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Abstract

Metabolism is the system of chemical reactions sustaining life in the cells
of living organisms. It is responsible for cellular processes that break down
nutrients for energy and produce building blocks for necessary molecules.
The study of metabolism is vital to many disciplines in medicine and phar-
macy. Chemical reactions operate on small molecules called metabolites,
which form the core of metabolism. In this thesis we propose efficient
computational methods for small molecules in metabolic applications. In
this thesis we discuss four distinctive studies covering two major themes:
the atom-level description of biochemical reactions, and analysis of tandem
mass spectrometric measurements of metabolites.

In the first part we study atom-level descriptions of organic reactions. We
begin by proposing an optimal algorithm for determining the atom-to-atom
correspondences between the reactant and product metabolites of organic
reactions. In addition, we introduce a graph edit distance based cost as the
mathematical formalism to determine optimality of atom mappings. We
continue by proposing a compact single-graph representation of reactions
using the atom mappings. We investigate the utility of the new representa-
tion in a reaction function classification task, where a descriptive category
of the reaction’s function is predicted. To facilitate the prediction, we
introduce the first feasible path-based graph kernel, which describes the
reactions as path sequences to high classification accuracy.
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In the second part we turn our focus on analysing tandem mass spectromet-
ric measurements of metabolites. In a tandem mass spectrometer, an input
molecule structure is fragmented into substructures or fragments, whose
masses are observed. We begin by studying the fragment identification
problem. A combinatorial algorithm is presented to enumerate candidate
substructures based on the given masses. We also demonstrate the useful-
ness of utilising approximated bond energies as a cost function to rank the
candidate structures according to their chemical feasibility. We propose
fragmentation tree models to describe the dependencies between fragments
for higher identification accuracy.

We continue by studying a closely related problem where an unknown
metabolite is elucidated based on its tandem mass spectrometric fragment
signals. This metabolite identification task is an important problem in
metabolomics, underpinning the subsequent modelling and analysis efforts.
We propose an automatic machine learning framework to predict a set of
structural properties of the unknown metabolite. The properties are turned
into candidate structures by a novel statistical model. We introduce the
first mass spectral kernels and explore three feature classes to facilitate the
prediction. The kernels introduce support for high-accuracy mass spectro-
metric measurements for enhanced predictive accuracy.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.2.1 Combinatorics: Combinatorial algorithms
G.2.2 Graph theory: Graph algorithms
I.6.5 Model development
I.5 Pattern recognition
J.3 Life and medical sciences

General Terms:
Algorithms, machine learning, bioinformatics, computational biology,
chemoinformatics

Additional Key Words and Phrases:
Metabolism, mass spectrometry, combinatorial algorithms, graph
algorithms, kernel methods, graph kernels, computational complexity
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fun and fostered the “outside the box” mentality that I have tried to keep
in mind during my PhD studies.

I thank Juha Kokkonen, Jari Kiuru and Raimo Ketola for the invalu-
able experimental support during the fragment papers, without which the
papers would not have been possible. The work by Sampsa Lappalainen
was instrumental during the reaction mapping project. The path kernel pa-
per would not have been possible without the helpful cooperation and the
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Rousu
Computing atom mappings for biochemical reactions without
subgraph isomorphism
Journal of Computational Biology 18(1):43–58, 2011.
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Chapter 1

Introduction

The aim of this thesis is to propose efficient computational methods to
various biological and chemical problems involving small molecules.

This thesis consists of the present introductory Part I and five original
publications reprinted at Part II at the end of the thesis. The purpose of
this introductory part is to provide motivation, background, and a literature
survey of the problems discussed in the original publications in a unified
notation. We do not describe the proposed computational methods or
experimental results in this introductory part, instead we refer the reader
to the original publications in the Part II.

This thesis presents studies and results on four distinct bioinformatics
and chemoinformatics applications presented in five original Papers. The
research studies are:

• Computing atom mappings for biological reactions (Paper I)

• Computing a path kernel for reaction function prediction (Paper II)

• Computing fragment identifications of tandem mass spectrometric
data (Papers III and IV)

• Computing metabolite identification through kernel methods from
tandem mass spectrometric data (Paper V)

In each case a biological or chemical problem is formalised and computer
scientific algorithms and methods are presented to solve the problem. The
goal in each study has been to provide efficient state-of-the-art algorithms
for domain problems.

We begin the introductory Part by collecting the common biological,
chemical and mathematical background, as well as introducing machine
learning and kernel methods in the Chapter 2.

3



4 1 Introduction

The following three main Chapters 3 to 5 introduce the topics of the
original Papers. Each main chapter introduces the respective biological
or chemical problem, and gives a mathematical problem definition. We
introduce necessary biological concepts and review the computer scientific
literature on the problem domain with a summary of the state-of-the-art
methods and algorithms.

In Chapter 3 we discuss the problem of reaction mapping. In a chemical
reaction a set of reactant molecules are structurally modified and become
product molecules. In reaction mapping the atom-to-atom correspondences
between reactants and products are determined. The mapping problem is
an instance of inexact graph matching, with a large – yet, in the chemical
community unexploited – literature.

In Chapter 4 we move our focus to constructing representations of
molecules and reactions by feature vectors that collect counts of their graph-
theoretic parts. Widely used kernel methods utilise the representations for
various prediction tasks. As an example we discuss a reaction function
prediction task.

In Chapter 5 we discuss analysis of tandem mass spectrometric mea-
surements of small molecules. A tandem mass spectrometer measures the
masses of structural fragments of a molecule. Two main questions are ex-
plored: how to identify an unknown molecule based on its tandem mass
spectrometric measurement, and how to identify the structural fragments,
assuming that the molecule itself is known. We introduce both algorithmic
and machine learning approaches for these problems.

We conclude with Chapter 6.

1.1 Original contributions

The contributions in this thesis are given in the original publications I-V.
We summarise the main contributions below in the order of the original
Papers.

• We introduce graph edit distance with support for arbitrary costs as
a flexible cost function framework for reaction mapping problem. An
A∗ algorithm for computing the optimal atom mappings of chemi-
cal reactions is introduced with several novel heuristics that exploit
molecule-specific properties. We propose to enhance A∗ by introduc-
ing several atom-level chemical context descriptors, generated using
a Message Passing framework. We compute optimal atom mappings
for over 5,800 common organic reactions of the KEGG database. We
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introduce the concept of using atom mappings for compact reaction
graph representation.

• We introduce the first feasible path-based graph kernel, using a com-
pressed path-index data structure to store the paths of a dataset
of graphs efficiently. We introduce reaction graphs as a novel re-
action representation for reaction classification. The path kernel is
computed on over 17,000 reaction graphs to predict reaction function
classification with MMCRF algorithm with state-of-the-art prediction
accuracy. The path-based graph kernel is shown to achieve dramati-
cally higher performance than the commonly used walk-based graph
kernels.

• We propose an exhaustive subgraph search algorithm for enumera-
tion of candidate fragments of tandem mass spectrometric product
ion peaks. We introduce a bond energy based cost function to rank
these candidates according to their chemical feasibility. A developed
windows application implements the methods.

• We introduce the novel concept of fragmentation trees, and propose
three fragmentation tree models of increasing complexity as a more
accurate model for the fragmentation process. Mixed integer linear
programming solutions are presented for these models to estimate the
fragments of a tandem mass spectrum as a whole. Experiments show
improved accuracy with both fragmentation trees and bond energies
compared to state-of-the-art simulation-based fragment identification
methods.

• An automatic metabolite identification framework based on pattern
recognition for tandem mass spectrometry is introduced. The frame-
work consists of two parts: we first predict binary properties of the
unknown metabolite based on its mass spectral signals. We intro-
duce a statistical model to turn these properties automatically into a
ranked list of candidate structures from large molecular repositories.
We introduce first non-trivial mass spectral kernels. We explore two
families of kernels on three classes of mass spectral features extracted
from the spectra of unknown compounds. The kernels introduce sup-
port for non-integral mass measurements.

The contribution of the author to all of the original publications was
substantial.

In paper I, the author developed the algorithms and ran the experi-
ments. The author and Sampsa Lappalainen implemented the algorithms.



6 1 Introduction

The author developed and implemented the atom descriptors. The paper
was co-written by the author and Juho Rousu.

In Paper II, the author co-developed the kernels with Juho Rousu.
The implementation of the kernels and graphs was by the author, while
Niko Välimäki wrote the path index data structure. The author ran the
experiments. The paper was co-written by all authors equally.

In Paper III, the author implemented the methods and ran the ex-
periments. The initial ideas were conceived by Ari Rantanen and Taneli
Mielikäinen, while the author developed the enumeration algorithm and
conceived the different MILP models.

In Paper IV, the author implemented the software, and ran the exper-
iments with Ari Rantanen.

In Paper V, the author conceived the idea of representing spectra
as densities and developed and derived the probability product kernels,
along with the feature representation. The author developed the Poisson-
Binomial model and supervised the implementation. The paper was co-
written by the author and Juho Rousu.



Chapter 2

Background

In this chapter we introduce the essential chemical, biological and mathe-
matical background necessary for the topics of the thesis. We review basic
concepts of chemistry, metabolism, mass spectrometry, graph theory and
kernel methods.

2.1 Chemistry

A compound is a chemical substance consisting of atoms connected by
chemical bonds to form a structure. The atom is a basic unit of matter
that consists of protons, neutrons and electrons. The number of protons
of an atom determines its chemical element, e.g. carbon, oxygen or iron.
The elemental composition or elemental formula of a compound denotes
the counts and types of its atoms. For instance, a glucose has an elemental
composition of C6H12O6.

The number of neutrons of an atom determines its isotope. For in-
stance, a 12-carbon is the most common carbon isotope with 12 neutrons
at approximately 98% abundance in organic matter. The next common iso-
tope is the 13-carbon with an extra neutron with 1.007% abundance. An
atom refers to a distribution of its isotopes, which usually have equivalent
properties, but different masses.

The mass of atoms and compounds is measured in atomic mass units (u).
The mass of 12-carbon is by convention exactly 12 u and the mass of 13-
carbon is 13.004 u. The mass of a compound is then a distribution over the
isotopic variants of its atoms. A standard atomic weight is the expected
mass of atoms and compounds. However, in practise analysis is simplified
by omitting the isotopic variants. In this thesis we use atomic mass, which
is defined as the mass based on the most common isotope. A carbon has a

7



8 2 Background

standard atomic weight of 12.011 u due to isotopes, while its atomic mass
is exactly 12 u. As a hydrogen has a mass of 1.008 u and an oxygen has a
mass of 15.994 u, the mass of glucose is then 180.063.

A molecule is an electrically neutral compound. In contrast, an elec-
trically charged compound is called an ion, which has either a positive or
negative charge due to an imbalance between positive protons and negative
electrons.

2.2 Metabolism

Metabolism is the operation of chemical reactions sustaining life in the
cells of living organisms [136]. The constantly ongoing chemical processes
within cells allow the cells to break down nutrients for energy, and produce
molecules as building blocks for the cell to function, grow and reproduce.

The main concepts of metabolism are metabolites and reactions. A
metabolite is usually a small molecule of less than 1000 u participating
in metabolic reactions. A metabolic reaction transforms a set of reactant
metabolites into a set of product metabolites, often catalysed by an en-
zyme. The enzymes are proteins produced according to the genome of the
organism through translation, which ultimately regulates the metabolism.
Metabolic reactions form metabolic pathways by sharing metabolites in re-
actions as both reactants and products. For instance, a glucose metabolite
is first transformed into a glucose-6-phosphate, which is then transformed
into a fructose-6-phosphate. The subsequent reactions transform the com-
pound further into pyruvate, which is the starting point of the TCA cycle,
responsible for generation of energy.

The metabolism of common organisms are well-known [99]. Both metabo-
lites and reactions are annotated in databases, such as KEGG [134] and Bio-
Cyc [45]. The methods of this thesis are independent of the data source.
We use the KEGG database exclusively in this thesis.

2.3 Mass spectrometry (MS)

Mass spectrometry is a key analytical measurement technology for quan-
tification and qualification of compounds [184]. It is along with Nuclear
Magnetic Resonance (NMR) the main measurement technology available
for chemists working with small molecules. Mass spectrometry is able to
measure the chemical composition of a sample; for instance a cell culture.
Cells can contain thousands of unique metabolites, each in various con-
centrations. Wide range of mass spectrometers exist that are suitable for
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Figure 2.1: A schematics of a mass spectrometer. The (organic) sample
is first ionised, and then individual ions are separated according to their
mass-to-charge ratio in the mass analyser. The detector measures the ratios
and produces a mass spectrum. Various technologies exist for each of the
components of a mass spectrometer.

high-throughput and high-accuracy experiments.

A mass spectrometer measures the mass-to-charge ratio of compounds
in a biological sample. The measurement results in a mass spectrum, with
peaks indicating the mass-to-charge ratio of pools of molecular species. The
height of the peak is denoted as intensity, which represents the size of the
pool. Often a simplifying assumption of unit charges is made, either by
using preprocessing to normalize charges, or by using a mass spectrome-
ter which favours singly-charged species. Using this assumption, the mass
spectrum gives the masses of the compounds directly. With suitable accu-
racy, the mass is sometimes enough to deduce the elemental formula of the
analysed compound [140].

The key components in any mass spectrometer are (i) the ion source,
which ionises the sample molecules (i.e. adds charge), (ii) the separation of
the ions by electromagnetic fields in a mass analyser, and (iii) the measure-
ment of the mass-to-charge ratio at the detector. The general idea of MS
is to subject the trajectories of ions to electromagnetic fields. A compound
resists these fields in relation to its mass and charge (See Figure 2.1).

Additionally, MS is often coupled with a gas chromatography (GC) or
liquid chromatography (LC). Chromatography separates the molecules in
the sample physically by forcing them through a resistant medium to reduce
the complexity of the spectra. The compounds arrive through the medium
at different times according to their mass and shape.
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Mass spectrometers are only able to separate charged species in the mass
analyser. Hence, the sample is ionised. However, ionisation places excess
internal energy in the compounds, which renders them inherently unstable.
The molecules seek to lose the internal energy and charge by structural
rearrangements, leading sometimes to in-source fragmentation. The most
common fragmentation event is bond cleavage, where a removed bond can
lead to formation of two independent subcompounds called fragments. In
the case of singly-charged species, only one of the fragments retains the
charge. The other fragment is denoted the neutral loss, which is not visible
in the spectrum. Fragments are sometimes denoted product ions.

The fragmentation is usually an undesired effect: some peaks corre-
spond now to fragments instead of intact molecules, without any direct
indication of the status of the peak. Fragmentation is prevented with two
methods: by using “soft” ionisation, which does not place too much internal
energy to the compounds to fragment, and by measuring the ions quickly
such that the ions do not have enough time to undergo fragmentation.

Most widely used ionisation methods are soft. These include chemi-
cal ionisation (CI), electrospray ionisation (ESI) and laser-based method
MALDI, which is especially suitable for macromolecules such as DNA or
proteins. A common electron ionisation (EI) is a hard ionisation method,
which induces in-source fragmentation to provide fragment peaks, and
hence, more structural information.

Widely used mass analysers include Quadrupole (QqQ), Ion traps (IT),
Time-of-Flight (TOF) instruments and Fourier Transform Ion Cyclotrons
(FTICR). The Quadrupole uses radio frequencies to only pass to the de-
tector ions of a specific mass in turn. Ion traps literally trap the ions and
eject them based on masses. TOF instruments use electric fields to accel-
erate ions through a potential. The mass is measured on the flight time
to detector. Finally, Ion cyclotron resonance methods trap the ions and
produce a continuous signal of the ions, which is deconvoluted with Fourier
Transform.

The mass analyser defines two important properties of MS: the mass
range and mass accuracy. The mass range of most methods is up to 3000 u,
which is suitable for metabolomics. The mass accuracy is the error in the
mass measurement in parts-per-millions of the true mass. Ion traps and
Quadrupoles have a low mass accuracy in the range of 100 ppm, while
TOF and FTICR offer high accuracy up to 0.5 ppm. In a metabolite of
mass 500 u, these translate into absolute errors ε up to 0.025 and 0.0005,
respectively. The lowest accuracy is the nominal mass accuracy, where the
masses are integral. Molecular masses of metabolites are naturally centred
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around integral values and hence nominal mass data is usually rounded to
closest integer without a significant loss of information.

Often the peaks are annotated by matching the peak masses against
masses of known compounds. We discuss computational identification of
compounds from the mass spectral signals in Chapter 5.

2.3.1 Tandem mass spectrometry (MS/MS)

Tandem mass spectrometry is a special type of MS where multiple MS de-
vices are coupled together. Tandem mass spectrometry is denoted MS/MS
or MS2 with conventional MS denoted then as MS1. Chaining of more
than two mass spectrometers results in MSn, which can be done in-space
or in-time. In-space chaining connects several mass spectrometers physi-
cally (e.g. QqQ or QqTOF), while in-time chaining can perform several MS
rounds in a single machine (e.g. FTICR). The main application of MS/MS
is structural identification of unknown compounds, which is discussed in
Chapter 5.

In MS/MS, we explicitly induce fragmentation. The first round of MS
is used to separate a specific ion based on its mass-to-charge ratio, and
the second high-energy MS is used to fragment that ion extensively (See
Figure 2.2). The ion chosen for fragmentation from MS1 is denoted parent
ion or precursor ion. The resulting tandem mass spectrum contains peaks
that correspond only to fragments of the precursor ion, and possibly a peak
of non-fragmented precursor. Each peak indicates the mass of a fragment.
The fragmentation process depends on the ion structure, applied energy
and other operational parameters [184]. Thus, with standardised mode of
measurement, the resulting tandem mass spectrum is a unique pattern that
depends primarily on the structure of the precursor ion.

