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2. ABBREVIATIONS 
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MHC  Major histocompatibility complex 

MyD88  Myeloid differentiation primary response gene 88 

NaCl  Sodium chloride 

NF-κB  Nuclear factor κB 

NK  Natural killer 

NKT  Natural killer T  
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PRR  Pattern recognition receptor 
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VCAM  Vascular cell adhesion molecule  
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3. ABSTRACT 

Atopic dermatitis (AD) is a common pruritic skin disease with prevalence rates up to 20 % 

in children and 3 % in adults. Skin barrier defects combined with modified immune 

responses of the innate and adaptive immune system activate complex pathophysiological 

pathways that are involved in the development of this disease. AD is characterized by 

acute flare-ups as well as chronic eczematous pruritic skin lesions and dry skin. It is 

crucial to clarify the mechanisms underlying AD in order to devise mechanism-based 

therapeutic approaches. However, the immunological mechanisms participating in AD are 

far from being completely understood. This thesis investigates mechanisms believed to be 

involved in atopic skin inflammation by utilizing an AD-like experimental animal model 

as well as human patients. The AD-like mouse model was also used to examine the 

model's suitability for evaluating topical medications for treating AD. In addition, this 

thesis investigates some of the mechanisms in the so-called atopic march. 

 

Results highlight new molecular mechanisms involved in AD and the atopic march. 

Microbial superantigen, derived from Staphylococcus aureus exacerbates the allergen-

induced skin inflammation mostly by a mixed Th1/Th2 type inflammation in the presence 

of both CD8
+ 

and CD4
+ 

T cells and elevated IgE concentrations. This kind of severe 

inflammation, induced by allergen and superantigen in the murine skin, was declined with 

topical corticosteroid and calcineurin inhibitor. According to these results, this AD model 

is both reproducible and suitable for testing novel treatment options in AD. 

 

Finally, a recently characterized Th2-promoting cytokine, IL-33, and its receptor, ST2, 

were investigated in murine models of AD and allergic asthma as well as in human AD 

and in different cell models. The results obtained from ST2-/- mice suggest that the IL-

33/ST2 pathway can regulate innate immune responses and CD8
+
 T cell mediated 

responses in the skin and in lung tissue. However, ST2 appeared to be dispensable for the 

development of Th2 response in the sensitized skin, whereas it was the main inducer of 

Th2 cytokines in asthmatic airways. Together, these results obtained from the murine 

model of AD and from the skin of patients with AD reveal new molecular mechanisms 

involved in AD. 
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4. INTRODUCTION 

The allergic or atopic diseases can be clinically manifested as allergic rhinitis, allergic 

asthma, food allergies, urticaria, anaphylaxis and atopic dermatitis (AD). The term allergic 

implies not only that the patient is sensitized but also that the allergen contributes to the 

disease or symptom. A susceptibility to become IgE-sensitized to environmental allergens 

is essential for atopy, and both genetic and environmental factors contribute to this 

predisposition. 

 

AD is a common skin disease usually beginning in early childhood. It is characterized by 

immune dysregulation and epidermal barrier defects. The majority, 50-75 %, of patients 

with severe AD develop allergic asthma or rhinitis later in life (Spergel, 2010). Recent 

research in the field of allergic diseases, especially AD has focused on the epidermal 

barrier defects and on epithelial-derived cytokines, which might serve as an early link to 

promote the Th2 type inflammation in the skin. In addition, bacterial colonization may 

vary in atopic and non-atopic individuals, e.g. patients with AD suffer from increased 

colonization of Staphylococcal enterotoxin B (SEB)-producing strains of Staphylococcus 

aureus. The combination of epidermal barrier defects, bacterial colonization, and adaptive 

immune responses to normally harmless proteins as well as genetic predisposition are 

usually associated with the manifestation of AD. 

 

The recent demonstration of loss-of-function mutations in the filaggrin (FLG) gene has 

highlighted a novel major predisposing factor for AD (Morar et al., 2007; Palmer et al., 

2006; Smith et al., 2006; Weidinger et al., 2006). Thus, barrier defects may facilitate the 

penetration and sensitization to environmental allergens and microbes. Moreover, patients 

carrying variations of FLG gene and suffering from early onset and rather severe AD, 

display the highest risk to develop allergic asthma. This also supports the so-called atopic 

march, which is characterized by the progression of AD to asthma and allergic rhinitis 

later in life. 

 

Epithelial-derived cytokines, including interleukin (IL)-33, thymic stromal lymphopoietin 

(TSLP) and IL-25 are believed to have a critical role in the pathogenesis of AD and 
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allergic asthma. A recent genome-wide association study (GWAS) detected a genetic 

association of the genes encoding IL-33 and ST2 with asthma (Moffatt et al., 2010). 

Moreover, a genetic polymorphism within the ST2 gene region has been reported to carry 

a strong association with AD (Shimizu et al., 2005). 

 

The aim of this thesis was to investigate some of the triggering factors in AD and the  

immunological mechanisms related to AD and atopic march. The effects of S. aureus-

derived superantigen were investigated in an experimental model of AD. The current 

topical treatment options in AD are corticosteroids and calcineurin inhibitors. However, 

better topical medications are needed, and therefore in this thesis the murine model of AD 

elicited by repeated allergen and SEB-exposures was evaluated for its ability to evaluate 

new topical treatment options and their mechanisms. Finally, the expression profiles of IL-

33 and ST2 after external triggering factors were investigated in experimental AD and in 

human AD, and the functional role of ST2 was determined in the murine model of AD and 

in allergic asthma. 
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5. REVIEW OF THE LITERATURE 

5.1 Immunity 

The innate immune system is interposed between the external environment and the 

internal acquired immune system. The microorganisms that are encountered daily in the 

life of a normal healthy individual only occasionally evoke any observable disease. Most 

of the microbes such as bacteria, viruses, fungi and parasites are detected and destroyed 

within minutes to hours by defence mechanisms that are part of the innate immunity 

system. Should a pathogen be able to breach the defence line of innate immunity, then 

adaptive immunity is activated. Although non-specific innate immunity and antigen-

specific adaptive immunity are often considered as separate entities, there is extensive 

cross-talk between innate and adaptive immune responses. Their dual action is important 

in combating the diverse array of microorganisms targeting the host throughout his/her 

life. 

5.1.1 Innate immunity 

Innate immunity represents the first line of defence against many microorganisms and is 

essential for the control of common infections. The innate immune system senses 

evolutionary conserved structures present in microbes, which makes possible effective 

destruction of many millions of species of bacteria, fungi, parasites and viruses. The innate 

immune system acts principally within the barrier tissues (skin, gut and airways), where its 

major function is host defence against infection. The innate immune system can be divided 

into three important effector mechanisms that promote the rapid removal of microbes: the 

professional phagocytes, the complement system, and the antimicrobial peptides (AMPs) 

(Bardoel and Strijp, 2011). 

 

Cells of the innate immunity, phagocytes, granulocytes, innate immune lymphocytes and 

epithelial cells express germline-encoded pattern recognition receptors (PRRs) that detect 

pathogen-associated molecular patterns (PAMPs) (Akira et al., 2001; Janeway and 
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Medzhitov, 2002) or danger-associated molecular patterns (DAMPs)(Lotze et al., 2007; 

Matzinger, 2002; Rubartelli and Lotze, 2007). DAMPs are molecules released by host 

cells that are injured or produced by host cells during inflammatory or immune responses 

(Minnicozzi et al., 2011). Several families of PRRs have been described, including, Toll-

like receptors (TLRs) retinoic acid-inducible gene-1 (RIG-1)-like receptors (RLRs), 

nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and DNA and 

RNA receptors. The effective sensing of PAMPs rapidly triggers host immune responses 

via activation of signalling pathways that terminate in the induction of inflammatory 

responses and finally in the eradication of pathogens. 

 

Approximately 30 proteins in the blood form a proteolytic cascade called the complement 

system. This is activated either directly by pathogens or indirectly by pathogen-bound 

antibody triggering a cascade of reactions on the surface of the pathogen and which 

generate active components with many effector functions. Activation occurs via three 

separate pathways that differ in their mode of recognition, but all converge at one central 

step: the cleavage of complement component C3. The activation of C3 results in the 

deposition of C3b molecules on the microbial surface and this signifies the microbe for 

efficient removal by phagocytes (opsonization). Further downstream, the complement 

cascade C5 is split into C5a and C5b. C5a attracts phagocytes to the site of infection, and 

C5b is the first component of the complex, which can itself lyse certain gram-negative 

bacteria (Sjoberg et al., 2009). 

 

One primitive innate defence mechanism is gene-encoded AMPs. They are synthesized as 

precursors and processed by specific proteases into mature, active forms either before or 

after secretion. These molecules can directly recognize microbial structures and lyse the 

cell membrane of the micro-organism. There are many different AMPs, with a great 

variety of physical and chemical characteristics. Antimicrobial peptides protect mucosal 

and dry epithelial surfaces of all multicellular organisms and they are also found in 

insects, which lack adaptive immunity. More than 500 different AMPs have been 

discovered in organisms from insects to humans. Two major classes of antimicrobial 

peptides in mammals have been described: defensins and cathelicidins (Zasloff, 2002). 

Defensins and cathelicidins perform several functions. They preserve epithelia, as in the 
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case of skin. In other settings, such as in the moist airways, the gastrointestinal tract, and 

the urinary tract, they are also secreted into the epithelial surface, where they create a 

barrier that is chemically lethal to microbes. Certain AMPs can even promote the 

epithelial growth and angiogenesis and attract immature dendritic cells and T lymphocytes 

to the site of an infection. Recent observations indicate that altered production of AMPs in 

the skin maybe involved in the pathogenesis of psoriasis and atopic dermatitis: 

Cathelicidins and defensins are strongly induced in psoriatic skin in comparison to normal 

skin, whereas the induction of antimicrobial peptides is much lower in atopic dermatitis 

lesions (Gallo and Nakatsuji, 2011). 

 

The cells of the innate immune system arise from common myeloid progenitors and 

include macrophages, granulocytes, mast cells and dendritic cells. Moreover, epithelial 

cells and several types of innate lymphocytes, including γδT cells, natural killer (NK) and 

natural killer T (NKT) cells participate in innate immune responses (Minnicozzi et al., 

2011). Epithelial cells are non-immune cells which can support the function of the 

immune cells. They express PRRs and function not only as a barrier, but also as a 

regulator of innate and adaptive immune responses (Bulek et al., 2010). Macrophages 

reside in almost all tissues and represent the mature form of monocytes, which circulate in 

the blood and continually migrate into tissues in order to differentiate. They engulf and 

kill invading microbes and are therefore important in the first line of defence in innate 

immunity. In addition, macrophages are fully functional antigen-presenting cells capable 

of activating naïve T cells (Mosser and Edwards, 2008). Neutrophils are the most 

abundant circulating cells in innate immune responses. They can rapidly recognize and 

take up microbes by phagocytosis and they efficiently destroy them by transferring them 

first to intracellular vesicles where they encounter degradative enzymes and other 

antimicrobial substances (Nordenfelt and Tapper, 2011; Summers et al., 2010). 

Eosinophils and basophils are less abundant than neutrophils, but like neutrophils they 

have granules containing enzymes and toxic proteins. Eosinophils and basophils are 

thought to be important in the defence against parasites, which are too large to be ingested 

by macrophages or neutrophils. They also contribute to allergic inflammation (Bochner 

and Gleich, 2010). Mast cells are derived from hematopoietic stem cells but mature 

locally, often residing near to those surfaces exposed to pathogens and allergens, such as 
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mucosal tissues and the connective tissue with its surrounding blood vessels (Abraham 

and St John, 2010). Dendritic cells are considered to be professional antigen presenting 

cells (APCs), based on their capacity to trigger the differentiation of antigen-specific 

effector T cell from naive T cell and therefore form a link between innate and adaptive 

immunity (Shortman and Liu, 2002). 

5.1.2 Adaptive immunity 

Adaptive immunity depends upon lymphocytes, which provide long-lasting immunity 

after exposure to either a disease or to vaccination. The adaptive immune system of 

vertebrates adopts efficient mechanisms of somatic diversification to generate unlimited 

repertoires of structurally diverse antigen receptors that are clonally expressed by 

lymphocytes. Clonal selection of lymphocytes with diverse receptors followed by clonal 

deletion of those lymphocytes that are potentially self-reactive are the central principles of 

adaptive immunity. The other central characteristic of adaptive immunity is the antibody, 

which is the secreted form of the B-cell receptor. B cells can also express their antigen 

receptors on their cell surface. Antigen receptors of T cells are always cell-surface bound. 

5.1.2.1 Antigen presentation 

An adaptive immune response begins when a pathogen is ingested by an immature 

dendritic cell in the infected tissue. These tissue-resident dendritic cells migrate through 

the lymph to the regional lymph nodes (LNs) where they interact with circulating naïve 

lymphocytes. T cells that have left the thymus enter the bloodstream and circulate between 

the lymphoid organ and blood, until they encounter their specific antigens in peripheral 

lymphoid organs, where the adaptive immune response is initiated (Murphy, 2012).  

 

Dendritic cells are critical in the initiation of inflammatory responses. In addition to 

antigen uptake and presentation, these cells link the innate and adaptive immunity 

systems, cause T cell differentiation and stimulate other lymphocytes (Steinman, 2012). 

During migration to local lymphoid tissue, DCs mature into cells that are effective at 

presenting antigens and express co-stimulatory molecules. At least two main families of 
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DCs have been identified in the skin: The plasmacytoid DCs (pDCs) and myeloid DCs 

(mDCs) which are further divided into two main subpopulations, epidermal Langerhans 

cells (LCs) and inflammatory dendritic epidermal cells (IDECs). pDCs are mainly 

responsible for the defence against virus, whereas LCs are considered to play a major role 

in the homeostasis within the immune response. IDECs are believed to have a major role 

in the generation and maintenance of inflammation through their production of 

proinflammatory cytokines (Shortman and Naik, 2007). mDCs also express the high-

affinity receptor for IgE and therefore mediate inflammatory reactions in IgE-mediated 

disease conditions including AD. 

 

Peptides on the cell surface of APCs are presented to CD8
+
 T cells and CD4

+
 T cells by 

MHC class I and MHC class II molecules, respectively. MHC class I molecules are 

expressed by all nucleated cells and present protein fragments of cytosolic and nuclear 

origin. MHC class II molecules are primarily expressed by professional APCs, such as 

DCs, macrophages and B cells and they bind to peptides that are derived from exogenous 

proteins degraded in the endocytic pathway. A link, termed cross-presentation, exists 

between the two pathways. Cross-presentatition is essential for the initiation of immune 

responses to viruses that do not infect antigen-presenting cells (Neefjes et al., 2011). 

 

When naïve T cells encounter cognate peptide/MHCII molecules on activated DCs, they 

undergo clonal expansion and differentiation into effector T cells. These effector CD4
+
 T 

cells can differentiate into Th1 or Th2 cells that migrate to inflamed non-lymphoid sites of 

antigen deposition or infection and start to produce cytokines. The number of effector cells 

peaks about one week after the naïve cells first encounter the peptide/MHC. After 

reduction of the inflammation, about 90 % of the effector cells die, leaving a residual 

population of memory T cells (Taylor and Jenkins, 2011). The memory T cells that reside 

at barrier tissues, such as skin, gut and lung, provide the first line of defence against 

subsequent infection. Memory T cells can also be located in LNs, spleen, blood and other 

nonlymphoid tissues.  
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5.1.2.2 Lymphocytes 

All adaptive immune responses are mediated by lymphocytes, which bear variable cell 

surface receptors for antigen. There are two main classes of lymphocytes: thymus-derived 

T lymphocytes (T cells) and bone-marrow-derived B lymphocytes (B cells). 

5.1.2.2.1 T cells 

T cells develop in the thymus from common lymphoid progenitors originating from the 

bone marrow. Subsequent differentiation of the expanded pool of T cell progenitors or 

pro-T cells in the thymus involves an antigen-independent process in which a coordinated 

series of genomic rearrangements leads to the creation of functional genes encoding the α 

and β or γ and δ chains of the TCR. Gene-segment rearrangements are productive if they 

do not introduce stop codons and give rise to a gene encoding a full-length TCR protein. 

