
Department of Computer Science
Series of Publications A

Report A-2012-8

Secure Connectivity With Persistent Identities

Samu Varjonen

To be presented with the permission of the Faculty of the Science
of the University of Helsinki, for public criticism in Hall 13,
University of Helsinki Main Building, on 14 of November 2012
at noon.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14925962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contact information

Postal address:
Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi (Internet)

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911

Telefax: +358 9 191 51120

Supervisor(s): Jussi Kangasharju, Sasu Tarkoma, Andrei Gurtov

Pre-examiners: Jarmo Harju, Tampere University of Technology, Finland
and Mika Ylianttila, University of Oulu, Finland

Opponent: Hannu H. Kari, National Defence University, Finland
Custos: Jussi Kangasharju, University of Helsinki, Finland

Copyright c© 2012 Samu Varjonen
ISSN 1238-8645
ISBN 978-952-10-8340-2 (paperback)
ISBN 978-952-10-8341-9 (PDF)
Computing Reviews (1998) Classification: C.2, C.2.0, C.2.1, C.2.2, C.2.4,
C.2.5, C.2.6
Helsinki 2012
Helsinki University Print

Secure Connectivity With Persistent Identities

Samu Varjonen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
samu.varjonen@helsinki.fi
http://www.cs.helsinki.fi/u/sklvarjo

PhD Thesis, Series of Publications A, Report A-2012-8
Helsinki, November 2012, 139 pages
ISSN 1238-8645
ISBN 978-952-10-8340-2 (paperback)
ISBN 978-952-10-8341-9 (PDF)

Abstract

In the current Internet the Internet Protocol address is burdened with two
roles. It serves as the identifier and the locator for the host. As the
host moves its identity changes with its locator. The research commu-
nity thinks that the Future Internet will include identifier-locator split in
some form. Identifier-locator split is seen as the solution to multiple prob-
lems. However, identifier-locator split introduces multiple new problems to
the Internet. In this dissertation we concentrate on: the feasibility of us-
ing identifier-locator split with legacy applications, securing the resolution
steps, using the persistent identity for access control, improving mobility
in environments using multiple address families and so improving the dis-
ruption tolerance for connectivity.

In order to quantify the effect of the introduction of the identifier-locator
split to the networking applications, we gathered extensive set of data from
the Ubuntu Linux Long Term Support versions. From the gathered statis-
tics we characterized the usage of Sockets API. From the statistics we
reported ten interesting finginds about security, IPv6 and configuration
issues. Based on our findings we concluded that the Sockets API is het-
erogeneous and that it is difficult to introduce modifications to the way
applications utilize network. We suggested fixes for the security and UDP
multihoming support.

Identifier-locator split introduces a new identifier that has to be resolved to

iii

iv

an locator, i.e., the IP-address. Solutions for the resolution exist, but the
previous studies did not handle security or left security as further study.
Based on these observations on resolution systems, we described an archi-
tecture for secure identifier-locator mappings based on a Distributed Hash
Table. The architecture we describe solves three core problems: a) support
for flat namespace, b) frequent user-based updates, c) the security of the
architecture, by using the cryptographic properties of the identifiers in the
Host Identity Protocol (HIP). Our performance analysis of the HIP-enabled
DHT demonstrate the feasibility of our architecture.

For corporations and communities the access control of hosts is rather easy,
for example when a host is taken into use its identity is included into the
firewall configuration. For home user it is not so easy to manage the iden-
tifiers that may needed to establish an inbound connection. We designed
a DHT-based system to distribute the information of friendships that is
based on the self-certifying cryptographic identities of HIP. The system
relies on one-hop trust paths to be used to access control the incoming
connections. The solution we described can be generalized for situations
where the before-hand inspection of the content is impossible or otherwise
hard to implement, for example middleboxes may not have the storage to
delay large transfers.

We argued that identifier-locator split protocols can solve three major chal-
lenges that the Internet architecture is facing: a) IPv4 address space is
too small, b) end-to-end connectivity is broken due to Network Address
Translations (NATs), c) the Internet architecture lacks a mechanism that
supports end-host mobility in the transition state Internet. We demon-
strated that cross-family handovers can be used to alleviate the transfer
from IPv4 to IPv6. We described a shortcoming in current HIP mobil-
ity specifications preventing cross-family handovers and suggested a simple
solution to it. Our performance evaluation with our implementation indi-
cates that HIP-based cross-family handovers perform as well as intra-family
handovers.

Computing Reviews (1998) Categories and Subject
Descriptors:
C.2 Computer-Communication Networks
C.2.0 General
C.2.1 Network Architecture and Design
C.2.2 Network Protocols

v

C.2.4 Distributed Systems
C.2.5 Local and Wide-Area Networks
C.2.6 Internetworking

General Terms:
Identifier-Locator split, Security, Host Identity Protocol, Mobility,
Distributed Hash Table, Domain Name System, Cryptographic Identifiers

Additional Key Words and Phrases:
Improving secure connectivity with persistent cryptographic identifiers

vi

Acknowledgements

I would like to thank multiple people who have on their behalf influenced
my research that resulted in this dissertation.

I thank Jukka Manner and late Kimmo Raatikainen especially for get-
ting me started on this journey.

I extend my appreciation and thanks to my supervisor Jussi Kan-
gasharju and my instructors Andrei Gurtov and Sasu Tarkoma for all the
advice and help I got from them during the journey. I would also wish to
thank Kristiina Karvonen for all the helpful discussions.

I thank my pre-examiners Jarmo Harju and Mika Ylianttila for their
work and feedback for improving the dissertation. I would also wish to
thank my assigned opponent Hannu H. Kari.

I am grateful for all the help and advice I received from my colleagues
at Helsinki Institute for Information Technology: Miika Komu, Joakim
Koskela, Boris Nechaev, Dmitry Korzun, Dmitriy Kuptsov, Andrey Khurri,
Ken Rimey, and Oleg Ponomarev.

I was lucky enough to work with very inspiring researchers outside the
University of Helsinki. I would like to thank especially Tobias Heer and
René Hummen from the RWTH Aachen.

Last but not least, I extend special thanks to my family. Without the
encouragement from my wife Noora and my children Vilho and Sanni, I
would not have been able to complete this.

Helsinki, October 2012
Samu Varjonen

vii

viii

Contents

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 3

1.3 Research History . 5

1.4 Structure of Dissertation . 6

2 Background 9

2.1 Resolution architectures . 9

2.1.1 Domain Name System 9

2.1.2 Domain Name System Security extension 11

2.1.3 Performance of Domain Name System 12

2.1.4 DNS over Distributed Hash Tables 13

2.1.5 Comparative performance 20

2.2 Mobility . 21

2.2.1 Mobile IPv4 . 21

2.2.2 Mobile IPv6 . 22

2.2.3 Dual-stacked hosts 23

2.3 Security . 23

2.3.1 Certificates . 23

2.3.2 IP security . 25

2.4 Host Identity Protocol . 35

2.4.1 Resolution . 37

2.4.2 Base Exchange . 38

2.4.3 Mobility Management 39

2.4.4 Service Identifiers . 41

ix

x Contents

2.4.5 Certificates . 43

2.5 Summary . 50

3 Statistics and Empirical Experience with Sockets API 51

3.1 Introduction . 52

3.2 Background . 53

3.2.1 The Sockets API . 53

3.2.2 Sockets API Extensions 55

3.2.3 NAT Traversal . 56

3.2.4 Transport Layer Security 57

3.2.5 Network Frameworks 58

3.3 Materials and Methods . 58

3.4 Results and Analysis . 60

3.4.1 Core Sockets API . 61

3.4.2 Sockets API Extensions 67

3.4.3 Network Application Frameworks 74

3.5 Related Work . 81

3.6 Summary . 82

4 Secure Identifier Resolution 85

4.1 Introduction . 86

4.2 System Requirements . 86

4.2.1 Support for Flat Namespaces 87

4.2.2 Rapid Mapping of User-generated Updates 87

4.2.3 Securing Mapping Updates 88

4.3 Resolution System Design 89

4.3.1 General Design . 90

4.3.2 An Identifier Resolution System for HIP 90

4.4 Evaluation . 91

4.4.1 Feasibility . 92

4.4.2 Resolution and Update Delay 93

4.5 Related Work . 95

4.6 Summary . 96

5 Separating Friends from Spitters 97

5.1 Introduction . 98

5.2 Background . 99

5.3 Requirements for the trust paths 99

5.4 Our solution . 100

5.5 Evaluation . 103

5.6 Summary . 105

Contents xi

6 Secure and Efficient IPv4/IPv6 Handovers Using Host-Based
Identifier-Locator Split 107
6.1 Introduction . 108
6.2 Related Work . 109
6.3 Cross-family IPv4/IPv6 Handovers 110

6.3.1 Scope of HIP Handovers 110
6.3.2 Cross-Family Handovers 110
6.3.3 Peer Locator Learning 111
6.3.4 Teredo Experiments 113
6.3.5 Implementation of Cross-Family Handovers 113

6.4 Performance Measurements 117
6.5 Summary . 120

7 Conclusion 121
7.1 Summary of Contributions 122
7.2 Future Work . 123

References 125

xii Contents

List of Figures

2.1 Name resolution in DNS . 10

2.2 CoDoNS architecture . 18

2.3 Message flow of Mobile IP. 22

2.4 IPSec architecture. 27

2.5 Authentication Header. 27

2.6 Encapsulated Payload. 28

2.7 Diffie-Hellman. 30

2.8 IKE phases in SA negotiations. 31

2.9 IKE version 2 message flow. 33

2.10 MOBIKE message flow . 36

2.11 HIP Base Exchange. 39

2.12 Return routability tests and locator state. 40

2.13 a X.509.v3 certificate with encoded HITs. 47

2.14 A SPKI certificate with encoded HITs 48

3.1 The most frequent reference ratios of functions in Ubuntu
Lucid Lynx . 62

3.2 The most frequent reference ratios of structures in Ubuntu
Lucid Lynx . 63

3.3 The most frequent reference ratios of constants in Ubuntu
Lucid Lynx . 64

3.4 The most frequent reference ratios of SSL indicators in Ubuntu
Lucid Lynx . 67

3.5 The number of occurrences of the most common SSL options 69

4.1 Latencies of update and get operations 94

5.1 Forming of a trust relation ship between hosts by presenting
certificates . 101

5.2 Acceptance dialogue presented to the user upon incoming
connection . 102

xiii

xiv List of Figures

5.3 Average latencies of the storage system for the certificates . 104

6.1 Example case of peer locator learning 112
6.2 Results of triggering the handover too fast after a change in

the addresses on a interface. 114
6.3 Sequence number generation during BBM handover. 116
6.4 An inra-family BBM handover using IPv4, including the

ARP traffic . 118
6.5 Cross-family BBM handover from IPv4 to IPv6, including

the neighbor discovery and ARP traffic 119

List of Tables

2.1 Supported certificate formats. 44

3.1 Number of packages per release version. 59
3.2 Highlighted indicator sets and their reference ratios 72
3.3 Summary of the requirements for the frameworks 81

4.1 Computational complexity of cryptographic operations in HIP. 92
4.2 Cryptographic and communication overhead of the HIP BEX. 93

6.1 Durations of intra-family handovers. 117
6.2 Durations of cross-family handovers. 118

xv

xvi List of Tables

Abbreviation list

3DES Triple-DES.
3G Third Generation.

A Address.
ACE Adaptive Communication.
AES-CCM Advanced Encryption Standard - Counter

with CBC-MAC mode.
AH Authentication Header.
API Application Programming Interface.
ARP Address Resolution Protocol.
AS Autonomous System.
ASN.1 Abstract Syntax Notation One.

BBM Break-Before-Make.
BER Basic Encoding Rules.
BEX Base EXchange.
BSD Berkeley Software Distribution.

C Country.
CA Certification Authority.
CBA Credit Based Authorization.
CN Correspondent Node.
CN Common Name.
CNAME Canonical Name.
CoA Care-of-Address.
CoDoNS Co-operative Domain Name System.
CPU Central Processing Unit.
CRC Certificate Result Certificate.
CRL Certificate Revocation List.

xvii

xviii Acronyms

D-H Diffie-Helman.
DCCP Datagram Congestion Control Protocol.
DES Data Encryption Standard.
DES-CBC Data Encryption Standard - Cipher Block

Chaining.
DHCP Dynamic Host Configuration Protocol.
DHT Distributed Hash Table.
DN Distinguished Name.
DNS Domain Name System.
DNSsec Domain Name Security Extensions.
DOI Domain Of Interpretation.
DoS Denial-of-Service.
DSA Digital Signature Algorithm.
DSMIPv6 Dual-Stack Mobile IPv6.

EID End-Host-IDentifier.
ESP Encapsulated Secure Payload.

FA Foreign Agent.
FQDN Fully Qualified Domain Name.

GNU GNU’s Not Unix!.
GUI Graphical User Interface.

HA Home Agent.
HDRR HIP DHT Resource Record.
HI Host Identifier.
HIP Host Identity Protocols.
HIPL HIP for Linux.
HIT Host Identity Tag.
HPC High-Performance Computing.
HTTP Hyper Text Transfer Protocol.

I1 First Initiator packet.
I2 Second Initiator packet.
IAN Issuer Alternative Name.
ICMP Internet Control Message Protocol.
ICMPv6 Internet Control Message Protocol version 6.
IDEA International Data Encryption Algorithm.
IETF Internet Engineering Task Force.

Acronyms xix

IKE Internet Key Exchange.
IKEv2 Internet Key Exchange version 2.
ILNP Identifier-Locator Network Protocol.
IP Internet Protocol.
IPsec IP security architecture.
IPv4 Internet Protocol version 4.
IPv6 Internet Protocol version 6.
IRC Internet Relay Chat.
ISAKMP Internet Security Association and Key Man-

agement Protocol.
ISP Internet Service Provider.

LDAP Lightweight Directory Access Protocol.
LISP Locator/Identifier Separation Protocol.
LSI Local Scope Identifier.
LTS Long Term Support.

MBB Make-Before-Break.
MD5 Message Digest series 5.
MIP Mobile IP.
MIPv4 Mobile IP version 4.
MIPv6 Mobile IP version 6.
MN Mobile Node.
MOBIKE Mobility and multihoming extensions for

IKEv2.
MTU Maximum Transmission Unit.
MX Mail Exchange.

NAT Network Address Translation.
NS Name Server.
NXDOMAIN Non-Existent Domain.

O Organization.
OS Operating System.
OU Organization Unit.

P2P Peer-to-Peer.
P2PSIP Peer-to-Peer SIP.
PFS Perfect Forward Security.
PGP Pretty Good Privacy.

xx Acronyms

PIN Personal Identification Number.
PKI Public Key Infrastructure.
POSIX Portable Operating System Interface for

uniX.
PRNG Pseudo Random Number Generator.

R1 First Responder packet.
R2 Second Responder packet.
RC4 Rivest Cipher 4.
RC5 Rivest Cipher 5.
RLOC Routable LOCator.
RR Resource Record.
RRSet Resource Record Set.
RRSIG Resource Record Signature.
RSA Rivest Shamir Adleman.
RTT Round-Trip Time.
RVS RendezVous Server.

SA Security Associations.
SAD Security Association Database.
SAN Subject Alternative Name.
SCTP Stream Control Transmission Protocol.
SD Service Description.
SHA-1 Secure Hash Algorithm variant 1.
SHIM6 Site Multihoming by IPv6 Intermediation.
SIP Session Initiation Protocol.
SN Surname.
SPD Security Policy Database.
SPI Security Parameter Index.
SPIT Spam over Internet Telephony.
SPKI Simple Public Key Infrastructure.
SSH Secure SHell.
SSL Secure Socket Layer.
SSLv2 Secure Socket Layer version 2.
SSLv3 Secure Socket Layer version 3.

TCP Transmission Control Protocol.
TLS Transport Layer Security.
TLSv1 Transport Layer Security version 1.
TTL Time-To-Live.

Acronyms xxi

UA User Agent.
UDP User Datagram Protocol.
UMTS Universal Mobile Telecommunications Sys-

tem.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.

VoIP Voice over IP.
VPN Virtual Private Network.

WLAN Wireless Local Area Network.
WOT Web Of Trust.

XML-RPC eXtensible Markup Language - Remote Pro-
cedure Call.

xxii Acronyms

Chapter 1

Introduction

In the current Internet we face at least two major problem categories: mo-
bility and security. First, we have Internet Protocol (IP)-addresses that are
used as the locators for the hosts. However, IP-addresses are currently used
also as the identifiers for the hosts. In practice, this means that the iden-
tity of the host changes when the mobile host changes its attachment point.
Second, for transport protocols this is fatal, for example, Transmission Con-
trol Protocol (TCP) sessions will break upon such an event. Multihoming
has traditionally been a concern only for servers and their fault-tolerant
networking. The introduction of such technologies as Wireless Local Area
Network (WLAN) and Third Generation (3G) have introduced the need for
multihoming to common users and their equipment. For applications this
introduces problems as they have no practical way to handle multihoming.
Identifier-locator split has been identified as a promising solution to combat
these problems.

Identifier-locator split protocols achieve these goals. Currently dis-
cussed identifier-locator split protocols follow one of two principles: ad-
dress rewriting or mapping and encapsulating. In the address rewriting
method, an Internet Protocol version 6 (IPv6) address is divided into front
and back half. The front half of the IPv6 address represents the locator of
the host and the back half represents its identity. The Identifier-Locator
Network Protocol (ILNP) [14] is a protocol that implements the address
rewriting method. The deployment of address rewriting schemes requires
major renumbering in the network and compulsory support for IPv6 (be-
cause of the longer address format). The current Internet is in a transition
phase towards IPv6. However, IPv6 connectivity cannot be guaranteed ev-
erywhere yet, hampering the immediate deployment of protocols that solely
rely on IPv6.

In mapping and encapsulating schemes, additional identifiers are mapped

1

2 1 Introduction

to locators and packets are encapsulated. Locators are only used in the
packet headers at the network layer. Mapping and encapsulating approaches
can be divided into two categories: network based and host-based. The Lo-
cator/Identifier Separation Protocol (LISP) [34] is an example of a network-
based approach. Host Identity Protocols (HIP) [91] is an example of a
host-based protocol. Mapping and encapsulating-based approaches have
the benefit that they work on top of Internet Protocol version 4 (IPv4) as
well as on top of IPv6. In addition, mapping and encapsulating schemes
do not require changes to the core routing of the Internet. In this the-
sis we concentrate on identifier-locator split protocols that implement the
mapping and encapsulating scheme and in more detail to host-based ap-
proaches, which use additional identifiers that are used in and above the
transport layer. Additionally we concentrate on the problems caused by
the mobility and the related solutions.

We start with a study on the usage of the Portable Operating System In-
terface for uniX (POSIX) socket Application Programming Interface (API)
(aka. Berkeley sockets). We gathered statistics on the usage of functions
and definitions in application source code related to network communica-
tions. We selected Long Term Support (LTS) Ubuntu distribution versions
and the bleeding edge version Maverick Meerkat (10.10) as our source for
applications and their source code. Based on these statistics we draw out
a image of how networking is handled in current applications. The main
goal of this study is to find out whether we can use current applications
with end-host based identifier-locator split protocols.

While the introduction of identifier-locator split brings us many bene-
fits it complicates resolution systems. Currently we need to resolve Fully
Qualified Domain Names (FQDNs) to locator (e.g., IP-address). With
identifier-locator split we add an additional End-Host-IDentifier (EID) in
between FQDN and EID. Moreover, the usage of identifier-locator split re-
quires all hosts to have resolution records in the system, in comparison to
current DNS that mainly contains records for stationary servers. In prac-
tice this means an extra resolution step with additional complications due
to security and efficiency.

When the connection is made to a host we face a question, whether
to accept the connection or not. The problem there lies in the question:
do we know the host’s EID or not? Furthermore, do we know what is the
purpose of this connection. In our research we use Voice over IP (VoIP)
as an example. VoIP suffers from spit that is similar to email spam. We
show how persistent cryptographic identities with introducers can improve
the situation. The approach is based on distribution of certificates and it

1.1 Problem Statement 3

requires the initiator of the connection to find the trust-path between itself
and the responder of the connection.

Now that we have the connection between hosts we face mobility full
on. The current Internet uses both address families (i.e., IPv4 and IPv6
and some parts use just either. In this transition phase Internet we can-
not guarantee that the connection can survive after handovers. Identifier-
locator split helps in this by masking the mobility behind the EID so that
from the perspective of the application nothing happened. Our study im-
proves the situation by describing a shortcoming in current HIP mobility
specifications preventing cross-family handovers and suggests a simple so-
lution to it that is compatible with Network Address Translation (NAT)ted
networks.

1.1 Problem Statement

The IP was designed in an era when the user equipment was stationary and
scarce. The situation has changed. In the current day Internet there are
ever more devices. Moreover, Internet has a dynamic nature, due to larger
population of mobile users.

Due to the growing number of nomadic users we need a way to contact
users in various addresses in a secure manner. The research community has
proposed Identifier-locator split protocols as a solution for this problem.

Identifier-locator split solves the majority of the problem. However,
the current research leaves open questions: deployment with legacy appli-
cations, secure resolution of identifiers, access control, mobility in multi-
family environments.

1.2 Contributions

The main contributions of this dissertation are:

• Statistics and empirical experiences on the sockets API. We gathered
extensive set of data that we analyzed. The analysis tells us what are
the current practices to use the sockets API in networking applica-
tions. We reported ten interesting findings that include security, IPv6,
and configuration related issues. Based on the findings we conclude
that the Sockets API usage is heterogeneous and that it is difficult to
introduce general modifications to the way applications utilize net-
working features. We partly addressed the extent of this challenge by
suggesting fixes on security and UDP multihoming support.

4 1 Introduction

• Secure resolution system for mobile users. We showed that while there
is much work done on resolution systems for mobile users [86, 33, 4,
81, 15], they lack discussion about how to maintain the information
securely and efficiently. We propose a secure architecture for mobile
clients using identifier-locator split protocols.

• A simple way to identify connections from acceptable parties. We
identified two distinct problems in the proposed solutions using trust
paths that rendered the solutions inefficient. We addressed these
problems by using the self-certifying cryptographic identities of HIP.
Our solution is in a sense a distributed white list based on host iden-
tifiers that identify the incoming connections from friends.

• Unified way to transport certificates with HIP. We provided the spec-
ification for the certificate usage in HIP control packets [42] as an
additional contribution for the paper [137]. This work continues as
an internet draft describing how the hosts can advertise services and
requirements for the services, as part of the services the hosts may
require the usage of certificates [43].

• Statistics and empirical experiences on cross-family handovers with
HIP. It was stated in the specification [93] that the handovers across
IP families is left for further study. Jokela et al. [54] discussed
about the cross-family handovers but presented no performance of
implementation work. Furthermore their primary environment was
FreeBSD. We presented the cross-family handovers with Linux and
specifically concentrated on the fault tolerance aspects of the han-
dovers rather than load balancing. In our work we described the
shortcomings of the specifications and suggested simple solutions for
them.