The fragmentation is induced by either using high-energy ionisation or
collision-induced-dissociation (CID). In CID the ions are collided with inert
gases, which causes fragmentation. The large amount of energy generated
by CID often results in fragments that still contain large amounts of energy.
These fragments can fragment again by another set of bond cleavages, pro-
ducing secondary fragments. Continuing this process, the fragmentation
can be modelled as a fragmentation tree of successive fragmentation re-
actions with intermediate ions, some of which are detected before further
fragmentation.

The fragmentation is dominated by cleavages of chemical bonds, which
“cut” the ions into substructures, an other common event is a change of
bond order. Additionally, rearrangement reactions are also possible, where
a new bond is formed. Chemically this occurs when two nearby atoms join
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Figure 2.2: Schematic of tandem mass spectrometry. The first round of
MS produces a ‘wide’ spectrum indicating the mass-to-charges of the com-
pounds in the e.g. cell sample (top). In the second MS phase, a specific
ion band is filtered for fragmentation, and the fragments are measured
(bottom). Only the peak masses are measured by MS, the structures they
correspond to need to be elucidated.
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electrons for a new covalent bond. These reactions effectively generate new
bonds in the fragmented structures.

The collision energy is often measured as electron volts eV, ranging
from low-energy 10 eV collisions to high-energy 60 eV collisions. A low-
energy CID tends to produce more heavier fragments with less fragmen-
tation. High-energy CID produces smaller fragments [184]. For a more
complete view of the possible fragments, spectra from different collision
energies are often merged for subsequent analysis. In a RAMP spectra the
collision energy is increased continuously during a single acquisition for a
combined spectrum [194].

2.4 Graph theory

Graphs are powerful and versatile data structures, which can represent
relational information about the modelled objects. In graph representa-
tion, objects are represented as vertices, and relations between objects with
edges. In metabolism, both molecules and reactions are often represented
as graphs. In molecules, the individual atoms are represented with vertices,
and bonds between atoms with edges. Reactions can be interpreted as graph
transformations and consist of a set of reactant and product molecules as
graphs, and relationships between the vertices across both sides of the re-
action.

Throughout this thesis we concern ourselves with small molecules in
various computational tasks. We model the molecules consistently as two-
dimensional labelled undirected graphs.

Graph concepts. A graph G = (V,E) is a tuple where a vertex set V =
{v1, . . . , vn} is connected by edges E = {e1, . . . , em}. A graph is directed if
an edge (v, u) ∈ E is distinct from an edge (u, v). Otherwise the graph is
undirected. A vertex-labelled graph is associated with a labelling function
l : V → Σ, while an edge-labelled graph is associated with a function
l : E → Σ. A edge-weighted graph is associated with a weight function
w : E → R, while a vertex-weighted graph has a function w : V → R.

The order of a graph |G| = |V | = n is the number of its vertices. A graph
is connected if there exists a path between every pair of vertices. Otherwise,
we call the graph disconnected. A function N(v) gives the neighbours of a
vertex v. A degree deg(v) = |N(v)| is the number of neighbours of a vertex.

A subgraph of a graph G = (V,E) is H = (V ′, E′), where V ′ ⊂ V
and E′ ⊂ E. We denote subgraph by H ⊂ G. A subgraph is called
an (vertex)-induced subgraph if for all pairs of vertices in the subgraph,
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all edges from parent graph G are present. In contrast, in an edge-induced
subgraph only those vertices are included, which are adjacent to the edge set
E′. Informally, an induced subgraph is defined as a subset of vertices with
all accompanying edges between them, while an edge-induced subgraph is
defined as a subset of edges with all endpoint vertices attached to the edge
set.

An isomorphism of graphG1 andG2 is a bijective mapping f : V (G1) 7→
V (G2) such that any two vertices (v, u) ∈ V (G1)2 are adjacent iff (f(v), f(u)) ∈
E(G2). For labelled graphs, we additionally require label matching l(v) =
l(f(v)) for all v ∈ V (G1). Often only structural similarity is of interest, in
which case the edge labels are not required to match through isomorphism.
An isomorphism between two graphs is a structure preserving relation,
which determines when two graphs are, in fact, the same graph up to a
permutation of the vertices. An automorphism is an isomorphism between
a graph and itself. An subgraph isomorphism is an isomorphism between a
subgraph H ⊂ G1 of graph G1 and a graph G2.

In a morphism problem we determine whether a certain morphism ex-
ists. For instance, in a graph isomorphism problem we determine whether
two graphs are isomorphic. The graph isomorphism problem is NP-complete:
no polynomial time-algorithms exist for the isomorphism problem [147].
However, no NP-completeness proof has been obtained either [147]. In
practise efficient algorithms exist for both isomorphisms [54], and for spe-
cial classes of graphs [170].

A common subgraph H between two graphs G1 and G2 is a subgraph of
both. The common subgraph is sometimes denoted as a common subgraph
isomorphism in the literature. A maximal common subgraph is a com-
mon subgraph which cannot be enlarged. A maximum common subgraph
(MCS) is such a common subgraph that no larger common subgraph ex-
ists. A maximum common subgraph can be meaningfully defined for both
regular and connected subgraphs, as well as for induced and edge-induced
subgraphs. We refer these as CIMCS (connected induced MCS), CEMCS
(connected edge-induced MCS), IMCS (induced MCS), and EMCS (edge-
induced MCS). It is known that detection of a induced MCS (IMCS) is
equivalent to determining the maximum clique in a modular product graph
of G1 and G2 [164] (See Figure 2.3).

A modular product graph G× of two graphs G and G′ is defined as the
label-matching subset of the cartesian product of the vertex sets V (G) and
V (G′)

V×(G,G′) = {(v, v′) ∈ V × V ′ : l(v) = l(v′)},
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(a) G×(G,G′) (b) G⊗(G,G′)

Figure 2.3: (a) A modular product graph G× of graphs G and G′. (b)
A tensor product graph G⊗ of graphs G and G′. The oxygen atoms are
highlighted with grey background.

and edges as

E×(G,G′) = {((v, v′), (u, u′)) ∈ V× × V× : l(v, v′) = l(u, u′),

(v, u) ∈ E ∧ (v′, u′) ∈ E′ or

(v, u) 6∈ E ∧ (v′, u′) 6∈ E′}.

In chemical literature it is sometimes called an association graph [106,
213]. A clique is a complete subgraph. In other words, a clique is a subgraph
with an edge between all pairs of vertices of the subgraph. A maximum
clique is the largest clique in a graph. A maximal clique is a clique that
cannot be enlarged.

Graph sequences. Let a walk w in a graph G be a sequence of vertices
w = (v1, . . . , vm), such that for all i = 1, . . . ,m − 1 there exists and edge
(i, i + 1) ∈ E. The length of the walk is denoted as m. A walk w is non-
tottering iff vi−1 6= vi+1 for all i = 2, . . . ,m− 1 [175]. A non-tottering walk
cannot backtrack to a node it just left.

A non-tottering walk can repeat a vertex given that there are at least
two vertices in between. A path is a walk where no node repeats, i.e.
vi 6= vj for all i, j ∈ 1, . . . ,m. Contrary to walks, the number of paths
is bounded as no path can be longer than |V |. A shortest path is a path
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which coincides with the shortest sequence of steps from v1 to vm [29]. A
cycle is a non-repeating walk, except for v1 = vm. A labelled sequence is
(l(v1), . . . , l(vm)).

There is a walk in the tensor product graph G⊗ of graphs G and G′ that
corresponds to a pair of label-matching walks in the original graphs G and
G′ [91] (See Figure 2.3). The tensor product graph1 contains as vertices the
label-matching subset of the cartesian product of vertices V (G) and V (G′)

V⊗(G,G′) = {(v, v′) ∈ V × V ′ : l(v) = l(v′)},

and edges as

E⊗(G,G′) = {((v, v′), (u, u′)) ∈ V⊗ × V⊗ : l(v, v′) = l(u, u′),

(v, u) ∈ E ∧ (v′, u′) ∈ E′}.

Molecules. A chemical graph is a labelled undirected graph G = (V,E),
where the vertices correspond to atoms and edges to chemical bonds be-
tween the atoms (See Figure 2.4). A labelling function l : V → Σ assigns an
atom symbol (e.g. “Carbon”, “Oxygen”, etc.) to each vertex. We reuse a
labelling function l : E → Σ also on the edges to determine the bond order
(“single”, “double” or “triple” bond). The degree of a vertex corresponds
to the valence of its atom.

The mass of a molecule is the sum of atomic masses of its atom set

m(G) =
∑
v∈V

m(v),

where m(v) is the atomic mass of an atom type l(v). Bonds have no mass.

Reactions. A chemical reaction is a graph transformation, where a set of
reactant molecules are transformed into a set of product molecules. Let a
reaction ρ = (R,P ) be a tuple of reactant chemical graphs R = (R1, . . . , Rr)
and product chemical graphs P = (P1, . . . , Pp) such that they correspond
to a unidirectional reaction

R1 + · · ·+Rr −→ P1 + · · ·+ Pp.

A bidirectional reaction is represented by two reactions with opposite di-
rections.

A chemical reaction is balanced if for each label a, the total number of
vertices with label a is equal in the reactants and products. That is, both
sides have same atom sets and atoms are conserved in the reaction.

1Commonly denoted as direct product graph in the literature.
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(a)

(b) (c) (d)

Figure 2.4: A chorismate (C10H10O6) with four representations. (a) A three-
dimensional representation with atom surfaces. (b) In a conventional two-
dimensional chemical notation, carbon atoms are omitted on the backbone
and bonds are labelled as “up” (solid triangle), “down” (dashed triangle),
single bond or double bond. (c) A full graph representation. (d) A simpli-
fied graph representation with implicit Hydrogens and bond labels omitted
to highlight the structure.
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We denote the reactant (product) graph as a single, possibly discon-
nected graph GR = (VR, ER) (resp. GP = (VP , EP )), where VR =

⋃r
i V (Ri)

is the set of all vertices of reactant graphs, and ER =
⋃r
i E(Ri) is the cor-

responding edge set, respectively.

2.5 Molecular representations

The intuitive representation of molecules as two-dimensional labelled graphs
is not the sole representation used in the chemical literature. In chemical
databases there’s a need for fast look-up of a query molecule. In a database
of millions of compounds, performing graph isomorphism test against them
would be too slow. The 1D string representations have been introduced for
this problem with varying success. The string representation has become
widely used alternative representation to graph representations. Line nota-
tions include proprietary standards SMILES [273, 274] and SMARTS [126],
and the open standards InChI [245, 185, 83] and UCK [102].

SMILES, SMARTS and InChI standards represent the molecular struc-
ture as a string by graph serialisation in a canonised way. In SMILES atoms
are represented with alphabetic letters, branching is indicated with paren-
theses and connectivity through placeholder numbers. The notation was
extended with a backward-compatible SMARTS notation allowing wild-
cards. In recent years the international union of organic chemistry IUPAC
has endorsed an open standard of InChI, which has been widely adopted.

UCK enumerates all paths up to a depth k in a chemical graph, lexico-
graphically orders them and concatenates the paths [102]. It is not possible
to expand UCK identifier back into graph form: it is only suitable for com-
parison of graphs.

The main aim of the line notation is that two structures are the same
if the corresponding strings are equal, which coincides with the graph iso-
morphism problem. It is well known that SMILES and SMARTS do not
actually hold this property in general case [192]. However, InChI claims
that “If two InChI’s are the same, then it is safe to assume that the com-
pounds (structures) that they represent are the same” [245].

More complex representations include the 3D representation, which in-
cludes coordinates, and even more chemically accurate models including
various chemical fields. We refer the reader to textbooks by Gasteiger and
Engel [92], and Leach and Gillet [160].



2.6 Primer on machine learning 19

2.6 Primer on machine learning

Machine learning is a discipline, which studies algorithms that learn func-
tions from data. It is closely related to pattern analysis and pattern recog-
nition, where regularities, relations and structures inherent in the data are
studied. By learning to detect patterns in a data, the system has achieved
modelling power to predict patterns in unseen data.

In machine learning we aim to learn from data a function f : X → Y,
which maps the input space X to the output space Y. The input data
describes the process we are interested in, while the output data represents
a prediction target : an interesting property or pattern of the data which
should be predicted based on input data and a loss function `(f(x), y)
on predictions ŷ = f(x) guiding the learning process. The function is
learnt based on a sample data. In supervised machine learning the dataset
S = {(x1, y1), . . . , (xn, yn)} contains examples with known target values.
In unsupervised machine learning the target values are missing or implicit.
The purpose of machine learning is to learn a function that generalises into
unseen, new data.

Examples of machine learning approaches include clustering [125], neu-
ral networks [224], decision trees [204], support vector machines [33, 238]
and Bayesian networks [84].

Often the input space X is a real vector space Rd of d dimensions,
where data points describe various variables of the process of interest. In
regression the target variable y is continuous and usually real-valued. In
classification the target variable is a discrete label or category, allowing
categorisation of data points. In binary classification there are two target
classes, while in multiclass classification there are more than two classes.
A multilabel classification entails prediction of multiple labels for each in-
stance x.

The function f can take many forms. A simple linear function

f(x) = wTx =

d∑
i=1

wixi

takes each input variable into account independently. A linear function
ignores non-linear relations between the input variables. When the data is
linearly separable, there exists a linear function that can divide the data
into two classes perfectly.

In linear models a weight vector w is learnt and it describes the function
f uniquely. In real life datasets the relationships within the data are often a
mix of linear and non-linear components, with noise included from various
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sources. Learning a non-linear function to reflect the inherent non-linearity
of the data is a challenging task. An alternative approach is to map the data
into a non-linear space with addition of variables that are various multiples
of the original variables, and subsequently learning a linear model with
the new higher dimensional data points. The resulting linear model in the
high dimension can be projected back into the original space, resulting in
a non-linear model in the original space.

In kernel methods this paradigm is followed. A high-dimensional new
representation of the data is constructed implicitly, and robust linear mod-
els are employed.

A detailed look into kernel methods is given in the book by Shawe-
Taylor and Christianini [238].

2.6.1 Support vector machine

We begin by distinguishing between abstract objects x ∈ X and their rep-
resentation φ(x) ∈ F , where the feature space F is a vector space. Usually
the vector space is a real space Rd with d dimensions. This notation pro-
vides a unified way to handle both vectorial objects and, for instance, graph
objects G and their feature representations φ(G).

Support vector machine (SVM) is a family of non-statistical binary
supervised machine learning algorithms, which base the classification on
linear discriminants. A linear discriminant w ∈ F projects the data
{x1, . . . , xn} ⊂ X n into one-dimensional space as wTφ(xi), where a lo-
cation parameter or bias b is added to define the boundary wTφ(xi)+b = 0
between positive and negative classes, respectively. In a linearly separable
case, the values smaller than b belong to the negative class y = −1 and
values larger than b to the positive class y = +1, hence

y = sign(wTφ(x) + b).

The hyperplane

{x : wTφ(x) + b = 0}

is a normal perpendicular to the weight vector w and defines the decision
boundary. The feature space F is divided into positive and negative half-
space through w and b. The class of a new unseen data point is predicted
by computing which side of the decision boundary it resides through ŷ =
wTφ(x) + b, where x is a new data point and ŷ is a predicted class label.

There are various ways to find good w and b parameters. In the lin-
ear discriminant analysis (LDA) approach the w is directed between the
empirical sample means µ+ and µ− of the respective positive and negative



2.6 Primer on machine learning 21

class data points S+ = {xi ∈ S : yi = +1} and S− = {xi ∈ S : yi = −1},
while the location parameter is at the midpoint between the said means,
resulting in

w = Σ−1(µ+ − µ−)

b = w
µ+ + µ−

2
,

where Σ+ and Σ− are the empirical sample covariances of the positive and
negative classes S+ and S−, respectively. In LDA the empirical sample
covariance matrix Σ = Σ+ = Σ− is restricted to isotropy for both classes.

In Fisher discriminant analysis (FDA) both class-specific datasets have
their own sample covariance matrices and the w is hence learnt as

w = (Σ− + Σ+)−1(µ+ − µ−),

while b is as in LDA. This small change incidentally minimises the mis-
classification rate as well, by directing the weight vector w to follow the
shape of the respective datasets. However, rarely a unique w exists that
minimises the misclassification rate. FDA always picks one based on the
covariances of the data points.

In SVM the w is chosen such that the minimum distance between the
normal of the hyperplane w and all data points is maximised. This leads to
a discriminant which maximises the distance γ to the closest points to the
decision boundary, effectively concentrating on getting the most uncertain
data points as far from the decision boundary as possible. A benefit of this
model is that points that are far away from the decision boundary can be
ignored for computational improvements.

By labelling the data points with y ∈ {−1,+1} it is easy to see that a
data point is correctly classified if

y(wTφ(x) + b) ≥ 0,

as the negative classes should have negative projection values along the w,
and positive class should have positive projection values.

The linear SVM formulation is then

max γ

s.t. yi(w
Tφ(xi) + b) ≥ γ for all i = 1, . . . , n.

Note that for a particular w satisfying the constraints it holds that

y((aw)Tφ(x)) = ay(wTφ(x)) ≥ aγ,
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where a ∈ R+ is a constant. I.e. we can scale the w arbitrarily to achieve
arbitrarily large margin.

Instead of finding the largest margin, we find the smallest norm of w
such that the margin is at least exactly 1. We arrive at the conventional
(yet, equivalent) SVM formulation

min
w,b

1

2
||w||2

s.t. y(wTφ(xi) + b) ≥ 1 ∀i.

Soft-margin SVM

The standard hard-margin SVM requires the data to be linearly separa-
ble. This is an unrealistic assumption: complex phenomena often cannot
be classified linearly, especially in noisy measurements. Hence, we add a
penalty or error term

ξi = (1− yi(wTφ(xi) + b))+,

where x+ = max(x, 0). The penalty is zero for a margin of at least 1, and
rises linearly for smaller margins. The soft-margin SVM is

min
w,ξ,b

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i,

where C is the box constraint term, which determines the trade-off be-
tween minimisation of error (C

∑n
i=1 ξi) and the desire to have a smooth

discriminant (1
2 ||w||

2).