Productive rearrangement of two TCR genes leads to surface expression of αβ or γδ TCR. 

Two major T cell lineages arise: the minority population of γδ CD3
+
 T cells, which lack 

CD4 or CD8, and the majority population of the αβ T cell lineage, which develop from 

pre-T to double positive T cells expressing both CD4 and CD8. Further differentiation of 

these double-positive cells to single-positive T cells is regulated by both positive and 

negative selection events involving antigens and molecules of the MHC. Positive selection 

occurs when the TCR of double-positive T cells binds with low affinity to self-MHC. 

Double positive cells bearing a TCR, which does not bind to self-MHC, are eliminated. 

Conversely, negative selection is exerted on double-positive T cells, which bind with very 

high affinity to self-MHC/peptide, ensuring that autoreactive T cell precursors are not 

matured. Finally double-positive T cells that pass both positive and negative selection 

mature into CD8
+
 single-positive or CD4

+
 single-positive T cells (Bonilla and Oettgen, 

2010). 

 

Resting naïve CD8
+
 T cells differentiate into cytotoxic effector cells after encountering 

pathogen-loaded DC bearing the MHC class I molecules, in the LN. Instead of antigen-

rich macrophages, naïve CD8
+ 

T cells favour the DC population to deliver the first contact 

and the start of differentiation (Zhang and Bevan, 2011). A further interaction with DCs 

and CD8
+
 T cells occurs at the site of infection finally leading to protection of host by 
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killing the infected cell with minimal tissue damage. Proinflammatory cytokine IL-12 

plays a key role in the differentiation of CD8
+
 effector T cells. Several cytokines are 

important in the terminal differentiation of CD8
+ 

effector T cells through the induction of 

transcription factors. IL-2 signalling activates the transcriptional repressor Blimp-1 

expression, which co-operates with other transcription factors, such as T-bet, Eomes, Id1, 

Id2 and Id3 to promote CD8
+
 T cell effector differentiation and migration to the peripheral 

site (Zhang and Bevan, 2011). Other cytokines involved in CD8
+
 effector cell 

differentiation are IL-21 and IL-27. When effector CD8
+ 

T cells migrate to peripheral 

sites, they can mediate their effector function by producing cytokines IFNγ and TNFα. 

Recent data has demonstrated that also IL-10 can be secreted from CD8
+ 

T cells in a viral 

infection model. It is suggested that IL-10
+
CD8

+
 T cells are superior killers and produce 

normal to high amounts of granzyme B, IFNγ and TNFα. Therefore, in addition to killing 

infected cells, CD8
+
 T cells can also serve a regulatory role in preventing tissue injury by 

secreting the immunosuppressive cytokine, IL-10. 

 

CD4
+
 T cells recognize the peptides bound to MHC class II molecules and are divided into 

at least four major lineages: Th1, Th2, Th17 and regulatory T cells (Treg). Also Th22 cells 

have been described, but molecularly those are related to Th17 cells (Waisman, 2011). 

Transcripton factors are distinct in these CD4
+
 T cell populations and they determine the 

cells differentiation into T helper cells and Treg cell subsets. The Th2 cell pathway is 

linked to IL-4–STAT6 and GATA-3, whereas the Th1 cell pathway is linked to IFNα, β or 

γ–STAT1, IL-12–STAT4 and T-bet. The Th17 pathway is linked to TGFβ plus IL-6/IL-

21/IL-23–STAT3 and RORγt/RORα. STAT5 and Foxp3 act in regulatory T cells. 

Additional CD4
+
 T cell subsets, including Th9 and T-follicular helper (Tfh) cells have been 

described, although they remain less well characterized. Th9 and Tfh subsets have been 

recently linked to STAT6/PU.1 and STAT3/Bcl6, respectively (Balasubramani et al., 

2010) (Fig 1). 
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Figure 1  T helper subsets and their transcripton factors, differentiation and effector cytokines. 

 

Th2 cells are specialized for B cell activation and secrete B cell growth factors IL-4, IL-5 

and IL-13. Th2 cells are critical in the clearance of extracellular pathogens, such as 

bacteria and a variety of parasites, and are also involved in allergic reactions. The 

principal membrane-bound effector molecule expressed by Th2 cells is CD40 ligand, 

which binds to CD40 on the B cell and induces isotype switching (Murphy, 2012). Th1 

cells secrete IFNγ and TNFα and are specialized in their ability to activate macrophages 

that are infected or have ingested pathogens. Th17 cells produce IL-17, IL-21 and IL-22 

(Commins et al., 2010).  
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Recent findings in T cell research have revealed that T cells might be plastic. Th2 cells 

can start to produce IFNγ without losing their capacity to produce IL-4, this being 

consistent with the co-expression of GATA3 and T-bet, although their expression of 

GATA3 is lower than in "conventional" Th2 cells (Hegazy et al., 2010). Another two 

studies demonstrated that Th17 cells are highly plastic and tend to re-differentiate into Th1 

cells in vivo (Hirota et al., 2011; Kurschus et al., 2010). Different T cell subsets play a 

significant role in certain disease conditions. The numbers of Th2 and Th1 cells are 

markedly increased in many inflammatory diseases, such as AD and allergic asthma, 

whereas those of Th17 are increased in various autoimmune conditions and cancer (Wilke 

et al., 2011). In contrast, the absence of regulatory T cells causes severe systemic 

autoimmunity. 

 

5.1.2.2.2 B cells and immunoglobulins 

B cells arise from hemopoietic stem cells in the bone marrow, where they pass through 

several developmental stages and rearrangements of their heavy chain and light chain 

genes. When they reach the immature stage, B cells are ready to exit the bone marrow and 

complete their development to the mature stage. The genes encoding immunoglobulins 

(Igs) are assembled from segments in a manner entirely analogous to the process for TCR 

genes. Heavy chains are assembled from 4 segments (VH, D, JH and CH) and light chains 

from 3 segments (VL, JL and CL). There are 9 different Ig isotypes (IgM, IgD, IgG1-4, 

IgA1, IgA2 and IgE), and 2 light chain types (κ and λ). Immature B cells expressing IgM 

can interact with antigens. Those immature B cells that are strongly stimulated by antigen 

at this stage either die or are inactivated, thus removing self-reactive B cells. The 

surviving immature B cells migrate to periphery and mature when they express IgD as 

well as IgM. These mature B cells can now be activated if they encounter their specific 

foreign antigen in the peripheral lymphoid organ. 

 

Activated B cells proliferate and differentiate into antibody-secreting plasma cells and 

long-lived memory cells under the direction signals received from T cells and other cells, 

such as dendritic cells. Igs have two purposes; they serve as cell surface receptors for 
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antigen, permitting cell signalling and activation, and second they act as soluble effector 

molecules, which can individually bind to and neutralize antigens. B cells can change 

from the production of IgM and IgD to other isotypes, such as IgG, IgA and IgE, a process 

called class-switching. In class-swithing, a DNA sequence between VDJ unit and the 

genes encoding IgM and IgD is cut and ligated to a similar sequence in front of another Ig 

C-region gene encoding any of the subclasses of IgG, IgA or IgE. This process is partly 

under the control of cytokine production (Bonilla and Oettgen, 2010; Schroeder and 

Cavacini, 2010). 

 

IgM is the first Ig expressed during B cell development. IgM functions by opsonizing 

antigen for destruction and fixing complement. Circulating IgD is found at very low levels 

in the serum and its function is still unclear. The membrane bound form of IgD is 

expressed on the membranes of B cells when they leave the bone marrow and migrate to 

secondary lymhoid organs. IgG is the predominant isotype found in the body. Four IgG 

subclasses have been identified: IgG1, IgG2, IgG3 and IgG4 in human and IgG1, IgG2a, 

IgG2b and IgG3 in mouse. IgG efficiently opsonizes pathogens for engulfment by 

phagocytes and activates the complement system. IgA is a less potent opsonin and is the 

principal Ig detected in secretions. IgA operates mainly in epithelial surfaces, where 

complement and phagocytes are not normally present.  IL-4 and IL-13 promote switching 

to IgE. IgE is present only at very low levels in the blood or extracellular fluids, but is 

bound to high-affinity receptors on mast cells and basophils (Schroeder and Cavacini, 

2010). 

5.1.3 Cytokines 

Cytokines are small proteins (8-30 kD) that are secreted by various cells in the body. They 

can be divided according to cell subset from which they are secreted or by their chemical 

structure. Cytokines are usually released in response to activating stimulus and mediate 

inflammatory reactions through their specific receptors. One group of cytokines are 

interleukins, which are secreted by leukocytes and which are responsible for the 

communication among different leukocytes. The first interleukin, interleukin-1 (IL-1) was 

discovered in 1977 and the number of interleukins is continuously growing. To date more 
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than 40 cytokines have been designated as ILs. ILs are divided into their distinct family 

according to their sequence homology and receptor chain similarities or according to their 

functional properties (Akdis et al., 2011).  

 

Proinflammatory cytokines IL-1α, IL-1β, IL-6 and TNFα are mainly produced during the 

early stage of inflammatory reaction. Depending on the outcome of the inflammatory 

response and the cytokine-producing cell type, IL-12 and IL-18 can act either as 

proinflammatory or Th1 type cytokines. IL-1 and IL-18 belong to the same cytokine 

family and share structural similarities. However, the biological activity of IL-18 is more 

reminiscent of IL-12 than IL-1. IL-12 and IL-18 are potent inducers of IFNγ. The IL-18 

receptor is upregulated by IL-12 and thereby these two cytokines act in a synergistic 

manner to stimulate IFNγ. IL-12 is mainly derived from DCs, whereas IL-18 is expressed 

by a range of cells (Borish and Steinke, 2003). IL-1 is primarily produced by mononuclear 

phagocytic cells but is also synthesized by endothelial cells, keratinocytes and neutrophils. 

IL-1 has diverse potentiating effects on cell proliferation, differentiation, and on the 

function of many innate and specific immune cells. IL-1 activates T cells by enhancing the 

production of IL-2 and promoting the IL-2 receptor. Other cytokines which belong to the 

IL-1 family in additon to IL-1α and IL-1β are IL-18 and IL-33. IL-6 is part of the cytokine 

family that uses the common signal transducing component gp130 (CD130). Other 

members of this IL-6-like family are IL-11, IL-27 and IL-31 (Commins et al., 2010). IL-6 

is mainly produced by mononuclear cells similarly to IL-1, however it can also be 

synthesized by T and B cells, fibroblasts, endothelial cells and keratinocytes. IL-6 share 

many activities with IL-1, but is also involved in the differentiation of B cells into Ig-

secreting mature plasma cells. 

 

The TNF superfamily consists of e.g. TNFα, TNFβ, B cell activation factor (BAFF) and 

proliferation-inducing ligand (APRIL). TNFα mainly originates from mononuclear 

phagocytes, whereas TNFβ is primarily lymphocyte-derived (Beutler and Cerami, 1989). 

TNFα is also produced by neutrophils, lymphocytes, NK, endothelial cells and mast cells. 

TNFs can have direct cytotoxic effects on cancerous cells and they also interact with 

endothelial cells to help the egress of inflammatory cells to the site of inflammation: 

Specifically TNFα induces the intercellular adhesion molecule (ICAM) 1, vascular cell 
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adhesion molecule (VCAM) 1 and E-selectin. BAFF and APRIL are expressed in bone 

marrow nonlymphoid cells and in developing B cells. 

 

There is also a group of anti-inflammatory cytokines, including IL-1 receptor antagonist 

(IL-1ra), TGFβ and IL-10. IL-10 is primarily produced by regulatory T cells, monocytes 

and B cells (Del Prete et al., 1993). IL-10 can evoke downregulation of MHCII in APCs 

(Akdis and Akdis, 2009a) and it also inhibits the production of many proinflammatory 

cytokines and chemokines (de Waal Malefyt et al., 1991), and mediates allergen tolerance 

in allergen-specific immunotherapy (Akdis and Akdis, 2009b). TGFβ is produced by 

various cell types, including eosinophils, monocytes and regulatory T cells. It has a largely 

inhibitory effect on B cells and T cells e.g. it induces apoptosis and inhibits proliferation. 

In contrast to the anti-inflammatory influences TGFβ is central in the differentiation of 

Th17 and Th9 cells (Commins et al., 2010). 

 

CD4
+
 Th cells are divided into distinct subsets according to their cytokine profile, such as 

Th1, Th2, Th9, Th17, Th22 and T-follicular effector cells. Th1 cells, cytotoxic CD8
+
 T 

cells and B cells produce IFNγ. In addition, cells of the innate immunity (eg, NK cells, 

NKT cells and macrophages) can produce IFNγ. IFNγ is essential in the development of 

Th1 response and the isotype class-switching to IgG2a. High levels of IFNγ activate 

macrophages to kill microbes, promote cytotoxic activity of other cells and induce 

apoptosis of epithelial cells in the skin and mucosa. In addition, IFNγ increases the 

expresson of MHCI and MHCII molecules on APCs (Akdis et al., 2011). 

 

Th2 cells produce IL-4, IL-5, IL-9 and IL-13. These cytokines are crucial in the 

production of allergen specific IgE and play an important role in eosinophilia and mucus 

production. Th2 cytokines also mediate immune responses against helminth infections. 

Th2 cytokines are produced by Th2 cells, basophils, mast cells and eosinophils (Akdis et 

al., 2011). IL-4 is the major Th2 cytokine, which induces Th2 cell development. It also 

suppresses Th1 cell development and induces IgE class switching in B cells. Support for 

the major role of IL-4 as an inducer of Th2 development has been obtained by 

experiments conducted in IL-4 and IL-4Rα deficient mice: These animals suffer from 

defects in Th2 cell differentiation and have reduced serum concentrations of IgG1 and IgE 
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(Kuhn et al., 1991). IL-5 was originally described as an eosinophil and B cell growth 

factor (Milburn et al., 1993). IL-5 essential in eosinophil survival, activation, 

differentiation and adhesion (Lopez et al., 1988; Yamaguchi et al., 1988) and it is mainly 

produced by Th2 cells, eosinophils and mast cells (Akdis et al., 2011). It has been reported 

that IL-5 deficient mice are protected from eosinophilia, airway hyperreactivity to inhaled 

methacholine and lung damage (Foster et al., 1996). IL-13 was first described in 1989. 

This cytokine activates the same signal transduction pathway as IL-4 and also induces IgE 

production. It is produced by Th2 cells, basophils, eosinophils and NKT cells (Brown et 

al., 1989). T cells from IL-13 deficient mice produce less IL-4, IL-5 and IL-10 compared 

with wild-type (WT) T cells. Moreover, IL-13 deficient mice exhibit lower basal levels of 

serum IgE (McKenzie et al., 1998). Other Th2 cell-derived cytokines are IL-9, IL-25 and 

IL-31. 

5.1.3.1 Epithelial-derived, Th2- inducing cytokine IL-33 

IL-33 is a newly described cytokine which belongs to the IL-1 family. It acts as an inducer 

of Th2 type responses and is derived from cells of barrier tissues, including skin, lung, and 

gut. Many cell types, skin keratinocytes, endothelial cells, fibroblasts, smooth muscle cells 

and macrophages are known to produce IL-33, which is released by necrotic cells. IL-33 

binds to ST2-expressing cells, including Th2 cells, mast cells, eosinophils, macrophages, 

and DCs to produce proinflammatory or Th2 type cytokines, especially IL-5 and IL-13 

(Liew et al., 2010; Schmitz et al., 2005) (Fig 2.). However, IL-33 is not produced by Th2 

cells, and its signalling pathway is distinct from the classical Th2 cytokines. IL-33 signals 

through the membrane bound IL-33 specific receptor ST2 (also known as IL-1RL1, T1, 

DER4 and Fit-1) and the IL-1 receptor accessory protein IL-1RAcP, which serves as a 

shared co-receptor. Binding of IL-33 to its receptor complex recruits the adaptor molecule 

MyD88 and IL-1R-associated kinase IRAK. Activated receptor complex induces 

activation of signalling proteins, including transcription factor and the mitogen-activated 

protein kinase pathway. These two pathways (MAPK-dependent and NF-κB-dependent) 

may act synergistically or on their own to induce the gene expression of proinflammatory 

cytokines, e.g. IL-1β, IL-6 and TNFα or Th2 cytokines IL-5 and IL-13 (Liew et al., 2010). 

