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1 Introduction

Modern smartphones are rapidly increasing in sensing capabilities and computa-

tional power. This combined with their ubiquitous presence, facilitated application

development, and e�ective application distribution channels have enabled smart-

phones to mature into an attractive platform for human activity recognition [LML+10].

This thesis focuses on monitoring transportation behavior, a particular sub-area of

human activity recognition. Our approach to transportation behavior monitoring is

to design a mobile system, which automatically and continuously detects the user's

active transportation modality in real time. We aim to provide detection on such

�ne granularity that all distinct motorised and pedestrian modalities are recogniz-

able. The range of modalities depends on the transportation methods present at

the target location. In our case, we implement the transportation behavior monitor-

ing within Helsinki, a medium sized urban environment, in which case the relevant

modalities are the di�erent public transportation modalities (i.e., bus, train, tram,

metro, car), pedestrian modalities (i.e., walking, running, biking) and stationarity.

Besides emerging as an interesting research topic on its own, bene�ts from e�cient

and robust transportation behavior monitoring would have impact on many research

�elds. For example, human mobility tracking would directly bene�t from an ability

to automatically monitor the transportation behavior of potentially large crowds

of people [LAA+09,SQBB10]. Urban planning and in particular public transporta-

tion planning could gain from information on how the population is utilizing the

di�erent modalities of public transportation [ZLYX11]. Localization and position-

ing algorithms could be improved by constructing more elaborated motion models

with the help of information of the user's current transportation modality [NBK10].

Persuasive applications could use the transportation behavior monitoring to auto-

matically calculate, for example, CO2-footprint or calorie consumption [FDK+09].

Finally, transportation monitoring could be used as part of user pro�ling, for exam-

ples, for real-time journey planning and guidance systems, or targeted advertising.

Smartphone-based transportation behavior monitoring is still a relatively new re-

search area, and while current systems achieve high, over 90%, detection rates,

these solutions still su�er from some fundamental limitations. First, the reported

accuracies tend to ignore the continuous aspects of transportation behavior, typi-

cally using only simple frame-by-frame evaluation metrics (e.g., precision and recall).

While these metrics give a good overview of the system's ability to estimate the right

transportation modality at a given moment, they o�er no insight into the systems
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robustness or latency. Transportation activities tend to extend over relatively long

periods of time and as such, metrics such as fragmentation rate and detection la-

tency would add valuable perspectives to the evaluation [WLG11]. Second, current

solutions provide only a coarse grained categorization for motorised transportation

modalities, typically grouping all of them into one class. More �ne grained clas-

si�cation of the motorised transportation modalities would provide information on

public transportation behavior, applicable in many real-world applications. Finally,

several of the other restraints in current solutions are related to the use of an inte-

grated GPS receiver. The primary concern with GPS is its high power consumption,

making use of the sensor unsustainable for long-term transportation behavior mon-

itoring [LKLZ10]. Moreover, GPS works reliably only when it can establish unob-

structed connection to the satellites, whereas many of the transportation modalities

we would like to detect (e.g., metro, train and tram) prohibit reliable GPS connec-

tion. Furthermore, GPS su�ers from an inconsistent delay between initiating the

sensor and returning the �rst reliable value, inducing latency to the classi�cation.

To address the limitations outlined above, this thesis provides the following contri-

butions:

• We introduce a novel adaptive hierarchical sensor management scheme (HAS-

MET) for increased control over sensor management and classi�er control �ow.

We demonstrate that using this approach, we can i) substantially reduce the

power consumption of transportation behavior monitoring and ii) improve clas-

si�cation accuracy and reduce classi�cation fragmentation.

• We reduce the dependency on GPS by using other sensors and by incorporat-

ing more intelligent feature design. As part of the feature design, we introduce

a novel method for estimating the gravity component from accelerometer mea-

surements.

• We extend the range of motorised modalities that can be detected to cover

common public transportation vehicles.

The rest of this thesis is structured as follows: First in Section 2 we give an overview

of the existing research on related topics. In Section 3 we describe our data collection

e�orts, followed by a description of the sensors and features considered in our work.

Next, in Section 4 we introduce the architecture of the hierarchical classi�er, the

strategy for energy-e�cient sensor management and our methodology for sensor and

feature selection. In Section 5 we introduce our evaluation metrics, followed by the
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results. Finally, we conclude the thesis in Section 6 with a summary of our work

and ideas for future development.
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2 Related work

Extensive research exists on many of the areas related to our work. Our proposed

system combines e�orts from studies on human activity recognition, particularly

from the sub�eld of transportation behavior monitoring, and methods of energy-

e�cient sensor management. Below we give a brief summary of each of these areas

and discuss how this thesis extends the previous research.

2.1 Activity Recognition

Research on human activity recognition is a long-standing, widely studied �eld

within the wearable and ubiquitous sensing domain. The existing research can be

divided into three categories based on the technological approach [CMT+08]. The

oldest and most common approach is the use of research prototypes, tailored sensor

systems designed for particular study or series of them. At simplest, a research

prototype can consist of one or more attachable sensors worn at speci�c locations

on the user. The accuracy yielded with this approach, especially with a multiple

sensor strategy, have generally been high [KSS03, LWJ+04, BI04]. However, until

the sensing units can be embedded on a user in a non-obtrusive way (e.g., in user

clothing), such strict and cumbersome sensor placements render these systems im-

practical for everyday use. A more suitable domain for these systems are the speci�c

situations where high accuracies and �ne-grained activity classes are required. An

example of such a situation is presented by Jakob et al., who use a set of attached

accelerometer sensors to recognize di�erent phases in surgical procedures [BDJN11].

An alternative approach to activity recognition is to combine several sensing units

into one platform. One of the most versatile such systems is the Mobile Sensing

Platform [CBC+08], with sensing capabilities for three-dimensional acceleration, air

pressure, humidity, visible and infrared light, temperature, audio and orientation.

The platform was used, among other studies, in a work evaluating the e�ect of

awareness of the user's daily physical activity [CKM+08]. While less cumbersome

than multiple attached sensors, these approaches require external, often expensive

hardware, making them infeasible to apply on large scale.

A step towards wider applicability is to implement the activity recognition using

one of the existing commercial devices, speci�cally designed for this task [CAH08].

The most simple and widespread of such devices are the pedometers [CMT+08],

instruments for calculating steps by detecting gait from the user's walking motion.
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Pedometers can be applied to human activity recognition in several methods, most

commonly: i) to measure user's physical activity from daily step count, ii) to identify

persons based on their physical activity or iii) to identify temporal distribution of

daily activities [SCB04]. As an example, Tudor-Locke et al. use pedometers to cal-

culate daily step counts as an indicator for a healthy lifestyle [TLBJ04]. In a related

work, Chan et al. investigate health bene�ts of persuasive pedometer-based physical

activity monitoring [CRTL04]. More complex commercial devices can contain multi-

axis accelerometers (e.g., FitBit1, Tracmor2) and multiple sensors (ImpactSport3)

capable of sensing more elaborate properties such as heart rate, heat �ux, galvanic

skin response and skin temperature. In a work combining several commercial sens-

ing devices, Könönen et al. use a Suunto wrist-top computer, a Garmin GPS device,

an Embla external audio recorder and an iPaq PDA to collect a rich feature set

and use it to recognize between nine di�erent physical activities [KMS+08]. These

systems, while using available o�-the-shelf devices, lack a standard platform and ef-

fective distribution channels; thus they are not consumer friendly enough to achieve

a large user base.

The most recent shift in the wearable activity recognition communities has been

towards using smartphones as the primary platform. There are several qualities

that make smartphones attractive. From a practical point-of-view, smartphones are

widespread and carried continuously by the users, thus providing for a potentially

non-intrusive method for continuous and large-scale activity recognition [LXL+11].

From a technical point-of-view, the extensive and rapidly increasing computational

and sensing capabilities of modern smartphones enable accurate activity recogni-

tion [LML+10]. From the developer's point-of-view, application development and

distribution has been signi�cantly facilitated with improved programmability and

e�ective distribution channels [LML+10]. As an example of smartphone-based ac-

tivity recognition, Lau et al. conducted research on patient monitoring [LKD+10].

In their work, a mobile phone embedded accelerometer was employed to detect

coarse-level patient activities, such as 'sleeping', 'awake' or 'moving and doing ex-

ercises'. In another example, Papliatseyeu and Mayora investigated human activity

recognition based on a fusion of smartphone sensors (GPS, GSM, Wi-Fi and Blue-

tooth) [PMI08]. A collection of di�erent sensors was used as opposed to a single

sensor to compensate for sensor-speci�c limitations.

1http://www.fitbit.com/ [Retrieved: 2012-08-06]
2http://www.tracmor.com/ [Retrieved: 2012-08-06]
3http://impactsport.org/ [Retrieved: 2012-08-06]
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2.2 Transportation Behavior Monitoring

Transportation behavior monitoring can be considered a special sub�eld in the wider

domain of activity recognition. The task of detecting the current transportation

modality itself can be further divided into two subtasks: i) stationary detection,

i.e., detecting the user as stationary or mobile, and, when the user is detected as

mobile, ii) locomotion recognition, i.e., recognizing the user's locomotion method.

Stationary detection is a well studied concept, which has been approached with

varying methods. For example Krumm and Horvitz [KH04] utilized characteristics

of the received signal strength indicator (RSSI) from Wi-Fi access points to classify

the user as mobile or stationary. Wi-Fi based stationarity detection was further

explored by utilizing the frequency domain of RSSI values by Muthukrishnan et

al. [MLMH07]. In a more recent work, accelerometer-based stationary detection

was added to the Wi-Fi detection for energy-e�cient sensor management by Kim

et al. [KKES10]. This approach was further extended with an addition of a speed-

threshold to include motorised vehicles by Kjaergaard et al. [KBBN11].

The latter task, locomotion recognition, has been studied in varying degree in the

domain of activity recognition. Typical locomotion types include di�erent pedes-

trian modalities (e.g., walking, running or moving in stairs), non-motorised assisted

transportation modalities (e.g., bicycling, roller skating) and motorised transporta-

tion modalities (e.g., car, bus, train). In one of the earliest works, Farringdon et al.

created a system based on attachable accelerometers to identify stationary, walking

and running activities [FMT+99]. An extensive activity recognition study, includ-

ing a variety of locomotion activities, was conducted by Bao et al. [BI04]. In their

approach, �ve biaxial accelerometer were attached at speci�c locations of the user

to recognize between 20 activities, reaching an average accuracy of 84%. Loco-

motion detection with a single triaxial accelerometer was investigated by Ravi et

al. [RDML05], focusing on comparing the e�ciency of di�erent classi�cation tech-

niques. The accuracies reported by this study ranged from 57% with a decision

table, to up to 90% with plurality voting for recognizing between eight activities.

While the detection accuracy of systems based on wearable accelerometer(s) are

relatively high, they are robust only for modalities involving vivid kinematic mo-

tion. Activities with low intensity kinematic motion, such as stationary and mo-

torised modalities, are signi�cantly harder to separate with solely accelerometer

based solutions [RMB+10]. An e�ective approach for distinguishing between mo-

torised transportation modalities and stationarity is to monitor changes in the user's
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environment and location. For example, changes in received signal strengths from

GSM radio were used by Sohn et al. [SVL+06] to discern coarse-grained transporta-

tion modalities (stationary, walking, driving). The GSM features were augmented

with RSSI values from Wi-Fi access points to detect more subtle changes in lo-

cation by Mun et al. [MEBH08]. These approaches yielded accuracies of 80−90%
for motorised transportation detection. However, they rely on features that have

been extracted over data windows with a duration from 40 seconds to 2 minutes,

which makes these approaches unsuitable for applications that require (near) real-

time information about transportation behavior. An example of such an application

is a high-accuracy positioning system, which uses the user's current transporta-

tion modality to estimate the user's speed and trajectory. Another, more direct

method for detecting changes in user's location has emerged with the expanding

availability of GPS sensors in modern mobile phones. This option was explored by

Zheng et al. [ZLC+08], who detected transportation modalities based on features

extracted solely from GPS. In addition to speed and location information, Zheng

et al. extracted three novel features from GPS: heading change rate, stopping rate

and velocity change rate. A more detailed presentation on these features is given in

Section 3.3, page 22. Using this approach together with spatial information Zheng

et al. reached average accuracy of 76% in classifying between stationarity, walking,

biking, driving and traveling by bus. Using the GPS is an attractive option due

to its easy access and accurate, near real-time updates. The GPS, however, also

has some drawbacks which limit its usability: it has a high energy pro�le, requires

an inconsistent time period to achieve a satellite lock and is unusable or unreliable

when a clear view to the satellites is obstructed. Furthermore, several of the bene-

�ts of GPS require external GIS-information, such as route information of a public

transportation vehicle, which might not always be readily available.

