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ABSTRACT
We study distributed algorithms that find a maximal match-
ing in an anonymous, edge-coloured graph. If the edges are
properly coloured with k colours, there is a trivial greedy al-
gorithm that finds a maximal matching in k− 1 synchronous
communication rounds. The present work shows that the
greedy algorithm is optimal in the general case: if A is a
deterministic distributed algorithm that finds a maximal
matching in anonymous, k-edge-coloured graphs, then there
is a worst-case input in which the running time of A is at
least k − 1 rounds.

If we focus on graphs of maximum degree ∆, it is known
that a maximal matching can be found in O(∆ + log∗ k)
rounds, and prior work implies a lower bound of Ω(polylog(∆)
+ log∗ k) rounds. Our work closes the gap between upper
and lower bounds: the complexity is Θ(∆ + log∗ k) rounds.
To our knowledge, this is the first linear-in-∆ lower bound
for the distributed complexity of a classical graph problem.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.1.3 [Computation by Abstract Devices]:
Complexity Measures and Classes; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—computations on discrete structures

Keywords
distributed algorithms, lower bounds, maximal matching

1. INTRODUCTION
In the study of deterministic distributed graph algorithms,

there are two parameters that are commonly used to describe
the computational complexity of a graph problem: n, the
number of nodes in the graph, and ∆, the maximum degree
of the graph. For a wide range of problems, the complexity is
well-understood as a function of n—at least if n� ∆—but
understanding the complexity as a function of ∆ is one of the
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major open problems in the area. For example, the maximal
matching problem can be solved in O(∆ + log∗ n) rounds
[15], while the best lower bound is Ω(polylog(∆) + log∗ n)
[10–12,14].

The present works gives the first tight lower bound that
is linear in ∆ for a classical graph problem. In particular,
we study the problem of finding a maximal matching in
anonymous, edge-coloured graphs. If the edges are k-coloured,
the problem can be solved in O(∆ + log∗ k) rounds with an
adaptation of a simple deterministic algorithm [15]. It is
well-known that the complexity is Ω(log∗ k) rounds [14]; we
close the case by proving a lower bound of Ω(∆) rounds.

1.1 Related Work
For many graph problems, the state-of-the-art algorithms

are extremely fast even if the network is very large—provided
that ∆ is small. For example, the following problems can be
solved in O(∆ + log∗ n) synchronous communication rounds
(assuming O(logn)-bit node identifiers):

• maximal matching [15],
• vertex colouring with ∆ + 1 colours [3, 9],
• edge colouring with 2∆− 1 colours [15].

There are also problems that can be solved in O(∆) rounds,
independently of n (even in anonymous networks without
unique identifiers):

• maximal matching in 2-coloured graphs [6],
• maximal edge packing [2],
• 2-approximation of minimum vertex cover [2].

For each of these problems, the dependence on n in the
running time is well-understood if n � ∆. In particular,
Linial’s [14] lower bound shows that maximal matching,
vertex colouring, and edge colouring require Ω(log∗ n) rounds,
even if ∆ = 2.

However, we do not yet understand the dependence on ∆.
For example, the best known lower bound for the maximal
matching problem is logarithmic in ∆ [10–12], while the
above upper bounds are linear in ∆.

Some polylog(∆) upper bounds are known for graph prob-
lems. For example, good approximations of fractional match-
ings can be found in polylog(∆) rounds [11]; however, this
does not seem to yield a deterministic polylog(∆)-time algo-
rithm for any of the above problems. Hańćkowiak et al.’s [7]
algorithm finds a maximal matching in polylog(n) rounds,
avoiding the linear dependence on ∆; however, it comes at
the cost of a non-optimal dependence on n.

It is easy to come up with an artificial problem with the
complexity of Θ(∆)—for example, find nodes u for which
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Figure 1: Greedy algorithm for k = 4; the thick edges indicate matching M .

there exists a node v such that the distance from u to v is
smaller than the degree of v—but so far no such tight results
are known for classical graph problems such as maximal
matchings. The lower-bound result by Kuhn and Watten-
hofer [13] comes close, but it only applies to a restricted
family of algorithms.

1.2 Greedy Maximal Matching
We will focus on the task of finding a maximal matching

in an edge-coloured graph, using a deterministic distributed
algorithm in a network of anonymous nodes (see Section 2
for formally precise definitions and e.g. the survey [16] for
more background information).

If the graph is edge-coloured with k colours, there is a very
simple greedy algorithm that solves the problem in k steps:
We start with an empty matching M ← ∅. Then, in step i
we consider all edges of colour i in parallel. If an edge {u, v}
is of colour i, and neither u nor v is matched, we add {u, v}
to M ; see Figure 1.

To analyse the exact running time of the greedy algorithm,
we need to fix the model of computation. As usual, each
node is a computational entity and there is an edge between
two nodes if the nodes can exchange messages with each
other—the same graph is both the problem instance and the
network topology. Throughout this work, the running time
is defined to be the number of synchronous communication
rounds. Initially, each node knows the colours of its incident
edges. In every round, each node in parallel (1) sends a
message to each of its neighbours, (2) receives a message
from each of its neighbours, and (3) updates its own state.
After each round, a node can stop and announce its local
output : whether it is matched and with which neighbour.

