SMSS
per RTT. The value of ssthresh is adjusted while detecting segment loss using
retransmission timer and the given segment has not yet been resent by way of the

9

Algorithm 1 TCP slow-start and congestion avoidance
upon arrival of a new ACK
if cwnd < ssthresh then

apply slow-start algorithm
cwnd +=SMSS

else
if cwnd >= ssthresh then

apply congestion avoidance
cwnd+=SMSS*SMSS/cwnd

else
apply slow-start or congestion avoidance

end if
end if

retransmission timer, the value is set by Equation 2.2.

ssthresh = max(FlightSize/2, 2× SMSS) (2.2)

where, FlightSize is the amount of outstanding data in the network. In summary,
Algorithm 1 depicts that TCP sender applies slow-start algorithm to increase the
cwnd from 1 SMSS to the new value of ssthresh after the retransmission of dropped
segments is completed. When the value of cwnd exceeds or touches the value of
ssthresh, congestion avoidance algorithm takes place again.

Fast Retransmit/Fast Recovery

When TCP receiver detects arrival of an out of order segment, it immediately sends
duplicate ACK to TCP sender that includes the expected sequence number. This
ACK is a duplicate of an ACK which was sent previously. From the sender’s point
of view, a duplicate ACK can be caused by a lost segment or just a reordering of
segments. When incoming data segments fill in all or part of a gap in the sequence
space, TCP receiver immediately sends an ACK.

Fast Retransmit algorithm is used to detect and repair losses based on incoming
duplicate ACKs. Fast Retransmit and Fast Recovery of TCP Reno is used together
as shown in Algorithm 2. The arrival of 3 duplicate ACKs determine the lost of a
segment and TCP starts retransmitting a missing segment without waiting for the

10

retransmission timer. The cwnd is set to ssthresh plus 3*SMSS. Therefore, Fast
Recovery takes place to promote the transmission of new data until a non-duplicate
ACK arrives.

Algorithm 2 Fast Retransmit and Fast Recovery algorithm for TCP Reno
1)
if three duplicate ACKs are received then

ssthresh = max (FlightSize / 2, 2 * SMSS)
Retransmit the lost segment
cwnd=ssthresh+ 3*SMSS

end if
2) Upon arrival of each additional duplicate ACK
cwnd += SMSS
3) Transmit a segment if the value of cwnd and the receiver’s advertised window
allows.
4) When an ACK indicating new data arrives:
cwnd = ssthresh

Generally, TCP Reno is not able to recover multiple losses of packets in a single
flight. In TCP Reno, Fast Recovery exits upon the reception of new ACK. TCP
NewReno is the modification of the standard implementation of the Fast Retransmit
and Fast Recovery algorithms [HFGN12]. The modification introduces partial ac-
knowledgements and a new variable recover. Acknowledgement for a retransmitted
packet will acknowledge some but not all of outstanding packets being transmitted.
It is known as partial acknowledgement. The value of recover records the highest
sequence number transmitted in step 1 in Algorithm 2. When a TCP sender re-
ceives three duplicate ACKs, the value of ssthresh is reduced to half of the current
congestion window and the TCP sender enters fast retransmit mechanism to recover
the lost segment. When an ACK arrives, TCP New Reno will determine whether it
acknowledges all of the data up to and including recover. If it is not affirmative,
then the packet acknowledged by partial acknowledgement is retransmitted. This
process continues until an acknowledgement, denoting the highest sequence number
already transmitted, arrives and thereafter TCP NewReno will leave the fast recov-
ery setting the value of cwnd to ssthresh. Then congestion avoidance algorithm
takes place.

Both TCP Reno and TCP NewReno are not so efficient while multiple losses are
experienced in the network. When a packet is dropped in the network, the subse-

11

quent successful arrival of packets are not acknowledged until the expecting sequence
number arrives. Moreover, a new Reno TCP sender has to wait an entire RTT to
recover each lost packet when there are multiple loss of packets in a window. This
phenomena leads to redundant retransmission since some of the packets between
missing packets may be received successfully.

TCP Selective Acknowledgement (SACK) [MMFR96] is able to notify the sender
implicitly about the missing sequence numbers as well as all segments that have
reached successfully. Therefore, TCP sender need to retransmit only missing seg-
ments.

2.2 User Datagram Protocol (UDP)

User datagram protocol (UDP) [Pos80] is a transport protocol that allows one appli-
cation program to transmit data to a second application program with a minimum of
protocol mechanisms without prior connection setup. UDP is an unreliable trans-
port protocol and does not guarantee in order delivery of user messages. Unlike
TCP, UDP has no inherent order as all packets are independent of each other and
hence, does not have any built-in congestion control and avoidance algorithms. Real
time applications, video conferencing, voice over IP (VoIP), that do not demand high
reliability and are tolerant to packet loss, prefer UDP for transmission of application
data.

UDP is faster than TCP as it allows continuous streaming without any acknowl-
edgements from receiver side whereas TCP is to adjust window size and round trip
time (RTT) depending on the conditions of the network. UDP supports tunnelling
for new transport layer technologies, such as SCTP [SXM+07], DCCP [KHF06] in
order to traverse middle boxes between end-points in the network.

2.3 Datagram Congestion Control Protocol (DCCP)

The Datagram Congestion Control Protocol [KHF06] is a UDP-like transport layer
protocol that provides bidirectional, unicast connections of congestion controlled,
unreliable datagrams. DCCP is suitable for applications, such as IP phones, video
conferencing, video on demand (VoD), online games, etc., that require lower delay,
and do not demand high reliability. TCP is not suitable for these applications so
that it incurs long delays due to its conservative congestion control mechanism. It

12

should be noted that DCCP provides reliable handshakes for connection setup and
tear down.

However, one of the most attractive salient features of DCCP is that the congestion
control mechanisms are modularly separated from its core, and each DCCP endpoint
is free to choose different congestion control methods according to its preference.
Each congestion control mechanism is denoted by a unique ID (CCID) : a number
in between 0 and 255. CCIDs 2,3 and 4 are currently defined, CCIDs 0, 1 and 5-255
are reserved. The negotiation of a suitable congestion control mechanism or other
feature negotiation between two DCCP end-points is reliable.

DCCP congestion control ID 2 [FK06] denotes TCP like congestion control [APB09]
that includes the variant of selective acknowledgement (SACK) [MMFR96, BAW+12].
CCID 2 is advantageous for those applications that are adaptive to abrupt changes
in the congestion window and could take advantage of the available bandwidth in
rapidly changing environment such as streaming media. Applications that prefer a
large amount of bandwidth to transfer as much data as possible with a least possible
short duration, should use CCID2.

CCID 3 [FKP06] is receiver based TCP friendly rate control mechanism (TFRC). It
provides TCP-friendly sending rate optimizing the abrupt changes in sending rate of
TCP or TCP-like congestion control [HFPW03]. This variant provides much lower
fluctuation of throughput over time in contrast to TCP. CCID 3 is more preferable
to CCID 2 in cases where applications need to minimize abrupt changes in sending
rate in order to have smooth throughput, such as multimedia applications with small
or moderate receiver buffering before playback. CCID 3 will not be an appropriate
choice where applications suppose to change the sending rate by varying the packet
size rather the packet sending rate.

CCID 2 and 3 are not dependent on the previous history to estimate the current
allowed sending rate, but CCID 2 estimates the currently outstanding data over the
network to determine its sending rate, while CCID 3 measures the length of recent
loss intervals(definition is found in [HFPW03]).

CCID 4 [FK09]can be referred as a modified version of CCID 3. CCID 4 is more
preferable to CCID 2 and 3 for applications that adjust the sending rate by varying
the segment size instead of changing the sending rate in packets per second in
response to congestion. This variant is defined as TFRC-SP (TCP friendly rate
control for small packets). Both CCID 3 and 4 uses the TCP throughput equation
[HFPW03] for their congestion control. CCID 3 measures the length of recent loss

13

intervals, whereas CCID 4 additionally include nominal packet size of 1460 bytes, a
round trip estimate in TCP throughput calculation.

DCCP does not provide any protection against attackers on a connection in progress.
If any application desires security, it has to be dependent on other security mech-
anisms like IPSec [KA98], application level cryptography, etc. depending on the
required security level.

2.4 Stream Control Transmission Protocol (SCTP)

Stream Control Transmission Protocol (SCTP) [SXM+07] is a reliable, message ori-
ented, general-purpose transport layer protocol, operating on top of IPv4 and IPv6,
providing a service similar to TCP with some new functionalities regarding security,
multihoming, multistreaming, mobility, and partial reliability. SCTP supports mul-
tistreaming i.e., reliable in sequence delivery within each streams. User messages
are partitioned into streams and are transmitted sequentially independent of other
streams. The term ”stream” [SXM+07] is used in SCTP to refer to a sequence of
user messages, in contrast to its usage in TCP, where it refers to a sequence of
bytes, that are to be delivered to the upper layer protocol in-order with respect to
other messages within the same stream. A lost of message in one of the streams in
one SCTP association between two endpoints does not block delivery of messages
in any of the other streams. Internally, each message from an SCTP user is as-
signed an Stream Sequence Number (SSN) to support in-sequence delivery within
a given stream. SCTP provides fragmentation mechanism for user messages if it
does not conform to the path Maximum Transmission Unit (MTU). SCTP assigns
a Transmission Sequence Number (TSN) to each data chunk that is independent of
any SSN. Each TSN is acknowledged by the receiving end, even if there exist gaps
between the sequence number, in order to ascertain reliable transmission separate
from sequenced delivery within stream.

Each SCTP packet consists of a common header and data chunks containing either
user data or SCTP control information. SCTP packet may contain multiple data
chunks according to MTU size. The common header has fixed length containing
port numbers, a verification tag, and a checksum. SCTP uses verification tag to
protect an association against blind attacks.

An SCTP association is initiated by a request from one SCTP endpoint using four-
way handshake. Each SCTP endpoint negotiates several parameters such as verifi-

14

cation tags, address information, number of streams, supported protocol extensions
etc. The initialization process is based on cookie mechanism described by Karn and
Simpson [KS99]. The cookie mechanism uses four way handshaking between two
endpoints. This mechanism is utilized to provide protection against synchronization
attacks. Synchronization attack is a type of denial of service (DoS) attack in which
a sender transmits a volume of connections that cannot be completed. The ini-
tialization process starts by sending INIT chunk from SCTP sender and the SCTP
receiver responds immediately with an INIT ACK chunk. Upon reception of INIT
ACK, sender extracts the State cookie and sends it back using COOKIE-ECHO
chunk. The SCTP receiver then replies with a COOKIE-ACK chunk. Upon the
reception of COOKIE-ACK, the association between SCTP sender and receiver is
established for the transmission of subsequent data.

SCTP does not support half-open state like TCP i.e., one SCTP endpoint may not
continue transmitting data while the other end is shut down. The association on
each endpoint will stop receiving data only when one endpoint executes shut down.

SCTP provides Multihoming support that allows multiple transport addresses for
each SCTP endpoint, i.e., one or both endpoints in an association can be reached
through more than one transport address. The list of addresses are negotiated
during SCTP association. Basically, one address is considered as primary address
and used for transmitting user messages. Other addresses are mainly utilized for
retransmission to overcome the failures from an inactive destination address.

Congestion Control Mechanism

Each SCTP endpoint uses slow−start and congestion avoidance algorithm to con-
trol the amount of data being pushed into the network. Like TCP, an SCTP end-
point uses several control variables such as receiver advertised window size(rwnd),
congestion control window (cwnd), slow-start threshold (ssthresh) and addition-
ally partial_bytes_acked in order to facilitate cwnd adjustment during congestion
avoidance.