In addition to its cytokine function, IL-33 can act as a nuclear factor and interact with the 
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transcription factor NF-κB, and therefore it might also be able to dampen the 

inflammatory response (Ali et al., 2011). However, biological effects of nuclear IL-33 are 

unclear at present. 

 

 

 

 

 

 

 

 

 

     

 

  

 

 

 

 

 

 

 

 

   

 

Figure 2 IL-33-producing cells and ST2-expressing cell types. IL-33 binds to the receptor 

complex ST2/IL-1RAcP and promotes the production of Th2 cytokines. Soluble 

ST2(sST2) can bind IL-33, thus preventing the binding of IL-33 to its 

receptor.External and internal signals i.e. scratching, allergen, superantigen, virus or 

filaggrin mutation can induce IL-33 expression in keratinocytes.EC endothelial cell, 

KC keratinocyte, MΦ macrophage, MC mast cell, Eos eosinophil DC dendritic cell, 

Th2 T helper 2. 
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5.1.4 Chemokines 

Chemokines are a group of small (8-12 kD) cytokines which possess the ability to induce 

cell migration or chemotaxis. Generally, interleukins and chemokines co-operate in 

inflammatory reactions. Chemokine activity is regulated through binding to the 7-

transmembrane, G protein-coupled receptor superfamily. Traditionally, chemokines and 

their receptors are divided into four families (CXC, CC, C and CX3C) on the basis of the 

pattern of cysteine residues in the ligands; C representing cysteine and X/X3 representing 

one or three noncysteine amino acids. At present, more than 50 chemokines and 20 

chemokine receptors have been described. Many of the chemokine receptors can bind to 

more than one ligand. Chemokines can also be classified according to their functional 

properties. Inflammatory chemokines are expressed by circulating leukocytes or other 

inflammatory cells upon activation, whereas homeostatic chemokines are constitutively 

expressed (Allen et al., 2007). The expression of inducible chemokines is often triggered 

by the inflammatory cytokines, such as TNF, IFNγ, microbial products or trauma. By 

acting together, chemokines and other cytokines regulate both innate and adaptive 

immunity in responses to infection, tissue damage and other physiological abnormalities. 

Although chemotaxis is the main feature of chemokines, they also regulate T cell 

development and the trafficking of APCs to the lymphoid organ. Chemokine receptor 

CCR7 expression on the surface of DCs allows these cells to accumulate in the draining 

LNs and T cell areas of the LN (Mackay, 2001).  

 

The CC-chemokine family has been studied in Th2-associated allergic diseases. Th2 cells 

express CCR4, CCR8 and CCR10. The ligands for CCR4 are CCL17 and CCL22. CCL1 

and CCL8 are known ligands for CCR8, which has been shown to be critical in Th2 cell 

homing into allergen-sensitized skin in a mouse model of AD (Islam et al., 2011). Also 

another chemokine receptor plays an important role in skin-homing of Th2 cells. Skin-

derived chemokine, CCL27, is expressed in keratinocytes and attracts CCR10-expressing 

Th2 cells to the site of inflammation (Homey et al., 2002). In addition, CCL11, CCL24 

and CCL26 attract eosinophils through the chemokine receptor CCR3. The CXC-

chemokine family members, CXCL9, CXCL10 and CXCL11 are IFNγ-inducible 

chemokines which are involved in the recruitment of CXCR3-expressing Th1 cells. 
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5.2 Allergy 

The adaptive immune response is a crucial component of host defence against infection 

and it is essential for normal health. Adaptive immune responses are sometimes elicited by 

antigens not associated with infectious agents, and they can provoke an inflammatory 

disease. In some genetically susceptible individuals, exposure to an antigen disrupts the 

natural tolerance, leading to sensitization i.e. an allergic (IgE) immune response to the 

antigen (called allergen). When sensitized subjects are exposed to allergens clinical 

(allergic) symptoms may occur. The term allergy was introduced in 1906 by Viennese 

pediatrician Clemens von Pirquet and it comes from the Greek word allos, meaning 

changed or altered state, and the word ergon, meaning reaction or reactivity. Allergies are 

hypersensitivity reactions to specific substances called allergens, such as pollen, insects, 

drugs or food. 

 

Hypersensitivity reactions can be classified into four broad types. Type I hypersensitivity 

reactions are immediate-type allergic reactions mediated by IgE, whereas type II and type 

III hypersensitivity reactions are mediated by IgG and complement. Type IV 

hypersensitivity reactions are mediated by T cells i.e. Th1, Th2 or cytotoxic T cells. 

Allergic diseases are largely driven by IgE-dependent mechanisms, but many of the 

allergic diseases exhibit chronic features characteristic of Th2 cell-mediated type IV 

hypersensitivity (Murphy, 2012). 

 

The major allergic diseases include allergic rhinitis, allergic asthma, food allergies, 

urticaria, anaphylaxis and atopic dermatitis. The term allergic (or atopic) implies not only 

that the patient has become sensitized but also that an allergen is the reason for the 

sensitization and clinical symptom. Allergen-specific immune responses are the results of 

host adaptive immunity maintained by T and B cells. The inflammatory reactions 

encountered in the different allergic diseases, including allergic asthma, allergic rhinitis 

and atopic dermatitis share several characteristics. In these diseases, IgE-dependent 

activation of tissue mast cells and infiltration of eosinophils and activated CD4
+
 Th2 cells 

are characteristic features of the disease. Other inflammatory cells may also participate in 
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allergic inflammation, e.g. basophils, dendritic cells, and in the more severe forms of the 

disease, also neutrophils and CD8
+
 T cells may be involved (Barnes, 2011). 

 

Many features of allergic inflammation are similar to those encountered in the type of 

inflammation that result from immune responses to helminths and parasites. The main 

biological role of IgE is thought to be participation in adaptive immunity to parasitic 

worms, which are prevalent in the less developed countries. In industrialized countries, 

IgE-mediated allergic responses to environmental antigens predominate and are an 

important cause of disease. Today, almost half of the population in Europe and North 

America has become sensitized to one or more common environmental antigens (Murphy, 

2012). In addition, genetic factors have an important influence on whether atopy develops, 

and several genes have been identified to be associated with asthma and other allergic 

diseases. 

5.2.1 IgE and IgE-mediated allergic reactions 

 

The discovery of IgE occurred much later than the discovery of the other Ig subclasses. 

Praunitz and Kustner discovered a transferable tissue-sensing factor in the serum in 1921. 

This was the first clue to the existence of hypersensitivity reactions. Four decades later, in 

1967, this factor was identified as an Ig subclass IgE by Gunnar Johansson in Sweden and 

Kimishige and Teruko Ishizaka in the United States (Holgate, 1999). IgE is produced both 

by plasma cells in LNs draining the site of antigen exposure and by plasma cells at the site 

of allergic reactions, typically in mucosal tissue or the skin. 

 

Type I hypersensitivity reactions are allergic reactions attributable to the production of IgE 

against external antigens. IgE is mainly localized in tissues where it is, through high-

affinity receptors (FcεRI), tightly bound to the surface of mast cells, basophils, antigen-

presenting cells. Binding of antigen to IgE cross-links these receptors, triggering the 

release of mast cell mediators such as histamine, lipid mediators and cytokines. Low-

affinity receptors for IgE (FcεRII, known also as CD23) are expressed on B cells, 

monocytes and DCs (Murphy, 2012). 
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The IgE-mediated activation of mast cells orchestrates an inflammatory cascade that is 

amplified by the recruitment of several cell types including eosinophils, Th2 cells, 

basophils and B cells. The physiological importance of this reaction is a defence against 

parasite infection. However, in an allergic reaction, acute and chronic inflammatory 

reactions triggered by mast cells evoke many important pathophysiological consequences, 

such as increasing vascular permeability, contracting smooth muscle, amplifying Th2 

response, promoting the eosinophil maturation and activation, stimulating mucus 

production and attracting eosinophils, basophils and Th2 cells. These biological effects 

depend on the molecules being secreted by the mast cells. In allergic inflammation, also 

structural cells at the site of allergen exposure, such epithelial cells, fibroblasts, vascular 

cells and airway smooth muscle cells are important sources of inflammatory mediators 

(Barnes, 2011; Galli and Tsai, 2012; Murphy, 2012). 

 

The allergic inflammation can be divided into early events, called early phase reactions, 

which are mediated by short-lived agents such as histamine. Late phase reactions involve 

leukotrienes, cytokines, chemokines and the recruitment and activation of eosinophils, 

basophils and antigen specific T cells. Early-phase reactions are induced within seconds to 

minutes of the allergen challenge, whereas late-phase reactions occur after several hours 

(Barnes, 2011; Galli et al., 2008b). 

 

The early-phase reactions (type I hypersensitivity reactions) occurring within minutes of 

allergen exposure are mediated by transmitters secreted by tissue mast cells. In sensitized 

individuals, these mast cells already have allergen-specific IgE bound to their surface 

FcεRI. Mast cell degranulation begins within seconds of antigen binding, releasing an 

array of preformed and newly generated inflammatory mediators. The secretions of 

preformed mediators occur when the membrane of the cytoplasmic granules fuses with the 

plasma membrane of the mast cell in a process called degranulation. This exocytosis 

process releases the granule contents to the external environment. The compounds 

released include histamine, proteoglycans (heparin), proteases (tryptase), enzymes, growth 

factors, and cytokines (Galli et al., 2008a). The signs and symptoms of early phase 

reactions vary according to the site of the reaction and can include vasodilation, increased 

vascular permeability, constriction of bronchial smooth muscle and increased secretion of 
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mucus. Basophils can also mediate these early phase reaction since they also express the 

FcεRI. 

 

The late-phase reaction occurs between 3 and 9 hours after antigen challenge and is 

attributable to the continued synthesis and release of inflammatory mediators, which are 

more slowly than the preformed mediators by mast cells. These newly synthesized 

mediators are cytokines, chemokines and growth factors. Late phase reactions are 

coordinated in part by certain long-term effects of the mediators released by activated 

mast cells during early phase reactions and in part by antigen specific T cells. Late-phase 

reactions do not develop in all sensitized individuals and in some patients there may be no 

clear clinical separation between the end of the early phase and the onset of the late phase 

(Galli et al., 2008b). In the skin, Th2 type cells, and later also Th1 type cells, granulocytes 

(eosinophils, neutrophils and basophils) and monocytes become recruited during late-

phase reactions. While mast cells account for the early response to allergens in the skin 

and airways, it is not clear how important they are for the development of late phase 

responses and for the chronic allergic inflammation (Barnes, 2011). 

 

When the allergen exposure is continuous or repetitive, inflammation persists and cells of 

innate and adaptive immunity can be found in the tissues at the site of allergen challenge. 

A long-term allergen exposure can cause a chronic allergic inflammation, which is mostly 

a Th2 type IV hypersensitivity reaction (Galli et al., 2008b). These chronic reactions can 

be responsible for serious long-term diseases, such as chronic asthma and AD (eczema).  

 

The term, protein contact dermatitis (PCD), was first reported 1976 (Hjorth and Roed-

Petersen, 1976). PCD is caused by food proteins and natural rubber latex protein in food 

handlers and health care workers. The most frequent symptoms are chronic or recurrent 

eczema of the hands and forearms. Although the exact pathophysiological mechanism of 

PCD is not fully understood, the pathogenesis of PCD is considered to involve a 

combination of allergen-specific IgE-mediated type I hypersensitivity and delayed type IV 

allergic reactions (Janssens et al., 1995; Levin and Warshaw, 2008). 
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Th2 cells are important in orchestrating allergic inflammation. Th2 cells are recruited and 

activated at the sites of allergic inflammation and produce many cytokines e.g. IL-4, IL-5 

IL-9 and IL-13. This complex cytokine network is the foundation for the initiation of Th2 

type immune responses. Epithelial-derived cytokines TSLP, IL-25 and IL-33 are believed 

to be important for Th2-mediated allergic inflammation (Kinoshita et al., 2009; Smith, 

2010). Eosinophils are also present in allergen exposed tissue and circulation. They are 

granylocytic leukocytes that originate in bone marrow. When Th2 cells are activated and 

IL-5 produced, eosinophils are increased in the bone marrow and they are released into the 

circulation. From the circulation, CC chemokines, called eotaxins (CCL11, CCL24 and 

CCL26) attract eosinophils through the CCR3 chemokine receptor to the inflammatory 

site. Th2 cells can also express CCR3 and migrate toward eotaxins. Like eosinophils, also 

FcεRI-expressing basophils are recruited to the site of IgE-mediated allergic reactions. 

IgE-mediated allergen activation or cytokine activation leads to the release of histamine 

from basophilic granules. In addition, basophils can produce IL-4 and IL-13 (Barnes, 

2011; Galli et al., 2008b; Murphy, 2012). 

5.3 Atopic diseases 

A genetic predisposition to become IgE-sensitized to an environmental allergen is called 

atopy. Not all contacts with an allergen will lead to sensitization, and not all sensitizations 

will lead to a symptomatic allergic reaction. In addition to genetic factors, also 

environmental factors contribute to the tendency to become atopic. The skin is one of the 

largest organs affected by both external and internal factors. Many skin diseases including 

AD, contact dermatitis, urticaria and psoriasis are mediated by immunological responses 

originating from abnormalities in innate and adaptive immunity. 

 

AD is a complex disease characterized by dry and itchy skin, a cutaneous barrier defect, 

enhanced allergen priming, susceptibility to cutaneous bacterial colonization and infection 

and cutaneous inflammation driven by Th2 cells. In addition, it is often associated with 

FLG deficiency. 
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5.3.1 Atopic dermatitis 

5.3.1.1 Prevalence 

AD (atopic eczema) is one of the most common chronic inflammatory skin diseases with 

prevalence rates up to 20 % in children and 3 % in adults. High prevalence rates have been 

observed in a number of developing and already developed countries: over a million of 

children in 97 countries suffer from AD (Odhiambo et al., 2009; Williams et al., 2008). 

The prevalence varies extensively between countries from less than 2 % in Iran and China 

to around 20 % in Australia, England and Scandinavia. In children, the onset of AD occurs 

in 45 % of cases during the first 6 months of life, 60 % during the first year with 85 % 

being affected before the age of 5. Eczematous lesions often start during early infancy and 

childhood, but can also persist into or even start in adulthood (Leung and Bieber, 2003). 

5.3.1.2 Genetics 

AD is a highly heritable disease. The increased incidence of AD in children is associated 

with the prevalence of atopic disease in their parents; a positive parental history is the 

strongest risk factor for AD, with the incidence rate being doubled if AD is present in one 

parent, and tripled if both parents are affected (Bieber, 2010). In a large cohort study, the 

risk of a child having AD if one or both parents had AD was higher compared with the 

risk if one or both parents had asthma or allergic rhinitis (Dold et al., 1992). Mutations in 

the FLG gene are known to be a major risk factor for AD (Palmer et al., 2006) as well as 

for other atopic diseases. Furthermore, AD exhibits strong genetic linkage to chromosome 

1q21, which contains genes encoding FLG and other  keratinocyte structural proteins 

(Irvine et al., 2011). FLG is known to play an important role in skin hydration and it is 

essential for skin barrier function. However, FLG expression is reduced also in patients 

with AD who do not carry FLG mutations (Howell et al., 2007). It has been also 

demonstrated that Th2 type cytokines are able to downregulate FLG expresson (Howell et 

al., 2007). The epidermal differentiation complex contains several other families of genes 

encoding loricrin, involucrin and hornerin (Irvine et al., 2011). Since only one third of AD 

patients have been identified as FLG mutation carriers, also other genetic and 
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environmental co-factors are believed to act on skin barrier function. Genome-wide 

association studies (GWAS) have been used in an attempt to identify genes associated 

with AD with linkage being detected on chromosomes 1, 3, 4, 5, 11, 13, 15, 17, 18, 19 and 

20 (Barnes, 2010; Boguniewicz and Leung, 2011).  

