
Developer Experience: Concept and Definition

Fabian Fagerholm, Jürgen Münch
Department of Computer Science, University of Helsinki
P.O. Box 68, FI-00014 University of Helsinki, Finland

fabian.fagerholm@helsinki.fi

Abstract—New ways of working such as globally distributed
development or the integration of self-motivated external devel-
opers into software ecosystems will require a better and more
comprehensive understanding of developers’ feelings, percep-
tions, motivations and identification with their tasks in their
respective project environments. User experience is a concept
that captures how persons feel about products, systems and
services. It evolved from disciplines such as interaction design
and usability to a much richer scope that includes feelings,
motivations, and satisfaction. Similarly, developer experience
could be defined as a means for capturing how developers
think and feel about their activities within their working
environments, with the assumption that an improvement of
the developer experience has positive impacts on characteristics
such as sustained team and project performance. This article
motivates the importance of developer experience, sketches
related approaches from other domains, proposes a definition
of developer experience that is derived from similar concepts in
other domains, describes an ongoing empirical study to better
understand developer experience, and finally gives an outlook
on planned future research activities.

Keywords-Developer experience; software development en-
vironment; high-performing teams; human factors; software
psychology

I. INTRODUCTION

Software development is an inherently human-based, in-
tellectual activity [1]. Many studies show that human factors
are the most important factors for software development in
many different development environments, both in terms of
performance [2], [3] and quality [4], [5], [6], [7]. The studies
clearly indicate the strong reliance of software project suc-
cess on humans, while tools and methods only amplify the
productivity of highly skilled and well-coordinated develop-
ment teams. DeMarco notes that “companies that sensibly
manage their investment in people will prosper in the long
run” [8].

The increase of global software development (GSD) im-
plies that an increasing number of software developers and
software development teams are doing distributed software
development [9], [10], [11]. In consequence, there is a
strong indication that human factors are getting even more
important and need to be better understood. New aspects
such as communication across cultural, geographical, and
temporal distances require significant attention. Software
development environments are complex social systems, and
flaws in communication and coordination will lead to failure

of the development effort [12]. Research on GSD has shown
that lack of trust, difficulties in communication, and lack
of identification with project goals negatively impact the
success of projects [11], [13], [14]. These difficulties exist
already in a single multi-site company distributed geograph-
ically, and become more pronounced when development is
also distributed over a network of collaborating organiza-
tions. The importance of complex factors such as trust,
communication, and identification with goals is becoming
more visible.

Taking a closer look at human factors in software de-
velopment reveals, for instance, that a multitude of fac-
tors influence developer productivity (Nelson-Jones law).
Summarizing research on productivity factors, Endres et al.
come up with the conclusion that the number of factors
ranges in the hundreds or thousands [1]. In addition, as
DeMarco and Lister point out, there are hundreds of ways to
influence productivity, and most of them are non-technical
[3]. Overemphasis on productivity is the best way to lose it
[1].

One idea that is proposed in this article is the definition
of developer experience (DEx). This concept is intended to
a) abstract from the huge variety and quantity of human
characteristics and factors without ignoring either, and b) to
be sufficiently intuitive and concrete for practitioners. The
main purposes the authors aim at with the concept of devel-
oper experience are to help practitioners to better understand,
analyze, design and improve project environments with
respect to developers’ perceptions and feelings. The idea was
influenced by the “user experience” concept (UX), a similar
concept that aggregates relevant aspects, is intuitive, and
helps organizations to analyze, design or improve products
or services. This article describes developer experience as
a concept that captures how developers think and feel
about their activities within their working environments,
with the assumption that an improvement of the developer
experience has a positive impact on software development
project outcomes. Section II sketches related approaches
from other domains. Section III proposes a definition of
developer experience, and Section IV describes current and
planned future activities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14926209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
fabian.fagerholm@helsinki.fi


II. RELATED APPROACHES

Several research approaches exist that address “experi-
ence” or similar concepts. In general, “experience” refers to
both immediately perceived events as well as the memories
of events and the knowledge gained by interpreting and
reflecting on remembered events. Human experience is nec-
essarily subjective: as our ability to process data is limited,
we maintain an individual mental state of reality, which we
use to interpret new data. Several types of experience exists:
among the most relevant with respect to developer experi-
ence are the concepts of “user experience”, “customer expe-
rience”, and “brand experience”. Other research approaches
aim at better understanding, capturing, and modeling human
factors in (software) projects, for instance, models for high-
performing teams or simulation approaches. Finally, some
approaches focus on creating “experience”. In the following,
these approaches are shortly sketched.