This constrained quadratic optimisation problem can be solved by using
Lagrange multipliers αi for each constraint yi(w

Tφ(xi) + b) ≥ 1− ξi and βi
for each constraint ξi ≥ 0. A Lagrangian of the optimisation problem is

L(w, b, ξ, α, β) =
1

2
||w||2+C

n∑
i=1

ξi−
n∑
i=1

αi

[
ξi−1+yi(w

Tφ(xi)+b)
]
−

n∑
i=1

βiξi.

The corresponding dual is found by partial differentiation with respect
to w, b and ξ and finding a unique saddle point of L by setting the partial
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derivatives to 0:

∂L

∂w
(w, b, ξ, α, β) = w −

n∑
i=1

yiαiφ(xi) = 0

∂L

∂b
(w, b, ξ, α, β) =

n∑
i=1

yiαi = 0

∂L

∂ξ
(w, b, ξ, α, β) = C − α− β = 0.

Resubstituting the relations into the Lagrangian we obtain the value of
the Lagrangian when minimised with respect to (w, b, ξ) as

L(α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjφ(xi)
Tφ(xj)

under the constraints on α and β. The β is not part of the optimisation
function and is omitted. As a result we have derived the dual problem
equivalent to the original formulation. The dual is

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjφ(xi)
Tφ(xj)

s.t. 0 ≤ αi ≤ C ∀i
n∑
i=1

αiyi = 0.

According to the Karush-Kuhn Tucker (KKT) conditions only exam-
ples with a margin at most 1 have non-zero Lagrangian multiplier αi. We
call the examples with non-zero Lagrangian multipliers αi support vectors
due to the fact that only those data points participate in determining or
“supporting” the discriminant w.

The dual variable β can be recovered as β = C − α after the optimum
of the dual is found. The vectors w and variable b are recovered from any
support vector by

w =
n∑
i=1

yiαiφ(xi)

b = yi −wTxi = yi −
n∑
j=1

yjαjφ(xj)
Tφ(xi).
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The weight vector w is hence a linear combination of the data points [238].

The derived dual function of the primal soft-margin SVM formulation
is still a constrained quadratic optimisation function. The benefit of the
dual representation is twofold. First, the dual function includes our data
points xi only through dot products. A kernel trick can be applied on
the dual form to perform SVM in a feature space associated with a chosen
kernel. Second, by using kernel trick to efficiently precompute the dot
products, the dual form only contains n variables and is independent of the
dimensionality d, while the primal form has n+ d+ 1 variables.

2.6.2 Kernel methods

In the previous section we presented a robust linear classification algorithm
based on principle of margin maximisation, and derived a dual form where
the input data is only processed through dot products. In this section we
review the principles of kernel methods, which explore the ramifications of
representation of data exclusively through dot products, to great improve-
ments in computational performance.

In conventional machine learning the data x ∈ X is represented through
a feature mapping φ(x) ∈ F , where the feature representation φ(x) can be
a real valued vector (F = Rd), a string or a graph. A machine learning
algorithm is then explicitly designed to process such data. Alternatively,
we can map a complex data type into a vector representation and utilise
standard algorithms.

In kernel methods a radically different approach is chosen. Instead of
representing the data explicitly as φ(x), the data is seen only through pair-
wise similarities. In practise, the data is represented through a function
K : X × X → R and the data set S is represented by the n × n matrix of
pairwise similarities K(x, x′). All kernel methods process such matrices di-
rectly and ignore the original data. The approach standardises the machine
learning algorithm to a fixed input. However the problem of data represen-
tation is now simply moved to constructing a good kernel for various types
of data.

Kernel definition. A function K : X × X → R is called a kernel iff it
is symmetric (that is, K(x, x′) = K(x′, x) for any x, x′ ∈ X ) and positive
definite, i.e.

n∑
i,j

cicjK(xi, xj) ≥ 0
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for any n > 0, any choice of n objects x1, . . . , xn ∈ X and any choice of
values ci ∈ R.

We call a valid symmetric positive definite kernels Mercer kernels2. The
simplest Mercer kernel is an inner product between real vectors, that is

K(x, x′) = xTx′ =

d∑
j=1

xjx
′
j .

This kernel is symmetric (xTx′ = x′Tx) and the positive definiteness is
simple to verify by

n∑
i

n∑
j

cicjK(xi, xj) =
n∑
i

n∑
j

cicjx
T
i xj = ||

n∑
i

cixi||2 ≥ 0.

The inner product kernel is also called a linear kernel. The kernel can
be easily generalised into any data type by feature representation

K(x, x′) = φ(x)Tφ(x′).

Any mapping φ : X → Rd for d ≥ 0 is a Mercer kernel.

Definition 1. For any kernel K on space X , there exists a Hilbert space3

F and a mapping φ : X → F such that

K(x, x′) = 〈φ(x), φ(x′)〉, for any x, x′ ∈ X

where 〈v, u〉 represents a dot product in the Hilbert space between any two
points u, v ∈ F .

This results highlights the first benefit of the kernel representation. Any
Mercer kernel function is equivalent to a dot product in some feature space
F . Thus a kernel can be computed by representing the data x as φ(x)
and computing the dot product there. However, we don’t actually need
to do this explicitly. It is sufficient to show that a similarity function K
is symmetric and positive definite, and compute the function K directly.
The representation φ(x) does not need to be computed – or even known
– at all. There exists useful similarity functions that indeed are Mercer

2There exists a class of invalid kernels. For instance a max function is not positive
definite, but has proved to be useful in practise [177]. Invalid kernels are not guaranteed
to converge to a global optimum in SVM.

3A Hilbert space is a vector space accompanied with a complete dot product and
complete norm functions. A Hilbert space is by definition also a Banach space.
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kernels, however the feature space corresponding to these kernels can be
infinite-dimensional or difficult to determine.

An example of such a kernel is the Gaussian radial basis function (RBF)
kernel

KRBF (x, x′) = exp

(
−||x− x

′||2

2σ2

)
where σ is the variance or bandwidth parameter. This is a Mercer ker-
nel [238] which can be written as a dot product according to Definition 1.
The feature space is infinite-dimensional and includes all possible monomi-
als of input features with no restriction on the degrees [238].

Another class of kernels is the polynomial family of kernels

K(x, x′) = K(x, x′)p,

where p is a non-negative integer. The corresponding feature space is in-
dexed by all monomials of degree p

φ(x) = φ(x)i11 φ(x)i22 . . . φ(x)iNN ,

where i1, . . . , iN ∈ NN satisfies

N∑
j=1

ij = p.

The matrix K = K(x, x′)x,x′∈S is called the Gram matrix and it com-
pletely characterises the dataset S. Often the kernel matrix is normalised
as

K̂(x, z) =
K(x, z)√

K(x, x)K(z, z)
.

The normalisation ensures that the kernel values lie on the unit hyper-
sphere.

Kernel trick. The kernel trick is as follows

Proposition 1. Any algorithm for vectorial data that can be expressed only
in terms of dot products between vectors can be performed implicitly in the
feature space associated with any kernel, by replacing each dot product by a
kernel evaluation.

The trick is simple, however it has huge practical consequences. An
array of machine learning algorithms have kernel variants, including Prin-
cipal component analysis [132, 229], linear discriminant analysis, canonical
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correlation analysis, perceptrons and several clustering methods [238]. By
kernelizating an algorithm we can turn the algorithm into a non-linear by
simply using a non-linear kernel with no added computational cost at all.

In SVM the kernel trick is achieved through the dual form, where nat-
urally only dot products of the input data exist. By replacing the dot
products with kernels, we implicitly operate on objects in a possibly high-
dimensional feature space. Hence, SVM is turned into an effectively non-
linear classifier that still finds a global optimal.

2.6.3 Max-margin conditional random fields

The Max-margin conditional random field (MMCRF) is multilabel output
prediction framework based on kernel methods [220, 221]. It extends the
one-class SVM into a multilabel prediction by defining a conditional ran-
dom field on the label structure. The MMCRF is applied in Paper II,
where reaction graphs are classified into a sparse hierarchy of function cat-
egories. We refer the reader to the original paper for a thorough discussion
of MMCRF [220].

In the context of multilabel classification, we consider a training set
((x1,y1), . . . , (xn,yn)) where (xi,yi) ∈ X × Y. The input space X is a set
of objects and the output or label space Y = Y1 × · · · × Yk consists of sets
Yj = {−1,+1}. The label vector y = (y1, . . . , yk) ∈ Y is called a multilabel
and its components yj are called microlabels. We distinguish a pair (xi,y)
from a pair (xi,yi), where xi is input data, yi is the correct multilabel and
y is arbitrary, as pseudo-example to emphasise that such a pair has not
been seen in the training data.

We assume an associative network G = (V,E) on the output labels,
where a vertex j ∈ V corresponds to a j’th microlabel and edges e =
(j, j′) ∈ E correspond to microlabel dependencies. The structure of the
network G is fixed prior through some edge set E.

Additionally, we define a joint feature space Fxy through

ϕ(x,y) = φ(x)⊗ ψ(y)

as a tensor product between the input features φ(x) and output features
ψ(y). The tensor product contains all pairs φ(x)jψ(y)k of input and output
features. The benefit of a tensor kernel is that no alignment of input and
output features is necessary. Instead, the kernel method determines the
alignment automatically by learning the weight vector w ∈ Fxy, which also
belongs to the joint feature space.

The MMCRF uses an exponential model class to determine the prob-
ability of an arbitrary multilabel y being correct for a given input object
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x:
p(y|x) ∝

∏
e∈E

exp
(
wT
e ϕe(x,ye)

)
= exp

(
wTϕ(x,y)

)
,

where ye = (yj , yj′) is a pair of microlabels attached by the edge e, ϕe(x,ye) =
φ(x) ⊗ ψe(ye) is a tensor product of the input features and the output
features of a pair of microlabels, with corresponding weights denoted by
we. The ψe(ye) is a block of four features corresponding to configurations
(0, 0), (0, 1), (1, 0), (1, 1) of the labels of edge e in multilabel y. Exactly one
of these features is set as 1 according to the multilabel. Hence, the feature
vector ϕe(x,ye) represents the input features with respect to a specific edge
configuration.

The primal optimisation problem is

min
w,ξ

1

2
||w||2 + C

n∑
i=1

ξi

s.t. wTϕ(xi,yi)−wTϕ(xi,y) ≥ `(yi,y)− ξi ∀i ∀y
ξ ≥ 0,

which has a corresponding dual. The loss function `(yi,y) measures the
distance between a correct multilabel yi and an incorrect multilabel y for
the data point xi. A simple choice is the Hamming loss, which counts the
number of incorrect microlabels. The algorithm searches for a projection
w, such that the distance along the projection between a single correct
example (xi,yi) and all incorrect pairings (xi,y) is preferably at least the
corresponding loss. The optimisation problem is non-trivial and utilizes
the network G as a conditional random field. We refer the details to the
original paper [220].

After the optimal w is found, we solve the arg-max problem to get the
multilabel prediction

y = arg max
y∈Y

exp
(
wTϕ(x,y)

)
,

where the candidate space Y is often restricted to, for instance, multilabels
seen in the training data.



Chapter 3

Computational reaction mapping

In this chapter we discuss motivation, background and algorithms for com-
putational reaction mapping. We first formalise the reaction mapping prob-
lem with applications in Section 3.1. The problem is an instance of the
graph matching problem and is closely related to the graph edit distance
concept, which are discussed in Section 3.2. We continue by surveying
reaction mapping algorithms in Section 3.3.

In Paper I optimal reaction mappings are computed, and subsequently
used as inputs as reaction graphs in Paper II on reaction classification. The
reaction graphs are discussed in the Chapter 4.

3.1 Introduction

In a chemical reaction ρ = (R,P ) a set of reactant molecules R are trans-
formed into a set of product molecules P , often catalysed by an enzyme.
An example reaction alcohol dehydrogenase oxidises ethanol into an ac-
etaldehyde with the help of a NAD+1. The reaction is described as

ethanol + NAD+ −→ acetaldehyde + NADH + H+.

The reactants are ethanol and NAD+ with a positive charge (See Fig-
ure 3.1). The reaction products are acetaldehyde, uncharged NADH and
a proton H+. The reaction is catalysed by various alcohol dehydrogenase
enzymes (See Figure 3.2). The enzyme acts as a catalyst, greatly increasing
the speed of the reaction [104]. Informally, the reactants are bound to the
enzyme, which modifies the reactants into products, which are subsequently
released from the binding.

1Nicotinamide adenine dinucleotide

29
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Figure 3.1: The alcohol dehydrogenase reaction.

During the reaction several chemical transformation steps are executed
either successively or in parallel. In the human alcohol dehydrogenase the
reaction mechanism contains 8 reaction steps [104], which can be repre-
sented as a sequence of bond breakage and bond formation events on the two
reactants. These bond operations correspond physically to re-arranging the
electron configurations of the reactant atoms [286]. The atom set remains
unchanged. The result of the reaction process are the product molecules.
Implicitly, the reaction transformation defines the correspondence between
the atoms of the reactants and the products.

Reaction mapping is the reconstruction of these atom-to-atom corre-
spondences, as occurring in nature. The mappings are hence dependent on
the enzyme. Various experimental techniques can provide highly accurate
reaction mechanisms and hence atom-to-atom correspondences. These in-
clude atom labellings, NMR and enzyme crystallography [104]. The exper-
iments are complemented with manual curation, and accurate modelling
through quantum-chemical or physico-chemical calculations. These ap-
proaches require substantial effort and time [104].

In metabolic modelling there are various applications for large-scale
atom-level metabolic networks, which would be prohibitively costly and
time-consuming using the aforementioned methods. Atom-level reconstruc-
tion of metabolic networks facilitates better understanding of the metabolic
models [10], and can be used for consistency checking [11], global analy-
sis of atom conservation ratios [118], reaction classification [287], and drug
metabolisation prediction [26]. Another major line of applications lies in
tracer experiments, where the atoms of cell’s nutrients are isotopically or
chemically labelled, enabling tracing of the “flow” of the atoms through-
out the metabolic network [10, 187, 5]. Commonly used approach is the
13C flux analysis, where isotopically labelled nutrient is fed to the cell and
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Figure 3.2: Crystallographic schematic structure of the human ADH5 en-
zyme.

its pathways are traced by measuring the concentration of 13C in different
parts of the metabolic network [208, 209, 219, 26]. Atom-level mappings
are necessary for this tracing.

While reaction mappings are collected to some extent, the databases
are far from exhaustive. The ARM database of atom mappings contains
atom mappings only for Carbon, Phosphorus and Nitrogen atoms [11].
The KEGG RPAIR database contains mappings only between metabo-
lite pairs [151]. However, these are difficult to extend to mappings con-
cerning the whole reaction without extensive manual work. In most other
databases, atom mapping information is missing altogether.

Computational reaction mapping methods rose to meet the demands
of large-scale metabolic analysis and other applications. These methods
search combinatorially for feasible reaction mappings using approximate
optimality criteria.

In mathematical terms we define the reaction mapping as a bijective
graph transformation f : VR 7→ VP , where each vertex v in the reactant
graph GR is mapped to a vertex w in the product graph GP , such that
l(v) = l(w). Reaction mapping is also denoted as atom mapping.

The cost c of a reaction is defined with respect to a reaction mapping
f as a measure of edge operations (deletions, insertions and substitutions)
implied by f :

Definition 2. A cost c(f) of a mapping f is the sum over all vertex pairs
through the mapping

c(f) =
∑

(v,u)∈VR×VR

c(v, u)
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(a)

(b)

Figure 3.3: A reaction R00652: L-Methionine + Glyoxylate <=>

4-Methylthio-2-oxobutanoic acid + Glycine with two alternative
atom mappings. The coloured regions indicate mapped atoms. (a) The
Hamming cost is 4, as the atom mapping implies a swap of N and O atoms
with respective cleavages and re-attachments. (b) The Hamming cost is
2 as only a single swap is necessary: the yellow substructure is separated
from the grey substructure and attached to the purple substructure.

where the cost function is

c(v, u) =


wdel(v, u) if (v, u) ∈ ER and (f(v), f(u)) 6∈ EP
wins(v, u) if (v, u) 6∈ ER and (f(v), f(u)) ∈ EP
wsub(v, u) if (v, u) ∈ ER and (f(v), f(u)) ∈ EP
0 if (v, u) 6∈ ER and (f(v), f(u)) 6∈ EP

The weights w are non-negative.

Less formally, user-defined costs are paid for implied bond formation,
bond removal and bond substitution events, respectively. Ideally, the cost
c(f) of a mapping f should correlate with the difficulty of executing a
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certain reaction given a catalyst, or the probability of the reaction happen-
ing by chance. Accurate quantitative modelling of this kind is, however,
computationally very demanding. At the extreme case it requires quan-
tum chemical techniques or modelling of the energy landscapes of chemical
reactions [87]. In metabolism applications, where models of thousands of
reactions need to be produced, such models are not tractable. Instead,
simple heuristic cost functions are often used.

In the simplest case both bond formation and bond removal are given
a cost of 1, while bond substitution is costless2. In chemoinformatics this
Hamming cost is used in the concept of minimal chemical distance [156,
16, 130, 131].

Problem 1 (Reaction mapping). The reaction mapping problem is “given
a balanced chemical reaction, find a reaction mapping of minimum cost”.

In Figure 3.3 an example reaction is mapped through two alternative
mappings with Hamming costs of 2 and 4, respectively. The lower mapping
is optimal w.r.t. the Hamming cost. The upper mapping is produced by
searching iteratively for maximum common subgraphs from both sides.

The optimal mapping is in general not unique. The reaction mapping
problem with the Hamming cost function is known to be NP-complete [55].
In general it is easy to see that the reaction mapping problem is at least as
difficult as the graph isomorphism problem, which emerges in the case of
zero cost mapping [111].

