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1 Introduction

Transcriptomics, heavily dependant on high-throughput technologies, can shed light
on the processes occurring inside the cell. Prior to microarrays, measuring gene
expression was not possible in a massively parallel way. Microarrays have allowed
us to simultaneously identify and quantify most of the expressed genes inside a cell.
By measuring the mRNA transcripts the characterization of functional elements in
the cell at a certain developmental stage [TWP*10] or under a given condition such

as disease is made possible.

Cancer is a particular good candidate for transcriptomics since it is an inherently
genetic disease [HWF00| that affects millions of people per year worldwide. Gene
expression profiles from cancer samples have helped identify biomarkers related to
survival and tumor progression [vdVHvV 102, NMB*03, Yea03]|. The study of the
transcriptome can also aid in the classification of patients into cancer subtypes which
provides the clinician with valuable information when choosing the best therapy for
each individual patient. Additionally, a tumor’s gene expression profile could be
used to determine if the patient will benefit from a certain therapy or not. Such
information would have a direct impact on the patients quality of life and on the
costs of cancer treatment. Furthermore, understanding the disease pathways allows
the development of new therapies based on novel drug targets [SMF03, SSOR04].

The deep sequencing of RNA (RNA-Seq) promises several advantages over more es-
tablished technologies in transcriptomics such as microarrays [WGS09|. Some of the
benefits of RNA-Seq over microarrays include base pair resolution, a wider dynamic
range, and the lack of dependence on the current knowledge of the genome. How-
ever, in an RNA-Seq experiment the mRNA transcripts have to be sheared prior to
sequencing, which poses a new set of challenges in the analysis [WGS09]. Various
computational approaches exist to tackle the inherent problems of this technology
[GGGT11|. The alignment of the short RNA-Seq reads to a genome or transcrip-
tome has been extensively addressed and plenty algorithms are available for this task
[MW11]. On the other hand, transcript assembly, abundance estimation, and differ-
ential expression analysis are active fields of research where solutions are emerging
more slowly [ORY10, GGGT11|. An additional challenge to deep sequencing stud-
ies is that due to the size of the datasets, they are computationally expensive to

analyze.
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An RNA-Seq experiment requires then several processing steps from the mRNA
extraction and sequencing to the actual gene expression profiles. The objective
of my thesis is to provide an automated, scalable and modular framework for the
analysis of deep sequencing transcriptomics data. Several algorithms were tested
and evaluated, and the workflow here proposed includes what were deemed to be

the best existing solutions to each of the processing steps of an RNA-Seq experiment.

Two important considerations in the design of the workflow were modularity and
efficiency. Modularity is required for replacing the underlying computational tools
when better solutions emerge without disrupting up or downstream processes of the
workflow. Efficient analysis of large RNA-Seq datasets requires optimization of the
computing resources such as processing time and hard disk space. To fulfill these
requirements, the pipeline was implemented using Anduril [OLHP*10], an open
source framework for scientific analysis, that provides the auto parallelization and

ease of integration of tasks.

The workflow includes modules for the most common tasks usually performed in
RNA-Seq analysis, but particular emphasis was made on the preprocessing step or
quality control module. Several methods were applied to filter the sequences or
bases with a reported quality below a certain threshold. In this manner more accu-
rate alignments and more reliable gene/isoform abundance estimations are obtained
during the processing steps of the pipeline, while reducing the alignment time cost

of lower quality datasets.

The computational framework for RNA-Seq data analysis here proposed was tested
on two cancer datasets. First, 38 RNA-Seq glioblastoma multiforme (GBM) samples
from the same tumor, technical replicates, from The Cancer Genome Atlas (TCGA)
[TCG09, NCI12] were compared to one exon array sample from the same patient.
For the second study, eight samples from diffuse large B-cell lymphoma (DLBCL)
patients were analyzed. These tumor samples were collected before chemotherapy,
and four belong to patients that relapsed and four to patients that achieved remission
after treatment. From this dataset, differentially expressed genes were identified that

could be playing a role in the outcome to treatment presented by the patients.

In the following section, a short overview on the biological and technological back-
ground on RNA-Seq and cancer is presented. On Section 3, each of the processing
tasks included in the RNA-Seq data analysis workflow are explained in detail. The
Results section contains comparisons between raw reads with reads preprocessed

with the framework’s quality control module, as well as the correlation analysis with
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exon arrays, and the differentially expressed genes found in the DLBCL dataset. Fi-
nally, some conclusions and suggestions for improving the proposed worflow are

discussed in Section 5.



12

2 Background

An introduction on the biological concepts behind RNA-Seq and cancer are pre-
sented in this section. Additionally, a brief history on transcriptomic analysis and

an overview of the technologies used in this work are introduced.

2.1 Basics of molecular biology

Proteins are required in almost every cellular function. The blueprint for the proteins
a cell needs is contained in its genome. Genes are stretches of nucleotide sequences
from the DNA that contain both exons and introns. Exons can be translated into
amino acids, while introns usually do not become part of the proteins. To synthesize
a protein the gene is first transcribed into pre-mRNA. This sequence has to then be
spliced to remove the introns and join the exons. The now mature mRNA is exported
to the cytoplasm where the ribosome translates it into an amino acid chain. Since
one gene may encode for more than one protein isoform, the splicing of the pre-
mRNA is not necessarily unique. Alternative splicing is estimated to occur in 95%
of genes that have more than one exon [PSLT08]. An overview of this process is

illustrated in Figure 1.

Alternative or differential splicing allows the cell to produce a wider range of proteins
than the number of genes in the DNA. Splice variants can also be caused by muta-

tions and as a result the proteins may suffer gain or loss of function. This phenomena
has been widely observed in cancer cells [Bri04, SNO7, VKK*09, OYK'11, PGD12].

2.2 Cancer

Cancer is the second largest cause of death in developed countries and its incidence
in the rest of the world is on the rise. According to World Health Organization
(WHO) around 7.6 million people died of cancer in 2008 and by 2030 this number
is estimated to increase to 13.1 million [WHO12|. The term cancer is used to refer
a large group of diseases that can affect any organ in the body. They are considered
complex diseases, which means that the functioning of several genes are involved in
its progression as well as lifestyle and environmental factors. The defining charac-
teristic of cancer is uncontrolled cell growth. These abnormal proliferation of cells
usually form malignant tumors that can invade nearby tissue and later spread to

more distant parts of the body. Normal cells may become cancerous when DNA
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Figure 1: Protein synthesis. An RNA polymerase (RNAP) adds matching RNA nu-
cleotides to the open DNA chain. In eukaryotes splicing is needed for producing the
correct protein through translation. The same pre-mRNA can be spliced in different ways
to create isoforms of the protein encoded by the transcribed gene. The mature mRNA is

then translated in the ribosome and an amino acid chain is formed.

damage occurs [HWF00|. Mutations in the genes that control cell-division cycle
such as growth and apoptosis, as well as in DNA repair genes are necessary for

cancer progression [HW11].
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Brain and central nervous system cancers cause the most cancer-related deaths, after
leukemia, both in children and in men between 20 to 39 years of age in the United
States [ABTA12|. Glioblastoma multiforme, a type of cancer that starts in the glial
cells —cells that give support to neurons in the brain— is the most aggressive and
common type of brain tumors. Unfortunately GBM has a very poor prognosis, the
average survival time after diagnosis with treatment is only one year and long-term
survival is rare [KKHT07].