The current state-of-the-art solutions for transportation behavior monitoring use

multiple sensors for the detection task. We consider one of such systems, proposed

by Reddy et al. [RMB+10] as our primary baseline to compare our solution against.

The system utilizes a combination of GPS and accelerometer sensors to classify the

user's transportation modality as: stationary, walking, running, biking or traveling

with a motorised vehicle. Besides high accuracy, we choose this work as our pri-

mary baseline due to its emphasis on user convenience. Some of the novel qualities

presented in the approach of Reddy et al. include: unconstrained phone orientation

and position, cross-user usability and independence from external information. As

a secondary baseline, we compare our solution against the system proposed by Mun
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et al. [MEBH08]. We chose to add this as a second baseline since it utilizes similar

GSM and Wi-Fi features as our solution. In our work, we continue along the di-

rection of Reddy et al. emphasizing real world applicability by reducing the energy

consumption of the detection task, while simultaneously o�er improved detection

accuracy. Our work additionally provides �ner granularity of detectable motorised

transportation modalities and improves the overall consistency of the transportation

behavior monitoring.

2.3 Energy E�ciency

While the sensing and computational capabilities of smartphones have been rapidly

increasing, the battery capacity has developed at a much more conservative rate,

limiting the use of the phone's new capabilities. As such, energy e�ciency has

emerged as a vital property for continuous smartphone-based sensing systems. The

research on energy e�ciency has tackled this problem from two directions: by reduc-

ing general power consumption at the hardware and system level, and by proposing

energy-e�cient application designs.

Examples of approaches that address energy-e�ciency at the hardware level include

the delayed data transmission strategy of Kravets and Krishnan [KK98] and the

diminished data quality approach of Flinn and Satyanarayanan [FS99a,FS04]. Both

techniques focus on reducing power consumption by manipulating the data trans-

mission between communication components. The former technique, delayed data

transmission, improves energy-e�ciency by sending data less frequently in larger

ensembles as opposed to frequent, small data packages. The study reports reduc-

tion in power consumption of up to 83% for communication components. The latter

technique, diminished data quality, adapts the data quality in accordance with the

remaining battery charge. While speci�c energy saving depends on the extent of data

quality diminishing, Flinn and Satyanarayanan report battery recharge interval in-

crease of up to 30% without sacri�cing application quality. Another system-level

scheme based on the remaining battery charge is the battery-driven power manage-

ment technique proposed by Benini et al. [BCMS01]. The system tailors a group

of dynamic power management policies with the current battery charge, turning o�

resources during periods of inactivity. Using this technique, Benini et al. report up

to a 66% extension in battery recharge intervals. Two further related approaches

are the dynamic voltage scaling (DVS) and dynamic frequency scaling (DFS), also

known as CPU throttling [PS01]. These techniques, often used in conjunction, re-
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duce the power consumption of the system by adjusting the computational power,

i.e., processor frequency and system voltage, dynamically to match the current sys-

tem load.

Research on application level energy e�ciency has already seen wide attention within

the mobile sensing domain [RSHI08,KBBN11,SC10,MPF+10]. Most notable reduc-

tion in power consumption has been achieved by utilizing low-power sensors in place

of more consuming ones (e.g., by replacing GPS with accelerometer and GSM). Fur-

ther energy reductions are attainable by employing duty cycling on the sensors, i.e.,

by decreasing the sampling frequency of the sensors when applicable. In a work

closely related to ours, Wang et al. propose a hierarchical sensor management strat-

egy, coined as the Energy E�cient Mobile Sensing System (EEMSS) [WLA+09]. The

EEMSS employs a minimal set of sensors to detect the user's state and then tracks

the sensors for a trigger condition to initiate state transition. The system is evaluated

by detecting three states, 'At some place', 'Walking' and 'Vehicle', achieving accu-

racies of 99%, 84% and 74% respectively. Compared to systems which periodically

sample the sensors, EEMSS can extend the lifetime of the device by approximately

75%. The latency of detecting a state transition, however, ranges from 40 seconds to

5 minutes, making the system unsuitable for applications that require near real-time

information. Another example is EnTracked, an energy-e�cient position tracking

system proposed by Kjaergaard et al. [KLGT09]. The main novelty of the work

is to reduce the use of GPS sensors by specifying an error bound, adjustable by

applications, within which the position accuracy is required. The trigger condition

for GPS sampling, i.e., the instant when the error-limit is exceeded, is calculated

from speed estimation and accelerometer-based motion analysis.

Within the �eld of transportation behavior monitoring, only limited amount of work

on energy e�ciency has been conducted. Some suggestions and initial work however

exist. In addition to work referred above, Reddy et al. estimated the energy footprint

of their system by measuring power consumption of the employed sensors and the

classi�er over �ve 20-minute-trials of each the of activity classes [RMB+10]. They

further implemented a simple method for improving the classi�ers' energy e�ciency

by detecting switches from indoor to outdoor settings, and turning o� the classi�er

while indoors. A system based on predicting the next likely set of activities of the

user was introduced by Gordon et al. [GCMB12]. Based on the predicted activity set,

only the relevant sensors are operated. The method achieves substantial (reporting

up to 84%) energy savings while maintaining comparable accuracy. Additionally,

there exists several low-energy systems capable of limited transportation behavior
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monitoring based solely on accelerometer [WCM10,LYL+10]. A method to further

decrease the energy consumption of a accelerometer-based system was proposed

by Yan et al. [YSC+12]. The system, coined the Adaptive Accelerometer-based

Activity Recognition (A3R), works by dynamically adjusting the frequency rate

of the accelerometer depending on the prevalent activity, achieving energy savings

of approximately 20 − 25%. In our research, we improve the energy-e�ciency of

the monitoring task by constructing an energy model for each of the sensors and

�nding the most energy-e�cient sensor combination for each of the hierarchical

classi�cation phases. Finally, we design a sensor management system to remove

unnecessary sensor polling.
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3 Data collection

Over the course of studying and developing the transportation behavior monitoring,

we have collected over 200 hours of data from various transportation modalities.

The data has been collected with two smartphone models: Samsung Nexus S and

Samsung Galaxy S II. For evaluating the energy footprint of our approach, we have

also collected measurements about the energy requirements of di�erent sensors on

our target smartphones. In the following we describe the collected datasets in detail.

3.1 Transportation Behavior Data

For the transportation behavior data collection task we have developed an Android

application, SensorLogger, capable of monitoring and storing data from the avail-

able sensors on the smartphones: Accelerometer, Bluetooth, GPS, GSM, Gravity

sensor, Gyroscope, Light sensor, Linear acceleration sensor, Magnetometer, Micro-

phone, Orientation, Proximity sensor, Rotation vector and Wi-Fi (see Section 3.3

for further discussion of the sensors). The application was installed on two models

of smartphones: Samsung Galaxy S II and Samsung Nexus S. The two models were

attached to form a single sensing unit; see Figure 1.

Figure 1: Sensing unit consisting of Samsung Galaxy S II and Samsung Nexus S.

We opted for using a combination of two phones due to model-speci�c limitations.

At the time of our research, the Galaxy S II phone was unable to provide detailed

GSM information, while the Nexus S lacked many of the sensors present in the later
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models. Additionally, at the time of development, the Wi-Fi sensor on the Galaxy

S II model always scanned both 2.4 GHz and 5 GHz frequency ranges. Since in

our study we focus only on the 2.4 GHz range, this induces unnecessary time and

energy cost to the sensor's operation. As a result, we used the Nexus S phone to

scan the GSM and Wi-Fi information, while the Galaxy S II phone was used to scan

the rest of the available sensors. The raw sensor data was annotated with ground

truth labeling of the current transportation modality. The ground truth annotation

was performed manually with a help of a speci�cally designed Android application.

In order to not disturb any of the sensing units, an additional phone was used for

assigning the ground truth labels.

The data collection was carried out with two methods:

• Collecting long data traces from everyday transportation behavior. This dataset

was collected by two individuals over period of three months, with a total of

over 170 hours of collected data.

• Collecting data while following a prede�ned scenario, detailed below. The

scenario data was collected by six di�erent users over period of two weeks,

with a total of 29 hours of collected data.

While the bulk of the data was collected by individual users from everyday trans-

portation, this data was mainly used for developing, validating and experimenting

with transportation behavior monitoring. The �nal evaluation was conducted with

the data collected from the prede�ned scenario. Since our scenario does not include

sections of driving, biking or running, the scenario dataset was supplemented with

5 hours of data from the everyday data collections containing measurements from

these modalities. To obtain and ensure phone location independence, and accord-

ing to prevailing best practices, the data was collected simultaneously from several

mobile phone placements. The placements considered were the three most common

locations for a mobile phone in an urban environment [ICG05]: trouser pocket, bag,

and jacket pocket. As a result, each data collection task involved seven phones: three

sensing units consisting of two phones each used for collecting the measurements and

one phone used for assigning the ground truth labels.

Scenario The scenario (see Figure 2 for an overview) took place in Helsinki, Fin-

land. Each data collection case involved two persons: the participant and the su-

pervisor. The participant was equipped with the sensing units, while the supervisor
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Figure 2: Overview of the scenario used in our data collection.

was responsible for inserting the ground truth labels and guiding the participant

through the scenario. The public transportation modalities available in Helsinki are

bus, train, tram and metro. The scenario was planned to contain a span of 20 min-

utes from each of these available transportation modalities. In addition, a walking

section of similar length was added to the beginning of the scenario, resulting in a

total length of approximately 120 minutes. The initial walking section (A → B in

Figure 2) contained a small downhill, short section of stairs and two tra�c lights.

The tram (B → C) passed though a busy, often congested section of the downtown.

After the tram, a section of long escalators were traveled to gain access to the metro

(C → D). The bus section (D → E) was a combination of slow-moving downtown

travel, followed by a short period of motorway travel. Finally, the train (E → F)

section used the main railroad line, �nishing the scenario at the central railway sta-

tion. Between each motorised transportation modality, there was a brief walking

segment and typically 3-10 minutes of stationarity while waiting for the vehicle of

the next transportation modality. After the data collection, the data was revalidated

to correct any clearly erroneous ground truth labels resulting from human error.

The data collection was carried out during the winter of 2011-2012 in harsh condi-

tions, which limited the feasibility of collecting su�cient amounts of running and

biking data. Hence, these modalities are only used for training the classi�er and

excluded from the testing set. However, previous work [BI04, RMB+10], as well

as small scale experiments that we have conducted with the supplementary data
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TRAINING

Method Persons Duration

Scenario 4 17h 25min

Individual 2 2h 50 min

TOTAL 5 20h 15 min

TESTING

Method Persons Duration

Scenario 2 11h 15min

Individual 2 1h 50 min

TOTAL 4 13h 05 min

Table 1: Summary of the datasets used in the evaluation.

indicate that these modalities can be easily identi�ed with high accuracy.

For evaluation purposes, we split the data into separate training and testing sets,

summarized in Table 1. The training set contains data collected from four par-

ticipants, and 60% of the supplementary data. The remaining data is used for

constructing the test set. This division of distinct users for train and test sets,

and various sensor placements also functions as an indicator of the generalization

performance of our system across various users and sensor placements.

3.2 Energy Consumption Data

Sensor energy consumption data was collected using the Monsoon Power Monitor4,

a device capable of accurately measuring the power of any device using a single

lithium battery; see Figure 3 for the use of the device to measure energy consump-

tion of Samsung Galaxy S II. All energy measurements were collected by supplying

the phone with a constant voltage of 3.9 V and tracking the current (mA) with fre-

quency of 5000 Hz. To minimize noise and disturbances in the collection of energy

measurements, the screen of the device was turned o� and all background applica-

4http://www.msoon.com/LabEquipment/PowerMonitor/ [Retrieved: 2012-09-04]
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Figure 3: Our setup with the Monsoon Power Monitor with a Galaxy S II phone.

tions were closed. Additionally, to further reduce the noise caused by the phone's

background operations, the phone was set to airplane mode for all the sensors ex-

cluding Wi-Fi and GSM, for which normal mode was required. For each sensor, we

programmatically switch the sensor on, execute a series of 10 sampling sequences

with idle periods in between and �nally turn the sensor o�. The durations of the

sampling sequences and the idle phases varied according to the complexity of the

sensor's energy pro�le, ranging between 30−60 seconds and 10−30 seconds respec-

tively. This procedure was repeated twice for each sensor, resulting in approximately

2.5 hours of energy measurements.

Power Models From the energy measurements, we have constructed simple em-

pirical power models for the purposes of energy consumption evaluation. Speci�cally,

for each sensor, we have identi�ed the distinct stages corresponding to switching the

sensor on/o�, sampling the sensor, and maintaining the sensor in idle mode (i.e.,

maintaining the sensor on but not actively sampling). Sensors with a complex en-

ergy pro�le are further divided into more �ne grained sampling stages. For example,

in the GPS sensor's energy pro�le we observe two separate pre-sampling stages (see

Figure 4), which correspond to initiating the sensor and the phase when GPS is

achieving a satellite lock.

