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In this work we study a graph problem called edge packing in a distributed setting. An edge packing
p is a function that associates a packing weight p(e) with each edge e of a graph such that the
sum of the weights of the edges incident to each node is at most one. The task is to maximise the
total weight of p over all edges. We are interested in approximating a maximum edge packing and
in finding maximal edge packings, that is, edge packings such that the weight of no edge can be
increased.

We use the model of distributed computing known as the LOCAL model. A communication
network is modelled as a graph, where nodes correspond to computers and edges correspond to
direct communication links. All nodes start at the same time and they run the same algorithm.
Computation proceeds in synchronous communication rounds, during each of which each node
can send a message through each of its communication links, receive a message from each of its
communication links, and then do unbounded local computation. When a node terminates the
algorithm, it must produce a local output – in this case a packing weight for each incident edge.
The local outputs of the nodes must together form a feasible global solution.

The running time of an algorithm is the number of steps it takes until all nodes have terminated
and announced their outputs. In a typical distributed algorithm, the running time of an algorithm
is a function of n, the size of the communication graph, and ∆, the maximum degree of the
communication graph. In this work we are interested in deterministic algorithms that have a running
time that is a function of ∆, but not of n.

In this work we will review an O(log ∆)-time constant-approximation algorithm for maximum edge
packing, and an O(∆)-time algorithm for maximal edge packing. Maximal edge packing is an
example of a problem where the best known algorithm has a running time that is linear-in-∆. Other
such problems include maximal matching and (∆ + 1)-colouring. However, few matching lower
bounds exist for these problems: by prior work it is known that finding a maximal edge packing
requires time Ω(log ∆), leaving an exponential gap between the best known lower and upper bounds.
Recently Hirvonen and Suomela (PODC 2012) showed a linear-in-∆ lower bound for maximal
matching. This lower bound, however, applies only in weaker, anonymous models of computation.
In this work we show a linear-in-∆ lower bound for maximal edge packing. It applies also in the
stronger port numbering model with orientation.

Recently Göös et al. (PODC 2012) showed that for a large class of optimisation problems, the port
numbering with orientation model is as powerful as a stronger, so called unique identifier model. An
open question is if this result can applied to extend our lower bound to the unique identifier model.
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1 Introduction

Distributed problems arise when multiple autonomous computational entities must
co-operate to solve a problem. In contrast with centralised computation, several new
issues become interesting: how much communication is required? How to coordinate
this communication? How to deal with communication failures? How to deal with
hostile or failing parts of the system?

In this work, we are interested in the communication complexity of deterministic
distributed algorithms solving classic graph problems, namely the edge packing
problem which is also known as fractional matching. All algorithms are completely
deterministic. In respect to models of distributed computing, we are not interested
in fault tolerance, synchronisation, or security. The model of computation studied in
this work, the LOCAL model [Lin92, Pel00], reflects this focus.

We model a distributed system as a graph. The nodes of a graph represent computers,
and the edges between the nodes represent bidirectional communication links. Nodes
communicate by sending messages through these links. The communication graph
itself is also the problem instance; for example, the task is to find a maximal matching
in the communication graph. In this, work we study the complexity of distributed
algorithms measured in the number of communication rounds the algorithm needs
until all nodes have declared an output. The running time of an algorithm is usually
a function of the size of the graph, n, or the maximum degree of the graph, ∆. In
general, the complexity of distributed algorithms as a function of n is quite well
understood [Lin92, NS95]. However, if we look at the running time as a function of
∆, there is, in many cases, an exponential gap between the best known lower and
upper bounds [KMW06, KMW10, PR01].

Maximal edge packing is a relaxed version of maximal matching. It is one of the
problems, along with maximal matching and maximal independent set, for which the
fastest known algorithm has a running time that is linear in the maximum degree of
the graph ∆ [PR01, ÅS10], and the best known lower bound is only polylogarithmic
in ∆ [KMW06, KMW10]. In graphs with a constant bound on the maximum degree,
it is possible to find a maximal edge packing in a constant number of communication
rounds.

In this work we study what is currently known about fast distributed computation
of edge packings. We present fast algorithms for the general case and for some
special cases. In addition we look at known lower bounds on the time complexity of
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Problem Model Time

Maximum (weighted) edge
packing, O(1)-approximation

P O(log ∆) Thm. 5.3 [Kuh05, KMW06]
ID Ω(log ∆) Thm. 5.1 [KMW06, KMW10]

Maximal edge packing P O(∆) Thm. 4.2 [ÅS10]
P O(∆2) Thm. 3.2 [ÅFP+09]
EC Ω(∆) Thm. 6.1 This work
PO Ω(∆) Cor. 6.2 This work

Maximal weighted edge packing P O(∆ + log∗W ) Thm. 4.2 [ÅS10]
EC Ω(∆) Thm. 6.1 This work
PO Ω(∆) Cor. 6.2 This work
PO ω(1)* Thm. 4.1 [ÅFP+09]

Maximal matching ID O(∆ + log∗ n) - [PR01]
ID O(log4 n) - [HKP01]
EC Ω(∆) - [HS12]

Table 1: A table summarising the results related to edge packings. Models are P:
port numbering, PO: port numbering and orientation, ID: unique identifiers, and EC:
edge colouring. For definitions of the first three, see Section 2.6, and for definition of
the last, see Section 6. *: non-constant in W , the maximum weight of the graph.

finding maximal edge packings. The new contribution of this work is the first lower
bound that is linear in the maximum degree of the graph on finding a maximal edge
packing in an anonymous model of distributed computation. This lower bound uses
techniques introduced by Hirvonen and Suomela [HS12]. Table 1 gives a summary of
the results related to distributed edge packing that we will discuss in this work.

This work is structured as follows.

• In Section 2 we go through the necessary tools and concepts.

• In Section 3 we look at algorithms for the unweighted edge packing problem,
and present an algorithm for finding a maximal edge packing in O(∆2) rounds.

• In Section 4 we look at algorithms and lower bounds for the weighted edge
packing problem. We will see that any algorithm for the maximal edge packing
in a weighted graph must have a running time that is a function of W , the
maximum weight in the graph. Then we present an algorithm for the maximal
edge packing problem with a running time O(∆ + log∗W ).

• In Section 5 we look at a simple approximation scheme for maximum edge
packing [Mos06, KMW10] and a more involved approximation scheme for
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general linear programs [Kuh05, KMW06, Kuh08] applied in the special case
of approximating a maximum edge packing.

• In Section 6, we show that finding a maximal edge packing requires Ω(∆)

rounds.

• Finally, in Section 7 we conclude and explore some avenues of future research.

2 Preliminaries

In this section we introduce some basic notation and the required graph theoretic
concepts for the rest of the work.

2.1 Basic Notation

We use the following notation throughout this work. Denote by [k] = {1, 2, . . . , k}
the set of k first natural numbers. All logarithms are in base 2, unless otherwise
specified. The iterated logarithm, log∗ n, is defined as

log∗ n =

{
0, if n ≤ 1

1 + log∗(log n), otherwise.

Iterated logarithm of n is the number times one can take the logarithm of n until
the result is less than or equal to 1. In practice the function grows very slowly. For
example log∗ n maps 20 = 1 7→ 0, 2 7→ 1, 22 = 4 7→ 2, 24 = 16 7→ 3, 216 = 65536 7→ 4,
and 265536 7→ 5.

2.2 Graphs

A simple graph G = (V,E) is a pair, where V is the set of nodes and E is the set of
edges. An edge e ∈ E is an unordered pair e = {u, v}, where u, v ∈ V and u 6= v.
Nodes u and v are called the endpoints of the edge e. Define n = |V | and m = |E|
for the sizes of V and E. We use the shorthands VG and EG to denote the node and
edge sets of graph G. A graph H = (VH , EH) is a subgraph of graph G, if VH) ⊆ VG,
and EH ⊆ EG. See Figure 1 for an illustration of graphs.

We say that a node v in graph G has degree degG(v) = |{e ∈ EG : v ∈ e}|. A graph G
has maximum degree

∆(G) = max
v∈VG

degG(v).
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Figure 1: Two graphs, G = (V,E) and H = (V ′, E ′), where V = {s, t, u, v},
V ′ = {s, t, u, v, w, x}, E =

{
{v, s}, {v, t}, {v, u}, {t, s}, {s, u}

}
, and E ′ ={

{v, s}, {v, t}, {v, u}, {v, w}, {w, x}
}
.

A family of graphs F has bounded degree, if there is a constant ∆, such that if G ∈ F ,
then ∆(G) ≤ ∆.

If a node v has degG(v) = 0, we call node v isolated. Usually isolated nodes are not
algorithmically interesting, and can be ignored. Therefore we assume that graphs do
not have isolated nodes.

The set of neighbours of v is defined as

NG(v) = {u ∈ VG : {u, v} ∈ EG}.

Nodes u and v are adjacent if they share an edge so that {u, v} ∈ E. Similarly two
edges e1 = {u, v} and e2 = {u′, v′} are adjacent if they have a common endpoint.

A path between two nodes is a graph P = (V,E) such that V = {v1, v2, . . . , vn+1},
where each vi is distinct, and E = {{vi, vi+1} : i ∈ [n]}. A path allows us to go from
node v1 to node vn, and vice versa. The length of a path is n, the number of edges
in it. There is always a trivial path from node to itself.

A cycle C = (V,E) is a graph such that V = {c1, c2, . . . , cn}, where each ci is distinct,
and E = {{ci, ci+1} : i ∈ [n− 1]} ∪ {{cn, c1}}. A cycle has length n, the number of
edges in it.

The distance of nodes u and v in graph G, distG(u, v), is the length of the shortest
path between u and v. The distance of a node v and an edge e = {u,w} is

distG(v; e) = min{distG(v, u), distG(v, w)}+ 1.

Define
VG[v, r] = {u ∈ VG : distG(v, u) ≤ r},

that is, the set of nodes within distance r. Similarly, define

EG[v, r] = {e ∈ EG : distG(v; e) ≤ r}.
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Now the local r-neighbourhood of v is a subgraphG[v, r] =
(
VG[v, r], EG[v, r]

)
. If there

is a function f : VG → Y , we define f [v, r] : VG[v, r]→ Y by setting f [v, r](u) = f(u)

for each u ∈ VG[v, r]. See Figure 2 for an illustration.

A directed graph is a pair G = (VG, EG), where VG is the set of nodes, as in undirected
graphs, and EG is a set of directed edges. A directed edge e = (u, v) is an ordered
pair. For an edge e = (u, v), we say that e is directed from u to v. Define the
outdegree of node v as

degout
G (v) = |{(v, u) : (v, u) ∈ EG}|,

and the indegree of a node v as

degin
G(v) = |{(u, v) : (u, v) ∈ EG}|.

If there is a simple, undirected graph G = (VG, EG), then a directed graph H =

(VH , EH), with VH = VG, is an orientation of G if for each edge {u, v} ∈ EG there is
exactly one edge, either (u, v) or (v, u), and no other edges in EH .

If X ⊆ VG is a subset of nodes, then we define the subgraph of G induced by X as
H = (X,E(X)), where

E(X) = {{u, v} ∈ EG : u ∈ X, v ∈ X}.

Respectively, if F ⊆ EG is a subset of edges, then we define the subgraph of G
induced by F as H = (V (F ), F ), where

V (F ) = {v ∈ VG : ∃u such that{v, u} ∈ F}.

There are several families of graphs that are of interest to us. A graph is connected,
if there is a path between all pairs of nodes. A connected component of a graph G is
a maximal subgraph H = (VH , EH) of G such that H is connected. A finite graph
T = (VT , ET ) is a tree, if

(D1) any two nodes of T are connected by exactly one simple path, or equivalently
(D2) T is connected and it has no cycles, or equivalently
(D3) T is connected and has exactly n− 1 edges.

A forest F is a graph such that every connected component of F is a tree. A cycle
graph is a graph that consists of a single cycle. A pseudotree is a connected graph
that has at most one cycle. A pseudoforest S is a graph such that every connected
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Figure 2: A graph G with maximum degree ∆(G) = 5. Illustrated are (i) the set
of neighbours of v is NG(v) = {r, s, t, x, z}, (ii) nodes and edges that are within
the radius 2 neighbourhood of v are V [v, 2] = {v, r, s, t, x, z, w, o}, and E[v, 2] ={
{v, r}, {v, s}, {v, t}, {v, x}, {v, z}, {r, w}, {r, z}, {w, z}, {z, o}, {o, x}

}
, which form

the 2-neighbourhood of v in G, in notation G[v, 2] = (V [v, 2], E[v, 2]), and (iii)
shortest paths between u and v, and v and w with lengths 3 and 2, respectively, are
marked with thick lines. This implies that dist(u, v) = 3 and dist(v, w) = 2.
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T H

Figure 3: A tree T and a pseudotree H. As T has no cycles, it is bipartite. Pseudotree
H has a cycle of length 3 and is therefore not bipartite.

component of S is a pseudotree. See Figure 3 for an illustration of a tree and a
pseudotree.

A graph G is bipartite, if VG can be partitioned into two sets, V1 and V2, such that
V1 ∪ V2 = VG and there is no edge between two nodes of V1 or two nodes of V2. A
graph is bipartite if and only if it has no cycles of an odd length.

We say that a graph is port-numbered, if each node v has an ordering on its adjacent
edges, or equivalently, has a bijective labelling of its incident edges with numbers
from {1, 2, . . . , degG(v)}. If {u, v} ∈ EG, let port(u, v) denote the port number of
{u, v} at u. We say that v is neighbour of u at port port(u, v). See Figure 4 for an
illustration of a port-numbered graph.

1

1
1

1

11

1
1

1

1

1

2

2

2

2 2

2

2

2

2

2

2

3

3

3

3

3
4

4

5

3

Figure 4: A port-numbered graph.

A function f : VG → [k] is a k-colouring of G, if for each edge {u, v} ∈ EG, f(u) 6=
f(v). If a graph has maximum degree ∆, a (∆ + 1)-colouring always exists. A graph
has a 2-colouring, and therefore is bipartite, if and only if there are no odd cycles in
the graph. A k-edge colouring is a function f : EG → [k] such that if f(e) = f(e′)

for e, e′ ∈ EG, then e ∩ e′ = ∅. Figure 5 illustrates a node and an edge colouring.

Weighted graph is defined as a triple (V,E,w), where w is a weight function w : V →
[W ]. We assume that the weights are bounded by some constant W .
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23

3 3

4

4 5

5

Figure 5: A graph with a 3-colouring, and the same graph with a 5-edge colouring.
Both colourings are optimal; observe that there is an odd cycle in the graph, and
that there is a node of degree 5.

We say that two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic, if there is a
bijective map φ : V → V ′ such that if {u, v} ∈ E, then {φ(u), φ(v)} ∈ E ′, and vice
versa. Isomorphisms preserve node degrees, and if the graphs are port-numbered,
these are also preserved. If G and G′ are isomorphic, we denote this by

G ' G′.

See Figure 6 for illustration.

A related notion is that of a covering graph. We say that a graph H is the covering
graph of graph G if there is a surjective map φ : VH → VG such that if {u, v} ∈ E(H)

then {φ(u), φ(v)} ∈ EG, and vice versa. Covering maps also preserve port-numbering.

2.3 Graph Problems

In this section we give definitions for different classical graph problems, namely
matchings, vertex covers and edge packings. See Figure 7 for an illustration of these.