Lymphoma is the most common type of blood cancer in adults. It usually origi-
nates in the lymph nodes and it can be classified depending on the cell type from
the immune system that is primarily affected: B, T, or natural killer (NK) cells.
The samples used in this work belong to diffuse large B cell lymphoma (DLBCL),
the most common one with a relative incidence of 40 to 50% among lymphomas.
Without treatment DLBCL is aggressive and rapidly fatal, but several therapies are
available that improve the prognosis allowing 60 to 80% of the patients to achieve
remission [KASR13|.

2.3 'Transcriptomics

The set of all RNA molecules in a cell or an organism is called the transcriptome
[WSL*09]. This set includes the functional messenger RNAs transcribed from the
cell’s genome, that when quantified allow the assessment of gene or isoform expres-
sion. For many years most gene discoveries have relied on expressed sequence tags
(ESTs), which are DNA sequences obtained from sequencing complimentary DNA
(cDNA) synthesized from mRNAs. ESTs have both qualitative and quantitative
limitations [AFPT04]. Among the main disadvantage is that they are subject to
sampling bias and are highly error prone since ESTs are obtained by a single-pass

sequencing run with no validation [NGRO7].

An alternative technology commonly used in transcriptome analysis is serial anal-
ysis of gene expression (SAGE) [VZVK95|. The advantage of SAGE, and similar
methods, is that it produces counts of the transcripts, but, on the other hand, it

provides no information on splice variants and does not allow for gene discovery.

Prior to RNA-Seq, microarrays have been the most widely used methodology for
transcriptome analysis. The cost of microarray experiments is lower than some

of the previously discussed techniques, but they also present drawbacks. Some of
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the limitations include artifacts due to hybridization and cross-hybridization and
problems with dye-based detection [RPD*04, OMOG].

The next-generation sequencing (NGS) approach to transcriptomics, RNA-Seq, al-
lows base pair resolution, the possibility of identifying rare transcripts, de novo
annotation, and it has a wider range of expression levels than microarrays [MMOS,
WGS09]. Most importantly, with RNA-Seq, it is possible to assess the expression
of individual isoforms, as opposed to overall gene expression, which is very valuable
since it has been observed that different isoforms of a gene are present in different

types or stages of cancer [WMK™11].

2.4 Exon array

Microarray technology has been of great value in transcriptomic analysis. A search in
PubMed for microarray results in more than 50,000 hits, and when refined to include
the term "expression" the number is still greater than 40,000. In comparison, RNA-
Seq yields less than a thousand hits, which comes as no surprise considering that
RNA-Seq has been around for about five years while microarrays for close to 20
years. In Supplementary Figure 1 a graph with the number of papers published for
microarrays compared to NGS with a prediction on when the tendency is expected

to change is included.

The most widely used types of microarrays for measuring gene expression are gene,
exon, 3’ and tiling arrays. A comparison of their probe distribution is shown in
Figure 2. Exon arrays allow whole genome expression profiling at exon level in
a single chip. In Figure 2 it can be observed that tiling microarrays have even a
better coverage than exon arrays, but the increased number of probes surpasses
the capacity of one chip to interrogate large genomes, for human at least seven are
needed [Aff05] which increases the cost of analyzing many samples. In comparison
to 3’ microarrays, exon arrays have been found to give better estimates of gene
expression [KXOWO07].

Exon arrays include up to four probes for each putative exon from several sources,
including RefSeq, ESTs or solely from predictions. They also differ from other gene
expression microarrays from Affymetrix because they do not have mismatch (MM)
probes for every perfect match (PM) probe. Instead, two sets of probes were designed
for background correction purposes. The first collection of probes is the antigenomic

background probes which are 25 bases long with varying GC content and that are
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Figure 2: Comparison of probe distribution in microarrays. On the top part of the figure,
the colored boxes represent the exonic regions in different splice variants of the same gene.
Below the genomic region the distribution of probes in different types of microarrays is

shown.

not present in the human genome. The second set, the genomic background probes
are MM probes for which there is a PM probe, but only from regions expected to be
lowly expressed [Aff05a]. The multiple exon array preprocessing (MEAP) algorithm
[CLH"11] used to analyze the exon array samples makes use of these two collection

of probes to measure the background expression levels in the array.

2.5 Overview of an RNA-Seq experiment

An RNA-Seq experiment requires several steps before the gene expression values
can be estimated. First, the mRNAs are extracted, fragmented, and then con-
verted into a ¢cDNA library containing sequencing adaptors. The ¢DNA libraries
are sequenced and millions of sequence reads are obtained from one or both ends
of the cDNA fragments. Reads from next-generation sequencers, Illumina/Solexa,
Life/Solid, Roche/454, and Helicos Biosciences are often very short (35-500 bp)
[MMO08, Mar08, Met10|, which means that several processing steps are required to
reconstructed the original mRNA transcripts. An overview of the protocol is de-

picted in Figure 3.

The reads can be preprocessed with the aim of removing sequencing errors when
possible. Different algorithms may then be used to assemble the reads into the
original transcripts. There are three main assembly strategies. A reference based
strategy is used when a reference genome is available and it is reliable. When this

is not the case, a de novo strategy is used. In de novo or genome-independent
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approaches, transcripts are assembled by constructing De Bruijn graphs —directed
graphs that represent sequences overlaps. It is also possible to combine both methods
because, even if the genome is known, the de novo approach can help find new
candidate transcripts [MW11].

Once the resulting reads are mapped to the reference genome, the alignments are
counted to estimate the number and density of exons, splice events, or new candidate
genes. Obtaining these estimates is by no means trivial. Some of the challenges
include that sequences from a transcript may not be uniformly represented and the
fact that it is not known how much sequence is needed to detect low abundant RNA
[MWM™T08|. Probably the most important of these challenges is the informatic cost
of assembling the transcripts from large genomes, such as human or mouse, since
splice events may not allow to unambiguously assign reads to different isoforms of
the same gene |[GGGT11].
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3 RNA-Seq data analysis framework

The implementation of the RNA-Seq data analysis workflow presented in this work
is based on Anduril, a bioinformatics oriented framework that facilitates the integra-
tion of processing tools. Anduril has successfully been used for functional genomics
data analysis [KHNH11, SLOT11| and it is currently being expanded for deep se-
quencing analysis. An Anduril workflow is a series of interconnected processing
steps in AndurilScript, a simple scripting language. The workflow relies in com-
ponents which are software packages that perform specific tasks of the pipeline.
Implementing the pipeline on Anduril provides several advantages such as ease of
data integration and flexibility in worflow construction. High efficiency of CPU
time is achieved by only executing components that have changed in the last run

and automatic parallelization of tasks.

The focus of this pipeline implementation is on the preprocessing, here referred
as quality control. In our experience, low quality datasets from NGS experiments
can increase considerably the processing time (shown in Results section), while not
contributing with reliable information. Therefore an automated module for detecting
and filtering those reads was implemented. In this first step of the workflow quality
checks are performed on the reads with the aim of discarding reads that may slow
down the alignment and transcript assembly processes. An overview of the whole

pipeline can be seen in Figure 4.

Currently, the RNA-Seq core analytical steps of the workflow rely on the Tuxedo
suite (Bowtie-Tophat-Cufflinks)[TRG*12], but the modularity of Anduril allows for
any of the components to be replaced or updated if a more suitable tool is available

or preferred.