The slow-start algorithm is used at the beginning of data transmission or after
a message loss has been detected by the retransmission timer. The initial cwnd
before transmission is set to min (4∗MTU, max (2∗MTU, 4380 bytes)) and no more
than 1∗MTU after a retransmission timeout. The initial value of ssthresh may be
arbitrarily large. The value of cwnd is increased by at most the lesser of the total

15

size of the previously outstanding DATA chunk(s) acknowledged, and path MTU,
only when cwnd is less than or equal to ssthresh, an received SACK advances the
cumulative TSN Ack point, and the sender is not in Fast Recovery.

Congestion avoidance stage starts when cwnd is greater than ssthresh and cwnd is
incremented by 1∗MTU per RTT. The procedure is as follows:

i. partial_bytes_acked is set to zero at initialization.

ii. If cwnd is greater than ssthresh, then partial_bytes_acked is increased by the
total number of bytes of all new chunks acknowledged in received SACK includ-
ing chunks acknowledged by TSN and by Gap Ack Blocks. Otherwise, cwnd is
incremented by MTU and partial_bytes_acked is set to (partial_bytes_acked-
cwnd). Each Gap Ack Block acknowledges a subsequence of TSNs received
following a break in the sequence of received TSNs. Gap Ack Blocks in the
SCTP SACK carry the same semantic meaning as the TCP SACK.

iii. When the receiver end acknowledged all of the transmitted data, partial_bytes
_acked is reset to zero.

When SCTP sender detects congestion and determines a missing or lost packet from
SACK, the control variables are set as follows:

ssthresh = max(cwnd/2, 4×MTU) (2.3)

cwnd = ssthresh (2.4)

partial_bytes_acked = 0

When retransmission timer expires on a particular address, SCTP endpoint is not
allowed to send more than one SCTP packet until it receives acknowledgement for
the successful delivery of the missing packet. The cwnd and ssthresh are set as
follows:

ssthresh = max(cwnd/2, 4×MTU)

cwnd = 1 ∗MTU

16

Fast Retransmit and Fast Recovery

SCTP endpoint performs delayed acknowledgement mechanism. Delayed acknowl-
edgement means the receiver doesn’t immediately send acknowledgement for every
single received data chunk. Whenever the sender receives SACK indicating missing
TSN sequence numbers, it will wait for two further subsequent SACKs in order to
ascertain those missing TSN(s).

When three consecutive SACKs indicating missing TSNs are received, SCTP sender
will do the following:

i. Determine the missing chunk(s) for retransmission.

ii. If SCTP is not in fast recovery, then ssthresh and cwnd of the destination
address(es) are adjusted by Equation 2.3 and 2.4.

iii. Determine how many of the earliest (i.e., lowest TSN) data chunks marked for
retransmission that will fit into one SCTP packet allowed by path MTU, and
retransmit them accordingly.

iv. Restart the retransmission timer only if the last SACK acknowledged the ear-
liest outstanding TSN number, or the endpoint is retransmitting the first out-
standing data chunk sent to that address.

v. Mark the data chunk(s) that are being fast transmitted.

vi. If the endpoint is not in fast recovery, enter fast recovery and the highest
outstanding TSN is considered as Fast Recovery exit point. Fast recovery is
completed upon the reception of an SACK that acknowledges all TSNs up to
and including this exit point.

It is important to note that the number of outstanding TSN’s is indirectly bounded
by cwnd in SCTP. Therefore, the effect of Fast Recovery in TCP is realized auto-
matically without any adjustment to the cwnd.

2.5 Comparison

Table 2.1 outlines the comparison of features among transport protocols described
in this chapter. SCTP provides in sequence, ordered or unordered delivery, flow
control, reliability and bidirectional data transfer like TCP. It also enhances a set of

17

capabilities like partial reliability, security, multi-streaming and multi-homing. Some
level of multihoming and mobility support can be attained through Multipath TCP
[Bag11] that describes the extensions proposed for TCP. Multipath TCP enables
two endpoints of a given TCP connection to use multiple paths to exchange data.
DCCP provides a low expense, congestion control mechanisms for unreliable data
transfer. Moreover, the congestion control methods are modularly separated from its
core that supports each end-points to choose a different congestion control methods
it prefers. UDP is not preferable due to lack of congestion control mechanisms.
DCCP is more preferable to UDP for having congestion control functionalities for
unreliable data flows.

Table 2.1: Feature comparison of Transport Protocols.
Features TCP UDP DCCP SCTP

Communication Byte oriented Minimal mes-
sage oriented

Message ori-
ented

Message
oriented

Unordered data de-
livery

No Yes Yes Yes

Connection-
oriented

Yes No Yes Yes

Reliability Yes No Unreliable with
minimal CC

Yes

Partial Reliability No No No Yes

NAT traversal Yes Yes No No

Protection against
SYN attack

Sensitive to
SYN attack

No No No SYN attack

Congestion Control
mechanisms

AIMD, TCP
Reno,NewReno,
SACK

No AIMD, TFRC,
TFRC-SP

TCP SACK

Multistreaming No No No Yes

Multihoming Some level
of multihom-
ing through
multipath TCP

No No Yes

Moreover, conventional TCP has some limitations such as head of line blocking where
sending independent messages over an order-preserving TCP connection causes de-
livery of messages sent later to be delayed within a receiver’s transport layer buffers

18

until an earlier lost message is retransmitted and arrives, vulnerable to SYN at-
tack [Edd07]. SYN attack is a type of denial of service (DoS) attack in which a
TCP sender transmits a volume of connections that cannot be completed. Whereas,
SCTP avoids head of line blocking for its multistreaming feature, less conservative
to ordering of real time data for its partial reliability feature, and provides protec-
tion against SYN attack with its built-in cookie mechanism. A good analysis on
potential advantages/disadvantages of incorporating SCTP into existing TCP over
Satellite network is found in [AAI02]. The experimental results of this article shows
that the retransmission mechanism of SCTP experiences slightly better throughput
than TCP in their simulation environment.

19

3 NAT Traversal

It is necessary to perform IP address translation when a network’s internal addresses
cannot be used outside the network. The reason behind the non-usability of Inter-
nal address is either they are invalid for use in outside network, or the security and
privacy of internal addresses should be preserved from the outside networks. NAT
traversal is a general term for technologies that establish and maintain Internet
protocol connections passing through network address translation (NAT) gateways.
Network address translation (NAT)[SE01] is a process of mapping IP addresses
from one address space to another, in order to provide transparent communication
through routing device. Real time communication such as multimedia communica-
tions experience significant problems for NAT traversal. The rudimentary source of
this problem is that these applications such as Voice over IP, multimedia over IP (e.g.
SIP, H.323), and on-line gaming, carry IP addresses in their payload while traversing
NATs. NATs experience problem translating new transport layer technologies such
as SCTP, DCCP. IP packets with unknown or too new transport protocol types,
are dropped while traversing middle-boxes. This chapter will discuss basic NAT
traversal technologies.

3.1 NAT

The simplest type of NAT that provides one-to-one translation of IP addresses, is
known as basic NAT or one-to-one NAT. Many-to-one NAT is such NAT that allows
many hosts residing in private network to share one public IP address. This type of
NAT has to maintain a translation table so that incoming packets can be directed
to originating host. Therefore, in order to avoid ambiguity, this kind of NAT needs
to alter higher level information such as port numbers. This translation is known
as Network address and port translation (NAPT) [SH99].

IP addresses can be divided into two types: Private IP addresses which are used
within private IP network and Public IP addresses which are used to connect servers
in the public Internet. Network address translation provides IP address mapping
between internal/private network and external/public network. NAT also provides
mapping several private addresses onto one unique global public address and trans-
parent routing [SH99] between end-points. The term ”Transparent routing” differs
from the ”routing” provided by traditional router device in a way that traditional
router routes packets within single address space whereas NAT device facilitates

20

forwarding between disparate address space.

NAT devices are of different types and different implementations use different types
of NAT boxes [RWHM08]. Each outgoing session from an internal endpoint through
NAT is assigned an external IP address and port number so that subsequent response
packets can be forwarded to internal endpoint. The key variation comes from the
criteria for reuse of a mapping for new sessions to external endpoints, after estab-
lishing a first mapping between an internal X:x address and port, and an external
Y1:y1 address tuple. Let us assume that first session uses the mapping of the in-
ternal IP address and port X:x to X1′:x1′. The endpoint from X:x forwards to an
external address Y2:y2 and X:x is mapped to X2′:x2′ on the NAT. It is complex for
describing the NAT behaviour for various combinations of the relationship between
X1′:x1′ and X2′:x2′, and the relationship between Y1:y1 and Y2:y2. NAT box with
Endpoint-independent mapping behaviour reuses the port mapping for subsequent
packets sent from the same internal IP address and port (X:x) to any external IP
address and port and X1′:x1′ equals X2′:x2′ for all values of Y2:y2. NAT box with
Address-Dependent mapping reuses the port mapping for subsequent packets sent
from the same internal IP address and port (X:x) to the same external IP address,
regardless of the external port. Here, X1′:x1′ equals X2′:x2′, if and only if Y2 equals
Y1. NAT box with Address and Port-Dependent Mapping reuses the port mapping
for subsequent packets sent from the same internal IP address and port (X:x) to the
same external IP address and port while the mapping is still active. In this case,
X1′:x1′ equals X2′:x2′ if and only if, Y2:y2 equals Y1:y1. Some NATs attempt to
preserve the port number used internally when assigning a mapping to an external
IP address and port, where x1=x1′, x2=x2′. This port assignment behaviour is
referred as ”port preservation”.

Various techniques exist for NAT traversal. In the following subsection, several
techniques for NAT traversal as preferred in RTCWeb will be discussed.

3.2 Session Traversal Utilities for NAT (STUN)

Session Traversal Utilities for NAT (STUN) [RMMW08] is a protocol that provides
a tool for other protocols in dealing with NAT traversal. The end-points residing in
private network can utilize this tool to discover the external IP addresses and port
allocated by NAT that is corresponding to its private address.

STUN is referred as a client/server protocol. It permits two types of transactions.

21

One is request/response transaction, where a client sends a request to a server, and
the server returns a response. In indication transaction, either client or server sends
an indication. This transaction does not generate any response. Both transactions
include a randomly chosen 96-bit ID. A binding method can be used in both trans-
actions. In case of request/response transaction, a binding request, which may pass
through one or more NATs, is sent from a STUN client to a STUN server. Conse-
quently, the source transport address of the request received by the STUN server
will be the external IP address and port as translated by NAT. This translated
address is referred as reflexive transport address. The STUN server stores reflex-
ive transport address into an XOR-MAPPED-ADDRESS attribute in the STUN
binding response and sends the binding response back to the client. The response
passes through the NAT that will modify the destination transport address in the IP
header, but XOR-MAPPED-ADD attribute within the body of STUN response will
remain unaffected. This is the way of finding reflexive transport address translated
by outermost NAT with respect to STUN server.

STUN can be run on top of TCP or UDP. Running over UDP may cause STUN
messages to be dropped by the network, since UDP is unreliable by nature. The
client application itself needs to retransmit the request message in order to ensure
reliability of STUN request/response transactions. STUN indications are not re-
transmitted and hence, not reliable. In some usages, STUN is multiplexed with
other data over a TCP connection, it is necessary to implement STUN on top of any
kind of framing protocol, specified by the usage or extension. This framing protocol
helps the agent to extract STUN messages and application layer messages. The
usage will specify how the client knows to apply framing protocol and what port to
connect to.