Let G = (V,E) be a simple, unweighted graph. A matching M ⊆ E is a set of edges
such that no two of them are adjacent. A node v is matched if there is an edge e ∈M
such that v ∈ e. A matching is maximal if there are no two adjacent, unmatched
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(i)

(ii)

G1

G2

G

H

Figure 6: Two isomorphic graphs G1 and G2, and a graph G and its covering graph
H. In (i), the dashed arrows indicate an isomorphism φ between the graphs G1 and
G2. In (ii), the dashed arrows indicate a covering map from VH to VG.
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Figure 7: Three examples of classical graph problems; (i) a maximal matching, (ii) a
minimum vertex cover, and (iii) a maximal edge packing. In (i), the thick black lines
represent the matching, in (ii), the grey nodes represent the vertex cover, and in (iii),
the numbers represent the packing p for each edge and the grey nodes represent the
set of saturated nodes.
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nodes. The characteristic function cM : E → {0, 1} associated with matching M is
defined by

cM(e) =

1, if e ∈M
0, if e /∈M

An edge packing is a mapping p : E → [0, 1] such that for each node v ∈ V∑
e∈E:v∈e

p(e) ≤ 1.

That is, the edge packing relates a value to each edge of the graph such that sum of
the values related to edges adjacent to each node is less than or equal to 1. Define a
shorthand

p[v] =
∑

e∈E:v∈e

p(e).

The total weight of the edge packing is

p(E) =
∑
e∈E

p(e).

We say that a node v is saturated in an edge packing, if

p[v] = 1.

An edge e is saturated if at least one of its endpoints is saturated. This means that
the value p(e) cannot be increased without violating the packing constraints. An
edge packing is maximal, if all edges are saturated.

A maximum edge packing is an edge packing p∗ such that there is no other edge
packing with a larger total weight.

An edge packing is perfect, if all nodes are saturated.

The characteristic function of a matching in an unweighted graph is also an edge
packing. In addition, the characteristic function of a maximal matching is a maximal
edge packing. To see this, simply observe that∑

e∈E:v∈e

cM(e) = |{e ∈M : v ∈ e}| ∈ {0, 1}.

In addition, if node v is unmatched and thus cM [v] = 0, all neighbours u of v are
matched and have cM [u] = 1. Thus each edge must have one endpoint that is
saturated, and cM is a maximal edge packing.
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Weighted Edge Packing. Weighted edge packing is a generalisation of the un-
weighted edge packing. Let G = (V,E,w) be a weighted graph. A weighted edge
packing is a function p : E → [0,W ) subject to

p[v] =
∑

e∈E:v∈e

p(e) ≤ w(v)

for all v ∈ V , where w : v → [W ] for some constant W . Throughout this work, we
assume that edge packings are unweighted unless otherwise specified.

Vertex Cover. In the minimum vertex cover problem the task is to minimize the
size of a set of nodes C ⊆ V while maintaining that each edge e ∈ E must be incident
to at least one node in C. We then say that C covers e. The minimum vertex cover
problem is a classic NP-complete problem [GJ79].

A fractional vertex cover is a function c : V → [0, 1] such that for each edge e = {u, v}

c(u) + c(v) ≥ 1.

In the weighted minimum vertex cover the task is to find a set of nodes C ⊆ V

minimising ∑
v∈C

w(v),

while satisfying for all edges e = {u, v} ∈ E that v ∈ C or u ∈ C.

Finally, a fractional minimum weighted vertex cover is a function c : V → [0, 1]

minimising ∑
v∈V

c(v)w(v)

such that for each edge e = {u, v}

c(u) + c(v) ≥ 1.

2.4 Linear Programming

In linear programming the task is to maximise or minimise a linear objective function
subject to a set of linear constraints. A linear program is a problem that can be
expressed as

minimise cTx

subject to Ax ≥ b

and x ≥ 0,

(1)
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where A is a (m×n)-matrix with known coefficients, x is an n-vector with the values
to be computed, and b and c are m-vectors and n-vectors, respectively, with known
coefficients. In this work we always assume that each element of A, b, and c is
non-negative.

We call this minimisation problem the primal problem. Each primal problem has a
dual problem. It is a maximisation linear program that can be expressed as

maximise bTy

subject to ATy ≤ c

and y ≥ 0,

(2)

where A, b, and c are as in (1), and y is an m-vector with the values to be computed.

In our formulation, fractional vertex cover is a primal problem and edge packing is
its dual problem. There is an important relationship between a linear program and
its dual: any solution to the dual problem is a bound on the value of the original
problem.

Theorem 2.1. (Weak Duality of Linear Programming) If x is a feasible solution of
a primal problem and y is a feasible solution of its dual problem, then it holds that

bTy ≤ cTx.

Proof. By the definitions of the two linear programs, it holds that

bTy = yTb ≤ yTAx ≤ cTx.

The first inequality comes from the fact that Ax ≥ b. The second inequality comes
from the fact ATy ≤ c, which is equivalent with yTA ≤ cT .

2.5 Properties of Edge Packings

Unweighted edge packing and fractional vertex cover are the dual linear programs of
each other. Basic proofs for approximating maximum edge packings and minimum
vertex covers use the following duality.

Lemma 2.1. Let p be an edge packing and C a vertex cover. Now p(E) ≤ w(C).
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Proof. We have that

p(E) =
∑
e∈E

p(e) ≤
∑
e∈E

p(e) |e ∩ C|

=
∑
v∈C

p[v] ≤
∑
v∈C

w(v) = w(C).

It is well known that the integer version of maximal edge packing, maximal matching,
gives a 2-approximation of a minimum vertex cover by taking all matched nodes.
Observe that each matched edge has to be covered by one of its endpoints in a
minimum vertex cover. In a maximal matching, these edges are covered by both
of their endpoints. The matched nodes form a vertex cover, as if there were an
uncovered edge, it could be added to the matching. In addition, it is known that
a maximal matching is a 2-approximation of a maximum matching. Let M be a
maximal matching and let M∗ be a maximum matching. Now each for each edge
e ∈M \M∗, there are at most two edges in M∗ \M . Therefore it must hold that

|M∗ \M | ≤ |M \M∗|.

Now we have that

|M∗| = |M∗ ∩M |+ |M∗ \M | ≤ 2|M ∩M∗|+ 2|M \M∗| = 2|M |.

Bar-Yehuda and Even [BYE81] observed that a maximal edge packing gives a 2-
approximation of a minimum vertex cover. It also holds for the weighted version. Also,
it can be shown that a maximal edge packing is a 2-approximation of a maximum
edge packing. Lemmas 2.2 and 2.3 give these results. The first proof follows Åstrand
and Suomela [ÅS10].

Lemma 2.2. If p is a maximal (weighted) edge packing, then the set of saturated
nodes C(p) in p is a 2-approximation of minimum vertex cover.

Proof. The set C(p) is a vertex cover by its maximality: if there was an edge
e = {u, v} such that neither of the nodes was saturated and thus not in C(p), then
p(e) could be increased and p would not be a maximal edge packing.

Let C∗ be the optimal vertex cover. Any vertex cover must include at least one
endpoint of each edge. The set C(p) includes at most both of the endpoints of an
edge. Now the total weight is
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p:

p∗:

1

1 1

Figure 8: There is a maximal edge packing (which is a maximal matching) that is a
2-approximation of a maximum edge packing. A better approximation factor is not
possible.

w(C(p)) =
∑
v∈C(p)

p[v] =
∑
e∈E

p(e)|e ∩ C(p)|

≤ 2
∑
e∈E

p(e)|e ∩ C∗| = 2
∑
v∈C∗

p[v]

≤ 2w(C∗).

Lemma 2.3. A maximal (weighted) edge packing is a 2-approximation of maximum
edge packing.

Proof. Let p and q be two maximal edge packings. By Lemma 2.2 it holds that the
set of saturated nodes in p, C(p), is a vertex cover. At most both endpoints of any
edge are in the cover, so

w(C(p)) ≤ 2
∑
e∈E

p(e).

By duality of linear programming, any solution to the dual problem of maximum
edge packing, fractional vertex cover, is an upper bound on the value of the optimal
solution for the edge packing problem. A vertex cover is also a fractional vertex
cover and thus ∑

e∈E

q(e) ≤ w(C(p)) ≤ 2
∑
e∈E

p(e).

This result is tight. Let G be a path of length three, such that all nodes v have
w(v) = 1. As in Figure 8, the optimal edge packing has total weight 2, but there is a
maximal edge packing with total weight 1.

2.6 Distributed Computation

In this work we are interested in the model of distributed computation used by
Linial [Lin92] and called the LOCAL model by Peleg [Pel00]. Our general view on
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distributed computation is the following. A distributed system consists of computers
and communication links between these computers. We model a distributed system
as a simple graph, where nodes correspond to the computers, and edges correspond
to communication links between those computers. Each node is a deterministic
state machine. Nodes are able to communicate with their neighbours. Given a
graph problem on the communication graph G itself, nodes possibly get some input,
communicate with each other and then each node has to stop and announce its own
local output. These outputs must together form a feasible solution to the problem.

A distributed system functions as follows. All nodes wake up at the same time
and start executing the same algorithm. The algorithm is executed in synchronised
communication rounds. During each round a node v can

(i) send a message to each of its neighbours,
(ii) receive a message from each of its neighbours, and
(iii) update its state.

The messages sent by a node during each round are determined as a function of the
state of the node. After the node receives messages from its neighbours, it determines
its next state as a function of its current state and the messages it received. A
node announces its local output by going in to an end state that corresponds to a
particular output.

We are interested in the situation where all computation and communication is
completely deterministic. Nodes do not have access to any randomness. Nodes do
not fail and communication does not fail. Synchronisation always works.

The running time of a distributed algorithm is measured in the number of synchronised
communication rounds it takes for all nodes to finish and declare their output. We
call a distributed algorithm a local algorithm if its running time is a constant. Note
that in a bounded-degree graph, if an algorithm has a running time that is a function
of the maximum degree ∆, but not of the size n, then the algorithm has constant
running time. In this work we are mainly interested in local algorithms. For a survey
of local algorithms, see Suomela [Suo11].

The amount of local computation done by the nodes is not limited. In addition,
the size of the messages is not limited. Therefore nodes can flood the network with
all information available to them every turn. In t rounds, the best a node can do
is to gather all information about its radius-t neighbourhood. A local algorithm
with running time t can therefore be seen as a mapping from the set of radius-t
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neighbourhood isomorphism types to the set of possible outputs.

Common submodels of the LOCAL model are the port numbering model (P-model),
and the unique identifier model (ID-model). In the port-numbering model, the
input graph is port-numbered and no additional information is given. This model
is anonymous, that is nodes have no names and are referred to by their port
numbers. The port-numbering model is the standard anonymous model studied in
the literature [Ang80, ASW88, YK88].

In contrast, in the ID-model each node is given a globally unique O(log n)-bit identifier.
This allows any computable problem on connected graphs to be solved in the model:
simply gather all information to one node, locally compute the solution and distribute
it back across the network. As we will see in the next section, this is not possible in
the P-model.

Another anonymous model is the PO-model, where in addition to port numbering
each edge is oriented from one endpoint to the other. This is simply additional
information and does not affect the communication. Recent results established that
for a large class of problems, the PO-model and the ID-model are equally capable
from the perspective of local algorithms [GHS12].

2.7 Symmetry Breaking

In this section we show that it is not possible to find a maximal matching in the
PO-model on a cycle. Therefore it is not possible to find a maximal matching in any
standard anonymous model of distributed computing. It also means that to find
maximal edge packings in the P-model, we have to use different techniques.

Theorem 2.2. There is no distributed algorithm in the PO-model for finding a
maximal matching on cycles.

This result is directly related with the impossibility of breaking symmetry in some
families of graphs in anonymous models. For example, consider the following graphs.
In graph G, we have two identical nodes; the model is anonymous, both have degree
exactly one and the only neighbour is connected to the nodes through port number
one. Both nodes are running the same algorithm, so during the first round they
will send send the same message, receive the same message and do the same local
computation. By a simple induction it is easy to see that if the nodes stop, they
must stop on the same round and produce the same output. Therefore it is not
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possible to pick one of the nodes in graph G. In graph H this is no longer the case.

1 1 1 1 2 1
G: H:

Now let us consider the problem of finding a maximal matching in a directed n-cycle
C = (V,E). We can always construct it in the following fashion. Assign port numbers
along the cycle so that if the outgoing port number at node v corresponding to edge
e = {v, u} is 1, then the incoming port at node u is 2. In addition, the edges can
be directed along the cycle; in our case orient each edge from port 1 to port 2. See
Figure 9 for an illustration.
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Figure 9: Two cycles: shown on the left is a cycle with a symmetric port-numbering
and orientation, and on the right the optimal solution.

Now graph C is completely symmetric: each node has isomorphic radius T -neighbourhood
for an arbitrary T . Again, the nodes start running the same algorithm. During the
first round, each node sends the same message m1 to port 1 and the same message
m2 to port 2. Then all nodes receive m1 from port 2 and m2 from port 1. Then
nodes do local computation, in the same state with the same incoming messages.
Again, a simple induction shows that after r rounds, nodes must still be in the same
state. If the nodes stop, they must stop during the same round and announce the
same output. We get the following useful lemma.

Lemma 2.4. For any n ≥ 3, there is a port-numbered, directed n-cycle Cn such that
any algorithm in the PO-model must give the same output at every node.

Now we can use this lemma to prove Theorem 2.2. Let Cn be an n-cycle as defined
in Lemma 2.4. Each node must produce the same output. This output must encode
a feasible maximal matching. The natural way to encode this output is to have
a vector of length 2, where the first element encodes whether the edge with port
number 1 is in the matching and the second element encodes whether the edge with
port number 2 is in the matching. Now observe the following.
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(a) (0, 1) and (1, 0) do not form an encoding of a matching in Cn,
(b) (1, 1) is not a matching, and
(c) (0, 0) is not a maximal matching.

Thus for any n ≥ 3, there is a port-numbered, directed n-cycle such that the only
legal output for the algorithm is an empty matching. This proves Theorem 2.2.

While we have shown that it is impossible to find a maximal matching in any
anonymous model, and we know that a maximal matching in an unweighted graph
is also a maximal edge packing, we will show that it is possible to find a maximal
edge packing in the models P and PO. Intuitively this is true, because the solution
in the case of very symmetric graphs is trivial: in a d-regular graph we can simply
output p(e) = 1/d for each edge.

3 Maximal Edge Packing

We saw that a matching is in the unweighted case is also an edge packing. In addition,
a maximal matching is a maximal edge packing. The best known algorithms for
finding maximal matchings or good approximations of maximum matching are not
local. Panconesi and Rizzi [PR01] gave an O(∆ + log∗ n) time algorithm for finding
a maximal matching. For high degree graphs, there is an algorithm with running
time O(log4 n). Both algorithms also assume unique identifiers. In this work, we are
mainly interested in algorithms that work in the P-model, as unique identifiers are
not required to solve the edge packing problem.

In this section, we will see constant-time algorithms for the maximal edge packing
in anonymous models. First, in Section 3.1 we present an algorithm for finding a
maximal matching in a 2-coloured graph. This naturally gives us also a maximal
edge packing. In Section 3.2 we will see an algorithm for maximal edge packing with
running time O(∆2) that uses the algorithm from Section 3.1 as a subroutine.

3.1 Maximal Matching in 2-coloured Graphs

In an unweighted graph, a maximal matching is also a maximal edge packing. In
a general graph it is not possible to find a maximal matching locally. The result
by Linial [Lin92] shows that finding a maximal matching in a cycle with unique
identifiers requires Ω(log∗ n) rounds. As we have seen, it is impossible to find a
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Figure 10: Simple proposal algorithm run in a 2-coloured graph. Proposals of the
white nodes in odd rounds are shown by thick red edges, the acceptances of the
black nodes in even rounds are shown by thick blue edges, and the matched edges
are shown by the thickest gray edges.
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maximal matching in an anonymous graph. However, if the graph is 2-coloured and
has a bounded maximum degree there is a local algorithm for finding a maximal
matching [HKP01].

Let G = (V,E) be a graph and let f be a 2-colouring of G. Call colour 1 “white"
and colour 2 “black". The algorithm relies completely on the symmetry breaking
information provided by the 2-colouring and has different roles for the nodes of the
two colours. The white nodes are active and send out proposals to the black nodes.
The black nodes accept the first proposal, if any, and break ties with port numbers.
Each node outputs the port number of the edge along which it is matched. If a node
is not matched, it outputs ⊥. See Figure 10 for an illustration of the execution of
the algorithm.