User Experience (UX) covers “a person’s perceptions and
responses that result from the use or anticipated use of a
product, system, or service” [15]. This includes perceived
product properties such as value, desirability, and useful-
ness. UX distinguishes between the verb experiencing – an
individual’s stream of perceptions, interpretations of those
perceptions, and resulting emotions during an encounter with
a system – and the noun an experience – an encounter with
a system that has a beginning and an end [16], [17]. UX
also recognizes co-experience, shared experience, or group
experience, where the experience is socially constructed
by several people. The definition of UX is still evolving
and various aspects are being differentiated. However, the
UX concept is sufficiently clear to draw parallels to the
experience of software developers.

Customer experience occurs over time when a customer
interacts with a supplier of goods or services [18]. It
can also be used to mean an individual experience over
one transaction: the customer experience concept includes
both the cumulative experience and episodic experiences. It
includes the experience of both a product or service, and
the process during which the customer interacts with the
supplier.

Brand experience. In marketing, a brand is a “name,
term, design, symbol, or any other feature that identi-
fies one seller’s good or service as distinct from those
of other sellers” [19]. Brand experience is conceptualized
as subjective, internal consumer responses and behavioral
responses evoked by brand-related stimuli that are part of
the brand’s design and identity, packaging, communications,
and environments [20]. In creating brand experience, the
goal is to develop or align the expectations behind the
brand experience to create an impression that the brand has
qualities and characteristics that make it unique or special.
A brand is therefore one of the most valuable elements in
an advertising theme.

Models for high-performing teams. The relationship be-
tween team performance and project success is unclear and
can be understood in different ways [21], [22]. Individual
performance is moderated by several factors, and team
performance is a function of individual performance, group
dynamics, and context factors. Psychophysical and -social
needs influencing individual performance can be roughly
divided into motivator and hygiene factors [23]. Motivator
factors are related to the work itself and can increase
performance, while hygiene factors are unrelated to the work
itself and can result in dissatisfaction if they are missing (e.g.
salary).

A broad division of factors influencing individual perfor-
mance is individual characteristics (e.g. need for variety),
internal controls (e.g. personality), and external moderators
(e.g. career stage) [24]. More specifically, several groups of
factors have been observed to affect performance: i) task
characteristics, such as problem solving [24], technical
challenge [24], [25], [26], and the nature of the job itself
[27], [28]; ii) characteristics related to self-development
and outside visibility of work, such as opportunities for
advancement and growth, working to benefit others [24],
recognition, opportunities for achievement [25], [26], in-
creased responsibility [29], and senior management support
[30], [31], [25], [26]; and iii) material and safety factors,
such as salary, benefits, and job security [25], [26].

Theory on high-performing teams suggests that high
morale, clear purposes through an open atmosphere, com-
munication and honest feedback within the team are key
factors [32]. Other important team-level performance factors
are high technical competence, fully documenting work, and
sharing knowledge with the team [26], interdependencies
between team members, team synergy, and the ability to
share a common vision for the software to be developed
[33]. High-performing teams are reportedly proud of their
high technical competence and confidence, and the flexible
and adaptable attitudes of the members [26]. They value the
ability to communicate, listen, give relevant feedback, see
the “big picture”, and be a good team worker, but dislike
hiding problems and work. Trust is key to the cohesive team
[14]. Diverse knowledge positively affects team performance
while diversity in personal values may affect it negatively
[34].