Statistics and empirical experiences on the sockets API discussed in
Section 3 are based on the published research report [73]. The original idea
for gathering statistics came from Komu, who acted as the editor for the
report. The author handled the gathering and the calibration of the data.
The analysis of the data was carried out as a joint effort.

The secure resolution system for mobile clients discussed in Chapter 4
is based on the published paper [138] 1. The original idea is from the
author but it was further refined jointly with Heer. Implementing the
prototype and measuring the prototypes performance were entirely made

1This paper received the best paper award in the Globecom 2011 - Next Generation
Networking Symposium (GC’11 - NGN)

1.3 Research History 5

by the author. Writing of the paper was a joint effort of the author of this
dissertation and Heer, with the help of rest of the coauthors.

The separation of friends from spitters discussed in Chapter 5 is based
on the research in the publication [137]. The original idea came from dis-
cussions with Gurtov. Author made the prototype implementation and
performed the measurements presented in the publication. Writing was
entirely done by the author of this dissertation. The specification of cer-
tificates in HIP is a joint effort with Heer.

Experiences and experiments with cross-family handovers discussed in
Chapter 6 are based on two publications [139, 140]. The original idea for
the cross-family handovers came from the HIP community and the fact
that the specifications did not discuss about the possibility. The original
prototype implementation for HIP for Linux (HIPL) 2 and the performance
measurements were done by the author of this dissertation. Writing was
done jointly by the author of this dissertation and Komu with the supervi-
sion of Gurtov.

1.3 Research History

The dissertation research was carried out in four projects, Trustworthy In-
ternet (TrustInet), Infrastructure for HIP (InfraHIP), Secure Peer-to-Peer
Services Overlay Architecture (SPEAR) and GoodNet at Helsinki Institute
for Information Technology (HIIT).

Security is seen by many as the primary problem of the Internet today.
While novel solutions are constantly proposed by Internet researchers, the
current rigid Internet architecture makes it difficult to deploy something
new, especially if router modifications are necessary. While the scale of
security problems in the Internet is immense for any single organization to
tackle, the TrustInet project contributed solutions towards a better Inter-
net.

TrustInet project collaborated closely with the Infrastructure for HIP
(InfraHIP) project. ”Infra” in the project name stands for Infrastructure.
The project focused on developing the missing infrastructure pieces such
as Domain Name System (DNS), NAT, and firewall support to enable a
widespread deployment of HIP. The InfraHIP project studied application
related aspects of HIP, including APIs, rendezvous service, operating sys-
tem security, multiple end-points within a single host, process migration,
and issues related to enterprise-level solutions.

2http://hipl.hiit.fi/, 22.9.2012

6 1 Introduction

The SPEAR project attempts to design and develop generic mechanisms
to support P2P services. To achieve this the main focus of the project is
in the integration of support for the HIP based overlay networking envi-
ronment (HIP-BONE) in the HIP architecture. This way services, such as
Peer-to-Peer SIP (P2PSIP) and Peer-to-Peer (P2P) Hyper Text Transfer
Protocol (HTTP), can be supported within HIP architecture.

1.4 Structure of Dissertation

In this chapter, we briefly outlined the main research problems and stated
the contributions of this dissertation. The rest of the dissertation is orga-
nized as follows.

Chapter 2 gives an overview of the used technologies. Section 2.1
presents a brief overview of the resolution mechanims currently in use.
In Section 2.2 we give an overview on IP mobility and dual stack mobility.
Section 2.3 gives the preliminary information on security mechanism used
in this dissertation and an overview on other security solutions supporting
mobility. In Section 2.4 we describe the basics of Host Identity Protocol
(HIP), including the HIP base exchange and the mobility management

In Chapter 3 we present statistical and empirical observations on the
sockets API. In order to understand how network applications behave today,
we analyzed 2187 software packages from four Ubuntu Linux distributions.
We quantified the use of networking-related system calls, structures and
constants. We focused on Berkeley socket API as it is the de facto stan-
dard for most networking applications. With this simple methodology, we
characterized the capabilities of network applications.

In Chapter 4 we discuss how the resolution with the additional identi-
fiers can be handled in an efficient and secure manner. In Section 4.2 we
discuss the problems that a resolution system has to face. We also offer
a general solution to these problems and highlight its properties. In Sec-
tion 4.3 we introduce the details of the resolution system. In Section 4.4
we present a qualitative analysis of the feasibility of our proposal using the
Host Identity Protocol as an example. We also provide a high level analysis
of the processing times in comparison with the observed processing times
of live systems. Section 4.5 gives an overview of the related work.

In Chapter 5 we use spit protection as the means to illustrate how
the persistent identifiers can be used for access control. In Section 5.3 we
discuss about the usage of trust paths to identify friends amongst spitters.
In Section 5.4 we describe the overall system including what is distributed
and by what means. Also the flow of control is described in the system

1.4 Structure of Dissertation 7

when a connection is made between participants unknown to each other.
In Section 5.5 we evaluate the behaviour of the system, i.e., latencies of
how long it takes to gather the one-hop trust path information, and how
much space on the wire does the trust information take.

In Chapter 6 we discuss how to survive mobility in the transitional
phase Internet. In Section 6.3, we outline the shortcomings in current HIP
mobility specifications, propose a simple solution and share our experience
in implementing cross-family handovers with Linux networking stack. We
evaluate performance of intra-family and cross-family handovers for TCP
flows in Section 6.4.

Chapter 7 concludes the dissertation by summarizing the main contri-
butions made in this dissertation and some future work is outlined.

8 1 Introduction

Chapter 2

Background

In this chapter we give brief introduction to the techniques and concepts
used in the later chapters. The related work is described in this chapter.

2.1 Resolution architectures

In order to communicate, the connecting peer must know the IP-address
of the responding peer. In the early days of the Internet it was enough for
the users to have a file that contained all the needed names and addresses.
The Internet has grown significantly from those days and a single file is not
sufficient anymore. DNS was designed to store and resolve theses names,
i.e., FQDNs to the corresponding addresses.

In the following sections we discuss about the current day DNS and
about the suggested systems that may replace or supplement the DNS.

2.1.1 Domain Name System

The DNS forms a hierarchical tree of domain name servers, as it would
be inconvenient to administer the Internet as one. In the hierarchy the
root name servers maintain the top-level domains and they know which
branch, i.e., intermediate name server to contact when information of a
sub-domain is needed and similarly until the leaf, i.e., the authoritative
name server with the needed information matching the FQDN is found.
The data in the DNS is stored into Resource Records (RRs) that contain
the information related to the associated name. Common types of the
RRs are Address (A) for address to a name, Name Server (NS) for the
administrative name server’s address, Canonical Name (CNAME) for alias
of the name and Mail Exchange (MX) for mail server’s name of the domain.

9

10 2 Background

Local name server

Root name server

Intermediate name server

Authoritative name server

Local name server

Root name server

Intermediate name server

Authoritative name server

A) Iterative B) Recursive

1

2

3

4

5 1

2 3

4

5

67

8

Figure 2.1: Name resolution iteratively (a) and recursively (b) in DNS.

The DNS may handle the queries in two ways: iterative or recursive.
First, in the iterative manner (see A in Figure 2.1) the query is sent to the
local name server that queries the root name server and gets the address of
the intermediate name server as the response. Then the local name server
contacts the intermediate server from the response and similarly until the
authoritative name server with the correct Resource Record Set (RRSet)
is found. Second, in the recursive manner (see B in Figure 2.1) the local
name server queries the root name server and the root name server in turn
queries the intermediate name server and the response returns recursively
the same route, hence the name. If the given FQDN cannot be resolved
into an address, a name error is returned 1.

DNS caches can improve the latencies of popular name queries. If the
queried name is not found from the local or the nearest cache the query will
be resolved as explained above. In the case the name is not found from the
cache the latency of the resolution is the same or little longer than without
the cache. Upon receiving of the response the successful response is cached
and the subsequent queries about that name are served directly from the
cache resulting in shorter latencies than without the cache. Caching RRSets
locally can so improve the performance of the DNS.

Although, DNS caches can improve the performance, they can be seen
as a source of problems [56]. Load balancing and mobility are two issues
most affected by the use of caches. In the case of load balancing, it may
be beneficial to distribute the load of one server to multiple servers. This
is easily achieved by letting the DNS return an address from a pool of
addresses in a seemingly random manner. If end-hosts use local caches the
the DNS cannot return a new address as the end-host does not make actual
query to the DNS but uses the previously cached address. Similarly in the
mobility, the end-host uses the address given to it earlier and does not get

1NXDOMAIN response containing RCODE = 3, [8]

2.1 Resolution architectures 11

the current address of the Mobile Node (MN). The issues with the caches
can be solved by using lower Time-To-Lives (TTLs) on RRs that belong to
load balancing servers or MNs, but this effectively strips the performance
benefits of the DNS caches.

Caching can also be implemented for the error cases. In negative caching
the name errors [8] are cached. Negative cache’s records should have low
TTLs as the name could be taken in to use and because storing negative
results for a long time could render the system unusable [110]. This is
caused by the fact that many of the negative answers are caused by typos
and users can make unlimited number of typos or they try to reverse map
IP-addresses that do not have reverse mapping [56].

2.1.2 Domain Name System Security extension

Recently there has been more and more malicious behavior against the DNS
system and also the client population who has to use DNS has increased.
Studies have shown that the legacy DNS is not suitable anymore. This is
because of the administrative needs of the DNS and its lack of fast recon-
figuration [110, 24]. Attack resilience is considered as the biggest problem
of the legacy DNS.

A malicious user can masquerade as a name server by spoofing the
IP-address of a legit name server. It is possible that a name server does
not check the originating addresses of the RRs when inserting a RR to its
database 2. This attack is known as cache poisoning and it allows malicious
users to forged RRs. Domain Name Security Extensions (DNSsec) [29] was
originally designed to protect against attacks such as the ones described
above 3.

DNSsec makes use of public key cryptography and digital signatures in
order to provide authentication of the origin and integrity protection for
the RRs. DNSsec stores the signatures to a new type of RRs called the
Resource Record Signature (RRSIG). DNSsec also adds new header bits to
the legacy DNS messages. With the additional bits the client can tell the
DNS that the response should include the signatures. Upon receiving the
response the client makes additional query to get the used public key and
verifies the signature with the received key.

Although, DNSsec improves the security of the legacy DNS it also in-
troduces a new kinds of attacks [9, 10, 11]. For example, a malicious user
can force the DNSsec enabled name server to waste its resources on cryp-
tographic tasks. Another security problem of DNSsec is called zone enu-

2This is common configuration problem
3For more details about threats against the DNS that the DNSsec solves see [13].

12 2 Background

meration or zone walking. In zone enumeration the malicious user issues
false queries toward the system and finds out the topology of the attacked
network. This works as the DNSsec responds to a non-existent name with
the signed name of the next existing name 4. Only slave servers of the
primary master name server should be able to do zone enumeration and
although the namespace information is public it is considered to be bad to
let outsiders have access to the whole namespace contents [9] [6, p. 356 –
358]. [79] was developed to protect against the zone enumeration attack by
giving a possibility to return a signed 3NSEC record instead of the NSEC
record. 3NSEC record contains the hashed value of the NSEC record.

2.1.3 Performance of Domain Name System

Ever growing client population results in growing namespaces. Growing
client population affects performance and results in the need to have bigger
namespaces. While namespace grows, it has been shown that it does not
grow evenly. Ramasubramanian and Sirer noticed that most of the new
names go into the popular domains such as .com [110]. This on its behalf
skews the load distribution in legacy DNS. This uneven distribution causes
the load of the servers to distribute unevenly, so that the servers admin-
istering popular namespaces have higher load. Pang et al. noticed that
DNS servers with high load usually are more available [102]. This can be
caused by constant maintenance, better hardware and redundant network
connections. They also noticed that most of the users use only a small
fraction of the available servers [102].

Failures in the DNS system can be caused by anything from incorrect
configuration of the servers to simple typos made by users. Albitz and Liu
state that most of the failed queries are caused by improperly configured
servers. Their book also lists the most common configuration mistakes [6].
In the studies made at the MIT they showed that 23 % of the queries get
no answer. This result is affected by the retransmissions in the network. In
their paper Jung, Sit and Balakrishnan found that only 13 % of the queries
actually result in an error [56]. In that study it was noticed that those
errors were caused by missing reverse mappings and incorrect NS records.
In their paper they suggest a modification to the DNS that could improve
the performance of the legacy DNS system’s root servers. The improvement
was suggested because they noticed that from 15 % to 27 % of all the root
server traffic results in negative answer and that most of these errors were
caused by typos pointing to non-existent names. These errors could be

4the next NSEC record

2.1 Resolution architectures 13

from users but also from incorrectly implemented resolvers. They suggest
that intermediate servers should refuse to forward mall-formed queries.

Currently users have more and more mobile equipment and they have
the need to be contacted on the move. Mobility can cause user’s IP-address
to change from network to network depending on users movement. The
legacy DNS can be considered too static for this kind of usage. Because
DNS was designed when the equipment was more or less stationary, it was
not taken in to account that someday fast user-based updates of the RRs
could be needed. For example a user could use a VoIP software on a mobile
equipment. If a call is made trying to contact the user the system has to
have a way to resolve user’s current address. This can be implemented in
many ways, but the idea in most of them is to use one static server called
RendezVous Server (RVS). In this approach the user’s RRSet points to this
RVS and the user updates its current address directly to the RVS.

2.1.4 DNS over Distributed Hash Tables

For the reasons, described in the previous section, the research community
has proposed supplementary systems and even systems that could replace
the DNS. The main concern is the performance, which can be divided into
categories: availability, attack resilience, lookup latency, failure rate, and
load distribution.

Availability : In the legacy DNS a malfunctioning or down server can
effectively separate the client from the network. The separation might
not be complete depending on the server that is down. The client might
be able to resolve names of the local network or names in some partition
of Internet. Although, the client cannot use DNS to resolve the names to
addresses, it may be possible that the connection to the peer could be made
if the client has some other way to resolve names. DNS caches can be used
to provide this. While caches are effective in providing resolutions, they can
be problematic as discussed in Section 2.1.1. DNS over Distributed Hash
Table (DHT) systems can be considered to have benefits in this category as
DHTs are self-healing and they support replication of data they store. This
means that the DHT is not affected by the churn. In overall the distributed
systems can perform better in this category.

Attack resilience: This category is partly a sub-category of the avail-
ability, because of the Denial-of-Service (DoS) attacks. The main idea in
DoS is to flood the target with so much bogus work that the target cannot
reply to any valid queries. In the legacy DNS it is fairly easy for an attacker
to find the attack points that have significant effect on the system perfor-
mance, when the attack succeeds. In a DHT based system it is harder for

14 2 Background

the attacker to find a weak point. Rest of this category consist of attacks
targeting stored data. In the legacy DNS it is hard for an attacker to inject
false data to the servers, but the attacker could spoof answers from DNS.

Lookup latency : Latency is considered to be the time between sending
of an query and receiving the answer from the resolving system. There
are several things that affect the latency, e. g. the usage of caches and
DNSsec. The caches tend to lower the latency but may result in stale
records as discussed in 2.1.1. If the client wants to be sure that the answer
is completely valid, it needs to query all the keys and the signatures up to
the root level and this can result in significantly longer latencies.

Failure rate: This category considers the availability of the data. Failure
rate is an estimate of the amount of negative answers from the system, like
the name error message discussed earlier in 2.1.1.

Load Distribution: This category considers the distribution of RRSets
in the system. In the legacy DNS the hierarchy was designed so that the
data would distribute in an even manner to the name servers. It has been
shown that this does not work in the current DNS. In the DNS over DHT
systems the DHT provides the better balance for the load by hashing the
key under which the value is stored.

DHTs are distributed systems that provide decentralized storage ser-
vices where data is saved in key-value pairs that are distributed into the
system based on their key. In other words, DHTs provide scalable and
failure tolerant storage systems. DNS over DHT systems can handle DoS
attacks better than hierarchical legacy DNS because there is no hierarchy
in the system and because the data is replicated to a set of servers, usually
from 6 to 8 servers depending on the underlying DHT. Replicating servers
can also be chosen in pseudo random manner. This makes it harder for a
malicious user to bring down the system as there is no single attack point
in the system. A malicious user would have to bring down a large set of
servers before effect of the attack is noticeable [110].

Load balancing in the DNS over DHT is better than in the legacy DNS.
This is caused by the consistent hashing that the DHT systems use. In
DHT systems the keys are hashed before the systems know which node
should save the key-value pair. This results in a fairly even load balance
throughout the system. In the legacy systems the storing server is decided
over the hierarchical parameters. In other words the server that controls
that part of the namespace stores the data. In the DNS over DHT systems
the zone data is basically removed and there is no one node handling certain
part of the namespace.

One of the biggest problems of the DNS over DHT systems is the usage

2.1 Resolution architectures 15

of the DNSsec. The systems are still required to have access to a secret
key belonging to a well known Internet Service Provider (ISP) or get a
well known ISP to sign the DNS over DHT system’s RRSets to be trusted.
Ramasubramanian and Sirer propose that the signature could be bought
from a respectable namespace owner [110]. Nothing prevents the user from
signing the RRSet with their own key but then the problem becomes similar
than in Pretty Good Privacy (PGP), i.e., whose signature is trustworthy.
Above all is the fact that the DNSsec is not that widely deployed.

In the following sections we give a short overview on DHTs and on se-
lected DNS over DHT systems. The selected systems approach the subject
from different angles. DDNS [24] can be described as a distributed cache
for the legacy DNS. Co-operative Domain Name System (CoDoNS) [110]
on the other hand can be described as a peer-to-peer replacement for the
legacy DNS. Although, CoDoNS can also cooperate and act as a distributed
cache for the legacy DNS.

Distributed Hash Table

Peer-to-Peer (P2P) systems are overlay networks for storing and relay-
ing data. P2Ps systems can be divided into two sub-categories: unstruc-
tured and structured. Unstructured systems do not impose any structure
to the overlay networks, hence the name. Unstructured overlays are re-
silient to churn but are not efficient when searching unpopular data. Popu-
lar unstructured networks include: Napster [28], Gnutella [58], Freenet [19],
eMule/eDonkey2000 [88], BitTorrent [20]. Structured systems impose struc-
ture for the overlay network, e.g., DHTs such as Chord [131], Tapestry [147],
and Pastry [119]. In this thesis we concentrate on the structured overlay
networks.

In structured systems the topology is tightly controlled and any file
can be located in a small number of overlay hops (commonly in O(log n)
hops). Structured systems usually form a ring geometry, but can form trees,
hypercubes, etc... Nodes in the structure overlay get an identifier, that is
usually formed by applying a hash function to the nodes IP-address. This
identifier determines the nodes place in the topology of the overlay. When
data is stored into the overlay or when data is searched from the overlay,
the data is hashed into an identifier, similarly as when creating a node
identifier for a participating node. This data identifier is then routed to
the closest higher node identifier and the data should reside on that node.
This works as all the nodes maintain a routing table, in Chord this is called
the finger table, which points to nodes further in the node identifier space.
Usually the finger table’s first entries point closer in the identifier space and

16 2 Background

farther we go in the table farther the nodes are in the identifier space 5.

When a node joins the system it uses a consistent hash to generate its
node identifier. It then contacts the overlay in order to find its successor’s
identifier. This node is then marked as the new nodes successor. The
joining node then takes over part of the successors load. When a node
detects a failure on a finger that is in its finger table, the node uses the
next best finger to forward traffic. If the finger has been silent for a while,
it is removed in the routing maintenance loop.

Bamboo-DHT

In this section we give a brief explanation of DHTs using the Bamboo-DHT
implementation. Bamboo-DHT is chosen as later chapters use it, or the
OpenDHT instantiation of Bamboo-DHT, or systems that use the similar
interface. Little differences exist in the exact syntax and the handling of
the TTL depending on the underlying DHT infrastructure, but the basics
are the same.

Bamboo-DHT was originally based on Tapestry [146], but is currently
considered as a Pastry [120] like system or as a completely new system. In
Bamboo-DHT the nodes of the overlay network are organized as a ring as
in [131]. In the ring nodes are assigned identifiers based on their IP.

Bamboo-DHT provides a simple put, removable put, get and remove
API. Put messages are defined as put(key, value, TTL) and get messages
are defined as value = get(key). Removable put is defined as put(key, value,
H(secret), TTL). If the secret parameter is left NULL the removable put
message is treated in a similar manner as the regular put. The remove
message is defined as rm(key, H(value), secret, TTL). When a put message
is delivered to a node in the overlay, the message is routed to the responsible
node that stores the value. The network finds the responsible node by
comparing the key and the node IDs. The node with closest identifier to
the used key stores the value.

Bamboo-DHT supports replication where the data is saved to the re-
sponsible node and to its replicas. In the case where the subsequent put
message has same key and value as the original put, the TTLs of the mes-
sages will be compared and larger of the TTLs is updated to the DHT.
In case where only the key is same but the values are different, the value
will be saved under the same key. Every key-value pair has a TTL value
that is a value between 1 and 604,800 seconds. TTL tells the system how

5common way to create this is to have the first finger point to identifier 2 + 20 or the
closest node with a higher identifier. The second to 2 + 21 and the third to 2 + 23 and
so on

2.1 Resolution architectures 17

long it should be stored in the system. Remove message should have longer
TTL than the original put message. This is because the replication can
cause the original put to reappear. This happens when the put is made
and replicated and one of the replicating nodes goes down. If the TTL
is shorter than in original put, the remove message is removed from the
system before the replicating node comes back. If the remove is not stored
over the TTL from the system the replicating node starts the replication
process and the key-value pair will reappear.

Removable put includes the hash of the secret. The hash is used to
identify the original issuer of the put. In the remove message the originator
of the put message reveals the secret to the system. Hash of the value is
used to identify the correct value under one key in cases where there is
several values.

Co-operative Domain Name System

CoDoNS servers work on top of Pastry [120] and Beehive [111]. CoDoNS
uses the same message format and the same protocol as the legacy DNS
system, making it easy for them to inter-operate. CoDoNS servers are
organized as a ring and the nodes are assigned an identifier, which is used
to tell which node is the home node for a given RRSet’s keys hash. CoDoNS
system offers fault tolerance by replicating the RRSets to n number of
adjacent nodes from the key’s home node. In the case where the home
node of the RRSet goes down, the next node in the ring will take its place
in the system.

Users can directly insert records to CoDoNS. When a client issues a
query to the CoDoNS system, the contacted node will reply immediately,
if the node is the key-value pair’s home node, otherwise the message will
be routed to the responsible home node. If the home node does not have
the RRSet queried, the home node forwards the query to the legacy DNS
and from that answer the RRSet will be cached to the home node and
pro-actively checked from legacy DNS (see fig. 2.2).

CoDoNS servers support direct caching where the users can insert RRSets
only to their own CoDoNS server and instruct their server to serve RRSets
rather from their own cache than from the whole system. CoDoNS system
also supports reverse queries where an IP-address is resolved to a name
rather than a name to IP-address. Most of the DHT based systems have
a TTL to limit the lifetime of the key-value pairs. CoDoNS system does
not have its own TTL but instead uses the RRSet’s TTL to identify when
it needs to update RRSet from legacy DNS. Because of the load balancing
done in legacy DNS the CoDoNS system will not store RRSets with low

18 2 Background

Client

Legacy DNS

CoDoNS

Home node

Cached reply

reply from
home node

Query

Reply

Figure 2.2: CoDoNS architecture. Client sends a query to CoDoNS and
the query is forwarded to the home node. If the home node does not know
the name queried, it asks it from the legacy DNS. If a node on the way
finds the answer from its cache it may answer directly (dashed line).