3.1 Preprocessing: quality control

There are no overall approved guidelines for preprocessing the RNA-Seq reads. Dif-
ferent approaches for quality control exist [Linl2|, including skipping all together
the preprocessing and relying on the aligners to discard bad quality sequences. In
this work a series of measures were implemented that allow the aligner to find more

unique alignments than without any quality control steps.

Apart from obtaining better alignments, having a preprocessing step can reduce

the overall analysis time. For example, sequences with low quality bases contain
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* Tag prediction
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. * Quality trimming

Only reads that pass the
quality step are kept.
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[ Processing « Transcript assembly
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[ Analysis ] * Differential expression
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Figure 4: Pipeline overview. In the quality control step, low quality bases are trimmed,

remaining tags or adaptors from sequencing or PCR are removed, and remaining sequences
that are shorter that a certain threshold are discarded. Then, reads are aligned to the
transcriptome. From the alignment transcripts can be assembled and reads can be assigned
to different isoforms to estimate their abundance. Downstream analysis depends on the
specific aim of the study, but most commonly it includes creating gene/isoform expression

tables or finding sets of differential expressed genes.

errors that may cause the sequence to match several places in the reference genome,
which slows down the aligners. When many low quality bases are removed, the
remaining sequence may become too short which increases its possibilities of aligning
to multiple places in the genome, slowing furthermore the process. Adaptors from
the library preparation step may hamper the alignment if still present, therefore

detecting and removing them is beneficial.
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Many approaches and tools were considered and the ones that best suit our needs
were chosen. All these steps are independent of each other and can be replaced or
modified if better tools become available. A flowchart of the quality control module

can be observed in Figure 5.

The quality control module starts by assessing the overall state of the reads. To ob-
tain statistics on the quality of the sequences the pipeline relies on FastQC [Bab12].
This tool aims to find errors in the reads that could have been introduced by the
sequencer or during the library preparation protocol. First, a graph displaying the
estimated quality score at each position of the read in all the sequences is produced
(per base sequence quality). Second, the mean quality scores in all the base-calls
for each sequence is calculated (per sequence quality score). These two statistics
are based on Phred quality scores [EHWGYS8|, widely accepted estimations of the

quality of a base-call by the sequencer.

The Phred quality score () for each base is obtained with

where P is the estimated error probability. To calculate P, Phred uses a set of four
parameters for discriminating correct calls from errors. These parameters include
peak to peak spacing, uncalled to called ratio (on two different window sizes), and
peak resolution. Figure 6 shows examples of these peaks and the respective Phred

score calculated for the corresponding bases.

A base with a Phred score above 20 is considered reliable having 99% probability
of being correct; there is no upper limit for the scale so the higher () is, the more
reliable the base-call is considered to be. The Phred scores are calculated as a part
of the sequencers pipeline and are included in the fastq files with the sequences.

Examples of these graphs for good and poor quality dataset are shown in Figure 7.

FastQC also provides statistics relative to the GC content, sequence duplication,
overrepresentation of k-mers or other sequences, and the sequence length distribu-
tion. All the graphs obtained with FastQC, from before and after preprocessing
steps, are included in the quality control report. Since the pipeline is intended for
efficiently processing large datasets without manual intervention, it is not neces-
sary for the user to visually inspect these reports prior to the analysis. The pipeline

automates the process of deciding if a dataset is good enough to be used for analysis.

Once the quality statistics of the raw reads have been obtained the pipeline makes

use of them in the following filtering and trimming steps. The mean quality of the
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Figure 5: Quality control flowchart. The first step is to obtain statistics from the raw
reads. Files that do not have enough sequences of good quality are discarded. From the
remaining reads tags are removed if necessary and then low quality bases are trimmed.
Overall statistics of the polished reads are calculated and a report is issued describing the
initial quality of the dataset, the tags removed, and the final quality. The trimmed reads

continue to the alignment step of the pipeline.
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An example of a base that has been
given a very high Phred score of 50,
indicating that there is 99.999%
probability that this base has been
correctly assigned.

An example of a base with a
Phred score of 10, indicating
that there is 90% probability
of being correctly assigned.

An example of a base for which
no Phred score could be
calculated since the sequencer
could not determine which base
was present.

Phred score=20 —» 1

Figure 6: Phred quality scores. The grey bars on top of the base-calls represent the Phred
score. The green line shows the height of a Phred score of 20. Each base is shown in a
different color that matches the underlying peak. When a base cannot be determined an

"N" is used as space holder an no Phred score is assigned. Adapted from [Phr12].

Quality scores across all bases (Sanger / llumina 1.9 encoding) Qualtty scores acrass all bases {llumina 1.5 encoding)

i

123456789 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Position in read (bp) Position in read (bp)

(a) Bad quality data (b) Good quality data

Figure 7: Per base quality graphs. The x-axis corresponds to the base position in the
read (1 to sequence length). The y-axis is the Phred score starting at 0. A Phred score
of 30 means that the base-call has 99.9% accuracy. The yellow boxes cover 25-75% of
the quality scores for that base position in all the sequences. The red line represents the

median while the blue line indicates the mean quality score for that base over all the reads.
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sequence is used to decide if a whole sample should be discarded. The decision of
keeping a file in the pipeline is based on the percentage of sequences that have an
overall quality above 20. The percentage is a user-defined parameter, the default
is set to 30%, which means that if 70% or more of the reads have a mean quality
below 20 the whole file is filtered out.

For the samples with high enough quality to survive the filtering, the third step is
adaptor/tag removal. For this purpose the TagCleaner [SLRE10] software is used.
The principal advantage of TagCleaner over similar tools to remove adaptors is that
it can predict tag sequences using a nucleotide frequency based approach. The
sequences of the adaptors used in the library preparation protocols are not always
known to the end user. The pipeline couples the prediction step with the removal
of the tags, which eliminates the need of manual intervention. It is also possible to
directly submit the tags/adaptors if they are available and skip the prediction step.
A threshold specified in advance by the user decides if the overrepresentation of the
tag in the reads warrants its removal. The default percentage (of overrepresentation)

is 15 for this step as suggested in TagCleaner’s documentation.

Currently, only the most overrepresented tag is removed on each side of the read.
In principle it is possible that sequences with different adaptors are combined in the
same sequencing run or that adaptors from both PCR and sequencing may still be
present. FastQC’s table of overrepresented tags reports if the tags correspond to
[lumina adaptors (or the platform being used). This information could be combined
with the tag removal component to improve furthermore the quality of the sequences,

but this has not been implemented yet.

Once the adaptors are removed, the sequences are further trimmed depending on the
base quality using the Trimmomatic [BG12] software. Trimmomatic was developed
as part of RobiNA [LBNT12| an application for RNA-Seq based transcriptomics
aimed at differential expression analysis. With Trimmomatic any low quality bases
can be removed regardless of their position in the sequence, known adaptors can be
clipped, and short sequences can be filtered. From these functionalities, only the
minimum size filtering and the trimming of bases at the ends of the reads are being
used in the pipeline. A more complete tag removal algorithm that includes tags
prediction is already being used for clipping (TagCleaner). Removing low quality
bases in the middle of the sequence may not be advisable for alignment unless the
reads are split. Additionally, in our experience it is not common that the quality

of the bases drops in the middle of the sequence and then recovers, therefore it was
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not deemed necessary to use this feature. Quality trimming at the beginning and,
particularly, at the end of the reads, where the quality tends to drop, is necessary
for obtaining more unique alignments. Both, the 5 and 3’ quality thresholds are
user-defined parameters based again on Phred scores. In both the glioblastoma and

lymphoma case studies, leading and trailing thresholds were set to 20.