An alternative problem formulation is the algebraic Dugundji-Ugi model,
where the reaction is modelled as

R+X = P,

where R and P are the adjacency matrices of the reactant and product
graphs, and X is a reaction matrix [68]. The reaction matrix defines the
number of bond operations. In theory we can solve X = P − R, however,
this requires a matching alignment of the adjacency matrices, i.e. the atom
mapping. Several algorithms use the Dugundji-Ugi model as the basis for
algorithmic development [162].

3.2 Graph matching

From a wider perspective, reaction mapping problem falls under the concept
of graph matching. In graph matching mappings of type f : V (G1) →

2Bond substitution refers to a change in the order of the bond. These are usually less
significant than structural changes, and are often ignored.
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V (G2) from vertices of graph G1 to vertices of graph G2 are studied [42].
Graph matching is thus a process of finding a correspondence between
the vertices and edges of two graphs, under for instance label matching
constraints. Graph matchings are also graph rewriting procedures, where
a vertex v ands its immediate edges from graph G1 is replaced by a vertex
f(v), and its immediate edges from graph G2 to turn the graph G1 to graph
G2.

Graph matching is generally divided into exact and inexact matching.
An exact matching requires strict correspondence between the two objects
or at least among their parts. The former corresponds to a graph isomor-
phism problem, while the latter is a graph subgraph isomorphism problem.
Weaker morphisms, such as homomorphism, allow many-to-one atom map-
pings. The maximum common subgraph problem is also an exact graph
matching problem. Throughout these matchings an exact matching of at
least subgraphs of the graphs is still assumed, and hence, a cost function
of a matching is regarded unnecessary.

Inexact graph matching searches for an explicitly error-tolerant match-
ing, where label matching or edge-preserving property are not strictly re-
quired. Instead, a cost function of Definition 2 is used to find a least-cost
matching.

Inexact graph matching is closely related to both graph distance and
graph transformations. In the latter model an optimal error-tolerant match-
ing is seen as a least-cost sequence of graph edit operations to transform
the graph G1 into a graph G2. The edit operations include insertions, dele-
tions and substitutions of the edges. The cost is called the graph edit cost
(GEC). The difference between graph edit cost and graph matching cost is
subtle: while both values are in general equal, a least-cost matching can be
realised with possibly multiple edit operation sequences.

A closely related concept of graph edit distance (GED) is obtained if
the insertion and deletion operations carry identical cost. Hence, a GED
is a metric, and also a well-defined graph distance function [52]. It can
be shown that graph graph isomorphism, subgraph isomorphism and maxi-
mum common subgraph detection are all special instances of the graph edit
distance computation under special cost functions [40, 41].

Formally, the reaction mapping problem is, depending on the cost sym-
metries, an instance of graph edit cost or graph edit distance problem [7,
258, 42, 88], which are special cases of inexact graph matching [52].

In chemoinformatics, the concepts of chemical distances and reactions
have been discussed by Kvasnicka et al. [156].
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3.3 Reaction mapping algorithms

Computational reaction mapping algorithms have been developed from two
different points-of-view. The chemoinformatics community has mostly ap-
proached the problem from a viewpoint of iterative maximum common
subgraph searches [248, 172, 164, 51, 252, 173, 182, 284, 270, 9, 106, 105,
189, 213, 162], where maximally large, identical “chunks” are searched from
both sides of the reaction [5]. These chunks are then determined to undergo
the reaction unchanged, resulting in an incrementally assembled mapping.
These algorithms are often pragmatic, heuristic and often the optimisation
criteria is not explicitly declared [55]. An algorithm is seen successful if the
resulting atom mappings match expert knowledge. The MCS approach is
computationally demanding and usually global optima are not found [106].

The idea of mapping atoms computationally in chemical reactions was
first introduced by Vleduts [265]. In a pioneering work by Akutsu the
drawback of ambiguous optimisation criteria of MCS was first documented
and bounded combinatorial partitioning algorithms proposed instead [5]. In
a pair of papers a weighted variant of MCS is introduced with an explicit
optimisation criteria [8, 150].

Recently, Crabtree and Mehta presented efficient combinatorial algo-
rithms to minimise the Hamming cost of reaction mappings [55]. The al-
gorithms are built on the special combinatorial properties of the Hamming
cost, and hence do not support other cost functions. In Paper I we intro-
duce a graph edit distance as a flexible formalism to determine mapping
cost. The method naturally supports arbitrary graph edit cost functions,
and an efficient A∗-based algorithm is developed to find optimal mappings.

Additionally, numerous graph matching algorithms are waiting to be
applied to chemical graphs of reaction mapping problem [52, 88]. Inexact
graph matching algorithms for labelled graphs are mostly search-based al-
gorithms with various approaches to approximate algorithms [52]. Graph
edit distance algorithms tend to focus on methods that learn the graph
edit operation costs from a dataset [193]. Few algorithms are designed to
support user-defined cost functions. These methods use e.g. binary linear
programming [133] or the concept of supergraphs [79].

In following we present authoritative examples of aforementioned algo-
rithmic classes. An exhaustive review of graph matching algorithms is left
to Conte et al. [52], and a review on MCS on chemical graphs to Raymond
and Willett [213].
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3.3.1 Maximum common subgraph algorithms

The standard tool for computational reaction mapping has been maximum
common subgraph algorithms where successive MCS’s are found from the
non-mapped regions of the reactant and product graphs until the whole
reaction has been mapped. The MCS approach seems intuitive: it deter-
mines the successively largest regions of the reactant graph to undergo the
reaction unmodified. However, Akutsu argues that there is no reason to
believe that this leads to the correct mapping [5]. Crabtree and Mehta state
that the MCS approach minimises the number of reaction sites, which is
not equivalent to minimisation of bond operations [55].

We begin the treatment on MCS algorithms by discussing the subgraph
types relevant for the problem. The subgraph type (See Section 2.4) has
a major effect on the resulting mapping. The connectedness of the sub-
graph determines how large regions the MCS covers. A connected MCS
naturally defines regions of the reactants that undergo the reaction un-
modified. Another distinction is whether the common subgraph is induced
or edge-induced. In edge-induced subgraphs we are allowed to pick subsets
of edges freely, while in induced subgraphs the edge set is determined by
the vertices.

An example is indicated in Figure 3.4. Four cases are highlighted with
an example reaction. The connected induced case (a) produces the smallest
MCS. Searching for also disconnected subgraphs includes the PO4PO3 parts.
In (c) an edge-induced common subgraph is found. In (d) the found MCS
happens to be a complete mapping of the graphs with a Hamming cost of
3. A single C-O bond is cleaved, while two C-C bonds are formed.

Another difference is the number of MCS’s required to produce a full
mapping. Cases (a) to (c) require multiple MCS’s, while the last case (d)
produces the atom mapping with a single MCS.

In [213, 182, 181] it is argued that edge-induced MCS is more suitable to
characterise molecular similarity than induced MCS’s, as it is the bonded
interactions that are responsible for molecular properties and activities.
However, most algorithms consider induced subgraphs due to their more
favourable computational complexity.

In clique-based MCS the connection between an induced MCS between
two graphs G1 and G2 and a maximum clique in the tensor product graph
G⊗ of G1 and G2 is exploited [164, 51] (See Section 2.4). The clique prob-
lem is one of the six original basic NP-complete problems [89], with a
vast literature [28, 200]. The Bron-Kerbosch algorithm [37] and its deriva-
tives [148] are reported as fastest in practise by several authors [35, 94, 148].
Most recent advances have pruned the search space by detecting isomorphic
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(a) CIMCS (b) CEMCS

(c) IMCS (d) EMCS

Figure 3.4: Four cases for maximum common subgraph on reaction R05092:

ent-Copalyl diphosphate <=> ent-Kaurene + Diphosphate. The grey
areas indicate the MCS in each case. Dashed lines highlight the non-trivial
parts of the corresponding mapping.

cliques [46, 47]. Implementations by Koch [148] and Tonnelier [254] enu-
merate connected subgraphs, with Koch also utilising Whitney’s theorem
for edge-induced MCS [278].

The Whitney graph isomorphism theorem states that two connected
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graphs are isomorphic if and only if their line graphs are isomorphic, with
a sole exception of graphs K3 and K1,3. The K3 is a three-vertex complete
graph, and K1,3 is a four vertex graph with a star topology. A line graph
L(G) of a graph G is a graph whose vertex set consists of the edge set
of G. A pair of vertices of the line graph L(G) are connected if the two
corresponding edges in G are adjacent.

The theorem implies that with a sole exception of K3 and K1,3 graphs,
an induced MCS on the line graphs corresponds to a edge-induced MCS
on the original graphs. This property can be exploited to find edge-induced
MCS using the clique-method by transformation into line graph domain [195,
155, 70, 148, 49].

The search-based MCS algorithms operate with the original graphs di-
rectly and are not restricted to any particular subgraph class. The method
of Cuissart is a general MCS algorithm [57]. They construct a tree of con-
nected induced subgraphs for both graphs. McGregor’s algorithm is based
on a correspondence matrix, which specifies which atom mappings are legal
during the search [181].

The GMA algorithm by Xu [284] interprets one graph as query graph
and the other graph as target graph. A permutation of the query graph
vertices is produced, which is then used to walk on target graph with con-
strained back-tracking. If the walk completes, the permutation defines an
isomorphism. The EMCSS algorithm extends GMA by using ideas from
genetic algorithms [270].

3.3.2 Combinatorial algorithms

Akutsu presents several algorithms which involve graph partitioning by a
cut of size C [5]. Blum and Kohlbacher extend these algorithms [26]. A
chemical cut is done by removing at most C edges such that the endpoints
of a removed edge belong to different components. The atom mapping
problem is turned into one of finding a cut of size C on both reactant
and product graphs, such that the resulting connected components are
equivalent on both sides. These methods support only a subset of reactions
by setting the maximum cut size to 1 for Akutsu and to 2 for Blum and
Kohlbacher.

Recently, Crabtree and Mehta presented five combinatorial algorithms
for minimisation Hamming cost [55]. They treat the problem as that of
finding a minimum cut, that is, a set of edges to remove. They remove
exhaustively edges from both sides of the reaction until the resulting parti-
tions are isomorphic matches. Formed bonds are treated as removed bonds
from the product side. Five variants of the method are presented with
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formal analysis of computational complexities.
In the inexact graph matching community the A∗ algorithm is widely

used. In A∗ a partial matching is updated and extended towards minimum
cost direction according to heuristics on the cost of matching the remaining
nodes. A global optimum is searched by using a best-first heuristic to guide
the search process by evaluating

f(x) = g(x) + h(x),

where f(x) is an estimated cost function of a state or partial matching x,
g(x) is the cost of the partial solution x so far, and h(x) is the estimate
of the cost to complete the partial solution. The algorithm is admissible,
if h(x) is a lower bound on the true future cost. If h(x) is zero, the A∗

is equivalent to Dijkstra’s algorithm [65], where the next state is chosen
based on only the cost so far. A priority queue is often used to keep a set
of states to expand based on their f(x) value.

The strength of A∗ lies in the ability to estimate the future costs
h(x). In branch-and-bound we use this information to prune unnecessary
branches [96, 237]. In A∗ this information is used to choose the order of
search tree traversal, which in general gives better runtime but at the cost
of larger memory requirement [52]. Several A∗ algorithms and heuristics
have been introduced for inexact graph matching [101, 69, 21, 20, 22, 255]

In Berretti et al. a bipartite matching algorithm is executed for a higher
quality lower bound on the h [21, 20, 22]. The fastest algorithm for BPM
is the Hungarian algorithm that is O(n3) [154, 282], and hence carries a
substantial added computational cost to the A∗. Other methods include
greedily completing the partial matching to achieve an upper bound for
the optimal solutions, which is then used to prune the search tree [111].
In Berretti et al. an incremental heuristic for future cost is used to avoid
recomputation [22]. In Serratosa et al. a method is presented that exploits
contextual information of the vertices [236].

In Paper I the bipartite matching algorithm and greedy completions are
introduced for the reaction mapping as heuristics for the bounds. Atom
neighbourhood information is used to distinguish between mappings of
atoms of the same label.

3.3.3 Approximate algorithms

Suboptimal inexact graph matching algorithms find a locally optimal so-
lution. Several approximate algorithms are search-based [74, 73]. In A∗

and in branch-and-bound algorithms the running time can be artificially
limited and the best solution so far returned.
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An alternative to search algorithms is to cast the problem of mapping
discrete objects into one of continuous non-linear optimisation problem,
for which many optimisation algorithms are documented. The problem is
transformed into a continuous domain, solved using optimisation, and the
results are finally converted back into discrete domain. In general these
methods do not guarantee optimality. A family of methods determine the
matching probabilistically [82]: a vertex is mapped to a distribution of ver-
tices on the other graph. Then, iterative optimisation uses the current dis-
tributions and cost functions to update the distributions until convergence.
A matching is determined by taking a maximum probability matches. A
series of improvements and extensions have been proposed by multiple au-
thors [122, 280, 50, 143], for instance into Bayesian measures [190] and
Expectation-Maximisation optimisation [62, 171].

Other methods are based on neural networks [78], Kohonen maps [285]
or genetic algorithms [56, 272]. An important part of genetic algorithms is
the fitness function used to score candidates. Brown et al. count the number
of preserved edges as a fitness function [39], while Wagener and Gasteiger
also minimise the number of emerging components [268]. Fröhlich et al.
study the use of parallel genetic algorithms [86].



Chapter 4

Kernels on molecular graphs

In this chapter we discuss the topic of kernel methods (See Chapter 2.6)
as applied to biological graphs. Graph kernels are a natural match for
both chemical and reaction graphs. We introduce graph kernels based on
enumerating sequences in Section 4.2 and on subgraphs in Section 4.3.
Then, in Section 4.4 we introduce the concept of R-convolution kernels,
which forms an unifying framework for all structured kernels. We finish
this Chapter by discussing kernels for chemical reactions in Section 4.5.

These concepts form the basis for original Paper II, where we introduce
an efficient path kernel for classification of reaction graphs into functional
categories.

4.1 Introduction

From a wider perspective, graphs – along with strings – are examples of
structured data, which are characterised by lack of natural representation
as vectors. Kernel methods are a natural choice for structured data, as no
explicit vectorial representation is required. Instead, the learning is based
on measuring similarity of graphs. Kernel methods for structured data are
still under research [90, 15].

Graph kernels are kernels K : G × G → R where the objects G ∈ G are
tuples G = (V,E) of vertices V and edges E. This opens graphs objects
to all kernel-based machine learning, as kernel methods only operate the
input data through kernel functions.

The standard graph kernels are spectrum kernels, where an individual
feature φ(G)i of the feature vector φ(G) = (φ(G)1, . . . , φ(G)d)

T of length d
counts the number of times a subgraph i ⊂ G occurs in the graph G (See

41
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Figure 4.1: An illustration of a decay-less feature vector (bottom) of a
Chorismate (top). Four substructures (middle) are highlighted, of which
three are atom sequences. The numbers denote counts of the corresponding
substructure.

Figure 4.1), often weighted by a feature-specific decay term λi:

φ(G)i =
√
λi|{i ∈ I(G)}|,

where I(G) is the set of substructures of graph G of type I. The decay
term is important to down-weigh features if the feature set is not bounded.
The kernel value is then

K(G,G′) = 〈φ(G), φ(G′)〉

=
∑
i∈I

φ(G)iφ(G′)i

=
∑
i∈I

λi|{i ∈ I(G)}| · |{i ∈ I(G′)}|,

where I is the universe of substructures.
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The similarity is thus measured as the number of matching substruc-
tures. This model only compares features that are exactly the same between
two graphs. However, this is sometimes against what we desire. For in-
stance, in an aromatic ring subsequent bonds are labelled by alternating
single and double bonds. An alternative convention is to label all bonds
with an order of “1.5”. When comparing chemical graphs with mixed label
conventions, there is no exact feature matches between the aromatic rings.
Hence, the graphs appear erroneously dissimilar. In other cases, we might
be interested to match also features that are not identical but are simi-
lar. In such cases, we introduce a soft-matching similarity function (itself
a kernel) κ : I × I → R and match similar features together by

K(G,G′) =
∑

i∈I(G)

∑
j∈I(G′)

κ(i, j)φ(G)iφ(G′)j .

The more general soft-matching model corresponds to a tensor prod-
uct feature space [238], where pairs of features are considered. Due to
Definition 1 of Chapter 2.6, the graph kernel always implies a vectorial
representation in some feature space F .

Graph kernels, in general, follow either of these two models, with the
former usually also explicitly stating the feature representation φ(G). An-
other division is based the class I of the subgraphs. Enumerating sub-
graphs introduces the problem of isomorphism [153]. Hence, more restric-
tive classes of subgraphs have been the focus of research, from vertex or
edge sequences [263], to trees [239] and subgraphs of bounded size [153].
The trade-off between expressiveness and efficiency of the subgraph class
has been discussed by Ramon and Gärtner [206].

The ultimate, yet unrealistic, goal is to have a one-to-one correspon-
dence between the vector representation and the graph object. This is
closely related to the graph reconstruction problem with a large litera-
ture [197].

In the machine learning community the focus has been on utilising ‘all
substructures’ kernels, which enumerate exhaustively possibly millions of
features for the kernel method to process and analyse. These models have
achieved high predictive power [114], yet feature spaces of this magnitude
offer little in terms of understanding what aspects or features of the graphs
are important for the prediction task.

In contrast, the chemoinformatics literature puts emphasis on finding
and using small sets of informative chemical descriptors that are most rel-
evant for the prediction problem [226, 253, 269]. Widely used approaches
are to use pre-defined substructures called functional groups [269], three-
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dimensional conformation information [48, 117], frequent subgraph min-
ing [64] or only small exhaustively enumerated substructures [269, 225, 81].
Kernelization of these features is straightforward and has led to improve-
ments in classification performance [205, 117]. Another line of research
concerns with representing molecular graphs as reduced graphs for a more
compact and chemically informative representation [61].