TTL. Usually RRSets that have low TTLs are used with load balancing or
indirection systems. CoDoNS system supports negative caching, where the
Non-Existent Domain (NXDOMAIN) messages are cached to the system
for short periods of time.

Ramasubramanian and Sirer tell in their studies that their system can
outperform legacy DNS system, at least when considering the bandwith
and the storage requirements. In their paper [110] they say that CoDoNS
system uses less storage base and less bandwith. Exact reason for this
result was not clear, because the protocol is similar and uses the same
message format as the legacy DNS. Similarly as in DDNS, CoDoNS is also
more attack resilient than legacy DNS. In CoDoNS system the latency can
be shorter than in legacy DNS, but it can also be much higher. Higher
latencies occur when the value is not found from the system and the query
is forwarded to the legacy DNS. Then the latency includes all the routing
inside the CoDoNS system and the forwarding and routing in legacy DNS
and the way back.

DDNS

DDNS6 is a Domain name system that uses DHash and DNSsec. DDNS

6Not to be mixed up with Dynamic DNS defined in [141]

2.1 Resolution architectures 19

uses DHash’s ability to balance load and the fact that DHash is self-healing,
meaning that it does not suffer from the churn, i.e., leaving and joining of
nodes. This is provided by the underlying DHash, which is an overlay on
top of Chord [131]. In Chord the nodes are organized in a ring like fashion.
Every time a get message is issued to a node it will be routed through
the ring to the node responsible for storing the key-value pair. When the
response is routed back, the nodes along the way save the key-value pair
to their caches and so shortening the answer time of subsequent queries.
To provide the robustness DHash replicates the key-value pairs to a pseudo
randomly chosen set of six servers. DDNS uses Secure Hash Algorithm
variant 1 (SHA-1) hash of FQDN concatenated with resource type as the
key to store the value, e.g., SHA-1(www.testcompany.com—A).

For every put and update message in the DDNS, DHash verifies the
signature before accepting the message. The same applies on the client
side, the client should verify the signature included in the result of the
query before using it. Cox et al. propose to publish keys in KEY record
type for popular names, to minimize the need to do verifying along the way
for every node the query traverses [24].

While DDNS seems to be efficient replacement for legacy DNS, it lacks
support for load balancing features implemented in legacy DNS 7. Legacy
DNS is capable to balance load to a set of servers by returning the addresses
in random order. Some hosts such as www.google.com use round robin style
load balancing where addresses revolve. Moreover, DDNS is distributed
but it still needs the authoritative hierarchy to supply it signatures for the
DNSsec. When a user wants to add a domain name to the system, the user
needs to have access to some well-known ISP’s secret key. In reality the
client can ask the well-known party to sign its RR or buy the signature from
a well-known and trusted company like Verisign. If there is no Certification
Authority (CA) hierarchy, Web Of Trust (WOT) [2] approaches could be
adopted.

Cox et al. [24] show in their results that the distributed systems are
more resistant to DoS attacks. This is based on the fact that it is harder
for the malicious user to find a single weak point in the system where
all the machines are as worthy as the other. So no one machine is more
important than the other. Cox et al. also showed in their paper [24] that
the underlying DHash implementation improves the latency for the popular
name queries. This is a result of the Dhash’s way of caching answers on the
way. Every node that routes the query to the node that stores the queried

7Here the load balancing is considered as a service for the owner of the RR and does
not mean how the load is distributed over the DNS

20 2 Background

value, stores the answer for short times on their local caches.

2.1.5 Comparative performance

It is difficult to compare the legacy DNS and the DNS over DHT systems.
Performance information has been gathered from the legacy DNS system
by multiple research groups and the performance data from the DNS over
DHT systems were gathered from small systems compared to the legacy
DNS using different test methods and the size of the systems. Performance
tests done with DDNS were results from a rather small setup and of limited
time interval. In CoDoNS system the performance results were based to
a circa 70 server setup on planetlab 8 with a load from varying group of
volunteer test users.

When discussing about the latency, the legacy DNS outperforms the
DNS over DHT systems. For example, studies made by Cox et al. show
that DDNS system has median latency of circa 350 ms and the legacy DNS
has median latency of circa 43 ms [24]. Pappas et al. show similar results
in their studies [103]. In their paper the results were similar in normal
operation conditions. When they introduced high node failure to the sys-
tems, the DNS over DHT systems outperformed the legacy DNS. This is
a result from the replication features in the DHT systems. Pang et al.
studied the DHT based systems in a more general manner and compared
the results against the similar setups with the legacy DNS. In their studies
they showed that the DHT systems suffer from their maintenance loops.
Over certain intervals the DHT systems fix their routing tables and check
if their neighbor lists are up to date. In their studies they showed that
the performance of the DHT based systems can be improved by extending
the maintenance interval. The extension also had its downside, by extend-
ing the maintenance interval the self-healing features of the DHT suffered,
making the system less available.

Gupta et al. showed in their study [36] another way to improve the la-
tencies in DHT based systems. They suggested a one-hop routing scheme.
In that every node in the network would have complete information of the
network. Their studies showed that one-hop routing scheme can handle sys-
tems consisting of even 2 million nodes. For systems larger than that they
introduced two-hop routing scheme. These schemes introduced a pseudo
hierarchy to the normal the DHT ring. The ring was divided into slices
and they were divided further into units. Both slices and units had leaders,
chosen from the middle of the slice or unit. The leaders of the slices multi-

8https://www.planet-lab.org/, 22.9.2012

2.2 Mobility 21

cast the routing table changes to their subordinate unit leaders and other
slice leaders. The unit leaders multicast routing table changes to their sub-
ordinates. This is done to reduce the traffic caused by the routing table
changes in the system. Gupta et al. also discussed about the supernode
and inner ring of supernodes concepts. They suggested that there could be
a formally maintained inner ring of supernodes. These supernodes would
be maintained by ISPs and governments. The intention was to provide a
stable base system where every one could join in.

2.2 Mobility

The Internet was designed in an era when the hosts did not move. The
closest thing to mobility was the unlikely relocation of hardware to a new
physical location. Moreover, the IP-address of the host changed in the
relocation. In the current Internet, due to the increasing popularity of
wireless networking, mobility gains popularity in an ever increasing speed
introducing a need to keep the host reachable no matter where they are,
and to keep the ongoing connections intact during the mobility events.

In the following sections we discuss about the mobility as it is handled
in the current day specifications.

2.2.1 Mobile IPv4

The Mobile IP version 4 (MIPv4) offers transparent mobility for hosts,
meaning that MIPv4 does not require any changes above the network layer.
MIPv4 defines three entities. First, the MN that is a host that changes
the point of attachment in the network. Second, the Home Agent (HA)
that is a router on MNs home network that maintains the current location
information for the MN. Third, the Foreign Agent (FA) that is a router
in a visited network which provides routing and tunneling services for the
visiting MNs.

In the MIPv4 protocol the host has two addresses, a permanent one
(home address), and an address (Care-of-Address (CoA)) that changes ac-
cording to the point of attachment. The host can be contacted via the
host’s HA with the hosts home address. The host’s HA then forwards the
traffic to the hosts current CoA obtained from the FA.

The mobility agents (HA, FA) advertise their presence in the network by
periodically sending advertisements in Internet Control Message Protocol
(ICMP) Router Advertisements. From these messages the MN discovers
the network it is in. If the network is the MN’s home network the MN
operates without mobility services. Upon returning to home network MN

22 2 Background

deregisters its care-of address from the HA. If the network is foreign the
MN obtains a new care-of address from the FA of the visited network or
by address assignment mechanisms, such as Dynamic Host Configuration
Protocol (DHCP) (see Figure 2.3, step 1). The new CoA is then registered
with the MN’s HA (see Figure 2.3, step 2). When Correspondent Node
(CN) sends datagrams to the MN’s home address the HA of the MN in-
tercepts the datagrams and tunnels the datagrams to the MN’s CoA (see
Figure 2.3. steps 3 and 4). The FA in the foreign network then de-tunnels
the datagrams and sends them to the MN. When the MN replies to the
CN, it can use its current CoA and tunnel all its packets through the HA.
Perkins et. al. describe an extension (“route optimization”) to the Mobile
IP (MIP) which allows the MN to communicate with the CN directly [108].
If the MN in a foreign network initiates a connection it is generally done
using standard IP routing mechanisms.

MN

MN

CN

HA

Internet
Visited network

Home network

1)

2)

4)

3)

5)

Figure 2.3: Message flow of Mobile IP.

2.2.2 Mobile IPv6

The Internet is depleting its addresses in alarming speed. IPv6 has been
defined to offer a larger address base. The Mobile IP version 6 (MIPv6) [52]
builds upon the lessons learned from the MIPv4. Although, MIPv6 is very
similar to MIPv4 and shares many features with MIPv4, MIPv6 is fully
integrated to IPv6 and offers many improved features over MIPv4.

The main difference in the MIPv6 is the support for the routing op-

2.3 Security 23

timizations by default. By using the routing optimizations MIPv6 avoids
the overhead from the triangular routing from which the MIPv4 suffered.
Another difference is the dynamic HA discovery.

2.2.3 Dual-stacked hosts

From the existence of the two IP families rises dual stacking and cross-
family mobility. In the current Internet we have hosts that implement both
IPv4 and IPv6 protocol stacks. The protocol families can run on their own
stacks or they can be implemented as a hybrid stacks which accepts both
families. Usually hybrid stacks are IPv6 internally and internally encode
the received IPv4 addresses to formats such as IPv4-mapped address[45].

This ability to work with both of the families at the same time presents
problems for mobility. The current Internet has areas that support only
IPv4, IPv6, and some areas support both. When MN moves into this kind
of network we cannot guarantee that both of the hosts communicating are
in areas supporting compatible addressing.

Dual-stacked MNs could use MIP but the MNs would have to send sig-
naling messages for both protocol versions upon every handover. Moreover,
the network administrators would have to run HAs and FAs for both pro-
tocol families. Dual-Stack Mobile IPv6 (DSMIPv6) [126] proposes a way
to use MIPv6 to support both families.

2.3 Security

Thus far we have been discussing about the connectivity and mobility of
the hosts. In this Section we discuss about the relevant security protocols
for securing the connectivity and the mobility of the hosts.

2.3.1 Certificates

A certificate is a signed data record containing a name and a public key.
A certificate can be interpreted to mean “the key speaks on behalf of the
issuer”. The certificate can be used to verify that a public key belongs to
an individual.

This section gives a brief introduction to digital certificates, such as
X.509.v3 [49] and Simple Public Key Infrastructure (SPKI) certificates [31].

X.509.v3

X.509 is used to bind the public key to the identity of the entity, to whom

24 2 Background

the certificate was given. X.509 certificates comprise of many fields, com-
mon to all certificates. In addition to the common fields X.509 has many
extensions, especially version 3, which can be seen as the de facto standard
for certificates.

The issuer and the subject are defined with Distinguished Name (DN).
DN contains many possible fields, including fields such as Country (C),
Organization (O), Organization Unit (OU), Common Name (CN), Surname
(SN). DN was originally designed for the X.500 directory service, which was
meant as a global directory of entities. This was never realized and now
some fields may have contracting meanings in different systems. For the
certificates the combination of these fields has to identify the subject or the
issuer inside the CA.

X.509.v3 has many extensions. Some of the extensions are marked as
critical and they have to be supported on every entity supporting X.509.v3.
Usually the critical extensions extend some of the basic fields, such as the
issuer, or the subject. The most common extensions are CA, Alternative
Name, Key Usage, Extended Key Usage, and Certificate Revocation List.
The CA-extension informs that the certificate in question contains the pub-
lic key of the CA. Alternative name or general name contains additional
identifying fields that do not fit to the CN, such as FQDN, IP, or Uni-
form Resource Locator (URL). Alternative name is a critical extension and
can be used in Internet Key Exchange (IKE) in-place of DN. Key usage
extension specifies for what purpose the key, contained in the certificate,
is for. Extended key usage specifies more usages for the keys. Certificate
Revocation List (CRL) distribution points extension is a field that points
to the verifier from where to check if the certificate has been revoked.

Simple Public Key Infrastructure Certificates

Simple Public Key Infrastructure (SPKI) certificate is a signed message.
The message contains five elements (5-tuple), issuer, subject, delegation,
authorization, and validity dates. From these elements only issuer and
subject are mandatory while the rest are optional. Issuer is defined as the
public key or the hash of the key of the entity who gives out the certificate.
The private key of the issuer is used to sign the message and so to create
the certificate. Subject is the entity that receives the rights given with
the certificate. Subject is defined as the public key or the hash of the key
of the entity. The subject, whose key is presented in the certificate, is
the only entity that can use the certificate. The delegation field informs
about the right to delegate the rights given in this certificate (also known
as propagation). If the issuer gives the delegation rights to the subject,

2.3 Security 25

the subject can then issue certificates to its subjects. The authorization
contains the access/use rights given to the subject. These rights can be
freely defined by the issuers. Validity dates define the validity period of the
certificate.

If the issuer’s private key is compromised the certificate needs to be re-
voked. SPKI does not have revocation lists which are maintained centrally,
such as X.509.v3 has. SPKI allows every issuer to maintain and inform
about the location of its revocation list but this is not mandatory.

SPKI certificates are expressed as S-expressions, which is Lisp-like no-
tation for message formats. The S-expressions can be converted to binary
format, for transport, and back. The S-expressions and the binary formats
serve the same purpose as the Abstract Syntax Notation One (ASN.1)’s
Basic Encoding Rules (BER) [59] for X.509.v3.

The access rights often create arbitrarily long certificate chains. The
verification and handling of the chains may become a tedious task for the
entities. For this reason the SPKI defines a scheme called the 5-tuple
reduction. In the reduction the service producer’s server, receiving the
chain, uses the reduction rules to calculate a single certificate. SPKI also
allows the issuer to create a Certificate Result Certificate (CRC). This
simplified certificate has the same rigths as the original certificate chain.

2.3.2 IP security

IP security architecture (IPsec) in general is used to create virtual private
networks between different networks or between network and a host. For
example, a nomadic host may need access to the a network from the outside,
with IPsec it is possible to create an encrypted tunnel between the network
and the host and allow the host to access the network. It may also be too
expensive to build a dedicated network between two networks. IPsec can
be used to build an encrypted tunnel between the networks so that it looks
like the networks are the one and the same.

IPsec-protocol works on the network layer and extends the already ex-
isting IP headers offering a possibility to protect the upper layer protocols.
IPsec negotiates a Security Associations (SA) between the communicat-
ing parties. The SA defines the receiver’s IP-address, protocol identifier,
and the Security Parameter Index (SPI). The SPI differentiates multiple
simultaneous IPsec connections between hosts. The SAs can be either in
transport mode or in tunnel mode. In transport mode IPsec adds headers
of its own between the original network layer and upper layer headers. In
the tunnel mode IPsec encapsulates the upper layer packets in whole. SAs
can be added in layers, for example one SA can protect traffic between

26 2 Background

the gateways and another SA inside the first one protects the connection
between the end-points.

In the next sections we briefly describe IPsec architecture and its en-
cryption, authentication algorithms and key management. In the last sub-
section we discuss about the differences of IKE and Internet Key Exchange
version 2 (IKEv2) [60].

Architecture

Data transfer in TCP networks can be protected in many ways. The used
ways depend a lot on the layer needing the protection. IPsec is used to
protect the packets on the network layer. IPsec comprises of three ma-
jor parts, the Encapsulated Secure Payload (ESP) [66], the Authentication
Header (AH) [65], and the IKE [39] (see Figure 2.4). AH is used for au-
thentication and integrity protection, ESP is used to encrypt and tunnel
the data, and IKE is used to manage the keys needed for the authentica-
tion and encryption. IKE itself comprises of two protocols, Oakley [99] and
SKEME [75] which work according to the Internet Security Association and
Key Management Protocol (ISAKMP) [87] framework.

AH and ESP need to negotiate multiple parameters between the com-
municating parties. These parameters include, the used encryption algo-
rithm, the used keys and the used options. In IPsec SAs are used to manage
these parameters. The SA is defined to be a one-way connection that of-
fers security for the transported data. For this reason, one is needed for
the both directions. IPsec keeps track of the ongoing connections in the
Security Association Database (SAD). All incoming and outgoing packets
are checked against the SAD to see if the messages need security services.

The protection that IPsec offers is based on the security policies, which
are defined in the Security Policy Database (SPD). SPD is maintained by
the network administrator who can tell which types of packets need security
services. The SPD contains lists of selectors that define which packets
belong to certain rule. The rules can accurately define which packets get
security services [64], i.e., the SPD selectors are used to define which SAD
entries should be used to protect the traffic.

Protocols

AH offers authentication and integrity protection services for IP packets.
ESP is used for the confidentiality for the IP packets and authentication
when needed. These protocols can be used separately or they can be com-
bined so that the desired level of security is achieved. Neither of the pro-

2.3 Security 27

SA

SPD

IKE

AH/ ESPSAD

IPSec module 1

SPD

IKE

AH/ ESP SAD

IPSec module 2

Figure 2.4: IPSec architecture.

IP AH TCP Payload

New IP AH Orig. IP TCP Payload

Transport mode

Tunnel mode

Figure 2.5: Authentication Header.

tocols are fixed to certain cryptographic algorithms, instead the used al-
gorithms can be chosen based on the needs. For compatibility reasons a
certain set of algorithms is defined that all the implementation must sup-
port. For AH the defined algorithms are Message Digest series 5 (MD5),
SHA-1 and others [83, 84, 109]. For ESP, Data Encryption Standard - Ci-
pher Block Chaining (DES-CBC) and others are defined [82, 107]. AH also
offers replay protection in addition to authentication and integrity protec-
tion.

Integrity and authentication in AH are implemented as additional header
to the IP header (see Figure 2.5). AH uses one-way algorithms and secret
keys to guarantee integrity and authentication. The specifications also al-
low public keys to be used with AH. Against replay attacks AH includes a
sequence number in to its header that is increased monotonically on every
new packet.

Sender computes the needed values for the authentication from the IP
packet’s fixed headers, also the AH header is included in the computation.
Changing fields, such as the IP hop counter are treated as zeros. After the
computation the header is added to the IP packet and the packet is sent
to the receiver. Upon receiving the packet the receiver then verifies the
values. The verification is done similarly as in sending.

28 2 Background

IP ESP TCP Payload

ESP−tailNew IP Orig. IP TCP ESP−AH

Transport mode

Tunnel mode

ESP−tail ESP−AH

ESP Payload

Figure 2.6: Encapsulated Payload.

ESP offers confidentiality services for IP packets, also a possibility for
authentication and integrity protection is offered. Authentication and in-
tegrity protection are two services that work together and from here on in
this section they will be referred only as authentication. ESP has a replay
protection mechanism similar to AH. Confidentiality can be used without
authentication but this is not encouraged, as the confidentiality only pro-
tection is vulnerable to active attacks [16]. Authentication is offered by
using the headers defined for AH. ESP encapsulates the original packets
between two headers (see 2.6). The ESP tail has three fields, padding,
length of padding and next header. Padding field is used when a block
cipher is used and the encrypted data has to be of certain length.

When sending an ESP packet the original packet is encapsulated includ-
ing the original IP header. Possible padding is included and the packet is
encrypted. As a final item the used initialization vector is added to the end
of the encrypted packet. If authentication is needed it is computed simi-
larly as in AH with the distinction that only the ESP header, the encrypted
payload and the ESP tail are included in the computations.

ESP definitions define the following encryption algorithms to be imple-
mented: Triple-DES (3DES) [22], DES-CBC [21], Rivest Cipher 5 (RC5)
[116], CAST [3], International Data Encryption Algorithm (IDEA) [78],
Blowfish [123], and Rivest Cipher 4 (RC4) [115, 109]. For the authenti-
cation the same algorithms are defined as for AH (see above). It is also
possible to use NULL in authentication and confidentiality. However, it
is recommended that they should not be NULL at the same time. NULL
encryption, for example, is useful for testing.

Key Management

IPsec uses cryptographic functions that need keys to work. Key manage-
ment is one of the main problems in cryptography and it includes key
creation, distribution, storage, and revocation, In this section we describe
the key management from the IPsec perspective.

Public keys are used in many protocols and applications. These appli-
cations are called Public Key Infrastructures (PKIs) when managing large
numbers of keys. PKIs are based on CAs who verify and authenticate

2.3 Security 29

public keys. To start confidential communications the parties need to be
authenticated in order to get the proper rights to get the needed keys to
encrypt the traffic. These kinds of protocols are usually called as authenti-
cated key exchange protocols that are further separated to connection and
connectionless models.

IKE was designed to offer general authentication and key exchange for
IPsec. IKE comprises of two different parts: Oakley, and SKEME.

SKEME is designed specifically for IPsec. SKEME describes a way to
transport the keys to the communicating parties. SKEME can use PKIs
and it also supports pre-shared keys. The pre-sharing can be done by
manually entering the keys or by distributing the keys with Kerberos [68].
With public keys, SKEME uses Diffie-Hellman to draw the keys [112].

SKEME has four different modes, basic with public keys and Diffie-
Hellman, key exchange for public keys without Diffie-Hellman, key ex-
change for pre-shared keys with Diffie-Hellman and fast re-keying for sym-
metric keys.

The SKEME protocol itself has three phases: SHARE, EXCH, and
AUTH. In SHARE phase “half-keys” are exchanged. These half-keys are
protected with public keys. Secret key K0 is hashed from the half-keys. The
shared secret key exists when moving to EXCH phase. Depending on the
mode either Diffie-Hellman public values, or random values are distributed
in the EXCH phase. EXCH phase completes with the computation of the
Diffie-Hellman values (i.e., depending on the mode). The exchanged values
are verified in the AUTH phase. The verification is done with the shared
secret key created in the SHARE phase.

Diffie-Hellman has two parameters p and g that are created from the
chosen cyclic group G. Both parameters p and g are public. Parameter p is
prime number and parameter g is an integer that is smaller than parameter
p. Parameter g can create every element from 1 to p-1 by gn mod p where
n is between 1 and p-1. This way all the numbers g mod p, g2 mod p, · ·
·, gp−1 mod p are different and created from primes between 1 and p - 1

When Alice and Bob want to negotiate a shared secret key with Diffie-
Hellman they start by creating secret random numbers (Alice a and Bob
b). Alice and Bob create the public values using the parameters p, g, and
the random value (phase 1 in fig. 2.7). Alice’s public value is ga mod p and
Bob’s gb mod p, these values are then exchanged (phase 2 in fig. 2.7). Alice
computes a value (ka)b by calculating (gb)a mod p and Bob computes value
(kb)a by calculating (ga)b mod p (phase 3 in fig. 2.7). Now Alice and Bob
share a secret key K because (ka)b = (kb)a = K (phase 4 in fig. 2.7).