With these definitions, it is straightforward to verify that
the running time of the greedy algorithm is at most k − 1
communication rounds. To see this, note that the first step
of the greedy algorithm does not require any communication:
if a node has an incident edge of colour 1, it is matched along
this edge. Hence we have the following lemma.

Lemma 1. Let k be a positive integer. There exists a
deterministic distributed algorithm with running time k − 1
that finds a maximal matching in any anonymous, k-edge-
coloured graph.

We can also easily verify that the analysis is tight, i.e., the
worst-case running time of the greedy algorithm described
above is exactly k−1 rounds. The following figure illustrates a
worst-case input for k = 4; the construction is straightforward
to generalise. In the greedy algorithm u is unmatched while

v is matched. However, radius-2 neighbourhoods of u and v
are indistinguishable; in order to produce a different output,
we must propagate information over distance k−1 = 3: from
x to u and from y to v. Hence any faithful implementation of
the greedy algorithm requires at least k − 1 communication
rounds.

2 31 4
ux

2 3 4
vy

Naturally, if our goal is to find a maximal matching, there
is a wide range of possible algorithms, and in many special
cases we already know how to beat the greedy algorithm.
However, we show that in the general case, the greedy algo-
rithm is optimal. The main contribution is summarised in
the following theorem.

Theorem 2. Let k be a positive integer. A deterministic
distributed algorithm that finds a maximal matching in any
anonymous, k-edge-coloured graphs requires at least k − 1
communication rounds.

We prove Theorem 2 in Section 3. The lower bound holds
even if we allow arbitrarily large messages and unbounded
local computations, while the matching upper bound is
achieved by a simple algorithm that uses only small messages,
little memory, and trivial state transitions.

1.3 Special Cases
Let us now return to the case of bounded-degree graph. If

k � ∆, we can use Cole–Vishkin [4] style colour reduction
techniques to considerably speed up the algorithm. For
example, a straightforward adaptation of Panconesi and
Rizzi’s [15] algorithm finds a maximal matching in O(∆ +
log∗ k) rounds.

Linial’s [14] result gives us the lower bound of Ω(log∗ k);
however, so far it has not been known whether Ω(∆) rounds is
required. Our result now settles this question. The maximum
degree of a k-edge-coloured graph is at most k, and we have
the following corollary.

Corollary 1. A deterministic distributed algorithm that
finds a maximal matching in an anonymous edge-coloured
graph of maximum degree ∆ requires Ω(∆) communication
rounds.

Incidentally, our lower-bound construction is a d-regular
graph with d = k − 1, and hence this work shows that we
need d rounds even in the seemingly simple case of d-regular
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Figure 2: In this example, V = {e, 1, 2, 2·1, 3, 3·1, 3·2} ⊆ G3 is a 3-colour system and U = 3̄V . For example,
V [1] = U [1] and V = V [2] 6= U [2] 6= U .

graphs (assuming d ≥ 2). Note that in a regular graph,
an optimal fractional matching (edge packing) is trivial to
find, and none of the existing lower bounds [10–12] apply—
previously, we have not even had polylogarithmic-in-∆ lower
bounds for such graphs.

Also note that if we study d-regular graphs with d = k,
the problem becomes trivial: the edges of colour 1 form a
perfect matching and we can solve the problem in constant
time. The case of d = k−1 is the first non-trivial case, and it
is already sufficiently rich to show that the greedy algorithm
is optimal.

1.4 Future Work
Our lower-bound result covers the case of anonymous net-

works, including the widely-studied port-numbering model
[1, 17] and its weaker variants [18] such as the broadcast
model [2].

What remains open is the case of networks in which nodes
have unique identifiers; however, the recent work [5] that
bridges the gap between anonymous networks and networks
with unique identifiers will likely find applications here as
well.

2. PRELIMINARIES
In our lower-bound construction, we will need to manipu-

late edge-coloured trees, and certain group-theoretic concepts
turn out to be useful.

2.1 Group Gk

Throughout this text, k is a positive integer. We use the
shorthand notations X + x = X ∪ {x} and X − x = X \ {x}
for a set X, and [i] = {1, 2, . . . , i} for an integer i.

We define the group

Gk = 〈1, 2, . . . , k | 12, 22, . . . , k2〉.

That is, the generators of group Gk are 1, 2, . . . , k, and we
have the relations c2 = cc = e for each c ∈ [k]; we use e to
denote the identity element, and we use the multiplicative
notation xy or x · y for the group operation. Group Gk is the
free product of k cyclic groups of order two, a.k.a. the group

generated by k involutions, the universal Coxeter group, or
the free Coxeter group.