 

Although more than 100 studies have reported an association of AD and a candidate gene, 

most of these were trials insufficiently powered, and suffered from heterogeneity in the 

AD phenotype making replication difficult. From these published studies, there are reports 

of 81 genes, of which 46 genes had at least one positive association study reported. Only 

13 genes (FLG, IL-4, IL-4RA, SPINK5 (serine protease inhibitor Kazal-type 5), CMA1 

(mast cell chymase), IL-13, RANTES, CD14, DEFB1 (defensin beta 1), GSTP1 

(glutathione S-transferase P1), IL-18, NOD1 (nucleotide-binding oligomerization domein 

1) and TIM1 (T cell immunoglobulin domein 1) of these 46 genes have been positively 

associated in two or more independent studies. Thus, FLG has been detected in the highest 

number of studies. Two major network groups were identified in the evaluation of these 

81 genes (Barnes, 2010). Genes involved in antigen presentation, cell-mediated and 

humoral immune responses, including CD14, GATA3, IL-4, IL-18, NOD1 and TLR2 are 

associated with AD. The other genes are BCL2A (B cell lymphoma gene 2a), BDNF 

(brain-derived neurotrophic factor), RANTES, CSF2 (colony-stimulating factor 2), 

GSTP1, IL5, IL12B (IL-12p40), IL12RB1 and SOCS3 (suppressor of cytokine signalling 

3), which are involved in cell signalling, cellular movement as well as in hematologic 

system development and function (Boguniewicz and Leung, 2011). 

 

GWAS have also revealed an association of a common variant on chromosome 11q13 

(Esparza-Gordillo et al., 2010). This same risk allele has been reported to be associated 

with Crohn's disease (Ellinghaus et al., 2012), suggesting that this genetic modification 

might be involved in epithelial inflammation and barrier dysfunction in general 

(Marenholz et al., 2011; O'Regan et al., 2010). Furthermore, one recent GWAS identified 

two new risk loci for AD in chromosome 11 (upstream of OVOL1, transcription factor 

OVO homologue-like 1), and in chromosome 19 (near ACTL9, actin like protein 9), 

which are near to genes known to have roles in epidermal proliferation and differentiation, 

thus suppporting the importance of abnormalities in skin barrier function in the 
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pathogenesis of AD. They also observed an association signal within the cytokine cluster 

5q31.1, which seemed to be composed of two distinct signals, one at IL13-RAD-50 (IL13-

DNA repair protein RAD-50) and the other at IL-4-KIF3A, (IL4-kinesin family member 

3A) (Paternoster et al., 2012). However, functional analyses will be needed to clarify the 

exact relevance of these genetic modifications in AD. 

5.3.1.3 External triggering factors 

Most of the AD patients have elevated concentrations of total and allergen specific IgE in 

their circulation, emphasizing the possible contribution of allergens in AD. High serum 

IgE levels correlate with the severity of AD. Moreover, the severity of AD is also 

positively correlated with the number of positive skin prick test responses and IgE levels 

(Flohr et al., 2004). The epidermis is not only a primary defence but also a sensor to the 

external environment. Defects in the skin barrier promote unobstructed entry to pathogens, 

allergens and other molecules. Stress, bacterial or viral infections, the exposure to 

aeroallergens or food allergens can aggravate or trigger the symptoms of AD (Bieber, 

2010; Boguniewicz and Leung, 2011; Novak and Leung, 2011; Wollenberg et al., 2011). 

 

Food allergens are important triggers of AD in children. Eczematous skin lesions can 

appear after ingestion of food as well as epicutaneous food application. AD and food 

allergy commonly co-exist, particularly in those individuals with early onset, severe and 

persistent AD. Approximately 40 % of children with AD have a food allergy (Sicherer and 

Sampson, 1999). In a mouse model, orally immunized mice antigen specific gut homing T 

cells could be reprogrammed to express skin-homing molecules. These T cells were then 

recruited into the skin in response to contact with food allergens placed on the skin 

(Oyoshi et al., 2011). This may well explain the flare-up of lesions following cutaneous 

contact with a food allergen in orally sensitized AD patients. 

 

Aeroallergen such as house dust-mite, animal dander, moulds and pollen can aggravate 

skin lesions through either inhalation or skin contact. Several groups have demonstrated 

that eczematous skin lesions can be induced by aeroallergens. Patch testing of 

aeroallergens in patients with AD was first reported in 1982 by Mitchell et al.(Mitchell et 

al., 1982). The house dust mites (HDMs) Dermatophagoides pteronyssinus (Der p) and 
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Dermatophagoides farinae (Der f) are major allergens in HDM-sensitized AD patients. 

HDM allergens possess high enzymatic activity which facititates their penetration through 

the impaired epidermal barrier in patients with AD. HDM allergens may act as irritants 

when they are in contact with AD skin, since some of those are serine and cysteine 

proteinases, which can activate proteinase-activated receptors (PARs). PAR-2 is expressed 

in the skin and respiratory epithelium and is believed to be involved in HDM allergy (Cho 

et al., 2012; Jacquet, 2011). 

 

An impaired skin barrier can also increase the susceptibility to the bacterial colonization 

by pathogenic bacteria. Lesional and nonlesional skin of patients with AD is highly 

colonized with Staphylococcus aureus and many (31-65 %) patients with AD are 

colonized with superantigen producing strains of S. aureus. In addition, other molecules 

released by S. aureus can contribute to the pathogenesis of AD. S. aureus can release 

fibronectin-binding protein (FBP), which has been demonstrated to be IgE-reactive 

requiring antigen presentation (Reginald et al., 2011). S. aureus colonization may be 

traced to a reduced production of AMPs in AD skin, or reduced S. epidermidis 

colonization, which is believed to be a nonpathogenic bacterium which can inhibit the 

growth of S. aureus in the skin (Iwase et al., 2010). The presence of natural moisturizing 

factor (NMF) in the stratum corneum has also been demonstrated to reduce the growth 

rates of S. aureus. In AD skin, the levels of NMF (urocanic acid and pyrrolidone 

carboxylic acid), are reduced partly as a consequence of the FLG mutation and perhaps 

secondarily enhance the growth of S. aureus (Novak and Leung, 2011). 

 

In addition to S. aureus, a skin colonizing yeast, Malassezia sympodialis, often is involved 

in the pathogenesis of the disease. Malassezia sympodialis can produce, express and 

release allergens to a greater extent when cultured at higher pH, thus its growth is 

favoured in the high pH of the skin of patients with AD (Selander et al., 2006). In a 

subgroup of AD patients, hyperreactivity to human protein is regarded as a trigger factor. 

Such autoreactivity to human proteins has been described for a repertoire of IgE-binding 

autoantigens that cross-react with environmental antigens, including fungal antigens. 

Recently, it was demonstrated that T cells of patients with AD could cross-react with 

thioredoxin derived from a lipophilic yeast, Malassezia sympodialis and human 
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thioredoxin. These T cells were CD4
+
, expressed cutaneous lymphocyte antigen (CLA) 

and secreted Th1, Th2, Th17 and Th22 cytokines (Balaji et al., 2011). 

 

In patients with AD, a genetic predisposition for skin barrier dysfunction and defects in 

innate and adaptive immune responses can lead to a higher frequency of bacterial and viral 

infections. Herpes simplex and Molluscum contagiosum are the most common virus 

infections in patients with AD (Wollenberg et al., 2011). Th2 responses in atopic 

dermatitis can lead indirectly to exacerbation of the condition by making the individual 

more susceptible to certain infections. It was recently demonstrated that the STAT6 gene 

could increase viral replication in the skin of patients with a history of eczema herpeticum 

(Howell et al., 2011). 

5.3.1.3.1 Staphylococcal enterotoxins 

Staphylococcal and streptococcal enterotoxins are a family of toxic proteins secreted by S. 

aureus and Streptococcus pyogenes. More than 20 different enterotoxins are known, with 

SEA and SEB being the best characterized. They are also regarded as superantigens as 

they act as potent T cell activators, i.e. they bind directly to MHCII on APC and are 

recognized by T cells without being processed into peptides by APCs normally required 

for antigen specific immune responses (Fig. 3). Staphylococcal enterotoxins cause food 

poisoning and toxic shock syndrome, but they can also modify the inflammatory reaction 

in AD. However, the role of viral superantigens in human disease is less clear. 

Staphylococcal enterotoxins produced by S. aureus (SEA, SEB, SEC, SED, SEE, SEG, 

SEH, SEI and SEJ) can aggravate the skin inflammation in AD by binding to MHCII and 

TCR ultimately leading to increased T cell stimulation by activating up to 20 % of T cells, 

whereas a typical conventional antigen activates less than 0.01 % of T cells (Sundberg et 

al., 2002). Moreover, previous research has demonstrated that a third receptor, the 

principal costimulatory molecule, CD28, might be also involved in binding of SEB (Arad 

et al., 2011). 

Bacteral superantigens elevate the number of T cells and increase the expression of Th2 

and Th1 type cytokines in AD skin, thus aggravating the skin inflammation. Superantigens 
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also have antigenic properties and superantigen-specific IgE mediates inflammatory 

reactions in AD skin. Therefore superantigens binding to IgE coupled to FcεRI on cell 

surface can activate FcεRI-bearing mast cells, basophils and DCs, which all play 

important roles in atopic skin inflammation (Fig 3). Moreover, the levels of specific IgE 

antibodies directed against staphylococcal superantigens correlate with the skin disease 

severity (Leung et al., 1993). 

 

 

 

 

 

 

 

 

 

Figure 3 Binding of conventional antigen and SEB to the MHCII/TCR complex and modulation 

of antigen-induced inflammatory reaction by SEB. 

5.3.1.4 Immunological mechanisms in AD skin 

 

AD patients suffer defects in barrier function and abnormalities in the innate immune 

responses, which can lead to a higher frequency of bacterial or viral infections 

(Wollenberg et al., 2011). The epidermis of AD patients is characterized by significant 
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barrier disruption, partly explained by loss-of-function mutations in the FLG gene, as well 

as the reduced FLG expression due to overexpression of Th2 type cytokines in the skin 

(Howell et al., 2007). Early events initiating atopic skin inflammation involve 

abnormalities in skin barrier function and mechanical trauma induced by scratching or 

irritation leading to increased susceptibility to allergic sensitization and microbial 

colonization (Boguniewicz and Leung, 2011). This results in the upregulation of 

proinflammatory cytokines and the production of so called pro-Th2 cytokines, including 

IL-33, TSLP and IL-25. These are barrier secreted cytokines which are known to trigger or 

amplify Th2 type response in the skin. In human and mouse studies, TSLP and IL-33 have 

been produced in the skin as a response to tape stripping (Dickel et al., 2010; Oyoshi et 

al., 2010), which disrupts the skin barrier. TSLP is one of the cytokines produced by 

keratinocytes and it is capable of enhancing the Th2 polarizing properties of DC. 

 

DCs are the most potent APCs in the skin, and these cells express a wide variety of 

receptors on their surfaces. They recognize microbial patterns, damage induced molecules 

and cytokines. When DCs are exposed to an allergen, these cells become reporters of the 

microenvironment and migrate to the draining LNs, where they activate naïve T cells. 

Circulating T cells which infiltrate into the skin express the cutaneous lymphocyte antigen 

(CLA), and many of these cells display a Th2 phenotype. These Th2 cells bind to E-

selectin, an adhesion molecule expressed by endothelial cells in inflamed tissue, and 

respond to the chemotactic gradients established by cytokines and chemokines. There is a 

crosstalk between endothelial cells and T cells in acute AD. In addition, other cutaneous 

cells, including mast cells and macrophages, interact with endothelial cells. 

 

Although CD4
+
 cells predominate over CD8

+
 cells in AD skin, there is also evidence that 

CD8
+
 cells can be involved in the pathogenesis of the disease. Th2 type cytokines, 

including IL-4, IL-5 and IL-13, mediate inflammatory reactions in the acute phase of AD. 

In addition to Th2 cells, Th2 type cytokines can originate from mast cells, eosinophils and 

basophils in eczematous skin lesions. During the more chronic phase, Th1 cytokine IFN  

starts to dominate over Th2 cytokines. Recent years have proved that in addition to Th2 

and Th1 dysbalance, skin barrier defects and activation of innate immune pathway are also 

critically involved in the pathogenesis of the disease. The numbers of pDCs which are the 
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primary defence cells against viral infections, are reduced in the skin of AD patients. This 

may partly explain why AD patients are more susceptible to viral infections and have 

decreased secretion of type I interferons (Bieber, 2010). Bacteral superantigens elevate the 

number of T cells and increase the expression of Th2 and Th1 type cytokines in AD skin, 

thus aggravating the skin inflammation. Inflammatory cells, including Th2 cell, mast cells 

and DCs representing critical cell subsets in AD, express ST2 receptor (also called T1 or 

IL-1RL1). ST2 is activated by its ligand IL-33, which is known to induce eosinophilia and 

Th2 type cytokines in mice.  

 

In recent years, regulatory T cells have been a focus of interest in allergy research. 

Regulatory T cells are able to suppress T cells through their interactions with effector T 

cells or APCs. In the absence of Foxp3, mice exhibit highly elevated serum IgE levels, 

eosinophilia and increased production of Th2 cytokines (Fyhrquist et al., 2012). It has 

been demonstrated that in vitro Foxp3 T cells lose their suppressive properties after 

stimulation with superantigen (Lin et al., 2011; Ou et al., 2004). 

5.3.1.5 Neuroimmunological factors 

Psychological stress is a well-established trigger and aggravator of AD (Morren et al., 

1994). Skin expresses many of the same neurotransmitters and neuropeptide receptors as 

the central nervous system and it is innervated by cutaneous sensory fibers. 

Corticotrophin-releasing hormone (CRH), serotonin, prolactin and substance P (SP) are 

expressed in the skin, mediating vasodilatation, oedema, itch and pain or sweat gland 

secretion. Dysregulation of these mediators both in the central nervous system and in the 

skin can contribute to the pathophysiology encountered in AD. Neuropeptides released in 

the skin may also mediate neurogenic inflammation, including mast cell degranulation 

(Arndt et al., 2008). Neuropeptides are also present within epidermal nerve fibers, existing 

in close association with epidermal LCs and mast cells, evidence of the intimate link 

between the immune system and the nervous system (Hosoi et al., 1993). 
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5.3.1.6 Treatment 

The current medications for AD are topical corticosteroids as the standard treatment and 

topical calcineurin inhibitors, such as tacrolimus or pimecrolimus as the second-line 

therapy. When topical treatment proves ineffective, phototherapy or systemic therapy with 

antibiotics, immunosuppressives or immunomodulatory agents can be considered. Current 

treatment options have side effects and are occasionally insufficient, thus there is a crucial 

need to develop novel therapies. 

The pathophysiology of AD is complex and regulated by a large number of genetic and 

environmental factors. However, the treatment of AD is mainly limited to symptomatic, 

unspecific anti-inflammatory or immunosuppressive treatment of the flare-ups and the 

disturbed skin barrier. Recently research has focused on the main trigger factors. It has 

become clearer that AD might be the outcome of very heterogenous and different aspects. 

Therefore, it has been proposed that the classification of subgroups of patients with AD 

would shift the treatment strategy toward more individualized, rationale-based therapy 

(Novak and Simon, 2011). 

 

Several pathways could be beneficial in the treatment of AD. Some of them have been 

already evaluated in clinical trials. Oral administration of vitamin D(3)-1,25-

dihydroxyvitamin has been reported to induce the cathelicidin production in the skin of 

patients with AD (Hata et al., 2008) and in cultured human keratinocytes (Schauber et al., 

2008). In addition, therapy with pimecrolimus enhances the expression of cathelicidin 

(Buchau et al., 2008). Therefore, in the subgroup of AD patients which have bacterial or 

viral infections, topical treatment with pimecrolimus and oral administration of vitamin 

D3 would represent a novel approach to compensate for the deficiency of AMPs in the 

skin of patients with AD. 