Oakley is a key exchange protocol [99] that has a lot in common with

30 2 Background

Alice Bob

g^a mod p g^b mod p

(g^a)^b mod p (g^b)^a mod p

(k^a)^b (k^b)^a

p and gPhase 1

Phase 2

Phase 3

Phase 4 = K =

Figure 2.7: Diffie-Hellman.

SKEME. The main difference to SKEME is the possibility to negotiate
about the key exchange, encryption and authentication and the ability to
create new keys from old keys. The main idea in Oakley is that the sender
starts the negotiation by telling the receiver which algorithms the sender
wants to use and other needed authentication materials. Receiver replies
with his own set of algorithms for use. This negotiation is continued until
there is a common understanding of the used algorithms. Oakley comprises
of three main parts: cookie exchange, Diffie-Hellman public value exchange,
and authentication. Both of the communication parties give one cookie per
key, the cookies are used to form the key ids. This key id is used in the
creation of new keys. Oakley gives keys for IPsec and describes their usage.

The usage of security services needs the SA management and ISAKMP
is designed to negotiate, create, edit, and delete SAs and their parame-
ters. ISAKMP can be seen as generic framework that is not dependent
on the underlying mechanisms. ISAKMP has two phases, SA negotiation,
and protecting the ISAKMP signaling. In the first phase the parameters
for the SA are negotiated, the communicating parties are authenticated,
and part of the keys are created. These elements create an SA called the
ISAKMP SA. ISAKMP SAs are two-way in comparison to IPsec SAs and
they are used to protect the following ISAKMP signaling. In the second
phase security assocations for other security protocols are negotiated. Mul-
tiple IKE SAs can be negotiated with ISAKMP SA because the lifetime of
ISAKMP SAs are longer than IPsec SAs. ISAKMP does not define any
specific authentication of encryption algorithm, This enables clear distinc-
tion between SA negotiation and key management. ISAKMP offers only
basic model for messages which can be changed depending on the payload,
for example, SA, key management, identity, authentication, and random
value.

The Domain Of Interpretation (DOI) [109] defines the contents for the

2.3 Security 31

Phase 1

Phase 2

IPsec SA creation

ISAKMP SA creation

IPsec−tunnel / key exchange

Main Aggressive

Fast New Group and PFS

Protection

Figure 2.8: IKE phases in SA negotiations.

ISAKMP messages when used with IPsec. IKE uses ISAKMP to form a
concrete protocol. The key management protocol attached to ISAKMP
takes influence from Oakley as well as from SKEME, in detail IKE uses
the models defined by Oakley and borrows the public key encryption and
authentication from SKEME. In addition the fast re-keying and random
value exchange are taken from SKEME.

IKE has four main modes, main, aggressive, fast, new group (see fig. 2.8).
The main and aggressive modes are used in the first phase of IKE and the
fast mode is used in the second phase of IKE. The new group mode is not
attached to any phase, because it does not belong to the first or to the
second phase. However, the new group mode cannot be used before the
ISAKMP SA is created. The new group mode is used to negotiate the
new groups for Diffie-Hellman exchange. The used encryption, and hash
algorithms, authentication methods, and Diffie-Hellman groups are nego-
tiated. Three keys are created in the first phase, one key for encryption,
authentication, and for creation of new keys. These keys are not dependent
on the exchanged random values. The keys are computed using the hash
functions defined in the ISAKMP SA and so they are dependent on the
chosen authentication mode.

The main mode is an instantiation of the identity exchange in ISAKMP.
The purpose of the identity exchange is to separate the data for the identity
and from the authentication data. The main mode has six messages. First
two messages create the SA, the next two exchange the Diffie-Hellman pub-
lic values, and the last two messages verify the received values. The first
two messages give the protocol the possibility to negotiate the used encryp-
tion algorithm, hash function, and Diffie-Hellman groups. Four authentica-
tion methods have been defined: digital signature, two different public key

32 2 Background

authentication methods, and one pre-shared secret based authentication
method. The two next messages give the opportunity to create a shared
secret using Diffie-Hellman. The shared secret is used in the creation of
the session keys. Two keys are used for the encryption and hashing. The
last two messages mainly verify the received values. The aggressive mode
is very similar to the main mode but comprises only of three messages.
In these two modes the chosen algorithms have an effect on the message
contents and on the way the session keys are created.

The Diffie-Hellman groups define the public values to be used with
Diffie-Hellman. The groups are used to define primes that the protocol
uses. For this reason the chosen group has an effect on the creation of the
session keys and to their cryptographic strength. First of the groups are
modular exponentiation groups, The second and third groups are elliptic
curve groups over the field GF[2N] (EC2N), Elliptic curve groups over the
field GF[P] (ECP). The groups change depending on the parameters used
to in the creation of the groups [99]. IKE offers four different groups of
whose definition follows the before mentioned groups for Oakley [39].

In the second phase the exchanged messages are encrypted and authen-
ticated. The authentication is based on the chosen hash function. The fast
mode is used when creating a SA for IPsec. Every negotiation ends to the
creation of two SAs, one for each direction. The purpose of the negotiation
is to agree on number of IPsec parameters, exchange random values, and to
identification of the traffic belonging to this SA. Random values are used
in the creation of the session keys that are inherited from the shared secret
that was created in the first phase using Diffie-Hellman.

IKEv2

IKEv2 offers the same basic services as version one: authentication and key
generation, cryptographic algorithm negotiation, and re-keying services.
IKEv2 comprises of two phases, out of which the first is further divided
into two steps 1.1 and 1.2.

In the first phase 1.1 the participants create the IKE SA and compute a
master secret (see Figure 2.9, steps 1 and 2). In the phase 1.1 the initiator
sends the chosen SPI value (in HDR), the list of supported crytographic
algorithms (SAi1), Diffie-Hellman values (KEi) and the nonce (Ni). Re-
sponder replies with the chosen cryptographic algorithm (SAr1)) based on
the initiators list (SAi1), Diffie-Hellman values (KEr) and the nonce (Nr).
In the phase 1.1 the responder can request a certificate for authentication
from the initiator. After these messages are exchanged, each peer gener-
ates a SKEYSEED based on the exchanged Diffie-Hellman values and the

2.3 Security 33

Figure 2.9: IKE version 2 message flow.

exchanged nonces. From SKEYSEED the master secret is created, from
which the IPsec SA keys are created in phase 2. The phase 1.2 is protected
by the keys created in Phase 1.1 and in Phase 2 (in Figure 2.9 marked with
SK...).

In the phase 1.2 the participants authenticate each other and negotiate
the used IPsec algorithms (see Figure 2.9, steps 3 and 4). In the messages
peers exchange values for pre-shared secrets for authentication (AUTH), the
cryptographic algorithms list and response (as in phase 1.1, SAi2 and SAr2)
for child SA creation, and Traffic selector information is exchanged (TSi,
TSr). In phase 1.2 the initiator sends the possible certificate requested by
the responder in the phase 1.1. In the phase 1.2 the initiator may request
a certificate for authentication from the responder.

In the phase 2 the participants setup the IPsec AH or ESP SAs (see
Figure 2.9, steps 5 and 6). In the phase 2 the initiator indicates to the
responder if there is a need to negotiate a new IPsec SA (N). If there is
no need, it means that this is the first IPsec SA for this IKE SA. The
Diffie-Hellman values (KEi and KEr) in the phase 2 are sent only if Perfect
Forward Security (PFS) is required. If PFS is required a new set of keys
is computed. The nonces sent in phase 2 differ from the nonces sent in
phase 1. If a new IPsec SA is created also new cryptographic algorithms
are negotiated and new traffic selectors are exchanged (TSi and TSr).

34 2 Background

Differences between the IKE versions

In the previous sections we have been discussing about IKE and about
IKEv2. The new version has many differences compared to the older ver-
sion, simplified behavior, support for mobility (see Section 2.3.2), NAT
traversal, etc. For example IKEv2 has no aggressive mode and has only
one authentication method that is based on the usage of digital signatures
using public keys. The new main phase comprises of only four messages
compared to the six messages needed in the previous version. In the first
two messages the certificates are exchanged and in the next messages the
requested certificates are sent. In the first phase the communicating par-
ties identify each other by signing the concatenation of first messages. The
used algorithms are communicated to the communicating parties by using
certificates that were exchanged earlier.

IKEv2 changes also IPsec [61]. The operation principles were changed,
AH [62] and ESP[63] got new versions. For example, in ESP it is not al-
lowed to use DES-CBC algorithm [30]. Data Encryption Standard (DES)
is replaced with 3DES as DES is cryptographically too weak [109]. 3DES is
similar to DES but 3DES uses three keys consecutively (hence the name).
The operation of IPsec changed a lot, for example, efficiency and imple-
mentation simplicity are taken in to consideration. The new version makes
the form of the SA multiples more flexible and defines that all the IPsec
traffic including the signaling must use the SAD.

One major change was due to the IPv6. For example, AH has now
an extended sequence number and improved SPI. The extended sequence
number is now twice as long as before but is backward compatible with
IKE. The improvements to the SPI allow better support for multicast and
unicast by improving the queries from the SAD.

ESP also has the support for the extended sequence number and for
the improved SPI. ESP got also the possibility to add the padding to the
end of the IP packet instead only to the ESP encapsulation. This way
some of the attacks based on traffic shaping can be avoided. ESP got also
support for the combined encryption and integrity algorithms. These com-
bined algorithms are still undefined but Advanced Encryption Standard -
Counter with CBC-MAC mode (AES-CCM) [47] is seen as one possibil-
ity [30]. Combined algorithms are seen as a improvement for the security,
because they avoid many of the attacks described in [104].

2.4 Host Identity Protocol 35

MOBIKE

Mobility for IKEv2 is defined as an extension to the main protocol. The
mobility and multihoming extension Mobility and multihoming extensions
for IKEv2 (MOBIKE) allows the peers to change the addresses associated
and to associate multiple addresses with the IPsec SA.

The MOBIKE message flow is depicted in Figure 2.10, the figure also
illustrates the NAT traversal parameters MOBIKE borrowed from IKEv2.
The steps 1 and 2 are the same as for the default IKEv2 phase 1 with the
addition of the indicator for the support for MOBIKE in phase 1.2. Phase
2 is not depicted in Figure 2.10. In the step 2 the change in the attachment
point is signaled from the lower layers to the MOBIKE. In the example the
MN (initiator in Figure 2.10) sends a message containing the new address
with a request to update the associated address of the current SA.

Upon receiving the new address the CN records the address and sends
acknowledges it to the MN. Optionally depending on the policy the CN can
then start the return routability test to see that the correct entity is in the
new address by mirroring a protected cookie.

2.4 Host Identity Protocol

Currently discussed identifier-locator split protocols follow one of two prin-
ciples: address rewriting, or mapping and encapsulating. In the address
rewriting method, an IPv6 address is divided into a front and a back half.
The front half of the IPv6 address represents the locator of the host, and
the back half represents its identity. The ILNP [14] is a protocol that im-
plements the address rewriting method. The deployment of address rewrit-
ing schemes requires major renumbering in the network and compulsory
support for IPv6 because of the insufficient address length of IPv4. The
current Internet is in a transition phase in which IPv6 connectivity cannot
be guaranteed everywhere yet. This hampers the immediate deployment of
protocols that rely on IPv6.

In mapping and encapsulating schemes, additional identifiers are mapped
to locators, and packets are encapsulated so that locators are only used in
the packet headers at the network layer, while higher layers see the identi-
fiers in the encapsulated packets. Mapping and encapsulating approaches
can be grouped into two categories: network-based and host-based encap-
sulation. LISP [34] is an example of a network-based approach. HIP [91]
is an example of a host-based protocol. Mapping and encapsulating-based
approaches have the benefit that they work on top of IPv4 as well as on top
of IPv6. In addition, mapping and encapsulating schemes do not require

36 2 Background

Initiator Responder

(IP_I1:500 −> IP_R1:500)
HDR, SAi1, KEi, Ni,
 N(NAT_DETECTION_SOURCE_IP),
 N(NAT_DETECTION_DESTINATION_IP)

(IP_R1:500 −> IP_I1:500)
HDR, SAr1, KEr, Nr,
 N(NAT_DETECTION_SOURCE_IP),
 N(NAT_DETECTION_DESTINATION_IP)

1)

(IP_I1:4500 −> IP_R1:4500)
HDR, SK { IDi, CERT, AUTH,
 CP(CFG_REQUEST),
 SAi2, TSi, TSr,
 N(MOBIKE_SUPPORTED) }

(IP_R1:4500 −> IP_I1:4500)
HDR, SK { IDr, CERT, AUTH,
 CP(CFG_REPLY),
 SAr2, TSi, TSr,
 N(MOBIKE_SUPPORTED) }

Change in attachment point

2)

3)

(IP_I2:4500 −> IP_R1:4500)
HDR, SK { N(UPDATE_SA_ADDRESSES),
 N(NAT_DETECTION_SOURCE_IP),
 N(NAT_DETECTION_DESTINATION_IP) }

(IP_R1:4500 −> IP_I2:4500)
HDR, SK { N(NAT_DETECTION_SOURCE_IP),
 N(NAT_DETECTION_DESTINATION_IP)

Return routability test

(IP_R1:4500 −> IP_I2:4500)
HDR, SK { N(COOKIE2) }

(IP_I2:4500 −> IP_R1:4500)
HDR, SK { N(COOKIE2) }

Phase 1.1

Phase 1.2

4)

Figure 2.10: MOBIKE message flow in the case where communicating par-
ties both have one address and the Initiator changes its attachment point.

changes to the core routing of the Internet. In this dissertation we focus on
identifier-locator split protocols that implement the mapping and encapsu-
lating scheme, and more specifically, on host-based approaches, which use
additional identifiers in and above the transport layer. These approaches
show two distinct requirements that set them apart from other identifier-
locator split protocols: host-based locator updates and support for flat
namespaces.

HIP [91, 92, 37] introduces a flat cryptographic namespace based on
public-private key pairs. An identifier in the namespace is the public key
of a public-private key that the end-host creates for itself. This identifier
is called Host Identifier (HI).

2.4 Host Identity Protocol 37

The protocol employs two fixed-length representations of HIs because
varying length identifiers are inconvenient in networking APIs for existing
legacy stacks and protocol header encodings [91]. Furthermore, using full-
length public keys in packet headers would result in too much overhead
and would be incompatible with unmodified (legacy) applications. The first
representation type is Host Identity Tag (HIT). HITs can be used directly
with IPv6-enabled applications because of their size and format. The HIT
is generated by hashing the HI and concatenating it with an ORCHID prefix
(2001:10::/28) [95]. The second representation type is Local Scope Identifier
(LSI) that is the size of an IPv4 address to support legacy applications. LSIs
are valid only within the local host due to high collision probability of two
hosts choosing the same LSI.

Since HIP uses cryptographic keys as identifiers, host authentication
and the establishment of a secure channel between HIP hosts is very sim-
ple. Moreover, HIP is designed to be extensible. A modular packet and
parameter concept allows adding new functionality to HIP easily. HIP
parameters are carried in HIP control packets.

2.4.1 Resolution

HIP can be deployed in two ways, non-opportunistic and opportunistic.
In non-opportunistic way HIP needs infrastructure to map names to the
identifiers and identifiers to routable IP-addresses (locators). HIP specifies
DNS extensions [94] for this purpose and the eXtensible Markup Language
- Remote Procedure Call (XML-RPC) interface [5] for home users who
cannot publish their identifiers on DNS servers. In opportunistic mode,
the Initiator of the communications makes a leap of faith and tries to ini-
tiate communication solely using a locator without knowing Responders
identifier beforehand [72].

HIP introduces a new HIP Resource Record (HIP RR) for the DNS.
HIP RR allows the hosts to store the HIT, the Public key HI, and the
RendezVous Server (RVS) address of the host. By default the hosts query
the FQDN to IP from the DNS. With HIP the host queries the HIP RR
first and as a secondary query the host queries the FQDN to IP of the RVS.
The RVS server acts as a single-stable-point in the Internet via which the
host can be contacted (see [76]), similarly as in MIP (see Section 2.2).

HIP has support for the XML-RPC interface [5]. The XML-RPC in-
terface provides basic features, such as put, put-rm, rm and get operations.
Put operation inserts a key and a value to the storage and get retrieves the
value, matching the key, from the storage. Remove operation is protected
by a hash of a secret that is inserted with the value and revealed in plain

38 2 Background

text when removed. The XML-RPC uses also a time-to-live value in order
to remove stale information from the storage.

The HIP DHT Resource Record (HDRR) is a HIP control-packet-like
structure used to store HIP mappings with the XML-RPC interface. It can
contain multiple IPv4 and/or IPv6 addresses, and it also contains the HI
(the public key from which the EID was created). The HDRR is protected
by a signature calculated over the HIP packet header and the included
parameters. For our purposes, this format lacks only a sequence number to
prevent replay attacks. However, due to the modular parameter concept,
the sequence number is easy to add to the HDRR. We can even reuse
the sequence number used in the basic HIP control packets, because the
parameter format for the HDRR is the same as in HIP control messages.

When the application uses a HIT or a LSI to establish new outgoing
communications, networking stack intercepts the packet and triggers a Base
EXchange (BEX) in the networking stack to set up symmetric keys for the
IPsec tunnel.

2.4.2 Base Exchange

BEX [92] is a secure Diffie-Hellman exchange that authenticates the end-
hosts to each other using their public keys, and negotiates algorithms and
symmetric keys for IPsec ESP [53]. The BEX is protected against replay
attacks and authenticated with public-key signatures.

In HIP terminology, the client-side is referred as Initiator and the
server-side as Responder. The BEX consists of four messages (fig 2.11 illus-
trates a base exchange). First, the Initiator starts the base exchange with
an First Initiator packet (I1) packet (in Figure 2.11 step 1). Upon receiving
of the I1 one the responder selects a precomputed First Responder packet
(R1) containing a computational puzzle 9 (in Figure 2.11 step 2). Second,
the Responder replies with its public key and Diffie-Hellman key material
in an R1 (in Figure 2.11 step 3). Upon receiving of the R1, Initiator of the
connection checks the validity of the packet and solves the computation
puzzle in the received R1 (in Figure 2.11 steps 4 and 5). Third, the Ini-
tiator responds with an Second Initiator packet (I2) packet that contains
its public key and Diffie-Hellman key material (in Figure 2.11 step 6 and
7). Fourth, the Responder concludes the BEX with an Second Responder
packet (R2) packet if the solution in the received I2 control packet was

9The computational puzzle is based on consistent hashing of a random number I. The
hardness of the solution can be varied by changing the K, i.e., the number bits that need
to be verified. This is a good way to provide random delay for the BEX as the solution
may be found on the first, the last, or on any try in between.

2.4 Host Identity Protocol 39

correct (in Figure 2.11 steps 8, 9, and 10). After this, the HIP state (HIP
association) can transition to ESTABLISHED state on both sides. The
end-hosts have agreed on SPI numbers and symmetric keys for IPsec ESP.
Based on the exchanged keying material, the end-hosts create IPsec secu-
rity associations (in Figure 2.11 steps 11 and 12). Finally, the applications
can commence communication over the created IPsec tunnel.

After the BEX is completed successfully and both end-hosts have reached
ESTABLISHED state, the two end-hosts can commence to send upper-layer
traffic to each other over the encrypted ESP tunnel. From here on, state
created during the BEX is called a HIP Association (HA).

Initiator

1) I1

3) R1: puzzle, D−H, key, sig

5) Solve puzzle

4) Check sig

9) Check solution

11) Compute D−H

10) R2: sig

and create SA

Responder

12) Create SA

2) Select precomputed R1

7) Compute D−H

6) I2: solution, D−H, key, sig

8) Check sig

Figure 2.11: HIP Base Exchange.

After the BEX, the end-hosts lose their roles as Initiator and Responder
because there is no need for such separation. Now, the end-hosts can pro-
cess mobility related packets which requires different kind of state handling
as discussed in the next section.

2.4.3 Mobility Management

This section summarizes HIP-based mobility as described in RFC5206 [93].
We use MIP terminology [108, 85] for denoting two communicating end-
hosts, i.e., MN is a moving node and CN is an immobile node. It should
be noticed that the terminology can a bit misleading because HIP architec-
ture allows both hosts to move simultaneously [46]. We use the HIP state
machine terminology [92, 93] extensively here. We also refer to routable
IP-addresses as locators.

The core idea in HIP-based mobility is that when a mobile node detects
a change in its locators, it sends its complete new set of locators to all of its
correspondent nodes. A correspondent node receives the new locator set

40 2 Background

and verifies each address in the set for reachability by sending an UPDATE
packet with random nonce (echo request) to the mobile node. The mobile
node responds with a packet containing the same nonce (echo response).
This procedure allows the correspondent node to securely verify that the
mobile node is in the location it claims to be. This procedure is also referred
as the return routability test. It should be noticed that there are no separate
return routability tests for addresses used in the BEX because the BEX
itself acts as an implicit return routability test.

In HIP-based mobility, a locator pair has ACTIVE, DEPRECATED
and UNVERIFIED states. Figure 2.12 illustrates HIP-based mobility from
the view point of locator pair state. For simplicity, retransmissions and
optional negotiation of new Diffie-Helman (D-H) key material are excluded
from the figure.

4) UPDATE: E_RQ

to all received locators

MN CNs

1) Loses or obtains

an address

2) UPDATE: LOCATOR

5) Build E_RS

6) UPDATE: E_RS

7) Check E_RS against

sent E_RQ for this

locator and if correct

mark locator as ACTIVE

3) Check validity

of packet and mark

received locators

as UNVERIFIED

8) ESP

Figure 2.12: Return routability tests and locator state.

When the mobile node moves (in step 1, fig 2.12), its set of locators
changes and it builds a LOCATOR parameter that contains the new loca-
tor set. The mobile node can exclude some locators from the LOCATOR
parameter according to its local policies. For example, a mobile node might
not advertise expensive links for all correspondent nodes, or it might ex-
clude some locators for privacy reasons. The corresponding node transitions
the state of locator to DEPRECATED, when the mobile node excludes the
particular locator from its locator set (not shown in fig 2.12). In step 2,
the mobile node sends an initial UPDATE, containing the LOCATOR pa-
rameter listing the locator set which the mobile node publishes to all of its
correspondent nodes.

Now, the correspondent node receives the UPDATE packet and vali-

2.4 Host Identity Protocol 41

dates the packet by verifying packet checksum, correctness of the signature,
sequence number and comparison of SPI number with existing SAs (step
3 in fig 2.12). Then, the correspondent node processes the LOCATOR
parameter from the UPDATE packet.

The correspondent node marks all received locators as UNVERIFIED
and deprecates existing locators excluded from the new locator set (not
shown in fig 2.12). Next, the correspondent node builds an UPDATE packet
containing an ECHO REQUEST parameter (E RQ in fig 2.12) containing
a random nonce value and sends it to mobile node’s locator to be tested
for reachability (step 4). The correspondent node repeats this for all of the
locators contained in the locator set of the mobile node.