While the power consumption for sampling is approximately constant for most sen-
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Figure 4: Current (mA) associated with sampling the GPS sensor at 3.9 V, repeated twice

for 20 seconds.

sors, the wireless communication sensors, Wi-Fi and Bluetooth, have varying con-

sumption. The consumption depends on the number of visible access points (Wi-Fi)

or discoverable devices (Bluetooth). For Wi-Fi, however, this is re�ected in the du-

ration of the scan and thus it su�ces to observe and model the duration of the scan.

For Bluetooth, the energy consumption increases roughly linearly with the number

of discovered devices and a simple linear function can be formulated between the

number of devices and the energy cost:

Bluetoothenergy = 797 + 55*number of discovered devices.

Note that for GSM, proximity and light sensors, the power consumption resulting

from sampling is e�ectively zero as the phone already constantly polls this informa-

tion.

After identifying the various sensor stages, we estimate the power consumption

(mW) for each stage. As we are primarily interested in estimating the overall energy

consumption, simple mean value of the measured current is used to represent each

stage. In case the sensor stage has a �xed duration, the total energy (mJ) of the

stage is additionally calculated. For derived values corresponding to each sensor,

see Table 2.
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Sensor Switch ON Switch OFF Sampling Idle Pre-Sampling

Accelerometer - - 21.1mW - -

Gravity - - 25.31mW - -

L.Acceleration - - 25.86mW - -

Magnetometer - - 53.35mW 20.9mW -

Orientation - - 52.73mW 20.4mW -

Rotation - - 55.26mW 21.5mW -

Gyroscope - - 154.4mW 22.6mW 43.9mJ

Microphone 123mJ 35.8mJ 101mW - -

GPS 77.2mJ - 115mW - 168mW

Bluetooth 480mJ 381mJ 797+55mJ* 3.17mW -

WLAN 1292mJ 615mJ 293mW 12.3mW -

*: Energy increase per device.

Table 2: Energy consumption of di�erent stages of the sensors

3.3 Sensors and Features

As a part of our research, we have investigated several sensors to identify the ones

most e�cient for the task of transportation behavior monitoring. In the following

we brie�y describe the sensors we considered and the features we extracted from

the sensor values. As our target is to support applications that require near real-

time information of transportation behavior, we are extracting the features from

windows of short (1.2 seconds) time span. Below we give a listing of all the sensors

and features considered. A more detailed examination of the selected features is

given in Section 4.2.1.

Accelerometer The accelerometer chip in our use is the Galaxy S II embedded

ST Microelectronics LIS3DH, capable of providing three-dimensional acceleration

measurements (reported in m/s2). We sample the accelerometer at 100 Hz frequency,

which corresponds to the maximum of the phone's capability.

As the �rst preprocessing step, we envelope the measurements into 1.2 second win-

dows with 50% overlap. Next, to minimize high frequency noise from the data we

apply a low-pass �lter on the measurements along each of the axes. The �lter is

an energy-threshold �lter, which eliminates the highest frequencies corresponding

to 10% of the window's total energy. After �ltering, we construct three repre-
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sentations from the accelerometer values: the total magnitude of accelerometer,

the horizontal magnitude and the vertical magnitude. Magnitude is extracted us-

ing the L2 norm, de�ned as a = (a2x + a2y + a2z)
1/2. The L2 norm is widely used

in activity recognition to minimize the e�ects of orientation to accelerometer fea-

tures [RMB+10, WCM10, LYL+10]. The horizontal and vertical components are

derived from the data by i) determining the accelerometer's gravity component g

and ii) by utilizing g, computing projections along horizontal and vertical planes.

For estimating the gravity component, we use an extension of the technique pro-

posed by Mizell [Miz05]. In Mizell's approach, gravity is estimated with the mean

of accelerometer measurements over a duration of a few seconds. This approach,

however, lacks robustness when sustained, directional acceleration is applied on the

accelerometer, or when the accelerometer orientation changes rapidly. As both of

these situations are fairly common in transportation behavior, we have extended the

technique with two methods. To address the problem with sustained acceleration,

we use the variance of the accelerometer measurements to detect near stationary

periods, and estimate the gravity component opportunistically when the variance is

low. A precision score p denoting the amount of variance is attached to the gravity

estimate, forming a tuple {Gest, p}. The gravity estimate is updated only when the

variance of the current window is lower than the value of p. To ensure that our

gravity estimate remains up to date, the p value of the prevalent gravity estimate

is increased with a small constant (currently we use 0.00001) each time the current

data window's variance is higher than the value of p. To reduce erroneous estimates

resulting from changes in phone orientation, we reset the tuple {Gest, p} when a large

shift in orientation is observed. Shifts in orientation are detected by comparing the

prevalent gravity estimate against the mean of the current measurement window.

Whenever these di�er by more than a prede�ned threshold (currently we use 2 m/s)

along any of the axes, we assume the orientation of the device has changed and

re-initialize the gravity estimate for each axis to zero; see Figure 5 for a comparison

between our gravity estimate and that of Mizell's approach. From the �gure, we

can observe the two cases mentioned above: in case of sustained acceleration (span

A) the gravity estimation of Mizell's approach follows the measured acceleration too

closely. In case of orientation changes (span B), the system has a transition phase,

within which the gravity estimates give highly erroneous estimates.

Once the gravity component ~g = (gx, gy, gz) has been estimated, we derive the verti-

cal projection ~v and the horizontal plane projection ~h from the observed acceleration

~a = (ax,ay,az). First the dynamic acceleration ~d = (ax-gx, ay-gy, ax-gx) is computed,
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Figure 5: Comparison of a single accelerometer axis (blue) with the estimated gravity

component (red) using Mizell's approach (upper picture) versus using our extended method

(lower picture). From the �gure, we can observe that in case of sustained acceleration

(span A), the estimated gravity component from Mizell's approach tracks the accelerometer

values too closely. Additionally, in case the orientation changes (span B), the approach of

Mizell produces greater errors before reaching a reliable estimate.
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Domain Features

Mean, Variation, Standard Dev., Min, Max, Median,

Statistical Range, IQR, RMS, Kurtosis, Skewness, Autocorrelation,

Mean Pairwise Correlation, Mean Cross-Correlation

Time Integral, Double-Integral, Zero-Crossings

FFT: DC, 1Hz, 2Hz, 3Hz, 4Hz, 5Hz, 6Hz,

Frequency Energy, Entropy, Maximal Coe�cient,

Wavelet Entropy (Haar2), Wavelet Magnitude

Table 3: Accelerometer features by domain. For more detailed information of the

di�erent features, see the extensive feature study by Figo et al. [FDFC10].

which is the gravity-eliminated acceleration caused by the user's movement. Now the

vertical component ~v is the projection of ~d upon the gravity component ~g : ~d =
~d·~g
~g·~g ∗~g.

The horizontal component is simply the subtraction of the dynamic acceleration and

the vertical component ~h = ~d − ~v. Finally, to obtain orientation independence, we

calculate the L2 norm for both ~v and ~h.

After the preprocessing steps described above, we extract an extensive set of features

from each of the three representations introduced above; for a full list of features,

see Table 3. Our feature space is based on work by Figo et al. [FDFC10] and

encompasses statistical metrics (e.g., mean, variance, kurtosis), time-domain metrics

(e.g., double integral, cross-correlation and zero crossings) and frequency-domain

metrics (e.g., energy, �rst six FFT components, entropy, wavelet decomposition

and the sum of FFT coe�cients). The feature space dimensionality is 29 features

per accelerometer representation, i.e., the total number of accelerometer features

extracted is 87.

GSM The Android API available on our smartphones provides an interface for

monitoring changes in the GSM signal environment. The information that can be

accessed is limited to the received signal strength and identi�er of the cell tower

that the phone is currently connected to. At the time of development, no method

for polling the GSM information at a de�ned frequency was available. Instead,

new values are updated every time a change in the signal strength is detected. In

practice, this results in a varying sampling rate between 0.3 and 0.5 Hz.

For feature extraction, we aggregate measurements using a �ve second sliding win-
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dow with 50% overlap. From each window we extract nine GSM features based

on the works of Sohn et al. [SVL+06] and Mun et al. [MEBH08]: The mean and

variance of the received signal strength (RSS) values from each observed cell tower,

the handover count, dwell-time (i.e., time elapsed since the last handover), the

number of unique cells present within the window and the ratio of common cell

towers between consecutive windows. We also compute the KL-divergence between

the ratio of common access points between consecutive windows, which Nurmi et

al. [NBK10] have shown to be a good indicator of radio map divergence in GSM

positioning. The KL-divergence between probability distributions p and q is de-

�ned as DKL (p ‖ q) =
∫∞
−∞ p(x) log

p(x)
q(x)

dx, where p and q can be any arbitrary

probability distributions. Finally, we construct a time-interpolated handover score

GSMhandover, which increases at each detected handover and decreases over time

when no handovers are observed. Speci�cally, GSMhandover is calculated as follows:

• GSMhandover initializes from a value of one.

• Each time a handover is detected, the score is increased:

GSMhandover = 5 +GSMhandover ∗ 0.5.

• If no handover is detected within a speci�c duration (currently 15 seconds)

the handover score is decreased: GSMhandover = GSMhandover ∗ 0.5.

This approach results in a function, which increases asymptotically towards a value

of 10 when GSM handovers are detected frequently, and decreases asymptotically

towards a value of zero when no handovers are detected. The constants for the

formula were selected empirically to provide optimal separation between stationary,

pedestrian and motorised transportation modalities.

Wi-Fi To monitor changes in the Wi-Fi signal environment, the 2.4 GHz frequency

range was scanned periodically using the Nexus S smartphone. The Nexus S phone

was used for this task instead of the Galaxy S II due to the latter always scanning

additionally the 5 GHz frequency range5, which induce longer scanning times and

higher energy consumption. Each new scan was triggered one second after the

previous scan was completed. As the duration of a single scan is not constant, the

actual sample rate varies between 0.4 Hz and 1 Hz. From each scan, we extract the

5Note that later versions of the software have enabled an option to select the preferred band-

width.
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MAC address, signal strength, exact frequency (i.e., Wi-Fi channel) and the SSID

from each visible access point. For evaluating the energy cost of a single scan, we

also record the duration of the scan. As a preprocessing step, we we detect and

tag universally administered wireless access points [KKES10] to prevent on-board

wireless access points, installed for example on trams and subways, from interfering

with the Wi-Fi features.

The feature extraction follows closely the procedure with GSM. First, we aggre-

gate the information of Wi-Fi scans over a �ve second window. Next, we calculate

the mean and variance of the RSSI-values for each visible access point. Addition-

ally, we detect the dominant access point within the window (i.e., the AP with

highest mean signal strength), calculate its dwell-time [MEBH08], signal strength

variance [KH04], and the ratio between the strongest and the weakest access point's

signal strengths [KM08]. Finally, as with GSM, we calculate an interpolated dwell-

time score WLANdwelltime, which increases when the dwell-time of the dominant

access point increases and decreases when the dwell-time of the dominant access

point decreases (i.e., when the access point is no longer visible). Speci�cally, the

WLANdwelltime is calculated as follows:

• WLANdwell−time initializes from a value of one.

• Each time the dwell-time of the dominant access point increases, the score is

increased: WLANdwelltime = 1 +WLANdwelltime ∗ 0.9.

• If the dwell-time of the dominant access point decreases, the dwell-time score

is decreased: WLANdwelltime = WLANdwelltime ∗ 0.9.

Similar to the GSM handover score, this results in a function, which increases asymp-

totically towards 10 when the dwell-time of the dominant access point increases, and

decreases asymptotically towards zero when the dwell-time of the dominant access

point decreases. As with the GSM handover score, the constants were selected em-

pirically. Due to the di�erent constant values, compared to the GSM handover score,

the WLAN dwell-time score changes at a slower rate; see Fig 6. The constant values

re�ect the update frequency of the function. For Wi-Fi, the function is updated

every scan, i.e., every 1 − 2.5 seconds. For GSM, the function is updated every

time a GSM handover is detected, or after 15 seconds has elapsed since the previous

update, resulting in a varying update frequency roughly between 10− 15 seconds.
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Figure 6: A comparison between the behavior of the GSMhandover and the

WLANdwelltime scores. In the �gure, the corresponding functions are �rst increased

50 times (GSM handovers are detected and the dwell-time of the dominant WiFi

access point increases), after which the functions are decreased 50 times (no GSM

handovers are detected and the dwell-time of the dominant WiFi access point de-

creases).