Graph kernels have seen several applications in bioinformatics when the
objects of interest are molecules, reactions or proteins. Graph kernels are
an excellent match for molecular clustering [256], drug prediction [249, 48],
and for molecular toxicity and mutagenicity prediction [249, 205]. Reaction
kernels that are based on graphs have been used to predict whether a
protein is an enzyme or not [30], and on reaction function prediction [227,
13, 12, 61, 30]. Graph kernels for proteins have been used to predict the
class and function of proteins [240, 257, 157], as well as for disease outcome
prediction [31].

4.2 Sequence based kernels

Sequence-based kernels enumerate labelled walks or paths of the graph as
the representative structure of the graph.

4.2.1 Random walk kernels

Three kinds of walk models have been proposed. The random walk model
by Gärtner et al. utilises adjacency matrix exponentials to count the number
of random walks [91], while the general Markov chain model by Kashima et
al. introduces a probabilistic random walker [135]. The simple walk kernel,
which explicitly enumerates walk features, is discussed in the next section.

The Gärtner’s model is based on the property of adjacency matrix ex-
ponentials where [Ak]ij denotes the count of k-length walks starting from
vertex i and ending at vertex j given an adjacency matrix A of a graph G.
The kernel is defined as the number of matching labelled walks in graphs
G and G′, modified by the length decay term λ,

Kwalks(G,G
′) = 〈φ(G), φ(G′)〉 =

∞∑
k=1

∑
w∈Wk

φ(G)wφ(G′)w,

where the feature representation is explicitly

φ(G)w =
√
λw|{w ∈ W(G)}|,
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where W(G) is the set of all walks in graphs G and Wk is the universe of
walks of length k.

Gärtner proposed an elegant way to compute the kernel in the tensor
product graph (See Section 2.4), where a walk corresponds to a pair of
matching walks in the original graphs. Hence, we can count the number
of matching walks in two graphs by counting the number of walks in the
corresponding tensor product graph:

Kwalks(G,G
′) =

|V⊗|∑
i,j=1

[ ∞∑
k=0

λkA
k
⊗

]
ij

,

where we count the number of matching walks up to infinite length between
any two start i and end j vertices from the adjacency matrix A⊗ of the
tensor product graph. Using geometric decay series of λk = λk the kernel
can be computed in roughly cubic time by inverting (I− λA⊗), given that
λ < 1

maxv∈V⊗ deg(v) [91].

For an exponential series λk = λk/k! the kernel turns into an instance of
a diffusion kernel with a natural down-weighing of longer walks [149, 238]

Kdiffusion =
∞∑
k=1

λkAk⊗
k!

= exp(λA⊗)

with unconstrained λ. The diffusion kernel has an interpretation as a covari-
ance of a stochastic process on a random field. Also, diffusion kernels can be
regarded as generalisations of Gaussian functions to discrete graphs [149].

The random walk kernel suffers from several shortcomings. The inver-
sion method does not support soft-matching of walks naturally. To over-
come this limitation, some methods have proposed to engineer the tensor
product graph adjacency matrix to partially simulate soft-matching [91, 29].
Another problem is the inclusion of tottering walks, which do not provide
any additional information.

To address these shortcomings, Kashima et al. [135] defined a Markov
chain model where each walk w = (v1, . . . , vm) is assigned a probability

p(w|G) = ps(v1)

m−1∏
i=1

pt(vi+1|vi)pe(vm),

where ps, pt and pe are the starting, transition and stopping probabilities
within graph G, respectively. The kernel is then a marginalisation

Kmarg(G,G
′) =

∑
w∈W
w′∈W

κ(w,w′)p(w|G)p(w′|G′),
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where W is the universe of walks, and κ(w,w′) is a soft-matching label
similarity function giving similarity of two walks, for instance based on
their label similarities. The κ(w,w′) is positive only for walks of same
length. For a hard-matching similarity κ = δ (δ(w,w′) = 1 if w = w′, 0
otherwise) only exactly matching walks are counted, and thus the other
summation is omitted. The kernel itself is defined as the expectation of the
κ over all walks, with the p(w|G) term behaving as a feature extractor.

The kernel can be computed efficiently in the tensor product graph as

πTs (I −Πt)
−1πe,

where πs = (πs(u, v))(v,u)∈V⊗ with πs(u, v) = pt(u)p′t(v); Πt = (πt(v|u))(u,v)∈V 2
⊗

collects transition probabilities πt((v1, v2)|(u1, u2)) = pt(v1|u1)p′t(v2|u2);
and πe = (πe(u, v))(u,v)∈V⊗ is the stopping probabilities πe(u, v) = pe(u)p′e(v).

A non-tottering variant was introduced subsequently by either using
second order Markov chains, or by enriching the vertex labels to discourage
it [174]. Runtime improvements for the marginalised kernel were reported
by Vishwanathan et al. [263].

A unified framework of sequence kernels has proven the Gärtner’s kernel
to be a special case of the marginal kernel [263].

4.2.2 Simple walk kernels

The random walk kernels count the matching walks up to infinite length
with parameter λ controlling the decay of longer walks. With λ < 1 the
contribution of longer walks quickly becomes negligible and long walks have
effectively no effect on the kernel value. This is sometimes against what we
desire — longer walks may contain important information for e.g. graphs
with repetitive substructures, where the walk length is required to surpass
the diameter of the substructure to notice the repetition. Therefore we
consider a finite-length walk kernels, where walks up to length m are con-
structed explicitly [61]. Working with explicit walks allows us to regard
paths and non-tottering walks.

We count the number of matching m-length walks in two graphs by
using following dynamic programming equations, defined over the tensor
product graph

D1(v) = 1 for all v ∈ V⊗
Dk(v) = λk

∑
(u,v)∈E⊗

Dk−1(u)
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for each vertex vi ∈ V⊗ where n > 1. The simple walk kernel is then

Ksimple(G,G
′) =

∑
v∈V⊗

Dm(v).

At limit m→∞ this corresponds to exponential walk kernel.

4.2.3 Path kernels

A path kernel is

Kpaths(G,G
′) =

∑
p∈P

φ(G)pφ(G′)p,

where P is the set of all labelled path sequences and the path counts
φ(G)p =

√
λ|p||{p ∈ P(G)}| contain the decay λ as a non-negative ex-

ponential weighting term. The paths do not contain repetitive sequences,
and hence can be regarded as more informative – and less numerous – than
standard walks. For computational reasons, instead of full path kernels,
a kernel based on shortest paths was introduced by Borgwardt et al. [30].
Here, we restrict the set of paths to only those which also coincide with
a shortest sequence between the start and end vertices of the path. This
radically limits the size of the path space.

In Paper II we introduce the first feasible path based graph kernel
with dramatic improvement on classification performance over walks and
shortest paths on reaction function prediction task.

In Figure 4.2 we highlight the difference between walk and path fea-
tures, along with a reference method of unrestricted subgraphs. The actual
feature vectors may also contain the decay λ, and possible tensor feature
combinations in case of a soft-matching kernel.

4.2.4 Suffix trees for sequences

The path kernels – and to an extent, simple graph kernels – construct
the sequence features explicitly. This raises a need to store the feature
efficiently. The feature vectors are typically sparse, which can be exploited
in data structures storing the features.

Let A be a finite alphabet with characters as elements. An empty string
is denoted as ε. A string S = s1 · · · sm ∈ Am is a sequence of characters of
length m. For a string S = uvw, the u is a prefix and w is a suffix of v,
respectively.

A suffix tree T for a string S is a rooted tree with edge labels corre-
sponding to strings. A path from root to leaves produces a distinct suffix
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Figure 4.2: An illustration of counts of three feature types of Chorismate.
The C-O-C feature of “walks” counts five tottering walks of C-O sequences
and a single non-tottering C-O-C sequence. Only two of the C-O’s are
highlighted for clarity. The “paths” features count only the unique non-
repeating C-O-C. The last feature with a ring is not a sequence, and hence
is counted only for “subgraph” type features.

sk · · · sm of S for some k. Each suffix is represented by a unique path. A
suffix tree can be built in Θ(m) time for finite alphabets [97]. By following
the paths from root the suffix tree can answer subsequence queries in O(k)
time for a subsequence of length k. A suffix array is an implementation of
suffix tree in an array form with enhanced computational efficiency [176].

A generalised suffix tree represents all suffixes of a set of n strings
{Si, . . . , Sn} with varying length [251]. The construction relies on attaching
a unique terminator symbol ti to a string Si and concatenating the strings
together. The construction then follows the construction of a suffix tree,
with analogous access operations. Generalised suffix trees are a standard
approach in string kernels [163, 264]. Using generalised suffix trees to store
sequences of graph kernels have been remarked by several authors [205, 249].
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A compressed index is a data structure that combines compression and
indexing, for instance, on suffix trees [80]. Even though the data structure
is compressed, the data can still be accessed efficiently without complete
decompression through special interface. In Paper II we introduce com-
pressed indices for graph kernels to facilitate efficient storage of the paths
of reaction graphs.

4.3 Subgraph kernels

An intuitive way to produce a feature mapping for graphs is to enumerate
unrestricted subgraphs of the graph up to a size k, and to define the kernel
as the number of common subgraphs. In chemical graphs small subgraphs
are regarded as informative. For instance, an aromatic ring has a size of
6, a common carboxyl group a size of 4 and a phosphate group a size 5.
Incidentally, proposed subgraph kernels count subgraphs up to size 7 [240,
153].

In the subgraph kernels Ksubgraph(G,G′) = 〈φ(G), φ(G′)〉 an individ-
ual feature φ(G)i is related to the occurrence of subgraph i in the graph
G. Conventionally the subgraphs are defined as connected and induced
subgraphs i ⊂ G [153]. The problem of counting common subgraphs of
unbounded size is NP-complete [91].

The subgraph kernel counts the number of isomorphic subgraphs be-
tween two graphs,

Ksubgraph(G,G′) =
∑
H⊂G
H′⊂G′

λ(H)κ'(H,H ′),

where κ' : G × G → {0, 1} is an isomorphism decision kernel and λ(H)
is a decay term relative to the size of subgraph H. Kriege and Mutzel
proved that for a suitable λ, the subgraph kernel can be stated more simply
as a common subgraph isomorphism (CSI) kernel counting the number of
subgraph isomorphisms between two graphs G and G′:

KCSI(G,G
′) =

∑
ϕ∈I(G,G′)

λ(ϕ),

where ϕ is an isomorphism of all isomorphisms I(G,G′) between graphs
G and G′ [153]. In general, the CSI kernel counts the number of isomor-
phisms between subgraphs, while the subgraph kernel counts the number
of isomorphic subgraphs. The former are, in general, more numerous, as
several isomorphisms can exist between a pair of isomorphic subgraphs.
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A soft-matching subgraph is called the subgraph matching (SM) kernel

Ksm(G1, G2) =
∑

ϕ∈B(G1,G2)

λ(ϕ)
∏

v∈V (G1)′

κV (v, ϕ(v))

·
∏

(u,w)∈V (G1)′×V (G1)′

κE
(
e, (ϕ(u), ϕ(w))

)
,

where B(G1, G2) is the set of all bijections between V (G1)′ ⊂ V (G1) and
V (G2)′ ⊂ V (G2), the V (G1)′ is the domain of the bijection ϕ, and κV and
κE are the respective soft-matching kernels for mapping of vertices and
edges.

The graphlet kernel is a subgraph kernel φ(G)Tφ(G′) where the feature
vector φ(G) of a graph G is explicitly generated and normalised into a
distribution [240].

Fröhlich et al. proposed an alignment kernel based on an maximal
weighted bipartite matching π of a subgraph over the two graphs [85].
Assuming equal sized graphs G and G′ for simplicity, the kernel is

Kalignment(G,G
′) = max

π

∑
v∈V (G)

κ (v, π(v)) ,

where κ is a soft-matching kernel. Contrary to author’s claims, the kernel
is not positive definite [263]. However, the alignment is still an informative
measure of the similarity of the graphs [85].

4.4 R-Convolution kernels

On the seminal work of Haussler an unifying R-convolution kernel for struc-
tured objects was proposed, based on decompositions and combinations of
decomposition kernels [107]. The formalism is flexible, and all kernels in-
troduced during this Chapter can be interpreted as R-convolution kernels
on graph structures.

The R-convolution kernel revolves around two concepts: (i) a decom-
position of a structured object (for instance, a graph) in parts of different
types (for instance, into walks, paths or subgraphs), and (ii) definition of a
graph kernel through combinations of kernels on these parts. Formally, an
R-convolution structure on a graph G is a triplet

R = (~G,R,~κ),

where ~G = (G1, . . . , GD) is a D-tuple of non-empty subsets Gi ⊂ G of G,
R is a decomposition relation on G1 × · · · ×GD ×G, and ~κ = (κ1, . . . , κD)
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is a D-tuple of Mercer kernel functions. Both kernels and parts are indexed
by the type i = 1, . . . , D, where Gi ∈ Gi is part of the universe of parts Gi
of type i.

The relation R(~G,G) is true iff ~G is a valid decomposition of G. Let
R−1(G) = {~G : R(~G,G)} denote the multiset of all possible decomposition
of G. An R-convolution kernel is then defined as

KR(G,G′) =
∑

~G∈R−1(G)
~G′∈R−1(G′)

D∏
i=1

κi(Gi, G
′
i).

All kernels introduced in this chapter are ‘all-substructures kernels’ that
only use a single part type (D = 1) or two part types (D = 2), and are
based either on an exact matching (κi = δ) or on soft-matching kernels κi.

Menchetti et al. introduced the weighted decomposition kernel (WDK)
highlighting the expressiveness of R-convolution framework [186, 48]. In the
WDK the graph is decomposed into selector vertices s ∈ V (G) and context
subgraphs Z ⊂ G around the selector. The inverse relation R−1(G) =
{(s, Z) : R(s, Z,G)} enumerates all selector-context pairs found in the
graph. The kernel requires an exact match of the labels of the selector
vertices of two graphs G and G′, but soft-matches the contexts according
to their label distribution, disregarding the context structure. The kernel
is

KWDK(G,G′) =
∑

(s,Z)∈R−1(G)
(s′,Z′)∈R−1(G′)

δ(s, s′)κ(Z,Z ′).

The context is constrained to a fixed radius (authors propose 3) around
the selector. The feature mapping is not obvious, however the convolution
framework guarantees positive definiteness of the resulting kernel.

4.5 Chemical reaction classification

Chemical reaction classification concerns with automatic groupings of chem-
ical reactions into categories according to their similarities and dissimilar-
ities. The classification takes as input the reactant and products of the
reaction.

A common prediction target is the EC function hierarchy, which defines
a four-part hierarchical code a.b.c.d describing the reaction function. The
first part consists of 6 main levels concerning with high-level functions,
e.g. “ligases” and “transferases”. The second level contains 63 categories,
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Figure 4.3: An excerpt of the Enzyme Nomenclature (EC) hierarchy.

which specify the reactant structures the reaction operates on. The third
level contains 201 categories further specifying the structures. The last level
is a running index that specifies the exact reactants (See Figure 4.3). For
instance, a code 6.2.1.1 corresponds to “6 ligase reactions”, “6.2 forming
carbon-sulphur bonds”, and finally “6.2.1 acid-thiol ligases”. There are six
known reactions of class 6.2.1.1 in KEGG.

In reaction function prediction a reaction is classified either to the
six main categories, or the full EC-code is predicted (apart from the last
part) [227]. The classification provides information on the function of an
previously un-annotated reaction mechanisms. For instance, there is an
estimated number of up to 200,000 plant metabolites [103]. Only a frac-
tion of their reactions have been characterised [227]. Automatic function
prediction can provide valuable clues to the function of the un-annotated
reactions.

The E-zyme system by Kotera et al. analyses the correlations between
an EC number and the alignment of reactants and products using MCS [152,
287]. Kernel methods are introduced by Saigo et al. [227] and Astikainen
et al. [13]. Astikainen determines reaction similarity as the similarity be-
tween the participating molecules [13]. Saigo introduces a two-tiered re-
action graph representation, where the relationships between participating
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molecules have been annotated for additional information [227]. In Mu et
al. certain idiosyncrasies of the EC hierarchy are discussed and an alter-
native reaction classification system is proposed consisting of 80 reaction
classes [188].

In Paper II an atom-level reaction graph is proposed. The reaction
graph utilises the full atom mapping, along with the reactant and product
structures. A path kernel is applied to extract information from the reaction
graph.

4.5.1 Reaction graph representations

Reaction classification requires a representation of reactions. In the two-
tiered reaction representation by Saigo et al. the outer tier is a graph
with molecules as vertices and edges representing interactions between the
molecules in the reaction. For instance, all reactants are joined into a clique
to represent a reactant group. Reactants and products are joined by an edge
only if the specific molecules have a relationship through the reaction. The
interactions are determined with atom mappings using MCS and manual
curation [151]. In the inner tier the molecule vertices are represented as
standard chemical graphs.

Another formalism is the reaction graph, which results from the remark
that the reaction (R,P ) with reactants R and products P , along with
the atom mapping f , contains overlapping information. For instance, the
vertex sets of the R and P are identical: no atoms are lost or added during
a balanced reaction. Also a majority of the edges are preserved across R
and P as well.

A reaction can be represented as a single graph through the atom map-
ping f . We define a reaction graph G = (V,E) as a labelled undirected
graph, where the vertices represent the atoms of the reactants and prod-
ucts, and the edges are labelled such that an edge common to both sides,
through f , is labelled 0, an edge that is missing on reactants but exists
on products as +1, and an edge that exists in reactants but is missing on
products as −1. Thus, a set of formed new bonds are labelled with +1,
while a set of broken bonds is labelled with −1 (See Figure 4.4).

This atom-level representation has several advantages. It represents
the reaction as a single compressed graph that is both intuitive and easy to
handle. It is unambiguous: there exists only a single reaction graph for a
reaction triplet (R,P, f), which can be retrieved from the reaction graph.