Sequences that may become too short after quality trimming (length being also a
user-defined parameter) are discarded using the minimum length filter. A length of
at least 20 nucleotides is suggested in TopHat’s documentation [TPS09] as optimal.
An important consideration is that when a sequence is removed from one of the
pairs in paired-end sequencing it has to be removed from the other one as well. If
the mate has good quality then it goes to a file that will be treated as single end
reads. Presently, the pipeline is not incorporating those reads in the mix, but it is

possible to do it as an extra step.

Finally, the FastQC is used again to check the quality of the sequences after the
trimming steps. The data files with too few reads are discarded from the rest of the
analysis. In Figure 8 a per base quality graph for the same sample before and after

going through the quality control module can be seen.
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Figure 8: Per base quality before and after preprocessing step. Since the low quality
bases at the end of the sequences have been trimmed, the mean quality is higher after

preprocessing, and also the lowest base quality value is higher than before.

A table with the required parameters for the quality control module is included as

Supplementary Table 1 in Appendix A.
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3.2 Core processing tasks: alignment, transcript assembly,

and abundance estimation

To be able to quantify the gene expression in the RNA-Seq samples, the reads need
to first be aligned and then assembled into transcripts, these steps are exemplified in
Figure 9. Even though RNA-Seq is still a new technology many tools already exist
for each of the aforementioned tasks and more methods are constantly appearing
in the literature [GGGT11]. In Table 1 some of the available software packages for

alignment, assembly, abundance estimation and differential expression are listed.

3.2.1 Alignment

Short sequence aligners can be classified into spliced or unspliced. Unspliced aligners
are usually used for mapping sequences to the genome without allowing large gaps.
Two main classes of unspliced aligners exist: seed methods and Burrows-Wheeler
transform (BWT) [BW94|. In the first type, short subsequences of the RNA-Seq
reads are used as seeds to find perfect alignments, these seeds are then extended
to full alignments. Stampy [LGM*11] and MAQ [LRDOS8] belong to this category
of aligners. BW'T is a method that permutes the order of the characters for data
compression. In this way, searches for perfect matches are done more efficiently
[BW94]. Both Bowtie [LTPS09] and BWA [LD09] are widely used BWT aligners.
Unspliced aligners cannot find novel exon junctions, but they can map reads that
contain large gaps such as very long introns. Spliced aligners can also be divided into
two main types: seed-and-extend and exon-first [TRG'12]; some examples of these
methods are included in Table 1. Exon-first approaches make use of an unspliced
aligner to map first the exonic reads. The remaining reads are split and aligned in
a second step that is more computationally expensive. Seed-and-extend algorithms
use a similar approach than the unspliced seed methods. These methods can find
better alignments than their exon-first counterparts, but they usually require more
computational resources [MW11, TRG'12].

The current implementation of the workflow uses TopHat for the alignment step.
The criteria for choosing this tool was usability and performance. It is well doc-
umented and maintained, easy to install, and it is faster than other algorithms
|[GGGT11|. TopHat is a mapper of RNA-seq reads to a genome. When a transcrip-
tome is supplied, TopHat uses Bowtie, a short read aligner to map the sequences. If

the transcriptome is not available or discovery of novel transcripts is desired, then
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Figure 9: Alignment and assembly. Example of the alignment and assembly of several
isoforms of a maize gene. a) Shows the spliced alignment of the paired-end reads to a
specific area of the genome. Constructing a DAG for each locus and then finding the
minimum set of paths in the graph as shown in b) and ¢) are steps performed by Cufflinks.
The abundance of the assembled isoforms d) has to then be estimated. Reprinted by

permission from Macmillan Publishers Ltd: Nature Reviews Genetics [MW11], copyright
2011.

the alignment is done in two steps. The first step is the same as in the previous
case: use Bowtie to align as many reads as possible to the genome or transcriptome.
Then, using the exons that have reads aligned to them, a list of possible novel splice
junctions is built. The initially unmapped reads are then split into shorter sequences

and TopHat then tries to align them again considering the new exon junction sites.



Alignment Package Method Reference
TopHat exon-first [TPS09]
SpliceMap exon-first [AJLT10]
MapSplice exon-first [WSZ*+10]
Mosaik seed-and-extend [Mos10]
GSNAP seed-and-extend [WN10]
QPALMA seed-and-extend [DOSRO8|
RUM seed-and-extend |GFPT11]
SEQMAP seed-and-extend [JWO08|
RMAP seed-and-extend [SCHT09]
OSA seed-and-extend [HGNL12]
BLAT seed-and-extend [Ken02]
Assembly Package Method Reference
Trinity de novo [GHY*11]
Trans-ABySS  de novo [BINT09]
Oases de novo [SZVB12]
Cufflinks genome-guided [TWP*10]
G-Mo-R-Se genome-guided [DADT08]
Scripture genome-guided [GGL*10]
IsoLasso genome-guided [LFJ11]
Expression Package Method Reference
Cufflinks MLE [TWP*10]
Miso MLE [KWAB10]
ALEXA-Seq unique reads [GGM™10]
IsoLasso LASSO [LEJ11]
Diff. Expression Package Method Reference
Cuffdiff NB, exact [TWP*10]
edgeR NB, exact [RMS10]
DESeq NB, exact [AH10|
BaySeq NB, bayesian [HK10]
DEXSeq NB, exact (exon) [ARH12]
NoiSeq non-parametric [TGD*11]
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Table 1: RNA-Seq processing tools. This list is not meant to be exhaustive, it includes
tools tested for the pipeline and some other methods referenced in [GGGT11, MW11].
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3.2.2 Transcript assembly

Transcript assembly has proven to be particularly complicated to achieve due to
the high variability in the number of reads that align to different genes and the
inherent difficulty of determining which reads come from each of the possible isoforms
expressed [GGGT11]. Currently, two main approaches exist for this problem: to
use a reference genome to reconstruct the transcripts or recreate them only from
the reads. In the latter approach, de novo reconstruction, the alignment step is not
needed or is done afterwards. These genome independent approaches are completely
necessary for organisms without a reference genome, but for well annotated ones
there is a clear trade-off. The advantage is that they do not depend on the quality
of the reference genome and they can find chromosomal rearrangements or long
intron spans, but they are considerably more computationally expensive than their
counterparts. The methods included in Table 1, Trinity, Trans-ABySS, and Oases,
all use De Bruijn graphs to reconstruct the transcripts, but they differ on how
they transverse the graph [MW11]|. Genome-guided approaches such as Scripture
and Cufflinks, also construct assembly graphs for transcripts, but they parse them
differently. Scripture aims for maximum sensitivity, while Cufflinks for maximum
precision. IsoLasso extends on the ideas from both Cufflinks and Scripture for

identifying the isoforms.