GPS The GPS chip on both Nexus S and Galaxy S II smartphones is the SiRF

GSD4T assisted GPS chip. We poll the sensor for raw GPS data, reported in

National Marine Electronics Association (NMEA) format, with a frequency of 1

Hz. From the NMEA-strings, we extract latitude, longitude, speed, number of

visible satellites and the horizontal, vertical and positional Dilution of Precision

(DOP). The three DOP-values measure the reliability of the GPS measurements;

for more detailed information, see [YAADH00]. As a preprocessing step, we �lter out

unreliable measurements which have less than three visible satellites, or for which

horizontal DOP values exceed 6.0. After preprocessing, we extract the speed, and

three additional features introduced by Zheng et al. [ZLC+08]: heading change rate,

stopping rate, and velocity change rate, de�ned below:

• Heading change rate measures the frequency of signi�cant heading changes in

the user's movement. A signi�cant heading change is de�ned as a point where

user's orientation changes more than a certain threshold Hc.

• Stopping rate measures the frequency of stops in the user's movement. A stop

is de�ned as a point, where the user's velocity is below a certain threshold Vc.
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• Velocity change rate measures the frequency of signi�cant changes in the users

velocity. A signi�cant change is de�ned as a point where the user's velocity

changes (in percentage) more than a certain threshold Vr.

Following the approach of Zheng et al., we de�ne the threshold values as

Hc = 19 degrees, Vc = 3.4 m/s, and Vr = 26% [ZLC+08].

Gravity and Linear acceleration sensors The gravity and linear acceleration

sensors are two of the new sensing abilities in the more recent model Samsung Galaxy

S2. The values of both sensors are derived from the accelerometer and as such are

not separate chips. The gravity sensor outputs a three-dimensional vector indicating

the direction and the magnitude of gravity in the phone's local coordinate system,

while the linear acceleration sensor outputs the gravity eliminated acceleration along

each of the three local axes. The sampling frequency of both sensors is identical to

that of the accelerometer sensor, i.e., 100 Hz. From these two virtual sensors, we

extract the same feature space as from the accelerometer. Note that the gravity

estimation of the Samsung Galaxy S II phone is very similar to that of the Mizell's

gravity estimation presented previously; see Figure 5. Consequently, the utility of

these two sensors is only modest. Nevertheless, for completeness we also consider

features from these sensors in our feature selection phase.

Magnetometer The magnetometer sensor in our use is the AKM AK8975 com-

pass, capable of measuring the ambient magnetic �eld along three axes. On the

Galaxy S II phones, the maximum frequency of the sensor is 90 Hz. Using the

magnetometer, it is possible to determine the direction of the magnetic north, i.e.,

to construct a simple compass. Along with the gravity estimate this could be used

to approximate the orientation of the phone. In practice, however, the sensor used

in the current phone models is highly sensitive to magnetic disturbances caused

by, e.g, large ferro-metal objects. Furthermore, disturbances from these sources

are emphasized while within motorised vehicles. The disturbance is caused by the

large metallic body of the vehicle, which induces a so called stray hard iron distor-

tion to the magnetic �eld, signi�cantly reducing the robustness of the compass. In

hopes that some of the motorised transportation modalities could be detected with

a speci�c magnetic �ngerprint, we extract magnetometer features (e.g., magnitude,

variation and range) that pro�le the magnetic �eld. However, none of these features

passed our feature selection phase and further investigation of the magnetometer is
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omitted from this study and left for future research.

Gyroscope The gyroscope is another of the new sensors only present in the Sam-

sung Galaxy S2 phones. The chip is the STMicroelectronics L3G4200D, a three-axis

MEMS gyroscope operating at up to 110 Hz frequency. The gyroscope is capable of

measuring the rate of rotation around the device's local X,Y and Z axis. The sensor

could be used, together with the accelerometer, to track the user's movement using

dead reckoning. The sensor, however, comes with a high energy cost, consuming up

to seven times more energy (155 mW compared to 21 mW; see Table 2) than the

accelerometer. From the gyroscope, we extracted features that describe the angular

movement of the phone, but as expected, due to the high energy cost, none of these

were selected in our feature selection phase.

Rotation sensor The rotation sensor is another new sensor in Galaxy S II phones,

which task is to estimates the changes in the phone's orientation. The output is a

combination of angle-axis indicators; the rotation θ around axes X, Y and Z. We poll

the rotation sensor at its maximum frequency rate of 90 Hz. As the functionality

of the rotation sensors is very similar, we use the same feature space as for the

gyroscope.
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4 Hierarchical Classi�er Design

The key idea in our proposed system, coined HASMET (Hierarchical Adaptive Sen-

sor Management for Energy-e�cient Transportation behavior monitoring), is to de-

compose the transportation modality detection task into subtasks. The classi�ca-

tion proceeds from a coarse-grained classi�cation towards a �ne-grained distinction

of transportation modality. At the heart of each classi�er part is a hybrid classi�er

design, which consists of an Adaptive boosting classi�er (AdaBoost) and Hidden

Markov Model (HMM) classi�er. While classi�cation systems similar to ours have

been previously studies, none has yet been applied on the �eld of transportation

behavior monitoring. In the following subsections, �rst relevant classi�cation tech-

niques are outlined, followed by a detailed presentation of the HASMET feature

selection scheme and classi�cation design.

4.1 Classi�cation

In machine learning, classi�cation tasks are traditionally tackled with one of the

two main approaches: (i) discriminative processes that focus on resolving boundary

values of the classes, and (ii) generative processes that describe the underlying class

distribution and state transitions [RH97]. In the following, we introduce one rep-

resentative and relevant technique to our work from each approach: decision trees

(discriminative) and Hidden Markov Models (generative). We also cover classi�er

boosting, a technique to improve any learning classi�er, used in our classi�er design.

4.1.1 Decision Trees

Decision trees are a well-established, versatile tool for classi�cation tasks. One

de�nition, presented by Rasoul and Landgrebe [SL91], describes decision trees as

tree-shaped schematic diagrams designed for multi-stage decision problems. One of

the main advantages of decision trees is their ability to break complex decision mak-

ing problems into a series of smaller, more manageable problems (see Figure 7 for

an example). An additional bene�t compared to single-stage classi�ers is computa-

tional e�ciency of the decision trees, especially on high-dimensional feature spaces

and on problems with large set of classes.

As common in classi�cation problems, there are two phases in employing decision

trees: (i) training the classi�er, which in the case of decision trees is called growing
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Figure 7: A simple decision tree used to classify the user's transportation modality

into one of the four �nal classes.

the tree, and (ii) applying the classi�er on unseen data in order to classify them.

The latter part, classi�cation, is relatively straight-forward and in practice can be

considered simply as a chain of conditional statements. The former is a more com-

plex task and has seen extensive research [Qui86,UBC97,Die00]. In our study, the

algorithm used for training the classi�er is the C4.5 algorithm [Qui93], a developed

version from its predecessor, ID3 [Qui86]. A more recent, commercial version of the

algorithm also exists under a name C5.0. The core of the algorithm in all versions is

based on maximizing information gain, i.e., the di�erence in entropy. The simpli�ed

logic of the algorithm is as follows:

i) Check for base cases and stopping condition

• New class encountered.

• Information gain is zero (or below a specified threshold) for all

of the features.

• All the remaining samples belong to the same class; return a leaf

node containing that class.

• Stopping condition: If all the remaining nodes are leaf nodes,

terminate the algorithm.

ii) For each feature F, calculate the (normalized) information gain

G for splitting the set S with Feature F

G(S, F ) = E(S)−
m∑
i=1

fS(Fi)E(SFi
),

where
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m = number of different values of the feature F,

fS(n) is the frequency of value n in set S,

Fi is the feature F set to value defined by index i,

SF is the set S, split with feature Fi, and

E is entropy, defined as:

E(S) = −
m∑
j=1

fS(j) log2 fS(j)

iii) Choose the feature F, with the highest information gain G.

iv) Create a new decision node containing F, that splits the remaining

set S into two subsets.

v) Add the subsets obtained in (iv) as child nodes and recursively apply

the algorithm on them.

While generally robust tools for classi�cation tasks, decision trees also have some

issues which need to be considered. The primary concern is over�tting the data,

which occurs when noise or random variation is interpreted as identi�ers for a class.

Over�tted classi�er typically fails to generalize, resulting in poor performance on

unseen samples. In case of decision trees, over�tting can be alleviated to some

extent by performing pre-, and post-pruning on the tree (i.e., reducing the size and

complexity of the decision tree). Pre-pruning is performed while growing the tree,

for example by setting a criteria for the amount of observations to create a new node,

and post-pruning is performed after the tree is grown by reducing the size of the

decision tree. While pruning reduces the tree's predictive strength on the training

data, it results in more robust classi�cation on unseen data.

4.1.2 Adaptive Boosting

Boosting is a general technique for improving the accuracy of any learning algo-

rithm [FS99b]. The basic idea in boosting is to iteratively learn weak classi�ers that

focus on di�erent subsets of the training data, and combine these classi�ers into one

strong classi�er. Adaptive boosting (AdaBoost), introduced by Freund and Schapire

in [FS95], extends the idea of boosting by tuning to the problematic samples mis-

classi�ed by previous classi�ers. Speci�cally, AdaBoost operates by assigning each

sample in the training data a weight that determines the importance of the sample.

Over a series of rounds t = 1, . . . , T , classi�ers that minimize classi�cation error on

the weighted data are learned. After each round, the weights of the samples are
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Figure 8: A sample HMM-diagram visualizing transitions between states.

re-evaluated to assign higher priority to samples that are misclassi�ed. Note that

features that are selected by the weak learners provide us with an automatic way to

identify the most relevant features for the �nal classi�er design.

4.1.3 Hidden Markov Models

Hidden Markov Models (HMM) are another widely used machine learning tool ca-

pable of classi�cation tasks. In broader terms, HMM can be considered a statistical

Markovian method for modeling series of underlying hidden states, with an ob-

servable sequence of emitted values (see Figure 8). The hidden states have initial

probability distribution Pi, state transition probability distribution Pt and emission

probability distribution Pe. If the three probability distributions are known, the

most likely state or sequence of states corresponding to the observed emission(s)

can be e�ciently solved. In addition, the HMM has a speci�c order, which corre-

sponds to the length of the history, i.e., the number of previous states, to consider

in calculating the posterior probability distribution. After being rediscovered by

engineering sciences in the late 1980's [Rab89], HMMs have been adopted on var-

ious �elds and problems. In particular, HMMs are e�ective in solving temporal

pattern recognition problems and as such have been applied widely in the activity

recognition �eld [TIL02,WPP+07,AY09].

In terms of classi�cation approach, HMM is a generative classi�er. Generative clas-

si�ers approach the classi�cation task by learning a model of the underlying joint

probability p(s, c), where s denotes samples and c denotes the class. The predicted

class is the one yielding the highest probability p(c|s). In terms of classi�cation

accuracy, discriminative classi�ers (such as decision trees) typically outperform gen-

erative classi�ers [NJ02]. This is due to the discriminative classi�ers modeling the

class conditional probability p(c|s) directly, while generative classi�ers, in a sense,

try to solve a more general problem in estimating the underlying joint distribution

p(s, c). However, as these methods have complimentary strengths, the most e�cient

technique is typically one that combines a generative classi�er with a discriminative
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classi�er [JH98].

4.1.4 Hybrid Classi�ers

An e�ective approach in activity recognition related classi�cation tasks is to con-

struct a multi-stage hybrid classi�er consisting of a combination of classi�ers. We

describe here one such classi�er combining a decision tree with a Hidden Markov

Model, a method used in several previous studies [RMB+10,LCK+05]. The e�ciency

of this hybrid design owes to the complementary strengths of the two classi�cation

methods:

- The decision tree is e�cient in processing the raw features and �nding bound-

ary values for di�erent classes, i.e., performs hard classi�cation.

- HMM incorporates domain speci�c knowledge into the classi�er in the form

of state transition probabilities, i.e., smooths out noise and prevents unlikely

state transitions based on temporal knowledge of the previous state(s).

Figure 9: Diagram of an example

Hybrid Classi�er control �ow.

An DT+HMM hybrid classi�er (see Figure 9

for an example) can be constructed with ei-

ther of the following approaches: i) dedicate a

separate DT+HMM pair for each class, or ii)

model the classes as hidden states of a single

HMM. In case of transportation behavior mon-

itoring, the latter has been shown to be a both

simpler and more e�cient approach [RMB+10],

and consequently we will focus on it only. The

classi�ers are ordered so that the initial clas-

si�cation is performed by the decision tree.

From the initial classi�cation phase, a poste-

rior probability distribution Pdt is obtained. In

the second phase, the HMM classi�er is trained

with Pdt (i.e., Pdt corresponds to Pe). Transi-

tion probabilities Pt can be either tuned manu-

ally by an expert, or derived from the frequen-

cies of state transitions in the data. The ini-

tial probability distributionPi re�ects the ini-

tial situation and is typically set to a uniform
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distribution. The predicted class is given by calculating Pi x Pdt x Pt, and choosing

the class with the highest probability.