Simulation modeling abstracts some particular process in
software development, maintenance, or evolution [35]. Soft-
ware process simulation models mainly capture the dynam-
ics of software development and can be used, for instance,
to aid decision-making, risk reduction, and management at
strategic, tactical, and operational levels. Simulation models
may include human factors-related variables, such as hiring
rate, staff turnover rate, capabilities, motivation, and training
provided. Many simulation models for software development
processes have been proposed. Some simulation models
for capturing human behavior exist [36]. However, most



often existing simulation models are not detailed enough
to capture human characteristics.

Several other approaches emphasize the creation of expe-
rience: Experience design, for instance, is the practice of
designing products, processes, services, events, and envi-
ronments with a focus placed on the quality of the user
experience and culturally relevant solutions, with less em-
phasis placed on increasing and improving functionality of
the design [37]. Another example, Dewey’s theory of art as
an experience, says that the entire artistic process should
be considered important, not only the physical art-object
[38]. Here, the object itself is not the fundamental goal, but
rather the development of an “experience” which recaptures
some aspect of life. Similarly, the creation of software can be
considered an experience, and methods that govern it shape
that experience.

III. DEVELOPER EXPERIENCE

This section presents a definition of developer experience
(DEx). The definition is influenced by the UX concept.
We assume that several factors influence DEx, which in
turn affects outcomes of software development projects. The
word “developer” refers here to anyone who is engaged in
the activity of developing software, and “experience” refers
here to involvement, not to being experienced, although the
two are interlinked.

UX has evolved beyond user interface design. Practi-
tioners and researchers know that it is not sufficient to
focus only on the user interface and on avoiding usage
defects, increasing robustness, and ensuring safety. The user
perspective has been shifted first to efficiency and ease of
use, then to the question of appropriate use and fitness for
purpose, and finally to considering the entire experience
of using a (software) product or service. This progression
can be thought of as a maturation process in the human-
computer interaction field. In Table I, we draw a parallel
to the developer perspective, where the end goal is not
to use but to create a product or service. Here, the basic
level is exemplified by prescriptive process models, the
efficiency level by descriptive and adaptive process models,
the appropriateness level by a detailed understanding of the
process-product relationship in a specific context, and the
final level by the entire experience of being a software
developer and carrying out software development activities.

As noted, software development is an intellectual activity,
which rests on the capabilities of the mind, requiring both
thought and motivation to carry out. In psychology, the con-
cept of mind is commonly divided into cognition (attention,
memory, producing and understanding language, problem-
solving, decision-making), affect (feeling, emotion), and
conation (impulse, desire, volition, striving). We explicitly
include in DEx not only affective aspects, but also cognitive,
conative, and social aspects of experience. Since the end
goal in the developer perspective is to create software, it is

cognition affect

conation
goals

alignment

intentionplans

commitment

motivation

platform

process

techniques

procedures

skill

respect

belonging

attachment

social
team

DEx

How do developers see the value of their c
ontrib

utio
n?

H
o
w

 d
o
 d

e
v
e
lo

p
e
rs

 p
e
rc

e
iv

e 
th

e 
de

ve
lo

pm
ent in

frastructure?
How do developers feel abou

t th
e
ir w

o
rk?

Figure 1. Developer Experience: Conceptual framework.

especially important to consider how thought and feeling is
turned into intentional action, and how group work should
be systematically organized to support this.

DEx consists of experiences relating to all kinds of
artifacts and activities that a developer may encounter as
part of their involvement in software development. These
could roughly be divided into experiences regarding i) de-
velopment infrastructure (e.g. development and management
tools, programming languages, libraries, platforms, frame-
works, processes, and methods, ii) feelings about work (e.g.
respect, attachment, belonging), and iii) the value of one’s
own contribution (e.g. alignment of one’s own goals with
those of the project, plans, intentions, and commitment).
Figure 1 shows the concept of DEx as an interaction between
cognitive, affective, and conative factors. Each dimension
of DEx consists of a multitude of complex sub-factors. The
cognitive dimension consists of factors that affect how the
developers perceive their development infrastructure on an
intellectual level. This includes concrete interactions with
development tools and execution of a software process.
Perceiving these in a positive light is likely to contribute to
better DEx. The affective dimension consists of factors that
influence how developers feel about their work. Respect and
belonging are social factors that work to create a feeling
of security. Attachment to persons, teams, or even habits
of work also belong to this dimension. Positive feelings
in general can be an important factor in good DEx. The
conative dimension consists of factors that affect how devel-
opers see the value of their contribution. Intentional, planned
activity with personal goals that are properly aligned with
the goals of others is likely to increase the sense of purpose,
motivation, and commitment, and thus positively affect DEx.