3.3 Traversal Using Relays around NAT (TURN)

Traversal using Relays around NAT is a relay extensions to STUN. TURN was
invented to support multimedia sessions using SIP signaling. TURN is a protocol
that provides help for end-points behind NAT to request TURN server to act as a
relay when a direct communication path using hole punching technique cannot be
found. Hole punching technique [SKF08] is a technique that establishes connection
between two hosts across one or more NATs. Hole punching technique generally fails
when end-points behind NATs have a mapping behaviour of ”address dependent
mapping” or ”address and port dependent mapping”.

22

Typically, a TURN client is connected to a private network and to the public network
through one or more NATs. A TURN server is situated on the public Internet. If a
TURN client wants to communicate with peers residing behind one or more NATs
or elsewhere in the public Internet, the client can use the TURN server as a relay
to send packets to these peers and to receive packets from these peers. At first,
the client needs to send TURN messages with an allocation request from its host
transport address to the TURN server transport address. If the allocation is possible,
the server replies with relayed transport address located at the TURN server. The
relayed transport address is the transport address on the server that peers can use to
have the server relay data to the client. When allocation is successful, the client can
send application data indicating which peer the data is to be sent. Then, the TURN
server will relay this data to the appropriate peer. The client sends the application
data to the server inside a TURN message, the data is extracted from the TURN
message and sent to the peer in a UDP datagram. In the reverse direction, a peer
can send application data in a UDP datagram to the relayed transport address for
the allocation. The server will encapsulate this data inside a TURN message and
send it to the client along with an indication of which peer sent the data. A client
that uses TURN should have some means to know the relayed transport address of
its peers. One solution is to use rendezvous protocol [SKF08].

TURN uses UDP for communication between the server and the peer. It can also
use TCP or Transport Layer Security(TLS) [DR06] over TCP for this purpose. For
later cases, the server will convert between these transports and UDP transport
while relaying data to the peer and from the peer. TURN supports TCP as some
firewalls are configured to block UDP entirely but not TCP. TLS over TCP provides
additional security properties besides digest authentication [MMR10] provided by
TURN by default.

TURN server is very expensive in terms of bandwidth and requires high-bandwidth
connection to the Internet. It incurs additional delay for media traffic. Therefore, it
is recommended to use TURN server only when a direct communication path cannot
be found.

3.4 Interactive Connectivity Establishment (ICE)

Interactive Connectivity Establishment (ICE) [Ros10] is a protocol that enables
end-points to exploit multimedia communication protocol over UDP through mid-
dleboxes, such as NAT, firewall based on offer/answer model [RS02] of session nego-

23

tiation. ICE also support TCP [RKLR12] for some media protocols, such as screen
sharing, instant messaging, that need to run on top of TCP in the presence of NAT
box.

ICE is responsible to provide a set of candidate transport addresses for each media
stream. A candidate consists of IP address and port for a particular transport
protocol (e.g., UDP, TCP). ICE uses STUN as a tool to validate these candidates. In
Figure 3.1, it is shown that two end-points (ICE agent) can communicate indirectly
by performing offer/answer protocol through web server or SIP server. The agents
are capable of exchanging offer/answer messages (e.g., SDP) to set up a media session
between two agents. This exchange will usually take place through a SIP server.
Each ICE agent has a list of candidate IP addresses and ports to communicate with
other agent. The candidate addresses are of three types [Ros10]:

Host Candidate These candidates are derived from directly attached network in-
terface, e.g. Ethernet, Wifi. Host candidate can also be obtained trough tunnel
mechanism, such as Virtual Private Network or Mobile IP.

Server Reflexive Address STUN provides support to obtain Server Reflexive Ad-
dress that is on public side of a NAT.

Relayed Address This candidate is gathered from TURN server.

Figure 3.1: Simplified Network Topology for ICE.

If two agents are behind NAT, Host candidates are unlikely to be able to commu-
nicate directly. ICE needs to use STUN or TURN to gather suitable candidates.
When ICE uses TURN, both Server Reflexive Address and Relayed Address are
obtained. STUN only provides Server Reflexive Address. The relationship of these

24

addresses are shown in Figure 3.2. When the ICE agent sends the TURN Allocate
request from private IP address and port X:x, the NAT will create a binding X1′:x1′

which is called server reflexive candidate. On the arrival of the Allocate request at
the TURN server, it allocates a port y from its local IP address Y, and generates
an Allocate response, informing the agent of this relayed candidate Y:y. When ICE
utilize STUN servers, the agent sends a STUN Binding request to its STUN server.
The STUN server will respond the agent providing the server reflexive candidate
X1′:x1′.

Figure 3.2: Candidate Address Relationship [Ros10].

ICE performs peer-peer connectivity checks [Ros10] for the communication between
two end-points. Connectivity checks are required to discover a pair of candidates,
one for host agent, and the other from peer agent, that will work. When the host
agent has gathered all of its candidates, it sorts them in highest to lowest priority
and sends them to the peer agent over the signaling channel. The priority algorithm
is generally designed so that similar type of candidate addresses get similar priorities
(e.g., more direct routes, that pass through fewer NATs, preferred over indirect ones
passing through more NATs). When the peer agent receives the offer, it performs
the same gathering process and responds with its own list of candidates. At the end
of connectivity checks, each agent will have a complete list of both its candidates
and its peer’s candidates.

Transportation of multimedia messages through NAT using offer/answer protocol is
difficult to operate, since those carry the IP addresses and ports of media sources
and sinks within their messages. Therefore, if the server of multimedia sources is
located behind NAT, it will create problem while traversing NAT [Sen02]. ICE
helps in this case by providing a set of candidate transport addresses for each media
stream. RTCWeb uses ICE for NAT traversal. ICE utilizes STUN or TURN server
for network address translation.

25

4 Real Time Communication for Web Browsers

The current Internet is widely considered as a medium of real-time communication
and interactive applications. Several proprietary solutions that facilitate direct in-
teractive communication using audio, video, collaboration, games etc. already exist
on the Internet. These solutions lack interoperability because of the requirement of
non-standard extensions or plugins to work in the browsers. However, Internet En-
gineering Task Force (IETF) and World Wide Web Consortium (W3C) are working
together on extending Web architecture with a desire to standardize a set of pro-
tocols so that interoperability can be achieved in real time communication between
two compatible browsers.

4.1 Overview

The primal goal and vision of RTCWeb is to standardize a set of protocols to enable
browser to browser communication using audio, video, and auxiliary data along the
most direct possible path between clients without installing plugin in the browser
[Alv12]. The communication may also be possible between browsers and other end-
points that are compatible with RTCWeb. The effort of RTCWeb consists of two
parts: a protocol specification done by IETF and a JavaScript API specification done
in W3C. The former standardization effort is referred as RTCWeb and the latter one
as WebRTC. Another goal of RTCWeb/WebRTC is interoperability between proto-
col specification and the API specification in order to ensure that multiple products
implementing a standard are able to work together providing a particular function-
ality to user. Moreover, the working group also considers security requirements for
such communication.

Conventionally, services for the browser have been provided by plug-ins which need
to be downloaded and installed separately from the browser. Consequently, this
creates some drawbacks. Firstly, plug-ins are specific to browser and operating sys-
tem, and not available universally. Secondly, it is the responsibility of user to aptly
install them to work in the browser. RTCWeb architecture is intended to support
communication between browsers without installing plug-ins. A general architec-
ture of RTCWeb is shown in Figure 4.1. The communication path is composed of
three components: signaling path to transport control information, media channel
for media (i.e., audio, video) and data channel for non-media data (e.g. character
screen position within an multiplayer HTML5 video game, text file, text chat). The

26

communication path that goes through the web server is ascribed as signaling path.
The direct communication path between browsers consists of two parts as shown in
Figure 4.1: media channel and data channel.

Figure 4.1: RTCWeb Architecture

Standard or proprietary signaling protocols can be used to establish, manage, and
control the communication path between browsers or other RTCWeb compatible
devices. The communication through the signaling path is in the form of XML-
HttpRequest based or WebSocket-based communication, which is a web technology
providing bidirectional communications over a single TCP connection. WebSocket
is designed to be implemented in web servers and web browsers. Websocket, in con-
trast to TCP, enables a stream of messages instead of a stream of bytes. However,
if the two servers are used by different entities, the signaling path should be agreed
upon either by standardization or by any other way of agreement, such that both
servers end up using same signaling protocol (e.g. SIP or subset of SIP, XMPP
[SA04] etc.). The signaling message that goes through the web servers, can be mod-
ified or translated if required. A WebSocket sub-protocol [CMP12] for SIP transport
is specified for bidirectional communication between clients and servers along with
multimedia capabilities for audio and video sessions in web browsers.

In RTCWeb, the media data and non media data can be sent directly through
the media channel and data channel, respectively. The communication path uses

27

PeerConnection1 Interface. This interface uses Interactive Connectivity Establish-
ment (ICE) [Ros10], Session Description protocol (SDP) [HJP06], Session Traversal
Utilities (STUN) [RMMW08], and Traversal Using Relays around NAT (TURN)
[MMR10] protocols in order to traverse legacy NAT and perform codec negotiation.
In order to bootstrap peer-to-peer connection, one peer loads a page and exchange
messages with other peer through the signaling path. Messages are sent to the server
with a session identifier, and the server routes it to the other peer using the initiated
session. Each peer has accounts with some Identity provider. This kind of identity
service is common in Web environment such as OAuth [HL10], OpenID [RR06].

When the signaling channel is established, arbitrarily one peer initiates JavaScript
callback to create PeerConnection object through which data can be delivered.
While creating PeerConnection, it passes a configuration string containing informa-
tion about whether STUN or TURN server will be used. As soon as PeerConnection
has been created, one browser sends initial offer to the other peer. Upon receiving
the initial offer, the other peer similarly creates PeerConnection object with a config-
uration string. Therefore, PeerConnection allows two users to communicate directly
without the intervention of servers. The communication is coordinated via the sig-
naling path provided by script in the page via the server, e.g. XMLHttpRequest.

The signaling in RTCWeb is envisioned to be such that the media plane will be fully
specified and controlled by call establishment phase, and the signaling plane will
reside to the application as much as possible. The idea is that different applications
may use different protocols, such as SIP or Jingle [LBSA+09] call signaling protocol,
for signaling. The required information that needs to be negotiated during call setup
is multimedia session description, which specify the necessary transport and media
configuration strings to establish media plane.

The media negotiation will be performed using SDP offer/answer semantics that
are used in Session Initiation Protocol (SIP) [RSC+02]. The same semantics en-
able to build a signaling gateway between SIP and the RTCWeb media negotia-
tion. RTCWeb offer/answer protocol(ROAP) [ROAP] has been proposed for media
negotiation between browsers or other RTCWeb compatible devices. ROAP uses
SDP offer/answer protocol [RS02] that enables RTCWeb browser to establish me-
dia sessions to another browser or a SIP device. In case of browser to SIP device
communication, the signaling gateway is responsible for mapping signaling messages
between ROAP and SIP.

1http://www.htmlrules.com/javascript/peer-connection-interface/index.html.

28

ROAP proposal has some limitations. First, this protocol is inflexible as the signaling
state machine is embedded into the browser. Therefore, any modification required
to session descriptions, or use of alternate state machine is difficult. Second, user
may reload the web page randomly, leading to a problem if the state machine is
being run at a server, the server can simply return the current state back down
to the page and resume the call where it left off. If the state machine is run on
the browser end, the state machine will be initialized again upon reloading the web
page. But, it seems complicated to design the state machine to maintain the same
state after reloading the web page.

Nevertheless, JavaScript Session Establishment Protocol (JSEP) [JU12] is proposed
to consider the issues explained above. This protocol proposes to implement the
signaling state machine into JavaScript. Therefore, the browser is almost out from
the core signaling flow. This approach decouples ICE state machine from signaling.
ICE remains in the browser, and only the browser is concerned about candidates
and other transport information.