Similar formalism has been discussed in a series of papers by Valiente et
al. [76, 77, 75, 218, 217], while Yadav et al. discuss the potential benefits of
such a representation [286]. They call these graphs transformation graphs
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(a)

(b)

Figure 4.4: Reaction graph of reaction R00986 Chorismate

pyruvate-lyase with EC code 4.1.3.27. (a) The atom mapping is
highlighted with colour to indicate matching regions. (b) The reaction
graph produced by taking the union of edges from both sides. The
edges labelled “new” and “removed” correspond to −1 and +1 edges,
respectively.
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or artificial chemistries. In Valiente’s notation, the transformation graph
is applied on chemical graphs to transform them. However, the benefits of
reaction graphs has been limited due to lack of high-quality atom mappings.
In Paper I we introduce the reaction graph formalism through the computed
optimal atom mappings on the KEGG database reactions.

4.5.2 Reaction kernels

The aforementioned two-tiered reaction representation by Saigo et al. was
kernelized with a marginal random walk kernel within the upper-level re-
action graph. A soft-matching inner kernel is introduced for vertices based
on the molecules [227]. Astikainen et al. introduced three variants of re-
action kernels acting directly on reactants and products, denoted as sum-
of-reactants kernel, difference-of-reactants kernel and reactant matching
kernel [13, 12].

In sum-of-reactants (SoR) kernel the feature vector of a reaction ρ is a
sum of feature vectors of its reactants and products

φ(ρ) =
∑
M∈ρ

φ(M)

with a kernel
KSoR(ρ, ρ′) =

∑
M∈ρ
M ′∈ρ′

KM (M,M ′),

where M ∈ ρ is a shorthand for both reactants and products of the reaction
ρ.

Any kernel KM can be used. The intuition behind this kernel is that
two reactions are similar if the reactants they operate on are similar. The
imminent drawback is that the kernel does not measure the reaction trans-
formation in any obvious way. A difference-of-reactants (DoR) kernel takes
the change of feature representation into account by defining

φ(ρ) =
∑
M∈ρ

φ(M)−
∑
M∈ρ

φ(M)

with a kernel

KDoR(ρ, ρ′) =
∑

R∈R(ρ)
R′∈R(ρ′)

KM (R,R′) +
∑

P∈P (ρ)
P ′∈P (ρ′)

KM (P, P ′)

−
∑

R∈R(ρ)
P ′∈P (ρ′)

KM (R,P ′)−
∑

P∈P (ρ)
R′∈R(ρ′)

KM (P,R′).
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The kernel picks up features that change during the reaction to highlight
the transformative aspect of the reaction.

Both of the aforementioned kernels implicitly assume an underlying all-
against-all matching between the reactant and product graphs. The atom
mapping is taken into account by a tensor product between reactants and
products

ϕ(ρ) =
∑

M∈R(ρ)

φ(M)⊗
∑

M∈P (ρ)

φ(M),

which gives the reactant matching (RM) kernel

KRM (ρ, ρ′) =

 ∑
M∈R(ρ)
M ′∈R(ρ′)

KM (M,M ′)


 ∑

M∈P (ρ)
M ′∈P (ρ′)

KM (M,M ′)

 .

All above kernels are unidirectional with straight-forward bidirectional
variants [13].



Chapter 5

Metabolite identification with
tandem mass spectrometry

Metabolite identification is the process of determining the metabolic con-
tents of a cell sample, which is an important and prevalent step in biolog-
ical experiments. Metabolite identification is also called structural eluci-
dation in chemical literature. The qualitative knowledge of cell contents is
a bottleneck for subsequent metabolic modelling and network analysis in
metabolomics studies [194]. Yet in spite of its universality, the identification
task is still both challenging and time-consuming due to measurement tech-
nologies that rarely are able to provide data to unambiguously identify the
molecular structure. Mass spectrometry and tandem mass spectrometry
are conventionally used for this task (see Section 2.3). The MS1 spectrum
often produces a wide view on the aggregate contents of the cells, while
the MS/MS spectrum indicates a distinctive fragment pattern of a specific
chemical specie isolated from MS1.

In this Chapter we discuss the topic of metabolite identification with
tandem mass spectrometry. We begin with a problem definition and intro-
duction in Section 5.1, and continue by mass spectral analysis techniques
in Section 5.2. We review the current de-facto approach of basing the
identifications on a reference database of spectra in Section 5.3. We sur-
vey two alternative identification approaches. In Section 5.4 we introduce
computational identification of product ions of MS/MS, and their usage in
assisting metabolite identification. Finally, machine learning approaches to
the problem are surveyed in Section 5.5.

The concepts of this Chapter form a basis for original Papers III and
IV, where algorithms and models for fragment identification problem are
introduced, as well as for original Paper V, where the first high-resolution
kernel-based machine learning framework for metabolite identification is

57
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proposed.

These two problems are closely related. The main difference is that in
metabolite identification we aim to identify the unknown precursor metabo-
lite based on the – also unknown – fragment peaks. In fragment identifi-
cation the precursor metabolite is assumed to be known, and the identity
of the fragments of the tandem mass spectrum are determined as substruc-
tures of the precursor.

For a general discussion of structural elucidation using mass spectrome-
try we refer to a review by Kind and Fiehn [142]. Neumann and Böcker [194],
and Werner et al. [276] give excellent reviews on computational metabolite
identification. Finally, for a readable introduction to machine learning of
mass spectra we refer the reader to a review by Varmuza and Werther [262].

5.1 Introduction

The acquisition process of mass spectrometric data has been described with
clarity by Neumann and Böcker [194].

From computational point-of-view, we model the tandem mass spec-
trum (See Figure 5.1) of a molecule M = (V,E) as a collection χ =
{x1, . . . ,xk} ∈ X of 2-dimensional peak vectors xi = (mass, int)T . We
assume that each peak i of the spectrum is generated by a pool of a frag-
ment structure Fi = (V ′, E′) of the molecule M . Usually a fragment is
a substructure of the molecule, i.e. Fi ⊂ G, for all i = 1, . . . , k. A peak
consists of a mass of a fragment, and intensity possibly normalised to a
percentage of the highest peak within the spectrum. A tandem mass spec-
trum dataset S ⊂ X n is a set of n spectra measured with the same device.
The size of each spectrum χ is the number of peaks it has, which varies
within the dataset. Each mass measurement in the dataset contains an
absolute assumed error ε inherent to the device. Hence, a peak’s mass
is only an approximation to the true mass assumed to lie in the range
[mass − ε,mass + ε]. For simplicity, we do not model the error through,
for instance, Gaussian distributions.

The tandem mass spectrum χ originates from a precursor ion selected
from a mass spectrum MS1, which is usually also available along with any
isotopic peaks for further constraints on the elemental composition. We
denote the precursor peak xprec, which is always visible in the MS1 spec-
trum, and sometimes also in MS2 spectrum as an unfragmented ion (See
Figure 5.1).

We present a formalised version of the metabolite identification problem
as:
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Figure 5.1: The MS/MS spectrum of a tryptophan (mass 204.23 u). The
precursor peak at 205 u (the ionisation adds a proton with mass approxi-
mately 1 u) is visible. Possible isotope patterns are visible on peaks 117.0 u
and 131.2 u.

Problem 2 (Metabolite identification). Given a tandem mass spectrum
χ = {x1, . . . ,xk} of an unknown metabolite M with a precursor peak xprec
and with an error ε, determine the structure of M .

First clues to the identity of the metabolite are obtained from mass
spectral analysis of the precursor peak pattern at MS1. The peak masses
and isotopic patterns provide constraints to the unknown metabolite’s mass
and elemental composition. The methods are equally applicable to MS/MS
data, where an elemental composition of the fragment structures is linked
to the precursor compound.

After spectral analysis, several identification approaches are in use.
Matching the observed tandem mass spectrum to a database of reference
spectra is a reliable identification method, given that the spectrometers
used are similar and the reference database contains the measured metabo-
lite [194]. If a match is not found from databases, additional information
on metabolite structure is sought with interpretation of the fragmentation
process. This includes prediction of the fragment structures and recon-
struction of a fragmentation tree to hypothesise the likely occurred frag-
mentation reactions. Another line of evidence is gained by using pattern
recognition algorithms to learn correspondences between the MS/MS peak
patterns and the structural properties of the unknown metabolite. In prac-
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tise, all three approaches are complemented with expert knowledge and
manual reasoning.

Initial results on the ultimate goal of a fully automatic non-database
based framework have been discussed very recently [230, 210]. We intro-
duce an automatic framework for metabolite identification in Paper V us-
ing a machine learning approach and a novel statistical candidate ranking
scheme.

Weissberg and Dagan give an illustrative example of organic compound
identification using successively spectral analysis, reference databases, frag-
mentation prediction and candidate scoring along with manual analysis [275].

5.2 Spectral analysis

The metabolite identification problem is usually initiated with a spec-
tral analysis producing elemental composition constraints for the possible
metabolite structures, irrespective of the subsequent identification method-
ology. The same methods are used also to analyse the fragments, or even
the MSn spectra [283]. Main approaches are computing feasible elemen-
tal formulas [214], analysis of isotope patterns [27] and generation of iso-
mers [159].

In elemental formula decomposition we search valid elemental formulas
which sum up to the given mass with a mass error ε. The solution is

mass− ε <
∑
i

nimi < mass+ ε,

where mi is the mass of an element of type i and ni is the count of element
type i. The element set is often constrained to {C,H,N,O, P, S} as these
are most common in metabolites.

This is an instance of the integer Knapsack problem [59, 137]. The prob-
lem is NP-complete [89]. We search for all solution vectors n = (n1, . . . , nd),
with non-negative coefficients, that satisfy the equation. A common solu-
tion to the problem is to formulate an integer problem and use an appro-
priate integer problem solver. An alternative is to use linear Diophantine
equations [121]. The algorithm of SIRIUS software is based on transforma-
tion of the elemental masses into integer domain [27].

Not all elemental compositions can produce a chemically feasible molecule.
A set of seven “golden” rules for valid elemental compositions are presented
by Kind and Fiehn [141].

The constraints on the elemental formula depend only on the mass
accuracy error ε. Additional constraints can be obtained by isotopic anal-
ysis. Each atom has a set of possible isotopes with a varying number of
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neutrons in the nucleus. Hence, each atom induces multinomial distribu-
tions of masses, and subsequently a specific elemental composition has a
specific isotopic distribution. The candidate elemental composition’s simu-
lated isotope pattern can be matched against the observed isotopic pattern
for additional evidence [27].

The fastest known method to generate simulated isotopic peak pat-
terns for a large set of elemental compositions is the Fourier Transform
method [215, 27]. Next, the simulated isotopic patterns can be scored
against the observed one with a fully Bayesian model [294, 293, 27] or with
a simple euclidean distance measure [291].

Finally, the obtained candidate elemental compositions can be expanded
into structures, which are denoted isomers. Isomer generation is a well-
known problem in chemoinformatics literature [279]. The de-facto approach
is the MOLGEN software which uses exhaustive generation with structural
constraints [159]. The count of isomers of non-trivial elemental composi-
tions is often impractically large.

5.3 Identification based on reference databases

One of the most common methods for compound identification is to query
the observed tandem mass spectrum against a reference database of stan-
dard spectra [276]. This method is efficient and reliable as long as the
database contains a corresponding spectrum, and the query and reference
spectra are measured with compatible, or ideally, identical mass spectrom-
eters with closely matching operating parameters [194].

Chemistry has a long tradition of storing measured mass spectra in
databases. Several libraries of both MS1 and MS/MS spectra are available,
reviewed by Borland et al. [32]. Most prominent ones are the National
Institute of Standards and Technology (NIST) database and the Wiley
registry of mass spectral data, both of which contain both types of spectra
measured on various spectrometers. Both databases are commercial. A
prominent open alternative is the MassBank database, which focuses solely
on MS/MS spectra [119].

Matching of the query spectrum against reference spectra in a spectral
library necessitates a definition of a similarity function to score the retrieved
candidates [38]. The similarity functions have been reviewed by Gower [100]
and Stein [247, 244].

Typically up to tens of reference spectra share some peaks with the
query spectrum. The simplest similarity measure is to count the number,
or ratio, of matching peaks to achieve a peak count measure. Several meth-
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ods include either raw or logarithmic peak intensities with experimentally
defined weights [119, 71, 281], probabilistic measures [202, 198, 246] or
Bayesian models [129]. An interesting approach by Lebedev and Cabrol-
Bass computes the maximum common substructures of the best hits, and
uses the estimated spectra of these substructures for additional comparison
targets of the query spectrum [161].

The intensities in general are not regarded as very informative [194].
The X-Rank algorithm ranks the intensities within a single spectrum and
only compares the intensities through the ranks [191].

As a concrete example, MassBank’s query engine uses the Pearson cor-
relation between query w(q) and target w(t) spectra vectors with elements

wi = Iαi i
β,

where i is the integral mass, Ii is the intensity of mass i, and constants
α and β weight the importance of intensities and masses. The vector w
contains zeroes for indices without a corresponding peak. The constants
are set to, for instance, α = 0.5 and β = 2 [119, 246].

The imminent drawback of the vector angle similarity measures is the
alignment problem. Peaks are binned into bins of width 1 for nominal mass,
and into narrower bins for high-resolution mass spectrometers. However,
a peak can be placed into a wrong bin because of the measurement error,
and thus misaligned. As a heuristic approach, mismatch is allowed so that
close mass values are nevertheless compared together. MassBank uses a
default value of 0.3 u mismatch [120].

5.4 Identification of product ions

In cases where the reference database does not contain the spectrum of the
unknown compound, identification inevitably fails. However, a hitlist is
still produced, possibly with highly compatible – and hence misleading –
spectral matches.

For verification and additional structural clues, several methods analyse
and predict the MS/MS fragmentation for additional evidence of the correct
structure. The main idea is to estimate fragmentation reactions and cleav-
age sites of candidate metabolite structures with either rule-based [115, 1],
combinatorial [116, 281, 113, 112, 250, 283, 17] or quantum chemical [23,
53, 165] approaches to see whether the simulated spectrum is compatible
with the observed one. In fragment identification we explicitly assume the
precursor structure to be known.



5.4 Identification of product ions 63

In original Paper III we introduce a combinatorial method for frag-
ment identification using energy-based cost functions. The fragmentation
tree framework is also proposed. In Paper IV, the methods introduced in
Paper III have been implemented as software and further experiments are
conducted.

5.4.1 Basic concepts

In a tandem mass spectrometer the selected compound pool is subjected to
fragmentation and the resulting spectrum indicates peaks corresponding to
these fragments. A common question is then, to identify which structures
the resulting peaks correspond to. The major application of product ion
identification is in metabolite identification [145], which has been the major
context for fragment identification research.

The question is interesting also independent of metabolite identifica-
tion. Theoretically the problem is interesting in the study of fragmentation
mechanisms and theory [53, 6]. In drug metabolism studies, determination
of the fragmentation of a pharmacologically active metabolite is an essen-
tial step in the characterisation of its biotransformations and the structures
of resulting metabolites [18, 291, 203]. Product ion structures are also re-
quired to infer biotransformation sites [178]. A specific application is the
13C flux analysis, where knowledge of the fragmentation patterns is bene-
ficial for atom-level modelling [207].

While the structural information of product ions would be useful, it is
nontrivial to obtain, both in theory and in practise. The fragmentation of a
molecular ion in a tandem mass spectrometer is a complex, stochastic pro-
cess that depends on e.g. the structure and chemical properties of precursor
ions, the collision energy used, and the probabilities of the decomposition
reactions as a function of the internal energy of an ion [184, 241].

The fragment structures F are generated from the parent compound
through fragmentation reactions, which consist of bond cleavages and re-
arrangements, which form new bonds on the structures. Modelling of re-
arrangement fragments is especially difficult for combinatorial approaches
and is still an open problem. We restrict ourselves to bond cleavages in
this thesis. Hence, we can assume that the fragments are edge-induced
subgraphs of M .

We are now ready to define the fragment identification problem:

Problem 3 (Fragment identification). Given a tandem mass spectrum χ
of a known parent molecule M = (V,E), identify the fragment structures
{F1, . . . , Fk} corresponding to {x1, . . . ,xk}, such that Fi ⊂M and m(Fi) ∈
[massi ± ε] for all i = 1, . . . , k.
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In a weighted fragment identification problem we ask for fragment struc-
tures that minimise the total cost

c({F1, . . . , Fk})

of the fragments. A cost function can, for instance, measure the number
of bond removals necessary to produce said fragments or measure the en-
ergy landscapes of such operations. If all fragments are assumed to form
independently, the cost turns into

c({F1, . . . , Fk}) =
k∑
i=1

c(Fi).

This is a valid assumption if all fragments originate directly from the
precursor compound without any interactions between fragments. In some
mass spectrometers this is a realistic assumption. In combinatorial algo-
rithms this assumption is made and fragment candidates are generated as
subgraphs of the parent compound.

A “true” cost function would correspond to a quantum-chemical model
that simulates the physico-chemical processes to a high accuracy [196, 4,
216]. Quantum-chemical modelling is feasible for fragmentation simulation
of only very small molecular structures [6]. Apart from those methods,
heuristic costs are commonly used to rank candidate fragments.

5.4.2 Combinatorial methods

Combinatorial methods determine possible fragment structures as sub-
graphs of the precursor chemical graph. These methods enumerate sub-
graphs that have matching mass to some of the measured peaks, and then
use heuristic cost functions to score the candidates.

A major line of research concerns with bounded enumeration of can-
didate structures with a mass constraint. A common approach is to cut
the parent graph with all possible combinations up to k bonds, and subse-
quently check the resulting fragment masses [242, 116, 36, 281]. Exhaustive
enumeration is feasible for small values of k, with a value of 4 being com-
mon. The number of combinations of k edges out of m is

(
m
k

)
, where each

combination of k removed edges can induce at most k + 1 fragments. Effi-
cient combination generation algorithms are discussed by Knuth [146].