4.1.5 HASMET Classi�er Design

The HASMET classi�er design, used within all the classi�er parts, consist of a

two-stage classi�er, similar to the one outlined in the previous subsections. The

initial classi�cation is performed by an adaptive boosting classi�er, consisting of an

ensemble of low-depth decision trees. While the AdaBoost algorithm is generally

robust against over-�tting, mislabeled data or other outliers could result in decreased

performance. To reduce the risk of over-�tting, we use a gentle variant of AdaBoost,

which puts less emphasis on outliers than the original algorithm [FHT00]. The

number of boosting rounds T was determined using the scree-criterion, i.e., we plot

the classi�cation error for varying values of T and select a suitable value of T , which

balances between the classi�er accuracy and classi�er complexity. In order to retain

classi�er simplicity and to prevent over-�tting to training data, we opted for the

minimal T value (currently 25), after which further increasing the value of T results

only in small gain in accuracy.

From the initial classi�ers' margin values, we derive a probability distribution and

pass this to the second stage classi�er, for which we use a �rst-order discrete HMM.

The characteristics that we seek to capture with the HMM are the continuous nature

of the transportation behavior (i.e., smooth the predictions over time) and the proba-

bilities of transitions between di�erent states. The state-transition probabilities are

derived from our dataset as likelihood ratios between consecutive transportation

modalities, with unlikely transitions (e.g., from biking to motorised or running) set

to zero probability.

4.2 Sensor and Feature Selection

In activity recognition, features are the measurable attributes of an observed phe-

nomenon. Finding the correct features that are able to identify each activity has a

signi�cant impact for the whole system. As described above in Section 4.1.2, em-

ploying boosting provides us an automatic method for selecting a feature set which

best distinguishes between di�erent classes. To provide an optimal trade-o� between

energy e�ciency and detection accuracy, we have modi�ed the loss function used

in AdaBoost for feature selection to also consider the energy cost associated with
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the features. Speci�cally, we �rst weight the score of each feature, given by the

original AdaBoost algorithm, with a value relative to the respective sensor's power

consumption. Next, we �nd the features which provide similar detection accuracy,

i.e., which are within a small range of each other, and choose the feature which

results in the smallest increase to the total energy cost of the classi�cation task. As

a result, the features from sensors with low power consumption, or sensors that have

already been included to the classi�er design, are prioritized over the features from

sensors with high power consumption.

As the result from applying the modi�ed AdaBoost algorithm on our initial feature

space containing features from all eight sensors, described in 3.3, features were se-

lected from the following four sensors: accelerometer, GPS, GSM and Wi-Fi. As

excluding the high consuming GPS from the classi�er is one of our research goals, we

applied the algorithm on two sensor sets, one including and the other excluding GPS.

This resulted in two classi�er designs, one where accelerometer, GSM and Wi-Fi are

used for detection, and one where GPS is additionally used. In the experiments we

refer to these two versions as HASMET and HASMETG, respectively.

4.2.1 Feature examination

From the initial feature space of 172 features, 24 features were selected for di�erent

stages of classi�cation. Here we give a description for each of the features utilized

by HASMET.

Total Acceleration presents the combined magnitude of the kinematic forces

applied on the smartphone. Eight features were selected from this representation:

variance, minimum, maximum, range, interquartile range, kurtosis, wavelet entropy

and FFT direct component. Variance measures the �uctuation of the accelerometer

magnitude and is e�ective in separating between activities with di�erent intensity

and pace of movement (e.g., walking and running). Minimum and maximum mea-

sure the largest and smallest values detected within a window and are usable in

separating between modalities with similar variation. Range measures the di�er-

ence between maximum and minimum values, with similar utility as maximum and

minimum. Interquartile range functions as the range, with the exception that it

eliminates the highest and lowest quartiles, and as such is often more robust against

noise and sporadic spikes in the accelerometer measurements. Kurtosis measures

the peakedness of the values within a window and its e�ectiveness is based on �nd-
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ing speci�c patterns from motorised activities. Wavelet entropy measures similar

attributes as kurtosis, with the di�erence that it examines the frequency represen-

tation of the accelerometer values. As with kurtosis, wavelet entropy functions by

distinguishing between activities with similar energy levels based on di�erent activ-

ity patters. Finally, the FFT direct component characterizes the frequency signal of

an activity and is able to distinguish between activities with di�erent intensities of

physical movement.

Horizontal Acceleration presents the acceleration along the horizontal plane,

i.e., forward, backward and lateral movement. From this representation, six features

were selected: variance, range, interquartile range, minimum, mean cross-correlation

and integral. The �rst four features are analogous to those described above, with

the exception that emphasis is placed on transportation modalities which can be

best identi�ed from their horizontal acceleration. The �rst of the two remaining

features, mean cross-correlation is the average of cross correlations between each

pair of axes (i.e., {x,y}, {x,z} and {y,z}), and is usable for identifying movement

which distributes unevenly along the axes, such as acceleration and deacceleration

periods of motorised vehicles. Integral measures the accumulated acceleration over

the window, which can operate as a proxy for momentary speed gain. Similarly to

the mean cross-correlation, the integral of the horizontal acceleration is e�ective in

capturing acceleration which is directed primarily to one orientation.

Vertical Acceleration measures the upwards and downwards oriented accelera-

tion. A total of six features were selected from this representation: variance, min-

imum, maximum, wavelet entropy, mean cross-correlation and wavelet magnitude.

The vertical features have two important functions. First, they help to identify

between pedestrian modalities, in particular between bicycle and walking as only

the latter has signi�cant vertical movement. Second, the vibrations and shakes as-

sociated with motorised transportation modalities are e�ectively captured by the

vertical features. The �rst �ve features selected from the vertical representation

are described above. The remaining feature, wavelet magnitude, measures the total

energy of the frequency representation of the data window, and much like the FFT

direct component, identi�es activities based on di�erent levels of physical intensity.

GSM features measure the changes in the user's GSM environment, which cor-

relates with the user's movement between places. From the GSM feature space
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only a single feature, the time-interpolated handover score, was selected. This fea-

ture, however, along with the Wi-Fi features, is vital at robustly discerning between

low-intensity kinematic movement and motorised transportation modalities. As pre-

sented in Section 3.3, the time-interpolated handover score initiates from a value of

one, and if no GSM handovers are detected, decreases over time towards zero. In

case a handover is detected, the score is progressively increased towards 10. To

prevent increasing the score in a common ping-pong handover situation, where the

primary GSM cell tower �uctuates between two towers [MEBH08], we store the cell

identi�ers from the previous 30 seconds and �lter out handovers to any of the cells

seen within the time frame.

Wi-Fi features are used to detect changes in user's Wi-Fi signal environment, i.e.,

to distinguish between moving within a place and moving between places. Two fea-

tures from the Wi-Fi feature space were selected. The �rst is the time-interpolated

dwell-time score, presented in Section 3.3. The score function behaves much like

its GSM counterpart, increasing when the dominant access point remains visible

and decreases when the access point is no longer visible. The second selected Wi-Fi

feature is the un�ltered dwell-time, which measures the duration that the strongest

visible access point has been visible. As discussed in Section 3.3, the un�ltered access

point list contains all visible access points, including the universally administered

ones.

4.3 HASMET Architecture

The core of HASMET consists of four classi�ers which are organized into a hierarchy;

see Figure 10 for illustration. At the root of the classi�er hierarchy is a kinematic

motion classi�er, which uses an accelerometer to perform a coarse-grained distinc-

tion between pedestrian and other modalities. When the kinematic motion classi�er

detects substantial physical movement, a pedestrian classi�er is consulted, other-

wise the process progresses to a stationary classi�er. The pedestrian classi�er uses

the accelerometer to separate between walking, biking and running. The stationary

classi�er, on the other hand, uses a combination of accelerometer, GSM and Wi-Fi

to determine whether the user is stationary or in a motorised transport. When

motorised transportation is detected, the classi�cation proceeds to a motorised clas-

si�er, which is responsible for classifying the current transportation activity into

one of �ve modalities: bus, train, metro, tram or car.
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Figure 10: Overview of the the classi�er decomposition of HASMET and the depen-

dencies between the classi�er parts.

Changes in transportation behavior typically occur infrequently and each activity

has a duration of several minutes. HASMET utilizes this observation to improve the

robustness of the transportation behavior monitoring. Speci�cally, HASMET follows

a two-stage control �ow approach where the �rst step is to consult the classi�er that

was responsible for the most recent modality estimate. If no changes in modality

are detected, the process is halted. Otherwise the classi�cation is propagated back

to the parent classi�er.

4.3.1 Kinematic Motion Classi�er

The kinematic motion classi�er utilizes accelerometer measurements to distinguish

between pedestrian and other modalities. The features that were selected for the

kinematic motion classi�er are a set of standard statistical metrics that characterize

the overall volume of kinematic movement. For a full list of the selected features,

see Table 4. Note that features from all three accelerometer representations were

selected by the AdaBoost algorithm, indicating that our approach with the ac-

celerometer feature design is an e�cient one. The accuracy of the kinematic motion

classi�er is close to 99%, which means that it can robustly determine the subsequent
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Sensor Features

Total Acceleration Variance, Maximum,

Interquartile Range

Horizontal Acceleration Variance, Range,

Interquartile Range

Vertical Acceleration Minimum, Standard Deviation

Table 4: Sensors and features used in the kinematic motion classi�er.

classi�er to apply.

4.3.2 Pedestrian Classi�er

The pedestrian classi�er is responsible for distinguishing between walking, running

and biking. The pedestrian classi�er relies only on the accelerometer. The �nal set

of features that were selected corresponds to the feature list used with the kinematic

motion classi�er; see Table 4. As discussed in Section 3.1, we were unable to collect

a su�cient amount of measurements for biking or running due to weather conditions

and consequently the accuracy of the pedestrian classi�er is not considered as part

of the evaluation. Previous work [BI04, RMB+10], as well as small scale experi-

ments that we have conducted with data from a single individual indicate that these

modalities can be easily identi�ed with over 95% accuracy.

4.3.3 Stationary Classi�er

The stationary classi�er utilizes measurements from the accelerometer, GSM and

Wi-Fi to distinguish between stationary and motorised modalities. Compared to the

kinematic and pedestrian classi�ers, the �nal feature space of the stationary classi�er

is signi�cantly more diverse. The feature space encompasses statistical, time-domain

and frequency-domain features from the accelerometer, as well as features from GSM

and Wi-Fi sensors; see Table 5. The �nal stationary classi�er design achieves an

accuracy of approximately 85%. The more complex feature space, along with the

decreased accuracy compared to the previous two tasks, indicate the di�culty of

achieving this task using only the coarse-grained mobility information that GSM and

Wi-Fi provide. Nevertheless, the accuracy of the stationary classi�er still su�ce to
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provide robust continuous detection of transportation modality, even in the presence

of periods where stationarity is interleaved with motorised transportation.

Sensor Features

Total Acceleration Variance, Range, Wavelet Entropy, Kurtosis,

FFT Direct Component,

Interquartile Range

Horizontal Acceleration Variance, Integral (Velocity), Interquartile

Range

Vertical Acceleration Wavelet Entropy, Mean Cross-Correlation

GSM Time-interpolated Handover score

Wi-Fi Time-interpolated Dwelltime score (�ltered),

Dwell-Time (un�ltered)

Table 5: Sensors and features used in the stationarity detection.

4.3.4 Motorised Classi�er

The motorised classi�er is responsible for distinguishing between car, bus, train,

tram and metro. The �nal set of features that were selected for the classi�er are

similar to those of the stationary classi�er. For a full list of selected features, see Ta-

ble 6. As movement patterns between di�erent motorised modalities are very similar,

this is the most challenging task in our design. As such, we have made two additional

extensions to the HASMET classi�cation scheme to improve the robustness and ac-

curacy of the motorised detection. First, whenever the motorised classi�er fails to

detect the current modality, but the stationary classi�er determines the user to be

stationary, we assume that the user is within motorised transport that has stopped

and the parent classi�er is set to be the motorised classi�er (i.e., the classi�er that is

consulted once the stationary period ends is the motorised classi�er). This scheme

reduces false detections from stops, such as picking up or dropping passengers or

stopping at tra�c lights. Second, to improve the robustness of detecting between

the di�erent motorised modalities, the current motorised transportation modality

is estimated using a majority vote of the motorised modalities that have been pre-

dicted within the last 60 windows. As each window is roughly 1.2 seconds long,

and the windows overlap by 50%, this corresponds to roughly 36 seconds. This
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step signi�cantly improves the robustness of the motorised detection. Note that

only windows classi�ed as motorised transport are taken into account in the voting,

which enables our system to rapidly react to changes in transportation modality.