Let Γk be the Cayley graph of Gk with respect to the
generators [k]; see Figure 2 for an illustration. In Γk, we
have a node for each element x ∈ Gk, and there is an edge
of colour c ∈ [k] from x ∈ Gk to y ∈ Gk if y = xc. As each
generator is its own inverse, there is an edge of colour c from
x to y iff there is an edge of colour c from y to x; hence we
can interpret Γk as an undirected graph. It can be verified
that Γk is a k-regular k-edge-coloured tree; Γk is countably
infinite if k ≥ 2.

In the reduced form, an element x ∈ Gk is a product
x = c1c2 · · · c` such that ci ∈ [k] and ci−1 6= ci. The reduced
form is unique; it corresponds to the sequence of edge colours
along the unique path from e to x in Γk. We use the length
of the path to define the norm |x| = `.

We use the shorthand notation x̄ = x−1 for the inverse
of x ∈ Gk. If x ∈ Gk − e, there is a unique c ∈ [k] such
that |xc| = |x| − 1; we say that c is the tail of x, in notation
tail(x) = c. We also define head(x) = tail(x̄) and pred(x) =
x tail(x) for each x ∈ Gk − e.

We make the following observations: If x, y ∈ Gk, then
|x̄y| is the length of the unique path from x to y in Γk; in
particular, d(x, y) = |x̄y| defines a metric on Gk. If |x̄y| = 1,
nodes x and y are connected with an edge of colour x̄y. We
have |x̄| = |x| for all x ∈ Gk and |xy| ≡ |x|+ |y| mod 2 for
all x, y ∈ Gk. The equality |xy| = |x| + |y| holds iff x = e,
y = e, or tail(x) 6= head(y).

If V ⊆ Gk and x ∈ Gk, we define xV = {xv : v ∈ V }. If
V ⊆ Gk, f : V → X, and x ∈ Gk, we also define the function
xf : xV → X as follows: (xf)(y) = f(x̄y) for each y ∈ xV .
That is, (xf)(xv) = f(v) for each v ∈ V .

2.2 Colour Systems
A non-empty set V ⊆ Gk is a k-colour system if v ∈ V − e

implies pred(v) ∈ V . That is, a colour system is a prefix-
closed subset; put otherwise, we can start from any v ∈ V
and walk towards e in Γk without leaving V . We define the
set of edges

E(V ) =
{
{pred(v), v} : v ∈ V − e

}
.



Let Γk(V ) be the graph with the node set V and the edge
set E(V ). Now Γk(V ) is a connected subgraph of the tree
Γk; see Figure 2 for an example. Observe that if T is any k-
edge-coloured tree, then we can construct a k-colour system
V ⊆ Gk such that T and Γk(V ) are isomorphic.

The following lemma is straightforward to verify.

Lemma 3. If V is a k-colour system and u ∈ V , then ūV
is a k-colour system. Moreover, x 7→ ūx is an isomorphism
from Γk(V ) to Γk(ūV ) that preserves adjacencies and edge
colours.

For a colour system V and integer h, we define V [h] =
{v ∈ V : |v| ≤ h}. Similarly, if f : V → X, we define that
f [h] : V [h] → X is the restriction of f to V [h]. Note that
V [h] is a colour system. The set u((ūV )[h]) ⊆ V consists of
all nodes that are within distance h from u ∈ V in Γk(V ).

Let C(V, v) = {ūv : {u, v} ∈ E(V )} denote the set of
colours incident to v ∈ V in Γk(V ). Note that

C(V, v) = {c ∈ [k] : vc ∈ V } = (v̄V )[1]− e.

The degree of v is deg(V, v) = |C(V, v)|, and colour system
V is said to be d-regular if deg(V, v) = d for all v ∈ V .

If V is a colour system and c ∈ C(V, e), we define

prune(V, c) = {v ∈ V − e : head(v) 6= c}+ e.

Observe that U = prune(V, c) is a colour system. Moreover,
if V is d-regular, then deg(U, u) = d for all u ∈ U − e and
deg(U, e) = d− 1.

2.3 Distributed Algorithms
For the purposes of our lower-bound result, it is sufficient

to define formally what a distributed algorithm A outputs if
we apply it in Γk(V ), where V is a colour system.

We already gave an informal definition of a distributed
algorithm in Section 1.2. In particular, we assumed that the
nodes are anonymous (they do not have unique identifiers),
and initially each node knows the colours of the incident
edges. Put otherwise, initially a node v ∈ V knows precisely
(v̄V )[1]. Now if we let the nodes exchange all information
that they have, after the first round each node v ∈ V can
reconstruct (v̄V )[2], and recursively, after r rounds each node
knows precisely (v̄V )[r+1]. We will use this as our definition
of a distributed algorithm.

Assume that A is a function that associates a local output
A(V, v) with any colour system V and node v ∈ V . Then we
say that A is a distributed algorithm with running time r if
(ūU)[r + 1] = (v̄V )[r + 1] implies A(U, u) = A(V, v).