From the available approaches for transcript assembly only the genome-guided ap-
proaches were considered at this point since de novo reconstruction of large datasets
of human samples is too computationally expensive. The methods for transcript as-
sembly considered were Scripture, IsoLasso and Cufflinks. Scripture was tested, but
the results were difficult to interpret since the documentation was incomplete. It is
possible that upgrades have been made to the software package after the documen-
tation was first released, but no updates have been made to their website. IsoLasso
[LFJ11], based on the Least Absolute Shrinkage and Selection Operator (LASSO)
algorithm [Tib11], with the glioblastoma dataset, failed to report values for a signif-
icant portion of the genes. This issue was addressed with the developers who were
aware of the problem and were working on it. Just recently (July 2012) they have
released a new version which will be reconsidered in the near future. Cufflinks then
resulted in the best choice in terms of usability and flexibility since the discovery

mode can be switched off and only known variants are quantified.

Cufflinks reassembles the transcripts and calculates individual expression values for

each deconvoluted isoform. Using the alignments provided by TopHat, Cufflinks
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divides the fragments (aligned paired of mated reads) into non-overlapping loci, and
each locus is assembled independently. With the fragments of each gene, Cufflinks
constructs a directed acyclic graph (DAG) by assigning a node to each fragment.
A directed edge from node z to y is added if x starts at a lower position in the
genome than y, if the fragments overlap, and if they are compatible (having exact
same introns or none). In the case of paired-end reads sometimes the compatibility
cannot be determined since the unknown part of a fragment (insert) can overlap
introns that may be incompatible according to other fragments in the set. The un-
certain fragments are discarded at this point, but they are later used in abundance
estimation if they are consistent with a transcript. Redundant paths are removed
and then Cufflinks finds the minimum path cover from the graph, that is all frag-
ments belong to at least one path, but only the fewest number of paths that explain
the transcripts are kept. Once the transcripts are defined, their abundance is esti-
mated using a maximum likelihood estimation model (MLE) where read coverage

and expected fragment length are factored in.

Both abundance estimation and differential expression can be done with or without
transcript assembly. For novel splice variant discovery, one of the promises of RNA-
Seq over microarrays, transcript assembly may be necessary. Distinguishing a new
isoforms that share exons with known variants requires the reconstruction of the

original transcripts.

3.2.3 Abundance estimation

Estimating abundances from the RNA-Seq data, as opposed to just determining
differential expression, is necessary in studies were there are no control samples or
different conditions to test. In particular, that was the case of the GBM study were
only tumor samples are being analyzed. Therefore, expression quantification is a

necessary step of the workflow.

Despite the fact that Cufflinks was already part of the pipeline, the three other
programs listed in Table 1 for abundance estimation were tested. Miso does not
give normalized expression values, but does report read counts and differentially
expressed genes/isoforms. Since Miso only works in parallel in a cluster environment
it is not straightforward to incorporate it to the rest of the processing steps in an
efficient manner. ALEXA-Seq, which measures expression based on the number of
unique reads that align to a given isoform, could not be properly compared to other

tools since a considerable amount of time and effort was required to test due to
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difficulties in installation and preparation of the input data. IsoLasso was already
discussed in the previous section. Cufflinks proved to be the best candidate for the
workflow since on top of the high usability it has the advantage of giving estimates

both at isoform and gene level.

The core processing steps of the pipeline are then based on the Tuxedo suite. Bowtie,
TopHat, and Cufflinks are under constant development and during the realization of
this work several upgrades have been released as well as an R library for visualizing
the results, CummeRbund [TRGT12|. Given that the pipeline design is modular,
these algorithms could be replaced in the future if more suitable ones appear without

affecting the other processing steps.

Once the RNA-Seq reads have been aligned and the genes and isoforms quantified,
the results are organized to facilitate further analysis. The last step of the abundance
estimation module is to construct the gene and isoform expression tables from all
the samples analyzed. These expression tables can be refined to include only protein
coding genes/isoforms of a certain length since Cufflinks is not a tool for estimating

abundance of small RNA species (usually shorter than the library fragment size).

Differential expression is not discussed as a core task in RNA-Seq analysis, even
though it is a crucial part of many studies, since only datasets that have two or
more conditions to be compared require this type of analysis. Alignment, transcript
assembly and abundance estimation are performed on all the RNA-Seq datasets
that have been analyzed with the framework proposed in this work. Differential

expression is addressed in Section 3.3.

3.3 Differential expression and exon array analysis

In this section, two particular tasks for downstream analysis of RNA-Seq data are
discussed: differential expression and a comparison with exon array. Differential
expression analysis was used to identify genes that could play a role in the response
to treatment of the DLBCL patients. A comparison with exon arrays was deemed
important since microarrays are the established technology in transcriptomics. An
overview of the whole workflow including this tasks, for both GBM and DLCBL

studies, is included in Figure 10.
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Figure 10: Processing and Analysis steps. After the quality control module, the reads

go through the steps shown in this figure. The left hand workflow was used for the GBM

dataset, while the right one was for the DLBCL samples. Both pipelines start with the

trimmed reads obtained from the quality control module. Then alignment, transcript as-

sembly, abundance estimation, and the construction of the expression tables are performed

on all set of reads. The downstream analysis after the expression tables are produced de-

pends on the research question and the results obtained in this stage. Correlation analysis

refers to the comparison with exon arrays.
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3.3.1 Differential expression

When different conditions are being studied or one condition over a series of time
points, sets of differentially expressed genes/isoforms are calculated. Since Cufflinks
was already incorporated to the workflow, Cuffdiff —part of the Cufflinks software
package— is being used for differential expression analysis. EdgeR, and DESeq,
widely used tools for differential expression [DRAT12| both available as Bioconduc-
tor R packages, and the latest version of Cuffdiff, all use a negative binomial (NB)
distribution to model the variance in read counts across replicates. DEXSeq is a
similar tool that combines approaches from EdgeR and DESeq, but taken to the
exon level. In that way identifying differential splicing or differential exon usage

under two sets of conditions is possible.

DEXSeq works by dividing the reads mapped to the same gene into counting bins
depending on the exons they overlap. Counting bins do not completely correspond
to exons since different transcripts may have different exon sizes in the same genomic
location. In that way, a transcript that has varying lengths for the same exon gets
assigned two counting bins, one for the shortest exon, and one for the additional
bases of the longer one, plus more counting bins for the remaining exons. Then,
DEXSeq, uses a generalized linear model (GLM) to model the read counts. DEXSeq
has already been tested with the DLCBL, but the full incorporation of this method

to the pipeline is still in progress.

For the lymphoma dataset a list of differentially expressed genes under the two
conditions was calculated using the pipeline, and it is included in the Results section.
Additionally, an example of differential exon usage identified by DEXSeq is also

shown in that section.

3.3.2 Exon array analysis

The exon arrays from both datasets, GBM and DLBCL, were normalized and quanti-
fied using the multiple exon array preprocessing MEAP algorithm [CLH*11]. MEAP
uses a Bayesian probabilistic model based on the probe sequence for background cor-
rection. This method, PM-BMBC (Perfect Match-Bayesian Model for Background
Correction) forms groups of genomic and antigenomic background probes based on
their intensity level. Then for each of this groups a probe weight matrix based on the
sequences of the probes is calculated. Using this matrix the posterior probability, of

each query probe, of belonging to any of this groups is estimated. The intensity of the
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group with the maximum posterior probability is used as the background intensity
of the query probe. A background corrected probe expression matrix is obtained in
this manner. Normalization and summarization are done by quantile normalization
and median polish methods, respectively. MEAP can estimate expression matrices

at probe, gene, exon and splice variant level.