 

Specific immunotherapy (SIT) has been used for patients with allergic rhinitis or mild 

asthma. For many years, AD has been excluded from the SIT because of side effects and 

unwanted exacerbations of symptoms during the therapy. However, recent studies 

conducted with patients sensitized to HDMs or birch pollen allergens were promising i.e. 

there was a decrease in disease severity and a reduction in the concentrations of allergen 

specific IgE. Patients with AD are most often sensitized with more than one allergen and 
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most likely a combinations of immunomodulatory agents and SIT might be beneficial in 

the future (Bussmann et al., 2006; Darsow et al., 2011). 

 

Pruritus is a key symptom of AD causing sleeplessness and generally impairing the quality 

of life. Treatment of pruritus in AD is difficult and histamine receptor antagonists are of 

only very limited value. The discovery of the link between histamine/histamine receptor 

and IL-31/IL-31 receptor signalling may serve as a novel pathway to develop antipruritic 

therapy (Gutzmer et al., 2009; Kasraie et al., 2010; Novak and Simon, 2011; Sonkoly et 

al., 2006). 

 

A treatment approach to neutralize IgE in AD patients has confirmed that anti-IgE reduced 

the free IgE and the expression of FcεRI on the surface of blood and skin cells in AD. 

Furthermore, the number of DCs and IgE decreased in the skin. However, no significant 

improvement was detected in skin symptoms and pruritus (Heil et al., 2010). The 

depletion of B cells by anti-CD20 resulted in reductions of skin inflammation in all 

studied patients and the effect was sustained over 5 months in five of six patients (Simon 

et al., 2008). The depletion of B cells in the peripheral blood and to a lesser extent in the 

skin was followed by a reduction in the amounts of T cell derived cytokines, including IL-

5 and IL-13 in the skin. In contrast, allergen specific IgE levels were not affected by anti-

CD20 antibody (Simon et al., 2008). 

 

Potential new targets for therapeutic intervention include AMPs, restoration of barrier 

function, antistaphylococcal toxin strategies, Th2 cytokine inhibitors, and modulation of 

pruritus at the neuromediator level. 

5.3.2 The Atopic march 

The first clinical manifestation of atopy is generally considered to be AD: this is the start 

of the atopic march. The atopic march is characterized by the progression of atopic 

dermatitis to asthma and allergic rhinitis later in life. Indeed, more than 50 % of young 

children with severe AD will develop asthma and approximately 75 % will develop 

allergic rhinitis (Spergel, 2010). There is environmental and genetic evidence to suggest 
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that a defect in epithelial barrier integrity may contribute to the onset of AD and the 

progression of the atopic march. 

5.3.3 Allergic asthma 

Asthma is an inflammatory disorder of the airways that have acquired a hyperresponsive 

profile leading to variable airflow obstruction either spontaneously or in response to 

exogenous stimuli. The airway inflammation in asthma is a multicellular process 

involving eosinophils, neutrophils, CD4
+ 

T cells, mast cells and basophils. Allergic 

asthma, in which inflammatory reactions and airway obstruction are triggered by allergen 

exposure in atopic individuals, is the most widely investigated form of asthma. 

 

Asthma is a syndrome characterized by intermittent attacks, breathlessness, wheezing and 

cough. Inflammation in the lungs results in structural changes in the airway including 

epithelial mucus metaplasia, smooth muscle hypertrophy and enhanced subepithelial 

matrix glycoproteins. Childhood asthma is often associated with other allergic disorders.  

At present, 40 % of the Western population is atopic and 7 % of these individuals express 

their atopy in the form of asthma indicating that only some of the atopic patients develop 

asthma and others manifest the atopy in other ways such as rhinitis, food allergies or AD 

(Pearce et al., 1999). Allergic asthma is driven by Th2 cells producing IL-4, IL-5 and IL-

13. In lung tissue, effector T cells augment the survival of eosinophils through the 

secretion of IL-5. Th2-secreted cytokine IL-9 is involved in the recruitment, proliferation 

and differentiation of mast cells, while IL-13 induces airway hyperreactivity, goblet cell 

metaplasia and mucin production. 

 

Activated Th2 cells induce the IgE class-switching in B cells which in turn can activate 

the mast cells, eosinophils and basophils present in the airways. In addition to classical 

DC mediated activation of naïve T cells into Th2 cells, current knowledge supports the 

critical role of airway epithelial derived cytokines in the initiation of the allergic response 

(Locksley, 2010). TSLP mainly acts via DCs, whereas IL-33 and IL-25 are able to directly 

activate ST2-bearing mast cells, basophils and the newly characterized non-T/non-B cells 
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called innate lymphoid cells or nuocytes through their receptors ST2 and IL-25R 

(Locksley, 2010).  

5.4 Experimental models of atopic diseases 

5.4.1 Animal models of AD 

Several mouse models of AD have been developed in attempts to better understand the 

pathophysiology of AD. Those models can be divided into three groups: ezcema induced 

by epicutaneous allergen sensitization, transgenic mice overexpressing or lacking selective 

molecules and mice that spontaneously develop AD-like skin lesions (Jin et al., 2009). 

 

A mouse model of AD induced by repeated epicutaneous ovalbumin (OVA) sensitization 

onto tape-stripped skin was first introduced by Spergel et al. in 1998 (Spergel et al., 1998). 

Epicutaneous OVA-sensitization evokes epidermal and dermal thickening of the skin, 

infiltration of CD4
+
 T cells and eosinophils and increased expression of Th2 cytokines IL-

4, IL-5 and IL-13.  

 

Nc/Nga mice were the first mouse model of AD. These mice spontaneously develop AD-

like lesions when kept under conventional conditions, particularly when the mice are 

infected with mites. However, the disadvantage of this inbred mouse strain is that the 

genetic defect remains unknown. Similar mouse strains are NOA mice, DS-Ng and DS-Nh 

mice which develop spontaneous skin inflammation under conventional conditions(Jin et 

al., 2009). More recently, a 1-bp deletion mutation, analogous to common human FLG 

mutations within the mouse Flg gene, in this spontaneous mouse mutant, flaky tail was 

described. These mice provide new insights into the relationship of human FLG mutations 

and AD pathogenesis (Fallon et al., 2009). 

 

Several genetically modified knockout or transgenic mice have also been used to 

investigate the mechanisms involved in AD. Mice overexpressing a specific cytokine 

including IL-4, IL-31, TSLP and IL-18 have been used as a model for AD. Several 
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knockout mice strains such as RelB and cathepsin E knockout mice have been used as 

tools to investigate the pathogenesis of AD (Jin et al., 2009). Recently it was reported that 

the epidermal ADAM17 (a disintergrin and metalloproteinase domein 17) deficiency 

causes an AD-like inflammation in mice (Murthy et al., 2012). 

5.4.2 Animal models of allergic asthma 

Mice are the most common species being used in animal models of asthma. In the 

majority of studies, mice are intraperitoneally sensitized to allergen with alum as an 

adjuvant and then challenged with the allergen via their airways. In the acute model, mice 

are sensitized for one to nine days, whereas in the more chronic model, the animals are 

sensitized for five to nine weeks (Takeda and Gelfand, 2009). In another asthma model, 

mice are sensitized epicutaneously or intracutaneously without external adjuvant and 

challenged via the airways (Lehto et al., 2005). In both models, mice exhibit airway 

hyperreactivity to inhaled methacholine, local Th2-dominated lung inflammation, tissue 

eosinophilia, mucus hyperproduction and a systemic IgE response. 
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6. AIMS OF THE STUDY 

Although novel insights into the complex pathophysiology of AD have been gained in 

recent years, several of the external triggering factors and the immunological mechanisms 

participating in atopic sensitization and allergic asthma remain undefined. Moreover, there 

is no standardized experimental model with which to investigate new topical therapies in 

AD. 

  

The specific aims of this thesis are: 

 

1. To study whether superantigen can modify the allergen-induced skin inflammation. 

 

2. To investigate the suitability of an experimental AD model to study the efficacies of 

topical drugs. 

 

3. To explore expression profiles and modulation of IL-33 and ST2 in AD. 

 

4. To clarify the functional role of ST2 in the murine model of AD and in an 

experimental model of allergic asthma. 
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7. MATERIALS AND METHODS 

7.1 Mice 

The role of SEB in the murine model of AD (I) was investigated in female Balb/c mice 

obtained from Taconic M&B (Ry, Denmark) and used at the age of 6 weeks. To examine 

the effects of topical drugs in an experimental AD model (II) 6 week old female Balb/c 

mice were obtained from Scanbur A/S (Karlslunde, Denmark). In the IL-33 and ST2 

expression studies with different triggering factors in AD (III) female Balb/c mice from 

Scanbur A/S and filaggrin-deficient (flaky tail ft/ft, ma/ma; double homozygous for the 

flaky tail and matted mutations) mice from Jackson Laboratory (Bar Harbor, ME) were 

used. ST2-/- mice in 129 background (IV) were purchased from EMMA (the European 

Mouse Mutant Archive) and bred and genotyped at the Finnish Institute of Occupational 

Health. WT littermates were used as controls. Animal studies were approved by the State 

Provincial Office of Southern Finland. 

7.2 Patients (III) 

AD patients were identified according to the criteria by Hanifin and Rajka (Hanifin and 

Rajka, 1980). Punch biopsies (6 mm) were taken from either nonlesional or lesional skin 

of 15 patients with chronic AD and from the skin of 13 healthy volunteers. AD patients 

with prick test-confirmed HDM allergy underwent atopy patch tests with HDM. All 

patients had been without topical medication for 1 week and without systemic medication 

for 4 weeks before the skin biopsies were taken. Patient studies were approved by the 

ethics committee of the Hospital District of Helsinki and Uusimaa. 
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7.2.1 Patch tests 

Atopy patch tests were performed with HDM antigen containing a mix of D. farinae and 

D. pteronyssinus species (Chemotechnique Diagnostics, Malmö, Sweden). Skin specimens 

were obtained before and 2, 6, and 48 h after HDM-exposure. In the staphylococcal 

enterotoxin B (SEB) patch tests, SEB (Sigma-Aldrich, St. Louis, MO) at 0.226 µg/µl in 

0.9% NaCl solution was applied in Finn chambers (Epitest, Hyrylä, Finland) on healthy-

appearing dorsal skin of AD patients. Skin specimens were obtained before and at 2, 6, 

and 24 h after SEB-exposure. 

7.3 Cells and stimulations (I, III) 

Mouse skin-draining (axillar) LN cells were collected from AD mice (I) after the 

sensitization. Cell suspensions of pooled (4 mice per group) LN cells were prepared in 

RPMI 1640 medium with Glutamax-I (Invitrogen Life Techologies) supplemented with 5 

% FBS, 1 mM sodium pyruvate, 0.05 mM 2-ME, 100 U/ml penicillin, and 100 µg/ml 

streptomycin. The cells were cultured in the medium at 5 x 10
6
 per ml in 24-well plates in 

the presence of SEB (1 µg/ml) or OVA (50 µg/ml). The cell culture medium was collected 

after 6 hours of culture for protein determination (I). 

 

Primary human dermal fibroblasts (III) isolated from adult skin were purchased from 

Gibco (Paisley, UK) and cultured in Medium 106 according to the manufacturer’s 

instructions (Gibco).  

 

Human immortalized HaCaT keratinocytes (III) were obtained from ATCC (Boras, 

Sweden) and cultured in DMEM (Lonza, Verviers, Belgium) containing 10% FBS, 2mM 

Ultraglutamine1 (Lonza), and antibiotics.  

 

Human primary macrophages (III) were obtained from leukocyte-rich buffy coats from 

healthy blood donors (Finnish Red Cross Blood Transfusion Service, Helsinki, Finland). 

Peripheral blood mononuclear cells (PBMCs) were extracted by density gradient 

centrifugation. Monocytes were differentiated into macrophages by maintenance in 
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macrophage serum-free media supplemented with granulocyte-macrophage colony-

stimulating factor (GM-CSF) in the presence of antibiotics, as described previously 

(Sareneva et al., 1998).  

 

HUVECs (ATCC CRL 1730) were cultured in RPMI 1640 and supplemented with 10 % 

FBS, 2mM Ultraglutamine1 (Lonza) and antibiotics. Cultured cells were stimulated for 2 

and 18 hours (III). 

 

Fibroblasts, HaCaT keratinocytes, macrophages and HUVECs  were stimulated with TNF-

α (20 ng/ml, Biosource International, Camarillo, CA, USA), IL-4 (20 ng/ml, Immuno 

Tools), IFN-γ (500 IU/ml, Immuno Tools, Friesoythe, Germany), with the combination of 

TNF-α and IL-4 and with the combination of TNF-α and IFN-γ for 2, 6 and 18 hours. In 

subsequent studies, human dermal fibroblasts were stimulated with the combination of 

TNF-α and IFN-γ for 18 hours, after which the cells were transfected with a mimetic of 

dsRNA polyinosic-polycytidylic acid [poly(I:C)], 10 mg/ml using Lipofectamine 2000 

transfection reagent (Invitrogen Life Technologies, Karlsruhe, Germany) for 3 and 6 hours 

according to the manufacturer's instructions (III). 

 

Murine mast cells (III) were obtained from bone marrow cells of C57BL/6 mice and 

cultured and identified as previously described (Gombert et al., 2005). Bone marrow cells 

were cultured for 4 wk in 70 % RPMI1640 Glutamax I medium supplemented with 10 % 

FBS, 25 mM Hepes, 100 U/ml penicillin, 100 µg/ml streptomycin, 0.1 mM nonessential 

amino acids (Invitrogen Life Technologies), 25 µM 2-ME (Sigma-Aldrich), and 30 % 

WEHI-3B medium as a source of IL-3. After 2 wk of culture, murine stem cell factor was 

added. The cells were identified as mast cells by May-Grünwald–Giemsa staining and by 

flow cytometric analysis of Kit (>99% of c-kit
+
 cells) and IgE receptor (89% of the cells 

positive) expression. Mast cells were incubated with 10 µg of anti-DNP IgE (Sigma-

Aldrich) in 2 ml of culture medium for 2 h on ice. The plates were centrifuged, the 

supernatant was discarded, and the cells resuspended in 2 ml of medium with 200 ng of 

DNP-human serum albumin (Sigma-Aldrich). The cells were incubated for 6 hours. 
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7.4 Murine models of allergic diseases 

7.4.1 Murine model of AD and sensitization 

The back of the mice was shaved with an electronic razor and tape-stripped by adhesive 

tape to introduce standardized skin injury. Stripping included adhering a piece of tape to 

the shaved skin four times, after which it was removed against the direction of the hair. 

The gauze was secured to the shaved skin with transparent adhesive tape (Tegaderm; 

Owens and Minor) for 1 wk (first sensitization week). Two weeks later (second 

sensitization week), mice were again tape-stripped, and an identical patch was reapplied to 

the same skin site. The last epicutaneous sensitization (third sensitization week) was 

similarly given 2 wk later. Mice were given a total of three 1-wk patch exposures, 

separated from each other by 2-wk intervals, i.e. total duration was 7 wk. One hundred 

micrograms of OVA (grade V; Sigma-Aldrich) in 100 µl of PBS was used for 

epicutaneous sensitization. PBS was used as a control. In experiments I, II and III mice 

were epicutaneously sensitized for 7 weeks (3 sensitization weeks), whereas in experiment 

IV mice were sensitized for 4 weeks (2 sensitization weeks). 

 

In SEB study (I), mice were epicutaneously treated with OVA (OVA group), SEB (SEB 

group), combination of OVA and SEB (OVA/SEB group), or PBS. Two different amounts 

of SEB (Sigma-Aldrich), 0.5 and 5 µg, were topically applied to a 1 x 1-cm patch of 

sterile gauze alone (in 100 µl of PBS) or with OVA (Fig 4). 
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Tape-stripping and 100µl of PBS, OVA, SEB or OVA/SEB

1st sensitization 2nd sensitization 3rd sensitization
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Sample collection

50Day

2 wk 2 wk
 

 

Figure 4 Experimental AD-model with epicutaneous OVA and SEB exposures. Mice were 

tape-stripped and epicutaneously sensitized with OVA, SEB, OVA/SEB and PBS. 

100µg of OVA, and 0.5 µg or 5 µg of SEB was used in a patch. 