RTCWeb utilizes UDP for transportation of media data as well as non-media data.
The Real-time Transport Protocol (RTP) [SCFJ03] is used to exchange audio and
video data over UDP in RTCWeb. It also supports TCP in case of UDP is blocked
by NAT boxes. The attractive feature of RTP is that it supports both unicast and
group communication. RTP is composed of two parts: RTP for data transmission
and RTCP for RTP control information. RTP and RTCP are flexible and extensible
allowing an application to adapt extensions if existing mechanisms are not sufficient.
RTCWeb requires a NAT traversal method to establish a data path between two
end-points. ICE is used for NAT traversal with the aid of STUN or TURN server.

For data channel to transport non-media data, several proposals have been discussed
in RTCWeb [TLJ12a]. The most common proposal is how ICE can be utilized to set
up data connection as similar to RTP for media streams. It is also proposed to have
a thin layer on top of UDP or DTLS to multiplex the data with other packets. The
issues raised for non-media data are implementation maturity, congestion control
and avoidance, high overhead and NAT traversal. A detailed picture regarding
non-media data will be found in Chapter 5.

RTCWeb communications are directly governed by a web server that introduces
new security threats [Res12]. The basic idea is that each browser in the end-points
exposes some standardized JavaScript APIs which are used by web server to establish
call between two browsers. Therefore, these JavaScript APIs can prompt a denial-of-

29

service or other kind of attacks by malicious calling services. The security of media
channel is another important consideration. Much discussion is going on in IETF
community to select a suitable protocol to protect the media channel. The most
likely solution seems to be Secure Real-Time transport protocol (SRTP) [BMN+04].
SRTP does not have any key management protocol. Therefore, SRTP is to be used
along with a key management protocol such as Datagram Transport Layer Security
(DTLS) [RM06].

4.2 NAT traversal

RTCWeb clients are mostly web browsers and may be located behind NAT or fire-
wall. Therefore, web browsers need to have native NAT traversal mechanisms with-
out which the functionality of RTCWeb clients will be significantly limited.

RTCWeb uses RTP for media communication and RTCP to carry control signals
for RTP. RTP and RTCP listen on separate UDP ports. However, symmetric
RTP/RTCP [Win07] is required in RTCWeb to get rid of the issues of maintain-
ing multiple NAT bindings, while traversing NAT or firewall. A device supports
Symmetric RTP/RTCP if it selects, communicates, uses same IP address and port
number for sending and receiving RTP/RTCP packets. It has been decided to use
SCTP for non-media data in RTCWeb. New IP payloads, such as SCTP, DCCP
and new TCP options, experience problems in NAT traversal, since NAT boxes do
not know how to handle these new protocols. NAT boxes drop such packets with
unknown transport protocols or even extension of known transport protocols, e.g.
new TCP options. Therefore, it is required to impose some mechanisms to deal with
SCTP.

Moreover, whenever a calling client wants to set up connection with its peer, it re-
quires consent from the receiving client before starting data transmission. Therefore,
web browsers should have some consent mechanisms to establish connection between
RTCWeb clients. ICE negotiation can serve this purpose. To support ICE, client
applications need to implement STUN or TURN. There should also be a mechanism
in web browsers to configure the access STUN server. Presently, PeerConnection
interface expose JS API that includes STUN server address and port number as a
configuration string. Configuration string is passed as an argument to one JS API
to create PeerConnection object.

Nevertheless, web browser vendors need to natively support ICE for connectivity

30

requirements. There have been discussions among IETF researchers regarding the
ICE implementation; whether ICE will be implemented in web browsers natively or
within JavaScript library.

4.3 SCTP NAT Traversal

IP packets with unknown or too new transport protocol types such as SCTP, DCCP,
are dropped while traversing NAT, since specialized code of network address transla-
tion for these new transport protocol has not yet been installed in most of the NATs.
NAT traversal issue for SCTP is more complex when the association is multi-homed.
It has been decided in IETF to use SCTP for RTCWeb data channel. In this section,
various NAT traversal scenario [XSHT07] for SCTP will be discussed briefly.

SCTP packets can go through either single NAT as shown in Figure 4.2 or multiple
NATs as shown in Figure 4.3. In single point scenario, all packets go through a
single NAT box. Another variation can be to have multiple NATs on a single path.
In the single point scenario, NAT box has to deal with all of the SCTP packets. In
this case, end-points can be either single homed or multi-homed.

Figure 4.2: NAT Tranversal through Single Path [XSHT07].

In multiple point scenario, a fraction of total packets is passed through each NAT.
This scenario is applied to multi-homed SCTP association. The existence of multiple
NATs between end-points can preserve the benefits of path diversity of a multi-
homed association for the entire path [XSHT07].

Figure 4.3: NAT Traversal through Multi-Path [XSHT07].

31

In both single point and multiple point traversal scenario, SCTP protocol should be
integrated into the NAT box. Much work has been performed for TCP and UDP
[SKF08]. However, the work to support SCTP is in its early stages. The following
terms are defined to discuss NAT behaviour with SCTP.

Global-Address : Global-port: It denotes the external address that a
host behind a NAT is trying to connect.

Local-Address : Local-Port: The internal/private address of the end-
points behind a NAT.

Nat-Global-Address : Nat-Global-Port: It defines the global address
assigned to NAT box and the port number is translated from the Local-Port.

Local-Vtag: The verification tag (32bits) is used by the host behind a NAT
for its communication. This tag must accompany any incoming SCTP packets
for this association to the Local-Address.

Remote-Vtag: This tag (32bits) is used by the remote host for its communi-
cation that must accompany any incoming SCTP packets for this association
to the Global-Address.

In single point traversal scenario, the source address of the SCTP outgoing packet
has to be replaced with NAT-Global-Address as shown in Figure 4.4. On the other
hand, to deliver incoming packets to thr correct SCTP endpoint, NAT does a
lookup to find the corresponding Local-Address that replaces the destination ad-
dress. Therefore, NAT box has to maintain a look-up table of Global-Vtag, Global-
Port, Global-Address, Local-Vtag, Local-Port and Local-Address. The look-up with
the Global-Vtag, Global-Port, Global-Address, Local-Vtag and the Local-Port of an
incoming packet returns the Local-Address.

However, some difficulties arise with an SCTP compatible NAT. First, when a SCTP
end-point behind NAT box has to utilize SCTP for data communications, classical
NAPT may change the SCTP port numbers while processing SCTP packets. There-
fore, it leads to expensive re-computation of the transport layer checksum. Conse-
quently, this creates significant computational burden to NAT box and requires
substantial hardware support, whereas it can be done very efficiently for UDP and
TCP. Secondly, multi-homed SCTP end-point has multiple addresses but only one

32

single port number. Therefore, to support multihoming, NAT box needs to differen-
tiate all the packets with respect to each association and perform appropriate port
translation to redirect packets towards appropriate hosts.

(a) SCTP INIT packets.

(b) SCTP packets except INIT

Figure 4.4: Network Address Translation for SCTP packet.

To get rid of the difficulties stated above, one possible solution is to encapsulate
SCTP packets into UDP packets. UDP encapsulation allows SCTP traffic to pass
NAT boxes without SCTP supported NATs. Additionally, SCTP userland imple-
mentation does not require any special privileges to access IP layer directly. It
should be noted that the IP addresses that are needed to change while traversing
NAT must not be put into SCTP packet if UDP encapsulation is used. UDP encap-
sulation [TS11] i.e., tunnelling over UDP can be a good solution to traverse NAT
boxes with new IP payloads. UDP encapsulation triggers SCTP if any packet is lost
during transmission. The basic idea is that UDP encapsulated SCTP packets will
look like UDP messaging. UDP does not provide any congestion control, but SCTP
natively provides congestion control and avoidance. Therefore, UDP encapsulation
of SCTP packet needs to use a remote UDP encapsulation port per destination ad-
dress for each SCTP association and a local port for all of its incoming packets. The
local port number is 9989 as assigned by IANA2. For this purpose, UDP header is
inserted between IP header and SCTP header as shown in Figures 4.5 and 4.6.

At the other end, the receiver will truncate the UDP header to get the SCTP
header and a look up is performed to find out the SCTP association the received

2http://www.ietf.org/assignments/port-numbers

33

Figure 4.5: UDP encapsulation using IPv4 (originally from [TS11]).

Figure 4.6: UDP encapsulation using IPv6(originally from [TS11]).

packet belongs to. The UDP port number is used as the encapsulation port for the
destination address.

When SCTP end-point receives ICMP or ICMPv6 packets, it can not be possible
to find out which SCTP packets trigger these ICMP or ICMPv6 packets, since
there might not be enough bytes in the payload to identify the corresponding SCTP
association. During encapsulation, SCTP endpoints must deduct the size of UDP
header from path MTU.

34

4.4 Congestion Control

Congestion control is required for RTCWeb data transport. Congestion control
for real time media data is difficult for several reasons. First, the encoding for
media data cannot be changed quickly with response to varying bandwidth. Second,
sending application may not be willing to reduce data rate required by the flow on
which congestion is detected. Third, non-media data also competes for bandwidth
and may create congestion that impacts media data.

In WebKit RTCWeb implementation, PeerConnection interface allows direct com-
munication from application running in one browser to application running in an-
other browser. PeerConnection implementation uses UDP for sending media or
non-media data directly between browsers. Currently, PeerConnection does not in-
clude any congestion control mechanisms for media and data channel. Moreover,
UDP does not ensure in-order delivery or reliability of user data. Therefore, the
issue of how to integrate congestion control with current implementation of Peer-
Connection is still an open issue. This thesis work gives focus on data part and uses
SCTP userland stack3 for data channel congestion control.

3http://sctp.fh-muenster.de/sctp-user-land-stack.html

35

5 RTCWeb Data Channel Protocol Analysis

Several transport protocols such as TCP, UDP, RTP, SRTP, SCTP, DCCP etc.,
presently exist for communication of media and non-media data. A single protocol
alone is not best suitable for browser to browser data communication satisfying
all the requirements in the context of RTCWeb. UDP is most common transport
protocol for real time data. Currently, RTP over UDP is used for real time data such
as audio and video. UDP experiences limitations in terms of reliability, ordering,
data integrity and especially, it does not provide any congestion control mechanisms.
TCP is conservative in ordering, in-sequence delivery but provide some of those
requirements. In this chapter, we discuss in succinct how to deliver non-media data,
and what are the requirements for data channel in the context of RTCWeb.

5.1 Data Channel Requirements

Data channel offers usage for several applications such as chat, file transfer, real
time game, shared whiteboard, shared document editing with real time media data.
Some use-cases for data channel are presented in Appendix 3.

The requirements for RTCWeb data channel are as follows [TLJ12a].

• Data channel must allow multiple simultaneous streams (i.e., multiple data
channel) at the same time.

• Both reliable and unreliable, ordered and unordered data transmission should
be considered.

• There should be suitable congestion control mechanism either separately or
in conjunction with the media streams so that data transport cannot create
congestion on media streams.

• Potential prioritization on each data stream with respect to other streams as
well as media streams.

• It should support confidentiality, integrity, and source authentication.

• There should be some means for NAT traversal.

• Data channel protocol should not rely on ICMP or ICMPv6 for path MTU
discovery.

36

• The data protocol must not encrypt local IP addresses inside its protocol fields
to preserve potentially private information.

• Unbounded messages must be supported at the application layer.

We conclude that no single protocol alone is able to meet all of the above require-
ments. Therefore, a suitable protocol stack needs to be designed for data channel.
In the next section, several alternatives will be discussed in brief.