This design is able to determine the correct modality with approximately 70% ac-

curacy. Moreover, most errors result from mixing between train, tram and metro.

In applications, these errors could be alleviated, e.g., by fusing in information about

transportation routes or by considering more elaborate features; see Section 6.

Sensor Features

Total Acceleration Variance, Interquartile Range, Kurtosis,

Wavelet Entropy, Maximum

Horizontal Acceleration Variance, Mean Cross-Correlation, Minimum,

Interquartile Range

Vertical Acceleration Wavelet Entropy, Minimum, Wavelet Magni-

tude, Variance, Mean Cross-Correlation, Maxi-

mum

GSM Time-interpolated Handover score

Wi-Fi Time-interpolated Dwelltime score (�ltered),

Dwell-Time (un�ltered)

Table 6: Sensors and features used in the motorised classi�er.
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5 Evaluation

In this chapter we investigate the performance of HASMET. In the evaluation we

consider four di�erent aspects of the detection task: detection accuracy, detection

robustness and latency, detection generalizability, and energy e�ciency. For evalu-

ating detection accuracy, we use standard classi�cation metrics, i.e., precision, recall

and F-score, as these give a good overview of the classi�ers' overall capability to iden-

tify the correct transportation modality. For evaluating robustness and latency, we

use event and frame-based metrics introduced by Ward et al. [WLT06,WLG11]. De-

tection generalization is evaluated with cross-user and cross-placement evaluations.

Finally, to evaluate the energy e�ciency of the di�erent approaches we calculate their

total energy consumption over our testing set. For calculating the energy consump-

tion, we use the empirical power models presented in Section 3.2. For HASMET, we

additionally calculate the energy consumption of the di�erent classi�er parts sepa-

rately. All the evaluations, except for the detection generalization evaluation, were

performed using the datasets summarized in Table 1.

Baselines As baselines for our evaluation, we compare HASMET with two exist-

ing methods for transportation behavior monitoring. The primary baseline is the

approach of Reddy et al. [RMB+10], as this presents the current state-of-the-art

solution in transportation behavior monitoring on mobile devices. The approach

utilizes a combination of accelerometer and GPS features. From the accelerome-

ter, the approach extracts four features: variance and three FFT components of

the L2 norm corresponding to the frequencies 1 − 3Hz. From GPS only speed is

used as a feature. Classi�cation is performed with a hybrid classi�er consisting of

a decision tree and a �rst order discrete HMM classi�er. Since the baseline method

utilizes GPS, and considering that many of our target applications would already

employ GPS for other functionalities, we perform the comparison both against HAS-

MET and HASMETG. As the secondary baseline we use the approach of Mun et

al. [MEBH08], as it relies on similar features from GSM and Wi-Fi as our approach.

From the GSM measurements, the approach of Mun et al. extracts the dwell-time

in the primary cell, and the number of unique cells seen within a window. Both

features are calculated over a two minute window. From the Wi-Fi measurements,

two similar features are extracted: the dwell-time of the dominant access point and

its signal strength variance, both calculated over a window of 40 seconds.
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5.1 Detection Accuracy

We begin the evaluation by considering the classi�ers' overall ability to detect the

correct transportation modality. For this purpose, we employ three standard set-

based metrics: precision, recall and F-score. Precision measures the classi�ers' abil-

ity to avoid false classi�cation, while recall measures the classi�ers' ability to detect

the right transportation modality. The F-score is the harmonic mean of the former

two. Speci�cally, we consider the following metrics:

Precision = TP
TP+FP

Recall = TP
TP+FN

F1score = 2 ∗ recall∗precision
recall+precision

= 2TP
2TP+FN+FP

Where TP = True Positive, FP = False Positive and FN = False Negative

The results of the accuracy evaluation along with a comparison with the baselines

are presented in Table 7. Overall, HASMET achieves on average 80% precision

and slightly lower recall at around 77%. The GPS augmented version HASMETG

achieves increased performance, reaching around 84% on both precision and recall.

Both of the HASMET variants o�er improved detection accuracies over the base-

line approaches. The baseline of Reddy et al. achieves average precision and recall

roughly at 70% and 68% respectively. Note that while Reddy et al. reported average

precision and recall values close to 90% [RMB+10], these results were achieved by

combining all the motorised transportation modalities into a single class. In case we

merge all the motorised modalities into a single class, the results are analogous to

those reported by Reddy et al., and HASMET still retains better performance. The

other baseline from Mun et al. achieves average precision and recall both around

44%. The notable di�erences to the reported results from Mun et al. [MEBH08]

are caused by a more demanding testing scenario used in our evaluation. The eval-

uation carried out by Mun et al. included long periods of dwelling (e.g., having

a dinner), while our evaluations focuses exclusively on the active part of moving

between places.
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Still Walk Bus Train Metro Tram Car

Still 16715 131 507 277 408 750 14

Walk 59 16541 46 20 33 38 8

Bus 236 47 5224 118 0 325 0

Train 461 25 812 3221 246 503 31

Metro 904 24 325 526 5681 416 0

Tram 1571 31 166 1 644 10150 0

Car 2 12 349 0 0 0 10702

Table 8: Confusion matrix of the classi�cation performed by HASMET.

Inspecting the performance of the di�erent classi�er components in HASMET re-

veals, that the kinematic classi�er performs very reliably at around 98% precision,

and 99% recall values. Observing that for the kinematic modalities the accuracies

achieved with the approach of Reddy et al. are also very high, we conclude that

this task is relatively simple and solely an accelerometer is su�cient for this task.

The stationary classi�er performs slightly less reliably with 90% precision and 79%

recall, but still at a level that is acceptable for most real-world applications. Not

surprisingly, the main challenges emerge from correctly predicting the motorised

transportation modality. The motorised classi�er achieves average precision and

recall of around 76% and 70% respectively. Most of the false classi�cations re-

sult from di�culties with distinguishing between the di�erent public transportation

modalities. This part of the classi�cation task is, however, also where HASMET

outperforms the primary baseline approach of Reddy et al. most clearly. This is due

to the GPS performing less reliably inside motorised vehicles, and the more intelli-

gent accelerometer feature design we use in HASMET. As correctly recognizing the

public transportation modalities is one of the most interesting applications domain

for mobile transportation behavior monitoring, improving the performance of the

motorised classi�er is one of the main objectives of our future work; see Section 6.

5.2 Detection Robustness and Latency

In evaluating a continuous activity recognition system, the metrics considered in the

previous section give a incomplete view of the system's suitability for applications.

In particular, considering only direct frame-by-frame metrics, such as precision and

recall, ignores the robustness of the detection, i.e., the fragmentation of the de-
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Figure 11: Fragmentation rate of of the di�erent approaches.

tection, and o�ers no view to the systems detection latency. To incorporate these

aspects into our evaluation, we employ the fragmentation rate and the under�ll rate

proposed by Ward et al. [WLG11]. The fragmentation rate expresses the fraction of

all ground truths events that the classi�er misinterprets as multiple events, while the

under�ll rate measures the delay in detecting the correct modality, when a transition

from one modality to another occurs.

The evaluation results of these metrics are presented in Figure 11 and Figure 12.

Overall, compared to both of the baselines, HASMET provides improved robustness

in the transportation behavior monitoring with lower fragmentation rate in all the

other modalities, except for driving and walking, for which HASMET and Reddy et

al. perform approximately equally. For walking, the fragmentation rate of HASMET

is minimal at around 0.6%. For driving, the fragmentation rate is also low at around

8.1%. HASMETG further increases the robustness, providing lower fragmentation

rate for all the other modalities, except for walking, for which the HASMETG has

a negligible 0.6% fragmentation rate. Similar to the detection accuracy, the main

improvements in robustness over the baselines result from the better robustness in

detecting between the di�erent motorised transportation modalities.

Inspecting the results from the other event metric, under�ll rate, we �rst observe that

all four evaluated methods are e�cient at detecting transitions from one modality

to another. Overall, compared to the baseline systems, HASMET provides lower

latency to the detection, evident from the smaller under�ll rates; see Figure 12.
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Figure 12: Under�ll rate of the of the di�erent approaches.

Compared to the approach of Mun et al., HASMET induces smaller latency for

all the modalities. This is due to the approach of Mun et al. relying on features

extracted over windows with longer duration. Compared to the approach of Reddy et

al. HASMET induces lower latency for all the other modalities, except for tram, for

which HASMET has an under�ll rate of 11.2% and Reddy et al. have an under�ll

rate of 8.8%. Together with the higher under�ll rate for stationarity and higher

fragmentation rate in detecting motorised modalities, the results suggest that the

reliance on the speed given by the GPS causes errors during stationary periods

in motorised transportation. HASMET overcomes this problem through improved

feature design and by approximating speed with alternative sensors that, unlike the

GPS sensor, are able to operate reliably also when obstructed.

5.3 Detection Generalizability

In a continuous sensing system, where the system is running in the background of

a mobile phone for extended periods of time, user convenience and freedom from

arti�cial restrictions are of central importance. To ensure that our system pro-

vides cross-user compatibility and is not sensitive to varying phone placement or

orientation, we have conducted two sets of separate experiments: cross-user, and

cross-placement evaluations. The cross-user evaluation was conducted by perform-
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Precision Recall F-Score

Mun Reddy HMT Mun Reddy HMT Mun Reddy HMT

Still 57.5 85.9 73.3 38.9 81.1 91.1 45.8 83.3 81.1

Walk 43.0 96.9 97.8 55.7 98.5 98.9 48.2 97.7 98.3

Bus 33.6 75.9 77.5 31.3 53.7 82.1 31.8 62.7 78.6

Train 59.8 41.0 80.1 58.7 11.4 67.8 57.2 16.8 72.5

Metro 49.6 43.0 68.9 53.0 54.4 62.8 50.1 46.9 65.7

Tram 42.3 56.5 71.1 50.0 78.6 52.2 45.4 65.4 60.1

Mean 47.6 66.5 78.1 48.0 62.9 72.5 46.4 62.1 76.1

Table 9: Results from the cross-user experiments, along with comparison to the

baseline systems. The presented values are the mean values over all the six cross-

user tests.

ing a series of leave-one-out cross validation tests (six in total), i.e., by training

the classi�er with the data from all users, excluding one, and testing the classi�er

with the data from the user not present in the training set. The mean precision,

recall and F-score of the di�erent transportation modalities, along with the base-

lines, are presented in the Table 9. From the results, we observe a small decrease,

ranging from two to �ve percent, in accuracies for both HASMET and the approach

of Reddy et al. As this decrease is not present in the results of the approach of Mun

et al., which has in fact improved around 5%, we assume that the decrease origi-

nates from the accelerometer features, only present in HASMET and the approach

of Reddy et al. This is in accordance with the notion that the kinematic features are

more susceptible to user variations than those that measure changes in the user's

environment [LCB06]. Overall, we conclude that the classi�ers' accuracies su�er

only a subtle decrease in cross-user evaluations and that all three evaluated systems

generalize well over a variety of users.

The cross-placement evaluation was conducted similarly, i.e., by training the classi-

�er with data from two of the three placements, and testing the classi�er with data

from the left-out placement. The procedure was repeated for all three possible com-

binations of placements. The results of this evaluation are presented in Table 10.

The results are similar to those of the cross-user evaluation, with a small decrease in

accuracies, particularly for the motorised modalities. Overall, the accuracies remain

on a comparative level to those of the previous evaluations, and we conclude that

all evaluated systems also generalize over varying phone placements.
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Precision Recall F-Score

Mun Reddy HMT Mun Reddy HMT Mun Reddy HMT

Still 58.6 85.8 74.2 39.8 82.6 91.7 46.8 84.1 82.0

Walk 43.8 96.8 97.8 54.2 98.8 98.9 48.2 97.8 98.4

Bus 34.7 76.7 74.9 29.2 51.1 78.7 30.1 60.0 76.1

Train 51.3 53.1 78.6 66.4 9.2 68.1 54.8 15.4 70.7

Metro 50.1 42.0 46.3 50.1 49.8 53.7 50.4 42.9 49.7

Tram 43.0 54.4 70.7 51.2 75.5 58.3 47.0 62.7 63.2

Mean 46.9 68.1 73.8 48.7 61.2 74.9 46.1 60.5 73.4

Table 10: Classi�cation accuracy results from the cross-placement experiments,

along with comparison to the baseline systems. The presented values are the mean

values over all three cross-placement tests.