When the algorithm starts, all nodes are active. During each round 2j, where
j = 0, 1, 2, . . . ,∆, each active white node v chooses one of the following actions;
either

(i) v sends a message ‘proposal’ to its neighbour j, if v is unmatched and j ≤
degG(v), or

(ii) v sends a message ‘matched’ to all of its neighbours and outputs port(v, u) and
stops, if v received a message ‘accept’ from node u during round 2j − 1, or

(iii) v stops and outputs ⊥, if j > degG(v) and v is unmatched.

During each round 2j, each active black node u

(i) reads any ‘matched’ messages and marks those nodes as matched,
(ii) reads any ‘proposal’ messages and accepts the proposal of the node v that had

the smallest port number port(u, v) among those that sent proposals and
(iii) stops and outputs ⊥ if all white neighbours have been matched.

During round 2j + 1 each active black node u sends an ’accept’ message to node v,
outputs port(u, v) and stops, if u accepted the proposal of v during round 2j.

Theorem 3.1. In 2-coloured, bounded degree graphs there is an algorithm for com-
puting a maximal matching in O(∆) rounds.

Proof. During the execution of the algorithm, each white node either sends a proposal
to each of its neighbours or becomes matched. If a black node receives at least one
proposal during the round, it accepts exactly one of those. Therefore if there is a
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Figure 11: Graph G and its bipartite double cover.

white node that has not been matched after the algorithm has stopped, it does not
have any unmatched black neighbours. The matching is maximal.

Let v be a white node with degG(v) = d. If v remains unmatched, it sends a proposal
to its neighbour d during round 2(d− 1). If the proposal is accepted, v receives an
accept message during round 2(d− 1) + 1, sends out ‘matched’ messages and stops
during round 2d. Now let u be a black node such that the neighbour of u with the
largest degree, v has degG(v) = d′. If u remains unmatched and does not receive any
proposals at round 2(d′ − 1) then u must have received a ‘matched’ message from
each of its neighbours and it will stop.

After round 2∆ all nodes have stopped and produced output. Thus the algorithm
runs in total for at most 2∆ + 1 rounds.

Note that a maximal matching is a maximal edge packing and therefore a 2-
approximation of the maximum edge packing.

3.2 An O(∆2) Time Algorithm for Maximal Edge Packing

Next we look at a local algorithm given by Åstrand et al. [ÅFP+09] for finding a
2-approximation of vertex cover in an unweighted graph. This algorithm finds a
maximal edge packing and uses Lemma 2.2 to turn it into a 2-approximation of vertex
cover. The algorithm is based on the use of bipartite double covers and the simple
algorithm for finding a maximal matching in a 2-coloured graph from Section 3.1.

Bipartite double cover. Let G = (V,E) be simple, bounded degree graph with
a port numbering. The bipartite double cover of G is a 2-coloured covering graph
of G. More specifically, the bipartite double cover H(G) = G×K2 = (Vb ∪ Vw, E ′)
is constructed as follows. First, take two copies of each node v, a black copy vb and
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a white copy vw. Now connect the white copy of u and the black copy of v if and
only if {u, v} ∈ E. Both copies retain port numbers from the original graph, so if u
is the neighbour of v at port 1 in G, then uw and ub are the neighbours of vb and vw,
respectively, at port 1 in H. As a result, each edge e = {u, v} ∈ E has two copies,
{uw, vb} and {ub, vw} in H(G). Figure 11 illustrates a bipartite double cover.

Formally there is a surjective graph homomorphism φ : H(G)→ G that maps the
copies of each node to the original node, that is φ(vb) = φ(vw) = v. Now φ is clearly a
homomorphism, as by definition if {ub, vw} ∈ E ′ then {φ(ub), φ(vw)} ∈ E. Bipartite
double covers retain many properties of the original graph, such as the maximum
degree ∆. Distances are preserved to the following extent: if distG(u, v) = 2m− 1

for any m ∈ N, then distH(G)(ub, vw) = distH(G)(uw, vb) = 2m − 1. If distG(u, v) =

2m, then distH(G)(ub, vb) = distH(G)(uw, vw) = 2m. A bipartite double cover of a
connected graph is not necessarily connected. In addition, due to the bipartiteness,
there are no odd cycles in H(G).

If there is a local algorithm that works in 2-coloured graphs, such as the algorithm for
finding a maximal matching from Section 3.1, then the computation of this algorithm
in H(G) can be simulated by nodes in G. The simulation scheme is simple. Each
node v simulates its two virtual copies, vb and vw. If during round i the node vb
would send a message to the node uw, then the node v sends the same message to
node u and appends it with the information that it is from the black copy.

Bipartite double covers do not allow us to overcome the impossibility of breaking
symmetry in an anonymous graph. It is not possible to find a maximal matching
using only constant time in the original graph G. A maximal matching M in the
bipartite double cover is not necessarily mapped by φ into a matching in G. Both
the black and the white copy of node v could be matched to different neighbours
u and u′. Then the corresponding image φ(M) in G has node v, which is matched
to both φ(u) and φ(u′). It can be, however, mapped into an edge packing. Let
e = {u, v} ∈ E and define p : E → [0, 1] such that

p(e) =
fM({ub, vw}) + fM({uw, vb})

2
. (3)

Now we will define half-integral edge packings. Edge packing p is an example of such
an edge packing.

Definition 1. An edge packing p is half-integral if for each e ∈ E p(e) ∈ {0, 1
2
, 1}.

Half-integral edge packings include what we will call almost saturating edge packings.
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Definition 2. A half-integral edge packing p is almost saturating, if the following
conditions hold for all v ∈ V :

• If p[v] = 0, then for each neighbour u of v, we have that p[u] = 1.

• If p[v] = 1/2, then there is at least one neighbour u of v such that p[u] = 1.

See Figure 12 for an illustration of a maximal matching in the bipartite double cover,
and the corresponding half-integral edge packing.

This means that each node v with p[v] = 0 or p[v] = 1 is saturated. These properties
will be essential for the maximal edge packing algorithm. In fact, we will now show
that the packing p, as given in (3), is almost saturating in G.

Lemma 3.1. An almost saturating edge packing can be found in O(∆) rounds by a
deterministic distributed algorithm.

Proof. If G = (V,E) is a simple, bounded degree graph and H is its bipartite
double cover, we will show that finding a maximal matching in H gives us an almost
saturating edge packing in G by (3). We have already seen in Section 3.1 that it is
possible to find a maximal matching in any 2-coloured graph in O(∆) rounds.

First, let v be a node such that p[v] = 0. This means that neither vb nor vw is
matched. Therefore each uw ∈ NH(vb) and ub ∈ NH(vw) must be matched, and we
have that p[v′] = 1 for all v′ ∈ NG(u).

Second, let v be a node such that p[v] = 1/2. Now one copy of v, either vb or vw,
is matched and the other is not. Let vb be the matched copy; the case when vw is
matched, is symmetric. Now each node ub in NH(vw) is matched, as otherwise the
matching would not be maximal. Because vb is matched, there is a node u ∈ NG(v)

such that both its copies are matched in H. Therefore p[u] = 1.

An Algorithm for Maximal Edge Packing. We first describe the algorithm
informally. It consists of iterating the almost saturating edge packing algorithm
repeatedly. Each time the algorithm is run, the resulting edge packing is added to
the edge packing already calculated, and some nodes are discarded. We will show
that each node that is not discarded has at least one neighbour which is discarded
and thus the maximum degree of the remaining graph is strictly smaller than the
maximum degree of the original graph. This will result in an empty graph after
running the algorithm at most ∆ times. To maintain a proper edge packing, the
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Figure 12: A graph G and its bipartite double cover H with a maximal matching
in bold. Below, we have the same graph G with an almost saturating edge packing.
Saturated nodes are in gray, and half-saturated edges are dashed. Each node has the
weight p[v] in p and each edge has the weight p(e) in p written next to it.



26

packing weights added each round must be scaled properly. We will show that the
resulting edge packing is maximal.

First we show that the algorithm terminates after constant number of iterations. At
the beginning of each iteration i ∈ {0, 1, . . . ,∆} we have a graph Gi. During each
iteration the algorithm finds an almost saturating edge packing pi in Gi. We say
that an edge is half-saturated in an almost saturating edge packing p if both of its
endpoints v and u have p[v] = p[u] = 1/2. The algorithm obtains Gi+1 as the graph
induced by the half-saturated edges in pi. Let e = {u, v} be a half-saturated edge
in pi. Thus both u and v are ,by the definition of almost saturating edge packing,
adjacent to a saturated node in pi. As we discard all saturated nodes to obtain Gi+1,
it must hold that ∆(Gi+1) is at most ∆(Gi)− 1. If we iterate the algorithm ∆(G) + 1

times, starting with G0 = G, then G∆(G) is an empty graph.

Second we show how to construct the function p, which is a maximal edge packing.
Start with an empty edge packing p(e) = 0 for all e ∈ E. Let G0 = G. Now compute
an almost saturating edge packing p0 in G and let p(e) ← p(e) + p0(e). By the
definition of almost saturating edge packings, the following hold:

• if p0[v] = 0, each neighbour u of v must have p[u] = 1, and thus edges incident
to v are saturated in p0,

• if p0[v] = 1, edges adjacent to v are saturated in p0 by definition, and

• if p0[v] = 1/2, there is at least one neighbour u of v such that p[u] = 1, and
thus {u, v} is saturated in p0.

This means that if we discard each node v with p0[v] = 0 or p[v] = 1, and each node
v with p0[v] = 1/2 such that each neighbour of v is saturated, the remaining graph
must be induced by the half-saturated edges. We denote this graph by G1. Now the
original algorithm for finding almost saturating edge packings can be run again in
G1.

Now we generalise this idea. Define pi(e) = 0, if e /∈ Ei, that is one endpoint of edge
e has been saturated in some pj, j < i and it is not in Gi. Otherwise pi(e) is the
value of the edge packing for e in the ith iteration of the algorithm. Now construct
the function

p =
∆−1∑
i=0

2−ipi.

Lemma 3.2. Function p computed by the algorithm is a maximal edge packing.
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Proof. We have to show that p is an edge packing and that it is maximal. First
we show that p is an edge packing. Let v be a node in G0 and k be the largest
integer such that v ∈ Gk. Now for all iterations i < k, we know that by definition
pi[v] = 1/2. Finally, in iteration k, node v is saturated and pk[v] ≤ 1. Summing over
all i, we obtain

p[v] =
k−1∑
i=0

2−12−i + pk[v]−k ≤
k∑
i=1

2−i + 2−k = 1. (4)

Therefore p is an edge packing. This also shows that if pk[v] = 1 for some k < ∆,
then p[v] = 1.

Second, we show that each edge is saturated in p and therefore p is maximal. An
edge e = {u, v} is saturated, if at least one of its endpoints is saturated by p. Now
let k be the largest integer such that e ∈ Gk. This means that either u or v must
be saturated in pk. If pk[u] = 1/2, then it must be that pk[v] = 1. This is due to
the fact that if pk[v] = 0, pk would not be almost saturating and if pk[v] = 1/2, e
would be half-saturated and also in Gk+1. If pk[u] = 0, then by definition of almost
saturating edge packing pk[v] = 1. Finally, if k = ∆− 1, both u and v have degree 1

and therefore pk(e) = pk[v] = pk[u] = 1.

Now by (4), function p is such that for each edge there is an endpoint v with p[v] = 1.
Thus p is a maximal edge packing.

Theorem 3.2. There is a local deterministic distributed algorithm in the P-model
for finding a maximal edge packing that runs in O(∆2) synchronous communication
rounds.

Proof. By Lemma 3.2 function p is a maximal edge packing. Function p is constructed
in ∆ iterations of the almost saturating edge packing algorithm. Each iteration
i ∈ {0, 1, . . . ,∆− 1} of the algorithm can be completed in 2(∆− 1) rounds. Thus in
total the algorithm runs in O(∆2) communication rounds.

4 Weighted Edge Packing

In this section we will see how adding weights to the nodes affects the maximal edge
packing problem. As we have seen, in the unweighted case and in bounded-degree
graphs it possible to solve the problem in constant time. However, in the case of the
weighted maximal edge packing, this is no longer the case. In Section 4.1 we will
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show that the running time of an algorithm for the weighted maximal edge packing
can not be a function of only the maximum degree of the graph. In Section 4.3 we
will see a fast algorithm for the weighted maximal edge packing problem, with a
running time that is both a function of ∆, the maximum degree of the graph, and
W , the maximum weight of a node in the graph. Now if both the weights and the
maximum degree of the graph are bounded by a constant, this gives us a constant
time algorithm for the weighted maximum edge packing problem.

4.1 Lower Bound

In this section we show the following theorem. Both the theorem and the proof are
due to Åstrand et al. [ÅFP+09].

Theorem 4.1. There is no local algorithm in the ID-model for the weighted maximal
edge packing problem with running time T = f(∆).

The proof of the Theorem 4.1 uses Ramsey’s Theorem [Ram30]. Ramsey’s Theorem
considers labellings of subsets of a larger set. Let N ∈ N and let S = [N ] and denote
the set of k-subsets of S by

Y
(k)
S = {Y : Y ⊆ S and |Y | = k}.

A c-labelling of a set Y (k)
S is a mapping

f : Y
(k)
S → [c].

Ramsey’s Theorem states that for all positive integers n, k, and c there exists a
least integer, called a Ramsey number, denoted by Rc(n; k), such that the following
holds: if N ≥ Rc(n; k), then in any set S of size N , any c-labelling of Y (k)

S contains
a monochromatic subset X of size at least n. That is, there is a set X ⊆ S such that
f(Z) = f(Z ′) for each pair Z,Z ′ ⊆ X with |Z| = |Z ′| = k.

Ramsey’s Theorem can be seen as a theorem about monochromatic cliques on
complete graphs. Let KN = (V,E) be a complete graph on N nodes. Fix k = 2 so
that each element of Y (2)

V corresponds to an edge in KN . Now Ramsey’s Theorem
states that if N ≥ Rc(n; 2), then there is a clique of size n in KN such that each
edge of that clique has the same colour. If we set c = 2, and let one colour represent
the existence of an edge, and the other the lack of an edge between a pair of nodes,
Ramsey’s Theorem can be used to show that a sufficiently large graph has either a
large clique or a large independent set.
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3 21 97 9 12 17 51 99 105 106

Figure 13: An example of a cycle construction CX , where N =

{3, 9, 12, 17, 21, 51, 97, 99, 105} and X = {3, 21, 97}.

A Ramsey argument has also been used by Czygrinow et al. [CHW08] to argue
that there is no constant-time, constant-approximation algorithm for the maximum
independent set problem. We can assume that each node has unique entifiers and
the proof still holds.

Now we are ready to show Theorem 4.1. Assume that A is a distributed algorithm
for the weighted maximal edge packing problem with running time T . For simplicity,
we assume without loss of generality that T is even.

To apply Ramsey’s Theorem, let n� T be a natural number, which will be fixed
later. Let N = {1, 2, . . . , n}. Set N corresponds to our set of nodes and each
node v ∈ N has unique identifier id(v) = v. If X ⊆ N , with |X| = `, denote by
CX = (V,EX) a n-cycle, which is constructed as follows. First, let

X = {x1, x2, . . . x`},

such that
x1 < x2 < · · · < x`.

Also, let
N \X = {x`+1, x`+2, . . . , xn},

such that
x`+1 < x`+2 < · · · < xn.

Now let V = N , and let

E =
{
{xi, xi+1} : i ∈ [n]

}
∪
{
{xn, x1}

}
.

For each node v, the unique identifier is id(v) = v and the weight of v is w(v) = v.
For an example of CX , see Figure 13.