Generation of subgraphs of non-bounded size is an NP-hard problem.
A simple graph traversal algorithm to generate exhaustively all induced
and connected subgraphs was proposed by Rücker and Rücker [223, 222].
An interesting framework of reverse search with applications in subgraph
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generation is presented by Avis and Fukuda [14] with a thorough discussion
of the method by Kiyomi [144]. Both algorithms use topological orderings
to prevent enumeration of same subgraph multiple times. However, neither
algorithm regards isomorphism between the enumerated subgraphs, and
hence might enumerate multiple subgraphs that are isomorphic, and hence
equivalent. An enumeration algorithm by McKay supports enumeration of
only non-isomorphic subgraphs [183].

In Paper III we adapt the Rücker’s algorithm to fragment enumeration
as the first non-bounded algorithm for the problem.

MASSPEC [242] and Spectool [36] both use an alternative represen-
tation by contracting fixed substructures of the chemical graph into non-
breakable connected components represented by a single vertex, called su-
peratoms. For instance, an aromatic ring of 6 atoms is contracted into a
single atom with 6 edges. Only bonds between superatoms are allowed
to break, which decreases the search space of bond cleavage combinations.
A similar approach is in the decomposition method by Sweeney [250]. A
minimum number of partitions are searched in such a way that maximum
number of peaks can be explained as a combination of partitions. The
method transforms the masses into integers and then represents the peak
masses as a system of linear equations of the partitions. In practise the
method produces easily unsolvable systems and Monte Carlo optimisation
was employed.

Different cost heuristics are employed to rank the generated fragment
candidates according to the feasibility of a certain fragment occurring in
the mass spectrometer. A heuristic cost function by EPIC is

cEPIC = |∆H|wH +
∑
e∈Ec

hewe,

where |∆H| is the number of hydrogen operations and wH is the cost of a
hydrogen operation, EC is the set of broken bonds relative to the precursor,
he is 1 for carbon-carbon bonds and 0.5 otherwise, and we is a bond type
specific cost. For instance, phenyl bond carries a cost of 8, while an aromatic
bond only 6.

In Papers III and IV a standard bond energy (BE) based cost func-
tion was introduced as a more realistic alternative to the heuristic costs
of EPIC. A bond dissociation energy (BDE) is an accurate approximation
of a bond strength and is defined as the standard enthalpy change when
a bond is cleaved by homolysis at absolute zero [25]. BDE is dependent
on the structural context around the bond. For instance, a methyl C-H
bond has a BDE of 439 kJ/mol, while a benzylic C-H bond has a BDE of
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Atom H C N O S P

Order – – = ≡ – = ≡ – = – = ≡ – = ≡
H - 412 - - 388 - - 463 - 338 - - 322 - -
C 412 348 612 837 305 613 890 360 743 272 573 264
N 388 305 613 890 163 409 944 201 607
O 463 360 743 1080 201 607 - 146 496 364 522 - 335 544 -
S 338 272 573 364 522 226 425 335
P 322 264 335 544 335 205 351 489

Table 5.1: Examples of standard bond energies, in unit kJ/mol [288]. A
dash denotes an impossible bond in normal conditions.

377 kJ/mol. However, BDE’s are known for only the most common struc-
tures, and are hence unavailable for measuring bond strength in general
chemical structures.

Instead, the standard BE can be used, which is the average BDE for a
bond type. For instance, the C-H bond has a BE of 412 kJ/mol. The energy
values for most bond types are listed in chemical handbooks [288] (See Table
5.1). BE has proven an useful approximation to bond dissociation energy
and is correlated with the difficulty of breaking bonds [281, 112]. The cost
function of a fragment is then

c(F ) =
∑
e∈Ec

BE(e),

where BE(e) is the bond energy of a bond corresponding to an edge e.

The current state-of-the-art combinatorial metabolite identification method
MetFrag uses bond energies and also additionally gives more weight to
peaks of larger mass [281]. MetFrag draws metabolite candidates from
chemical databases, such as KEGG or PubChem, based on the precursor
peak’s xprec mass. Then, for each candidate metabolite, the lowest-cost
fragments are estimated and their coverage of the observed tandem mass
spectrum is measured. MetFrag ranks those metabolites higher that pro-
duce chemically less expensive fragments.

5.4.3 Fragmentation tree models

The combinatorial methods assume that all fragments are produced inde-
pendently from the precursor, and use a corresponding cost function. How-
ever, in CID fragmentation secondary fragments are a common occurrence
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[184]. In this case the cost function

c({F1, . . . , Fk}) =
k∑
i=1

c(Fi)

errs as the fragment can be a substructure of another fragment, instead of
the precursor compound (See Figure 5.2).

In Paper III we introduce a more difficult – and arguably more realistic
– variant of the fragment identification problem, where the parent ions of
each fragment should be determined. A fragment is formed by a cleavage
reaction on another fragment, or on the parent compound. A fragmentation
tree T = ({F1, . . . , Fk}, E) forms where vertices Fi represent fragments and
edges (Fi, Fj) ∈ E denote fragmentation reactions (See Figure 5.2). The
tree is rooted by the precursor M . The cost function then corresponds to
the costs on the tree edges

c({F1, . . . , Fk}) =
∑

e∈E(T )

c(e).

The fragmentation tree is a subgraph of the fragmentation graph, which
encodes all candidate fragments F = {F ji : ∀i = 1, . . . , k, ∀j = 1, . . . , ni},
where ni is the count of candidate fragments for peak i. Let a directed
fragmentation graph GF = (F, E) be a tuple, where the vertices consist
of all candidates for all peaks, and the edges connect any fragment F ji to

a fragment F j
′

i′ iff the fragment F ji is a subfragment of the fragment F j
′

i′ ,

i.e. F ji ⊂ F j
′

i′ . An edge (F ji , F
j′

i′ ) ∈ E has a cost c(F ji , F
j′

i′ ) of producing a

fragment F ji from fragment F j
′

i′ .

The fragmentation tree is now a colourful subtree of the fragmentation
graph. A colourful subtree is a connected subtree of GF , such that exactly
1 fragment candidate is chosen for each peak index (colour) i. We are
interested in finding the fragmentation tree with a minimum cost over its
edges:

Problem 4 (Minimum colourful subtree). Given a vertex-coloured edge-
weighted fragmentation graph G, find the colourful subtree of G that has
minimal1 cost c(T ) =

∑
e∈E(T ) c(e).

1In Böcker and Rasche the problem is defined as a maximum colourful subtree problem
with edge weights representing scores. We follow the notation that edge weights are
costs associated with cleavages of fragments, and hence use a minimum colourful subtree
formulation.
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Figure 5.2: Fragmentation tree of a metabolite M with five fragment struc-
tures corresponding to five fragment peaks. The lines indicate possible
fragmentation reactions with the number of bond cleavages in the reaction.
The solid lines indicate a minimum Hamming cost explanation of the frag-
mentation process. The costs are dependent on the parent: for instance,
the F5 fragment requires cleavages of C-N and C-O bonds if the parent is
F4. However, if the fragment F4 originates from the parent compound M ,
an additional cleavage of C-C is necessary. The total cost of the minimum
cost tree is 6. The cost is 8 without any subfragment relations.
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Böcker and Rasche provide formal algorithmic analysis of the prob-
lem [43, 44]. The problem is NP-hard by a reduction from SAT problem,
even in the unweighted case [43]. The problem does not admit to constant
factor approximations [66, 212]. Discussion of practical algorithms for the
problem are presented by Rauf et al. [212].

Exact algorithms for minimum colourful subtree include mixed inte-
ger linear programming (MILP), dynamic programming, brute-force and
branch-and-bound algorithms. In Paper III MILP models were introduced
to find the optimal fragmentation trees. MILP is a general constrained
optimisation algorithm, where a set of linear constraints are imposed on a
set of variables that come from both integer and continuous domains. In
MILP approach a binary variable is defined for each edge and vertex of the
fragmentation graph. The constraints then force that exactly one vertex
variable for each colour in the solution is set to 1 with at least one of the
incoming edges set to 1 as well. Additional constraint ensures connectivity
of the final tree.

In a dynamic programming approach we recursively optimise the min-
imal score W (v, S) of a colourful tree with root v and colour set S. The
computation begins with a colour set including only the parent compound
with zero cost. In practise dynamic programming was reported feasible for
only spectra with 10 to 15 peaks [211].

For large fragmentation graphs the exact algorithms have been proven
infeasible. A greedy algorithm considers inclusion of edges in order of their
costs. Another greedy strategy considers colours in some order and adds
a fragment of that colour that promises the least increase in total cost. A
hybrid strategy dynamic programming is used for only a subset of peaks to
get a partial optimal solution. This is then completed with greedy heuris-
tics. According to one study, experts regarded the fragmentation trees by
heuristic methods as inaccurate [211].

Hufsky et al. has extended the fragmentation tree computations to mul-
tiple input spectral measurements of the same precursor [228]. Another
method measures the change of intensities of the fragment peaks when sub-
jected to ramping up the collision energy, which can give clues to whether
the peak is produced by a primary or a secondary fragment [17].

In Böcker and Rasche, the fragmentation tree from Paper III is adapted
to hold molecular formulas, instead of candidate fragment structures, as
vertices [43]. Instead of generating candidate fragments, they generate fea-
sible molecular formulas. The method provides no fragment structures, but
does not require the precursor structure to be known. Hence, a fragmenta-
tion tree is used for evidence to metabolite identification problem with an
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unknown precursor. The method is also robust with rearrangements as it
does not take the structure into account.

5.4.4 Metabolite identification via fragmentation trees

A recent metabolite identification method computes optimal fragmentation
trees where the fragments are represented by molecular formulas instead
of candidate structures [211]. Molecular formulas can be deduced from
mass spectra only, with no information of the parent compound. Hence
more reliable molecular formula peak annotations are given as dependencies
between peaks are taken into account.

The method begins by acquisition of tandem mass spectra with various
collision energies and subsequent merging of the spectra. For each peak,
the possible elemental compositions are estimated with SIRIUS using mass
measurement error, isotopic pattern and MS/MS data. A fragmentation
graph is constructed over the elemental compositions and least-cost frag-
mentation tree computed. The resulting molecular formula annotations
are analysed and verified by domain experts, MSn experiments, rule-based
mass spectral simulation and comparison of different fragmentation trees.
The metabolite identification is still ultimately manually done, but with
help of the deduced information [123].

Later the model was extended with alignments of fragmentation trees
and hierarchical clustering for a more automatic metabolite identification
with promising results [210]. A fragmentation tree is aligned against a
collection of known fragmentation trees. Instead of comparing tandem mass
spectra, we compare fragmentation trees for a more insightful comparison.
Further analysis is done by two-way hierarchical clustering of the alignment
targets and chemical similarity of the underlying chemical structures.

5.4.5 Rule-based methods

An alternative to the combinatorial fragmentation tree search is the rule-
based method, where the fragmentation tree is constructed by simulation
of the fragmentation process, starting from the parent compound. The
rule-based methods utilise the decades of knowledge of fragmentation to
form deterministic rules, which state which bonds of the ions are subject
to cleavage. The collection of cleavage rules is encoded in a database and
a system is devised to decide which fragmentation occurs in case of alter-
nating fragmentation rules [184].

The fragmentation rules are roughly categorised into general and structure-
specific rules. The general rules are often credited to the seminal book by
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Figure 5.3: General fragmentation rules. Pluses indicate positive charge
and dots indicate radicals. “A” is any atom, “Y” is any atom except
hydrogen and “Z” is an atom with a free electron pair. The dashed bonds
indicate alternative orders.

McLafferty and Turecek [184].

The general rules include n, π and σ-ionisation reactions, α and σ cleav-
age reactions and H-rearrangement reactions (See Figure 5.3). The frag-
mentation proceeds by first choosing a suitable ionisation reaction. Then,
cleavage and rearrangement reactions are executed recursively. Uncharged
fragments are discarded after each step. The general mechanisms tend to
generate many false positives [93].

The structure-specific rules apply for a specific structure. These are
usually determined from literature and can contain wildcards. Two widely
used, and proprietary, software of rule-based fragmentation are MassFron-
tier by HighChem and ACD/MS Fragmenter by ACD/Labs. For instance,
MassFrontier uses both general and structure-specific rules. It contains
a manually curated, proprietary database of 19,000 fragmentation mecha-
nisms as reported in thousands of publications in mass spectrometric jour-
nals.

Open alternatives to these include MOLGEN-MSF [231] and Jchem
Fragmenter [166]. MOLGEN-MSF implements the general fragmentation
rules as described above [139]. In case of alternative rules a scoring function
examines the intensities of the peaks of the corresponding fragment prod-
ucts. A fragment with higher intensity is preferred. JChem Fragmenter
contains a set of RECAP rules and accepts any custom rules in SMARTS
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format [166].

In studies by Schymanski et al. the subpar performance of using Mass-
Frontier, ACD/MS Fragmenter and MOLGEN-MSF for metabolite identi-
fication is reported [231, 232]. All three methods showed structural bias to-
wards asymmetric structures [231], while the match values given by ACD/MS
Fragmenter to candidates based on their fragment identifications were re-
ported close to random [231, 232]. In Paper IV the identification accuracy
of MassFrontier was reported low and categorically failing any negatively
charged peaks.

5.5 Machine learning

In machine learning based metabolite identification we study and exploit
the relationships between tandem mass spectral data and the metabolite
structures. We assume that the tandem mass spectral signals correlate with
the substructures present in the measured compound, and thus prediction
of structural patterns – or even the structure itself – is possible. Studies
by Varmuza [260] and Demuth et al. [63] discuss, and end up supporting,
the validity of this assumption.

The problem of predicting the precursor metabolite directly is very chal-
lenging, and hence a standard approach is to instead predict substructures,
chemical features or molecular class memberships [260].

In mathematical terms, the former problem of direct metabolite identifi-
cation is a structured prediction problem: given a spectrum χ = {x1, . . . ,xk} ∈
X , learn a function f : X →M, where M is a space of molecules. By rep-
resenting molecules as chemical graphs, the problem is transformed into
one of predicting graph objects. Currently this task is unrealistic. The
structured prediction problem is under ongoing research [15].

The latter approach corresponds to learning a set of mappings fi :
X → {0, 1}, each of which predicts whether a substructure or property i
is present in the unknown metabolite. We denote prediction targets yi as
fingerprints and, in Paper V, call the whole approach the fingerprint model,
in contrast to the structured prediction model (See Figure 5.4). In general
there is no guarantee that predicting a particular subtask fi is feasible
based on the information on the tandem mass spectra. Some properties of
the metabolites do not reflect to the spectrum (such as charge localisation),
while others might be masked by noise and measurement errors.

Computationally the metabolite identification problem is now rendered
substantially more feasible, however this introduces a new problem of recon-
structing the metabolite from the fingerprint predictions f1(χ), . . . , fm(χ).
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Figure 5.4: Metabolite identification overview through machine learning.
In structured prediction a molecular graph is directly predicted. In the
fingerprint model we utilise fingerprints and other constraints.

In chemical literature, this problem is often not addressed. Instead, it
is assumed that a domain expert is able to elucidate the structure based
on the individual predictions fi(χ), or the original purpose of fingerprint
prediction was other than precursor identification [262].

A MOLGEN-MS framework was proposed by Kerber et al. as com-
plete pipeline for metabolite identification [138, 139]. The method uses iso-
tope peaks for elemental composition constraints and predicts fingerprints
from MS/MS data [262]. Both results are used to constrain isomer gener-
ation [159]. Finally, the candidate isomers are validated using rule-based
simulation to see whether the simulated spectrum matches the observed
one. The framework has not been completely published.

Recently a framework implementing the general idea of Kerber et al.
was brought forth [232]. Schymanski et al. implemented the first three
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steps of the framework to progressively eliminate false candidates from
consideration [232]. In another approach the elimination of candidates is
replaced by an ensemble scoring scheme and addition of chemical feasibil-
ity calculations [230]. Additionally, the simulation phase was replaced by
MetFrag, which uses combinatorial fragment generation and energy-based
scoring [281].

The current methods for fingerprint prediction universally only support
nominal mass spectra, or higher accuracy spectra with fixed bin widths [260,
230]. Hence, high-resolution mass spectrometers and their accurate peak
mass values are not exploited in the machine learning task. In Paper V we
introduce a machine learning framework for metabolite identification with
the first high-resolution mass spectral kernels.

5.5.1 Using fingerprints for metabolite identification

Prediction of fingerprints consists of three components: (i) mass spectral
input features φ(χ), (ii) substructure output features {y1, . . . ,ym}, and
(iii) the prediction algorithm fi.

Input features. The purpose of mass spectral input features is to obtain
a set of features that are informative to the molecular substructures to be
predicted. The features φ(χ)i are either linear or non-linear functions of
the selected peak intensities, denoted as Im for the intensity of peak of
integral mass m. A majority of the following features were proposed early
in the pioneering work on STIRS software [60] and have been acknowledged
since [72, 58, 277, 109].

The simplest feature is directly the intensities of all peaks,

φint(χ)i = Ii.

A common approach is to take logarithms over the intensities, due to
large variance of the intensity. The usage of binary intensities are discussed
from information theoretic point-of-view by Scott [233, 234]. Small peaks
below up to 5% intensity are usually discarded as unreliable [63].

The neutral loss features

φnloss(χ)i = Imprec−i,

where mprec is the mass of the parent ion, measure the neutral losses from
the parent compound [72]. The neutral loss features set the zero index at
parent ion mass, with all other peak masses relative to it. It can detect a
loss of a particular mass invariant of the parent ion mass.
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Intensity ratios

φir(χ)i =
Ii

Ii+∆m

measure the ratio of intensity of peaks that are ∆m apart. ∆m is often
between 1 and 14, which measures isotopic ratios [262].

A common pattern in metabolites is the CH2 carbon group, which is
easily cleaved from the end of a carbon chain. The carbon group has
integral mass of 14. The cleavage of carbon groups can be detected by a
intensity sum feature

φis(χ) =
∑

m∈{m1,...,md}

Im,

where masses at intervals of 14 are summed, i.e. mod(|mi −mj |, 14) = 0
for all i, j ∈ 1, . . . , d. Other intervals include the geometric series of masses
Im/c to link structurally identical ions that have different charges c.