5.2 Data Channel Protocol

RTCWeb/WebRTC community is working to design a generic transport protocol
service that enables browsers to exchange data in a bidirectional peer to peer fashion.
Presently, there is a general consensus in RTCWeb IETF community that RTCWeb
data transport protocol stack should have a suitable transport protocol that will
provide necessary and sufficient congestion control over UDP to overcome legacy
NAT traversal issues. For confidentiality, authentication, integrity protection, the
proposal is to use the transport protocol that provide congestion control over DTLS
and DTLS will be implemented on top of UDP.

Data channel protocol stack should be designed in a way that will meet all of the
requirements of RTCWeb presented in Section 5.1. The basic idea is that the pro-
tocol stack should provide congestion control and avoidance to data channel as well
as sufficient protection for user data. Therefore, the stack will be like as shown in
Figure 5.1. DTLS will be implemented on top of UDP and provide protection to
user data. A suitable transport protocol will be on top of DTLS to serve conges-
tion control. In the following discussion, several options for data channel will be
discussed in brief.

Pseudo-TCP(reliable)+DCCP (unreliable)/DTLS/(ICE)UDP

One data channel protocol option can be TCP on top of DTLS or UDP. This option
is shown in Figure 5.2. Pseudo-TCP is userspace TCP implementation. Pseudo-
TCP can be attributed as a subset of the TCP stack to allow for reliable transport
over non-reliable sockets (such as UDP). For unreliability requirement of RTCWeb,
DCCP can be used on top of UDP. DTLS is responsible for confidentiality, integrity
and source authentication for the upper layer payload. The basic idea is that TCP

37

Figure 5.1: RTCWeb/WebRTC Basic Protocol Stack.

over TLS or Pseudo-TCP is for reliable traffic, and DCCP over DTLS is for unreliable
traffic.

Figure 5.2: RTCWeb/WebRTC Protocol Stack using TCP.

There are several advantages of this protocol stack [TLJ12b]. First, TCP is well
known and its congestion control mechanism is well understood. Second, userspace
TCP implementation exists to run on top of DTLS. Third, multiplexing of datagram
flows can also be supported with this approach by adding stream identifier to TCP
header. The downside of this option is that TCP does not support unreliable data
transfer and additional framing layer is required on top of TCP to provide the nec-
essary datagram interface to the calling API. Additionally, stable version of DCCP
userspace implementation does not exist at this point.

SCTP/DTLS/UDP(ICE)

Figure 5.3 represents the protocol stack of SCTP over DTLS over UDP. Presently,
DTLS/UDP is specified in [RM06], but SCTP over DTLS has been only specified
recently in an Internet draft [TSLJ12]. DTLS is usually implemented in userspace,

38

Figure 5.3: RTCWeb/WebRTC Basic Protocol Stack using SCTP over DTLS.

and hence, SCTP userland implementation is required to make this protocol stack
deployable. Moreover, it is necessary to have SCTP userland stack due to lack of
universal availability of SCTP in operating systems. The lower layer interface of an
SCTP implementation needs to be adapted to differentiate between IPv4 or IPv6
(being connection-less)or DTLS (being connection-oriented).

Processing of incoming ICMP or ICMPv6 packets cannot be performed in SCTP
layer, since there exist no means to identify the corresponding SCTP association.
SCTP should not rely on ICMP or ICMPv6 for path MTU discovery. Therefore,
DTLS should have support for path MTU discovery. It can be done by controlling
Don’t Fragment (DF) bit when the stack uses IPv4. DF bit is required to be set for
path MTU discovery.

DTLS/SCTP/UDP(ICE)

In this alternative, SCTP association is performed over UDP. UDP encapsulation of
SCTP is presented in IETF draft [TS11] and the DTLS over SCTP is delineated in
[TSR11]. This protocol stack provides legacy NAT traversal support through UDP
encapsulation as well as confidentiality, integrity and source authentication to SCTP
payload using DTLS. SCTP control information is exchanged without encryption.
This stack also provides multihoming feature of SCTP using ICE.

SCTP/DTLS vs DTLS/SCTP

Table 5.1 shows the feature of these two stack SCTP/DTLS and DTLS/SCTP
with traditional transport protocols, TCP and UDP. SCTP natively supports mul-
tistreaming, ordered and unordered delivery of user data, reliability and partial re-

39

liability on data exchange. Both stacks support NAT traversal through ICE. DTLS
provides the security and privacy for both DTLS/SCTP and SCTP/DTLS.

Table 5.1: Feature List of Transport Protocol or Protocol stack.
Features TCP UDP DTLS/SCTP/UDP SCTP/DTLS/UDP

Communication Byte ori-
ented

Minimal
message
oriented

Message oriented Message oriented

Connection ori-
ented

Yes No Yes Yes

Reliability Yes No Yes Yes

Partial Reliabil-
ity

No N/A Yes Yes

Ordered delivery yes N/A Yes Yes

Unordered deliv-
ery

No N/A Yes Yes

NAT traversal Yes Yes Yes Yes

Security and pri-
vacy

Sensitive
to SYN
attack

No DTLS provides secu-
rity

DTLS provides
security

Congestion Con-
trol mechanisms

Yes N/A Yes Yes

Multistreaming No No Yes Yes

Multihoming Some level
through
multipath
TCP

No Yes No

Kernel Im-
plementation
support

Yes Yes Yes No

userspace imple-
mentation

Yes Yes Yes Yes

For SCTP/DTLS, userspace SCTP is required to be implemented, since DTLS is
typically implemented in userspace. Multihoming feature cannot be possible, since
DTLS is used as lower layer in this stack, and it does not provide any address
management to its upper layer. On the other hand, if SCTP is used as a lower
layer, UDP encapsulation of SCTP will be used. It also supports both userspace

40

and kernel implementations and multihoming feature. Multihoming feature will be
achieved through ICE.

RTCWeb envisions that all the communication will be performed over a single con-
nection. In order to facilitate the media channel, SCTP/DTLS/(ICE)UDP is more
advantageous, since a DTLS connection can be reused for SRTP. DTLS will provide
authentication keys for SRTP. In contrast, DTLS/SCTP would require to setup the
SCTP association every time one client want to send data, since DTLS connection
must not span multiple SCTP associations [TSR11]. Each SCTP packet contains
Payload Protocol Identifier (PPID) that is used by upper layer to specify multiple
protocols. The other end, therefore, demultiplexes the user messages based on the
received PPID.

DCCP vs SCTP

Both DCCP and SCTP are suitable for real time communication services. There
was discussion among IETF researchers for choosing DCCP or SCTP. DCCP pro-
vides unreliable data transfer with congestion control mechanism. Therefore, DCCP
satisfies the unreliability requirements of RTCWeb, but for reliability issues, there
should be some other mechanism on top of it. Typically, DCCP is implemented
as part of operation system kernel. However, to support DCCP on top of DTLS,
DCCP as part of user process is necessary to be implemented. In contrast, SCTP
satisfies both reliability, unreliability requirements and recently, a very first version
of SCTP userland stack has been implemented and released.

5.3 Data Channel Connection

Data channel is designed to provide a generic transport service allowing web browsers
to exchange generic data in a bidirectional peer to peer fashion. Data channel can
be defined as a bidirectional medium that supports in-sequence, out-of-sequence, or
reliable and unreliable data transmission. A bidirectional channel is formed by two
SCTP streams; one for outgoing and one for incoming data. A stream is defined as
an unidirectional logical channel that exist within an SCTP association from one
SCTP endpoint to another. Therefore, one incoming and one outgoing stream pair
create one bidirectional data channel. User data is delivered to a particular stream
either in order or unordered. It is noteworthy that the ordering is only preserved
for those messages that are transferred on the same stream.

41

All negotiation between RTCWeb clients will be done over signaling channel. The
basic idea behind the data channel connection is as follows:

• ICE negotiation will be performed first to gather IP addresses and port num-
bers that provide help to setup a bidirectional UDP channel.

• DTLS handshake will take place to setup a bidirectional UDP channel.

• SRTP can be used with key material derived from the DTLS connection.

• Now the SCTP handshake can be initiated running on top the the established
DTLS connection.

SCTP association over DTLS will be established over signaling path using SDP. The
protocol identifier required for this negotiation is defined and explained in [LC12].
The SCTP stack will just pass down the SCTP packet (without IP header) to DTLS
layer.

As soon as SCTP association is established, the data channel can be created between
two SCTP end-points using 3-way handshake as shown in Figure 5.4. The control
messages for data channel negotiation are DATA_CHANNEL_OPEN_REQUEST,
DATA_CHANNEL_OPEN_RESPONSE, and DATA_CHANNEL_ACK. It should
be noted that data channel negotiation is performed over the established SCTP asso-
ciation. The SCTP association is created with a initial number of streams specified
by the application (default value is 16). However, the default value can be extended
by performing negotiation between end-points.

Data channels are closed by resetting the outgoing stream. Resetting a stream
[SLT12] means to set the stream sequence numbers(SSN) of the stream to ’zero’ and
the application layer is notified accordingly that the reset has been performed. This
feature allows the application to reuse the streams later if required. If an incoming
stream is reset by the peer, a corresponding outgoing stream reset should be issued.
When both incoming and outgoing streams of a channel are reset, the channel is
closed.

SCTP_RESET_STREAMS option of SCTP allows the application to request the reset of
incoming and/or outgoing streams.

42

Figure 5.4: Adding a data channel.

5.4 Congestion Control

SCTP performs congestion control based on per association. Therefore, all SCTP
streams in an association share a single congestion window. Congestion control and
avoidance mechanism for data channel is provided by SCTP. SCTP provides TCP-
friendly congestion control. The congestion control mechanism can be modified to
integrate media stream congestion control as well. Furthermore, multistreaming
feature of SCTP will be utilized to create multiple data channels with different
features, such as reliability or unreliability, partial reliability, and ordered or un-
ordered delivery. SCTP also provides congestion control for large datagrams and
PMTU-discovery. Fragmentation of large datagram is also possible if required.

43

6 Design and Experiment

In this chapter, We will build up a prototype for data channel in order to integrate
the solution into WebKit. The prototype uses SCTP userland stack and GStreamer
multimedia framework. We will also investigate the way Mozilla has integrated data
channel protocol stack in the browser and how the data channel has been designed
and implemented using SCTP userland stack.

6.1 WebKit

WebKit is an open source web browser engine. It started within Apple in 2001 as
a fork of KHTML (KDE′s HTML Layout Engine) and KJS (KDE′s ECMAScript-
JavaScript engine). It has evolved very fast and included support for HTML5. One
of the major component of WebKit is WebCore that uses a number of objects to
represent a web page in memory. Figure 6.1 represents a simplified version of

Figure 6.1: WebKit Architectural View

WebKit Architecture. Webkit architecture includes the following layers:

WebKit API layer that provides a full GObject-based API for programmatic ma-
nipulation of the Document Object Mode (DOM), making it easy for applica-
tions to control and modify content in embedded HTML views.

44

WebCore is a layout, network, multimedia, rendering, and Document Object Model
(DOM short) library for HTML and SVG (Scalable Vector Graphics).

JavaScriptCore is a JavaScript Engine based on KJS. This framework is separate
from WebCore and WebKit.

Platform This layer tempts to implement general-purpose platform specific oper-
ations.

6.2 GStreamer

GStreamer is an open source multimedia framework for creating streaming media
applications. This framework is designed to help application programmer to easily
deal with audio or video or both. It can also process any kind of data other than
media data.

Basically, GStreamer is a plugin-based framework, where each plugin contains ele-
ments. Each element provides specific functionality such as reading/writing from/to
files, encoding, decoding, filtering, or rendering data. A GStreamer pipeline can be
created by linking some of these elements to perform a complex task.