Next we will construct a labelling f of the (2T + 1)-subsets of N as follows. For each
X ⊂ N with |X| = 2T + 1, construct the cycle CX and run algorithm A in CX . Now



30

a1 aT+1 a3T+4 a4T+4

a1 aT+1 a3T+4 a4T+4a2T+1

a2T+1

a2T+2

a2T+3

CR

CS

A

B

IDs

Figure 14: Two cycles, CR and CX , used in our lower bound construction for T = 4.
Nodes are ordered in the growing order of unique identifiers. The outer box shows
the monochromatic subset A. We get sets R and S by removing a2T+3 and a2T+2,
respectively, from A. The subset B is another monochromatic subset such that the
smallest node in aT+1 and the largest node a3T+4 in B are the first ones that cannot
detect the difference between CR and CS.

consider the central node xT+1. Its local T -neighbourhood consists of only nodes in
X and its local output depends only on its T -neighbourhood. Let f(X) = 1, if the
node xT+1 is saturated by A and set f(X) = 0 otherwise.

By Ramsey’s Theorem we can choose n such that there is a monochromatic set
A ⊆ N , with |A| = 4T + 4, that is for all X ⊆ A, with |X| = 2T + 1, either all X
have f(X) = 0, or all X have f(X) = 1. Now let

A = {a1, a2, . . . a4T+4},

where a1 < a2 < · · · < a4T+4. Let R = A \ {a2T+3} and S = A \ {a2T+2}. Now
we can use CR and CS to show that algorithm A can not compute a maximal edge
packing in both. See Figure 14 for an illustration on CR and CS.

Lemma 4.1. Algorithm A cannot produce a maximal matching in both CR and CS.

Proof. We prove the Lemma by contradiction. Assume that A produces a maximal
edge packing in both CR and CS. We will use this maximality to construct a situation,
where the nodes are saturated with growing weights along the cycle. Now nodes that
are more than T hops away cannot detect if they are in CR or CS and this will lead
into a contradiction.
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Define B = {aT+1, aT+2, . . . , a3T+4}. Let I ∈ {R, S} and let yI be the edge packing
computed by A in CI . First, we will show that every node v ∈ I∩B must be saturated
in yI . Let X be the set of nodes within distance T of v in CI . Now by construction,
X ⊆ A, and either each node v must be saturated or node v is saturated. The
T -neighbourhoods of v in CI and CX are equal. Thus each node v ∈ I ∩ B must
have the same output both in CI and in CX . Each node v is saturated if and only if
the corresponding f(X) = 1. If each node in I ∩B is not saturated, then yI is not
maximal, and thus every node in I ∩B must be saturated.

Now the subset I ∩B forms a path where the identifiers and weights of the nodes
are strictly increasing. Let xI = a2T+2, if I = R and xI = x2T+3, if I = S. We can
represent the weights of the edge packing yI as

yI({a3T+3, a3T+4}) = a3T+3 − yI({a3T+2a3T+3})
= a3T+3 − a3T+2 + yI({a3T+1, a3T+2})

=
T−1∑
i=0

(−1)ia3T+3−i + xI +
T−1∑
j=0

(−1)j+1a2T+1−j

− yI({aT+1, aT+2}).

(5)

The weights of the nodes do not depend on whether I = R or I = S. In addition, as
the T -neighbourhoods of aT+1 in CR and CS, and the T -neighbourhoods of a3T+4 in
CR and CS are equal, their values do not depend on whether I = R or I = S. We get

yR({a3T+3, a3T+4}) = yS({a3T+3, a3T+4}) and

yR({aT+1, aT+2}) = yS({aT+1, aT+2}).
(6)

This implies x2T+2 = x2T+3, a contradiction.

Theorem 4.1 follows, as the algorithm cannot produce a maximal edge packing in
time T , for any constant T .

4.2 A simple algorithm for ε-maximal edge packing

Distributed edge packing has also been studied within other models than the local
model. Khuller et al. [KVY94] present a parallel, simple algorithm for finding an
ε-maximal edge packing. The algorithm uses a “safe” technique for incrementing
the edge packing, also presented by Papadimitrou and Yannakis [PY93]. Note that
this algorithm is not a constant-time algorithm. In Section 4.3 we will see another
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algorithm, that uses this safe algorithm as a subroutine, but runs it only for a
constant number of rounds.

An edge packing p is ε-maximal, for any ε ≥ 0, if the set of nodes

C(p) = {v ∈ V : p[v] ≥ (1− ε)w(v)}

is a vertex cover. That is, the packing weight p(e) of any edge cannot be increased
by more than ε-fraction without violating the packing constraints.

While the algorithm is not introduced for the LOCAL model, it can be turned into a
distributed algorithm in this model. The main idea of the algorithm is to distribute
the free weight of each node equally among its unsaturated adjacent edges. The
algorithm is safe in the sense that for each edge, the smaller proposal is accepted so
that the edge packing always remains valid.

Now we define an algorithm we call ε-MAX in the LOCAL model. Let p be the edge
packing at the beginning of round i and let rp(v) = w(v)−p[v] be the residual weight
of node v. Let Gp = (Vp, Ep) be the subgraph of G induced by the set of nodes
Vp = V \ C(p). Let dp(v) be the degree of v in the subgraph Gp. The main idea is
that during each round, each node that is not in the partial vertex cover C(p), sends
as an offer to each of its neighbours also still not in C(p) its safe offer

sp(v) =
w(v)− p[v]

dp(v)
.

Then for each edge e = {u, v}, the nodes select a new packing weight

p′(e) = p(e) + min{sp(u), sp(v)}.

The algorithm itself does not record the packing weights of the edges, but of the
nodes.

The algorithm proceeds as follows. First, set p[v]← 0 for each v ∈ V , Gp = G, and
r(v) = w(v). During each odd round 2i− 1

(i) each node v ∈ Vp sends sp(v) to each of its neighbours,
(ii) each node v ∈ Vp sets p[v]← p[v]+min{sp(v), sp(u)} for each neighbour u ∈ Vp,

and
(iii) each node v ∈ Vp sets rp(v) = w(v)− p[v].

After each odd round 2i− 1, nodes have just computed a new edge packing p′. Then,
during round 2i, each node v ∈ Vp, if rp(v) ≤ εw(v), adds itself to C(p), sends a
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message to each of its neighbours and stops. Then each node that did not stop,
reconstructs the set of neighbours still in Vp′ . We call a single odd round followed
by a single even round an iteration of the algorithm ε-MAX. The algorithm always
maintains the invariant that edge packing p is feasible after each two-round iteration
of algorithm. To see this, observe that each node only offers a sum of weights that is
equal to its residual weight, and for each edge the smaller weight of the offered is
picked.

The problem with this algorithm is that the safe approach becomes very slow as the
remaining weights decrease. In the next section we see an algorithm that overcomes
this issue by running the iterated safe algorithm for a constant number of rounds
and then switching to another algorithm.

4.3 Fast Algorithm for Maximal Edge Packing

Now we look at the fastest currently known algorithm for maximal edge pack-
ing [ÅS10]. It works also in the weighted problem. The running time is linear in ∆

but depends also on the weights of the graph. By the proof in Section 4.1, this is
unavoidable.

The algorithm consists of two phases. In the first phase, the algorithm uses the safe
edge packing algorithm seen in Section 4.2. This is run for ∆ rounds. It turns out
that this edge packing is maximal in the areas of the graph that are regular. In
those areas that are not saturated, computing the edge packing allows us to extract
symmetry breaking information from the graph. This information can then be used
to partition the graph into directed forests and 3-colour these forests. The second
phase closely resembles the colouring algorithm by Goldberg et al. [GPS88] and the
edge colouring algorithm by Panconesi and Rizzi [PR01]. In addition it employs
colour reduction techniques due to Cole and Vishkin [CV86].

In the first phase the algorithm constructs an improper colouring c in a graph
G = (V,E,w). An edge e = {u, v} is said to be multicoloured in c if c(u) 6= c(v). It
is assumed that the weights are integers from the set {1, 2, . . . ,W}.

4.3.1 Phase I

The first phase of the algorithm consists of running the safe algorithm from Section 4.2
for ∆ rounds. In addition, the nodes construct an improper colouring c, which is a
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sequence of rational numbers, such that the following holds after ∆ rounds: each
edge is either saturated or multicoloured.

At the start of the first phase, we have a weighted graph G = (V,E,w) and an empty
edge packing p. Each node v keeps track of its remaining weight r(v) = w(v)− p[v]

and colour c(v). In the beginning, we set r(v) = w(v) and c(v) = ∅. During the
algorithm we maintain a subgraph G(p, c) of G. It is the subgraph induced by the
edge set

E(p, c) =
{
{u, v} ∈ E : r(u) > 0, r(v) > 0, c(u) = c(v)

}
.

At the start G(p, c) = G. Finally, degG(p,c)(v) is the degree of v in G(p, c).

Now the algorithm proceeds by repeating the following three steps ∆ times.

1. Each node sets its proposal x(v) to

x(v) =
r(v)

degG(v, p, c)
.

2. The edge packing is incremented for each edge e = {u, v} ∈ E(p, c) by
min{x(u), x(v)}.

3. Each node v ∈ V (p, c) sets its colour to c(v) ← (c(v), x(v)) and each node
u ∈ V \ V (p, c) sets its colour to c(v)← c(v) ∪ {1}.

Lemma 4.2. During each round of execution of Phase I, the maximum degree of
G(p, c) decreases by at least one.

Proof. Consider any node v with degG(p,c)(v) = ∆(G(p, c)). Now during the execution
of the next round, there are two possibilities. Either

(i) for each edge {v, u} ∈ E(p, c), x(v) = min{x(v), x(u)} and v is saturated or
(ii) there is an edge {v, u} ∈ E(p, c) such that x(v) > x(u); v is not saturated, but

now c(v) 6= c(u) and the degree of v in G(p, c) is decreased by one.

At the start of Phase I, it holds that ∆(G(p, c)) = ∆(G). By Lemma 4.2, during
each round of execution ∆(G(p, c)) is decreased by at least one. As a result, after
∆(G) rounds, it must hold that ∆(G(p, c)) = 0 and that G(p, c) is empty.

Corollary 4.1. After Phase I, each node v ∈ VG is either saturated, or there is a
multicoloured edge {v, u} ∈ EG.
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After Phase I, the colours of the nodes are sequences of rational numbers. To
represent these colours as a mapping

c : V → {1, 2, . . . , χ},

for some χ to be fixed later, we want the elements of the colours to be integral. To
do this, we multiply the weights of the nodes by (∆!)∆. We assume that all nodes
know a constant ∆ that is an upper bound for ∆(G).

Lemma 4.3. For each v ∈ V and each element q of c(v), we have 0 < q ≤ W and
q(∆!)∆ ∈ N.

Proof. We show by induction that if we multiply each weight w(v) by (∆!)k, then
after k iterations of the algorithm, the elements q of c(v) are integral for each v.

Let k ≥ 1. During the first round the offers of each node are integral, as

w(v)(∆!)

degG(v)
∈ N.

Because the offers are integral, the element q1 of c(v) is integral. In addition,
the remaining weight r(v) and packing weights p(e) are integral. Specifically, the
remaining weight r(v) is of the form

(∆!)k−1 · C,

where C is some integral number.

Now assume that i < k and each q of c(v), r(v) and p(e) for each e ∈ E are integral
after i iterations of the algorithm. In addition, assume that r(v) = (∆!)k−i · C for
some integral C. The degree of v in G(p, c) is degG(p,c)(v) ∈ [∆]. Because i < k

and r(v) = (∆!)k−i, the offer x(v) and thus the element qi of c(v) must be integral.
Finally, the remaining weight will be integral, as the new remaining weight

r′(v) = r(v)−
∑

{u,v}∈E(p,c)

min{x(u), x(v)},

where
x(u) = (∆!)k−(i+1)C ′

for some C ′. Thus the remaining weight is integral, and of the form

r′(v) = (∆!)k−(i+1)C ′′,

for some integral C ′′.
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If we set k = ∆, then the elements q of c(v) are integral after the execution of the
algorithm. Now we can define an injection from the possible values of c to [χ], where

χ = (W (∆!)∆)∆.

4.3.2 Phase II

By Corollary 4.1, after Phase I edges can be partitioned into two classes: saturated
edges and edges that are not saturated but are multicoloured. Denote the latter class
by E(c) = {{u, v} ∈ EG : c(u) 6= c(v)} and let G(c) be the subgraph of G induced
by E(c). Because an edge is saturated if and only if one of its endpoints is saturated,
there are only non-saturated edges and nodes in G(c).

Now form an orientation of G(c), denoted by H(c) by setting

E(H(c)) = {(u, v) : {u, v} ∈ E(c) and c(u) < c(v)},

that is, orient edges of G(c) from the endpoint with a smaller colour to the endpoint
with a higher colour. We have that V (H(c)) = V (G(c)).

Now observe that H(c) is acyclic; if there was a directed cycle in H(c), we could
start at an arbitrary node and follow this cycle to the direction growing colours.
Eventually we would arrive back to the starting node, which must have a colour
larger than the previous node.

Now partition the edge set into ∆(G) forests, F1, F2, . . . F∆(G). For each edge (u, v) ∈
E(H(c)), the node u assigns (u, v) to edge set Ei if and only if port(u, v) = i. Let
Fi = (V (H(c)), Ei) be the forest i. Now observe the following properties:

(P1) the outdegree of each node v in Fi is at most one: by definition the node assigns
at most one outgoing edge into each forest and

(P2) each tree of each forest is rooted: there is a single root node such that each
edge is oriented towards that node.

To show property (P2), combine (P1) and the fact that H(c) is acyclic. Starting
at any node v in any forest Fi, follow the outgoing edges until we reach a node
with outdegree 0. If no such node exists, there must be a cycle in H(c), which is a
contradiction. Now the node reached from v is the root of the tree that contains v
in Fi. To see that this root is unique, observe that if there were two root nodes in
a single tree, then there would be a path between these nodes. This path however,
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can not be oriented from either node to the other, so there must be a node with
outdegree 2 on that path, which is a contradiction.

Next we will apply a techniques due to Cole and Vishkin [CV86], and Goldberg et
al. [GPS88] to 3-colour each forest Fi. As we have a χ-colouring of H(c), it takes
O(log∗ χ) rounds to 3-colour each forest Fi in parallel.

Now let Fij be the forest induced by the set of edges (u, v) such that u has colour j
in Fi. Now each tree of Fij is a rooted star, that is a rooted tree of height 1. This is
by definition of Fij : if there were two consecutive edges, (u, v) and (v, w) in Fij , this
would imply that the colour of u and v in Fi is equal and the colouring is not proper.

Now we saturate all edges greedily. Go through each combination of i and j, starting
with i, j = 1. At each rooted star, if v is the root node of that star and L is the set
of leaves (nodes of degree 1) in that star, each leaf u ∈ L sends its remaining weight
r(u) to v. Then, if

r(v) ≥
∑
u∈L

r(u),

set p({u, v}) = r(u), saturating every u ∈ L. Otherwise saturate v by setting

p({u, v}) =
r(u)∑

w∈L(r(w)/r(v))

for each u ∈ L.
Because the edge sets Ei partition E(H(c)), we have saturated all edges. This was
achieved in O(∆ + log∗ χ) rounds.

Next we show how the running time of the algorithm depends on ∆ and W .

Theorem 4.2. There is a deterministic algorithm in the P-model for finding a
maximal edge packing in O(∆ + log∗W ) communication rounds.

Proof. Phases I and II saturate all edges of the graph. Phase I takes 2∆ rounds.
Phase II takes O(∆ + log∗ χ) rounds. We show that log∗ χ = O(log∗∆ + log∗W ).
Let M = max{W,∆, 4}. By definition, χ = (W (∆!)∆)∆. Next we show that
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log logχ ≤ 4 logM :

log logχ = log log
(
W (∆!)∆

)∆

= log
(
∆ log(W (∆!)∆)

)
= log

(
∆(logW + ∆ log ∆!)