TABLE I
TRANSFER FROM USER EXPERIENCE TO DEVELOPER EXPERIENCE: FOCUS AREAS AND END GOAL

Focus User perspective Developer perspective

Positive experience + appropriate use + efficient use User Experience Developer Experience
Appropriate use, fitness for purpose + efficient use User-centered design Understanding of process-product relationship for

a specific context
Efficiency and ease of use Usability Descriptive process models, adaptive process

models
Avoid usage defects, increase robustness, safety User interface design Prescriptive process models

End goal Use product/service Create product/service

DEx may be important in several areas of software de-
velopment. For example, in software process improvement,
it could give valuable input for analyzing and adjusting
processes. In software project management, it could offer
means to evaluate plans and goals with respect to their
alignment with developers’ motivation and commitment.
For maintaining development team performance, it could
offer insight into factors that affect sustainable team work.
In designing development platforms and environments, e.g.
when a platform provider attempts to grow an ecosystem
of developers to create applications and services, DEx may
offer means to design the development experience so that
platform and ecosystem is more attractive to developers.

IV. ONGOING AND FUTURE WORK

The presented model is mainly based on literature re-
views and transferring ideas from related concepts and other
domains as well as experiences of the authors. However,
we aim at developing a sound empirically-based model for
developer experience. In order to create such a model, a
first study has been started that focuses on practitioner’s
understanding of the phenomenon “developer experience”.
The goal of this first study is to identify practitioners’
conceptions of developer feelings and development expe-
rience when working in a specific project environment. The
research question is: How do practitioners characterize a
software developer’s experience in a specific development
environment and what kind of impact factors on this ex-
perience do they consider as relevant in this respective
environment? The underlying motivation for the study is to
find common perceptions among practitioners, or at least
to analyze the degree of agreement on characteristics and
impact factors of developer experience. A second motivation
is to identify differences and variations in practitioners’
conceptualization of developer experience and to find out
how they could be explained (e.g. by different roles, different
project settings, different cultures).

The study is conducted in two contexts: The first context
is a set of close-to-industry student projects in the Software
Factory laboratory at the Department of Computer Science,
University of Helsinki. The study uses a number of data
collection and analysis methods. Basic background ques-
tionnaires are used to gain demographic data about project

participants. Video analysis is used to analyze specific
project events in detail and to gain an understanding of how
individual differences are visible in certain situations. Focus
group interviews are used to do postmortem analyses of the
projects and gain access to rich, qualitative explanations by
team members. The second study is an in-depth interview
study in five companies, in which we interviewed practi-
tioners working in different areas of software development,
software product and service design, and management. The
research method of the interview study is based on thematic
interviews to collect data, and an Affinity diagram as a sense-
making tool to analyze the data. An initial content analysis
of this data provided a rich, qualitative understanding of
DEx.

Future work focuses on a refinement or modification of the
initial model presented in this article based on the findings
of the first study. Afterwards, a concept evaluation including
a more detailed analysis of the construct validity is planned.
In the long run, we plan to select sub-areas of DEx for
more detailed studies. We plan to develop measurement
instruments for them and get a better understanding of
the impact factors in specific contexts. Finally, we plan
to perform empirical studies to examine the effect of key
characteristics of developer experience on aspects such as
project performance. In addition, complementary guidelines
and analysis tools are planned to help practitioners to design
developer experience in a way that it supports higher-level
organizational goals and business strategies.