In step 5, the mobile node receives the packet and echoes the same nonce
in an ECHO RESPONSE parameter to the correspondent node in step 6.
The correspondent node receives the UPDATE packet and validates its
integrity and nonce in step 7. The correspondent node transitions now the
state of the peer locator to ACTIVE. If the mobile node failed to respond
within a certain time, the correspondent node would deprecate the locator
and remove the locator from its peer locator list.

It should be noticed that locators can be present already in the base
exchange. When a locator has a so called preferred bit set, the sender of
the locator enforces the recipient to use a specific locator for HIP-related
communications for, e.g., load-balancing purposes.

2.4.4 Service Identifiers

Several HIP-related documents are concerned with the provision and dis-
covery of services, e.g., the HIP registration extension [77] and the HIP
middlebox authentication extension [41, 40]. [43] describes a HIP param-
eter that lets service providers communicate properties and requirements
of a service to the HIP end-hosts and to on-path HIP- aware network en-
tities. Service providers can either be other HIP end-hosts (Initiator or
Responder), on-path network entities (HIP- aware middleboxes and other
HIP-aware network infrastructure elements), or entities using the HIP reg-
istration extension.

The service announcement and service acknowledgement procedure is a
two-way communication process that integrates into the regular HIP control
channel packet exchanges.

During a base exchange or HIP update mechanism, a service provider
can add a signed or an unsigned service offer to an R1, I2, R2, or UPDATE
packet. In addition, the unsigned service offer can also be added to I1
packets. The service offer parameter provides general information about

42 2 Background

the service and service-specific information for the client. This information
is addressed to the receiver of the HIP control packet. Each HIP packet
can contain multiple service offer parameters from one or more service
providers.

The client reads the service offer parameters from the incoming HIP
control packet and based on local policies decides to accept or deny the
service offer from the service provider. If it decides to accept the service of-
fer and if the service requires an acknowledgement, it responds by creating
a service acknowledgement parameter which it sends in the signed part of
the next regular HIP control packet. If the HIP control packet containing
the service offer does not require an immediate response in the next control
packet, the receiver of the service offer generates an additional HIP UP-
DATE packet that contains the service acknowledgement parameter. If a
client declines the service offer or no acknowledgement is required, it does
not respond with a service acknowledgement parameter.

The service offer parameter comes in two flavors: signed and unsigned.
The service parameter is covered by the signature of the HIP control packet
that contains it. Therefore, it can only be added by the HIP end-host
that generates the HIP control packet. The unsigned service offer is not
covered by the signature in the HIP control packet, it is added by HIP-
aware middleboxes or HIP end-hosts. Consequently, end-hosts can decide
whether to use the signed or unsigned version of the parameter. An example
in which an end-host may prefer to use the unsigned parameter is the use
of pre-created R1 packets which should include a service offer parameter
that depends on properties of the Initiator.

The service provider can determine whether the client acknowledges
the service offer by checking the presence of a service acknowledgement
parameter with a matching service identifier in the next packet. The service
acknowledgement parameter contains the hash of the service offer, allowing
the service provider to verify that the user has accepted the terms of service
as added by the service provider in the service offer. Replying with the
hash of the complete service offer parameter ensures that the client adheres
to all conditions of the service offer and that the unsigned service offer
parameter was delivered without modification in transit. Additionally, the
service provider should verify the validity of the signature in the HIP control
packet. In order to shelter against DoS attacks, end-hosts and middleboxes
can utilize the puzzle mechanisms specified in [92] for end-hosts and [41]
for middleboxes.

Middleboxes or end-hosts may require certificates that state that the
host is entitled to perform certain actions (e.g., connect to a host, use a

2.4 Host Identity Protocol 43

certain link, use a certain service) [42] (see also Section 2.4.5). The certifi-
cate parameter allows HIP hosts to transmit certificate information within
HIP control packets. However, a host may possess multiple certificates and
therefore it must decide which certificate to transmit.

End-hosts and middleboxes can require the client to present a certifi-
cate by adding a service offer parameter to the next packet addressed to
the client. Setting the initiator certificate (CEI) bit set indicates that a
certificate is required and should be sent on the consequent control packet
in order to get service. The type of certificate can be transmitted in the
Service Description (SD) field.

Likewise, an end-host or middlebox can inform a HIP host that addi-
tional authentication measures (e.g., password authentication [136]) must
be performed during or after the base exchange. By setting the required
(REQ) and forwarding (FOR) bits, the middlebox or end-host can express
that forwarding of payload packet will not be performed until the authen-
tication is completed. The exact type of authentication is expressed in the
variable SD field.

If the end-host fails in providing sufficient credentials to the service
provider it can respond with a NOTIFICATION with BLOCKED BY -
POLICY if the service provider is an end-host or a NOTIFICATION with
BLOCKED BY POLICY M if the service provider is a middlebox to signal
the error. The policy reason for not serving or setting up an association in
this case would be a missing or insufficient certificate.

2.4.5 Certificates

Digital certificates bind a piece of information to a public key by means of
a digital signature, and thus, enable the holder of a private key to generate
cryptographically verifiable statements. HIP has a container to transport
X.509.v3 and SPKI certificates [42]. This container is an organizational pa-
rameter that can be grouped to transmit semantically grouped certificates
in a systematic way.

CERT Parameter

The CERT parameter is a container for certain types of digital certificates.
It does not specify any certificate semantics. However, it defines supple-
mentary parameters that help HIP hosts to transmit semantically grouped
CERT parameters in a more systematic way. The specific use of the CERT
parameter for different use cases is intentionally not discussed in this doc-
ument, because it is specific to a concrete use case. Hence, the use of

44 2 Background

the CERT parameter will be defined in the documents that use the CERT
parameter.

The CERT parameter is covered and protected, when present, by the
HIP SIGNATURE field and is a non-critical parameter.

The CERT parameter can be used in all HIP packets. However, us-
ing it in the I1 packet is not recommended, because it can increase the
processing times of I1s, which can be problematic when processing storms
of I1s. Each HIP control packet may contain multiple CERT parameters.
These parameters may be related or unrelated. Related certificates are
managed in Cert groups. A Cert group specifies a group of related CERT
parameters that should be interpreted in a certain order (e.g., for express-
ing certificate chains). For grouping CERT parameters, the Cert group and
the Cert count field must be set. Ungrouped certificates exhibit a unique
Cert group field and set the Cert count to 1. CERT parameters with the
same Cert group number in the group field indicate a logical grouping. The
Cert count field indicates the number of CERT parameters in the group.

CERT parameters that belong to the same Cert group may be contained
in multiple sequential HIP control packets. This is indicated by a higher
Cert count than the amount of CERT parameters with matching Cert group
fields in a HIP control packet. The CERT parameters must be placed in
ascending order, within a HIP control packet, according to their Cert group
field. Cert groups may only span multiple packets if the Cert group does not
fit the packet. A HIP packet must not contain more than one incomplete
Cert group that continues in the next HIP control packet.

The Cert ID acts as a sequence number to identify the certificates in a
Cert group. The numbers in the Cert ID field must start from 1 up to Cert
count.

The Cert group and Cert ID namespaces are managed locally by each
host that sends CERT parameters in HIP control packets.

Table 2.1: Supported certificate formats.
Cert format Type number

X.509.v3 1
SPKI 2
Hash and URL of X.509.v3 3
Hash and URL of SPKI 4
LDAP URL of X.509.v3 5
LDAP URL of SPKI 6
Distinguished Name of X.509.v3 7
Distinguished Name of SPKI 8

2.4 Host Identity Protocol 45

The next sections outline the use of HITs in X.509.v3 and in SPKI
certificates. X.509.v3 certificates and the handling procedures are defined
in [23]. The wire format for X.509.v3 is the Distinguished Encoding Rules
format as defined in [59]. The SPKI, the handling procedures, and the
formats are defined in [31].

Hash and URL encodings (3 and 4 2.1) are used as defined in Section
3.6 of [60]. Using hash and URL encodings results in smaller HIP control
packets than by including the certificate(s), but requires the receiver to
resolve the URL or check a local cache against the hash.

Lightweight Directory Access Protocol (LDAP) URL encodings (5 and
6 2.1) are used as defined in [125]. Using LDAP URL encoding results
in smaller HIP control packets but requires the receiver to retrieve the
certificate or check a local cache against the URL.

DN encodings (7 and 8 in 2.1) are represented by the string representa-
tion of the certificate’s subject DN as defined in [57].Using the DN encoding
results in smaller HIP control packets, but requires the receiver to retrieve
the certificate or check a local cache against the DN.

X.509.v3 Certificate Object and Host Identities

If needed, HITs can represent an issuer, a subject, or both in X.509 v3.
HITs are represented as IPv6 addresses as defined in [95]. When the HI is
used to sign the certificate, the respective HIT must be placed into the Is-
suer Alternative Name (IAN) extension using the GeneralName form iPAd-
dress as defined in [23]. When the certificate is issued for a HIP host,
identified by a HIT and HI, the respective HIT must be placed into the
Subject Alternative Name (SAN) extension using the GeneralName form
iPAddress, and the full HI is presented as the subject’s public key info as
defined in [23] (see Figure2.13).

The following examples illustrate how HITs are presented as issuer and
subject in the X.509 v3 extension alternative names.

Format of X509v3 extensions:

X509v3 Issuer Alternative Name:

IP Address:hit-of-issuer

X509v3 Subject Alternative Name:

IP Address:hit-of-subject

Example X509v3 extensions:

X509v3 Issuer Alternative Name:

IP Address:2001:14:6cf:fae7:bb79:bf78:7d64:c056

46 2 Background

X509v3 Subject Alternative Name:

IP Address:2001:1c:5a14:26de:a07c:385b:de35:60e3

As another example, consider a managed PKI environment in which the
peers have certificates that are anchored in (potentially different) managed
trust chains. In this scenario, the certificates issued to HIP hosts are signed
by intermediate CAs up to a root CA. In this example, the managed PKI
environment is neither HIP aware, nor can it be configured to compute
HITs and include them in the certificates.

In this scenario, it is recommended that the HIP peers have and use
some mechanism of defining trusted root CAs for the purpose of establish-
ing HIP communications. Furthermore it is recommended that the HIP
peers have and use some mechanism of checking peer certificate validity
for revocation, signature, minimum cryptographic strength, etc., up to the
trusted root CA.

When HIP communications are established, the HIP hosts not only
need to send their identity certificates (or pointers to their certificates),
but also the chain of intermediate CAs (or pointers to the CAs up to the
root CA, or to a CA that is trusted by the remote peer. This chain of
certificates must be sent in a Cert group as specified in Section 2.4.5. The
HIP peers validate each other’s certificates and compute peer HITs based
on the certificate public keys.

SPKI Cert Object and Host Identities

When using SPKI certificates to transmit information related to HIP hosts,
HITs need to be enclosed within the certificates. HITs can represent an
issuer, a subject, or both. In the following we define the representation
of those identifiers for SPKI given as S-expressions. Note that the S-
expressions are only the human-readable representation of SPKI certifi-
cates. Full HIs are presented in the public key sequences of SPKI certifi-
cates (see Figure2.14).

As an example the HIT of a host is expressed as follows:

Format: (hash hit hit-of-host)

Example: (hash hit 2001:13:724d:f3c0:6ff0:33c2:15d8:5f50)

Revocation of Certificates

Revocation of X.509 v3 certificates is handled as defined in Section 5 in [48].
Revocation of SPKI certificates is handled as defined in Section 5 in [31].

2.4 Host Identity Protocol 47

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 0 (0x0)

Signature Algorithm: sha1WithRSAEncryption

Issuer: CN=Example issuing host, DC=example, DC=com

Validity

Not Before: Mar 11 09:01:39 2011 GMT

Not After : Mar 21 09:01:39 2011 GMT

Subject: CN=Example subject host, DC=example, DC=com

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:c0:db:38:50:8e:63:ed:96:ea:c6:c4:ec:a3:36:

62:e2:28:e9:74:9c:f5:2f:cb:58:0e:52:54:60:b5:

fa:98:87:0d:22:ab:d8:6a:61:74:a9:ee:0b:ae:cd:

18:6f:05:ab:69:66:42:46:00:a2:c0:0c:3a:28:67:

09:cc:52:27:da:79:3e:67:d7:d8:d0:7c:f1:a1:26:

fa:38:8f:73:f5:b0:20:c6:f2:0b:7d:77:43:aa:c7:

98:91:7e:1e:04:31:0d:ca:94:55:20:c4:4f:ba:b1:

df:d4:61:9d:dd:b9:b5:47:94:6c:06:91:69:30:42:

9c:0a:8b:e3:00:ce:49:ab:e3

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Issuer Alternative Name:

IP Address:2001:13:8d83:41c5:dc9f:38ed:e742:7281

X509v3 Subject Alternative Name:

IP Address:2001:1c:6e02:d3e0:9b90:8417:673e:99db

Signature Algorithm: sha1WithRSAEncryption

83:68:b4:38:63:a6:ae:57:68:e2:4d:73:5d:8f:11:e4:ba:30:

a0:19:ca:86:22:e9:6b:e9:36:96:af:95:bd:e8:02:b9:72:2f:

30:a2:62:ac:b2:fa:3d:25:c5:24:fd:8d:32:aa:01:4f:a5:8a:

f5:06:52:56:0a:86:55:39:2b:ee:7a:7b:46:14:d7:5d:15:82:

4d:74:06:ca:b7:8c:54:c1:6b:33:7f:77:82:d8:95:e1:05:ca:

e2:0d:22:1d:86:fc:1c:c4:a4:cf:c6:bc:ab:ec:b8:2a:1e:4b:

04:7e:49:9c:8f:9d:98:58:9c:63:c5:97:b5:41:94:f7:ef:93:

57:29

Figure 2.13: a X.509.v3 certificate with encoded HITs.

48 2 Background

(sequence

(public_key

(rsa-pkcs1-sha1

(e #010001#)

(n |yDwznOwX0w+zvQbpWoTnfWrUPLKW2NFrpXbsIcH/QBSLb

k1RKTZhLasFwvtSHAjqh220W8gRiQAGIqKplyrDEqSrJp

OdIsHIQ8BQhJAyILWA1Sa6f5wAnWozDfgdXoKLNdT8ZNB

mzluPiw4ozc78p6MHElH75Hm3yHaWxT+s83M=|

)

)

)

(cert

(issuer

(hash hit 2001:15:2453:698a:9aa:253a:dcb5:981e)

)

(subject

(hash hit 2001:12:ccd6:4715:72a3:2ab1:77e4:4acc)

)

(not-before "2011-01-12_13:43:09")

(not-after "2011-01-22_13:43:09")

)

(signature

(hash sha1 |h5fC8HUMATTtK0cjYqIgeN3HCIMA|)

|u8NTRutINI/AeeZgN6bngjvjYPtVahvY7MhGfenTpT7MCgBy

NoZglqH5Cy2vH6LrQFYWx0MjWoYwHKimEuBKCNd4TK6hrCyAI

CIDJAZ70TyKXgONwDNWPOmcc3lFmsih8ezkoBseFWHqRGISIm

MLdeaMciP4lVfxPY2AQKdMrBc=|

)

)

Figure 2.14: A SPKI certificate with encoded HITs. The example has been
indented for readability.

2.4 Host Identity Protocol 49

Error signaling

If the Initiator does not send the certificate that the Responder requires the
Responder may take actions (e.g., blocking the connection). The Responder
may signal this to the Initiator by sending a HIP NOTIFY message with
NOTIFICATION parameter error type CREDENTIALS REQUIRED.

If the verification of a certificate fails, a verifier may signal this to the
provider of the certificate by sending a HIP NOTIFY message with NOTI-
FICATION parameter error type INVALID CERTIFICATE.

NOTIFICATION PARAMETER - ERROR TYPES Value

------------------------------------ -----

CREDENTIALS_REQUIRED 48

The Responder is unwilling to set up an association

as the Initiator did not send the needed credentials.

INVALID_CERTIFICATE 50

Sent in response to a failed verification of a certificate.

Notification Data contains 4 octets, in order Cert group,

Cert count, Cert ID, and Cert type of the certificate

parameter that caused the failure.

Security Considerations

Certificate grouping allows the certificates to be sent in multiple consec-
utive packets. This might allow similar attacks as IP-layer fragmentation
allows, for example sending of fragments in wrong order and skipping some
fragments to delay or stall packet processing by the victim in order to use
resources (e.g., Central Processing Unit (CPU) or memory).

It is not recommended to use grouping or hash and URL encodings when
HIP aware middleboxes are anticipated to be present on the communication
path between peers because fetching remote certificates require the middle-
box to buffer the packets and to request remote data. This makes these
devices prone to DoS attacks. Moreover, middleboxes and responders that
request remote certificates can be used as deflectors for distributed denial
of service attacks.

50 2 Background

Differences in MOBIKE and HIP mobility and multihoming

MOBIKE allows both of the peers to change their attachment points but
does not support simultaneous mobility. HIP also allows both of the peers
to change their attachment points and HIP is also able to use RVS service
to support simultaneous mobility. MOBIKE is so better suited for client
mobility in client-server models and in HIP the peers can move more freely.

In MOBIKE the peers can be multihomed but only one of the SAs
may be active at a time. In HIP the multihoming behavior is the same,
but research is being done to support load-balancing like features using
multiple SAs at the same time [38].

In MOBIKE return routability tests are optional and done based on a
policy decision. In HIP the return routability tests are mandatory.

2.5 Summary

This chapter gave the needed overview to the techniques and concepts
needed for the rest of the dissertation. We started from the basic necessities
and moved towards HIP.

We gave an overview on the DNS and described the current day be-
havior and some of the suggested systems, that may or may not, replace
or supplement the DNS. From the resolution of the identifiers we moved
forward by giving an overview of the current day specifications defining
mobility, i.e, MIPv4 and MIPv6.

From connectivity and mobility we moved to the techniques and con-
cepts needed to provide the security between communicating hosts with
IPsec. Furthermore, we gave overview on the concepts needed to secure
the mobile hosts with MOBIKE. Security overview included basics for cer-
tificates, i.e, X.509.v3 and SPKI.

From MOBIKE we move to the HIP. There are similarities between
MOBIKE and HIP which are most likely caused by the fact that the pro-
tocols were developed close together in time and they shared some of the
developers. However, HIP is a state of the art host identification protocol
that separates the identifier from the locator and in effect decouples the
transport layer form the Internet layer.

The identifier-locator separation can pose problems to the current day
applications and frameworks. For this reason we now continue with the
analysis of the current day open source applications and frameworks in
order to see how they use the networking APIs.

Chapter 3

Statistics and Empirical
Experience with Sockets API

Network applications are typically developed with frameworks that hide the
low level networking details. The motivation is to allow developers to focus
on application specific logic rather than networking level issues, such as
name resolution, reliability, asynchronous processing and quality of service.
In this chapter, we characterize statistically how open-source applications
use the Sockets API and identify key application requirements based on
our analysis. The analysis considers five fundamental questions: naming
with end-host identifiers, name resolution, multiple end-host identifiers,
multiple transport protocols and security. We discuss the significance of
these findings for network application frameworks and their development.
As two of our key findings, we contribute the discovery of problems with
OpenSSL initialization in C-based applications and a multihoming issue
with UDP in all of the analyzed four frameworks.

51

52 3 Statistics and Empirical Experience with Sockets API

a

3.1 Introduction

The Sockets API is basis of all networking applications. While number
of applications using it directly is large, a number of application use it
indirectly through intermediate libraries or frameworks to hide all of the
intricacies of the low-level Sockets API. Nevertheless, it is then the inter-
mediaries that still have to interface with the Sockets API.

The Sockets API is important for all network applications either directly
or indirectly but has been studied little. To fill this gap, we have conducted
a statistical analysis on the usage of Sockets API to characterizing how to-
day’s network applications behave in Ubuntu Linux. In addition to merely
characterize the trends, we investigated also certain programming pitfalls
pertaining the Sockets API.

As a result, we report ten main findings and how they impact a number
of relatively new sockets API extensions. To mention few examples, the
poor adoption of a new DNS look up function slows down the migration
path for the APIs of HIP and IPv6 source address selection. OpenSSL
library is initialized incorrectly in many applications, thus causing potential
security vulnerabilities. The management of the dual use of TCP and User
Datagram Protocol (UDP) transports, and dual use of the two IP-address
families, creates redundant complexity in applications.

To escape the unnecessary complexity of the Sockets API, some appli-
cations utilize network application frameworks. However, the frameworks
are themselves based on the Sockets API and, therefore, subject to the
same scrutiny as applications using the Sockets API. For this reason, it is
natural to extend the analysis for frameworks.

We chose four example frameworks based on the Sockets API and ana-
lyzed them manually in the light of the Sockets API findings. Since frame-
works can offer high-level abstractions and do not have to mimic the Sockets
API, we organized the analysis of the frameworks top-down and along gen-
eralized dimensions of end-host naming, multiplicity of names and trans-
ports, name look up and security. As a highlight of the analysis, we dis-
covered a persistent problem with multiplicity of names in all of the four
frameworks. To be more precise, the problem was related to multihoming
with UDP.

In this chapter, we describe how to solve some of the discovered is-
sues in applications using the Sockets API. We also characterize some of
the inherent limitations of the Sockets API, for example, related to com-

3.2 Background 53

plexity. As the API is very difficult to change, we suggest solutions for
frameworks instead. Application utilizing the frameworks can then inherit
the improvements indirectly.

3.2 Background

In this section, we first introduce the parts of the Berkey Sockets and the
POSIX APIs that are essential to understand the results described in this
chapter. Then, we briefly introduce four network application frameworks
built on top of the two APIs.

3.2.1 The Sockets API

The Sockets API is the de facto API for network programming due to its
availability for various operating systems and languages. As the API is
rather low level and does not support object-oriented languages well, many
networking libraries and frameworks offer additional higher-level abstrac-
tions to hide the intricacies of the Sockets API.

Unix-based systems typically provide an abstraction of all network, stor-
age and other devices to the applications. The abstraction is realized with
descriptors which are also sometimes referred as to handles. The descriptors
are either file or socket descriptors. Both of them have different, special-
ized accessor functions even though socket descriptors can be operated with
some of the file-oriented functions.

When a socket descriptor is created with the socket() function, the trans-
port protocol has to be fixed for the socket. In practise, SOCK STREAM

constant fixes the transport protocol to TCP and SOCK DGRAM constant
to UDP. For IPv4-based communications, an application uses a constant
called AF INET, or its alias PF INET, to create an IPv4-based socket. For
IPv6, the application uses correspondingly AF INET6 or PF INET6.

Name Resolution

An application can look up names from DNS by calling gethostbyname()

function and gethostbyaddr() function. The former looks up the host infor-
mation from the DNS by its symbolic name (forward look up) and the latter
by its numeric name, i.e., IP-address (reverse look up). While both of these
functions support IPv6, they are obsolete and their modern replacements
are the getnameinfo() and getaddrinfo() functions.

54 3 Statistics and Empirical Experience with Sockets API

Delivery of Application Data

A client-side application can start sending data immediately after creation
of the socket; however the application typically calls the connect() function
to associate the socket with a certain destination address and port. The
connect() call also triggers the TCP handshake for sockets of SOCK STREAM

type. Then, the networking stack automatically associates a source address
and port if the application did not choose them explicitly with the bind()

function. Finally, a close() call terminates the socket gracefully and, when
the type of the socket is SOCK STREAM, the call also initiates the shutdown
procedure for TCP.