)
≤ log

(
∆(logW + ∆2 log ∆)

)
≤ log

(
M(M2 + 1) logM

)
= log

(
(M3 +M) logM

)
< logM4 = 4 logM.

(7)

Now by (7),
log∗ χ ≤ log∗M4 + 1 = O(log∗∆ + log∗W ).

Now if W is bounded by some constant, the algorithm computes a weighted maximal
edge packing in constant time.

5 Approximation Scheme for Edge Packing

In this section we first present an approximation algorithm for the maximum edge
packing problem [Mos06, KMW10]. Then we give a simplified version of a more
involved general approximation scheme for general linear programs [Kuh05, KMW06].
Both are based on constructing simultaneously solutions to the primal and the dual
linear programs, maintaining that the solutions have the same weight and dual
problem is almost feasible. Then we make the dual solution feasible by dividing
each variable by some small number. We bound this number and get approximation
guarantees of these solutions based on the duality of linear programming.

Best known lower bound for edge packing is due to Kuhn et al. [KMW06, KMW10].
This same lower bound also applies for approximating a maximum matching. We
will not prove this theorem.

Theorem 5.1 (Kuhn et al. [KMW10]). Finding a constant approximation of a
maximum edge packing requires at least

Ω(log ∆) and Ω(
√

log n)

communication rounds.

Both of the algorithms that we will see in this section produce a constant approxi-
mation of a maximum edge packing in time O(log ∆).
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5.1 Approximation Algorithm for Maximum Edge Packing

The first algorithm works roughly as follows. The algorithm computes a vertex cover
(the characteristic function) x and an infeasible edge packing y. The algorithm does
the following iteration for O(k) rounds. During each round, nodes with many active
neighbours join the vertex cover, and set their covering weight x(v) to 1. We maintain
the invariant that both the vertex cover x and the edge packing y have equal value.
Therefore when a node v is added to the vertex cover, the packing weights of its
adjacent edges are increased in total by 1. After the algorithm completes, x is a
vertex cover. Dividing the packing weight y({u, v}) of each edge by max{y[u], y[v]},
we make y a feasible edge packing. If we can bound the weights of the edges by a
constant, we can guarantee a constant approximations of both problems by the weak
duality of linear programming.

We will show the following theorem.

Theorem 5.2. There is a deterministic distributed algorithm that runs in O(k)

rounds and computes a 3 + ∆1/k-approximation of minimum vertex cover and maxi-
mum edge packing.

Using k = O(log ∆) we get the following corollary.

Corollary 5.1. There is a deterministic distributed algorithm that runs in O(log ∆)

rounds and computes a constant factor approximation of the minimum vertex cover
and maximum edge packing.

Proof. Assuming Theorem 5.2, and k = α log ∆, we calculate

∆1/k = ∆1/(α log ∆) = 21/α, (8)

where β is some constant. The second equality of (8) follows from the fact that

log ∆1/(α log ∆) =
1

α log ∆
log ∆ =

1

α
= log 21/α.

The specifics of the algorithm are as follows. Each node stores its own packing
weight x(v) and the packing weight y(e) for each e of its adjacent edges. First we set
x(v) = 0 and y(e) = 0 for each v and e.

The pseudocode for the algorithm is given by Algorithm 1. Each node v stores its
own covering weight x(v) and the packing weight y(e) for each adjacent edge e. Let
EG(v) be the set of edges adjacent to node v, and let ẼG(v, x) be the set of uncovered
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Algorithm 1 A (3 + ∆1/k)-approximation algorithm for minimum vertex cover and
maximum edge packing for node v.
s

1: x(v)← 0

2: for each e ∈ EG(v) set y(e)← 0

3: for ` = k − 1, k − 2, . . . , 0 do
4: δ̃(v, x)← |ẼG(v, x)|
5: δ̃max(v, x)← maxu∈NG(v){δ̃(u, x)}
6: if δ̃(v, x) ≥ δ̃max(v, x)`/(`+1) then
7: x(v)← 1

8: for each e ∈ ẼG(v) set y(e)← y(e) + 1/δ̃(v, x)

9: end if
10: if x(v) = 0 and y[v] ≥ 1 then
11: x(v)← 1

12: for each e ∈ EG(v) set y(e)← y(e) + y(e)/y[v]

13: end if
14: end for
15: for each e = {u, v} ∈ EG(v) set y(e)← y(e)/max{y[u], y[v]}

edges adjacent to v. The dynamic degree δ̃(v, x) of node v is the size of ẼG(v, x).
The maximum dynamic degree among the neighbours of v is denoted by δ̃max(v, x).

The algorithm is divided into k iterations of the same basic algorithm. During each
iteration there are two ways a node can join the vertex cover. First, if during round
` node v has dynamic degree

δ̃(v, x) ≥
(
δ̃max(v, x)

)`/(`+1)
,

then the node joins the cover and the weight of each uncovered, adjacent edge is
increased by 1/δ̃(v, x). Second, if the node is not in the vertex cover, but the packing
weights of the edges adjacent to it total at least 1, node joins the vertex cover and
distributes the weight x(v) = 1, proportionally to the weights y(e), to its adjacent
edges. The algorithm computes a vertex cover, as in the last iteration, ` = 0, on line
6 nodes that have dynamic degree δ̃ ≥ 1, or equivalently have uncovered adjacent
edges, join the vertex cover.

The initial edge packing computed by the algorithm is not feasible, however. To take



41

this into account, the algorithm maintains the invariant that∑
v∈VG

x(v) =
∑
e∈EG

y(e).

By LP duality, the dual solutions give bounds to the optimum values of each other.
Therefore, as we will show that dividing each y(e) by

α = 3 + ∆1/k

yields a feasible solution to the edge packing problem, we also get an approximation
bound on the solutions computed by the algorithm.

To prove the correctness of the algorithm, we first show that the dynamic degrees of
the nodes must decrease as the algorithm is iterated. Then we show a bound on the
packing weights of the edges adjacent to each node. Putting these together gives us
Theorem 5.2.

Lemma 5.1. At the beginning of each iteration ` for each v ∈ VG it holds that
δ̃(v, x) ≤ ∆(`+1)/k.

Proof. We show the claim by induction. During the first iteration, ` equals k − 1

and by definition it holds that δ̃(v, x) ≤ ∆. Now we will show that if a node has
δ̃(v, x) ≥ ∆`/k during iteration `, it will join the vertex cover. Nodes join on line 6 if

δ̃(v, x) ≥ δ̃max(v, x)`/(`+1).

Therefore we must show that if a node does not join, then its dynamic degree is not
too large, that is it holds that

δ̃max(v, x)`/(`+1) ≤ ∆`/k

after iteration `.

We know by induction assumption that δ̃(v, x) ≤ ∆(`+1)/k at the beginning of the
iteration. Now δ̃max(v, x) is the dynamic degree of some node u. Therefore it holds
that δ̃max(v, x) ≤ ∆(`+1)/k. Now we get that

δ̃max(v, x)`/(`+1) ≤ ∆
`+1
k
· `
`+1 = ∆`/k.

We have shown that all nodes with a large dynamic degree join the vertex cover and
therefore the claim holds.
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Next we bound the sum of the increases of the packing function y during the execution
of the algorithm.

Lemma 5.2. After the execution of the algorithm, for each node v ∈ VG it holds
that

y[v] ≤ 3 + ∆1/k.

Proof. We show the lemma by studying the different cases of a node can joining the
vertex cover and how much the edge packing can increase in each case.

(i) If a node v does not join the vertex cover, then during the last iteration, when
` = 0, the dynamic degree δ̃(v, x) must be 0 as otherwise the node would join
the vertex cover. Therefore all neighbours of v have already joined the vertex
cover before the last iteration and the packing weight cannot be increased by
neighbouring nodes. Also, as any node v with y[v] ≥ 1 joins the vertex cover,
it must hold that y[v] < 1 for a node that does not join the vertex cover.

(ii) If a node v joins the vertex cover on line 7 during any iteration `, it increases
its adjacent packing weights by 1. Before this increase, it must have been that
y[v] < 1. In addition neighbours of v may simultaneously join the vertex cover.
By the joining condition on line 6, any such neighbour u has dynamic degree

δ̃(u, x) ≥ δ̃max(u, x)`/(`+1) ≥ δ̃(v, x)`/(`+1).

Let Ñ(v, x) denote the set of neighbours of v that have not joined the vertex
cover. By Lemma 5.1 it holds that

δ̃(v, x) ≤ ∆(`+1)/k

and thereby the contribution of the active neighbours of v is bounded by

∑
u∈Ñ(v,x)

1

δ̃(u, x)
≤ δ̃(v, x)

δ̃(v, x)`/(`+1)
= δ̃(v, x)1/(`+1) ≤ ∆1/k.

After this iteration, no node can add weight to these edges by joining the vertex
cover on line 7.

Finally, nodes that are not part of the vertex cover may join it on line 11. Any
edge that has its packing weight increased in this way is only covered by at
most one of its endpoints prior to the execution of line 11. Therefore these
edges are only covered by v and the total weight of these edges before the other
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endpoints join is at most 1. As the weights are increased proportionally, their
sum is at most doubled during the execution of the algorithm. Therefore we get
the total weight of the edges adjacent to a node v is at most y[v] ≤ 3 + ∆1/k.

(iii) If a node v joins the vertex cover on the line 11, during iteration `, it again
has y[v] < 1 before the start of the iteration. Now as in the previous case, the
adjacent, active nodes may join and increase the weights of edges adjacent to v
during iteration ` by at most ∆1/k. The joining of v increases the weights by 1.
Now any edge that was covered by v in this way was either already covered by
another node u and will not have its weight increased or was not previously
covered and therefore will have weight 0, which cannot be increased by nodes
joining on line 11. This gives a total of increases at most 2 + ∆1/k.

Now to make the packing constraints feasible, the weight of each edge {u, v} is
divided by max{y[u], y[v]} ≤ 3 + ∆1/k. This, together with the weak duality of linear
programming gives Theorem 5.2.

Proof of Theorem 5.2. We have to show that x is a characteristic function of a vertex
cover, that y is an edge packing, that∑

v∈VG x(v)∑
e∈EG

y(e)
≤ 3 + ∆1/k,

and finally that the running time of the algorithm is O(k).

By construction, any node v can set x(v) = 1 only once during the execution of the
algorithm. Now we have to show that each edge is covered. During the last iteration
of the algorithm, any node v that has dynamic degree δ̃(v, x) 6= 0 will join the vertex
cover. Thus any otherwise uncovered edges will be covered during the last iteration
and x is the characteristic function of a vertex cover.

By Lemma 5.2 for each v ∈ VG the sum of the adjacent packing weights is at most
3 + ∆1/k. On line 15 the packing weight y(e) of each edge e = {u, v} is divided by
max{y[u], y[v]}. This will make the packing constraints feasible and y is therefore
a feasible edge packing. By the weak duality of linear programming y is now a
(3 + ∆1/k)-approximation of the maximum edge packing.

The running time of the algorithm is O(k), as each iteration of the main loop can be
done in a constant number of communication rounds. Assume that at the beginning
of the round the nodes know their own dynamic degree δ̃(v, x). First the nodes
communicate this to their neighbours, which allows them to compute the local
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maximum dynamic degree δ̃max(v, x). Second, nodes may join the vertex cover on
line 7 and communicate the increases of y to their neighbours before line 10. Third,
nodes may join the vertex cover on line 11 and communicate the increase of y to
their neighbours. After the third communication round each node knows the packing
weights of its adjacent edges and its own dynamic degree. Thus the algorithm runs
in total in 3k communication rounds.

5.2 General Linear Program Approximation Scheme

In this section we present an approximation scheme for general linear programs
adapted to the special case of edge packing. Our presentation follows that of Kuhn
et al. [KMW06, Kuh05]. The algorithm computes a constant approximation of the
primal problem, the minimum fractional vertex cover, and of the dual problem, the
maximum edge packing. For simplicity and readability, we assume that the maximum
degree ∆ is known by the algorithm. This requirement can be removed [Kuh05,
KMW06].

Let kp > 1 and kd > 1 be parameters for our algorithm A. We start with the main
theorem.

Theorem 5.3. There is a distributed algorithm A that approximates minimum
fractional vertex cover and maximum edge packing by a factor

∆4/kp max{∆1/kp , 21/kd}.

The running time of algorithm A is

O

(
kpkd

(
1 +

1

∆1/kp − 1

)(
1 +

kp
∆1/kp log ∆

))
.

This leads directly to the following corollary.

Corollary 5.2. There is deterministic distributed algorithm that finds a constant
approximation of maximum edge packing with running time O(log ∆).

Proof. Let kp = β1 log ∆ and kd = β2 log 2 = β2. By Theorem 5.3 we get that the
algorithm computes an approximation of factor

∆4/(β1 log ∆)∆1/(β1 log ∆) = e4/β1e1/β1 ,
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Figure 15: An example of (i) a fractional vertex cover (primal problem), and (ii) of
an infeasible edge packing. In (i) each node is labelled with the covering weight x(v)

of node v, and each edge {u, v} is labelled with x(u) + x(v). In (ii) each edge e is
labelled with the (infeasible) packing weight y(e), and each node v is labelled with
y[v]. The total weights of x and y are equal: x(V ) = y(E). Note that in (i), each edge
is covered at least three times, giving f = 3, and in (ii) each node has y[v] at most 9.
This gives α = 3. In (iii) nodes are labelled with the normalised x, that is computed
as x(v)/(mine:v∈e

∑
u∈e x(u)), and edges are labelled with y(e)/(maxv∈e y[v]).

if ∆1/kp ≥ 21/kd , and
∆4/(β1 log ∆)21/(β2 log 2) = e4/β1e1/β2 ,

if 21/kd > ∆1/kp .

Again, from Theorem 5.3 we get that the total running time of the algorithm is

O

(
kpkd

(
1 +

1

∆1/kp − 1

)(
1 +

kp
∆1/kp log ∆

))

= O

(
β1 log ∆β2 log 2

(
1 +

1

21/β1 − 1

)(
1 +

1

21/β1

))
= O(log ∆).

First we present the algorithm. It computes a solution to the primal and to the
dual linear programs. The basic idea is to compute both solutions in parallel such
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that both have the same objective value at all times. When the main part of the
algorithm terminates, each primal variable is covered at least f times and each dual
variable is only a small, αf -factor away from being feasible. We then normalize the
values of both variables by dividing each primal variable by at least f and each dual
variable by at most αf . Now we are able to bound the ratio of the value of the two
solutions by α, which by the duality of linear programming gives an approximation
guarantee. See Figure 15 for an illustration of this principle.

Let G be a simple graph. Each node v ∈ VG is associated with a primal variable
x(v) and each edge e ∈ EG is associated with a dual variable y(e). We also call
nodes primal nodes and edges dual nodes. Formally we solve two linear programs, a
covering LP

minimise
∑
v∈VG

x(v)

subject to
∑
v∈e

x(v) ≥ 1 for each e ∈ EG

and x(v) ≥ 0 for each x ∈ VG,

and a packing LP

maximise
∑
e∈EG

y(e)

subject to
∑

e∈E:v∈e

y(e) ≤ 1 for each v ∈ VG

and y(e) ≥ 0 for each y ∈ EG.

We present the algorithm as if both the nodes and the edges were computers and
both were running a different algorithm, one for the primal nodes and one for the
dual nodes. The dual algorithm can be simulated by the endpoints of each edge, if
they gather all the information the edge would gather in the algorithm.

The algorithm is different for the primal and the dual nodes. The primal nodes run
Algorithm 2 and the dual nodes run Algorithm 3. Both parts consist of three nested
loops. The iterations of the loops for the primal and the dual nodes are synchronised.
The main idea is that inside the inner loop a primal node becomes active only if it
has many dual neighbours that have not yet been covered during that iteration of
the outer loop. Each edge e has a requirement, r(e) ≤ 1, which is decreased every
time the dual node is saturated, and a counter f(e), which counts the number of
times e has been saturated. A third variable, w(e), counts the amount of leftover
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weight from the previous iteration of the two inner loops and the added weight of
the current iteration.