Figure 6.2: GStreamer with three linked elements.

Figure 6.2 shows a simple pipeline of three elements that are linked together. The
output of first element will be used as input in the filter element. The Filter element
will do something with the data buffer and forward it to next element. The first
element is always a source that is used to push data buffer into a pipeline and
sink element being last element is responsible for rendering data to the application.
Buffers are the basic unit of data transfer in GStreamer. GstBuffer is the type of
data passing buffer.

GStreamer has four element states: GST_STATE_NULL, GST_STATE_READY,
GST_STATE_PAUSED, and GST_STATE_PLAYING. GST_STATE_NULL is

45

the default state where no resources are allocated. In GST_STATE_READY state,
an element allocates all of its global resources i.e., opening devices, allocating buffer
and so on. In GST_STATE_PAUSED state, an element is allowed to modify a
stream′s position, read and process data and such to prepare for playback as soon
as state is changed to PLAYING. In this state, an element is not allowed to play
the data which would make the clock run. In the PLAYING state, an element does
similar functions as in the PAUSED state, except that the clock now runs.

6.3 Design and Implementation

This research started with the design shown in Figure 6.3. The basic idea is that
the data from the WebCore would be fed into the GStreamer pipeline using Appsrc
element and pass it to the next element SCTP that is responsible for providing
congestion control functionality. SCTP element passes the data as SCTP packets

Figure 6.3: Design for porting SCTP plugin with Congestion Control functionality.

to the nicesink element that renders the data to the network. Nicesrc is responsible
for receiving data from the network and passes it to the SCTP element. Nicesink
and nicesrc are implemented in libnice 4 library. However, the userspace SCTP

4http://nice.freedesktop.org/libnice/NiceAgent.html. ICE agent API implementation that take
care of everything relating to ICE

46

implementation provides API that are dependant on IP and congestion control is
performed over sending path. It needs major re-factoring of libusrsctp to make this
design functional. Therefore, the design is simplified as shown in Figure 6.4.

The data from the WebCore will be fed into the GStreamer pipeline using Appsrc
element and pass it to sctpsink element which is responsible for rendering data to
the network. Sctpsrc element is responsible receiving data from the network and
pass it to the WebCore via appsink element.

Figure 6.4: Design for porting SCTP plugin.

Appsrc element is used to push data into a GStreamer pipeline that provides external
API for this purpose. Libgstapp library is required to be linked with appsrc to access
the methods directly or by using appsrc action signals. Appsrc push data into
pipeline by calling gst_app_src_push_buffer() method or by emitting the push
buffer action signal. The buffer should be type of GstBuffer and before pushing
data the following code segments are required:

buffer = gst_buffer_new();

GST_BUFFER_MALLOCDATA(buffer) = dataToBePushed;

GST_BUFFER_SIZE(buffer) = size of dataToBePushed;

GST_BUFFER_DATA(buffer) = GSTBUFFER_MALLOCDATA(buffer);

47

Appsink is used to provide methods in order to enable an application handling on
the GStreamer data in a pipeline. Appsink retrieves the data buffers from a pipeline
by calling gst_app_sink_pull_buffer() and gst_app_sink_pull_preroll() methods
that block until a buffer is available in the sink or when the sink is closed or reaches
End of Stream signals (EOS).

SCTP plugin contains two elements: sctpsrc and sctpsink. The sctpsink element
consumes the data from a source element (e.g. Appsrc) and renders the data to the
network. The sctpsrc element retrieves data from the network and transfer it to the
next sink element for further action.

This implementation has used libusrsctp 0.9.0 version. The current version is 0.9.1.
The work is still going on to release a stable version of this library. Libusrsctp is a
userspace implementation of SCTP. This user-land stack is based on the FreeBSD
kernel sources of SCTP and provides functionality enabling to perform as part of
user process. It supports Windows, FreeBSD, Linux and Mac OS X. This library
includes SCTP/IPv4 and SCTP/IPv6 and the UDP encapsulation variants.

In order to see the parameters used in SCTP plugin or to determine whether the
plugin is working properly, gst-inspect command can be used. Obviously, GStreamer
needs to be installed for this purpose. In this case, GStreamer-Core, GStreamer-
Base-Plugins, and Gst-Plugins-Bad packages are required. GStreamer is available in
many Linux package systems for a variety of distributions such as Debian, Red Hat,
Ubuntu etc. A brief description of GStreamer plugin creation steps is presented in
Appendix 2.

GStreamer provides two base classes that can be used to create a source element:
GstBaseSrc provides the basic source functionality, and GstPushSrc is a non-byte
exact source base-class. Pushsource base class itself derives from the base source
class. Sctpsink element derives from GstBaseSink class and sctpsrc from GstPushSrc
class. In order to integrate libusrsctp into this plugin, the configuration and Make-
file.am file need to be changed so that these elements can use the APIs provided by
libusrsctp.

Sink element is a special type of element in GStreamer that has to take care of preroll.
Preroll is the process by which elements going into the GST_STATE_PAUSED
state will have buffers ready after the state change i.e., they can start processing data
immediately after going into the GST_STATE_PLAYING state. Sink elements
can derive from GstBaseSink base-class, which does preroll and a few other utility
functions automatically. To derive from base sink, we can use the following macro:

48

GST_BOILERPLATE_FULL (
GstSctpSink, gst_my_sink, GstBaseSink, GST_TYPE_BASE_SINK
);

Both sctpsink and sctpsrc element initialize the SCTP userland stack with a listen-
ing UDP port number as a parameter to the sctp_init() function and the remote
port is set as a socket option, SCTP_REMOTE_UDP_ENCAPS_PORT, to the
userspace_sctp_sockopt().

The congestion control and avoidance mechanism is done on the sending path i.e.,
userspace_sctp _sendmsg() function is invoked with data buffer to send out data.
Congestion control is carried out while injecting data to the network. Sctpsink
element uses this functionality.

The userland library for receiving messages in sctpsrc plugin can be used on two
modes:

• For receiving messages a callback API is used: We need to register a callback
which is called when a message can be delivered.

• For receiving messages a blocking API can be used by userspace_sctp_recvm-
sg(). This puts the thread calling userspace_sctp_recvmsg() to sleep if
there is no data. Much like the socket API.

The sctpsink and sctpsrc element initializes SCTP useland stack with UDP encapsu-
lation properties to follow SCTP over UDP. It is done by setting SCTP_REMOTE
_UDP_ENCAPS_PORT option as second argument and a pointer to struct sctp_
udpencaps is passed as third argument to the userspace_sctp_sockopt() function.

6.4 Result Analysis

The sending path in GStreamer solution includes the chain of two elements; appsrc
and sctpsink. Another chain of sctpsrc and appsink is responsible receiving data
from the network and transfer it to the application. Therefore, in order to enable
bidirectional communication, two chains of this kind are required on each peer; one
for sending and one for receiving. SCTP/UDP solutions have been implemented for
data transmission.

The issue is whether GStreamer solution around SCTP is compatible with RTCWeb.
To be compatible with RTCWeb, src/sink pair on each side should share the same

49

socket to provide a bidirectional communication. For this purpose, there should be
some way in GStreamer by which both elements can share the same socket. The
possible solution may be to have the functionality of inter-element communication
i.e., one element can pass some information to other element. Unfortunately, we have
not found any mechanism for inter-element communication. GStreamer framework is
not suitable with the current implementation of userland SCTP stack to add channel
or remove channel on demand. The major re-factoring of SCTP implementation is
required for including GStreamer into the WebKit framework.

Discussion in the web community (Google, Mozilla) regarding GStreamer solution
for data channel came into unanimity that GStreamer is not suitable medium to in-
tegrate SCTP into browser for the data channel. It will be better to integrate SCTP
natively into browser. Mozilla has already integrated SCTP userland stack for data
channel. This thesis work also investigated Mozilla architecture in order to know
how the data channel is implemented, what properties are considered there, and
finally performed some experiments on data channel JS API using Mozilla nightly
builds which are only for testing purposes.

6.5 Data Channel in Mozilla

Recently, SCTP userland stack has been integrated in mozilla for a data channel
solution. Data channel is part of network component of mozilla that enables the
browser with data channel features in the context of RTCWeb. At present, the data
channel features in Mozilla are the following:

• Bidirectional Communication.

• JavaScript API to create a data channel.

• Work is going on to support extending streams and stream reset.

• Data channel protocol stack SCTP/UDP. The vision is to implement
SCTP/DTLS/(ICE)UDP.

In this thesis work, a simple chat is implemented and executed with Firefox Nightly
build, which is for testing purposes. The snapshot is shown in Figure 6.6. The call
set up is complicated and detailed procedure is presented in Appendix 1. The result
realized in wireshark is shown in Figure 6.5.

50

Figure 6.5: Wireshark output while chatting on Mozilla browsers.

We used Node.js for web server and two firefox browser instances are required. Now,
we need to do the following:

In one browser at left in Figure 6.6, Browse to http://localhost:3000/datachan

URL will showhttp://host:3000/listen/A/B

Therefore, this browser will be listening for connections from other browsers.

Other browser at the right should browse to the following link:
http://host:3000/connect/B/A/my_ip_address

Note that A and B are reversed from what you see in the listener

51

Figure 6.6: Bidirectional chat between two browsers.

If everything is going smooth, then ′Ringing′ will be heard. When one browser
presses ′accept′ button, two browsers are ready for exchanging text data over data
channel. The call negotiation is done over signaling channel. The snapshot for data
exchange is presented in Figure 6.7.

Present implementation allows the data channel to open before the call is accepted,
since the DTLS has not yet been integrated. It includes the 3-way handshake and
allows immediate sending.

6.6 Challenges

At the beginning of this thesis work, we analysed the WebKit source code to find
out the portion that is responsible for transportation of non-media data in Peer-

52

Figure 6.7: Bidirectional chat between two browsers.

Connection. The lack of proper documentation was the principal hindrance of this
thesis work.

This thesis work has been performed with a very beginning unstable version of
SCTP userland stack implementation. There is still no documentation written for
this library. GStreamer basically is intended for multimedia applications, though it
supports any kind of data. The documentation is not matured enough for non-media
data application.

6.7 Critique

Though SCTP/DTLS provides congestion control, and message authentication, it
experiences significant overhead during handshaking period. Theoretically, DTLS
handshake message can be quite large and up to 224 - 1 bytes (pragmatically many
kilobytes) [RM06]. On the other hand, UDP datagrams are often less than 1500

53

bytes. In order to mitigate this limitation, and to run DTLS over UDP, DTLS
handshake message may need to be fragmented over several DTLS records.

SCTP usually uses multihoming feature. SCTP endpoint uses different transport
address if it detects congestion on using one particular address. DTLS does not
support multihoming feature of SCTP, since DTLS does not have any address man-
agement mechanism for upper layer.

ICE will be used for gathering candidate addresses for transporting data over UDP.
Here, the point is that ICE can change candidates unbeknownst to upper layer like
DTLS or SCTP. This issues need to be taken care of while implementing the stack
for data channel. Therefore, SCTP stack needs to be bound to an abstract data
channel API, not to UDP transport to facilitate creating a DTLS shim under SCTP
layer i.e., SCTP stack needs to be IP agnostic.

DTLS will be used as lower layer so that SRTP can also reuse the DTLS connection.
The key issue here is that the maximum_lifetime parameter in the SRTP protection
profile limits the duration to use each encryption and authentication key [RM06].
When this limit exceeds, a new DTLS session should be performed to replace the
previous key.