Before a server-oriented application can receive incoming datagrams, it
has to call a few functions. Minimally with UDP, the application has to
define the port number and IP-address to listen to by using bind(). Typi-
cally, TCP-based services supporting multiple simultaneous clients prepare
the socket with a call to the listen() function for the following accept() call.
By default, the accept() call blocks the application until a TCP connection
arrives. The function “peels off” a new socket descriptor from existing one
that can then be used to handle the particular connection.

A constant INADDR ANY is used with bind() to listen for incoming
datagrams on all network interfaces and addresses of the local host. This
wildcard address is typically employed in server-side applications.

An application can deliver and retrieve data from the transport layer
in multiple alternative ways. For instance, the write() and read() functions
are file-oriented functions but can also be used with socket descriptors to
send and receive data. For these two file-oriented functions, the Sockets
API defines its own specialized functions.

For datagram-oriented networking with UDP, the sendto() and the recv-

from() functions can be used. Complementary functions sendmsg() and
recvmsg() offer more advanced interfaces for applications [128]. They oper-
ate on the scatter arrays (multiple non-consecutive I/O buffers instead of
just one) and support also so called ancillary data that refers to meta-data
and information related to network packet headers.

While the primary purpose of the socket calls is to send and receive
data, they also implement access control. The bind() and connect() limit
ingress (but not egress) network access to the socket by setting the al-
lowed local and remote destination end point. Similarly, the accept() call
effectively constrains remote access to the newly created socket by allowing
communications only with the particular client. Functions send() and recv()

are typically used for connection-oriented networking, but can also be used
with UDP to limit remote access.

3.2 Background 55

Customizing Networking Stack

The Sockets API provides certain default settings for applications to in-
teract with the transport layer. The settings can be altered in multiple
different ways.

With “raw” sockets, a process can basically create its own transport-
layer protocol or modify the network-level headers. A privileged process
creates a raw socket with socket type SOCK RAW.

A more constrained way to alter the default behavior of the networking
stack is to set socket options with setsockopt(). As an example of the options,
the SO REUSEADDR socket option can be used to disable the default “grace
period” of a locally reserved transport-layer port. By default, consecutive
calls to bind() with the same port fail until the grace period has passed.
Especially during the development of a networking service, this grace period
is usually disabled for convenience because the developed service may have
to be restarted quite often for testing purposes.

Another way to influence the stack is to configure the underlying low-
level networking devices. Two alternative APIs exist for this purpose. First,
ioctl() is a function that allows, e.g., a socket to be set to non-blocking
mode, to query addresses of network interfaces, and to manipulate ARP
tables and routes. Second, the fcntl() function offers a more portable, albeit
more constrained, set of features when compared to ioctl().

3.2.2 Sockets API Extensions

Basic Socket Interface Extensions for IPv6 [35] defines additional data
structures and constants, including AF INET and sockaddr in6. It also
defines the new resolver functions, getnameinfo() and getaddrinfo(), as the
old ones, gethostbyname() and gethostbyaddr(), by now are inadequate. The
older ones are not thread safe and offer too little control over the resolved
addresses. The specification also defines IPv6-mapped IPv4 addresses to
improve IPv6 interoperability.

The Advanced Sockets API for IPv6 [128] defines IPv6 extensions for,
e.g., diagnostic and routing software. The specification also introduces
ancillary options for the sendmsg() and recvmsg() interface.

An IPv6 application can typically face a choice of multiple source and
destination IPv6 pairs to choose from. Picking a pair may not be a simple
task and some of the pairs may not even result in a working connectivity.
IPv6 Socket API for Source Address Selection [97] defines extensions that
restrict the type of the resulting address to, for instance, public or tem-
porary IPv6 addresses. The extensions include both new socket options

56 3 Statistics and Empirical Experience with Sockets API

and new flags for the getaddrinfo() resolver. The extensions mainly affect
client-side connectivity but can affect also at the server side when UDP is
being used.

The Stream Control Transmission Protocol (SCTP) [130] implements a
similar set of services to TCP and UDP. In a nutshell, SCTP offers a re-
liable, congestion-aware, message-oriented, in-sequence transport protocol.
The minimum requirement to enable SCTP in an existing application is
to change the protocol type in socket() call to SCTP. However, the appli-
cation can only fully harness the benefits of the protocol by utilizing the
sendmsg() and recvmsg() interface. Also, the protocol supports sharing of a
single socket descriptor for multiple simultaneous communication partners;
this requires some additional logic in the application.

The Datagram Congestion Control Protocol (DCCP) is similar to TCP
but does not guarantee in-order delivery. An application can use it - with
minor changes - by using SOCK DCCP constant when a socket is created.

In this chapter, we use a simplified term “multihoming” to describe
hosts with multiple IP-addresses typically introduced by multiple network
interfaces. Multihoming is becoming interesting because most of the mod-
ern handhelds are equipped with e.g. 3G and WLAN interfaces. Multi-
homing is supported by SCTP, HIP [90] and Site Multihoming by IPv6
Intermediation (SHIM6) [96] both solve multihoming related networking
issues. In addition to end-host multihoming support, HIP offers support
for end-host mobility, IPv4 networks and applications and NAT traversal.
By contrast, SHIM6 is mainly a multihoming solution. From the API per-
spective, SHIM6 offers backwards compatible identifiers for IPv6 - in the
sense that they are routable at the network layer - where as the identifiers
in HIP are non-routable. HIP has its own optional APIs for HIP-aware
applications [70] but both protocols share the same optional multihoming
APIs [69].

Name-based Sockets are a work-in-progress at the Internet Engineering
Task Force (IETF) standardization forum. While the details of the spec-
ification [135] are rather immature and the specification still lacks official
consent of the IETF, the general idea is to provide extensions to the Sockets
API in order to replace IP-addresses with DNS-based names. In this way,
the responsibility for the management of IP-addresses is pushed down in
the stack, away from the application layer.

3.2.3 NAT Traversal

Private address realms [127] were essentially introduced by NATs but also
Virtual Private Networks (VPNs) and other tunneling solutions can make

3.2 Background 57

use of private addresses. Originally, the concept of virtual address spaces
was created to alleviate the depletion of the IPv4 address space, perhaps,
because it appeared that most client hosts did not need publicly-reachable
addresses. Consequently, NATs also offer some security as a side effect to
the client side because it discards new incoming data flows.

Private address realms have introduced multiple problems to applica-
tions. First, private addresses, as presented by most of the deployed NAT
devices, are valid only in the context of the particular network. Thus, con-
nections initiated by the client side are successfully translated by the NAT
but connections initiated by the server side typically fail. This is especially
problematic for P2P applications, but constrains also the design of client-
server protocols. Second, most of the deployed NAT devices support a very
narrow number of protocols over IP (TCP, UDP, ICMP). Third, only IPv4
is usually supported by the existing NAT devices. Fourth, networks com-
prising of private addresses overlap with each other. This is problematic
for applications and users because a single IP-address can map to different
services or devices depending on the network. Fifth, many of the solutions
[1, 142, 118, 50] to work around NATs introduce additional complexity to
the application developers which may also be visible to the user.

To work around NATs, Teredo [50] offers NAT traversal solution based
on a transparent tunnel to the applications. The protocol tries to pene-
trate through NAT boxes to establish a direct end-to-end tunnel but can
resort to triangular routing through a proxy in the case of an unsuccessful
penetration.

3.2.4 Transport Layer Security

Transport Layer Security (TLS) [132] is a cryptographic protocol that can
be used to protect communications above the transport layer. TLS, and its
predecessor Secure Socket Layer (SSL), is the most common way to protect
TCP-based communications over the Internet.

In order to use SSL or TLS, the C/C++ application is usually linked
to a library implementing the protocol(s) such as OpenSSL or GNU’s Not
Unix! (GNU) TLS. The application then calls the APIs of the TLS/SSL-
library instead of using the APIs of the Sockets API. The functions of
the library are wrappers around the Sockets API, and are responsible for
securing the data inside the TCP stream.

58 3 Statistics and Empirical Experience with Sockets API

3.2.5 Network Frameworks

The Sockets API can be cumbersome and too error-prone to be programmed
directly. It is also very flat by its nature because it was not designed to
accommodate object-oriented languages. For these reasons, a number of
libraries and frameworks have been built to hide the details of the Sockets
API and to introduce object-oriented interfaces. The Adaptive Communi-
cation (ACE) [122] is one such framework.

ACE simplifies the development of networking applications because it
offers high-level networking APIs based on software patterns observed in
well-written software. Among other things, ACE includes network patterns
related to connection establishment and service initialization in addition to
facilitating concurrent software and distributed communication services. It
supports asynchronous communications by inversion of control, i.e., the
framework takes over the control of the program flow and calls registered
functions of the application when needed.

Boost::Asio is a open source C++ library that offers high-level network-
ing API to simplify development of networking applications. Boost::Asio
aims to be portable, scalable, and efficient but most of all it provides a
starting point for further abstraction. Several Boost C++ libraries have
already been included into the C++ Technical Report 1 and into C++11.
In 2006 a networking proposal based on Asio was submitted for possible
inclusion into the upcoming Technical Report 2.

The Java provides an object-oriented framework for the creation and
use of sockets. Java.net package (called Java.net from here on) supports
TCP (Socket class) and UDP (Datagram class). These classes define how to
communicate over an IP network.

Twisted is a modular, high-level networking framework for python. It
is based on inversion of control and asynchronous messaging. Twisted has
built-in support for multiple application-layer protocols, including Inter-
net Relay Chat (IRC), Secure SHell (SSH) and HTTP. Twisted focus on
service-level functionality supports writing of adaptible functionality that
can be run on top of several of application-layer protocols.

3.3 Materials and Methods

We collected information related to the use of Sockets API usage in ap-
plications. In this chapter, we refer to this information as indicators. An
indicator refers to a constant, structure or function of the C language. We
analyzed the source code for indicators in a static way (based on keywords)

3.3 Materials and Methods 59

rather than dynamically 1. The collected set of indicators was limited
to networking-related keywords obtained from the keyword indexes of two
books [129, 113].

We gathered the material for our analysis from all of the released LTS
releases of Ubuntu: Dapper Drake 6.06, Hardy Heron 8.04, Lucid Lynx
10.04. Table 3.1 summarizes the number of software packages gathered per
release. It should be noted that the “patched” row expresses how many
applications were patched by Ubuntu.

We used sections “main”, “multiverse”, “universe” and “security” of
the Ubuntu source code repository. The material was gathered on Mon-
day 7th of March 2011 and consisted of open-source software written us-
ing the C language. Since our study was confined to networking appli-
cations, we selected only software in Ubuntu Linux in the categories of
“net”, “news”, “comm”, “mail”, and “web” (in Lucid, the last category
was renamed “httpd”).

Dapper Hardy Lucid
Total 1,355 1,472 1,147
Patched 1,222 1,360 979
C 721 756 710
C++ 57 77 88
Python 126 148 98
Ruby 19 27 13
Java 9 10 8
Other 423 454 232

Table 3.1: Number of packages per release version.

We did not limit or favor the set of applications e.g. based on any
popularity metrics 2. It was in our goals to find general trends in network
applications, so we analyzed all network applications in the scope. There
are also different definitions on what is popular. Choosing the best one is
difficult and leads to biased results in any case.

In our study, we concentrated on the POSIX networking APIs and
Berkeley Sockets API because they form the de facto, low-level API for all

1Authors believe that a more dynamic or structural analysis would not have revealed
any important information on the particular issues that were investigated

2We performed an outlier analysis in which we compared the whole set of applica-
tions to the most popular applications (100 or more installations in Ubuntu popularity
contents). We discovered that the statistical “footprint” of the popular applications is
different from the whole. However, the details are omitted because this contradicted our
goals and also due to space efficiency reasons.

60 3 Statistics and Empirical Experience with Sockets API

networking applications. Also, we extended the API analysis to OpenSSL
to study the use of security as well. All of these three APIs have bindings
for high-level languages, such as Java and Python, and can be indirectly
used from network application frameworks and libraries. As the names of
the bindings used in other languages differs from those used in C language,
we excluded other languages from this study.

From the data gathered, we calculated sums and means for the occur-
rences of each indicator. We also calculated a separate reference number.
This latter was formed by introducing a binary value to denote whether a
software package used a particular indicator (1) or not (0), independent of
the number of occurrences. The reference number for a specific indicator
was collected from all software packages, and these reference numbers were
then summed and divided by the number of packages to obtain a reference
ratio. In other words, the reference ratio describes the extent of an API
indicator with one normalized score.

The reference ratio indicates capability rather than 100% guarantee
that the application will use the specific indicator for all its runs. When
compared with the total occurrences of an indicator, the “flattened” refer-
ence ratio shows certain advantages. For instance, it can better describe
whether a certain indicator is completely missing from a number of appli-
cations. Taking a concrete example, let us compare memory allocations
and deallocations. The source code of an application can be organized in
such a way that all memory deallocations occur in a wrapper function so
that the application has many memory allocations but only a single direct
deallocation. Thus it would appear that the application is misbehaving
if only the total number of allocations are compared with total number
of deallocations. This does not occur with the flattened reference ratios,
albeit it gives a very coarse-grained metric.

In our results, we show also reference ratios of combined indicators that
were calculated by taking an union or intersection of indicators, depend-
ing on the use case. With combined indicators, we used tightly coupled
indicators that make sense in the context of each other.

3.4 Results and Analysis

In this section, we show the most relevant statistical results. We focus on
the findings where there is room for improvement or that are relevant to the
presented Sockets API extensions. Then, we highlight the most significant
patterns or key improvements for the networking applications. Finally, we
derive a set of more generic requirements from the key improvements and

3.4 Results and Analysis 61

see if they are met in four different network application frameworks built
on top of the Sockets or POSIX APIs.

3.4.1 Core Sockets API

In this section, we characterize how applications use the basic or “core”
Sockets API. Similarly as in Section 3.2, the topics are organized into dis-
cussion on IPv6, DNS, transport protocols and customization of the net-
working stack. In the last section we describe a multihoming issue related
to UDP.

In the described results, the reference ratios of functions of indicators are
usually shown inside brackets. All numeric values are from Ubuntu Lucid
unless otherwise mentioned. Figures 3.1, 3.2, and 3.3 illustrate the 20 most
frequent indicators respectively for functions, structures, and constants.
The following sections analyze the most interesting cases in more detail.

Circa 30 percent of the software did not explicitly reference any critical
networking functions (socket(), socketpair(), bind(), connect(), recv() or send())
but references other related sockets functions. Some of such software ap-
peared to call Sockets API functions indirectly through wrapper functions
through another library, or consisted of browser plugins or Graphical User
Interface (GUI) software which did not directly control the Berkeley Sockets
but rather processed application data. Also, despite all of our attempts to
incline the software selection towards networking applications, some pack-
ages contained auxiliary software, such as configuration file generators and
converters.

A number of networking-related functions are deprecated, including and
inet aton(), inet ntoa(), gethostbyname(), gethostbyaddr(), getservbyname() and
getservbyport(). The proportion of applications referencing any of these dep-
recated functions is quite high in Ubuntu Lucid (58.9%). The proportion
of thread-safe invocations of the gethostbyname() in multi-threading appli-
cations was low (15.0%) 3.

IPv6

According to the usage of AF and PF constants 39.3% were IPv4-only ap-
plications, 0.3% IPv6-only, 26.9% hybrid and 33.5% did not reference either
of the constants. To recap, while the absolute use of IPv6 was not high,
the relative proportion of hybrid applications supporting both protocols
was quite high.

3An application can delegate all DNS requests to a single thread but the effect of this
is negated by the usage of reference ratio as explained in Section 3.3

62 3 Statistics and Empirical Experience with Sockets API

openlog

ntohl

accept

fcntl

inet_ntoa

gettimeofday

setsockopt

htonl

ioctl

gethostbyname

bind

ntohs

connect

select

fork

signal

htons

write

socket

read

0 10 20 30 40 50 60 70

Figure 3.1: The most frequent reference ratios of functions in Ubuntu Lucid
Lynx

Name Resolution

The obsolete DNS name-look-up functions were referenced more than their
modern replacements. The obsolete forward look-up function gethostby-

name() was referenced roughly twice more than its modern replacement
getaddrinfo(). Two possible explanations for this are either that the devel-
opers have for some reason preferred the obsolete functions, or they have
neglected to modernize their software.

The reference ratio of the obsolete gethostbyname() was declining slowly
(-2.2%) and getaddrinfo() slowly inclining (4.4%) on the average between
different Ubuntu LTS releases.

Packet Transport

Connection and datagram-oriented APIs were roughly as popular. Based on
the usage of SOCK STREAM and SOCK DGRAM constants, we accounted
for 25.1% TCP-only and 11.0% UDP-only applications. Hybrid applica-

3.4 Results and Analysis 63

icmp

msghdr

ifconf

pcap_pkthdr

sockaddr_storage

timespec

pollfd

sockaddr_un

iovec

in6_addr

ifreq

sockaddr_in6

addrinfo

servent

ip

hostent

in_addr

sockaddr_in

timeval

sockaddr

0 10 20 30 40 50 60 70

Figure 3.2: The most frequent reference ratios of structures in Ubuntu
Lucid Lynx

tions supporting both protocols accounted for 26.3% - which leaves 37.6%
of the applications that used neither of the constants. By combining the
hybrids with TCP-only applications, the proportion of applications sup-
porting TCP is 51.4% and, correspondingly, 37.3% for UDP. It should not
be forgotten that typically all network applications implicitly access DNS
over UDP by default.

Timing

While none of the applications reference the aio read() and related functions,
a popular way to implement this is through the popular select() function
(52.0%). This signifies that a majority of the software remains interactive
instead of blocking for long time periods. The use of an alternative to avoid
blocking, constant O NONBLOCK (34.2%), was not as popular as with
the select() function. Counting together all packages that were referencing
select(), poll(), pollfd, pselect() or O NONBLOCK indicators, the number of

64 3 Statistics and Empirical Experience with Sockets API

etimedout

prot_read

ipproto_ip

ewouldblock

ipproto_udp

einprogress

af_unix

ipproto_tcp

af_inet6

pf_inet

inaddr_any

so_reuseaddr

eagain

o_nonblock

sock_dgram

fd_isset

fd_zero

fd_set

sock_stream

af_inet

0 10 20 30 40 50 60 70

Figure 3.3: The most frequent reference ratios of constants in Ubuntu Lucid
Lynx

non-blocking applications was 61.2%.

We observed that 64.6% of the network applications were operating in
microsecond precision and 25.3% in nanosecond. The figure for microsec-
onds was obtained by taking all applications referencing select() or timeval

indicators. For nanoseconds, we counted all applications referencing ps-

elect(), poll(), timespec, clock settime() or clock gettime() indicators. A scan
through the nanosecond applications revealed that the majority of them
could be categorized as server-side or diagnostics software.

Performance

Parallel computation was pervasive as indicated by the popularity of the
POSIX fork() function (56.6%). Light-weight threading with pthread create()

function was not as popular (16.1%) as forking. One way to explain the
differences in popularity is that forking isolates the processes better than

3.4 Results and Analysis 65

threading. While the isolation includes a compromise in performance, it
provides fault-tolerance against programming errors as the whole applica-
tion is not doomed to fail, just a single process. Also, separate processes
may be easier to comprehend and debug (e.g., less race condition with
locking).

It has been suggested in the literature [117] that sockets introduce un-
necessary overhead for the sending and retrieving of network data. The
allegation is that the Sockets APIs should provide more direct access to the
datagram (e.g., up to the network card) to avoid the overhead of copying of
the data between different buffers (so called zero-copy scheme). While such
functionality may be justified especially at the server side in fast networks,
our statistical data does not support this demand as only 11.8% of the
software were using similar functionality in the form of the POSIX mmap()

call.

During our experience in engineering of a networking software [106],
we noticed that MSG PEEK (5.8%) flag has a relatively large and undoc-
umented performance penalty of a roughly 25 ms per received datagram
on Linux. We believe that the overhead cannot be explained merely by
context switching. This operation allows the application to “preview” in-
coming data from a socket without the networking stack discarding the
data for further read operations. In the implementation, we used the peek
operation to preview the packet header of an incoming HIP datagram to
figure out how large payload was supposed to arrive. However, we dis-
continued using the peek operation due to its overhead and instead just
read maximum size datagrams. This is perfectly acceptable as socket read
operations are allowed to return smaller amounts of data than requested.

Customizing Networking Stack

While the Sockets API provides transport-layer abstractions with certain
system-level defaults, many applications preferred to customize the net-
working stack or to override some of the parameters. The combined ref-
erence ratio of SOCK RAW, setsockopt(), pcap pkthdr and ipq create handle()

indicators was 51.4%. In other words, the default abstraction or settings
of the sockets API are not sufficient for the majority of the applications.

It is worth mentioning that we conducted a brute-force search to find
frequently occurring socket options sets. As a result, we did not find any
recurring sets but merely individual socket options that were popular.

66 3 Statistics and Empirical Experience with Sockets API

Multihoming and UDP

In this section, we discuss a practical issue related to UDP-based multi-
homing, but one which can be fixed in most applications by the correct
use of SO BINDTODEVICE (2.3%) socket option. The issue affects UDP-
based applications accepting incoming connections from multiple interfaces
or addresses.

On Linux, we have reason to believe that many UDP-based applica-
tions may not handle multihoming properly for initial connections. The
multihoming problem for UDP manifests itself only when a client-side ap-
plication uses a server address which does not correspond to the address
used in the default route for the server. The root of the problem lies in
egress datagram processing at the server side. The actual problem occurs
when the client sends a “request” message to the server and the server does
not send a “response” using the exactly same address pair that was used
for the request. Instead, this sloppy server implementation responds to the
client without specifying the source address, and the networking stack in-
variably chooses always the wrong source address - meaning that the client
drops the response as it appears to be arriving from a previously unknown
IP-address.

A straightforward fix is to modify the server-side processing of the soft-
ware to respect original IP-address, and thus prevent the network stack
from routing the packet incorrectly. In other words, when the server-side
application receives a request, it should remember the local address of the
received datagram and use it explicitly for sending the response.

Explicit source addressing can be realized by using the modern sendmsg()

interface. However, a poorly documented alternative that can also be used
is the sendto() function using a socket option called SO BINDTODEVICE.
This function is necessary because bind() can be used to specify the local
address only for the ingress direction and not the egress.

We discovered this problem by accident with the iperf, nc and nc6 soft-
ware. We have offered fixes to maintainers of these three pieces of software.
Nevertheless, the impact of the problem may be larger as a third of the
software in our statistics supports UDP explicitly. To be more precise, the
lack of SO BINDTODEVICE usage affects 45.7% (as an upper bound) of
the UDP-capable software, which in practice accounts for a total of 121
applications. This figure was calculated by finding the intersection of all
applications not using sendmsg() and SO BINDTODEVICE, albeit still us-
ing sendto() and SOCK DGRAM. We then divided this by the number of
applications using SOCK DGRAM.