Autocorrelation features

φac(χ) =

∑
ImIm+∆m∑
ImIm

measure the mass differences between peaks up to some ∆m range. Finally,
peak combinations

φcomb(χ) =
∏
m

Im

are alternative to intensity sums.
Various feature selection procedures have been applied to choose an

informative subset of spectral features: from Fisher ratio selection [67, 259],
greedy forward selection [168, 259], and genetic algorithms [289] to heuristic
data mining [292] and principal component analysis [262]. The feature
size decreases usually to some tens of discriminative features to facilitate
statistical analysis [262].

All aforementioned input features assume integral mass values, and
hence do not support accurate peak measurements.

Output features. The output features {y1, . . . ,ym} are the binary fin-
gerprint targets of the prediction. They are either substructures, member-
ships of molecular classes, or physico-chemical properties [243]. A review
of various fingerprints and their implementations has been conducted by
Steffen et al. [243].

The substructures are denoted as fingerprints: they are functional groups
or small chemically meaningful substructures. Examples include the aro-
matic ring C6H6, a phosphate group PO4, a carbon-carbon double bond C=C,



76 5 Metabolite identification with MS/MS

a primary alcohol RCH2OH, or a phenyl C6H5. The membership of molecular
classes can be encoded as single substructure fingerprint. For instance, a
phenyl is characterised with an existence of a phenyl group.

Pharmacophoric fingerprints model the structures and chemical proper-
ties related to the pharmacological action of drug molecules [179]. In prac-
tise the models focus on molecular binding including spatial information,
charges, hydrophobicity and donor/acceptor relations. Physico-chemical
fingerprints model, for instance, lipophilicity, polarizability, charge and
other properties [199].

Commonly a set of tens or hundreds of high-quality fingerprints are
used. STIRS contained already 600 fingerprints [60]. A standard set of 1365
substructures contains both systematically generated small substructures
as well as expert defined functional groups [261, 235]. Another common
fingerprint set is the 881-bit fingerprint set standardised by the PubChem
database [271]. The usefulness of an individual fingerprint is dependent on
its predictability and its discriminatory power with respect to the task at
hand.

The fingerprint set is closely related to chemical similarity measures.
An ideal fingerprint set can distinguish, e.g. metabolites solely on the
fingerprint vector without concerning with the actual structure explicitly.
Hence fingerprints provide a prime target for classification for metabolite
identification.

Mathematically we wish to find a smallest fingerprint set that maximises
the joint entropy of the fingerprint distribution. Often some fingerprints in
combination represent the same information. For instance, an aromatic ring
fingerprint necessarily implies an carbon-carbon double bond fingerprint.
Full information theoretic analysis of joint entropies of a small number of
fingerprints have been conducted [158].

In Steffen et al. the performance of different molecular fingerprints are
compared for biological profile data [243]. Several studies have compared
different fingerprints for virtual screening applications [98, 19] with a critical
evaluation of these comparisons by Hawkins et al. [108].

In the machine learning context, the discriminatory properties of the
fingerprints are accompanied with the prediction accuracies of said finger-
prints. The combined effect of these two factors is an open problem and
has been addressed in Paper V.

Classifiers. Early work on predicting fingerprints is characterised by K-
nearest neighbour algorithms [60, 201], the linear discriminant analysis [266]
and rule-based systems [167, 267]. The pioneering work by Breiman et
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al. applied a decision tree to the problem of detecting a single chlorine
substructure [34]. A high cross-validation accuracy of 95% was reported
with a decision tree of 1, 500 internal nodes. This line of research has been
continued with random forests and boosting combined with both neural
networks and decision trees [124, 95, 110, 109, 290]. Neural networks have
been a popular choice of classifier due to their high predictive accuracy [58,
72]. Other methods include the partial least squares discriminant analysis
(PLS-DA) [292, 289] and SVM with Gaussian kernels on top of direct dot
products of the feature vectors [290].

Several studies report comparisons of the classification methods. Boost-
ing improves the classifiers without exception when applied to both neural
networks and decision trees [110, 290]. SVM’s performance is on par with
AdaBoost decision trees in the study by Yu-Xi et al. [290]. The comparison
by Werther et al. shows neural networks producing slightly better classi-
fiers than LDA or KNN [277], which is expected as neural networks can
handle non-linear features to a degree. KNN was reported to surpass LDA
and least squares methods in predicting oxygen content of small hydrocar-
bons [180]. Feature selection is shown to have a small effect with LDA and
PLS-DA [289].

5.5.2 Mass spectral kernels

Tandem mass spectrometry has been used with kernel methods in classifica-
tion of pesticides [290] and in validation of phosphopeptide identifications
[169]. In the former a direct kernelization of the mass spectral features
is used, while in the latter 8 features are constructed representing, for in-
stance, the ratio between highest peak and precursor peak, and the average
intensity.

A mass spectral kernel should take the peak error ε into account. A
soft-matching kernel is a natural choice. We next introduce two such kernel
families: a standard soft-matching kernel over the peaks, and a probabilistic
probability product kernel.

A soft-matching mass spectral kernel is

K(χ, χ′) =
∑

(mass,int)∈χ
(mass′,int′)∈χ′

κm(mass,mass′) · κi(int, int′),

where κm(mass,mass′) is any soft-matching kernel and κi is a kernel for in-
tensities. A natural kernel for intensities is the product kernel κi(int, int

′) =
int · int′. The peak masses are aligned with the κm. Any choice of a Mercer
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kernel is suitable, for instance a Gaussian radial basis function kernel:

κRBF (u, v) = exp

(
−|u− v|

2

2σ2

)
,

where σ acts as a width parameter.

Probability product kernel

In a seminal work by Kondor and Jebara a density estimation kernel was
proposed for sets [149]. They later extended the kernel into a probability
product kernel, which allows kernelization of any probabilistic model [128].
The probability product kernel is introduced as a mass spectral kernel in
the Paper V.

The main idea behind probability kernel is simple, yet powerful. We
associate a probabilistic model for each datum, and then define a kernel as
a similarity measure of these densities instead of the original data. This is
beneficial, for instance, when the objects in question are sets, such as in
mass spectra. The far-reaching consequence of the probability kernels is
that any set of probabilistic models is open for classification and regression
through kernel methods.

Let the dataset of n objects χ ∈ X be either singleton sets χ = {x ∈ Rd}
or sets with several data points χ = {x1, . . . ,xk : xi ∈ Rd}, where data
points are vectors from Rd. The number of data points k per object χ is
allowed to vary. We assume that for each χ there is underlying distribution
generating the data points {xi}. We then define a kernel between χ and
χ′ by estimating corresponding distributions p and p′ that represent the
underlying distributions. The probability product kernel is then between
the estimates

Kpp(χ, χ
′) = Kβ(p, p′) =

∫
Rd

p(x)βp′(x)βdx = 〈pβ, p′β〉L2 .

The kernel is positive definite as a dot product. The feature map is a
L2(X ) space. However, in practise the data lies on a manifold spanned by
the data points with a maximum dimensionality of n.

The kernel has interesting properties for special values of β. For β = 1
the kernel is the expectation of one distribution under the other, and hence
called the expected likelihood kernel

Kel(χ, χ
′) =

∫
Rd

p(x)p′(x)dx = Ep′ [p(x)] = Ep[p′(x)].
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(a) A spectrum (b) The kernel density estimation

Figure 5.5: The kernel density estimation representation of a spectrum. A
gaussian density is placed at each peak in a two-dimensional space.

Another variant is encountered at β = 1
2 as

Kbh(χ, χ′) =

∫
Rd

√
p(x)

√
p′(x)dx,

which is known as the Bhattacharyya’s measure of affinity between distri-
butions [2, 24]. We call this kernel the Bhattacharyya kernel. The kernel
satisfies the normalisation property Kbh(χ, χ) = 1.

The conventional measure of distribution similarity is the Kullback-
Leibler divergence

D(p||p′) =

∫
Rd

p(x) log p(x)dx−
∫
Rd

p(x) log p′(x)dx,

which is not symmetric and hence not a Mercel kernel [127].
Efficient methods to compute the probability product kernel have been

introduced for various distributions, such as exponential, Gaussian, Bernoulli,
multinomial and gamma distributions over the data χ. Kernels were de-
fined also for situations where the underlying generative distribution is as-
sumed to be a Hidden Markov Model, Bayesian Network or linear Gaussian
model [128].

As a specific example we define the kernel computation explicitly for an
expected likelihood kernel with a Gaussian mixture model

p =
1

k

k∑
i=1

N (µi,Σi)
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of χ, where an individual data point xi of χ is represented with a Gaussian of
mean µi and covariance Σi. With spectral data, a straightforward approach
is to center the mean µi = xi at the peak (See Figure 5.5), and thus

p =
1

k

k∑
i=1

N (xi,Σi).

The probability product kernel then measures the similarity between
two spectra χ and χ′ as the similarity between the corresponding proba-
bilistic models p and p′:

K(χ, χ′) = K(p, p′)

=

∫
Rd

p(x)p′(x)dx

=

∫
Rd

1

k

k∑
i=1

N (xi,Σi) ·
1

k′

k′∑
j=1

N (xj ,Σj)dx

=
1

k

1

k′

k∑
i=1

k′∑
j=1

∫
Rd

N (xi,Σi) · N (xj ,Σj)dx.

=
1

k

1

k′

k∑
i=1

k′∑
j=1

∫
Rd

z†N (x†,Σ†)dx, (5.1)

where Σ† = (Σ−1
i + Σ−1

j )−1, x† = Σ†(Σ
−1
i xi + Σ−1

j xj) and

z† =
1

(2π)1/2|Σi + Σj |1/2
exp

(
−1

2
(xi − xj)

T (Σi + Σj)
−1(xi − xj)

)
.

The product of two gaussians is then another, unnormalized gaussian [3].
As the integral of a gaussian distribution is one, we have∫

Rd

z†N (x†,Σ†)dx = z†.

By plugging this result into 5.1 we have a general solution to the kernel
as (See Paper V)

K(χ, χ′) =
1

k

1

k′

k,k′∑
i,j

1

(2π)1/2|Σi + Σj |1/2
exp

(
−1

2
(xi − xj)

T (Σi + Σj)
−1(xi − xj)

)
.



Chapter 6

Conclusions

In this thesis algorithmic methods have been presented to four bioinfor-
matics and chemoinformatics problems involving small molecules. In the
original publications we have proposed efficient and state-of-the-art com-
putational solutions to these problems. The problems fall under two major
themes of atom-level descriptions of organic reactions, and on identification
of structures based on tandem mass spectrometric measurements.

We discussed the problem of computational reaction mapping, which be-
longs to graph matching problems. The de-facto method of using maximum
common subgraphs suffers from several practical and theoretical shortcom-
ings. Hence, we introduce formalism to determine the optimality criteria of
reaction mappings using graph edit distance, and propose an accompanying
A∗ algorithm to find optimal mappings.

We reviewed the field of graph kernel methods for structured prediction
on biological graphs. A large array of graph kernels have been proposed
that base their feature representation on enumerating substructures of the
molecular graphs. However, a path-based graph kernel has been missing.
The introduced path kernel’s features combine the simplicity of sequence
features and high information content for state-of-the-art classification per-
formance. We also discussed the application of graph kernels to organic
reactions, where the reaction mappings can be utilised for a compact reac-
tion graph representation to facilitate machine learning. The reaction graph
concept warrants subsequent research, as a more robust alternative, on all
fields of metabolomics where reactions are represented as transformations.

We then discussed identification of structures in tandem mass spec-
trometric measurements. A fragment identification problem was reviewed
with applications. In addition to quantum-chemical simulations, the main
classes of proposed algorithms are rule-based methods and combinatorial
methods. We extend the combinatorial methods to model the dependen-
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cies between fragments, resulting in fragmentation trees. A proposed cost
function using bond energies provides a formal method to assess feasibility
of the proposed fragments.

Finally we discussed computational metabolite identification. The prob-
lem is challenging and of high importance in metabolomics studies. We
surveyed the main approaches of utilising reference databases, fragment
identifications and machine learning for the metabolite identification. The
introduced kernel method defines a formal model to account for mass mea-
surement accuracy and provides a state-of-the-art performance of kernel
methods to metabolite identification. Further research is warranted on
both exploiting fragmentation trees and advancements of structured pre-
diction to metabolite identification.
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[43] S. Böcker and F. Rasche. Towards de novo identification of metabo-
lites by analyzing tandem mass spectra. In Bioinformatics 24, ECCB,
pages T49–T55, 2008.
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[159] R. Laue, T. Grüner, M. Meringer, and A. Kerber. Constrained gener-
ation of molecular graphs. DIMACS Series in Discrete Mathematics
And Theoretical Computer Science, 69:319–332, 2005.

[160] A. Leach and V. Gillet. An Introduction to Chemoinformatics. Kluwer
Academic Publishers, 2003.

[161] K. Lebedev and D. Cabrol-Bass. New computer aided methods for
revealing structural features of unknown compounds using low reso-
lution mass spectra. Journal of Chemical Information and Computer
Sciences, 38:410–419, 1998.

[162] M. Leber, V. Egelhofer, I. Schomburg, and D. Schomburg. Automatic
assigment of reaction operators to enzymatic reactions. Bioinformat-
ics, 25:3135–3142, 2009.

[163] C. Leslie, E. Eskin, and S. Noble. The spectrum kernel: A string
kernel for SVM protein classification. In Proceedings of the Pacific
Symposium on Biocomputing, pages 564–575, 2002.

[164] G. Levi. A note on the derivation of maximal common subgraphs of
two directed or undirected graphs. Calcolo, 9:1–12, 1972.

[165] K. Levsen, H-M. Schiebel, J. Terlouw, K. Jobst, M. Elend, A. Preiss,
H. Thiele, and A. Ingendoh. Even-electron ions: a systematic study
of the neutral species lost in the dissociation of quasi-molecular ions.
Journal of Mass Spectrometry, 42:1024–1044, 2007.

[166] X. Lewell, D. Judd, S. Watson, and M. Hann. RECAP - retrosyn-
thetic combinatorial analysis procedure: A powerful new technique



98 References

for identifying privileged molecular fragments with useful applica-
tions in combinatorical chemistry. Journal of Chemical Information
and Computer Sciences, 38:511–522, 1998.

[167] R. Lindsay, B. Buchanan, E. Feigenbaum, and J. Lederberg.
DENDRAL: A case study of the first expert system for scientific
hypothesis formation. Artificial Intelligence, 61:209–261, 1993.

[168] H. Lohninger. Feature selection using growing neural networks: The
recognition of quinoline derivatives from mass spectral data. Software
Development in Chemistry, 7:25–37, 1993.

[169] B. Lu, C. Ruse, T. Xu, S. Park, and J. Yates III. Automatic vali-
dation of phosphopeptide identifications from tandem mass spectra.
Analytical Chemistry, 79:1301–1310, 2007.

[170] E. Luks. Isomorphism of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25:42–65, 1982.

[171] B. Luo and E. R. Hancock. Structural graph matching using the EM
algorithm and singular value decomposition. IEEE Transactions in
Pattern Analysis and Machine Intelligence, 23:1120–1136, 2001.

[172] M. Lynch. Storage and retrieval of information on chemical structures
by computer. Endeavour, 27:68–73, 1968.

[173] M. Lynch and P. Willett. The automatic detection of chemical reac-
tion sites. Journal of Chemical Information and Computer Sciences,
18:154–159, 1978.

[174] P. Mahe, N. Ueda, T. Akutsu, J-L. Perret, and J-P. Vert. Extensions
of marginalized graph kernels. In Proceedings of the 21st International
Conference on Machine Learning (ICML2004). Banff, Canada, 2004.

[175] P. Mahe, N. Ueda, T. Akutsu, J-L. Perret, and J-P. Vert. Graph ker-
nels for molecular structure-activity relationship analysis with sup-
port vector machines. Journal of Chemical Information and Modeling,
45:939–951, 2005.

[176] U. Manber and G. Myers. Suffix arrays: A new method for on-
line string searches. In Proceedings of the first annual ACM-SIAM
symposium on Discrete algorithms, pages 319–327, 1990.

[177] J. Mariethoz and S. Bengio. A max kernel for text-independent
speaker verification systems. In Second Workshop on Multimodal User
Authentication, MMUA, 2006.



References 99

[178] M. Marull and B. Rochat. Fragmentation study of imatinib and char-
acterization of new imatinib metabolites by liquid chromatography-
triple-quadrupole and linear ion trap mass spectrometers. Journal of
Mass Spectrometry, 41:390–404, 2006.

[179] J. Mason, I. Morize, P. Menard, D. Cheney, C. Hulme, and R. Labau-
diniere. New 4-point pharmacophore method for molecular similarity
and diversity applications: Overview of the method and applications,
including a novel approach to the design of combinatorial libraries
containing priviliged substructures. Journal of Medicinal Chemistry,
42:3251–3264, 1999.

[180] J. McGill and B. Kowalski. Classification of mass spectra via pattern
recognition. Journal of Chemical Information and Modeling, 18:52–
55, 1978.

[181] J. McGregor. Backtrack search algorithms and the maximal common
subgraph problem. Software: Practice and Experience, 12:23, 1982.

[182] J. McGregor and P. Willett. Use of a maximal common subgraph al-
gorithm in the automatic identification of the ostensible bond changes
occurring in chemical reactions. Journal of Chemical Information and
Computer Sciences, 21:137–140, 1981.

[183] B. McKay. Isomorph-free exhaustive generation. Journal of Algo-
rithms, 26:306–324, 1998.

[184] F. McLafferty and F. Turecek. Interpretation of mass spectra. Uni-
versity Science Books, 4rd edition, 1993.

[185] A. McNaught. The IUPAC international chemical identifier: InChI –
A new standard for molecular informatics. Chemistry International,
pages 12–14, 2006.

[186] S. Menchetti, F. Costa, and P. Frasconi. Weighted decomposition ker-
nels. In Proceedings of the 22nd international conference on Machine
learning, pages 585–592, 2005.
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