REFERENCES

[1] A. Endres and D. Rombach, A Handbook of Software and
Systems Engineering. Empirical Observations, Laws and The-
ories, ser. The Fraunhofer IESE Series on Software Engineer-
ing. Addison Wesley, 2003.

[2] H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory ex-
perimental studies comparing online and offline programming
performance,” Commun. ACM, vol. 11, pp. 3–11, January
1968.

[3] T. DeMarco and T. Lister, “Programmer performance and
the effects of the workplace,” in Proceedings of the 8th
international conference on Software engineering, ser. ICSE
’85. Los Alamitos, CA, USA: IEEE Computer Society Press,
1985, pp. 268–272.



[4] A. Mockus, “Organizational volatility and its effects on
software defects,” in Proceedings of the eighteenth ACM SIG-
SOFT international symposium on Foundations of software
engineering, ser. FSE ’10. New York, NY, USA: ACM,
2010, pp. 117–126.

[5] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirical case
study,” in Proceedings of the 30th international conference on
Software engineering, ser. ICSE ’08. New York, NY, USA:
ACM, 2008, pp. 521–530.

[6] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu,
“Putting it all together: using socio-technical networks to pre-
dict failures,” in Proceedings of the 20th IEEE international
conference on software reliability engineering, ser. ISSRE’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 109–119.

[7] A. Trendowicz and J. Münch, “Factors influencing software
development productivity – state-of-the-art and industrial
experiences,” Advances in computers, vol. 77, pp. 185–241,
2009.

[8] T. DeMarco and T. Lister, Peopleware: Productive Projects
and Teams, 2nd ed. Dorset House, Feb. 1999.

[9] A. Mockus and J. Herbsleb, “Challenges of global software
development,” in Software Metrics Symposium, 2001. MET-
RICS 2001. Proceedings. Seventh International, 2001, pp.
182–184.

[10] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, and B. Fitzger-
ald, “Global software development challenges: A case study
on temporal, geographical and socio-cultural distance,” in
Global Software Engineering, 2006. ICGSE ’06. International
Conference on, 2006, pp. 3–11.

[11] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical
evidence in global software engineering: a systematic review,”
Empirical Software Engineering, vol. 15, pp. 91–118, 2010.

[12] T. Abdel-Hamid, “The slippery path to productivity improve-
ment,” IEEE Software, vol. 13, no. 4, pp. 43–52, 1996.

[13] H. Holmström, B. Fitzgerald, P. J. Ågerfalk, and E. O.
Conchuir, “Agile practices reduce distance in global software
development,” Information Systems Management, vol. 23,
no. 2, pp. 7–18, 2006.

[14] R. B. Hyman, “Creative chaos in high performance teams:
An experience report,” Communications of the ACM, vol. 36,
no. 10, pp. 57–60, 1993.

[15] ISO 9241-210:2010. Ergonomics of human system interaction
– Part 210: Human-centered design for interactive systems.
Switzerland: International Organization for Standardization
(ISO), 2010.

[16] E. L.-C. Law, V. Roto, M. Hassenzahl, A. P. Vermeeren,
and J. Kort, “Understanding, scoping and defining user ex-
perience: a survey approach,” in Proceedings of the 27th
international conference on Human factors in computing
systems, ser. CHI ’09. New York, NY, USA: ACM, 2009,
pp. 719–728.

[17] V. Roto, E. Law, A. Vermeeren, and J. Hoonhout, Eds., User
experience white paper: Bringing clarity to the concept of
user experience, Feb. 2011, result from Dagstuhl Seminar
on Demarcating User Experience, September 15-18, 2010.
[Online]. Available: http://www.allaboutux.org/uxwhitepaper

[18] A. Palmer, “Customer experience management: a critical
review of an emerging idea,” Journal of Services Marketing,
vol. 24, no. 3, pp. 196–208, 2010.