3.4 Results and Analysis 67

ssl_ctx_set_options

ssl_ctx_set_verify

ssl_ctx_load_verify_locations

ssl_ctx_use_privatekey_file

md5_init

ssl_shutdown

err_get_error

ssl_get_peer_certificate

ssl_ctx_free

ssl_library_init

ssl_set_fd

ssl_connect

ssl_get_error

md5

ssl_free

ssl_load_error_strings

ssl_write

ssl_read

ssl_new

ssl_ctx_new

0 2 4 6 8 10 12 14

Figure 3.4: The most frequent reference ratios of SSL indicators in Ubuntu
Lucid Lynx

3.4.2 Sockets API Extensions

In this section, we show and analyze statistics on SSL. Then we show how
widely various other Sockets API extensions are adopted and explain how
the adoption of the core Sockets API indicators impacts also the adoption
of the extensions.

Security: SSL/TLS Extensions

Figure 3.1 illustrates some of the most frequent SSL indicators and the
following sections analyze the most interesting cases in more detail.

Roughly 10.9% of the software in the data set used OpenSSL and 2.1%
GNU TLS. In this section, we focus on OpenSSL, which is more popular.
The applications using OpenSSL consisted of both client and server soft-
ware. The majority of the applications using OpenSSL (54%) consisted of
email, news and messaging software. The minority included network secu-

68 3 Statistics and Empirical Experience with Sockets API

rity and diagnostic, proxy, gateway, http and ftp server, printing, database
and browser software.

Unless separately mentioned, we will, for convenience, use the term SSL
to refer both TLS and SSL protocols; we will favor the OpenSSL naming
scheme of the APIs. In this section, we only present reference ratios relative
to the applications using OpenSSL because this is more meaningful from the
viewpoint of the analysis. In other words, the percentages account only the
OpenSSL-capable applications (77) and not the whole set of applications.

The reference ratios of SSL options remained roughly the same through-
out the various Ubuntu releases. The use of SSL options in Ubuntu Lucid
is illustrated in fig 3.5.

The use of SSL get verify result() function (37.7%) indicates that a sub-
stantial proportion of SSL-capable software has interest in obtaining the
results of the certificate verification. The SSL get peer certificate() function
(64.9%) is used to obtain the certificate sent by the peer.

The use of the SSL CTX use privatekey file() function (62.3%) implies
that a majority of the software is capable of using private keys stored in
files. A third ((27.3%) of the applications uses the SSL get current cipher()

function to request information about the cipher used for the current ses-
sion.

The SSL accept() function (41.6%) is an SSL equivalent for accept(). The
reference ratio of SSL connect() function (76.6%), an SSL equivalent for
connect(), is higher than for ssl accept() (41.6%). This implies that the data
set includes more client-based applications than server-based. Furthermore,
we observed that SSL shutdown() (63.6%) is referenced in only about half of
the software that also reference SSL connect(), indicating that clients leave
dangling connections with servers.

We noticed that only 71.4% of the SSL-capable software initialized the
OpenSSL library correctly. The correct procedure for a typical SSL ap-
plication is that it should initialize the library with SSL library init() func-
tion (71.4%) and provide readable error strings with SSL load error strings()

function (89.6%) before any SSL action takes place. However, 10.4% of the
SSL-capable software fails to provide adequate error handling.

Only 58.4% of the SSL-capable applications seed the Pseudo Random
Number Generator (PRNG) with RAND load file() (24.7%), RAND add()

(6.5%) or RAND seed() (37.7%). This is surprising because incorrect seeding
of the PRNG is considered a common security pitfall.

Roughly half of the SSL-capable software set the context options for
SSL with SSL CTX set options (53.3%); this modifies the default behavior
of the SSL implementation. The option SSL OP ALL (37.7%) enables all

3.4 Results and Analysis 69

Bug workarounds

SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS

SSL_OP_CIPHER_SERVER_PREFERENCE

SSL_OP_SINGLE_DH_USE

SSL_OP_NO_TLSv1

SSL_OP_NO_SSLv3

SSL_OP_NO_SSLv2

SSL_OP_ALL

0 5 10 15 20 25 30

Figure 3.5: The number of occurrences of the most common SSL options

bug fixes.

SSL OP NO SSLV2 option (31.2%) turns off Secure Socket Layer version
2 (SSLv2) and SSL OP NO SSLV3 (13.0%) turns off the support for Secure
Socket Layer version 3 (SSLv3). The two options were usually combined
so that the application would just use Transport Layer Security version 1
(TLSv1).

SSL OP SINGLE DH USE (7.8%) forces the implementation to re-compute
the private part of the D-H key exchange for each new connection. With
the exception of low-performance CPUs, it is usually recommended to turn
on this option since it improves security.

The option SSL OP DONT INSERT EMPTY FRAGMENTS (6.5%) dis-
ables protection against an attack on the block-chaining ciphers. The
countermeasure is disabled because some of the SSLv3 and TLSv1 im-
plementations are unable to handle it properly.

37.7% of the SSL-capable software prefers to use only TLSv1 (TLSv1 -

client method()) and 20.1% of the SSL-capable software prefers to fall back
from TLSv1 to SSLv3 when the server does not support TLSv1. However,
the use of SSL OP NO TLSV1 option indicates that 7% of the software is
able to turn off TLSv1 support completely. SSL OP CIPHER SERVER -

PREFERENCE is used to indicate that the server’s preference in the choos-
ing of the cipher takes precedence. SSL OP NO SESSION RESUMPTION -

RENEGOTIATION indicates the need for increased security as session re-
sumption is disallowed and a full handshake is always required. The re-
maining options are various workarounds for bugs.

As a summary of SSL results, it appears that SSL-capable applications
are interested of the details of the security configuration. However, some ap-
plications initialize OpenSSL incorrectly and trade security for backwards
compatibility.

70 3 Statistics and Empirical Experience with Sockets API

IPv6-Related Extensions

During the long transition to IPv6, we believe that the simultaneous co-
existence of IPv4 and IPv6 still represents problems for application de-
velopers. For example, IPv6 connectivity is still not guaranteed to work
everywhere. At the client side, this first appears as a problem with DNS
look-ups if they are operating on top of IPv6. Therefore, some applications
may try to look up simultaneously over IPv4 and IPv6 [143]. After this,
the application may even try to call connect() simultaneously over IPv4 and
IPv6. While these approaches can decrease the initial latency, they also
generate some additional traffic to the Internet and certainly complicate
networking logic in the application.

At the server side, the applications also have to maintain two sockets:
one for IPv4 and another for IPv6. We believe this unnecessarily compli-
cates the network processing logic of applications and should be abstracted
away by network-application frameworks.

A more immediate solution to the concerns regarding address duplica-
tion is RFC4291 [45], which describes IPv4-mapped IPv6 addresses. The
idea is to embed IPv4 addresses in IPv6 address structures and thus provide
a unified data structure format for storing addresses in the application.

Mapped addresses can be employed either manually or by the use of
AI V4MAPPED flag for the getaddrinfo() resolver. However, the application
first has to explicitly enable the IPV6 V6ONLY socket option (0.1%) before
the networking stack will allow the IPv6-based socket to be used for IPv4
networking. By default, IPv4 connectivity with IPv6 sockets is disallowed
in Linux because they introduce security risks [89]. As a bad sign, of the
total six applications referencing the AI V4MAPPED flag, only one of them
set the socket option as safe guard.

The mapped addresses could be also criticized for fixing applications
to IPv6-based structures instead of promoting agility for variable types of
address structures.

Also Teredo-based addresses could be used for avoiding the duplication
at the client side. However, no API figures can be given because Teredo is
a transparent solution on Linux. On Windows, application has to enable it
separately with a socket option.

Authors’ experience in using mapped addresses is that they are only
usable for implementing internal data structures and should be converted
before use with the Sockets API. We have observed in Ubuntu Linux that
they cannot be used with UDP at all. With TCP, such addresses work only
for receiving packets, and not for sending at all. Fortunately, it appears the
amount of applications employing these “broken” addresses is quite small.

3.4 Results and Analysis 71

The Advanced Sockets API for IPv6 [128] appears largely unused as
the number of IPv6 applications remains still limited. Similarly, the use of
ancillary options appears constrained by the unpopularity of the sendmsg()

and recvmsg() interfaces. Nevertheless, 65% of the applications employing
the interfaces were also exploiting ancillary options. A majority of such ap-
plications could be categorized as network diagnostics, tunneling, proxying
or routing-related software.

The constants introduced by the IPv6 Socket API for Source Address
Selection [97] are available in Ubuntu Lucid even though the support is
incomplete. The flags to extend the getaddrinfo() resolver and the proposed
auxiliary functions remain unavailable and only source address selection
through socket options is available. Nevertheless, we calculated the pro-
portion of IPv6-capable client-side applications that make choices related
to source address selection. As an upper bound, 66.9% percent of the ap-
plications choose source addresses explicitly based the dual use of connect()

and bind(). This means meaning that a majority of IPv6 applications might
be potentially interested of the extensions for IPv6 Socket API for Source
Address Selection.

While the use of this API is limited by the number of IPv6 applications,
we still tried to estimate this. We calculated the number of applications
specifying the source address explicitly by calculating the proportion of
applications referencing bind() but not referencing the INADDR ANY con-
stant, which results in 18.6% of the applications. Thus, this does not give
yet a very promising future for adoption of the extensions.

Other Protocol Extensions

The use of SCTP was very minimal in our set of applications and only three
applications used SCTP. Netperf is a software used for benchmarking the
network performance of various protocols. Openser is a flexible Session
Initiation Protocol (SIP) proxy server. Linux Kernel SCTP tools (lksctp-
tools) provides userspace tools for testing SCTP functionality.

As with SCTP, DCCP was also very unpopular. It was referenced
only from a single software package, despite it being easier to embed in
an application by merely using the SOCK DCCP constant in the socket
creation.

As described earlier, HIP and SHIM6 have optional native APIs. Both
of the protocols can be used transparently by legacy applications. This
might facilitate their deployment when compared with the mandatory changes
in applications for SCTP and DCCP.

The APIs for HIP-aware applications [70] may also face a similar slow

72 3 Statistics and Empirical Experience with Sockets API

adoption path as the APIs require a new domain type for sockets. While
getaddrinfo() resolver can conveniently fill in any domain types, the success
of this new DNS resolver (23.5%) is still challenged by the deprecated geth-

ostbyname() (43.3%). SHIM6 does not face the same problem as it works
without any changes to the resolver and connections can be transparently
“upgraded” to SHIM6 during the communications.

The shared multihoming API for HIP- and SHIM6-aware applications
[69] may have a smoother migration path. The API relies heavily on socket
options and little on ancillary options. This strikes a good balance because
setsockopt() is familiar to application developers (42.8%) and sendmsg() /
recvmsg() with its ancillary option is not embraced by many (7%).

A Summary of the Sockets API Findings and Their Implications

Table 3.2 highlights ten of the most important findings in the Sockets APIs.
Next, we go through each of them and argue their implications to the
development of network applications.

Core Sockets API

1 IPv4-IPv6 hybrids 26.9%
2 TCP-UDP hybrids 26.3%
3 Obsolete DNS resolver 43.3%
4 UDP-based apps with

multihoming issue
45.7%

5 Customize networking
stack

51.4%

OpenSSL-based applica-
tions

6 Fails to initialize correctly 28.6%
7 Modifies default behavior 53.3%
8 OpenSSL-capable apps in

total
10.9%

Estimations on IPv6-
related extensions

9 Potential misuse with
mapped addresses

83.3%

10 Explicit IPv6 Source ad-
dress selection

66.9%

Table 3.2: Highlighted indicator sets and their reference ratios

3.4 Results and Analysis 73

Finding 1. The number of hybrid applications supporting both IPv4
and IPv6 was fairly large. While this is a good sign for the deployment
of IPv6, the dual addressing scheme doubles the complexity of address
management in applications. At the client side, the application has to
choose whether to handle DNS resolution over IPv4 or IPv6, and then
create the actual connection with either family. As IPv6 does not even
work everywhere yet, the client may initiate communications in parallel
with IPv4 and IPv6 to speed up the process. Respectively, server-side
applications have to listen for incoming data flows on both families.

Finding 2. The hybrid applications using both TCP and UDP amounted
as much as TCP-only applications. Thus, many application developers
seem to write many application protocols to be run on with both trans-
ports. While it is possible to write almost homogeneous code for the two
transports, the Sockets API favors different functions for the two. This
unnecessarily complicates the application code.

Finding 3. The obsolete DNS resolver was referenced twice as much
than the new one. This has negative implications on the adoption of new
Sockets API extensions dependent on the new resolver. As concrete ex-
amples, native APIs for HIP and source address selection for IPv6 may
experience a slow adoption path.

Finding 4. We discovered a UDP multihoming problem at the server
side based on our experiments with three software included in the data set.
As an upper bound, we estimated that the same problem affects 45.7% of
the UDP-based applications.

Finding 5. Roughly half of the networking software is not satisfied with
the default configuration of networking stack and alters it with socket op-
tions, raw sockets or other low-level hooking. However, we did not discover
any patterns (beside few popular, individually occurring socket options) to
propose as new compound profiles for applications.

Findings 6, 7 and 8. Roughly every tenth application was using OpenSSL
but surprisingly many failed to initialize it appropriately, thus creating po-
tential security vulnerabilities. Half of the OpenSSL-capable applications
were modifying the default configuration in some way. Many of these tweaks
improved backwards compatibility at the expense of security. This opens a
question why backwards compatibility is not well built into OpenSSL and
why so many “knobs” are even offered to the developer4.

Finding 9. IPv6-mapped IPv4 should not be leaked to the wire for

4One of the reasons may be that we need a way to turn on or off features depending
on the peer’s SSL/TLS implementation, as some of the implementations of SSL/TLS are
considered “broken” as they do not implement or implement incorrectly some of the bugs
and/or functionalities of SSL/TLS.

74 3 Statistics and Empirical Experience with Sockets API

security reasons described earlier and socket option IPV6 V6ONLY would
prevent this leakage. However, only one out of total six applications using
mapped addresses were using the socket option. Despite the number of total
applications using mapped address in general was small, this is an alarming
sign because the number can grow as the number of IPv6 applications
increases.

Finding 10. IPv6 source address selection lets typically a client appli-
cation to choose the type of an IPv6 source address instead of explicitly
choosing one particular address. The extensions are not used yet, but we
estimated the need for them with our set of applications. Our coarse-
grained estimate is that two out of three IPv6 applications might utilize
the extensions.

We have now characterized current trends with C-based applications
using Sockets API directly and highlighted ten important findings. Of
these, we believe findings 3, 4, 6 and 9 can be directly used to improve
the existing applications in the data set. We believe that most of the
remaining ones are difficult to improve without introducing changes to the
Sockets API (findings 1, 2, 5) or without breaking backwards compatibility
(finding 7). Also, some applications may not need security at all (finding
8) and the adoption of extensions (finding 10) may just take some time.

As some of the findings are difficult to adapt to the applications using
Sockets API directly, perhaps indirect approaches as offered by network
application frameworks may offer easier migration path. For example, the
first two findings are related to management of complexity in the Sock-
ets API and frameworks can be used to hide such complexity from the
applications using the framework.

3.4.3 Network Application Frameworks

In this section, we investigate four network application frameworks based
the Sockets API. In a way, these frameworks are just another “application”
using the Sockets API and, thus, similarly susceptible to the same analysis
as the applications in the previous sections. However, benefits of improving
a single framework transcend to numerous applications as frameworks are
“hotspots” for sets of applications. The Sockets API may be difficult to
change, but it is easier to change the details how a framework implements
the complex management of the Sockets API behind its high-level APIs.

3.4 Results and Analysis 75

Generic Requirements for Modern Frameworks

Instead of applying the highlighted findings described in Section 3.4.2 di-
rectly to network application frameworks, we make some modifications.
Firstly, to have a more top-down approach, we reorganize the analysis into
more high-level themes describing end-host naming, look up, multiplicity
of names and transport protocols and security. We also believe that the
reorganization may be useful for extending the analysis in the future.

Secondly, we arrange the highlighted findings according to their theme
with three changes. First, a high-level framework does not have to follow
IP-address oriented layout of the Sockets API and, thus, we investigate
the use of symbolic host names as well. Second, the reconfiguration of
the stack (finding 5) was popular but we could not suggest any significant
improvements on it, so it is omitted. Third, we split initiating of paral-
lel connectivity with IPv4 and IPv6 as their own requirements for both
transport connections and DNS look ups.

The following list reflects the Sockets API findings as requirements for
network application frameworks:

R1: End-host naming

R1.1 Does the API of the framework support symbolic host names in
its APIs, i.e., does the framework hide the details of hostname-
to-address resolution from the application? If this is true, the
framework conforms to a similar API as proposed by Name
Based Sockets as described earlier. A benefit of this approach
is that implementing requirements R1.2, R2.2, R3.1 and 3.3 be-
comes substantially easier.

R1.2 Are the details of IPv6 abstracted away from the application?
In general, this requirement facilitates adoption of IPv6. More
specifically, it could be used for supporting of NAT traversal
based on Teredo transparently in the framework.

R1.3 IPv6-mapped address should not be present on the wire for vari-
ous security reasons. Thus, the framework should manually con-
vert mapped addressed to regular IPv4 addresses before they are
passed to any Sockets API calls or use the AI V4MAPPED option
as a safe guard to prevent such leakage.

R2: Look up of end-host names

R2.1 Does the framework implement DNS look ups with getaddrinfo()?
This important because, e.g., Native HIP API and IPv6 source

76 3 Statistics and Empirical Experience with Sockets API

address selection extensions are dependent on this particular
function.

R2.2 Does the framework support parallel DNS look ups over IPv4
and IPv6 as a latency optimization?

R3: Multiplicity of end-host names

R3.1 IPv6 source address selection is not adopted yet but is the frame-
work modular enough to support it especially at the client side?
As a concrete example, the framework should support adding
new parameters to its counterpart of connect() call to support
preferences for source address type.

R3.2 Does the server-side multihoming for UDP work properly? As
described earlier, the framework should use SO BINDTODEVICE

option or sendmsg()/recvmsg() interfaces in a proper way.

R3.3 Does the framework support parallel connect() over IPv4 and
IPv6 as a latency optimization?

R4: Multiplicity of transport protocols

R4.1 Are TCP and UDP easily interchangeable? “Easy” here means
that the developer merely changes one class or parameter but
the APIs are the same for TCP and UDP. It should be noted
that this has also implications on the adoption of SCTP and
DCCP.

R5: Security

R5.1 Does the framework support SSL/TLS?

R5.2 Does the SSL/TLS implementation provide reasonable defaults
so that the developer does not have to set the details of the
security?

R5.3 Is the SSL/TLS implementation initialized correctly?

ACE

ACE 6.0.0 provides a class for denoting one end of a transport-layer session
called ACE INET Addr that can be initiated both based on a symbolic host
name and a numeric IP-address. The support for IPv6 is thus transpar-
ent if the developer has chosen to resort solely on host names and uses

3.4 Results and Analysis 77

AF UNSPEC in the instantiation of the class. Typically, the IP-addresses
are also specified using strings which provides are more unified interface
with host names. ACE allows storing of IPv4 addresses in the IPv6 mapped
format internally but reverses them to the normal IPv4 format before re-
turning them to the requesting application or using on the wire.

ACE supports getaddrinfo() function and resorts to getnameinfo() only
when the Operating System (OS) (e.g., Windows) does not support getad-

drinfo().

ACE supports both connected (class ACE SOCK CODgram) and con-
nectionless communications (class ACE SOCK Dgram) with UDP. We tested
the UDP multihoming problem with test software included in the ACE soft-
ware bundle. We managed to repeate the UDP multihoming problem with
connected sockets which means that the ACE library shares the same bug
as iperf, nc and nc6 as described earlier. Unsurprisingly, disconnected UDP
communications did not suffer from this bug because ACE does not fix the
remote communication end-point for such communications with connect().
It should be also noted that a separate class, ACE Multihomed INET Addr,
supports multiaddressing natively.

A client can connect to a server with TCP with class ACE SOCK Connec-

tor in ACE. The instantiation of the class supports flags which could be
used for extending ACE to support IPv6 source address selection in a back-
wards compatible manner. While instantiation of connected UDP commu-
nications does not have a similar flag, it still includes few integer variables
used as binary arguments that could be overloaded. Alternatively, new in-
station functions with different method signature could be defined in C++.
As such, ACE seems modular to adopt IPv6 source address selection with
minor changes.

For basic classes, ACE does not provide support for accepting commu-
nications simultaneously for both IPv4 and IPv6 at the server side. Class
ACE Multihomed INET Addr has to be used to support such behaviour more
seamlessly but it can be used both at the client and server side.

Changing of the transport protocol in ACE is straightforward. Abstract
class ACE Sock IO defines the basic interfaces for sending and transmitting
data. An application instantiates ACE Sock Stream class to use TCP or
ACE SOCK Dgram to use UDP which both implement the abstract class.
While both TCP and UDP-specific classes supply some extra transport-
specific methods, switching from one transport to another occurs merely by
renaming the type of the class at the instantiation assuming the application
does not need the transport-specific methods.

ACE supports SSL albeit it is not as interchangeable as TCP with

78 3 Statistics and Empirical Experience with Sockets API

UDP. ACE has wrappers around accept() and connect() calls in its Acceptor-
Connector pattern. This hides the intricacies of SSL but all of the low-level
details are still configurable when needed. SSL is initialized automatically
and correctly.

Boost::Asio

Boost::Asio 1.47.0 provides a class for denoting one end of a transport-layer
session called endpoint that can be initiated through resolving a hostname
or numeric IP. By default the resolver returns a set of endpoints that may
contain both IPv4 and IPv6 addresses (IPv6 addresses are queried if IPv6
loopback is present). These endpoints can be given directly to the connect()
which makes sequential connects to the address found in the endpoint set
until it succeeds. The support of IPv6 is thus transparent if the developer
has chosen to rely on host names. Boost::Asio allows storing the IPv4
addresses in the IPv6 mapped form. By default the mapped format is used
only when the developer explicitly defines the query protocol to IPv6 and
the query results contain no IPv6 addresses. The mapped format is used
internally and converted to IPv4 before using it on the wire.

Boost::Asio uses POSIX getaddrinfo() if the underlying OS has support
for getaddrinfo(), on systems such as Windows (older than XP) and cygwin
Boost::Asio emulates the getaddrinfo by using gethostbyaddr() and gethost-

byname(). By default, Boost::Asio does not support client-side IPv6 source
address selection when connecting. Boost::Asio’s connect would be able to
benefit from the source address preference ordered endpoint set created by
an extended getaddrinfo() described in [97] Section 7.

Boost::Asio does not support parallel IPv4 and IPv6 queries or does not
provide support for simultaneous communications for both IPv4 and IPv6.

We tested the UDP multihoming problem with example software pro-
vided with the Boost::Asio. We managed to repeat the UDP multihoming
problem with connected sockets which means that the Boost::Asio library
shares the same bug as iperf, nc and nc6 as described earlier.