 

In the second AD-experiment (II), mice were epicutaneously sensitized with OVA/SEB in 

the first and in the second sensitization weeks. During the third sensitization week, drugs 

were applied to the skin together with the OVA/SEB-mixture in 75% acetone/PBS-

solution. The drug concentrations were as follows: betamethasone-17-valerate (Sigma-

Aldrich) 15 μg/100 μl, tacrolimus (FK-506, Sigma-Aldrich Co) 100 μg/100 μl and 

cipamfylline 100 µg/100 µl. PBS was used as a vehicle during the first and second 

sensitization week and 75% acetone in PBS during the third sensitization/treatment week 

(Fig 5). 
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Day

Tape-stripping and 100µl of PBS or OVA/SEB

1st sensitization 2nd sensitization 3rd sensitization

1 4 22 25 43 46 49

Sample collection

50

2 wk 2 wk

Corticosteroid, 

tacrolimus or 

cipamfylline
 

 

Figure 5 Experimental AD-model with one-week treatment period with topical drugs. Mice 

were epicutaneously sensitized with OVA/SEB for three weeks. During the third 

sensitization week, corticosteroid, tacrolimus or cipamfylline was included in a patch 

containing OVA/SEB or PBS. 

 

To investigate IL-33 and ST2 expression profiles in AD skin after different triggering 

factors (III), mice were sensitized with OVA and PBS and samples were collected after 

the first and third sensitization weeks. IL-33 and ST2 mRNA expressions were also 

studied after epicutaneous SEB-exposure. SEB was dosed at 0.5 and 5 g /patch. 

Furthermore, IL-33 and ST2 expressions were also studied in OVA/SEB-exposed skin 

after topical betamethasone-17-valerate (15 µg) and tacrolimus (100 µg) treatment. In 

these studies, 2.5 µg of SEB was used together with 100 µg of OVA in a patch. 

 

In subsequent studies the functional role of ST2 was investigated with ST2-/- mice and 

WT littermates (IV). Mice were epicutaneously sensitized with OVA/SEB solution. OVA 

and SEB were dosed at 100 µg and 2.5 μg in a patch, respectively. 

7.4.2 Murine model of allergic asthma (IV) 

To produce allergen induced airway inflammation (IV), epicutaneously sensitized ST2-/- 

and WT mice were rested for one week after the second sensitization week and mice were 

intranasally challenged with 50 µl of PBS (controls) or with 50 µg of OVA diluted in 50 

µl of PBS for three days (Fig 6). 
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Tape-stripping and 100µl of PBS or OVA/SEB

1st sensitization 2nd sensitization

1 4 22 25 35 36

Sample collection

38

2 wk

PBS or OVA i.n.

1 wk

37Day

 

Figure 6 Murine model of asthma. ST2-/- mice were epicutaneously sensitized with OVA/SEB 

and after one-week resting period, mice received three intranasal OVA-challenges. 

7.5 Sample collection  

 

Mice were killed by isoflurane overdose 24 h after the last sensitization. Blood samples 

from the hepatic vein were taken for antibody analysis and skin biopsies from treated skin 

areas for RNA isolation and histology. In the asthma model, lung samples were collected 

for RNA isolation and for histological analysis. In the collection of bronchoalveolar 

lavage (BAL) fluids, the trachea
 
was surgically exposed, cannulated with a syringe, and 

flushed with 0.8 ml of PBS. Human skin biopsies were collected for RNA isolation and 

for histological analysis. 

7.6 RT-PCR 

Eurozol (EuroClone, Siziano, Italy) or Trizol (Invitrogen Life Technologies) were used to 

isolate RNA from skin biopsies or from cultured cells. The RNA content was measured by 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE). 

cDNA was synthesized from 0.5 μg of total RNA in 25 μl reaction mixture with High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). PCR 

primers and probes were obtained from Applied Biosystems and quantitative real-time 

PCR was performed with the 7500 Fast Real-Time PCR System and SDS Software v.1.4.0 

(Applied Biosystems). The gene expression between different samples was normalized 

with endogenous 18S rRNA, and the target gene expression was calculated by the 

comparative CT method according to the instructions of Applied Biosystems. 
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7.7 Histology and Immunohistochemistry 

Skin and lung biopsies were fixed in 10% buffered formalin and embedded in paraffin. 

Four µm sections from skin and lung specimens were cut and stained with haematoxylin 

and eosin (H&E). Skin sections were stained with o-toluidine blue for mast cell counting 

(I, II, IV), and lung sections with periodic
 
acid-Schiff (PAS) solution (IV) and examined 

under light microscopy (Leica DM 4000B, Wetzlar, Germany). BAL cell differentials 

were determined
 
on slide preparations stained with May-Grünwald-Giemsa (IV). 

 

For immunohistochemistry, mouse skin or lung specimens were embedded in Tissue-Tek 

oxacalcitriol compound (Sakura Finetek Europe B.V., Zoeterwoude, The Netherlands) and 

quick frozen on dry ice. Then 5-µm cryostat sections from
 
the skin and lung were 

prepared, air dried, fixed in acetone for 5 minutes,
 
and stored at –20°C. Primary anti-

mouse monoclonal antibodies were obtained from BD PharMingen (San Diego, CA). 

Biotin-conjugated secondary antibodies (anti-rat IgG (H+L) were purchased from Vector 

Laboratories Inc. (Burlingame, CA). 

 

Human formalin-fixed and paraffin-embedded skin samples (III) were first treated with 

hydrogen peroxide block (Thermo Scientific Cheshire, UK) to inhibit endogenous 

peroxidase activity. Slides were transferred into the Pretreatment Module (Thermo 

Scientific) in buffer at pH 9 (Thermo Scientific) to deparaffinise and perform heat induced 

antigen retrieval. Normal antibody diluent (Immunologic, Netherlands) was used to dilute 

primary antibodies, anti-human IL-33 antibody (Nessy-1, Alexis Biochemicals, San 

Diego, USA) and anti-human ST2 antibody (HPA007406, Sigma-Aldrich) or mouse mAb 

IgG1 isotype control (Cell Signaling, Danvers, MA, USA). After primary antibody, post-

antibody blocking solution (Immunologic bv) was used and slides were transferred to 

poly-HRP-goat anti-mouse/rabbit/rat IgG. AEC (Aminoethyl carbazole, Thermo 

Scientific) was used as the substrate. Samples were counterstained with Mayer's 

hematoxylin. 
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7.9 Flow cytometry (IV) 

Flow cytometry was performed using a CantoII instrument (Becton Dickinson, Fraklin 

Lakes, NJ) and the data was processed with the FlowJo Software (Tree Star, Ashland, 

OR). BAL fluids from epicutaneously OVA/SEB sensitized and intranasally OVA 

challenged WT and ST2-/- mice were stimulated with phorbol myristate acetate (20 ng/ml) 

and ionomycin (1 µg/ml), including brefeldin A (Sigma) at 37°C for 4 hours. After the 

stimulations, the cells were washed with cold PBS including 2 % FBS. Fragment 

crystallisable (Fc) receptors were blocked with an excess of anti-mouse CD12/32 

(eBioscience, San Diego) and surface stained with phycoerythrin-cyanine7 (PECy7)-

conjugated anti-CD3, fluorescein isothiocyanate (FITC)-conjugated TCRβ, phycoerythrin-

cyanine5 (PeCy5)-conjugated anti-CD4 and Alexa700-conjugated anti-CD8. Cells were 

permeabilized with intracellular Fix and Perm staining kit (Caltag, Burlingame, CA), and 

stained with PE-conjugated anti-IFNγ.  

7.10 ELISA 

Total and specific Ab levels were studied by the ELISA method. The standard BD 

Pharmingen protocol for sandwich ELISA was used to quantify the total amount of IgE ( 

I, II)  in the sera. Purified mouse IgE (clone C38-2; BD Pharmingen) was used as the 

standard. Plates were coated with rat anti-mouse IgE mAb (clone R35-37; BD 

Pharmingen), and bound IgE was detected with biotin-conjugated rat antimouse IgE (clone 

R35-118; BD Pharmingen). Streptavidin-HRP was purchased from BD Pharmingen and 

peroxidase substrate reagents from Kirkegaard & Perry Laboratories. 

 

OVA-specific IgE was measured by the straight ELISA method. In brief, plates were 

coated (50 µl/well) with 100 µg/ml OVA in 0.05 M NaHCO3 (pH 9.6) and incubated 

overnight at 4°C. Plates were washed with PBS-Tween 20 (0.05%) and blocked with PBS-

3% BSA for 2 h at 20°C and washed again. A volume of 100µl of diluted serum in 1% 

BSA-PBS was incubated at 4°C overnight. After washing, 2 µg of biotin-conjugated rat 

anti-mouse IgE mAb (clone R35-118) in 1 ml of 1% BSA-PBS was incubated for 2 h at 

20°C and washed again. Streptavidin-HRP (1:4000) in 1% BSA was incubated for 30 min 
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at 20°C. After washing, peroxidase substrate was added and absorbance read at 405 nm 

with automated ELISA reader (Titertek Multiscan; Eflab). 

 

OVA-specific IgG2a was measured by using the same method as described above. Plates 

were coated with 2 µg/ml OVA in 0.05 M NaHCO3 (pH 9.6). Serial dilutions of serum 

were used. Bound IgG2a was detected with biotin-conjugated rat anti-mouse IgG2a mAb 

(clone R19-15). SEB-specific IgE and IgG2a were measured by using the same protocol as 

for detecting OVA-specific IgE and OVA-specific IgG2a. Plates were coated (50 µl) with 

1 µg/ml SEB in 0.05 M NaHCO3 (pH 9.6). 

 

Commercial mouse IL-13 (R&D) and IFNγ (eBioscience) immunoassays were used to 

analyze IL-13 and IFNγ in the medium of stimulated LN cells (I). 

7.11 Western blot (III) 

A total of 20 μg of protein from whole lysed fibroblast extracts was separated on SDS-

PAGE and transferred onto Immobilon-P Transfer Membranes (Millipore). The 

membranes were stained with goat anti-human IL-33 (R&D) and incubated with HRP-

conjugated polyclonal rabbit anti-goat Igs (Dako Cytomation). Proteins were visualized in 

a Luminescent Image Analyzer (Image Quant LAS4000mini, GE Healthcare, Sweden). 

7.12 Luminex (IV) 

A Bio-Plex Pro Mouse Cytokine Assay (BioRad Laboratories, USA) was used for analysis 

of TNF-α, IL-13 and IL-5 proteins in BAL fluid supernatants according to the 

manufacturer's protocol with 3% BSA (Sigma-Aldrich, St Louis, MO) in PBS being added 

at a concentration of 0.5% to samples, controls and standards to ensure sufficient protein 

amounts for the assay. The assay was performed using Luminex xMAP Technology (Bio-

Plex 200 System, BioRad, Hercules, CA). 
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7.13 Determination of airway reactivity to methacholine (IV) 

Responses to inhaled methacholine (MCh) (Sigma-Aldrich, St. Louis, MO) were 

measured 24 hours after the last OVA challenge in conscious, unstrained mice using 

whole-body plethysmography (WBP, Buxco Research System, Wilmington). Briefly, 

mice were placed to into a chamber and exposed to nebulized PBS and to increasing 

concentrations of MCh for five minutes. After each nebulization, data recordings were 

taken for five minutes. AHR was expressed as enhanced pause (Penh) values, which were 

measured during each five minute sequence and were expressed for each MCh 

concentration as the increase of PenH as compared to baseline Penh values following PBS 

exposure (Hamelmann et al., 1997). 

7.14 Statistics 

The data were expressed as means (±SEM), and differences between means were analysed 

with Graph Pad Prism- software using a Student's t-test with a two-tailed test of 

significance. Mann–Whitney U-test was used when variances were different between 

groups for unpaired comparisons. Differences at P<0.05 were considered to be statistically 

significant. 
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8. RESULTS 

8.1 Effects of superantigen on experimental AD-model (I) 

The majority of patients with AD are colonized with Gram-positive bacterium S. aureus, 

and most of the patients are colonized with superantigen-producing strains. The 

immunological effects of S. aureus-derived enterotoxin SEB in AD were investigated in a 

murine model of AD. In this model, mice were epicutaneously sensitized with OVA-

allergen in the presence of SEB. OVA and SEB were also investigated separately. 

 

Topical SEB exposure without OVA-allergen induced skin inflammation with many 

features of AD-like inflammation. SEB induced infiltration of eosinophils (I, Fig. 1b), 

mast cells (I, Fig. 1c), CD4
+
 and CD8

+
 T cells (I, Fig. 2a) into the skin, and both Th1 and 

Th2 cytokines (I, Fig. 3) were upregulated in the skin after epicutaneous SEB-exposure. 

Similarly the numbers of SEB-specific TCRV β8
+
 cells (I, Fig. 2b) were increased in the 

SEB-sensitized skin. Moreover, SEB induced the production of SEB-specific IgE and 

IgG2a antibodies in the serum (I, Fig. 6). 

 

SEB together with OVA exacerbated skin inflammation, this being characterized by a 

thickening of the skin and infiltration of mast cells (I, Fig. 1) and T cells (I, Fig. 2a). The 

combination of OVA and SEB increased the expression of the Th2 cytokine, IL-13 and the 

Th1 cytokine, IFNγ as compared with OVA sensitization (I, Fig. 3). In addition, SEB 

increased the expression of proinflammatory cytokine-associated chemokines (CCL3 and 

CCL4), Th2-associated chemokines (CCL1, CCL11 and CCL17) and IFNγ-inducible 

chemokines (CXCL9, CXCL10 and CXCL11) (I, Fig. 4). In OVA-sensitized skin, CD4
+
 

cells were the major T cell population, whereas in the OVA/SEB-exposed skin sites the 

number of epidermal CD8
+ 

T cells was increased as compared to OVA-sensitized skin (I, 

Fig. 2a). OVA/SEB exposure increased the production of OVA-specific IgE and IgG2a, 

whereas less SEB-specific IgE was produced after OVA/SEB exposure as compared to the 

situation with SEB-exposure without the allergen (I, Fig. 6). 
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SEB and OVA stimulated LN cells were investigated after epicutaneous sensitization. 

SEB stimulation induced both IL-13 and IFNγ production, although the IL-13 production 

was higher after OVA stimulation. IFNγ was only produced in SEB stimulated LN cells 

derived from SEB or OVA/SEB sensitized mice (I, Fig. 5). 

8.2 Efficacies of topical drugs in a murine model of AD (II) 

At present, topical treatment schedules for AD involve corticosteroids and calcineurin 

inhibitors. A mouse model of AD was developed by repeated epicutaneous administration 

of OVA and SEB and these mice were used to evaluate the efficacy of topical drugs in 

AD. 

 

PBS and OVA/SEB were used as a model for epicutaneous sensitization. Betamethasone-

17-valerate, tacrolimus and cipamfylline treatments were tested in OVA/SEB and PBS 

sensitized skin sites. All of the investigated drugs reduced the thickness of the epidermis, 

whereas betamethasone and cipamfylline decreased both epidermal and dermal thickening 

(II, Fig. 1). The total number of skin-infiltrating inflammatory cells was decreased in all 

topically treated groups (II, Fig. 2a). Betamethasone was the most effective compound and 

it clearly decreased the numbers of eosinophils, mast cells, CD11c
+
 DCs, F4/80

+
 

macrophages (II, Fig. 2b-e) and both CD4
+
 and CD8

+
 T cells (II, Fig. 3) in the OVA/SEB 

sensitized skin. Similarly to betamethasone application of tacrolimus and cipamfylline 

also decreased the numbers of eosinophils and mast cells (II, Fig. 2b, c), whereas the 

numbers of DCs (II, Fig. 2 d), CD4
+
 cells and CD8

+
 cells (II, Fig. 3)  were only reduced 

by betamethasone and tacrolimus.  

 

Betamethasone and tacrolimus downregulated mRNA expression of IL-4, IL-13 and IFNγ. 

Cipamfylline decreased the expression of IFNγ, while the levels of the other cytokines 

remained unchanged. IL-10 mRNA expression was only downregulated by betamethasone 

when compared to the other investigated drugs (II, Fig. 4). 
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Finally, the concentrations of OVA and SEB-specific antibodies were investigated in the 

serum of topically treated and epicutaneously sensitized mice. Unexpectedly, tacrolimus 

and cipamfylline both significantly enhanced the levels of OVA-specific IgE, while 

betamethasone treatment had no effect on IgE or IgG2a antibodies. In addition, SEB-

specific IgG2a levels were reduced after tacrolimus or cipamfylline treatment (II, Fig. 5). 