[19] “American marketing association dictionary,” retrieved
23.1.2012. [Online]. Available: http://www.marketingpower.
com/ layouts/Dictionary.aspx?dLetter=B

[20] J. J. Brakus, B. H. Schmitt, and L. Zarantonello, “Brand
experience: What is it? how is it measured? does it affect
loyalty?.” Journal of Marketing, vol. 73, no. 3, pp. 52–68,
2009.

[21] N. Agarwal and U. Rathod, “Defining ’success’ for software
projects: An exploratory revelation,” International Journal of
Project Management, vol. 24, no. 4, pp. 358–370, 2006.

[22] M. Freeman and P. Beale, “Measuring project success,”
Project Management Journal, vol. 23, no. 1, pp. 8–17, 1992.

[23] F. Herzberg, Work and the Nature of Man. Cleveland: World
Publishing, 1966.

[24] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Information and Software Technology, vol. 50, pp.
860–878, August 2008.

[25] N. Baddoo, T. Hall, and D. Jagielska, “Software developer
motivation in a high maturity company: A case study,”
Software Process Improvement and Practice, vol. 11, no. 3,
pp. 219–228, 2006.

[26] T. Hall, D. Jagielska, and N. Baddoo, “Motivating developer
performance to improve project outcomes in a high maturity
organization,” Software Quality Journal, vol. 15, no. 4, pp.
365–381, 2007.

[27] R. A. Mata Toledo and E. A. Unger, “Another look at mo-
tivating data processing professionals,” SIGCPR Computer-
Personnel, vol. 10, pp. 1–7, January 1985.

[28] J. D. Couger, “Motivators vs. demotivators in the is environ-
ment,” Journal of Systems Management, vol. 39, pp. 36–41,
June 1988.

[29] J. D. Couger and H. Adelsberger, “Comparing motivation of
programmers and analysts in different socio/political envi-
ronments: Austria compared to the united states,” SIGCPR
Computer-Personnel, vol. 11, pp. 13–17, September 1988.

[30] W. Mellis, “Software quality management in turbulent times
– are there alternatives to process oriented software quality
management?” Software Quality Journal, vol. 7, no. 3, pp.
277–295, 1998.

[31] M. Diaz and J. Sligo, “How software process improvement
helped Motorola,” IEEE Software, vol. 14, no. 5, pp. 75–81,
sep/oct 1997.

[32] K. Blanchard, D. Carew, and E. Parisi-Carew, “How to get
your group to perform like a team,” Training and Develop-
ment, vol. 50, no. September, pp. 34–37, 1996.

[33] E. Whitworth, “Experience report: The social nature of agile
teams,” in Proceedings of the Agile 2008 Conference. Los
Alamitos, CA, USA: IEEE Computer Society, 2008, pp. 429–
435.

[34] T.-P. Liang, C.-C. Liu, T.-M. Lin, and B. Lin, “Effect of
team diversity on software project performance,” Industrial
Management and Data Systems, vol. 107, no. 5, pp. 636–653,
2007.

[35] M. Madachy, R. Raffo, and D. Kellner, “Software process
simulation modeling: Why? what? how?” Journal of Systems
and Software, vol. 46, no. 2, pp. 91–105, 1999.

[36] H. Zhang, B. Kitchenham, and D. Pfahl, “Reflections on 10
years of software process simulation modeling: A systematic
review,” in Making Globally Distributed Software Develop-
ment a Success Story, ser. Lecture Notes in Computer Science,
Q. Wang, D. Pfahl, and D. Raffo, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5007, pp. 345–356.

[37] E. Aarts and S. Marzano, The New Everyday: Views on
Ambient Intelligence. 010 Publishers, 2003.

[38] J. Dewey, Art as Experience. New York: Perigree Trade,
1980.

http://www.allaboutux.org/uxwhitepaper
http://www.marketingpower.com/_layouts/Dictionary.aspx?dLetter=B
http://www.marketingpower.com/_layouts/Dictionary.aspx?dLetter=B

	I Introduction
	II Related Approaches
	III Developer Experience
	IV Ongoing and Future Work
	References