The expression values obtained using MEAP, both at gene and splice variant level
were incorporated to the expression matrices compiled from RNA-Seq data. Com-

parisons of both assays are discussed in the Results section.
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Two different sample sets, GBM and DLBCL, were used to test the pipeline. The
GBM set consists of 38 technical replicates of RNA-Seq from the same tumor with
varying qualities. The expression values from RNA-Seq were then compared with
results from exon array from the same patient. The lymphoma set consists of four
samples from patients that have relapsed after chemotherapy and four samples from
patients in remission. Since the lymphoma dataset contains two different conditions
differentially expressed genes/isoforms were obtained. For comparison purposes also
exon array samples from the eight patient samples were analysed. In this section

results from each step of the pipeline are presented.

4.1 Quality control module

For the GBM set, the quality control module was initiated with 38 single end GBM
samples from the same tumor. Only 31 samples survived the filtering steps and
seven were discarded due to having a mean quality below 20 on more than 70% of
the reads. Figure 11 shows the number of unique alignments that were gained after
applying quality control measures on the raw reads. The surplus in number of unique
alignments correlates with the initial quality of the files. For example, the cluster of
samples in the bottom right correspond to files with very high initial quality (100%
of the reads passed the filtering step), so there is no much difference between the
raw and the preprocessed files in that case. Moreover, the sample with the greatest
gain in unique alignments, y-axis, has the lowest overall quality from the set. In all
cases more unique alignments were obtained with the quality control step, except
for the files discarded in the filtering step. The corresponding quality statistics for
all samples both from DLBCL and GBM datasets are included as Supplementary
Table 2 and 3, respectively.

In terms of processing time, the alignment of the raw reads took almost 30 hours!
more than the preprocessed reads. Figure 12 shows the differences in minutes re-
quired for alignment for each of the GBM samples. The last two samples, 37 and
38, took, respectively, about 16 and 4 hours to be aligned. These samples are the

!Both datasets were processed on a virtual machine provided by the Finnish IT — Center for
Science (CSC) cloud services. All time estimates were calculated based on a single thread of a
Intel Xeon X5650 2.66GHz processor with 12 cores (24 HyperThreading processes). The overall

alignment time was in fact much lower since several files were run in parallel.
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Figure 11: Gain in number of unique alignments in GBM. The x-axis represents the
number of unique alignments, while the y-axis shows how many more unique alignments
were obtained from the same sample after preprocessing it with the QC module. It can be
observed that the gain roughly correlates with the initial quality of the sequences shown
in the boxes near the sample clusters. Samples with almost a 100% of reads with a mean
quality above 20 Phred score have little gain in number of unique alignments since the
trimming and filtering was minimal. On the other hand, lower quality sequences have a

higher gain in number of alignments.

ones with lowest quality that were kept in the pipeline. Over 50% of the reads in
sample 37 had a mean quality below 20 in Phred score. Considering that these
two samples also have the least number of unique (and total) alignments it suggests

that the threshold for discarding files could be raised when several replicates are
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available. The fact that one file is responsible for half of the overhead of aligning
the raw compared to the preprocessed reads stresses the importance of undertaking

quality control measures that optimize the use of computational resources.

In Figure 13 scatterplots of two data files before and after quality control are pre-
sented at both transcript and gene level. The obtained Spearman correlation is high,
0.95 for DLBCL and 0.99 for GBM, but still there are differences in isoform expres-
sion before and after quality control. From the genes and isoforms that showed the
biggest differences in expression —the ones that have a log2 expression value higher
than 20 in one set and zero on the other— it was observed that 97% of them belong
to transcripts smaller than 300 bp. Cufflinks is known to overestimate expression
values of transcripts shorter than the library size [TWP*10], which may account for

these differences.
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Figure 12: Processing times for alignment in raw and preprocessed reads. The overall
processing time for the 38 raw reads of the GBM dataset was 82 hours and 15 minutes.
For the preprocessed reads, QC in the graph, the required time for alignment was 52 hours
and 49. The almost 30 hour difference is mostly due to files that did not pass the quality
filter (samples 6 to 12) and sample 37 that took 16 hours, about four times more than
its QC counterpart. The reason why low quality reads slow down the alignment has been

explained in section 3.2.1.

In Figure 13c it is interesting to note that the expression values tend to be higher
in the QC set. The improvement obtained in the alignment step with the quality

control module is being reflected in the expression values obtained for each gene.
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At isoform level it is more difficult to observe since reads that were assigned to one

splice variant in QC may be assigned to a different variant from the same gene in

NoQC. This will result in isoforms having different expression values in each set,

even if the gene expression value obtained from both is the same. The statistical

significance of the gain in unique alignments has not been proven, but the expression

values are affected by the quality control module as can be seen in Figure 13. It

follows that the relevance of the measure, in terms of expression values, will depend

on the specific genes affected and their importance in the research question, which

cannot be determined in advance.
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Figure 13: Quality control against No Quality control. In each figure expression values

have been transformed to log2 and normalized. The values for the trimmed reads (QC) are

shown in the x-axis while the ones obtained from the raw reads (NoQC) are in the y-axis.

The z = y line is included in green for reference purposes.
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4.2 RNA-Seq and exon array comparison

In this section a brief analysis on the expression values obtained independently from
exon arrays and RNA-Seq is presented. Both cancer datasets assayed with RNA-Seq
were compared to an exon array from the same tumor sample. In total one GBM

and eight DLBCL exon arrays were analyzed using MEAP.

In Figure 14 the frequencies in expression values from one exon array and one RNA-
Seq samples are shown. Both 14a and 14b correspond to the lymphoma dataset.
It can be observed that RNA-Seq expression values have a wider range than exon
arrays which results in more reliable estimates and fold change for highly expressed
genes [RBY"12].
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Figure 14: Exon array and RNA-Seq example of expression values frequencies. RNA-Seq
frequency values appear to be normally distributed, while it was not the case with neither

the GBM (not shown) nor the lymphoma exon array sample.

The Spearman correlation for the expression values in log2 in both technologies
was 0.71 for GBM and 0.85 for lymphoma. These correlation values are con-
sistent with previous comparisons of exon array and RNA-Seq in the literature
[MMM™*08, GGM*10, NPP*12|. Additionally, as reported in [NPP*12] the differ-
ences in expression are not overly biased towards certain genes. The differences in
expression levels from both technologies seem to equally affect low or highly ex-
pressed genes. Table 2 shows the correlation values for the GBM set before and
after quality control at gene and isoform level. The RNA-Seq samples have been
grouped in high, medium or low depending on their correlation level with the exon

array sample.
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Samples | Gene NoQC | Isoform NoQC | Gene QC | Isoform QC
1-24
high 0.71 0.23 0.71 0.22
29 — 36
medium | 25— 28 0.45 0.21 0.36 0.24
low | 37 — 38 0.15 0.06 0.23 0.19

Table 2: Summarized table of the correlation between RNA-Seq and exon array for

genes and isoforms, both for the raw files (NoQC) and after being preprocessed for quality

control. Samples have been grouped in high, medium and low correlation. Correlation

values between QC and NoQC sets are not significantly different. Gene correlation values

are consistent with the quality of the data files, low quality files present a lower correlation

than high quality ones. It can be observed that correlation values are concordant as well

with the alignment times from Figure 12. Samples in the low group took the longest to

align, followed by the samples in the medium correlation group.