The primal nodes compute a efficiency per cost ratio γ(v), defined as

γ(v) =
∑
e∈EG:
v∈e

r(e),

where r(e) is the requirement of the edge e. Note that during the iterations of the
inner loops nodes compute a dynamic version of this ratio, γ̃(v), defined as

γ̃(v) =
∑
e∈EG:
v∈e

r̃(e),

where r̃(e) is a temporary requirement used inside the inner loops.

The function increaseduals() takes care of computing the proper values for the dual
variables and decreasing the requirement of each dual variable. If an edge e has
been covered during an iteration of the middle loop, the edge will increase its value
y(e), compute a new f(e), and decrease r(e). If it has been covered f times, the
requirement is immediately dropped to 0 and the node will no longer add weight to
its packing. Otherwise the node has been either covered once, or more than once.
These situations are considered separately

The algorithm knows some global quantities. We assume that ∆(G) = ∆ is known. In
addition, we fix parameters kp and kd which affect the running time and approximation
ratio of the algorithm. Essentially larger kp and kd give a slower algorithm with a
better approximation ratio. In the original algorithm, the parameter kd is related
to the degree of the dual nodes. In our simplified case, these dual nodes are always
edges and have degree 2. Finally, two global quantities, f and h, which require
knowledge of ∆, are defined as

f =

⌈
kp + 1

∆1/kp − 1

⌉
and

h =

⌈
1 +

kp
∆1/kp ln ∆

⌉
.

5.3 Analysis of the Algorithm

In this section we show the necessary lemmas to prove Theorem 5.3.
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Algorithm 2 Primal node v approximation scheme.
1: x(v)← 0

2: for ep ← kp − 2 to −f − 1 by −1 do
3: for 1 to h do
4: for ed ← kd − 1 to 0 by −1 do
5: γ̃(v)←∑

e:v∈e r̃(e)

6: if γ̃(v) ≥ ∆ep/kp then
7: x+(v)← 1/∆ed/kd ;x(v)← x(v) + x+(v)

8: end if
9: send x+(v), γ̃(v) to dual neighbours
10: receive r̃(e) from dual neighbours
11: end for
12: receive r(e) from dual neighbours
13: end for
14: end for
15: x(v)← x(v)/mine:v∈e

∑
u∈e x(u)

Lemma 5.3. Let v be a primal node and let

y[v] =
∑
e∈EG:
v∈e

y(e)

be the sum of the packing weights of its adjacent edges. After the algorithm has
finished all the loops on line 14 of Algorithm 2 and on line 19 of Algorithm 3, y[v] is
bounded by

y[v] ≤ (kp + f + 1)∆3/kp max

{
∆1/kp , 21/kd

}
.

To show Lemma 5.3, we need to show some auxiliary lemmas, which bound the
increase of the packing function y. First, however, we bound the efficiency per cost
ratio of a node.

Lemma 5.4. For each primal node v, at all times, the efficiency per cost ratio γ(v)

is bounded by
γ(v) ≤ ∆(ep+2)/kp .

Proof. Recall that the efficiency per cost ratio is

γ(v) =
∑
e∈EG:
v∈e

r(e)
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Algorithm 3 Dual node (edge) e approximation scheme
1: y(e)← y+(e)← w(e)← f(e)← 0; r(e)← 1

2: for ep ← kp − 2 to −f − 1 by −1 do
3: for 1 to h do
4: r̃(e)← r(e)

5: for ed ← kd − 1 to 0 do
6: receive x+(v), γ̃(v) from primal neighbours
7: y+(e)← y+(e) + r̃(e)

∑
v∈e x

+(v)/γ̃(v)

8: w+(e)←∑
v∈e x

+(v)

9: w(e)← w(e) + w+(e)

10: f(e)← f(e) + w+(e)

11: if w(e) ≥ 1 then
12: r̃(e)← 0

13: end if
14: send r̃(e) to primal neighbours
15: end for
16: increaseduals()

17: send r(e) to primal neighbours
18: end for
19: end for
20: y(e)← y(e)/maxv∈e y[v]
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Algorithm 4 Procedure increaseduals()

1: if w(e) ≥ 1 then
2: if f(e) ≥ f then
3: y(e)← y(e) + y+(e); y+(e)← 0

4: r(e)← 0; w(e)← 0

5: else if w(e) ≥ 2 then
6: y(e)← y(e) + y+(e); y+(e)← 0

7: r(e)← r(e)/∆bw(e)c/kp

8: else
9: λ← max{21/kd ,∆1/kp}
10: y(e)← y(e) + min{y+(e), r(e)λ/∆ep/kp}
11: y+(e)← y+(e)−min{y+(e), r(e)λ/∆ep/kp}
12: r(e)← r(e)/∆1/kp

13: end if
14: w(e)← w(e)− bw(e)c
15: end if

and that the requirement r(e) is updated only during increaseduals() at the end of
the middle loop. We prove the claim by induction. The claim holds at the beginning
of the execution of Algorithm 2 by the definition of ∆. Now assume that the claim
holds at the beginning of the iteration.

We look at what happens inside the procedure increaseduals(). It is called after the
last iteration of the inner loop. Now it must hold that

γ̃(v) ≤ ∆ep/kp

because otherwise v would have set x+(v) = 1 during the last iteration of the inner
loop. This in turn would have led to each neighbouring edge e setting w(e) ≥ 1

and r̃(e) = 0, which in turn implies that γ̃(v) = 0 after the last iteration of the
inner loop, when increaseduals() is called. Edges that become covered, set r̃(e) = 0,
and otherwise do not change this value. Edges that become covered divide their
requirement r(e) by at least a factor ∆1/kp , so after a call of increaseduals() it holds
that

γ′(v) ≤ γ̃(v) +
γ(v)− γ̃(v)

∆1/kp
≤ ∆ep/kp +

γ(v)−∆ep/kp

∆1/kp
,

where γ(v) and γ′(v) denote the values before and after the execution of increaseduals(),
respectively. Before ep is decreased and the algorithm proceeds to the next iteration
of the main loop, the middle loop is executed h times. By our induction hypothesis
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it holds that
γ(v) ≤ ∆(ep+2)/kp

at the beginning of the main loop. After h iterations of the middle loop we have that

γ(v) ≤ ∆ep/kp +
∆(ep+2)/kp −∆ep/kp

∆h/kp
. (9)

We have to show that the right side of (9) is at most ∆(ep+1)/kp . We have that

∆ep/kp +
∆(ep+2)/kp −∆ep/kp

∆h/k
≤ ∆(ep+1)/kp ,

which implies that

∆(ep+2)/kp −∆ep/kp ≤
(

∆(ep+1)/kp −∆ep/kp
)

∆h/kp ,

which is equivalent to

∆2/kp − 1 ≤
(

∆1/kp − 1
)

∆h/kp ,

which finally implies that(
∆1/kp − 1

)(
∆1/kp + 1

)
≤
(

∆1/kp − 1
)

∆h/kp . (10)

Taking a logarithm preserves inequalities, so we have that

ln
(

∆1/kp + 1
)
≤ h ln ∆1/kp ,

yielding

h ≥
ln
(

∆1/kp + 1
)

ln ∆1/kp
.

Logarithm is a concave function, so it holds that ln(x + 1) ≤ lnx + 1/x. Now we
have that (10) holds if

ln
(

∆1/kp + 1
)

ln ∆1/kp
≤ 1 +

1

∆1/kp ln ∆1/kp

= 1 +
kp

∆1/kp ln ∆
≤ h

by the definition of h.

The next lemma bounds the increase of y during each iteration of the middle loop.
This is required to show that the packing constraint of any node is not too far away
from being feasible.
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Lemma 5.5. In Algorithm 3 when a node enters increaseduals(), the increase of y(e),
y+(e) is bounded by

y+(e) ≤ r(e)
w(e)

∆ep/kp
, (11)

and

y+(e) ≤ r(e) · ∆1/kd + 1

∆ep/kp
. (12)

Proof. We start with first inequality. Outside the procedure increaseduals(), both
y+(e) and w(e) are increased in equal amounts on lines 7 and 9 of the dual algorithm.
The term ∆ep/kp is only decreased between iterations, which in turn only increases
the right side of (11). In addition, r(e) is not changed outside increaseduals(). As it
is, the inequality can only be violated inside increaseduals().

During increaseduals(), we have three different cases, depending on the value of
w(e). If w(e) < 1, nothing happens and (11) is not violated. If w(e) ≥ 2 or
f(e) ≥ f then y+(e) is set to zero and the inequality holds trivially. Finally, we
look at the case when 1 ≤ w(e) < 2. Denote by w′(e) the fractional part of w(e),
w′(e) = w(e)− 1. Inside increaseduals(), λr(e)/∆ep/kp is subtracted from y+(e) and
r(e) is divided by ∆1/kp . Finally, w(e) is set to w′(e). Assuming that (11) holds
before the beginning of increaseduals(), the following inequality must hold after the
execution of increaseduals() for the lemma to hold:

y+(e)− r(e)λ

∆ep/kp
≤ r(e)

w(e)

∆ep/kp
− r(e) λ

∆ep/kp
≤ r(e)

∆1/kp

w′(e)

∆ep/kp
.

This gives us

r(e)

∆1/kp

w′(e)

∆ep/kp
− r(e)1 + w′(e)− λ

∆ep/kp

= λ∆1/kp −∆1/kp − w′(e)∆1/kp + w′(e)

≥ ∆2/kp −∆1/kp − w′(e)∆1/kp + w′(e)

=
(

∆1/kp − 1
)
·
(

∆1/kp − w′(e)
)
≥ 0

because λ ≥ ∆1/kp ≥ 1 and w′(e) < 1.

Next we look at the second inequality. We use the first inequality to get that

y+(e) ≤ r(e)
w(e)

∆ep/kp
≤ r(e)

21/kd + 1

∆ep/kp
,

that is equivalent to
w(e) ≤ 21/kd + 1.
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During previous iteration of the inner loop, either w(e) was set to w(e) ≥ 1, and then
r̃(e) was set to 0, or it held that w(e) < 1 after the previous iteration of the inner
loop. In the first case, during the current iteration r̃(e) = 0 and therefore y+(e) = 0

and the inequality holds. In the second case, we know that the value of w(e) after
the previous iteration, denoted by w′(e), was at most 1. We want to show that

w+(e) ≤ 21/kd

or r̃(e) = 0 after line 8 of the dual algorithm. Assume now that w+(e) > 21/kd and
r̃(e) > 0. Denote by w′+(e) the increase of w(e) during the previous iteration of
the inner loop. If the primal values of nodes adjacent to e are increased during the
current iteration, then they were also increased during the previous iteration, as
γ̃(v) can only decrease, and ∆ep/kp is constant during the iterations of the inner loop.
Given our assumption, we get that

w′+(e) ≥ w+(e)

21/kd
>

21/kd

21/kd
= 1.

This is a contradiction with the fact that we assumed r̃(v) > 0 and w+(e) > 0.

To complete the proof, we consider the case when the current iteration is the first.
We have ed = kd − 1 and therefore

w+(e) =
∑
v:v∈e

x+(v) ≤
∑
v:v∈e

1

2(kd−1)/kd
= 21/kd .

Next we proceed to bound the increase of the dual values related to a single primal
node. Denote by y+[v] the increase of y[v] during the last execution of increaseduals(),
and by γ−(v) the corresponding decrease of γ(v).

Lemma 5.6. For each node v it holds after the execution of increaseduals() that

y+[v] ≤ ∆3/kp max{∆1/kp , 21/kd}
γ(v)

(
∆1/kp − 1

) · γ−(v).

Proof. We show the lemma by showing another inequality, namely that for each
adjacent edge e of v, the increase y+(e) of y(e) is bounded by

y+(e) ≤ ∆1/kp max{∆1/kp , 21/kd}
∆ep/kp

(
∆1/kp − 1

) · r−(e), (13)

where r−(e) is the decrease of r(e).
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We know by Lemma 5.4 that γ(v) ≤ ∆ep+2)/kp . In addition, it holds by definition
that

y+[v] =
∑
e:v∈e

y+(e)

and
γ−(v) =

∑
e:v∈e

r−(e).

Now we get that

y+[v] =
∑
e:v∈e

y+(e) ≤
∑
e:v∈e

∆1/kp max{∆1/kp , 21/kd}
∆ep/kp

(
∆1/kp − 1

) · r−(e)

=
∆1/kp max{∆1/kp , 21/kd}

∆ep/kp
(
∆1/kp − 1

) ∑
e:v∈e

r−(e)

≤ ∆2/kp∆1/kp max{∆1/kp , 21/kd}
γ(v)

(
∆1/kp − 1

) γ−(v).

To show (13), we consider the two possible cases inside increaseduals(). First, if
w(e) ≥ 2, we know by Lemma 5.5 that

y+(e) ≤ r(e)
∆1/kp + 1

∆ep/kp
.

The requirement r(e) is divided at least by ∆2/kp , so we get that

r−(e) ≥ r(e)− r(e)

∆2/kp
= r(e)

∆2/kp − 1

∆2/kp
.

This gives us

y+(e) ≤ ∆1/kp + 1

∆ep/kp

∆2/kp

∆2/kp − 1
· r−(e)

≤

(
1 + ∆1/kp

)
∆1/kp max{∆1/kp , 21/kd}

∆ep/kp

(
∆1/kp + 1

)(
∆1/kp − 1

) · r−(e)

=
∆1/kp max{∆1/kp , 21/kd}

∆ep/kp

(
∆1/kp − 1

) · r−(e).

Now the second case is very similar. We have by Lemma 5.5 that

y+(e) ≤ r(e) ·max{∆1/kp , 21/kd}
∆ep/kp

and by definition of the algorithm that

r(e) ≤ ∆1/kp

∆1/kp − 1
r−(e).
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This gives us again (13)

y+(e) ≤ max{∆1/kp , 21/kd}
∆ep/kp

∆1/kp

∆1/kp − 1
r−(e).

Next we bound the factor by which the duals weights have to be divided to make
the dual constraints feasible.

Lemma 5.7. After the main part of the algorithm, that is after line 14 of Algorithms 2
and 3, it holds for any node v that

y[v] ≤ (kp + f + 1)∆3/kp max{∆1/kp , 21/kd}. (14)

Proof. We define
Q = ∆3/kp max{∆1/kp , 21/kd}.

Before γ(v) is decreased for the last time, there must be at least one adjacent edge e
of v that has r(e) > 0. As each r(e) is set to 0 after e has been covered f times, it
must hold that r(e) ≥ 1/∆(f−1)/kp and therefore also γ(v) ≥ 1/∆(f−1)/kp . Assume
that after the last decrease γ(v) is decreased only to

γ(v) =
1

∆(f+1)/kp
.

Lemma 5.6 holds and the analysis is the same as in the case w(e) ≥ 2. Now we can
use Lemma 5.6 to bound the total weight y[v] after the execution of the algorithm.
By the lemma, decreasing γ(v) by γ−(v) increases y[v] by

y+[v] ≤ Q

∆1/kp

γ−(v)

γ(v)
.

This has a geometric interpretation as the area of a rectangle. The total sum y[v]

can then be bounded by the sum of the areas of the rectangles as an integral

y[v] ≤ Q

∆1/kp

∫ ∆

∆−(f+1)/kp

1

x
dx

=
Q

∆1/kp
ln ∆

kp+f+1

kp

=
(kp + f + 1)Q ln ∆1/kp

∆1/kp − 1

≤ (kp + f + 1)Q.

(15)

Last inequality follows from the fact that ln(1 + x) ≤ x.
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We have bounded the final gap between the feasible primal and dual solutions. We
still have to show that the original, infeasible solutions computed by the algorithm
have the same value.

Lemma 5.8. After the main part of the algorithm, on line 14 of Algorithms 2 and 3,
for each edge e it holds that f(e) ≥ f . In addition it holds that∑

v∈VG

x(v) =
∑
e∈EG

y(e).