Application using SCTP as part of a user process needs special privileges to access
IP layer directly. Multihoming feature of SCTP leads to some limitation, since
userspace process has no control over which interface user messages will be delivered.
Additionally, if application crashes, the clients are left in a undefined state and
experiences delay to recover if the application is restarted.

It is clearly understood that many messages other than actual user data need to be
exchanged to set up the connection. SCTP itself supports data channel characteris-
tics (e.g. ordered or unordered delivery, reliability or unreliability) to be controlled
dynamically per chunk of transmitted data. Therefore, to create new channels and
shut down one to accommodate different characteristics seems redundant. Addi-
tionally, every new channel requires 3-way handshake messages. It may create some
delay for sending actual data. If a user message can also be carried with handshake
messages, it may be advantageous reducing delays. However, this characteristics can
be carried out by SCTP block of data as discussed in Section 5.3. It may help to re-
duce redundant exchange of information. JS API could specify these characteristics
option to promote SCTP to use these options without any negotiation.

Userland SCTP implementation provides TCP friendly congestion control mecha-

54

nism. It will be working fine if there is no real-time sessions going on. However,
it would be really problematic with such congestion control mechanism even for
sending or receiving a slight amount of data while any audio/video session is up
especially in mobile networks where user buffer may be bloated easily. Therefore, it
is necessary to balance bandwidth between media and data channels so as to avoid
data channels causing congestion that might deteriorate the performance of media
channels. It is possible to impose a bandwidth control manager controlled by main
application and congestion code that could limit the data channels.

In real time communication the data channel may be often idle or low volume for
long periods of time (e.g. instant messaging). Many applications may want to have
data channel connection alive just in case they need to send some traffic. The SCTP
over DTLS stack may lead a problem of having data channel keep alive for a long
time due to power consumption. Moreover, frequent set up and shut down of data
channel will cause extra overhead and introduce delay for sending the first message.
Low volume situation may utilize websockets or HTTP instead of data channel to
resolve this problem.

55

7 Conclusions and Future Work

IETF and W3C are working together on extending the web architecture. In partic-
ular, RTCWeb project aims to allow browsers to natively support interactive peer
to peer communications and real time data collaboration. The fundamental goal
of RTCWeb is to specify a set of protocols that support transportation of media
data, such as audio, video, and non-media data along the most direct possible path
between RTCWeb clients.

RTCWeb includes three components: media (i.e., audio, video), data, and control
information (i.e., signaling). A short description of RTCWeb architecture has been
presented in Chapter 4. For media channel, the amount of traffic, that can be gen-
erated, is known beforehand because of the codec and the profile chosen during call
establishment, whereas data channel may experiences huge amount of data depend-
ing on the web user that may lead to congestion on the networks. To overcome this
problem, we need a suitable congestion control for the data channel. Moreover, a
suitable congestion control mechanism helps data channel to fairly compete with
media channel.

Data channel is interesting area in RTCWeb that opens possibilities of future in-
novations in the Web arena. The possibility of transporting any kind of data will
offer a web developer to create (or recreate) all kinds of applications such as P2P
applications, gaming with RTCWeb/HTML5. In theory, it may even be possible to
invent a new codec and transport audio and video on top of the data channel.

This thesis has discussed how the data channel could be designed for non-media data
in the context of RTCWeb so that it will provide suitable congestion control mech-
anism for data channel, and security, authentication, integrity, and privacy of appli-
cation data. Existing transport protocols such as TCP, UDP, RTP, SRTP, SCTP,
DCCP, alone cannot meet all of the requirements of data channel. In chapter 5, the
possible solutions for the protocol stack has been outlined briefly. IETF RTCWeb
community have reached the consensus to use SCTP/DTLS/(ICE)UDP for data
channel. SCTP will provide congestion control for each data channel performed
based on each stream. DTLS will be responsible for providing security, confidential-
ity, and source authentication. RTCWeb clients are mostly web browsers and may
be located behind NAT or firewall. Therefore, web browsers need to have native
NAT traversal mechanisms. ICE with the help of STUN or TURN will provide NAT
traversal solution.

56

In RTCWeb, PeerConnection implementation uses RTP over UDP for media data
and UDP tunnelling for non-media data. The current implementation for trans-
portation of media and non-media data has not included any congestion control on
the end-points. How to integrate congestion control and avoidance mechanisms with
current implementation of PeerConnection is still an open issue. This thesis focused
on data part and selected SCTP userland stack implementation that supports SCTP
over UDP with the goal to integrate it into WebKit. PeerConnection has utilized
GStreamer for real time communication. In order to allow a smooth integration of
the implementation within WebKit, we implemented GStreamer plugins that are
able to send and receive data using SCTP over UDP.

There were two possibilities to integrate SCTP into WebKit; one to integrate na-
tively and another one is using GStreamer plugin. GStreamer framework has been
used for the transportation of media data. Therefore, this work has given effort to
integrate SCTP within WebKit using GStreamer multimedia framework. In Chap-
ter 6, the design for using SCTP around GStremer has been shown and discussed.
Recently, Mozilla has integrated SCTP userland stack natively into the browser
for data channel. As a proof of concept, we downloaded Mozilla source code and
executed it with Firefox nightly build. Two instances of Mozilla browser can com-
municate through data channel. Currently, Mozilla browser uses SCTP/UDP for
data channel. The vision is to implement SCTP/DTLS/(ICE)UDP.

Future Work

Userspace SCTP implementation has not yet been released as a stable version. In
current implementation, all SCTP API is dependent on IP layer. The next step
of userspace SCTP implementation will be to make SCTP stack IP agnostic i.e.,
this could support lower layers other than UDP or IPv4 or IPv6 (e.g., DTLS). This
thesis work suggests to integrate SCTP natively instead of with GStreamer. Due to
unavailability of stable version of libusrsctp and the limitation of time for this work,
it was difficult to integrate SCTP natively in the WebKit. A thorough investigation
of data channel integration into Mozilla browser concludes that the major function-
ality of data channel could be performed using userspace SCTP implementation.
Future work could be to give similar efforts for WebKit.

In future work, it would be useful to investigate the impact, benefits and performance
gain with data channel protocol stack; how it will have impact on media channels in
terms of bandwidth consumption. This can be done by having both media channels

57

and multiple data channels up, and analyse how the bandwidth is consumed by
different channels. Transmission delay measurement can also be performed to realize
how well the protocol stack behaves.

58

8 References

AAI02 Alamgir, R., Atiquzzaman, M. and Ivancic, W., Effect of Congestion
Control on the Performance of TCP and SCTP over Satellite Networks.
NASA Earth Science Technology Conf, June, 2002.

AFP02 Allman, M., Floyd, S. and Partridge, C., Increasing TCP’s Initial Win-
dow. RFC 3390, October, 2002.

AJ07 Audet, F. and Jennings, C., Network Address Translation (NAT) Be-
havioral Requirements for Unicast UDP. RFC 4787, January, 2007.

AJ12 Alvestrand, H. and Jesup, R., Congestion Control Requirements for Real
Time Media. (work in progress) March, 4, 2012. http://tools.ietf.

org/html/draft-jesup-rtp-congestion-reqs-00. [last accessed in
14.6.2012]

Alv12 Alvestrand, H., Overview: Real Time Protocols for Brower-based Ap-
plications. (work in progress), June, 2012. http://tools.ietf.org/

html/draft-ietf-rtcweb-overview-04. [last accessed in 19.8.2012]

APB09 Allman, M., Paxson, V. and Blanton, E., TCP congestion control. RFC
5681, September, 2009.

Bag11 Bagnulo, M., Threat Analysis for TCP Extensions for Multipath Oper-
ation with Multiple Addresses. RFC 6181, March, 2011.

BAW+12 Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M. and Nishida,
Y., A Conservative Loss Recovery Algorithm Based on Selective Ac-
knowledgment (SACK) for TCP. RFC 6675, August, 2012.

Bel10 Bellis, R., DNS Transport over TCP-Implementation Requirements.
RFC 5966, August, 2010.

BMN+04 Baugher, M., McGrew, D., Naslund, M., Carrara, E. and Norrman, K.,
The Secure Real-time Transport Protocol (SRTP). RFC 3711, March,
2004.

BPSK97 Balakrishnan, H., Padmanabhan, V., Seshan, S. and Katz, R., A com-
parison of mechanisms for improving TCP performance over wireless
links. Networking, IEEE/ACM Transactions on, 5,6(1997), pages 756–
769.

59

CMP12 Castillo, I., Millan, J. and Pascual, V., The Websocket Pro-
tocol as a Transport for the Session Initiation Protocol (SIP).
(work in progress), April 6, 2012. http://tools.ietf.org/html/

draft-ibc-sipcore-sip-websocket-02. [last accessed in 14.6.2012]

DH98 Deering, S. and Hinden, R., Internet Protocol, version 6 (IPv6) specifi-
cation. RFC 2460, December, 1998.

DR06 Dierks, T. and Rescorla, E., The Transport Layer Security (TLS) Pro-
tocol. RFC 4346, April, 2006.

Edd07 Eddy, W., TCP SYN Flooding Attacks and Common Mitigations. RFC
4987, August, 2007.

FK06 Floyd, S. and Kohler, E., Profile for Datagram Congestion Control Pro-
tocol (DCCP) congestion control ID 2: TCP-like congestion control.
RFC 4341, March, 2006.

FK09 Floyd, S. and Kohler, E., Profile for Datagram Congestion Control Pro-
tocol (DCCP) congestion control ID 4: TCP-friendly rate control for
small packets (TFRC-SP). RFC 5622, August, 2009.

FKP06 Floyd, S., Kohler, E. and Padhye, J., Profile for Datagram Congestion
Control Protocol (DCCP) congestion control ID 3: TCP-friendly rate
control (TFRC). RFC 4342, March, 2006.

HFGN12 Henderson, T., Floyd, S., Gurtov, A. and Nishida, Y., The NewReno
modification to TCP’s fast recovery algorithm. RFC 6582, April, 2012.

HFPW03 Handley, M., Floyd, S., Padhye, J. and Widmer, J., TCP friendly rate
control (TFRC): Protocol specification. RFC 3448, January, 2003.

HJP06 Handley, M., Jacobson, V. and Perkins, C., SDP: Session Description
Protocol. RFC 4566, July, 2006.

HL10 Hammer-Lahav, E., The OAuth 1.0 Protocol, RFC 5849, April, 2010.

Jac88 Jacobson, V., Congestion avoidance and control. ACM SIGCOMM Com-
puter Communication Review, volume 18. ACM, 1988, pages 314–329.

Jac90 Jacobson, V., Modified TCP congestion avoidance algorithm. Note sent
to end2end interest mailing list, April 30, 1990.

60

JB11 Jennings, C. and Bran, C., RTCWeb Non-media Data Transport Re-
quirements. (work in progress), July 4, 2011. http://tools.ietf.org/
html/draft-cbran-rtcweb-data-00. [last accessed in 14.6.2012]

JRUJ00 Jennings, C., Rosenberg, J., Uberti, J. and Jesup, R., RTCWeb Of-
fer/Answer Protocol (ROAP). (work in progress) October, 2000. http:
//tools.ietf.org/html/draft-jennings-rtcweb-signaling-01.
[last accessed in 28.6.2012]

JU12 Jennings, C. and Uberti, J., Javascript Session Establishment Protocol.
(work in progress) August 19, 2012. http://tools.ietf.org/html/

draft-uberti-rtcweb-jsep-02. [last accessed in 19.7.2012]

KA98 Kent, S. and Atkinson, R., Security Architecture for the Internet Proto-
col. RFC 2401, November, 1998.

KHF06 Kohler, E., Handley, M. and Floyd, F., Datagram Congestion Control
Protocol (DCCP). RFC 4340, March, 2006.