8.3 Expression profiles of IL-33 and ST2 in AD after external 

triggering factors (III) 

IL-33 is one of the key cytokines which can induce the production of Th2 cytokines. Thus, 

the expressions of IL-33 and its receptors ST2 and IL-1RAcP were explored in human 

AD, in the murine model of AD, and in various cell models. In lesional skin of patients 

with AD, mRNA expression levels of ST2 and IL-1RAcP were upregulated as compared 

with nonlesional AD skin (III, Fig. 1a). In line with the ST2 results, the levels of TNFα 

and IL-13 mRNAs (III, Fig. 1b) were upregulated in the lesional skin as compared with 

nonlesional skin in patients with AD. Moreover, immunohistological staining of IL-33 and 

ST2 showed IL-33
+
 cells in the suprabasal keratinocytes and in endothelial cells (III, Fig. 

1c-f). The ST2
+
 cells showed positivity for the presence of infiltrating inflammatory cells 

in the dermis, and to some extent also in epidermis (III, Fig. 1g-j). 

 

Upregulation of ST2 and IL-33 mRNA in a mouse model of AD was confirmed with 

different models and kinetic study. Epicutaneous OVA sensitization significantly 

increased ST2 mRNA expression after three sensitization weeks. The mRNA expression 

of IL-33 was already upregulated after the first sensitization week (III, Fig. 2a). In line 

with the results of OVA sensitization, FLG-deficient mice without any exposure exhibited 

increased mRNA expression of ST2 and IL-33 at the age of 38 weeks (III, Fig. 2 b). 

Moreover, IgE + allergen stimulated mouse bone marrow-derived mast cells expressed 

both ST2 and IL-33 mRNAs (III, Fig. 2c). 

 

Different triggering factors in AD, including HDM and SEB were studied in human and 

mouse skin. AD patients with a history of HDM allergy were investigated after 2, 6, and 

48 hours of HDM-exposure. The mRNA expression levels of IL-33 and ST2 were 
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upregulated after 6 and 2 hours of HDM-exposure, respectively. The SEB patch test 

revealed slower upregulation of IL-33 and ST2 mRNAs compared with HDM and peaked 

24 hours of exposure (III, Fig. 3). In mouse studies, repeated epicutaneous exposure to 

SEB induced significant upregulation of ST2 and IL-33 mRNAs (III, Fig. 4a, b). In 

conjunction with the changes noted for IL-33 and ST2, mRNA expression levels of TNFα, 

IFNγ, IL-4 and IL-13 were increased in the skin (III, Fig. 4c-f).  

 

Moreover, the effects of topical application of betamethasone and tacrolimus on IL-33 and 

ST2 expressions were investigated. IL-33 and ST2 mRNAs were inhibited by tacrolimus 

treatment, whereas corticosteroid treatment had no significant effect on IL-33 or ST2 

expression (III, Fig. 5).  

 

The cellular sources of IL-33 and the cytokine environment needed for its expression and 

production were investigated in dermal fibroblasts, HaCaT keratinocytes, macrophages 

(III, Fig. 6a) and HUVEC endothelial cells (III, Supplementary figure S4) under 

proinflammatory conditions, Th2 conditions and Th1 favoring conditions. Furthermore, a 

combination of proinflammatory and Th1/Th2 cytokine stimulations was used. In all 

investigated cells, the combination of TNFα and IFNγ stimulation induced the expression 

of IL-33, and also the protein production of IL-33 in cultured primary dermal fibroblasts 

(III, Fig. 6c). In addition, the mimetic of double-stranded RNA further increased the 

cytokine induced IL-33 expression (III, Fig. 6 b,c). 

8.4 The functional role of ST2 in experimental AD and allergic 

asthma (IV) 

The murine model of AD was used to further characterize the role of ST2 in allergen and 

superantigen induced skin inflammation and allergic asthma. In the OVA/SEB sensitized 

skin, ST2-/- mice had increased numbers of neutrophils (IV, Fig. 1a), macrophages (IV, 

Fig. 2 a, j-m) and CD8+ lymphocytes (IV, Fig 2 a, f-i) compared with WT mice. In 

addition, mRNA levels of proinflammatory cytokines IL-1β and IL-6 were significantly 

enhanced in the skin of ST2-/- mice compared with WT mice (IV, Fig. 3a). In line with the 
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increased CD8
+
 infiltration into the sensitized skin, the expression levels of IFNγ were 

also upregulated (IV, Fig. 3a). Although IL-33 is reported to drive Th2 type inflammation, 

in the sensitized skin of ST2-/- mice, the mRNA expresson of Th2 cytokine, IL-5, was 

even slightly upregulated (IL-4 and IL-13 not statistically significantly) (IV, Fig. 3 b). 

 

Epicutaneously sensitized ST2-/- mice which were further intranasally challenged with 

OVA had a reduced number of eosinophils in the BAL fluid as compared with the WT 

controls (IV, Fig. 4a). In the lung tissue of sensitized ST2-/- mice, all Th2 type cytokines 

were downregulated when compared with WT at the mRNA level (IV, Fig 5a). 

Furthermore, the levels of the proinflammatory cytokine, TNFα and Th1 cytokine IFNγ, 

but not IL-6, were upregulated (IV, Fig 5 a,b). mRNA expressions of the regulatory 

cytokine IL-10 and the transcripton factor Foxp3 in the lung tissue of ST2-/- mice were 

increased (IV, Fig 5 c). Downregulation of Th2 cytokines was confirmed by the complete 

loss of IL-5 and IL-13 proteins in the BALF of ST2-/- mice compared with WT mice (IV, 

Fig 5 d).  

 

The BALF of sensitized WT and ST2-/- mice was analysed by FACS to confirm the 

increase in the numbers of CD8
+
 T cells and in the production of IFNγ. Similar to the 

results of immunohistochemistry data of CD8
+
 cells and mRNA expression data, ST2-/- 

mice possessed more CD3
+
CD8

+ 
T cells, which produced IFNγ (IV, Fig 6). 

 

Finally, the airway hyperreactivity to inhaled MCh was measured and it was similar in 

OVA-sensitized WT and ST2-/- mice (IV, Supplementary Figure S2). 
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9. DISCUSSION 

AD is a common skin disease with a high prevalence in the developing and already 

developed countries. The disease mechanisms in AD remain partly unknown and specific 

treatment options with fewer side effects are needed.  

 

SEB-producing S. aureus commonly colonizes the skin of patients with AD. Therefore, in 

the current study, the effects of superantigen on experimental AD-like skin inflammation 

were studied. Skin inflammation was severe and IgE production was increased after 

topical SEB exposure with allergen. SEB induced skin inflammation characterized by 

CD8
+
 and CD4

+
 T cells and a mixed Th1/Th2 response in the skin. When topical 

treatments with corticosteroid, calcineurin inhibitor and phosphodiesterase inhibitor were 

applied to allergen and SEB sensitized skin, the severity of inflammation declined. A 

corticosteroid and tacrolimus which are presently the first and second line of therapy in 

AD were the most efficient in healing the inflammation.  

 

Current research in the field of atopic diseases is very much concentrated on the 

epithelium. Furthermore, in this thesis, a newly described epithelial-derived cytokine, IL-

33, was investigated in AD. Expression profiles after external triggering factors were 

explored in experimental AD and in human patients. Both IL-33 and its receptor ST2 were 

upregulated in human and mouse skin after external triggering factors. Moreover, IL-33 

was already upregulated in the murine tape-stripped skin without any allergen exposure, 

indicating that the mechanical skin injury caused by scracthing of the skin increase the 

expression of IL-33. Although IL-33 has been reported to increase the production of Th2 

cytokines, especially IL-13 and IL-5, disruption of this pathway as achieved in ST2-/- 

mice did not downregulate the expression of Th2 cytokines in the sensitized skin. 

However, in the asthmatic airways of ST2-/- mice, there was downregulation of all Th2 

cytokines. These novel results suggest that the IL-33-ST2 pathway can be used to target 

the Th2 response in asthmatic airways. On the contrary, in AD skin, pathways other than 

ST2 are critical in the development of the Th2 response. The increased IL-33/ST2 

expression in AD skin may therefore act as an alarm signal of damaged tissue. 
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9.1 Topical SEB exposure induces AD-like skin inflammation and 

exacerbates allergen-induced skin inflammation (I) 

S. aureus is believed to play a significant role in AD and nearly 80 % of patients with 

severe AD produce superantigen specific IgE antibodies (Nomura et al., 1999). S. aureus 

can secrete various enterotoxins; SEA and SEB representing the most common 

superantigens in AD patients (Akiyama et al., 1996). SEB is believed to exert its effects 

through several mechanisms. It can bind to the MHCII-TCR complex or act through SEB-

specific antibodies (Leung et al., 1993). In addition, these bacterial toxins can alter the 

function of Tregs (Lin et al., 2011). 

  

A murine model of AD was used to investigate the effects of topical SEB exposure in the 

sensitized skin and systemic responses in skin-draining LNs and in the blood. Both CD4
+
 

and CD8
+
 T cells infiltrated into SEB sensitized skin, which supports the superantigenic 

properties of SEB. Unlike conventional antigens, superantigens can activate large numbers 

of T cells resulting in massive release of cytokines (Cardona et al., 2006; Laouini et al., 

2003; Sundberg et al., 2002). In line with the increased numbers of T cells in the SEB 

sensitized skin, the expression levels of both Th1 and Th2 type cytokines were highly 

upregulated. In the comparison of OVA sensitized skin and OVA/SEB sensitized skin 

sites it was found that the inflammation was more severe with the combination of allergen 

and SEB exposures. In the OVA sensitized skin, the skin infiltrating T cells were mostly 

CD4
+
 T cells, whereas the numbers of CD8

+
 cells were highly increased in OVA/SEB 

exposed skin sites. SEB alone increased the number of both CD4
+
 and CD8

+
 cells. 

 

CD4
+ 

T cells predominate and only a few CD8
+
 T cells can be detected in the skin of 

patients with AD (Simon et al., 2004). However, the atopy patch test with HDM has been 

shown to induce the recruitment of CD8
+
 T cells into AD skin and involved CXCL9 and 

CXCL10 chemokine expression (Hennino et al., 2011). In line with their results, topical 

SEB exposure elicited a major upregulation of epidermal CD8
+
 cells, and simultaneous 

increase of CXCL9 and CXCL10, i.e. chemokines which are known to be IFNγ-inducible. 

Similar to the situation with these chemokines, the expressions of IFNγ and IL-12p40 

were significantly inreased in SEB exposed skin with or without the allergen. Production 
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of IFNγ was also seen in SEB-stimulated LN cells from SEB-sensitized mice, which may 

due to SEB-specific T cells, most likely CD8
+
Vβ8

+ 
cells in the LNs. SEB has been 

reported to lead to the clonal expansion of SEB-reactive CD8
+
 Vβ8

+ 
T cells in mice (Heeg 

et al., 1995; Marrack and Kappler, 1990). 

 

In addition to Th1 type response in the skin and LNs also Th2 type responses were 

upregulated in SEB-sensitized skin. Moreover, CCL1 and CCL8, which are known ligands 

for CCR8 were upregulated in the SEB sensitized skin. CCR8 has been shown to be 

critical in promoting Th2 cell homing into allergen-sensitized skin in a mouse model of 

AD (Islam et al., 2011). In addition, it has been shown that SEB can promote the 

migration of skin-homing T cells (Cardona et al., 2006). 

 

Topical SEB exposure increased OVA specific IgE and IgG2a antibodies in the serum. It 

also induced SEB specific IgE and IgG2a. According to the antibody results, SEB can act 

as a superantigen and also increase the effect of a conventional antigen. This might due to 

the binding site of SEB in the MHCII-TCR complex. SEB binds to the outside domain of 

the MHCII-TCR complex and does not require internalization and proteolysis. It might 

also affect the signal produced by a conventional allergen; binding of SEB to the outside 

domain of MHCII-TCR complex might allow at least some interaction to occur between 

the TCR and peptide-MHC complex (Dinges et al., 2000). 

 

This data stronly support the importance of eradication of S. aureus colonization in AD 

patients. S. aureus can exacerbate the inflammatory response in the skin by producing 

superantigens. Moreover, S. aureus is able to activate innate immunity by TLR2 which 

recognizes a variety of Gram
+
 bacterial products, such as peptidoglycan, lipoteichoic acid 

and lipoarabinomannan (Takeuchi and Akira, 2001). Therefore, the control of S. aureus 

colonization in therapeutic strategies might be beneficial in patients with AD. 
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9.3 A murine model of protein-induced skin inflammation is 

useful in studying efficacies of topical therapies in AD (II) 

The need for more effective AD therapies with less adverse effects has stimulated the 

research to develop new treatment possibilities. In some patients, AD is a life-long skin 

disease with an unpredictable disease activity and prognosis. Therefore, new treatment 

strategies are needed. A mouse model of AD was characterized, which can be used to 

evaluate new therapies in AD. The model was performed as described in I with OVA 

together with SEB, and the efficacy of topical administration of corticosteroid, tacrolimus 

and cipamfylline was studied. 

 

One-week topical application of a corticosteroid or calcineurin inhibitor significantly 

decreased the expression of Th2 type cytokines IL-4 and IL-13 and Th1 cytokine IFNγ. 

The number of eosinophils, mast cells, CD11c
+
, CD4

+
 and CD8

+
 T cells was also 

decreased in OVA/SEB sensitized skin after corticosteroid or tacrolimus therapy 

highlighting the reduced inflammatory reaction and the suitability of this model for 

investigating topical drugs in AD. The most beneficial drugs in the inhibition of the 

inflammation were those compounds which are already the first and second line of 

therapies in AD, such as corticosteroids and calcineurin inhibitors (Akdis et al., 2006). 

Betamethasone-17-valerate, known to be a powerful corticosteroid, has many beneficial 

effects on AD. However, local skin atrophy is a well-known adverse effect of 

corticosteroid treatment. All of the investigated drugs decreased the number of 

inflammatory cells in the sensitized skin as well as the thickness of the epidermis. 

Morover, the atrophic effect of corticosteroids was seen in betamethasone treated dermis, 

which was even thinner than the control treated skin. 

 

Corticosteroids suppress the inflammation by binding to glucocorticoid receptors (GR) in 

the cytoplasm which then dimerize and are translocated to the nucleus, where they bind to 

the glucocorticoid recognition sequence (GRE) on the promoter of glucocorticoid-

responsive genes finally inducing or repressing the gene. Moreover, GR may interact 

directly with other transcription factors, and may have effects on the chromatin structure 

(Barnes, 1998). Glucocorticoids are known to decrease the transcription of IL-1, IL-3, IL-
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4, IL-5, IL-6, IL-12, IL-13, TNFα and GM-CSF (granylocyte-macrophage colony 

stimulating factor). Suppression of Th2 type cytokines, IL-4 and IL-13, was detected after 

betamethasone or tacrolimus treatment. However, cipamfylline which is a type 4 

phosphodiesterase (PDE-4) inhibitor did not alter Th2 type cytokines in the sensitized 

skin, but decreased Th1 cytokine IFNγ. This might due to their different mechanisms of 

action. Tacrolimus achieves immunosuppression mainly by inhibiting T lymphocyte 

activation by inhibiting IL-2 transcription, which in turn represses T lymphocyte 

responsiveness to foreign antigens. Tacrolimus and its binding protein form a complex, 

which then associates with calcineurin, calcium and calmodulin, resulting in inhibition of 

calcineurin phosphatase activity, and finally controls the transcription of inflammation 

associated genes including IL-2, GM-CSF, TNFα and IFNγ. Cipamfylline is a potent and 

selective inhibitor of PDE-4, which is specific for cyclic nucleotide adenosine 3' 5' cyclic 

monophosphate, cAMP. It has been demonstrated that intracellular cAMP levels in atopic 

leukocytes are reduced by elevated cAMP-PDE activity (Grewe et al., 1982). Although 

cipamfylline was able to reduce the inflammatory reaction in the sensitized skin, its effects 

were milder than those achieved by either tacrolimus or betamethasone. Further studies 

are needed to clarify wheather the dosage of cimpamfylline was optimal and it should be 

taken into consideration when making comparisons between investigated drugs. 