Figure 15 shows RNA-Seq expression values at gene level in comparison with exon

array for one sample of both GBM and DLBCL datasets. RNA-Seq expression values

reported by Cufllinks are consistently higher than exon array values. Saturation,

cross-hybridization or missing probes in exon array could explain these differences,

as well as overestimation of expression values for small transcripts by Cufflinks as

mentioned earlier.

4

%
i

08

0.6

RNA-Seq
"

0.4

SRR028854 +

08 §

0.6

RNA-Seq

04

n
ek
4

o

4

+ ¥ i
[y +
0.2 geams T, Y o,
e
+ *++ & ;+ M
**:ﬁ** st
0 + +i;-*+#++++4. ) .
9] 0.2 0.4 0.6 0.8
exon array
(a) GBM.

T+ o+ s
7 #fﬁ *,
o

0.2

sample 4 +

o
gt

086 0.8 1

exon array

(b) DLBCL.

Figure 15: Comparison between exon array and RNA-Seq expression values. The z =y

line is included as reference.



41

The total number of genes and isoforms that were found to be expressed both
in GBM and lymphoma are shown in Figure 16. In all cases, the majority of
genes/isoforms were detected by both technologies, but it can observed that exon
array does not report expression values for a significant number of genes/isoforms.
Differences at splice variant level are to be expected due to the algorithms for re-
constructing the mRNA transcripts.

Exon array Exon array

RNA-seq RNA-seq

(a) Genes in GBM. (b) Isoforms in GBM.

Exon array
RNA-Seq o RNA-Seq

Exon array
(c) Genes in DLBCL. (d) Isoforms in DLCBL.

Figure 16: Comparison of expression of genes/isoforms in RNA-Seq and exon array.
The Venn diagram show how many genes in (a) and (c¢) and how many isoforms in (b)
and (c) were found to have a positive expression value in each assay. In all cases, both

technologies detected most of the genes/isoforms. A significantly higher number of isoforms
were detected by RNA-Seq.
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4.3 Differential expression

The last step in the analysis of the lymphoma dataset was to find differentially
expressed genes between patients in remission and patients that have relapsed after
chemotherapy. For this analysis Cuftdiff was used taking advantage of the fragment
bias correction algorithm. In Table 3, the genes that were found to be significantly
differentially expressed are shown. This table is a summarized version of Cuffdiff’s

gene exp.diff output file.

The genes in Table 3 have been classified according to functional annotations found
in GENATLAS [Fre86], a gene database that compiles information from the Human
Genome Project (HGP) [ISC01, VAEAO1] and published literature. From the 17
genes in the table, six were associated to tumor progression (*), four with immune

response or inflammation (-), and two with cell cycle (+), namely cell division and

apoptosis.
Gene C1l| C2 | Valuel Value2 fold change | p value q value
FMO2 rel | rem | 0.330696 | 2.1235 2.68287 1.20956e-05 | 0.0118096
+CENPM rel | rem | 61.0118 26.119 -1.22399 4.22691e-09 | 1.92592¢-05
SLC8A3 rel | rem | 2.59085 0.082365 | -4.97525 6.14016e-07 | 0.000932553
*IL7 rel | rem | 3.66544 8.25381 1.17107 2.38937e-08 | 8.16506e-05
*WNT2 rel | rem | 2.84697 0.29141 -3.28831 4.33128e-05 | 0.0328912
*CA9 rel | rem | 4.74904 0.387615 | -3.61494 3.75464e-07 | 0.000733174
SPRYD5 rel | rem | 0.0341405 | 4.41964 7.0163 4.01191e-05 | 0.0322581
CDHR3 rel | rem | 0.728758 | 13.8944 4.25292 2.192e-07 0.000499373
SUMEF2 rel | rem | 114.863 68.3189 -0.749551 7.70301e-07 | 0.00105292
*FGFBP1 rel | rem | 43.9677 0.0462359 | -9.89321 4.06736e-08 | 0.000111194
ABCAG6 rel | rem | 32.2312 3.05142 -3.40091 7.41978e-10 | 5.07105e-06
*_IL23R rel | rem | 3.19042 0.226403 | -3.81679 5.23704e-07 | 0.000894813
*GUCY1A3 | rel | rem | 2.24613 4.12845 0.878158 00
+CIDEA rel | rem | 0.121502 | 6.86287 5.81976 9.06038e-06 | 0.0101298
-IGHV1-2 rel | rem | 3.39023 645.112 7.57202 3.60816e-05 | 0.0308249
-IGKV3-11 | rel | rem | 2.76715 872.313 8.3003 9.63405e-06 | 0.0101298
-IGKV1-9 rel | rem | 0.696892 | 145.405 7.70492 2.09229¢-05 | 0.0190663

Table 3: Differentially expressed genes in relapse and remission patients in lymphoma.
Functional annotation of genes relevant to cancer is shown in the table with + for genes
associated with cell cycle such as cell division or apoptosis, * for genes associated with

tumor progression, and - indicates genes related to immune response or inflammation.
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Interleukin 23 receptor (IL23R) is an interesting candidate for further analysis since
it has been associated with both cancer progression and immune response. The
protein encoded by IL23R is necessary IL23 signaling. In turn, IL23 is a cytokine
part of the immune response to infection and it is also known to increase angio-
genesis. Higher expression of 1123 or IL23R, in comparison to normal tissue, has
been reported in several cancers and has been associated with tumor progression
and metastasis [LZWT06, KXK*09, LZW*11]. Figure 17 shows the differential
expression at exon level of IL23R obtained with DEXSeq.
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Figure 17: Interleukin 23 receptor. The red and blue lines do not correspond directly to
exons, but to counting bins, red for relapsed patients and blue for remission. Underneath

the counting bins the flattened gene model of ILL.23R is included.
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5 Discussion

A framework capable of efficiently organizing large datasets, handling parallelization,
and with the flexibility to keep each processing step as a separate module is of
great aide in any deep sequencing experiment. The Anduril framework provided
these characteristics to the RNA-Seq data analysis workflow described in this work.
Parallelization is essential when working with large datasets, but it is not the only
way to speed up the processing time. In RNA-Seq experiments, the alignment
of the reads to the transcriptome is a crucial step in the analysis and one of the
most computationally expensive. The quality control module refines the alignments
while reducing the overall processing time in two ways. First, whole datasets were
discarded early on in the process if their overall quality was too low, precluding the
need of further processing them. Second, Bowtie can be significantly slowed down
by poor quality base-calls in the reads [LTPS09], but this is avoided by the trimming
and filtering steps of the QC module. In the GBM case study the alignment time
was efficiently reduced by 30 hours. The processing time of the remaining tasks was

also reduced since only a subset of the original dataset was further analyzed.

The comparison with exon arrays was based on the expression values for genes
and isoforms delivered by the pipeline. It was shown that our workflow performs
as expected when RNA-Seq has been compared to exon arrays, and in fact the
correlation obtained in the DLBCL dataset was higher than the one obtained using
ALEXA-seq in [GGMT10]. Since RNA-Seq is not limited, like exon arrays, by the
knowledge of the genome during probe design, it was observed that more genes and
isoforms were detected by RNA-Seq in both datasets.