2.4 Algorithms for Maximal Matchings
We say that a distributed algorithm A finds a maximal

matching in colour system V if

(M1) we have A(V, v) ∈ C(V, v) +⊥ for each v ∈ V ,
(M2) if A(V, v) = c 6= ⊥ then vc ∈ V and A(V, vc) = c,
(M3) if A(V, v) = ⊥ and c ∈ C(V, v) then A(V, vc) 6= ⊥.

The interpretation is that A(V, v) = ⊥ if v is unmatched and
A(V, v) = c ∈ C(v) if v is matched along the edge of colour c;
see Figure 3 for an illustration. Property (M2) ensures that
the output is consistent, and property (M3) ensures that the
matching is maximal.
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Figure 3: Encoding of a maximal matching.

3. LOWER BOUND
Let us first cover the case of k ≤ 2.

Lemma 4. Let k ∈ {1, 2}. A deterministic distributed
algorithm that finds a maximal matching in any anonymous,
k-edge-coloured graphs requires at least k − 1 communication
rounds.

Proof. The case of k = 1 is trivial. Let us then focus
on the case of k = 2. Define the 2-colour systems T =
{e, 1}, U = {e, 2}, and V = {e, 1, 2}. Now A(T, 1) = 1 and
A(U, 2) = 2 for any distributed algorithm A. However, we
must have either A(V, 1) 6= 1 or A(V, 2) 6= 2, even though
(1̄T )[1] = (1̄V )[1] and (2̄U)[1] = (2̄V )[1].

The rest of this work contains the proof of the following
theorem that covers the case of k ≥ 3.

Theorem 5. Let k ≥ 3 be an integer, and let d = k − 1.
Assume that A is a distributed algorithm that finds a maximal
matching in any d-regular k-colour system. Then there are
two d-regular k-colour systems U and V such that U [d] =
V [d], A(U, e) 6= ⊥, and A(V, e) = ⊥.

In particular, the running time of A is at least d = k − 1.
Theorem 2 follows.

3.1 Overview of the Proof
For the rest of this work, choose k, d, and A as in the

statement of Theorem 5, and let r be the running time of A.
All colour systems are k-colour systems.

Sections 3.2–3.7 introduce a number of concepts that we
will use to present our lower-bound construction. After
that, we prove Theorem 5 by induction; the base case is in
Section 3.8, and the inductive step in Section 3.9.

3.2 Templates and Colour Pickers
An h-template is a pair (T, τ) where T ⊆ Gk is an h-regular

colour system and τ : T → [k] associates a forbidden colour
τ(t) ∈ [k] \ C(T, t) with each t ∈ T . The set of free colours
is

F (T, τ, t) = [k] \ (C(T, t) + τ(t))

for each t ∈ T .
Let b be an integer with 0 ≤ b ≤ d − h. A b-colour

picker for (T, τ) is a function P that associates a subset
P (t) ⊆ F (T, τ, t) of size b with each node t ∈ T . That is, a
b-colour picker chooses b free colours for each node. Figure 4
gives an example with h = 2, b = 1, d = 4, and k = 5; a
2-template is an infinite path and a 1-colour picker chooses
exactly one free colour for each node.

Let P and Q be colour pickers for (T, τ). We say that P
and Q are disjoint if P (t) ∩Q(t) = ∅ for all t ∈ T . If P and
Q are disjoint colour pickers for (T, τ), we can construct a
colour picker R by setting R(t) = P (t) ∪Q(t) for each t ∈ T .
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Figure 4: A 2-template and a 1-colour picker.

3.3 Extensions
Let (T, τ) be an h-template and let P be a b-colour picker

for (T, τ). We will define a relation ; between Gk and T
recursively as follows; see Figure 5 for an illustration.

(i) We have e; e, c; c for each c ∈ C(T, e), and c; e
for each c ∈ P (e).

(ii) Assume that x; t and x 6= e.
We have xc ; tc for each c ∈ C(T, t) − tail(x), and
xc; t for each c ∈ P (t)− tail(x).

We make the following observations.

(a) If x; t1 and x; t2, we have t1 = t2.

(b) If x; t and x 6= e, we have tail(x) ∈ C(T, t) ∪ P (t).

(c) If x ; t, x 6= e, and tail(x) ∈ C(T, t), we have
pred(x) ; t tail(x).

(d) If x; t, x 6= e, and tail(x) ∈ P (t), we have pred(x) ; t.

(e) If x; t and c ∈ C(T, t), we have xc; tc.

(f) If x; t and c ∈ P (t), we have xc; t.

(g) If x; t and c ∈ [k]\ (C(T, t)∪P (t)), there is no t′ ∈ T
with xc; t′.

(h) If x; t then |x| ≥ |t|.

(i) For each t ∈ T there exists an x such that x; t.

Let X = {x ∈ Gk : x ; t for some t ∈ T}. Define the
function p : X → T as follows: for each x ∈ X, let p(x)
be the unique element with x ; p(x). Let ξ = τ ◦ p. We
say that (X, ξ, p) is the P -extension of (T, τ), in notation,
ext(T, τ, P ) = (X, ξ, p).