Proof. When a node v enters the main outer loop for the last time, by Lemma 5.4 it
must hold that

∆(−f+1)/kp ≥ γ(v) =
∑
e:v∈e

r(e).

Now if γ(v) is greater than 0, then there must be exactly one adjacent edge e of v
with r(e) > 0, as non-zero requirement has to be larger than or equal to ∆(−f+1)/kp .
During the last iteration of the inner loop, when ed = 0, if r(e) is still non-zero, x(v)

is increased by 1, and e becomes covered f times, forcing r(e) = 0.

The term f(e) counts how many times e has been covered. Every time w(e) is
increased on line 9 of Algorithm 3, f(e) is increased as well. In addition, every
time that the integer part of w(e) is increased, r(e) is divided by ∆bw(e)c/kp . The
requirement r(e) becomes zero only when f(e) ≥ f , which happens exactly when e
has been covered at least f times.

To show that ∑
v∈VG

x(v) =
∑
e∈EG

y(e),

we simply note that every time x(v) is increased, the weight is also divided among
its adjacent edges so that x+(v) = y+[v]. Finally, because for each e, f(e) ≥ f at the
end of the algorithm, each y+(e) from the last increase is added to y(e) and y+(e) is
set to zero.

6 Lower Bound for Maximal Edge Packing

In this section we will show the first linear-in-∆ lower bound for the maximal edge
packing problem. The proof will use techniques that are similar to those used by
Hirvonen and Suomela [HS12]: we will study edge coloured graphs, a model that is
stronger than our usual port numbering model. In Section 6.8 we will extend the
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lower bound to the PO-model. This is a non-trivial extension, as the orientation on
edges gives the PO-model symmetry breaking power that is not available in the edge
colouring model.

The following theorem gives our result in its most genereral form.

Theorem 6.1. Finding a maximal edge packing in a k-edge coloured graph requires
k − 1 communication rounds.

Now if we consider the case of bounded-degree graphs, we get the following corollary.

Corollary 6.1. Finding a maximal edge packing in anonymous edge coloured graphs
with maximum degree ∆ requires Ω(∆) communication rounds.

This lower bound is matched by the upper bound from Section 4.3.

Our lower bound construction uses graphs where nodes have degree d = k − 1 or
d = k. Note that in [HS12] the lower bound constructions are d-regular graphs for
d = k − 1. In the case of maximal edge packings, regular graphs can no longer
function as a lower bound construction as there is a trivial solution to the problem
in a regular graph.

To model graphs that are highly symmetrical we will use edge coloured multigraphs.
These are simply a tool in the proof and we are still interested in running our
algorithms in simple graphs. In a simple graph, a k-edge colouring can be seen as a
function that maps each edge to a colour in [k], denoted by c : E → [k], such that no
two edges that share an endpoint have the same colour. In the case of multigraphs,
we have to use stronger notation to express edge colourings. This notation is given
Section 6.1. In Section 6.2 we introduce templates, which are a restricted class of
edge-coloured multigraphs. In Sections 6.3 and 6.4 we define how multigraphs and
simple graphs are related and what it means to run a distributed algorithm on an
edge-coloured multigraph. In Section 6.5 we formalise the situation that is difficult
for any algorithm: two graphs that are almost isomorphic, at least locally, but have
the property that the algorithm produces different outputs on these graphs. Finally,
in Sections 6.6 and 6.7 we use these tools to inductively show Theorem 6.1.

6.1 Multigraphs

A k-edge coloured multigraph is a tuple

M = (V,E1, E2, . . . , Ek),
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where V is a set of nodes and each Ei is a symmetric relation Ei ⊆ V × V . We
call Ei the set of edges of colour i. As each Ei is symmetric, we use the unordered
notation {u, v} ∈ Ei for an edge. The edges are properly coloured, that is for each
node v and each colour i, there is at most one node u such that {v, u} ∈ Ei. We use
the shorthands V (M), and Ei(M) for the nodes and edges of colour i of multigraph
M .

We divide the sets of edges into proper edges and loops. An edge {u, v} is proper,
if u 6= v. Otherwise u = v and we call it a loop. Denote a loop {u, u} by {u}. We
denote the sets of proper and loop edges of colour i by

EP
i (M) = {{u, v} ∈ Ei(M) : u 6= v}

and
EL
i (M) = {{u, v} ∈ Ei(M) : u = v},

respectively. In general we will omit M if it is clear from the context.

Conversely, let the set of colours associated with a node v be denoted by

CM(v) = {i ∈ [k] : {v, u} ∈ Ei},

the set of proper colours by

CP
M(v) = {i ∈ [k] : {v, u} ∈ Ei, and v 6= u}

and the set of loop colours by

CL
M(v) = {i ∈ [k] : {v} ∈ EL

i }.

Basic graph theoretic concepts are naturally extended to the case of multigraphs.
The degree of a node v in a multigraph M is

degM(v) =
∑
i

|{e ∈ Ei(M) : v ∈ e}|.

The proper degree of a node v on a multigraph M is

degPM(v) =
∑
i

|{e ∈ EP
i (M) : v ∈ e}|.

A walk in a k-edge coloured multigraph M is a defined by a sequence of nodes
(v1, v2, v3, . . . , vp) and a sequence of colours (c1, c2, . . . , cp−1) such that for each i ∈
[p − 1], if ci = j then {vi, vi+1} ∈ Ej(M). A walk is non-backtracking, if for each
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i ∈ [p − 1], it holds that ci 6= ci+1. A walk can therefore take loops but it cannot
take the same edge consecutively.

Graph properties such as connectivity and distance are defined naturally as in simple
graphs. The local r-neighbourhood of a node v in a k-edge coloured multigraph M
is a subgraph

M [v, r] = (V [v, r], E1[v, r], E2[v, r], . . . , Ek[v, r]),

where V [v, r] is the set of nodes within distance r of v and each Ei[v, r] is the set of
edges of colour i within distance r of v. An edge is within distance r of v if at least
one of its endpoints is within distance r − 1 of v. See Figure 16 for illustration.

1 2

3 4 44

32 5

2

1v

3

4

5

1 2

3 44

2 5

v

3

4

M M [v, 2]

Figure 16: A 5-edge coloured multigraph M and the local 2-neighbourhood M [v, 2]

of node v in M .

The notion of graph isomorphisms is also naturally extended to multigraphs. We say
that two edge-coloured multigraphs M and M ′ are isomorphic, if there is a bijection
φ : V (M)→ V (M ′) that preserves adjacencies, degrees and edge colours. Formally a
bijection φ : V (M)→ V (M ′) is a multigraph isomorphism if and only if

(i) degM(v) = degM ′(φ(v)) for each v in V (M) and
(ii) {u, v} ∈ Ei(M) if and only if {φ(u), φ(v)} ∈ Ei(M ′).

We can generalise the notion of covering graphs to edge-coloured multigraphs. Let
M and M ′ be two edge-coloured multigraphs. We say that M is the covering graph
of M ′, if there is a covering map φ : V (M) → V (M ′) such that if {u, v} ∈ Ec(M),
then {φ(u), φ(v)} ∈ Ec(M ′). Covering graphs are important in our proof. We will
also define the output of an algorithm on a multigraph such that if φ(u) = v, for
u ∈ V (M) and v ∈M ′, then the outputs of u and v must be the same.
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6.2 Templates

In this section we introduce templates, which are a restricted class of multigraphs.

An almost (h, j)-regular template T is a k-edge coloured, connected multigraph, such
that each node has proper degree h and degree j or j − 1. A (h, j)-regular template
is an almost (h, j)-regular template such that each node has proper degree h and
degree j.

Each node v that has degree k−1 has a missing colour F (v) = c such that there is no
edge {v, u} ∈ Ec for any u ∈ V . If a node has degree k, then the node is colourless
and F (v) = ⊥.
In this work the subgraph T ′ ⊆ T induced by the proper edges of the template T
is always a tree. This will lead to the fact that all of our constructions are infinite
trees.

6.3 Unfoldings

Let T = (V,E1, E2, . . . , Ek) be an almost (h, k)-regular template. A p-unfolding
function f of T maps each node v to a p-subset f(v) of [k] such that for each
i ∈ f(v), {v} ∈ Ei. Intuitively, f picks p incident loops for each node.

Next we define X, the f-unfolding of an almost (h, k)-regular template T for a
p-unfolding function f . First pick an arbitrary node v0 in V (T ). This does not affect
the isomorphism type of the unfolding X, but does affect the labelling of V (X) that
we construct as we unfold T . Let V (X) equal the set of all non-backtracking walks
in T , starting at v0 that use proper edges of T or loops picked by f . Formally each
x ∈ V (X) is a non-backtracking walk

w = (v1c1v2c2v3 · · · c`−1v`),

where vi ∈ V (T ), and ci ∈ CP
M(vi) ∪ f(vi) for each i. We call this W , the set of

f -unfolding walks in T .

Next we define a map φf : W → V (T ) as follows. For each walk w that ends in node
v` ∈ V (T ), we set φf (w) = v`.

Now let w and w′, defined as

w′ = (v′1c
′
1v
′
2c
′
2v
′
3 · · · c′`v′`+1),

be unfolding walks in T . The walk w′ is a successor of w, if for each i ∈ [`− 1] it
holds that vi = v′i and ci = c′i, and v` = v′`.
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Now we are ready to construct the almost (h+p, k)-regular template X. Set V (X) =

W . Define a missing colour function F ′ for each x ∈ V (X) as F ′(x) = F (φf(x)).
Now we can define Ei(X) for each i. First, there is a proper edge {u, v} ∈ EP

i (X) if
and only if u or v is the successor of the other and the successor’s last edge colour is
i. Second, there is a loop {v} ∈ EL

i if and only if i ∈ CL
T (φf (v)) \ f(φf (v)).

Note that the function φf is a covering map. If v and u are nodes in V (X) connected
by an edge of colour c, and v is the successor of u, then there are two options: either
φf (v) = φf (u), or φf (v) 6= φf (u). In the first case, the last edge of v is a loop edge at
φf (v) and {φf (v), φf (u)} ∈ Ec(T ). In the second case, the last edge of v is a proper
edge of colour c in T , and therefore {φf(u), φf(v)} ∈ Ec(T ). See Figure 17 for an
illustration of an f -unfolding and the related covering map φf .

For ease of notation, if X is the f -unfolding of T at t, then denote by t the node in
X that corresponds to the empty walk in T . In addition, if w is a non-backtracking
walk to u ∈ V (T ) using only proper edges of T , we say that w = u ∈ V (X).

Let f and g be two unfolding functions for template T such that for each v ∈ V (T ),
it holds that f(v) ∩ g(v) = ∅. Now define the (g ◦ f)-unfolding of T at v as follows.
First, take the f -unfolding of T at v, and denote this unfolding by X. Denote by φ
the covering map from X to T related to the unfolding. Now take the g-unfolding of
X at v, where we extend g to X as

g(u) = g(φ(u))

for any u ∈ V (X).

Lemma 6.1. Let S and T be templates such that there are isomorphic radius-h
neighbourhoods S[s, h] and T [t, h] and there is an isomorphism φ : V (S[s, h]) →
V (T [t, h]) such that φ(s) = t. Now if f is an unfolding function of S and f ′ is an
unfolding function of T such that f(v) = f ′(φ(v)) for each v ∈ V (S[s, h]), and X is
the f -unfolding of S at s and Z is the f ′-unfolding of T at t, then

X[s, h] ' Z[t, h].

Proof. Each node in X and in Z corresponds to a walk in S and in T , respectively.
A node v ∈ V (X) with distX(v, s) = d corresponds to a walk of length exactly d. To
see this, recall that the proper edges of our templates always induce a tree. Now
each node within distance h of s in X and of t in Z corresponds to a walk of length
at most h in S or T .
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Figure 17: An almost (2, 4)-regular template and its f -unfolding at node v. Nodes
are labelled with missing colour function F . The arrows give examples of the covering
map φf . The function f is a 1-unfolding function, and k = 4.
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We can construct an isomorphism ξ : V (X[s, h])→ V (Z[t, h]) as follows. First, set
ξ(s) = ξ(t). Then, for each unique, non-backtracking walk w in S, denoted by

w = (x0, c0, . . . , cd−1, xd),

there exists, by the existence of φ, a corresponding walk w′ in T , denoted by

w′ = (φ(x0), c0, . . . , cd−1, φ(xd)).

For each such pair of walks, we define ξ(w) = w′. We have constructed an isomorphism
ξ from X[s, h] to Z[t, h], which concludes our proof.

Lemma 6.2. If f , f ′ and g are three unfolding functions for template T such that
for each v ∈ V (T ) it holds that

f(v) ∩ f ′(v) = ∅,

and
f(v) ∪ f ′(v) = g(v),

then the g-unfolding of T at v is isomorphic to the (f ◦ f ′)-unfolding of T at v.

Proof. Pick an arbitrary node u ∈ V (T ). Let X be the f ′-unfolding of T at u. Let
φ be the covering map from V (X) to V (T ). By definition, V (X) is equal to the
set of non-backtracking walks in T , starting at u. For each v ∈ V (X), we defined
f(v) = f(φ(v)).

We will show that there is a bijective mapping between the g-unfolding walks in T
starting at u, and f -unfolding walks starting at u in X. Now first, let W (f) be the
set of f -unfolding walks in X, and let w ∈ W (f). At any node v in V (X), the walk
can take a proper edge of X such that φ(v) has an adjacent proper edge of the same
colour, a proper edge of X of colour c at φ(v) such that c ∈ f ′(φ(v)), or a loop edge
of colour χ at v such that χ ∈ f(v) = f(φ(v)). As by definition g(v) = f(v) ∪ f ′(v)

for each v ∈ V (T ), there exists a corresponding g-unfolding walk in T , constructed
by following the sequence of edges with corresponding colours to w. This walk is
unique as there is at most one edge of any colour at any node.

Now let W (g) be the set of g-unfolding walks in T starting at u, and let w′ ∈ W (g).
Again, at any node v in V (T ) along the walk w′, the walk can take a proper edge
of T or a loop edge of colour c at v such that c ∈ g(v). Consider two nodes, v in
T and v′ in X such that φ(v′) = v. By the fact that φ is a covering map, we have
that if there is an edge of colour c in CP

T (v) ∪ g(v), then there is an edge of colour c
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in CP
X(v′) ∪ f(φ(v′)). Now if the walk w′ takes the edge of colour c and ends up at

node ν in T , then by the properties of φ the edge of colour c at v′ goes to node ν ′

such that φ(ν ′) = ν. Therefore, for any g-unfolding walk there is a corresponding
f -unfolding walk in X. This gives us that W (g) = W (f). Finally, observe that by
definition in the unfolding a node (an unfolding walk) is connected to each of its
successors. Now holds for g-unfolding of T at u, denoted by Y , and X that

Y ' X.

Finally we observe that it can be shown that the isomorphism type of the graph
is not affected by the choice of the node at which we unfold. Our proof does not
require this knowledge.

6.4 Realisations

Thus far we have discussed only templates and have not specified how these relate
to simple graphs, which we are interested in. Informally, a realisation real(T, v) of
template T at v is a complete unfolding of T , that is an f -unfolding for an f defined
as

f(v) = {CL(v)}

for each v ∈ V (T ).

A realisation of a template is a simple, k-edge coloured graph. As it is an unfolding,
we have a covering map φ : V (real(T, v))→ V (T ).

In our proof we will use the notion of running an algorithm on a template that is
not a simple graph. In this case, it is assumed that the output A(T, u, c) of a node
u ∈ V (T ) for an edge of colour c is defined as taking the realisation R of T and then
for a node v ∈ V (R), such that φ(v) = u, setting

A(T, u, c) = A(R, v, c).

Next we will note some useful properties of realisations. Recall that a perfect edge
packing p is defined as an edge packing such that each node v ∈ V (G) has p[v] = 1.