The automated RNA-Seq data analysis workflow presented in this work proved to
be competent in identifying differentially expressed genes between two conditions in
cancer samples. The enrichment towards tumor progression shows that the efficient
analysis of RNA-Seq enables the identification of interesting candidate genes for fur-
ther study and validation. IL23R identified both by Cuffdiff and DEXSeq has been
also associated with cancer progression and poor outcome to therapy in pancreatic
cancer [VNGT12| and according to [LZW'11], IL23 is a good candidate for cancer

immunotherapy.

It is known that chromosomal rearrangements are common in cancer and the work-
flow described in this work is not capable of identifying such events. Future work

for the framework will be to add module for finding fusion genes and later on trying
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a combined approach of genome-guided with de novo assembly that will shed more
light on the cancer genome. Furthermore, the base pair resolution of RNA-Seq is not
being exploited at its fullest in our computational framework. A module for calling
variants would be a great addition to the pipeline, and in particular one that can
make use of the wealth of information provided by the ENCODE project [Dunl2].

Future advancements in library preparation protocols for RNA-Seq, as well as the
increase in sequencing lengths will necessarily impact the methods developed for
deep sequencing transcriptomics analysis. Aligning reads that span several exons
may become more difficult to tackle. On the other hand, transcript assembly may
become more reliable. Additionally, further decrease in sequencing costs may guar-
antee a higher number of biological replicates that would give more certainty to
differential expression analysis. Systematic and scalable computational frameworks
for RNA-Seq analysis will be a necessity for the efficient handling and processing of

even larger datasets.
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Appendix A. Supplementary figures and tables

In Supplementary Figure 1 a comparison of microarray and next-generation sequenc-
ing publications is included. The number of papers was obtained from searching in
PubMed for articles with the word "microarray" and "next generation sequencing"
or "high throughput sequencing" in the title. According to this graph from [Leil2]
by next year roughly equally number of publications will belong to either technology.
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Supplementary Figure 1: Comparison of microarray and next-generation sequencing

publications.
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Supplementary Table 1 includes the list of parameters for the quality control module.

’ Parameter ‘ Type ‘ Default ‘ Description ‘
predict boolean | true predict tags from the sequences
trim boolean | true trim adaptors
percentage | integer | 15 percentage of overrepresentation for tags to be trimmed
qual string phred33 | encoding: either phred33 or phred64
leading integer | 20 threshold phred score for trimming bases at the beginning
trailing integer | 20 threshold phred score for trimming bases at the end
minlen integer | 20 minimum length for sequences to not be removed

Supplementary Table 1: Parameters for the quality control module.

In Supplementary Table 2 and 3 a comparison of alignments before and after quality

control is shown. In both tables, the "Low quality" column shows the percentage

of reads that had a mean quality below 20 in Phred scale. In GBM, samples 6 to

12 all reads were below this value.

"Survived" has the percentage of reads that

survived the trimming steps. The next two columns show the number of unique

alignments obtained when running TopHat on the corresponding samples. "NoQC"

stands for the raw, not preprocessed, samples, while "QC" shows the number of

unique alignments found after preprocessing with the quality control module of the

workflow presented in this work. The last column shows how many more unique

alignments were obtained after quality control.

| | Sample | Low quality | Survived | No QC QC | Difference
1] ay4 6.1% | 97.95% | 43,135,137 | 45,949,788 | 2,814,651
2 | cryss 6.5% | 98.35% | 50,688,860 | 54,470,355 | 3,781,495
3| crylds 6.0% | 98.54% | 58,860,715 | 62,856,026 | 3,995,311
4| cryls2 5.9% | 98.67% | 55,840,823 | 59,734,107 | 3,893,284
5] crys3 5.9% | 98.26% | 55,805,088 | 59,458,025 | 3,652,937
6| crybd 7.5% | 97.11% | 49,196,793 | 53,019,400 | 3,822,607
7| cry123 6.5% | 98.56% | 42,056,120 | 45,014,182 | 2,958,062
8| crysd 6.3% | 98.41% | 58,146,524 | 62,242,458 | 4,095,934

Supplementary Table 2: DLBCL statistics for quality control.



Sample Low quality | Survived | No QC QC Difference
1 | SRR028049 2.00% 90.67% | 3,044,807 | 3,100,809 56,002
2 | SRR028050 2.70% 90.74% | 4,409,394 | 4,498,291 88,897
3 | SRR028051 3.60% 90.70% | 4,730,622 | 4,825,883 95,261
4 | SRR028052 5.92% 90.81% | 4,364,500 | 4,463,754 99,254
5 | SRR028053 3.13% 90.72% | 4,639,748 | 4,760,409 120,661
6 | SRR028054 100% - 1,188,849 - -
7 | SRR028055 100% - 1,460,766 - -
8 | SRR028056 100% - 1,317,620 - -
9 | SRR028057 100% - 1,314,049 - -
10 | SRR028058 100% - 1,514,501 - -
11 | SRR028059 100% - 1,754,600 - -
12 | SRR028060 100% - 1,734,103 - -
13 | SRR028061 3.27% 87.80% | 2,366,645 | 2,425,543 58,898
14 | SRR028062 3.95% 87.91% | 4,342,060 | 4,443,811 101,751
15 | SRR028063 4.99% 87.75% | 4,976,218 | 5,115,171 138,953
16 | SRR028064 5.41% 87.67% | 5,054,479 | 5,195,015 140,536
17 | SRR028065 3.32% 87.95% | 4,296,898 | 4,386,737 89,839
18 | SRR028066 3.82% 87.84% | 4,373,917 | 4,465,400 91,483
19 | SRR028067 3.45% 87.97% | 4,397,350 | 4,471,501 74,151
20 | SRR028068 3.54% 87.82% | 4,468,561 | 4,542,705 74,144
21 | SRR028069 3.68% 87.82% | 4,376,716 | 4,447,969 71,253
22 | SRR028070 5.42% 87.77% | 4,452,539 | 4,551,345 98,806
23 | SRR028071 3.44% 87.98% | 4,345,649 | 4,420,030 74,381
24 | SRR028072 3.90% 88.26% | 4,066,848 | 4,183,422 116,574
25 | SRR028645 3.35% 97.85% | 1,131,289 | 1,208,991 77,702
26 | SRR028646 4.14% 97.03% 604,047 652,597 48,550
27 | SRR028647 3.80% 97.36% 670,976 706,890 35,914
28 | SRR028648 4.25% 97.07% 384,566 419,915 35,349
29 | SRR028649 0.06% 91.62% | 6,081,703 | 6,184,478 102,775
30 | SRR028650 0.05% 92.53% | 7,192,771 | 7,302,121 109,350
31 | SRR028651 0.05% 100% | 7,079,693 | 7,123,158 43,465
32 | SRR028652 0.05% 100% | 7,141,340 | 7,176,135 34,795
33 | SRR028653 0.04% 100% | 7,311,372 | 7,345,098 33,726
34 | SRR028654 0.04% 100% | 7,556,443 | 7,593,053 36,610
35 | SRR028655 0.04% 100% | 7,269,973 | 7,302,904 32,931
36 | SRR028656 0.05% 100% | 6,621,968 | 6,655,194 33,226
37 | SRR028657 50.99% 83.27% 125,590 267,870 227,891
38 | SRR028658 33.69% 86.60% 39,979 102,329 62,350

Supplementary Table 3: GBM statistics for quality control.