Remark 1. We can interpret extensions as universal cov-
ering graphs [1] as follows. First, consider the edge-coloured
tree G = Γk(T ). Then modify G as follows: for each t ∈ T
and c ∈ P (t), add a self-loop of colour c from t to itself.
Now G is an edge-coloured multigraph; then we construct
the universal covering graph T of G (i.e., we “unfold” all
self-loops of G). Graph T is an edge-coloured tree; it can be
verified that T is isomorphic to Γk(X).

3.4 Properties of Extensions
Let us first prove that an extension is a template.

Lemma 6. Assume that (T, τ) is an h-template, P is a
b-colour picker for (T, τ), and (X, ξ, p) = ext(T, τ, P ). Then
X is an (h+b)-regular colour system, and (X, ξ) is an (h+b)-
template. For each x ∈ X we have C(X,x) = C(T, p(x)) ∪
P (p(x)).

22 1 2 4 3
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22 1 2 4 3
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Figure 5: Here T is a 2-template and P is a 1-colour
picker. The arrows illustrate the relation ; between
X and T , and hence also function p. In this case, X
is a 3-regular colour system.

Proof. Each x ∈ X − e has pred(x) ∈ X; hence X is a
colour system. If x ∈ X and c ∈ [k], we have xc ∈ X iff c ∈
C(T, p(x)) ∪ P (p(x)); hence C(X, x) = C(T, p(x)) ∪ P (p(x))
and deg(x) = h+ b. It follows that X is (h+ b)-regular. By
assumption,

ξ(x) = τ(p(x)) /∈ C(T, p(x)) ∪ P (p(x)) = C(X,x);

that is, ξ associates a valid forbidden colour with each x ∈ X,
and we conclude that (X, ξ) is an (h+ b)-template.

Next, we observe that an extension has a high degree of
symmetry.

Lemma 7. Let (X, ξ, p) = ext(T, τ, P ), x, y ∈ X, and
p(x) = p(y). Then x̄X = ȳX, x̄ξ = ȳξ, and x̄p = ȳp.

Proof. Let w ∈ x̄X. Assume that w = c1c2 · · · c`, where
ci ∈ [k], and define wi = c1c2 · · · ci. We have wi ∈ x̄X and
xwi ∈ xx̄X = X for all i; let ti = p(xwi).

With these definitions, xwi ; ti for all i = 0, 1, . . . , `. We
will prove by induction that ywi ; ti for all i. The base case
of i = 0 is trivial. Now assume that xwi ; ti and ywi ; ti.
As we have xwici+1 ; ti+1, there are two possibilities. If
ci+1 ∈ C(T, ti), then ti+1 = tici+1 and ywici+1 ; tici+1.
Otherwise ci+1 ∈ P (ti), ti+1 = ti and ywici+1 ; ti. In both
cases ywi+1 ; ti+1.

It follows that yw ; t`, and hence yw ∈ X with p(yw) =
t` = p(xw). We have shown that w ∈ x̄X implies w = ȳyw ∈
ȳX and

(ȳp)(w) = (ȳp)(ȳyw) = p(yw) = p(xw) = (x̄p)(w).

By symmetry, w ∈ ȳY implies w ∈ x̄X. Finally, x̄p = ȳp
implies x̄ξ = ȳξ.

We also show that the order in which we extend does not
affect the end result. If we have two disjoint colour pickers
P and Q, we can first apply P and then Q, or vice versa,
and we obtain the same result as if we used the colour picker
t 7→ P (t) ∪Q(t) directly; in this sense, extensions commute.



Lemma 8. Assume that (T, τ) is a template and P and Q
are disjoint colour pickers for (T, τ). Let R(t) = P (t) ∪Q(t)
for each t ∈ T . Let (K,κ, p) = ext(T, τ, P ), (L, λ, q) =
ext(K,κ,Q ◦ p), and (X, ξ, r) = ext(T, τ,R). Now X = L,
λ = ξ, and p ◦ q = r.

=
ext(P) ext(Q ○ p)

ext(P ∪ Q)

p q

p ○ q
T, τ

K, κ L, λ

X, ξ

Proof. Let x = c1c2 · · · c`, where ci ∈ [k], and define
xi = c1c2 · · · ci. We prove by induction that if xi ∈ X, we
also have xi ∈ L with p(q(xi)) = r(xi), and if xi /∈ X, we
also have xi /∈ L.

The base case i = 0 is trivial: p(q(e)) = p(e) = e = r(e)
and e ∈ X ∩L. Now assume that xi ∈ X ∩L and p(q(xi)) =
r(xi). There are four cases depending on ci+1:

(a) Assume that ci+1 ∈ C(T, r(xi)) = C(T, p(q(xi))). Then
ci+1 ∈ C(K, q(xi)), xi+1 ∈ X ∩ L, and

p(q(xi+1)) = p(q(xici+1))

= p(q(xi)ci+1) = p(q(xi))ci+1 = r(xi)ci+1

= r(xici+1) = r(xi+1).