KS99 Karn, P. and Simpson, W., Photuris: Session-key Management Protocol.
RFC 2522, March, 1999.

LBSA+09 Ludwig, S., Beda, J., Saint-Andre, P., McQueen, R., Egan, S. and Hilde-
brand, J., Jingle. XMPP Standards Foundation, December, 2009.

LC12 Loreto, S. and Camarillo, G., Stream Control Transmission Protocol
(SCTP)-based Media Transport in the Session Description Protocol
(SDP). (work in progress) July, 31, 2012. http://tools.ietf.org/

html/draft-ietf-mmusic-sctp-sdp-00. [last accessed in 10.7.2012]

MMFR96 Mathis, M., Mahdavi, J., Floyd, S. and Romanow, A., TCP selective
acknowledgement options. RFC 2018, October, 1996.

MMR10 Mahy, R., Matthews, P. and Rosenberg, J., Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN). RFC 5766, April, 2010.

MNTW01 Miller, B., Nixon, T., Tai, C. and Wood, M., Home networking with
universal plug and play. Communications Magazine, IEEE, 39,12(2001),
pages 104–109.

61

NBBB98 Nichols, K., Black, D., Blake, S. and Baker, F., Definition of the dif-
ferentiated services field (DS field) in the IPv4 and IPv6 headers. RFC
2474, December, 1998

Per02 Perkins, C., Mobile IP. Communications Magazine, IEEE, 40,5(2002),
pages 66–82.

Pos80 Postel, J., User Datagram Protocol. RFC 768, August 28, 1980.

Pos81 Postel, J., Internet Protocol. RFC 791, September, 1981.

Pos97 Postel, J., Transmission Control Protocol. RFC 793, September, 1997.

Res12 Rescorla, E., Security Considerations for RTC-Web. (work
in progress) July, 16, 2012. http://tools.ietf.org/html/

draft-ietf-rtcweb-security-arch-03. [last accessed in 19.7.2012]

RKLR12 Rosenberg, J., Keranen, A., Lowekamp, B. and Roach, A., TCP Can-
didates with Interactive Connectivity Establishment (ICE). RFC 6544,
March, 2012.

RM06 Rescorla, E. and Modadugu, N., Datagram Transport Layer Security.
RFC 4347, April, 2006.

RMMW08 Rosenberg, J., Mahy, R., Matthews, P. and Wing, D., Session Traversal
Utilities for NAT (STUN). RFC 5389, October, 2008.

Ros10 Rosenberg, J., Interactive Connectivity Establishment (ICE): A proto-
col for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols. RFC 5245, April, 2010.

RR06 Recordon, D. and Reed, D., OpenID 2.0: a platform for user-centric
identity management. Proceedings of the second ACM workshop on Dig-
ital identity management. ACM, 2006, pages 11–16.

RS02 Rosenberg, J. and Schulzrinne, H., An offer/answer model with Session
Description Protocol (SDP). RFC 3264, June, 2002.

RSC+02 Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson,
J., Sparks, R., Handley, M. and Schooler, E., SIP: Session Initiation
Protocol. RFC 3261, June, 2002.

62

RWHM08 Rosenberg, J., Weinberger, J., Huitema, C. and Mahy, R., Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translator (NATs). RFC 3489, March, 2008

SA04 Saint-Andre, P., Extensible Messaging and Presence Protocol (XMPP):
Core. RFC 3920, October, 2004.

Sav06 Savola, P., MTU and Fragmentation Issues with In-the-Network Tun-
neling. RFC 4459, April, 2006.

SCFJ03 Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, V., RTP: A
Transport Protocol for Real-Time Applications. RFC 3550, July, 2003.

SE01 Srisuresh, P. and Egevang, K., Traditional IP Network Address Trans-
lator (traditional NAT). RFC 3022, January, 2001.

Sen02 Senie, D., Network Address Translator (NAT)-friendly Application De-
sign Guidelines. RFC 3235, January, 2002.

SH99 Srisuresh, P. and Holdrege, M., IP Network Address Translator (NAT)
Terminology and Considerations. RFC 2663, August, 1999

SKF08 Srisuresh, P., Kegel, D. and Ford, B., State of Peer-to-Peer (P2P)
communication across network address translators (NATs). RFC 5128,
March, 2008.

SLT12 Stewart, R., Lei, P. and Tuexen, M., Stream Control Transmission Pro-
tocol (SCTP) Stream Reconfiguration. RFC 6525, February, 2012.

SXM+07 Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Tay-
lor, T., Rytina, I., Kalla, M., Zhang, L. and Paxson, V., Stream Control
Transmission Protocol (SCTP). RFC 4960, September, 2007.

TLJ12a Tuexen, M., Loreto, S. and Jesup, R., RTCWeb Datagram Connec-
tion. (work in progress) March, 6, 2012. http://tools.ietf.org/html/
draft-ietf-rtcweb-data-channel-00. [last accessed in 14.6.2012]

TLJ12b Tuexen, M., Loreto, S. and Jesup, R., WebRTC Data Channel Pro-
tocol. (work in progress) June, 9, 2012. http://tools.ietf.org/

id/draft-jesup-rtcweb-data-protocol-01.txt. [last accessed in
29.7.2012]

63

TS11 Tuexen, M. and Stewart, R., UDP Encapsulation of SCTP packets.
(work in progress) October, 29, 2011. http://tools.ietf.org/html/

draft-ietf-tsvwg-sctp-udp-encaps-01. [last accessed in 14.7.2012]

TSLJ12 Tuexen, M., Stewart, R., Loreto, S. and Jesup, R., DTLS
Encapsulation of SCTP Packets for RTCWeb. (work in
progress), July, 16, 2012. http://tools.ietf.org/html/

draft-tuexen-tsvwg-sctp-dtls-encaps-01. [last accessed on
19.7.2012]

TSR11 Tuexen, M., Seggelmann, R. and Rescorla, E., Datagram Trans-
port Layer Security (DTLS) for Stream Control Transmission Protocol
(SCTP). RFC 6083, January, 2011.

Win07 Wing, D., Symmetric RTP/RTP Control Protocol (RTCP). RFC 4961,
July, 2007.

XSHT07 Xie, Q., Stewart, R., Holdrege, M. and Tuexen, M., SCTP NAT Traver-
sal Considerations. (work in progress), November, 17, 2007. https://

tools.ietf.org/html/draft-xie-behave-sctp-nat-cons-03. [last
accessed on 10.7.2012]

Appendix 1. Data Channel in Mozilla

A Checkout Mozilla Source Code

If you want to be familiar with Mozilla source code and Mozilla software architecture,
you can check the following link:

http://jollyrogerelakiri.blogspot.com/2011/05/conceptual-architecture-

of-firefox.html

B Download source code

- hg clone http://hg.mozilla.org/projects/alder

(wait...)

- cd alder

- hg update -r paris_demo –clean

Now, we have mozilla source code. To execute it from terminal, we need to create
our own .mozconfig file. The content will be like as follows:

Import the stock config for building the browser (Firefox)
. topsrcdir/browser/config/mozconfig

Define where build files should go. This places them in the directory
"obj-ff-dbg" under the current source directory
mk_add_options MOZ_OBJDIR=@TOPSRCDIR@/obj-ff-dbg
-s makes builds quieter by default
-j4 allows 4 tasks to run in parallel. Set the number to be the amount of
cores in your machine. 4 is a good number.
mk_add_options MOZ_MAKE_FLAGS="-s -j4"

Enable debug builds
ac_add_options –enable-debug

mk_add_options MOZ_OBJDIR=@TOPSRCDIR@/obj-@CONFIG_GUESS
@-debug

Turn off compiler optimization. This will make applications run slower,
will allow you to debug the applications under a debugger, like GDB.
ac_add_options –disable-optimize
CC=clang
CXX=clang++
#mk_add_options AUTOCONF=/usr/local/Cellar/autoconf213/2.13/bin/auto
conf213
mk_add_options MOZ_MAKE_FLAGS="-j2"
ac_add_options –enable-webrtc
ac_add_options –disable-crashreporter
#ac_add_options –disable-strip
ac_add_options –with-ccache=/usr/bin/ccache
ac_add_options –enable-debugger-info-modules

C Compilation

Run the following commands in a shell to install the needed tools:

• sudo apt-get build-dep firefox

• sudo apt-get install mercurial libasound2-dev libcurl4-openssl-

dev libnotify-dev libxt-dev libiw-dev mesa-common-dev autoconf-

2.13 yasm uuid

If you face any problem or want to know more information, you can read the in-
structions from the link https://developer.mozilla.org/En/Developer_Guide/

Build_Instructions.

Data Channel execution

• cd /alder/obj-i686-pc-linux-gnu-debug/dist/bin/

• We can test data channel between two browsers on the same machine, using
”./ firefox -profilemanager -no-remote”

N.B: If there is no web cam on the machine, then you need to copy a 176 × 144
(QCIF) raw YUV video to ”camera.yuv” in the directory that firefox is run from.
This will substitute for a camera feed for one of the browsers (both if the machine
has no web cam).

Data Channel simple demo

At this point, we have two instances of Mozilla browser. We used Node.js for web-
server. Now, we need to do the following:

In one browser, Browse to http://localhost:3000/datachan

URL will showhttp://host:3000/listen/A/B

Therefore, this browser will be listening for connections from other browsers.

Other browser should browse to http://host:3000/connect/B/A/my_ip_address

Note that N and M are reversed from what you see in the listener

If everything is going smooth, then ′Ringing′ will be heard. If one browser accept
the call, then these are ready for chatting over data channel.

Appendix 2. Data Channel Use Cases

D Use Cases for Unreliable Data Channels

Use case 1 A real-time game where position and object state information is deliv-
ered through unreliable data channels. At that moment, there may be reliable
data channels as well or inactive media channels or no media channels.

Use case 2 Non-critical state (e.g. Mute state) updates about a client in a video
chat or conference is sent via unreliable data channels.

E Use Cases for Reliable Data Channels

Use case 3 Critical state information such as control information of a real time
game would be send over reliable data channel. Such a game may not include
any media channel, or inactive media channels at any given time, or may only
be added due to in-game actions.

Use case 4 Exchange of files between clients while chatting. This could be data-
grams or streaming. File transfer may be of large numbers, sequential or
parallel (e.g. sharing a folder of images or a directory of files.)

Use case 5 Text chatting while ongoing audio or video conference among multiple
people.

Use case 6 Renegotiation of the set of media streams or data channels in the Peer-
Connection.

Use case 7 A browser may use data channels of a PeerConnection to exchange
HTTP/HTTPS requests and data in order to avoid local internet filtering or
monitoring.

Appendix 3. GStreamer Plugin Creation Step

Creation Step

The first step is to download a copy of gst-template git module that provides an
important tool and source code template for a basic GStreamer plugin. We can
check out the template module by the following command :

$ git clone git //anongit.freedesktop.orggstreamergst-template.git

This command will download a series of files and directories into gst-template. The
source code for the template can be found in gst-template/gst-plugin/directory. In
order to create the plugin, the following commands are required :

$ cd gst-template/gst-plugin/src

$../tools/make_element MyPlugin

The make-element tool will create two files: gstexamplefilter.c and gstexample-
filter.h. Then one needs to change the Makefile.am to use the new filenames. After
that the project can be built and installed using the following command:

$./autogen.sh

$ sudo make

$ sudo make install

The userland library for receiving messages in sctpsrc plugin can be used on two
modes: non-blocking and blocking mode. The mode is currently selected at compile
time. The default is mode non-blocking. For the blocking mode, the following
command is required:

./configure –disable-callback-api

make clean all