Note that both of the previous evaluations were performed solely with the data

collected from the scenario, where no driving sections were present. To verify that

detecting driving also generalizes over di�erent users, we have conducted an addi-

tional experiment using the data from the everyday data collection. The classi�er

was trained using data from one user and tested with data from another user. The

achieved precision and recall are 92.4% and 90.9% respectively, which indicates

cross-user generalization for this modality as well. Evaluating the cross-placement

generalization for the driving modality is omitted from this study, as we currently

have only limited amounts of data from di�erent placements for this modality. This

is due to that the users typically remove the phone from their pocket before driving,

or in case that the phone was held in a jacket pocket, remove their jacket before

driving.

5.4 Power Consumption

While operating on a user's mobile phone, it is of signi�cant importance to keep

the application's resource demands at minimum. While the computational power

and the available memory of mobile phones has witnessed a rapid increase, the most

limiting resource today is the phone's battery energy. As such, our aim is to provide

accurate and continuous transportation behavior monitoring, while simultaneously

minimizing the detection's impact on the operational time of the phone. In order

to evaluate the system's energy e�ciency, we utilize the empirical power models de-



47

Figure 13: Average power consumption of the di�erent approaches in mW.

scribed in Section 3.2 for estimating the average power consumption of the di�erent

approaches.

In our energy-e�ciency evaluation, we consider four di�erent systems: HASMET,

HASMETG, the approach of Reddy et al. and the approach of Mun et al. The

results, along with the decomposition of the di�erent sensors, are presented in Fig-

ure 13. Note that we have omitted the power consumption of two aspects of the

transportation monitoring: the energy cost associated with polling the GSM cell

information, and the power consumption resulting from the CPU load. The former

was omitted due to that the phone is already continuously polling this information

and we merely read the values as they are received. The latter was omitted due to

the relatively light CPU load of the detection, and due to the CPU loads negligible

energy footprint compared to the energy consumed by the sensors.

The dataset, detailed in Section 3.1, used for testing consists of 13 hours of vari-

ous transportation modalities. The results demonstrate that HASMET consumes

roughly 3, 935 J over our test set, i.e., it has an average power consumption of 84

mW. Compared to the approach of Reddy et al., which consumes in total 6, 394 J

and on average 136 mW, our approach reduces the power consumption by approxi-

mately 40%. The alternative design, HASMETG, increases the power consumption

compared to approach of Reddy et al. by approximately 20%, having a total con-
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sumption of 8, 177 J, which corresponds to a 174 mW average power consumption.

The approach of Mun et al. uses only Wi-Fi and GSM and as such it has the lowest

power consumption at average of 80 mW. This small, approximately 5%, reduc-

tion in power consumption, however, is quite modest compared to the signi�cant

accuracy trade-o� evident from the previous evaluations.

With the decomposition of the classi�cation task, the power consumption of the

transportation behavior monitoring varies depending on the classi�er part used.

At the root of the hierarchical classi�cation we use the kinematic classi�er, which

relies purely on the accelerometer, resulting in an average power consumption of

21 mW. The pedestrian classi�cation is similarly executed by only employing the

accelerometer, resulting in the same average power consumption of 21 mW. For

the stationary and the motorised classi�ers, we additionally require GSM and Wi-Fi

sensors, which increases the power consumption up to 101 mW. The GPS augmented

version of these two classi�ers, used only by the HASMETG, results in the highest

power consumption of 206 mW. Note that the values referred above re�ect the

speci�c scanning frequencies used in this study; see Section 3.3. Further energy

e�ciency is achievable by investigating the relation between sampling frequency

and classi�cation accuracy, an aspect of our future work.
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6 Summary and Conclusions

In this thesis, we have presented HASMET, a hierarchical system designed for

energy-e�cient transportation behavior monitoring on mobile phones. The key idea

of the system is to decompose the monitoring task into smaller subtasks and only

employ the necessary sensors for each subtask. Our hierarchical approach, along

with intelligent feature design and an e�ective hybrid AdaBoost+HMM classi�ca-

tion scheme, enables detection of �ne-grained transportation modalities without the

power consuming GPS sensor, relying instead on less power consuming sensors, i.e.,

accelerometer, GSM and Wi-Fi. The transportation modalities HASMET is able to

detect cover all the relevant locomotion types present at the target area (Helsinki),

including the detection of the di�erent motorised transportation modalities, i.e., bus,

train, metro, tram and car. Experiments conducted with a total of 33 hours of data,

collected from seven users and three phone placements, demonstrate that compared

to the state-of-art, HASMET achieves signi�cant improvements in energy-e�ciency,

while also improves the detection accuracy and robustness.

In terms of future work, we have already integrated a mobile version of the HASMET

as a part of a persuasive mobile application that encourages ecological transportation

behavior. A long-term �eld study will be carried out within this research, o�ering

insights into the system's performance. This will also give us an opportunity to

investigate how the detection errors of transportation behavior monitoring a�ect

the user experience. The long-term study should also provide us with more data

from running and biking modalities, o�ering a possibility to conduct a thorough

evaluation of the pedestrian classi�er.

The biggest challenges with the current system relate to distinguishing between

di�erent public transportation modalities. One promising approach is to improve

the motorised classi�ers' performance by extracting more information from the

accelerometer. By further developing our gravity estimation algorithm, possibly

along with the magnetometer to estimate the exact phone orientation, we can con-

struct more accurate acceleration pro�les for the di�erent (motorised) transportation

modalities. Features that could be derived from this approach include the intensity

and temporal distribution of the acceleration periods of motorised vehicles, usable

in distinguishing between public transportation vehicles; see Figure 14 for an il-

lustration. The data presented in the �gure is the gravity eliminated horizontal

acceleration, recorded using a mobile phone embedded accelerometer. Note that the

�gure represents the current state of our algorithm development, and we expect to
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Figure 14: Gravity eliminated horizontal projection of the acceleration for di�erent

motorised modalities.

achieve more accurate acceleration pro�les with further progress. In addition to the

accelerometer, we will also continue exploring the possible uses of the other sensors

present on the modern mobile phones. As many of the public transportation vehicles

have distinguishing audio space, we will investigate the possible use of audio features

extracted from the phone's microphone. Additionally, we will experiment with the

light and proximity sensors in order to detect periods of user interaction, which are

a signi�cant source of detection errors in transportation behavior monitoring.

While HASMET already provides substantial reduction in power consumption, the

reported reduction is mainly due to using sensors with lower energy consumption.

Further advances in energy e�ciency can be easily achieved by reducing the scan-

ning frequency of the Wi-Fi sensor and by implementing duty cycling on the ac-

celerometer, especially during periods of stationarity. In terms of the Wi-Fi sen-

sor, extensive work exists for estimating the stability of the wireless signal environ-

ment [KKES10,KWRT12]. When a stable environment is observed, i.e., when the

user is staying within a place, the Wi-Fi sensor can be switched o� until notable kine-

matic movement is detected from the accelerometer [KKES10] or the primary GSM

cell changes [RMB+10]. As humans tend to spend most of their time within a lim-

ited set of locations, with only occasional transition between these places [GHB08],

signi�cant reductions in power consumption could be achieved by minimizing the

power consumption of the stationary classi�er. Additional bene�t from this line of

strategy is that we could simultaneously monitor the user's signi�cant places. In

terms of accelerometer duty cycling, the accuracy of the gravity estimates is likely
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to decrease as the sampling rate is decreased. As a part of our future work we plan

to explore the robustness of these estimates when the accelerometer is duty cycled.



52

References

AY09 Atallah, L. and Yang, G.-Z., The use of pervasive sensing for behaviour

pro�ling � a survey. Pervasive and Mobile Computing, 5,5(2009), pages

447�464.

BCMS01 Benini, L., Castelli, G., Macii, A. and Scarsi, R., Battery-driven

dynamic power management. IEEE Design & Test of Computers,

18,2(2001), pages 53�60.

BDJN11 Bardram, J. E., Doryab, A., Jensen, R. M. and Nielsen, K. L., Phase

recognition during surgical procedures using embedded and body-worn

sensors. International Conference on Pervasive Computing and Com-

munications (PerCom), (2011), pages 45�53.

BI04 Bao, L. and Intille, S. S., Activity recognition from user-annotated ac-

celeration data. Proceedings of the 2nd International Conference on

Pervasive Computing (PERVASIVE), Ferscha, A. and Mattern, F., ed-

itors, volume 3001 of Lecture Notes in Computer Science. Springer-

Verlag, 2004, pages 1�17.

CAH08 Chen, C., Anton, S. and Helal, A., A brief survey of physical activity

monitoring devices. Tech report mpcl-08-09, University of Florida, 2008.

CBC+08 Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B.,

Hemingway, B., Hightower, J., Klasnja, P. P., Koscher, K., LaMarca,

A., Landay, J. A., LeGrand, L., Lester, J., Rahimi, A., Rea, A. and

Wyatt, D., The mobile sensing platform: An embedded activity recog-

nition system. IEEE Pervasive Computing, 7,2(2008), pages 32�41.

CKM+08 Consolvo, S., Klasnja, P., McDonald, D. W., Avrahami, D., Froehlich,

J., LeGrand, L., Libby, R., Mosher, K. and Landay, J. A., Flowers

or a robot army?: encouraging awareness & activity with personal,

mobile displays. Proceedings of the 10th International Conference on

Ubiquitous Computing (Ubicomp). ACM, 2008, pages 54�63.

CMT+08 Consolvo, S., McDonald, D. W., Toscos, T., Chen, M. Y., Froehlich,

J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R.,

Smith, I. and Landay, J. A., Activity sensing in the wild: a �eld trial of

ubi�t garden. CHI '08: Proceeding of the twenty-sixth annual SIGCHI



53

conference on Human factors in computing systems, New York, NY,

USA, 2008, ACM, pages 1797�1806.

CRTL04 Chan, C., Ryan, D. A. and Tudor-Locke, C., Health bene�ts of a

pedometer-based physical activity intervention in sedentary workers.

Preventive Medicine, 39(6)(2004), pages 1215�1222.

Die00 Dietterich, T. G., An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and ran-

domization. Machine Learning, 40(2)(2000), pages 139�157.

FDFC10 Figo, D., Diniz, P., Ferreira, D. and Cardoso, J., Preprocessing tech-

niques for context recognition from accelerometer data. Personal and

Ubiquitous Computing, 14-7(2010), pages 645�662.

FDK+09 Froehlich, J., Dillahunt, T., Klasnja, P., Manko�, J., Consolvo, S.,

Harrison, B. and Landay, J. A., Ubigreen: investigating a mobile tool

for tracking and supporting green transportation habits. Proceedings

of the 27th International Conference on Human Factors in Computing

Systems (CHI). ACM, 2009, pages 1043�1052.

FHT00 Friedman, J., Hastie, T. and Tibshirani, R., Additive logistic regression:

A statistical view of boosting. The Annals of Statistics, 28,2(2000),

pages 337 � 407.

FMT+99 Farringdon, J., Moore, A., Tilbury, N., Church, J. and Biemond, P.,

Wearable sensor badge and sensor jacket for context awareness. Pro-

ceedings of the 3rd International Symposium on Wearable Computers

(ISWC). IEEE, 1999, pages 107 �113.

FS95 Freund, Y. and Schapire, R. E., A decision-theoretic generalization of

on-line learning and an application to boosting. Proceedings of the

Second European Conference on Computational Learning Theory, 1995,

pages 119�139.

FS99a Flinn, J. and Satyanarayanan, M., Energy-aware adaptation for mo-

bile applications. Proceedings of the seventeenth ACM Symposium on

Operating Systems Principles (SOSP). ACM, 1999, pages 48�63.



54

FS99b Freund, Y. and Schapire, R. E., A short introduction to boosting. Jour-

nal of Japanese Society for Arti�cial Intelligence, 14(5)(1999), pages

771�780.

FS04 Flinn, J. and Satyanarayanan, M., Managing battery lifetime with

energy-aware adaptation. ACM Transactions on Computer Systems,

22,2(2004), pages 137�179.

GCMB12 Gordon, D., Czerny, J., Miyaki, T. and Beigl, M., Energy-e�cient activ-

ity recognition using prediction. Proceedings of the Sixteenth Interna-

tional Symposium on Wearable Computers (ISWC 2012), (2012), pages

29�36.

GHB08 González, M. C., Hidalgo, C. A. and Barabási, A.-L., Understanding

individual human mobility patterns. Nature, 453(2008), pages 779�782.

ICG05 Ichikawa, F., Chipchase, J. and Grignani, R., Where's the phone? a

study of mobile phone location in public spaces. Proceedings of the

2nd International Conference on Mobile Technology, Applications and

Systems. IEEE, 2005, pages 1 � 8.

JH98 Jaakkola, T. and Haussler, D., Exploiting generative models in discrim-

inative classi�ers. Advances in Neural Information Processing Systems

11 - NIPS Conference, (1998), pages 487�493.

KBBN11 Kjærgaard, M. B., Bhattacharya, S., Blunck, H. and Nurmi, P., Energy-

e�cient trajectory tracking for mobile devices. Proceedings of the 9th

International Conference on Mobile Systems, Applications and Services

(MobiSys), 2011, pages 307�320.