 

Importantly, tacrolimus and corticosteroid treatments downregulated antigen and 

superantigen-inducd skin inflammation. In line with these findings, others have shown that 

S. aureus colonization can be erased with topical tacrolimus (Pournaras et al., 2001; 

Remitz et al., 2001) or corticosteroid (Nilsson et al., 1992; Stalder et al., 1994) therapies 

in human AD. On the contrary, some patients with AD do not seem to respond to 

corticosteroids alone. Staphylococcal superantigens might induce corticosteroid resistance, 

most probably by inducing the formation of the glucocorticoid receptor β-isoform. This 

receptor form antagonizes the activity of the glucocorticoid receptor α-isoform which is 

glucocorticosteroid-activated transcripton factor and cause modulations of corticosteroid-

sensitive genes. In addition, superantigens can activate mitogen-activated protein kinase 

/extracellular signal-regulated kinase (ERK) pathway, which phosphorylates the 

glucocorticoid receptor and inhibits nuclear translocation of this molecule and finally 

inducing corticosteroid resistance. However, these results show that short-term medication 
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with corticosteroid is efficient in the downregulation of the superantigen and antigen 

induced skin inflammation and one could speculate that corticosteroid resistance might 

develop during long-term therapy. 

 

The consentrations of allergen and OVA-specific antibodies in the serum were 

investigated after topical drug administration. Surprisingly, tacrolimus and cipamfylline 

increased OVA-specific IgE concentrations and decreased SEB-specific IgG2a 

concentrations, whereas betamethasone had no effect on IgE or IgG2a antibodies. In 

patients with AD, tacrolimus treatment was able to decrease serum IgE concentrations in a 

subgroup of patients with elevated serum IgE at the baseline level. However, in patients 

with a less favourable AD response to tacrolimus, serum IgE tended to increase (Virtanen 

et al., 2007). It should be also taken into account that mice were treated only for one week 

in comparison to the several month treatment schedules provided to human patients. It is 

also possible that an early increase in human patients also exists, but there is no data 

available after one week therapy with tacrolimus. 

 

Together, this data shows that the murine model of AD achieved by repeated epicutaneous 

sensitization with OVA together with SEB is valuable and reproducible model with which 

to investigate new topical medications in AD. 

9.4 IL-33 and ST2 signalling in AD and allergic asthma (III, IV) 

IL-33 is a newly described cytokine member in the IL-1 family. It has recently been found 

to participate in the epithelial alarmin defence system but its precise role in immunity is 

poorly understood; IL-33 might serve as a link between innate and adaptive immunity. 

There is evidence that IL-33 might have a critical role in innate immunity and furthermore 

it drives Th2 type responses and might be involved in allergic and atopic diseases, acting 

as a proallergic or pro-Th2 cytokine by binding to its specific receptor ST2 and a co-

receptor IL-1RAcP. Recent genetic studies have linked epithelial-derived IL-33 and its 

receptor ST2 to Th2-associated diseases, especially allergic asthma but also other allergic 

diseases (Moffatt et al., 2010; Ober and Yao, 2011; Shimizu et al., 2005). Therefore, the 

expression profiles of IL-33 and ST2 were characterized in Th2-associated disease, atopic 
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dermatitis after external triggering factors. The functional role of ST2 was further studied 

in a murine model AD and allergic asthma. 

 

The expression levels of IL-33 and ST2 were increased in the skin of patients with AD 

pointing to critical roles for these proteins in atopic skin inflammation. Consistent with a 

recent finding that IL-33 is upregulated in the tape-stripped human skin (Dickel et al.), the 

present results revealed increased expression of IL-33 in tape-stripped mouse skin. AD is 

clinically characterized by intense pruritus inducing scratching of the skin. Thus, when the 

skin is damaged by a mechanical trauma, especially by scratching of the skin, cell injury 

occurs. These necrotic keratinocytes release IL-33, which then activates ST2-expressing 

mast cells (Allakhverdi et al., 2007; Enoksson et al., 2011; Moritz et al., 1998), Th2 cells 

(Xu et al., 1998) and eosinophils (Cherry et al., 2008). In addition, recent findings have 

revealed ST2-expression also in CD8
+
 cells (Ngoi et al., 2012; Yang et al., 2011) and in a 

newly described innate type lymphoid cells called nuocytes (Bartemes et al., 2012; Kim et 

al., 2012). 

 

In addition to mechanical trauma, also external allergens and SEB induced the expression 

of IL-33 in human AD patients as well as in the mouse model of AD the same way as 

other cytokines e.g. TNFα, IFNγ, IL-4 and IL-13. IL-33 and ST2 were upregulated in the 

murine model of AD after epicutaneous OVA exposures, epicutaneous SEB exposures, 

and spontaneously in flaky tail (ft/ft) mice, animals which have a disturbed skin barrier. In 

human AD, the expression levels of IL-33 and ST2 were increased in the skin after atopy 

patch tests with HDM or SEB. These results highlight the important role of the IL-33-ST2 

interaction in AD when the skin becomes exposed and vulnerable to external allergens or 

bacterial infections. 

 

Moreover, the upregulation of IL-33 by OVA and SEB in the murine AD-like skin was 

suppressed after topical tacrolimus therapy. This might due to the downregulating effects 

of tacrolimus on IFNγ (II). We found that the combination of TNFα and IFNγ was 

essential for increased expression of IL-33 in dermal fibroblasts, keratinocytes and 

endothelial cell-lines and primary macrophages. Together these results seem to point to a 

possible mechanism to explain how topical SEB exposure increases IL-33 production. 
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SEB might activate T cells or APCs to produce IFNγ and TNFα resulting in enhanced 

expression of IL-33 in surronding fibroblasts, macrophages and keratinocytes. Moreover, 

increased concentrations of TNFα and IFNγ have been detected in the whole blood of 

patients with chronic AD (Vakirlis et al., 2011). 

 

Skin barrier dysfunction and defects in innate and adaptive immunity make an individual 

susceptible to bacterial and viral infections, which may further aggravate the 

inflammation. Therefore, we treated fibroblasts with a mimetic of double-stranded RNA 

and observed only a weak induction of IL-33, suggesting that viral exposure itself is not 

the primary triggering factor for IL-33. This is in line with a recent finding that human 

bronchial epithelial cells do not produce IL-33 when stimulated with dsRNA (Chustz et 

al., 2011). However, those fibroblasts which had been first stimulated with the 

combination of TNFα and IFNγ before dsRNA produced enhanced levels of IL-33, 

indicating that under certain disease conditions, viral infection may increase the 

transcription of IL-33. 

 

In an attempt to further clarify the role of ST2 in AD, the study was conducted with ST2-/- 

mice, which were epicutaneously sensitized with OVA and SEB. ST2-/- mice possessed 

more CD8
+
 cells and innate type cells in the skin as compared to WT controls. Even 

though the IL-33 pathway has been associated with Th2 responses, recent observations 

have revealed ST2 expression also in CD8
+
 T cells (Yang et al., 2011). Moreover, IL-33 

has recently been associated with protective antiviral CTL responses (Bonilla et al., 2012). 

It was found that in the absence of ST2, the numbers of CD8
+
 T cells are increased in the 

murine model of AD suggesting that ST2 might affect the function of CD8
+
 T cells. ST2 

may limit the innate immune response by acting on CD8
+
 cells and macrophages, as well 

as controlling the influx of neutrophils into the site of inflammation. 

 

Although IL-33 has been reported to increase the production of Th2 cytokines, loss of 

function in ST2 gene did not downregulate Th2 responses in the murine sensitized skin. 

Moreover, proinflammatory cytokines IL-1β and IL-6 as well as Th1 cytokine IFNγ were 

upregulated. These results suggest that under certain conditions, especially those related to 

innate immunity, ST2 may exert a protective or regulatory role (Turnquist et al., 2011) 



 

 

 

 

70 

and thus disruption of the ST2 pathway may even exacerbate the skin inflammation by 

inducing the production of proinflammatory cytokines and IFNγ. Moreover, IL-33 is also 

beneficial in certain condition and can help to clear pathogens (Liew, 2012). IL-33 can 

block the activity of G-protein-coupled receptor kinase 2 (GRK2). The expression of 

GRK2 normally leads to the inhibition of the expression of CXCR2 on neutrophils and 

reduces neutrophil migration. Therefore blockade of GRK2 by IL-33 can reverse this 

process, leading to the influx of neutrophils to the site of infection and achieving bacterial 

clearance. This protective role of IL-33 to promote increased bacterial clearance has been 

demonstrated in sepsis (Alves-Filho et al., 2010). 

 

Similar to the situation in sensitized skin, there was upregulation of IFNγ-producing CD8
+
 

T cells in the lungs of epicutaneously sensitized mice. However, mRNA expression and 

protein production of Th2 cytokines were drastically downregulated in the BAL fluid and 

lung tissue of sensitized ST2-/- mice in line with the decreased number of eosinophils in 

the BALF of ST2-/- mice. Consistent with this finding, it has been demonstrated that the 

IL-33/ST2 signalling pathway can enhance the expression of CCR3, which is important in 

facilitating the mobilization of eosinophils from bone marrow to peripheral blood and the 

trafficking of these cells to the site of inflammation (Stolarski et al., 2010). Moreover, 

previous studies with ST2-/- mice have demonstrated downregulation of the Th2 

cytokines, IL-13 and IL-5, in the lung tissue of a mouse model of asthma obtained with 

intraperitoneal injections of OVA together with alum (Coyle et al., 1999; Kurowska-

Stolarska et al., 2008). However, in earlier studies, the expression of IL-4 was not 

decreased in ST2-/- mice. In our asthma model, ST2-/- mice, which were epicutaneously 

sensitized and intranasally challenged with OVA, displayed reduced expression of all Th2 

cytokines, IL-4, IL-13 and IL-5. Results obtained from ST2-/- mice are consistent with the 

downregulative effect of ST2 mAb on Th2 cytokines in the lung tissue of WT mice in 

Th2-dependent allergic asthma model (Lohning et al., 1998), pointing out that the results 

obtained from the lung tissue is not a consequence of general immune system failure in 

ST2-/- mice. 
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IL-33 may have been preserved during evolution as a part of the host defence against 

infection. Together these results suggest that the IL-33/ST2 pathway can regulate innate 

immune responses and CD8
+ 

cell mediated responses in the skin and airways of 

epicutaneously sensitized mice. In addition, the signalling pathway results in a complex 

range of biological functions with a tissue specific phenomenon. ST2 appears to be 

dispensable for the development of Th2 response in sensitized skin, whereas it is the main 

inducer of Th2 cytokines in asthmatic airways. These novel findings highlight that the Th2 

response in the lung tissue is totally blocked in the absence of ST2, indicating that IL-33-

ST2 pathway can be used to target the Th2 response in asthmatic airways. On the contrary, 

in AD skin, other pathways in addition to ST2 are critical in the development of Th2 

response. The increased IL-33/ST2 expression in AD skin may therefore act as an alarmin 

of damaged tissue. Disruption of this signal pathway may lead to unwanted exacerbation 

of skin inflammation in AD. These results open new avenues to understand and elaborate 

the basic mechanisms of allergic sensitization through the skin and the developing 

systemic response leading to asthmatic inflammation in allergen challenged lung tissue. 

9.5. Future directions 

S. aureus is one of the microbes in AD skin, but also other bacteria and other microbial 

compounds most likely play critical roles in skin homeostasis as well as in inflammatory 

conditions. Therefore, future studies to characterize the whole microbiome of the skin 

would provide novel information on skin associated diseases. The current study 

demonstrates the exacerbating effect of superantigen on allergen-induced skin 

inflammation. It is known that SEB acts by binding to the MHCII and TCR, however it 

would be interesting to investigate its possible binding to MHCI. There are few 

publications investigating this issue, although precise information remains unknown. 

 

Previously, there has not been any reproducible animal model available to test new topical 

treatment options in AD. Therefore, the model induced by epicutaneous allergen and SEB 

exposures can be now used to test novel drugs in AD before their efficacy is tested in 

human patients. 
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Future studies related to IL-33 and ST2 would be interesting and the different role of ST2 

in the skin and lung tissue should be further investigated. The mechanisms related to Th2-

inducing cytokines in the lung tissue in comparion to the skin would be interesting and 

useful, and future studies unravelling why the asthmatic airways but not AD-like skin of 

ST2-/- mice are protected from Th2 cytokines. Moreover, the precise role of IL-33 

signalling in nuocytes related to asthma and the investigation of nuocytes in AD would be 

worthy of exploration. 
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10. CONCLUSIONS 

This thesis has clarified the molecular pathomechanisms of AD and associated airway 

inflammation. In addition, the efficacy of a murine model of AD to test new topical 

medications was investigated. 

 

The murine model of AD was used to explore the role of superantigen, SEB, in AD-like 

skin inflammation. SEB alone induced CD4+ and CD8+ T cell infiltration into 

epicutaneously sensitized mouse skin, and promoted an AD-like skin inflammation 

characterized by eosinophils, mast cells and T cells in the skin. These inflammatory cells 

produced Th1 and Th2 cytokines. In addition, SEB raised IgE and IgG2a antibodies in the 

serum. Furthermore, when SEB was used together with the OVA-antigen, it augmented 

OVA-induced inflammation and increased the number of epidermal CD8+ T cells in the 

sensitized skin in comparison to OVA exposed skin, which was predominantly infiltrated 

with CD4+ T cells. The combination of OVA and SEB increased both IL-13 and IFNγ in 

the skin. In stimulated skin draining LN cells, IFNγ was produced only by SEB 

stimulation in LN cells derived from SEB or OVA/SEB sensitized mice. As a whole, this 

data shows that S. aureus derived superantigen, SEB is one of the bacterial components 

which exacerbates or induces skin inflammation in AD. Therefore superantigen-producing 

S. aureus colonization is an important aspect in AD and should be taken into consideration 

in therapeutic approaches in AD patients. 

 

The developed murine model induced by OVA and SEB was used to test topical drugs in 

AD. All of the investigated drugs, i.e. corticosteroid, tacrolimus and cipamfylline, reduced 

the thickness of the epidermis as well as inflammatory cell infiltrate. Those drugs which 

are already the first and second line of therapy in AD were the most beneficial in reducing 

the inflammation. Therefore, this murine model can be used to test new topical drugs. 

Earlier, no other reproducible mouse model of AD has been introduced in the context of 

topical therapies in AD. Moreover, tacrolimus and corticosteroid downregulated antigen 

and superantigen induced skin inflammation. Therefore, at least short-term medication 

with a corticosteroid is efficient in the healing of superantigen and conventional antigen-

induced skin inflammation. In conclusion, this model evoked by repeated epicutaneous 
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sensitization with OVA together with SEB proved to be valuable and reproducible model 

with which to investigate new topical drugs for treating AD. 

 

Recently, a new epithelial derived cytokine, IL-33 was found to be a ligand for the ST2 

receptor. Previously, the orphan ST2 receptor had been associated with Th2 type 

inflammation, although investigations of the role of ST2 in AD remained inconclusive. 

Therefore, we characterized IL-33 and ST2 expression profiles in AD after known 

external triggering factors and in the following studies the murine model of AD and 

exposed ST2-/- mice were investigated in greater detail. Further investigations were 

conducted with intranasal allergen challenges after epicutaneous sensitization, mimicking 

the atopic march. Although the expression levels of IL-33 and ST2 were upregulated in 

AD after SEB or HDM exposure as well as in FLG-deficient mice, in the mouse model of 

AD ST2-/- mice developed severe inflammation with high expression of Th2 type 

cytokines. However, epicutaneously sensitized ST2-/- mice which were further 

intranasally challenged with OVA-allergen, were totally protected from Th2 cytokines in 

the lung tissue. The specific mechanism behind this phenomenon is unknown and further 

studies will be needed to clarify the role of ST2 in different disease conditions. 
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