Lemma 6.3. Let T be an almost (h, k− 1)-regular template for any h < k− 1. Any
algorithm for maximal edge packing must produce a perfect edge packing on T .
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Proof. Let v ∈ V (T ) be an arbitrary node. Because h < k − 1, in the realisation of
T , v has a neighbour v′, such that

real(T, v)[v, d] ' real(T, v)[v′, d]

for an arbitrary d. If it holds that∑
c∈[k]

A(T, v, c) < 1,

then also ∑
c∈[k]

A(real(T, v), v′, c) < 1,

and the edge packing produced by the algorithm is not maximal. Therefore the
algorithm must produce a perfect edge packing.

6.5 Compatible and Critical Pairs

Let T and S be two multigraphs. We say that T and S are h-compatible if there
are nodes u ∈ V (T ) and v ∈ V (S) such that the h-neighbourhoods of u and v are
isomorphic and there is an isomorphism φ that maps u to v. Figure 18 illustrates a
2-compatible pair.
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Figure 18: A 2-compatible pair T and S.

Now let A be a distributed algorithm for the maximal edge packing problem. Multi-
graphs T and S form an h-critical pair if

(i) T and S are h-compatible,
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[k][k] \ {c}

S: T : ts

[k] \ {c, χ} [k] \ {c, χ}

t′

χ
s′s
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[k] \ {χ}

t

[k] \ {c, χ}

s

[k] \ {χ}[k] \ {χ}

χ

χ
X:

Z:

Z ′:

Figure 19: The construction of a 0-critical pair. The set above and below each loop
corresponds to the set of loop colours at each node. Node s has missing colour c and
node t has no missing colour. Because A(T, t, c) 6= 0, there is a colour χ such that
A(S, s, χ) 6= A(T, t, χ). The 0-neighbourhoods of nodes s and t in X are isomorphic.

(ii) u ∈ V (T ) and v ∈ V (S) are nodes with isomorphic h-neighbourhoods such
that isomorphism φ : V (T )[v, h]→ V (S)[u, h] maps φ(u) = v, and

(iii) there is a colour i such that the output of A in respect with colour i is different
at v and at u.

Now we are ready to proceed with the proof of Theorem 6.1. We will prove the
theorem by induction on the proper degree of our templates.

6.6 Base Case

First we will show that for any algorithm A, there is a 0-critical pair and thus the
output of A must depend on the 1-radius neighbourhood of each node.

Lemma 6.4. For any algorithm A for the maximal edge packing problem, there is a
0-critical pair.

Proof. Let T be a (0, k)-regular template, such that V (T ) = {t} and the missing
colour of t is FT (t) =⊥. Now there must be a colour c such that A

(
T, t, c

)
6= 0.

Now let S be another, (0, k − 1)-regular template, such that V (S) = {s} and the
missing colour of s is FS(s) = c. Now there must be another colour χ such that
A
(
T, t, χ

)
6= A

(
S, s, χ

)
. To see this, simply observe that A must produce a maximal
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edge packing at t and s, and that∑
i∈[k]\{c}

A
(
T, t, i

)
< 1

and ∑
i∈[k]\{c}

A
(
S, s, i

)
= 1.

Now construct a new, almost (1, k)-regular template X as follows. Let V (X) = {t, s}.
Let {s, t} ∈ Eχ(Z), and let

CX(t) = [k − 1] \ {χ}

and let
CX(s) = [k − 1] \ {c, χ}.

Finally, set FX(s) = c and FX(t) = ⊥. See Figure 19 for an illustration.

Now by construction it holds that T [t, 0] ' X[t, 0] and S[s, 0] ' X[s, 0]. As
A(T, t, χ) 6= A(S, s, χ), this implies that it must hold that either

A
(
T, t, χ

)
6= A

(
X, t, χ

)
or

A
(
S, s, χ

)
6= A

(
X, s, χ

)
.

Now assume that the output of A is different for node s in S and X. We construct
another, (1, k−1)-regular template Z by unfolding S along edge of colour χ. Formally
let V (Z) = {s, s′}, let Eχ(Z) =

{
{s, s′}

}
and let CZ(s) = CZ(s′) = [k] \ {c, χ}. Now

by construction, A(S, s, χ) 6= A(Z, s, χ). As the edge packing constructed by A is
assumed to be maximal, there must be a loop colour c′ ∈ CL

Z (s), CL
X(s) such that

A(X, s, c′) 6= A(Z, s, c′).

We have that X and Z form a 0-critical pair.

The proof is similar if t changes output, but we are in that case left with a template
that has a higher minimum degree. As we will see, this would only help us with our
lower bound construction.

Now given that we have a 0-critical pair for algorithm A, the algorithm must look at
least one hop in the communication network to produce a feasible output.
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Figure 20: The inductive step for h = 2. Almost (1, k)-regular templates S and T
form a 0-critical pair. The outputs of s and t are different for the edge of colour 2.
By unfolding along the edge of colour 2 at s and t we construct templates X, S(f),
and T (f ′) such that X, and S(f) and T (f ′), respectively, are pairwise 1-compatible.
At least one of the pairs will form a 1-critical pair.

6.7 Inductive Step

Next we will show that given an h-critical pair, for any positive h < k − 2, we can
construct an (h+ 1)-critical pair.

Lemma 6.5. Assume that for algorithm A there is a h-critical pair T , S, where
T and S are almost (h + 1, k) regular templates and h < k − 2. Then there is a
(h+ 1)-critical pair.

Proof. As in the statement of the lemma, assume that there is a h-critical pair T , S.
Now by definition, there are nodes t ∈ V (T ) and s ∈ V (S) such that

T [t, h] ' S[s, h],

there is a colour c such that there is a loop {t} ∈ Eχ(T ) and loop {s} ∈ Eχ(S), and

A(T, t, χ) 6= A(S, s, χ).
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The fact that h ≤ k − 3 implies that for each node v ∈ V (T ), V (S), it holds
that CL

T (v), CL
S (v) 6= ∅. Now define 1-unfolding functions f : V (T ) → [k] and

f ′ : V (S)→ [k] as follows. First, let φ be a graph isomorphism from T [t, h] to S[s, h]

that maps φ(t) = s. Let f(t) = f ′(s) = χ. For each v ∈ V (T )[t, h] \ {t} pick an
arbitrary c ∈ CL

T (v) and set f(v) = f ′(φ(v)) = c. For each v /∈ V (T )[t, h] and each
u /∈ V (S)[s, h] pick arbitrary colours with loop edges at v and u, respectively.

We construct a third, almost (h+ 1, k)-regular template X as follows. Informally, we
take certain f and f ′-unfoldings of S and T , and cut both at s and t, respectively,
along the edges of colour χ. Then we take the connected components of s and t and
add an edge of colour χ between s and t.

Formally, let S(f) be the f -unfolding of S at s and let T (f ′) be the f ′-unfolding of
T at t. Let ψ be the covering function ψ : V (S(f))→ V (S) and let ξ be the covering
function ξ : V (T (f ′))→ V (T ). Now pick two nodes, σ ∈ V (S(f)) and τ ∈ V (T (f ′))

such that ψ(σ) = s and ξ(τ) = t. By Lemma 6.1 it holds that

S(f)[σ, h] ' T (f ′)[τ, h].

Specifically, observe that there are nodes σ′ and τ ′ such that {σ, σ′} ∈ Eχ(S(f)),
{τ, τ ′} ∈ Eχ(T (f ′)), and

S(f)[σ, `] ' S(f)[σ′, `] and T (f ′)[τ, `] ' T (f ′)[τ ′, `] (16)

for an arbitrarily large `.

For a template T , a node t, and a colour c we define the function cut(T, t, c), which
returns a multigraph M such that we remove the edge of colour c at t and then
return the connected component containing t. Now set

S ′ ← cut(S(f), σ, χ),

and
T ′ ← cut(T (f ′), τ, χ).

It still holds that
T ′[τ, h] ' S ′[σ, h],

as we cut the edge of the same colour at both nodes.

Now construct an almost (h+ 1, k)-regular template by setting

V (X) = V (S ′) ∪ V (T ′),
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Eχ(X) = Eχ(S ′) ∪ Eχ(T ′) ∪ {σ, τ}, and
Ei(X) = Ei(S

′) ∪ Ei(T ′) for i 6= χ.

By construction, it will hold that

X[σ, h] ' X[τ, h],

by (16).

Recall that by construction,

A(T ′, τ, χ) 6= A(S ′, σ, χ).

We will argue, that there is a node u and a loop edge of colour c at u such that
u ∈ V (U) ∩ V (X), where U ∈ {S(f), T (f ′)}, and

A(U, u, c) 6= A(X, u, c).

First, let Di be the set of nodes such that for each v ∈ Di it holds that v ∈
V (S ′) ∩ V (X) and distX(v, σ) = i, or v ∈ V (T ′) ∩ V (X) and distX(v, τ) = i. Now
for any algorithm with a running time at most r, the outputs of nodes in Dr+1 are
the same in X, and, respectively, S(f) and T (f ′). Note that the proper edges in X
induce a tree and as such X has a unique path from any node in Dr+1 to σ and τ .
Now consider the outputs of the nodes in Dr+1 to be fixed. We will use induction
on i. For any set Di, assume that the outputs of the set Di+1 have already been
fixed. Each node v ∈ Di has exactly one proper incident edge that goes to a node
in Di−1, and rest of the proper incident edges go to nodes in Di+1. The outputs of
these edges have been already fixed. There are two options for each node: either
change the output of a loop edge, or keep the outputs of all edges fixed. If any of the
outputs for the loop edges change, our proof is complete. Therefore assume that the
outputs for the loop edges remain the same. Now the output of the remaining edge
to Di−1 must be fixed as well, because by Lemma 6.3 the algorithm must produce a
perfect edge packing.

By this argument, the outputs of all nodes are fixed until we reach D0 = {σ, τ}.
Recall that A(S(f), σ, χ) 6= A(T (f ′), τ, χ), and the outputs of the proper edges,
except for the critical edge {σ, τ}, are fixed. Therefore, if no loop edge changes its
output, the output of the algorithm is not an edge packing and we have reached a
contradiction.

Now without loss of generality, assume that there is a node κ ∈ V (S ′) such that κ
changes its output for a loop edge of colour π. The following proof goes similarly, if
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κ were in V (T ′). Now we claim that X and the original unfolded graph S(f) form
an (h+ 1)-critical pair. In particular, we claim that

X[σ, h] ' S(f)[σ, h].

Denote by σ′ ∈ S(f) the neighbour of σ along the edge of colour χ. We know that it
holds that

S(f)[σ, h] ' S(f)[σ′, h] ' T (f ′)[τ, h].

After cutting the edge of colour χ, and connecting σ and τ with an edge of colour χ,
we get that

X[σ, h+ 1] ' S(f)[σ, h+ 1],

showing that X and S(f) form an (h+ 1)-critical pair.

This induction can continue until there is a node with proper degree equal to k − 1.
This happens when we would otherwise have a (k − 2)-critical pair. The critical
(k − 2)-neighbourhoods of the templates are isomorphic, but the algorithm must
produce different outputs. Therefore the algorithm must use k−1 steps to distinguish
the two neighbourhoods. Together, Lemmas 6.4 and 6.5 imply Theorem 6.1.

6.8 Maximal Edge Packing Lower Bound for PO-model

In this section we will extend the lower bound from the previous section to the
anonymous PO-model with edge orientations. Recall that in the PO-model, the
communication graph has a port numbering, and in addition, each edge is oriented
towards one of the nodes. Also, the model is anonymous, so the nodes do not have
access to unique identifiers.

The reduction of our lower bound from the previous section to the regular port-
numbering model is simple: observe that an edge colouring can be transformed into
a port-numbering by nodes picking the ports for each edge in the order of the edge
colours. Now if there was a faster algorithm for the maximal edge packing problem
in the port-numbering model, we could simply transform any edge colouring into a
port numbering locally and run this algorithm to get a better running time.

This does not hold with the PO-model. To see this, consider the case of a graph
of two nodes connected by a single edge. In the PO-model, symmetry is trivially
broken and we can find for example an independent set. In the anonymous model
with k-edge colouring, it is not possible to break symmetry.
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Figure 21: An edge coloured multigraph and the port-numbered construction with
orientation in the proof of Corollary 6.2. The port-numbering is arbitrary (but fixed
for each node), and is not shown. The maximum degree of the graph is doubled.

Now we will show the following corollary to Theorem 6.1.

Corollary 6.2. Finding a maximal edge packing in the PO-model requires r =
⌈

∆−2
2

⌉
communication rounds.

Proof. Assume that there is an algorithm A that finds a maximal edge packing in
the PO-model in less than r rounds. Now we can use this algorithm to break our
previous lower bound as follows. Let G be a simple k-edge coloured graph. We will
construct a directed multigraph M based on G. First we set V (M) = VG. Then
for each colour c and each edge {u, v} ∈ Ec(G) add two edges to E(M): (u, v) and
(v, u). Each node can then assign an arbitrary port numbering to its incident edges.
See Figure 21 for illustration.

Next we can unfold M to get a simple, edge-oriented graph. Let U be the unfolding
of M , and let φ : V (U)→ V (M) be the covering map associated with this unfolding.
Note that while U is possibly infinite, our algorithm has constant running time in
bounded-degree graphs and therefore must announce an output even in an infinite
graph. Now each node u ∈ V (M) can simulate the execution of A at each node
v ∈ V (U) such that φ(v) = u. Each node u ∈ V (M) sends messages through each of
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its edges, receives messages and updates its state. The existence of the covering map
φ guarantees, that each node in φ−1(u) takes the exactly same steps during each
round.

After the simulation of A finishes, each node u ∈ V (M) announces its output.
For a node v, we define that the outputs of node v for edges (u, v) and (v, u) are
A(M, v, (u, v)) and A(M, v, (v, u)), respectively. These outputs form a maximal edge
packing in U and can be mapped back to a maximal edge packing p in G: for each
edge {u, v} we set

p({u, v}) = A(M,u, (u, v)) + A(M, v, (v, u)).

By definition, we have

p[v] =
∑

e∈E(M):v∈e

A(M, v, e) =
∑

f∈EG:v∈e

A(G, v, e).

Therefore if the edge packing is maximal in M , then it must be maximal in G as
well.

By construction, we have that ∆(M) = ∆(U) = 2∆(G). To conclude our proof, now
observe that we have computed a maximal edge packing in G in less than

r =
⌈∆(M)− 2

2

⌉
= ∆(G)− 1,

which is a contradiction.

7 Conclusions

We have surveyed what is currently known about the distributed computation of
edge packings: best known upper and lower bounds. We saw that a constant-
approximation of maximum edge packing can be computed in O(log ∆) rounds.
There exists a matching lower bound. We saw that there is an algorithm for finding
a weighted maximal edge packing in O(∆ + log∗W ) rounds. The requirement on W
is necessary, and we showed a matching lower bound of Ω(∆) for the PO-model.

As we have seen, finding a maximal edge packing is directly connected with finding
a good approximation of a minimum vertex cover. It is quite surprising that a local
algorithm can find a 2-approximation of a minimum vertex cover, when no fast
(2− ε)-approximation algorithms are known even in the centralised setting.
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Maximal edge packing is one of the many classical distributed graph problems, such
as maximal matching, maximal independent set, and (∆ + 1)-colouring, that have an
algorithm that runs in time that is linear in ∆, but so far almost no corresponding
lower bounds have existed. The lower bound in this work, and the similar lower
bound by Hirvonen and Suomela [HS12] are only shown for anonymous models of
distributed computation. It is a major open problem in the field to show linear-in-∆
lower bound for any of these problems in the ID-model. Recently Göös et al. [GHS12]
that for a large class of graph optimisation problems, the PO-model and the ID-model
are equivalent. It is no coincidence that we showed our lower bound also in the
PO-model: combining these two results would yield the first linear-in-∆ lower bound
for the ID-model for maximal edge packing.
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