KH04 Krumm, J. and Horvitz, E., LOCADIO: Inferring motion and location

from Wi-Fi signal strengths. Proceedings of the 1st International Con-

ference on Mobile and Ubiquitous Systems (Mobiquitous). IEEE, 2004,

pages 4 � 14.

KK98 Kravets, R. and Krishnan, P., Power management techniques for mo-

bile communication. Proceedings of the 4th annual ACM/IEEE In-

ternational Conference on Mobile Computing and Networking (Mobi-

Com'98). ACM, 1998, pages 157�168.



55

KKES10 Kim, D. H., Kim, Y., Estrin, D. and Srivastava, M. B., Sensloc: sensing

everyday places and paths using less energy. Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems (SenSys). ACM,

2010, pages 43�56.

KLGT09 Kjærgaard, M. B., Langdal, J., Godsk, T. and Toftkjær, T., EnTracked:

energy-e�cient robust position tracking for mobile devices. Proceedings

of the 7th International Conference on Mobile Systems, Applications,

and Services (MobiSys'09), 2009, pages 221�234.

KM08 Kjærgaard, M. B. and Munk, C. V., Hyperbolic location �ngerprinting:

A calibration-free solution for handling di�erences in signal strength.

Proceedings of the 6th Annual IEEE International Conference on Perva-

sive Computing and Communications (PerCom), 2008, pages 110�116.

KMS+08 Könönen, V., Mäntyjärvi, J., Similä, H., Pärkkä, J. and Ermes, M.,

A computationally light classi�cation method for mobile wellness plat-

forms. Proceedings of the 30th Annual International Conference of the

IEEE Engineering in Medicine & Biology Society, (2008), pages 1167�

1170.

KSS03 Kern, N., Schiele, B. and Schmidt, A., Multi-sensor activity context

detection for wearable computing. Proceedings of the 1st European

Symposium on Ambient Intelligence (EUSAI), Aarts, E. H. L., Col-

lier, R., Van Loenen, E. and Boris de Ruyter, E. R., editors, volume

2875. Springer, 2003, pages 220�232.

KWRT12 Kjærgaard, M. B., Wirz, M., Rogger, D. and Tröster, G., Mobile sensing

of pedestrian �ocks in indoor environments using wi� signals. Proceed-

ings of the IEEE Pervasive Computing and Communication Conference

(PerCom), 2012, pages 95�102.

LAA+09 Lazer, D., Adamic, A. P. L., Aral, S., Barabási, A.-L., Brewer, D.,

Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T.,

King, G., Macy, M., 2, D. R. and Alstyne, M. V., Computational social

science. Science, 323,5915(2009), pages 721�723.

LCB06 Lester, J., Choudhury, T. and Borriello, G., A practical approach to rec-

ognizing physical activities. Proceedings of the 4th International Confer-

ence on Pervasive Computing (PERVASIVE), volume 3968 of Lecture



56

Notes in Computer Science LNCS. Springer - Verlag, 2006, pages 1 �

16.

LCK+05 Lester, J., Choudhury, T., Kern, N., Borriello, G. and Hannaford, B.,

A hybrid discriminative/generative approach for modeling human ac-

tivities. In Proc. of the International Joint Conference on Arti�cial

Intelligence (IJCAI, 2005, pages 766�772.

LKD+10 Lau, S. L., Köning, I., David, K., Parandian, B., Carius-Dussel, C.

and Schultz, M., Supporting patient monitoring using activity recog-

nition with a smartphone. 7th International Symposium on Wireless

Communication Systems (ISWCS, (2010), pages 810�814.

LKLZ10 Lin, K., Kansal, A., Lymberopoulos, D. and Zhao, F., Energy-accuracy

trade-o� for continuous mobile device location. Proceedings of the 8th

International Conference on Mobile Systems, Applications, and Ser-

vices, (2010), pages 285�198.

LML+10 Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T. and Camp-

bell, A. T., A survey of mobile phone sensing. IEEE Communications

Magazine, 48,9(2010), pages 140 �150.

LWJ+04 Lukowicz, P., Ward, J. A., Junker, H., Stäger, M., Tröster, G., Atrash,

A. and Starner, T., Recognizing workshop activity using body worn mi-

crophones and accelerometers. Proceedings of 2nd International Con-

frence on Pervasive Computing (PERVASIVE), Ferscha, A. and Mat-

tern, F., editors, volume 3001 of Lecture Notes in Computer Science.

Springer, 2004, pages 18�32.

LXL+11 Lane, N. D., Xu, Y., Lu, H., Hu, S., Choudhury, T., Campbell, A. T.

and Zhao, F., Enabling large-scale human activity inference on smart-

phones using community similarity networks (csn). Proceedings of the

13th International Conference on Ubiquitous Computing (Ubicomp),

2011, pages 355�364.

LYL+10 Lu, H., Yang, J., Liu, Z., Lane, N. D., Choudhury, T. and Campell,

A., The jigsaw continuous sensing engine for mobile phone applications.

Proceedings of the 8th ACM Conference on Embedded Networked Sensor

Systems, 2010, pages 71�84.



57

MEBH08 Mun, M., Estrin, D., Burke, J. and Hansen, M., Parsimonious mobility

classi�cation using gsm and wi� traces. Proceedings of the 5th Inter-

national Conference on Embedded Networked Sensor Systems (SenSys),

2008, pages 1�5.

Miz05 Mizell, D., Using gravity to estimate accelerometer orientation. Proc.

Seventh IEEE International Symposium on Wearable Computers, 18�21

Oct. 2005, pages 252�253.

MLMH07 Muthukrishnan, K., Lijding, M., Meratnia, N. and Havinga, P., Sensing

Motion Using Spectral and Spatial Analysis of WLAN RSSI. Proceed-

ingds of the 2nd European Conference on Smart Sensing and Context

(EuroSSC). Springer, 2007, pages 62�76,.

MPF+10 Musolesi, M., Piraccini, M., Fodor, K., Corradi, A. and Campbell,

A. T., Supporting energy-e�cient uploading strategies for continuous

sensing applications on mobile phones. Proceedings of the International

Conference on Pervasive Computing (Pervasive), 2010, pages 355�372.

NBK10 Nurmi, P., Bhattacharya, S. and Kukkonen, J., A grid-based algorithm

for on-device GSM positioning. Proceedings of the 12th International

Conference on Ubiquitous Computing (UbiComp), 2010, pages 227�236.

NJ02 Ng, A. and Jordan, M., On discrimative vs. generative classi�ers: A

comparison of logistic regression and naive bayes. Advances in Neural

Information Processing Systems, 14(2002), pages 609�616.

PMI08 Papliatseyeu, A. and Mayora-Ibarra, O., Mobile habits: Inferring and

predicting user activities with a location-aware smartphone. Interna-

tional Symposium on Ubiquitous Computing and Ambient Intelligence,

(2008), pages 343�352.

PS01 Pillai, P. and Shin, K. G., Real-time dynamic voltage scaling for low-

power embedded operating systems. SIGOPS Operating Systems Re-

view, 35,5(2001), pages 89�102.

Qui86 Quinlan, J. R., Induction of decision trees. Machine Learning,

1(1)(1986), pages 81�106.

Qui93 Quinlan, J. R., C4.5: Programs for Machine Learning. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1993.



58

Rab89 Rabiner, L. R., A tutorial on hidden markov models and selected ap-

plications in speech recognition. Proceedings of the IEEE, 77(2)(1989),

pages 257�286.

RDML05 Ravi, N., Dandekar, N., Mysore, P. and Littman, M. L., Activity recog-

nition from accelerometer data. Proceedings of the 17th Innovative Ap-

plications of Arti�cial Intelligence Conference (IAAI), Veloso, M. M.

and Kambhampati, S., editors. AAAI Press, 2005, pages 1541�1546.

RH97 Rubinstein, Y. D. and Hastie, T., Discriminative vs. informative learn-

ing. Proceedings of the Third International Conference on Knowledge

Discovery and Data Mining, AAAI Press, 1997, pages 49�53.

RMB+10 Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M. and Srivastava,

M., Using mobile phones to determine transportation modes. ACM

Transactions on Sensor Networks, 6,2(2010), pages 13:1�13:27.

RSHI08 Ravi, N., Scott, J., Han, L. and Ifode, L., Context-aware battery man-

agement for mobile phones. IEEE International Conference on Perva-

sive Computing and Communications (PerCom), 2008, pages 224�233.

SC10 Shafer, I. and Chang, M., Movement detection for power-e�cient smart-

phone wlan localization. Proceedings of the 13th ACM International

Conference on Modeling, Analysis, and Simulation of Wireless and Mo-

bile Systems (MSWIM), 2010, pages 81�90.

SCB04 Schneider, P. L., Crouter, S. E. and Bassett, D. R., Pedometer measures

of free-living physical activity: comparison of 13 models. Medicine and

Science in Sports and Exercise, 36(2)(2004), pages 331�335.

SL91 Safavian, S. R. and Landgrebe, D., A survey of decision tree clas-

si�er methodology. Transactions on Systems, Man and Cybernetics,

21(3)(1991), pages 660�674.

SQBB10 Song, C., Qu, Z., Blumm, N. and Barabási, A.-L., Limits of predictabil-

ity in human mobility. Science, 19,5968(2010), pages 1018�1021.

SVL+06 Sohn, T., Varshavsky, A., LaMarca, A., Chen, M. Y., Choudhury, T.,

Smith, I., Consolvo, S., Hightower, J., Griswold, W. G. and de Lara, E.,

Mobility detection using everyday GSM traces. Proceedings of the 8th



59

International Conference on Ubiquitous Computing (Ubicomp), 2006,

pages 212�224.

TIL02 Tapia, E. M., Intille, S. S. and Larson, K., Activity recognition in the

home using simple and ubiquitous sensors. Proceedings of the 2nd Inter-

national Conference on Pervasive Computing (PERVASIVE), Ferscha,

A. and Mattern, F., editors, volume 3001 of Lecture Notes in Computer

Science. Springer-Verlag, 2002, pages 158�175.

TLBJ04 Tudor-Locke, C. and Bassett Jr, D. R., How many steps/day are

enough?: Preliminary pedometer indices for public health. Sports

Medicine, 34(1)(2004), pages 1�8.

UBC97 Utgo�, P. E., Berkman, N. C. and Clouse, J. A., Decision tree induction

based on e�cient tree restructuring. Machine Learning, 29(1)(1997),

pages 5�44.

WCM10 Wang, S., Chen, C. and Ma, J., Accelerometer based transportation

mode recognition on mobile phones. Asia-Paci�c Conference on Wear-

able Computing Systems, (2010), pages 44�46.

WLA+09 Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krish-

namachari, B. and Sadeh, N., A framework of energy e�cient mobile

sensing for automatic user state recognition. Proceedings of the 7th In-

ternational Conference on Mobile systems, Applications, and Services

(MobiSys'09), 2009, pages 179�192.

WLG11 Ward, J. A., Lukowicz, P. and Gellersen, H. W., Performance metrics

for activity recognition. ACM Transactions on Intelligent Systems and

Technology (TIST), 2,1(2011), pages 6:1�6:23.

WLT06 Ward, J., Lukowicz, P. and Tröster, G., Evaluating performance in

continuous context recognition using event-driven error characteriza-

tion. Proceedings of the 2nd International Workshop on Location- and

Context-Awareness (LoCA). Springer, 2006, pages 239�255.

WPP+07 Wang, S., Pentney, W., Popescu, A.-M., Choudhury, T. and Philipose,

M., Common sense based joint training of human activity recognizers.

Proceedings of the 20th International Joint Conference on Arti�cial In-

telligence (IJCAI), Veloso, M. M., editor, 2007, pages 2237�2242.



60

YAADH00 Yarlagadda, R., Ali, I., Al-Dhahir, N. and Hershey, J., GPS GDOP

metric. IEE Proceedings-Radar, Sonar Navigation, volume 147, 2000,

pages 259�264. Issue 5.

YSC+12 Yan, Z., Subbaraju, V., Chakrabarti, D., Misra, A. and K., A., Energy-

e�cient continuous activity recognition on mobile phones: An activity-

adaptive approach. International Symposium on Wearable Computers

(ISWC), (2012), pages 17�24.

ZLC+08 Zheng, Y., Li, Q., Chen, Y., Xie, X. and Ma, W.-Y., Understanding

mobility based on gps data. Proceedings of the 10th International Con-

ference on Ubiquitous Computing (Ubicomp), 2008, pages 312�321.

ZLYX11 Zheng, Y., Liu, Y., Yuan, J. and Xie, X., Urban computing with taxi-

cabs. Proceedings of the 13th International Conference on Ubiquitous

Computing (Ubicomp). ACM, 2011, pages 89�98.