(b) Assume that ci+1 ∈ P (r(xi)) = P (p(q(xi))) ⊆ R(r(xi)).
Then ci+1 ∈ C(K, q(xi)), xi+1 ∈ X ∩ L, and

p(q(xi+1)) = p(q(xici+1))

= p(q(xi)ci+1) = p(q(xi)) = r(xi)

= r(xici+1) = r(xi+1).

(c) Assume that ci+1 ∈ Q(r(xi)) = Q(p(q(xi))) ⊆ R(r(xi)).
Then ci+1 ∈ (Q ◦ p)(q(xi)), xi+1 ∈ X ∩ L, and

p(q(xi+1)) = p(q(xi)) = r(xi)

= r(xici+1) = r(xi+1).

(d) Otherwise xi+1 /∈ X and xi+1 /∈ L. As a consequence,
xi+j /∈ X and xi+j /∈ L for all j > 1.

In conclusion, we have X = L, p ◦ q = r, and λ = τ ◦ p ◦ q =
τ ◦ r = ξ.

3.5 Realisations
Let (T, τ) be an h-template. Define a (d− h)-colour picker

P by setting P (t) = F (T, τ, t) for each t ∈ T . Let (V, g, p) =
ext(T, τ, P ). We say that (V, p) is the realisation of template
(T, τ), in notation, (V, p) = real(T, τ).

Intuitively, V is a concrete problem instance—it is always
a d-regular colour system, and hence we can apply algorithm
A to V . Templates can be seen as compact, schematic
representations of problem instances.

Lemma 7 has the following corollary.

Corollary 2. Let (V, p) = real(T, τ). If u, v ∈ V and
p(u) = p(v), then ūV = v̄V . In particular, A(V, u) =
A(V, v).

Put otherwise, if (T, τ) is a template with the realisa-
tion (V, p), each node t ∈ T represents an equivalence class
p−1(t) ⊆ V of nodes with identical outputs. For each t ∈ T ,

we define A(T, τ, t) = A(V, v) where v ∈ p−1(t); by Corol-
lary 2, this does not depend on the choice of v.

We define M(T, τ) = {{u, v} ∈ E(T ) : A(T, τ, u) =
A(T, τ, v) = ūv}. Note that M(T, τ) is always a match-
ing in the tree Γk(T ), but the matching is not necessarily
maximal. If S ⊆ T , we also define M(T, S, τ) = {{u, v} ∈
M(T, τ) : u, v ∈ S}, the restriction of M(T, τ) to S.

Lemma 8 has the following corollary; it shows that a
template and its extensions have the same realisations.

Corollary 3. Let

(K,κ, p) = ext(T, τ, P ),

(X, r) = real(T, τ),

(L, q) = real(K,κ).

Then X = L, p ◦ q = r, and A(K,κ, x) = A(T, τ, p(x)) for
all x ∈ K.

The following lemma is yet another application of the
symmetry that we have in extensions: if a template has free
colours (i.e., h < d), then an algorithm produces a perfect
matching in the realisation of the template.

Lemma 9. Assume that (T, τ) is an h-template with h < d.
Then A(T, τ, t) 6= ⊥ for all t ∈ T .

Proof. Let (V, p) = real(T, τ), t ∈ T , and v ∈ p−1(t). If
h < d, there exists a c ∈ F (T, τ, t). Let u = vc; we have
p(u) = p(v) = t, c ∈ C(V, v), and

A(V, u) = A(V, v) = A(T, τ, t).

Now A(T, τ, t) = ⊥ would contradict property (M3).

3.6 Zero-Templates
Let Z = {e} be the colour system with only one node. For

each c ∈ [k], let ĉ denote the function ĉ : Z → [k] that maps
ĉ(e) = c. Now (Z, ĉ) is a 0-template for each c ∈ [k].

If A is the greedy algorithm, we have A(Z, 1̂, e) = 2 and
A(Z, 3̂, e) 6= 2. The following lemma generalises this observa-
tion.

Lemma 10. There are distinct colours c1, c2, c3 ∈ [k] such
that A(Z, ĉ1, e) = c2 and A(Z, ĉ3, e) 6= c2.

Proof. For each c ∈ [k], let h(c) = A(Z, ĉ, e). By
Lemma 9, we have h(c) ∈ [k] for each c ∈ [k]. Moreover,
h(c) ∈ [k] − ĉ(e) = [k] − c. Hence we have a function
h : [k]→ [k] that does not have any fixed points.

First, assume that h(h(1)) 6= 1. Then we can choose
c1 = h(1), c2 = h(h(1)), and c3 = 1.

Second, assume that h(h(1)) = 1. Let c ∈ [k]−{1, h(1)}. If
h(c) = h(1), we can choose c1 = h(1), c2 = 1, and c3 = c. If
h(c) 6= h(1), we can choose c1 = 1, c2 = h(1), and c3 = c.

3.7 Compatible Templates and Critical Pairs
Let h ≥ 1. We say that templates (S, σ) and (T, τ) are

h-compatible if

(C1) S[h] = T [h],
(C2) σ[h− 1] = τ [h− 1].

We emphasise that h-compatible templates are not necessarily
h-templates.

We say that (S, σ) and (T, τ) form an h-critical pair if they
are h-compatible h-templates and they satisfy the following
additional properties:
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Figure 6: A 1-critical pair.

(C3) A(T, τ, e) /∈ C(T, e),
(C4) A(S, σ, s) ∈ C(S, s) for each s ∈ S.

If h < d, Lemma 9 and property (C3) imply that A(T, τ, e) ∈
F (T, τ, e). Property (C4) implies that M(S, σ) is a perfect
matching in Γk(S), while property (C3) implies that M(T, τ)
cannot be a perfect matching in Γk(T ).

Remark 2. A reader familiar with Linial’s neighbourhood
graphs [14] may want to interpret h-compatible templates as
adjacent nodes in an h-neighbourhood graph.

3.8 Base Case
In this section we show that there exists a 1-critical pair.

Choose c1, c2, c3 ∈ [k] as in Lemma 10 and let c4 = A(Z, ĉ3, e).
Note that c4 6= c2; however, we may have c4 = c1.

Let K = L = X = {e, c2}. Define κ(e) = κ(c2) = ξ(e) = c1
and λ(e) = λ(c2) = ξ(c2) = c3. Now (K,κ), (L, λ), and (X, ξ)
are 1-templates; the construction is illustrated in Figure 6.

If p(e) = p(c2) = e and P (e) = c2, we have

(K,κ, p) = ext(Z, ĉ1, P ),

(L, λ, p) = ext(Z, ĉ3, P ).

Therefore A(K,κ, v) = c2 for each v ∈ K and A(L, λ, v) = c4
for each v ∈ L.

Now we construct 1-templates (S1, σ1) and (T1, τ1) as
follows:

(i) If A(X, ξ, e) 6= c2, we choose (S1, σ1) = (K,κ) and
(T1, τ1) = (X, ξ).

(ii) If A(X, ξ, e) = c2, we choose (S1, σ1) = (c̄2X, c̄2ξ) and
(T1, τ1) = (c̄2L, c̄2λ).

Lemma 11. Templates (S1, σ1) and (T1, τ1) form a 1-crit-
ical pair.

Proof. We have S1[1] = T1[1] = K = L = X = {e, c2},
verifying property (C1). To verify (C2), note that case (i) im-
plies σ1(e) = τ1(e) = c1 and case (ii) implies σ1(e) = τ1(e) =
c3. To verify property (C3), observe that A(T1, τ1, e) 6= c2
while C(T1, e) = {c2}. To verify property (C4), observe that
A(S1, σ1, s) = c2 and C(S1, s) = {c2} for all s ∈ S1.

3.9 Inductive Step
Now assume that (Sh, σh) and (Th, τh) form an h-critical

pair, where 1 ≤ h < d. In this section, we will construct an
(h+ 1)-critical pair (Sh+1, σh+1) and (Th+1, τh+1).

Recall that Lemma 9 implies that A(Sh, σh, s) 6= ⊥ for all
s ∈ Sh and A(Th, τh, t) 6= ⊥ for all t ∈ Th. We define two
colour pickers as follows; see Figures 7 and 8 for illustrations.

(i) Define a 1-colour picker Q for (Th, τh) as follows. Let
t ∈ Th. If A(Th, τh, t) ∈ F (Th, τh, t), we choose Q(t) =
{A(Th, τh, t)}. Otherwise we choose an arbitrary free
colour c ∈ F (Th, τh, t) and set Q(t) = {c}.

(ii) Define a 1-colour picker P for (Sh, σh) as follows. Let
s ∈ Sh. If |s| ≤ h−1, we have s ∈ Th and F (Sh, σh, s) =
F (Th, τh, s); hence we can choose P (s) = Q(s). Other-
wise we choose an arbitrary free colour c ∈ F (Sh, σh, s)
and set P (s) = {c}.

Let (K,κ, p) = ext(Sh, σh, P ), (L, λ, q) = ext(Th, τh, Q), and
χ = A(Th, τh, e). We make the following observations:

(a) (K,κ) and (L, λ) are (h+ 1)-templates,

(b) (K,κ) and (L, λ) are h-compatible,

(c) {e, χ} ∈ E(K) and {e, χ} ∈ E(L),

(d) p(e) = p(χ) = e and q(e) = q(χ) = e,

(e) χ̄K = K, χ̄κ = κ, χ̄L = L, and χ̄λ = λ,

(f) A(K,κ, v) ∈ C(K, v) for each v ∈ K, i.e., M(K,κ) is a
perfect matching in Γk(K),

(g) A(L, λ, v) ∈ C(L, v) for each v ∈ L, i.e., M(L, λ) is a
perfect matching in Γk(L),

(h) {e, χ} /∈M(K,κ) but {e, χ} ∈M(L, λ).

Now we will use (K,κ) and (L, λ) to construct a new (h+1)-
template (X, ξ); refer to Figure 7. Let K1 = prune(K,χ),
L1 = χprune(χ̄L, χ), and X = K1 ∪ L1. Define ξ : X → [k]
as follows: ξ(v) = κ(v) for all v ∈ K1 and ξ(v) = λ(v) for all
v ∈ L1. We make the following observations:

(a) (X, ξ) is an (h+ 1)-template,

(b) (X, ξ), (K,κ), and (L, λ) are pairwise h-compatible,

(c) (χ̄X, χ̄ξ), (χ̄K, χ̄κ), and (χ̄L, χ̄λ) are pairwise h-com-
patible.

(d) (ȳX, ȳξ) and (ȳK, ȳκ) are (h+ 1)-compatible for any
y ∈ K1,

(e) (ȳX, ȳξ) and (ȳL, ȳλ) are (h + 1)-compatible for any
y ∈ L1.

Hence we have a family of (h+1)-compatible (h+1)-templates;
however, we need to construct an (h+ 1)-critical pair.

Lemma 12. There is a node y ∈ X such that A(X, ξ, y) /∈
C(X, y).

Proof. We say that an edge {u, v} is distant if |u| > r+1
and |v| > r + 1; otherwise it is near.

Set M(K,κ) is a perfect matching in Γk(K). Moreover,
{e, χ} /∈ M(K,κ); therefore we have either {u, v} ⊆ K1 or
{u, v} ∩K1 = ∅ for each {u, v} ∈ M(K,κ). It follows that⋃
M(K,K1, κ) = K1. Let K′3 ⊆ M(K,K1, κ) consist of

the edges that are distant, and let K′2 = M(K,K1, κ) \K′3
consist of the edges that are near. Define K2 =

⋃
K′2 and

K3 =
⋃
K′3; see Figure 7 for an illustration.



Set M(L, λ) is a perfect matching in Γk(L). Moreover,
{e, χ} ∈M(L, λ); this is the unique edge that joins L1 and
L \ L1. Therefore we have

⋃
M(L,L1, λ) = L1 − χ. Let

L′3 ⊆M(L,L1, λ) consist of the edges that are distant, and
let L′2 = M(L,L1, λ) \ L′3 consist of the edges that are near.
Define L2 = (

⋃
L′2) + χ and L3 =

⋃
L′3.

It follows that

(a) K3, K2, L2, and L3 form a partition of X,

(b) (v̄K)[r + 1] = (v̄X)[r + 1] and (v̄κ)[r + 1] = (v̄ξ)[r + 1]
for any v ∈ K3,

(c) (v̄L)[r + 1] = (v̄X)[r + 1] and (v̄λ)[r + 1] = (v̄ξ)[r + 1]
for any v ∈ L3,

(d) A(K,κ, v) = A(X, ξ, v) for any v ∈ K3,

(e) A(L, λ, v) = A(X, ξ, v) for any v ∈ L3,

(f) {u, v} ∈ K′3 ∪ L′3 implies {u, v} ∈M(X, ξ),

(g) K2 is a finite set with an even number of nodes,

(h) L2 is a finite set with an odd number of nodes.

By a parity argument, there is a node y ∈ K2 ∪L2 such that
y /∈

⋃
M(X, ξ), i.e., A(X, ξ, y) /∈ C(X, y).

Now choose y as in Lemma 12, and define (Sh+1, σh+1)
and (Th+1, τh+1) as follows:

(a) If y ∈ K1, define Sh+1 = ȳK, σh+1 = ȳκ, Th+1 = ȳX,
and τh+1 = ȳξ.

(b) If y ∈ L1, define Sh+1 = ȳL, σh+1 = ȳλ, Th+1 = ȳX,
and τh+1 = ȳξ.

Lemma 13. Templates (Sh+1, σh+1) and (Th+1, τh+1) form
an (h+ 1)-critical pair.

Proof. First, assume that y ∈ K1. We have already
observed that (Sh+1, σh+1) = (ȳK, ȳκ) and (Th+1, τh+1) =
(ȳX, ȳξ) are (h+ 1)-compatible. Moreover, we have

A(Th+1, τh+1, e) = A(X, ξ, y) /∈ C(X, y) = C(Th+1, e),

A(Sh+1, σh+1, s) = A(K,κ, ys) ∈ C(K, ys) = C(Sh+1, s)

for each s ∈ Sh+1. Hence (Sh+1, σh+1) and (Th+1, τh+1) form
an (h+ 1)-critical pair.

The case of y ∈ L1 is analogous.

By induction, there are d-templates (Sd, σd) and (Td, τd)
that form a d-critical pair. Theorem 5 follows by choosing
U = Sd and V = Td.
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Figure 7: Inductive step. In this example, h = 1 and χ = 3. We assume that j /∈ {2, 3}, and thus we can choose
y = χ in Lemma 12.
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Figure 8: Inductive step. In this example, h = 2 and χ = 4.
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