Boost::Asio defines basic interfaces for sending and transmitting data.
An application instantiates ip::tcp::socket to use TCP or ip::udp::socket to use
UDP. While both classes provide extra transport-specific methods, switch-
ing from one transport to another occurs merely by renaming the type of
the class at the instantiation assuming the application does not need the
transport-specific methods.

Boost::Asio supports SSL and TLS. The initialization is wrapped into
the SSL context creation. In Boost::Asio, the library initialization is actu-
ally done twice as OpenSSL add ssl algorithms() is a synonym of SSL library -

3.4 Results and Analysis 79

init() and both are called sequentially. PRNG is not automatically ini-
tialized with RAND load file()), RAND add() or RAND seed(). Although
Boost::Asio implements class random device which can be easily used in
combination with RAND seed to seed the PRNG.

Java.net

Java.net in OpenJDK Build b147 allows creation of a socket with various
options. An application can resolve the address from a hostname, create
the socket, and connect the socket to the given hostname with one function
call or use the more traditional way of resolving the hostname to a set
of addresses, creating the socket and connecting the socket to one of the
addresses from the address set. The internal presentation of InetAddress

can hold an IPv4 or IPv6 address and thus is transparent if the developer
relies on the hostnames.

Java supports v4 mapped address format as an internal presentation.
However, when used in transport it is converted to IPv4 address.

Java.net checks the existence of the constant AF INET6, and that a
socket can get an IPv6 address and creates the InetAddr factory accord-
ingly. If java.net sees that the IPv6 is supported it uses the getaddrinfo()

for resolution, otherwise it will use gethostbyname() for resolution. Parallel
DNS queries simultaneously over IPv4 and IPv6 are not supported out-of-
the-box. However, the SIP communicators ParallelResolver package 5 can
be easily used to implement the support.

We tested the UDP multihoming problem with example software pro-
vided with the java.net. We managed to repeate the UDP multihoming
problem with connected sockets which means that the java.net library
shares the same bug as iperf, nc and nc6 as described earlier.

Java.net prefers TCP as the notion of socket always means TCP socket.
If the developer needs UDP sockets the developer has to instantiate Data-

garamSocket. Changing of the protocol is not easy because TCP in java
uses streams for input and output, and UDP in java uses DatagramPacket
objects as the sending means.

Java.net supports SSL, and TLS and the details of the usage are hidden
inside the abstraction, although it is possible to influence the behaviour by
changing options.

5net.java.sip.communicator.util.dns.ParallelResolver

80 3 Statistics and Empirical Experience with Sockets API

Twisted

In Twisted 10.2, hostnames can be passed to TCP-based connections di-
rectly. However, the situation is asymmetric with UDP. A UDP-based
application has to first resolve the hostname into an IP-address manually.

Surprisingly, the IPv6 support is mostly missing from Twisted. It sup-
ports resolving of IPv6 records from the DNS. Also, some methods and
classes include “4” postfix to fix certain functions to IPv4 but, other than
this, IPv6 is essentially missing. Mapped addresses are not a concern due
to lack of proper IPv6 support.

The twisted framework uses gethostbyname() but has also its own imple-
mentation of DNS, both for the client and server side. As IPv6 support is
missing, the framework cannot support parallel look ups.

Introducing IPv6 source address selection to Twisted would be relatively
straightforward, assuming IPv6 support is eventually implemented. For
example, Twisted method equivalents for connect() accept hostnames and
the methods could be adapted to include a new optional argument to specify
source address preferences. However, parallel connections over IPv4 and
IPv6 remain unsupported due to lack of proper IPv6 support.

Twisted inherits the UDP multihoming issue from the Sockets API. We
observed this by trying it with a couple of client and server UDP applica-
tions from the Twisted documentation.

TCP and UDP are quite interchangeable in Twisted when Endpoint
class is used because it provides read and write abstraction. However, two
discrepancies exists. First, Creator class creates discrepancy with a TCP-
specific naming conventions in method connectTCP(). Second, applications
cannot read or write UDP datagrams directly using host names but have
to first resolve them into IP-addresses.

Twisted supports TLS and SSL in separate classes. SSL or TLS can
be plugged into an application with relative ease due to modularity of
the framework. The details of the security are configurable but Twisted
provides defaults for applications that do not need special configurations.
All of the details of TLS/SSL initialization, including seeding of the PRNG,
are hidden from the application.

The initialization of the SSL/TLS is handled correctly inside the ini-
tialization of the SSL sub module. Also the error strings for PRNG are
initialized correctly in RAND sub module. Although, RAND sub module
does not automatically do the seeding, it is very easy to implement.

3.5 Related Work 81

A Summary of the Framework Results

We summarize how the requirements are met by each of the four frameworks
in Table 3.3. As it can be seen, the frameworks meet the requirements in
different ways but some requirements are consistent in all. IPv6 source ad-
dress selection (R1.3) seems easy to adopt in all frameworks and TLS/SSL
is well managed (R5.1, R5.2, R5.3) in all frameworks. Conversely, all frame-
works fail to support parallel IPv4/IPv6 connection initialization for clients
(R3.3) and fail in UDP multihoming R3.2 as well.

Req. ACE Boost::Asio Java.net Twisted

End-host naming
R1.1 X X (X)
R1.2 X X X
R1.3 X X X X
Look up of end-host names
R2.1 X X X
R2.2 (X)

Multiplicity of end-host names
R3.1 X (X) X
R3.2
R3.3

Multiplicity of transport protocols
R4.1 X X (X)

Security
R5.1 X X X X
R5.2 X X X X
R5.3 X X (X) X

Table 3.3: Summary of the requirements for the frameworks

3.5 Related Work

At least three other software-based approaches to analyze applications exist
in the literature. Camara et al. [25] developed software and models to verify
certain errors in applications using the Sockets API. Ammons et al. [7] have
investigated machine learning to reverse engineer protocol specifications
from Sockets API based source code. Palix et al. [101] have automatized
finding of faults in the Linux kernel [101] and conducted a longitudinal
study.

82 3 Statistics and Empirical Experience with Sockets API

We did not focus on the development of automatized software tools but
rather on the discovery of a number of novel improvements to applications
and frameworks using the Sockets API. While our findings could be fur-
ther automatized with the tools utilized by Camara, Ammons and Palix
et al., we believe it is in the scope of another paper already due to space
limitations.

IP-address literals refers to addresses hard-coded to the application or
addresses obtained without DNS resolution. Arkko et al. [12] describe their
experiences from a transition to a NATted IPv6-only network. One of
the problems in the transition originated from the IPv4-address literals
embedded in applications. The experiment was cross-platform by its nature
and considered different applications, such as web, email, games, instant
messaging and VoIP.

Aside from internal unit tests, we did not find any IP-address literals
in our set of software. Arkko et al. found literals especially in instant
messengers and games. However, their findings do not conflict with ours
because our study did not involve any games or the Windows OS. Also,
they do not list the exact names of the software used, nor do they explain
whether the address literals were built into the software or discovered by
some other means such as configuration files, which were excluded from our
study.

3.6 Summary

In this chapter, we showed results based on a statistical analysis of open-
source network software. Our aim was to understand how the Sockets
API and its extensions are used by current applications and application
frameworks, and to examine how well the current frameworks support the
observed usage scenarios and patterns. Thus, our aim was to conduct an
empirical analysis that could be used to characterize network applications
and create better frameworks to support their development. We reported
ten interesting findings that included security, IPv6, and configuration re-
lated issues. Based on the findings we concluded that the Sockets API usage
is heterogeneous and that it is difficult to introduce general modifications
to the way applications utilize networking features. We partly addressed
the extent of this challenge by suggesting fixes on security and UDP mul-
tihoming support. For example, we discovered that 28.6% of the C-based
network applications in Ubuntu are vulnerable to attacks because they fail
to initialize OpenSSL properly. Then, we turned to network application
frameworks in order to be able to introduce the desired changes to multiple

3.6 Summary 83

applications.
Our specific contributions are the findings based on a comprehensive

statistical analysis of open-source software, the implications of the find-
ings for updating and developing network applications, and the subsequent
analysis of network application frameworks with the aim of a more flex-
ible common network code that can be updated with new features. We
investigated four frameworks and we analyzed their properties along differ-
ent generalized dimensions of end-host naming, multiplicity of names and
transports, name look up and security. A key finding in the frameworks was
a multihoming problem with UDP-based connectivity that we verified with
all four frameworks. With the suggested technical solution, frameworks can
support better the pervasive multiaccess devices of today.

84 3 Statistics and Empirical Experience with Sockets API

Chapter 4

Secure Identifier Resolution

Many efforts of the network research community focus on the introduction
of a new identifier to relieve the IP-address from its dual role of end-host
identifier and routable locator. This identifier-locator split introduces a
new identifier between human readable domain names and routable IP-
addresses. Mapping between identifiers and locators requires additional
name mapping mechanisms because their relation is not trivial. Despite
its popularity and efficiency, the DNS is not a perfect choice for perform-
ing this mapping because identifiers are not hierarchically structured and
mappings are frequently updated by users. In this chapter we discuss the
features needed to resolve flat identifiers to locators in a secure manner.
In particular, we focus on the features and the performance that identifier-
locator split protocols require from a mapping system. To this end, we
consider a mapping system for an identifier-locator split based mobility
solution and evaluate its performance.

85

86 4 Secure Identifier Resolution

4.1 Introduction

In the evolution of the Internet, IP-addresses initially served hosts as their
identifiers and their routable locators. Although this dual role simpli-
fied many design decisions in the communication stack, it has been called
into question because it hampers dynamics and flexibility in today’s net-
works. Identifier-locator split protocols address this problem by limiting
IP-addresses to being pure locators and by introducing a new identifier
above the network layer. This new identifier is often not routable and
serves purely for host identification. With this split, these protocols sup-
port current requirements in the Internet, including security, mobility, and
multihoming.

While the identifier-locator split has clear benefits, it also introduces its
own problems. In addition to the existing DNS mappings, identifiers must
be resolved to one or more locators. Despite the similarity of both res-
olution steps, the identifier-locator split introduces requirements that the
current name resolution architecture cannot handle in practice. First, the
pattern of the requests changes from name-to-locator to name-to-identifier
and identifier-to-locator, where the identifier may belong to a flat names-
pace and the locator may change frequently. Second, the system must sup-
port fast mapping updates for mobile hosts. Third, secure user-generated
updates must be supported.

The current DNS was designed for an Internet that consisted of station-
ary nodes. As such, the DNS was built for frequent reads and occasional
updates. In contrast, mobile hosts need to update their location in the
identifier mapping system quickly to stay reachable. Such updates pose
new challenges to performance and security since the DNS is mainly an
administered environment in which end hosts typically do not have direct
write access to their DNS records.

In this chapter we present an architecture that maps FQDNs to EIDs
using the DNS, and that maps the EIDs of a host to its Routable LOCators
(RLOCs) using a DHT. Our contribution consists of an in-depth analysis of
the problem domain and the design of a secure resolution architecture for
identifiers and locators for mobile users. As a proof of concept, we present
practical experience with an implementation of the resolution architecture.

4.2 System Requirements

The introduction of end-host identifiers changes the way names are resolved
at the beginning of a communication session. With the identifier-locator

4.2 System Requirements 87

split, hosts have to resolve FQDNs to EIDs and EIDs to RLOCs. An
essential question is whether the existing DNS name resolution infrastruc-
ture can cope with this task and how an alternative system should function.
There are four problem areas that a name resolution structure for locator-
identifier split mappings must tackle: a) In most cases the EIDs are based
on a flat and often cryptographic namespace (e.g., the EID can be the hash
of a public key of an asymmetric key pair identifying the host). It is known
that DNS does not cope well with data that has no hierarchical struc-
ture. b) The architecture has to support user-generated and user-updated
mappings. In the current DNS, names are mapped to a relevant authority
controlling a subspace of the namespace. In some cases there is no authority
for the user to turn to. For example, in HIP, the identifiers are self-created
by the users, and in most cases the users do not belong to any organiza-
tion that grants them modification rights to a DNS sub-domain, such that
they could store and update their mappings. c) The architecture has to
be secure; for example, it has to prevent attackers from forging identities
and mappings of clients. Additionally, the system must prevent attackers
from flooding the resolution system with bogus mappings to drown valid
mappings. d) Finally, the system has to operate in an efficient manner.

4.2.1 Support for Flat Namespaces

The nature and structure of identifiers depends on the chosen identifier-
locator split protocol. Identifiers can be divided into two categories. The
first category represents human-readable identifiers at the application layer.
Domain names, the most prominent human-readable identifier, are man-
aged and structured in a hierarchical way, reflecting the hierarchy prevalent
in the management of networked systems. The second category represents
binary identifiers that may or may not be organized in a hierarchical way.
These identifiers can consist of any sequence of bits without taking human
readability into account. In the network community, there is a trend to-
wards cryptographic identifiers to provide inherent security when address-
ing a host or service. An example of such a cryptographic identifier is HIP’s
HIT, a form of public key fingerprint. Such cryptographic names have little
or no hierarchical structure, making it difficult to assign the management of
the identity to an organization as the DNS does for human-readable names.

4.2.2 Rapid Mapping of User-generated Updates

Using DNS to store all the required mapping information (domain name,
identifier, and locator) would suffice for stationary nodes under adminis-

88 4 Secure Identifier Resolution

trative management, but would not be a good choice for mobile nodes and
for users who do not have modification rights to the DNS. To allow fast
mapping updates for mobile hosts, which need to change their IP-address
mapping rapidly to stay reachable, the DNS RRs would have to use low
TTL values, or caching would have to be disallowed. However, high TTLs
and caching are cornerstones of the scalability and performance of the DNS.
Abandoning them for a considerable proportion of entries would seriously
degrade the performance of the system as a whole.

This chapter considers the proposition that mobile nodes with access to
the DNS should use it to map FQDNs to EIDs, and as the research commu-
nity has adopted DHTs to handle flat namespaces, the chapter furthermore
assumes that EIDs should be resolved using DHTs. DHTs do not employ
hierarchical caching and thus allow for immediate mapping updates. How-
ever, using a DHT results in a higher communication overhead within the
name mapping system (c.f. Section 4.4).

4.2.3 Securing Mapping Updates

The DNS, as a hierarchical and administered name resolution system, is
widely regarded as secure. Even without cryptographic protections like
DNSsec [11], fraudulent behavior requires access to the DNS infrastructure
itself and is typically limited to a single compromised sub-domain. Tam-
pering with DNS entries on a global scale requires considerable effort. In
addition, DNSsec protects the system against spoofing attacks in which a
malicious user tries to forge an answer from the DNS or tries to claim that
the queried name does not exist.

However, as discussed before, the DNS system was not designed for
large amounts of fast user-generated updates. Besides technical challenges,
security issues arise when allowing users to modify the contents of the
mapping system. The name lookup at the beginning of a communication
session is a vulnerable phase. Tampering with it may allow direct as well
as indirect DoS attacks (e.g., by invalidating the locator mapping or by
redirecting traffic addressed to a popular host to a victim). Therefore, the
system must be protected regardless of the resolution system.

We illustrate the arising issues using the example of OpenDHT1 as a
system that allows user-generated updates. OpenDHT has been proposed
as one choice for a collaboratively managed DHT [5] (see Section 4.5 for
further examples). OpenDHT is a publicly available DHT service running

1In May 2009, the maintainer of OpenDHT informed the community that the service
would be discontinued. However, since it was a widely used service for years, we still use
OpenDHT as a practical example of a DHT.

4.3 Resolution System Design 89

in PlanetLab, a world-wide testbed of several hundred servers. In contrast
to other DHT systems, users do not have to run a local DHT node to
be able to access it. OpenDHT does not require registration to insert
and look up data. The open access philosophy of OpenDHT matches the
requirements for global name resolution well, because requiring each end
host to sign up for a name mapping service hardly matches the principles
of the Internet. Available storage and bandwidth in OpenDHT are shared
among all users [114].

OpenDHT stores one or several values under each key (e.g., the EID
in a name lookup system). This convention is prone to flooding and index
poisoning attacks [80]. In these attacks the malicious user stores as much
false or random information under the attacked key as possible, thereby ef-
fectively drowning the original value. This allows malicious users to present
seemingly correct information in the DHT. Index poisoning in an identifier-
locator mapping service can even be used to mount distributed DoS attacks
against victim hosts. Consider a case in which a malicious user uploads the
victim’s locator under the identifiers of some popular services. This would
redirect the traffic destined for the services to the victim’s system, thereby
overloading its downlink.

There are two possible solutions for this problem: a) The DHT is ag-
nostic with respect to the contents it stores and leaves it to the end host to
implement security or b) the DHT enforces the correctness of mappings and
updates to mappings before accepting them. Solution a) can be achieved
by attaching additional authentication information to the stored mappings
(e.g., digital signatures). EIDs based on a cryptographic namespace (e.g.,
HITs in HIP) simplify this approach because each host can use its EID to
sign its locator set. Such signatures would enable a querier to identify the
correct value among a set of forged locators. However, in an index poison-
ing attack, it would also mean that the querier would have to verify the
signatures of many returned locators until it identifies a valid entry among
the flood of bogus mappings. In contrast, in solution b), DHT nodes would
verify the authenticity of the signatures before accepting a new key-value
pair. This method requires replay protection to prevent attackers from
republishing properly signed but outdated locator mappings.

4.3 Resolution System Design

This section summarizes the previous discussion and proposes a secure
name resolution architecture in which clients map EIDs to locators using a
DHT. We assume that the EIDs are derived from public keys (as HITs in

90 4 Secure Identifier Resolution

HIP are) and that hosts can prove the possession of an EID by using their
private keys. We use HIP as an example of a host-based identifier-locator
split protocol because it includes all of the security features that our pro-
posed architecture requires. Moreover, we show how the security features
of HIP support the requirements listed in the previous section.

4.3.1 General Design

Since the current DNS is sufficient to store the long-lasting mappings from
FQDNs to EIDs and these mappings may be independent of the locator-
split protocol, we treat the first name resolution step as an orthogonal issue
and assume that appropriate measures are taken to ensure secure operation
(e.g., by employing DNSsec). However, note that the FQDNs are resolved
to EIDs instead of locators.

In the second name resolution step, a DHT is used to map the EIDs to
locators. We assume that the EID (or a value that can be securely derived
from it) is used as the key in the DHT. The value stored under the key
consists of the public key of the host, its locators, a sequence number, and
a signature created with the private key of the host. The signature and the
sequence number prove to the clients and the DHT nodes that the locator
mapping is authentic.

In the previous section, we noted that DoS and replay protection mea-
sures are needed to protect the DHT. This requires a challenge-response
mechanism for verifying that the host owns the public-keys related to the
EID for which it updates the locator mapping. If this verification succeeds,
the mapping is stored; otherwise it will be dropped.

4.3.2 An Identifier Resolution System for HIP

In essence, the HIP BEX is a four-way handshake and key negotiation phase
to create an IPsec security association between hosts. The BEX verifies that
the peer owns the private key that correspond to the public key that was
used to create their identities. The BEX also includes puzzle protection
against DoS attacks and other flooding attacks. In our approach, we use
the BEX as the challenge-response mechanism for verifying the ownership
and freshness of the locators to be stored in the DHT.

In order to initiate the BEX, the initiator (the host that initiates the
communication) needs to know the HIT of the responder (e.g., a server) and
a way to map the HIT to an IP-address. Currently HIP offers two different
ways to perform the resolution. In our solution, both of these approaches
are used. Firstly, DNS can be used to store HIP-related identifiers using

4.4 Evaluation 91

HIP RRs [94] protected by signatures. This allows for translation of FQDNs
to HIs. The resolver then issues an A query to map the HIT into the host’s
IP-addresses. Alternatively, HIP can utilize the HIP DHT interface [5].

We use the client authentication in the HIP BEX to prevent attackers
from inserting forged locators for EIDs of other hosts into the DHT. By
requiring a HIP connection between the client and the DHT node, the client
has to prove that it is uploading mappings for its legitimate host identity –
the key in the DHT. Implementing this authentication check is simple and
can be done through the standard Berkeley Sockets API. The HIT, as an
IPv6-compatible identifier, can be used directly by any IPv6-capable DHT.
The authentication, as well as the basic DoS protection, are handled on the
HIP layer. The only modification required to the DHT is a test for equality
of the HIT and the key in the put message. The self-certifying property of
the HIT obsoletes further authentication measures like client certificates or
user registration.

Depending on the security architecture of the DHT, a client should
either perform the BEX with a DHT gateway node, or with the node storing
the EID and locator information if the DHT system cannot be regarded as
secure. Such protection is only possible if the DHT is used exclusively for
HIT-to-locator resolution, because a general-purpose DHT is not able to
guarantee the cryptographic binding between a host and the updated keys.

4.4 Evaluation

In this section we study the feasibility of the system by analyzing our proof-
of-concept implementation. Our prototype uses the Host Identity Protocol
as the identifier-locator split protocol. HIP was chosen because it readily
includes cryptographic identifiers that can be used for authentication, a
built-in challenge-response mechanism, and a cryptographic puzzle mecha-
nism for DoS prevention. We implemented an OpenDHT Interface [5] for
the HIPL implementation2 to store the identifier-locator mappings.

We begin our performance evaluation by analyzing the number of re-
quired cryptographic operations and messages for inserting a new entry
into the DHT based on our HIP-centric security solution. We focus on the
performance of the resolution system and not on the performance of mobile
nodes. We also provide measurements of the processing times for the Bam-
boo DHT3 and for OpenLookup v2,4 to show the resolution performance

2HIPL, http://www.infrahip.net, 22.9.2012
3http://sites.google.com/site/lxpworkroom/bambooipv6version, 22.9.2012
4http://openlookup.net/, 22.9.2012

92 4 Secure Identifier Resolution

Table 4.1: Computational complexity of cryptographic operations in HIP.
operations per sec. ms/operation

HMAC(MD5) 42267 0.02
SHA-1 30809 0.03
DSA signature 1887 0.53
DSA verify 1645 0.61
RSA signature 890 1.12
RSA verify 18502 0.05
DH key generation 51 19.64

of a real system.

4.4.1 Feasibility

Performance is a primary concern for a resolution system that employs on-
line public-key operations. The HIP BEX is dominated by the processing
times for creating and verifying the public key signatures. Hence, we mea-
sured the performance of these operations to estimate the number of clients
that a server is capable of serving per second. The cryptographic opera-
tions are only relevant for write operations because reads do not require
authentication. Hence, reads will be drastically faster. Moreover, we do not
consider routing overhead in the DHT in this measurement either. The goal
of the analysis is not to give an accurate estimation of the expected perfor-
mance of a world-wide system, but rather to provide a general impression
of the feasibility of using HIP for securing a DHT system for HIT-to-IP
mapping.

We used a quad core Intel Xeon 5130 running at 2 GHz with 2 GB
of main memory to perform the cryptographic calculations. However, the
cryptographic measurements used only one core. We conducted the cryp-
tography tests with the OpenSSL 0.9.8g speed test. The results of the
tests are shown in Table 4.1. We used 1024-bit keys because that is the
default size for the Rivest Shamir Adleman (RSA) and Digital Signature
Algorithm (DSA) keys in the HIP for Linux implementation, which we used
for latency measurements. For the hash functions, we used the maximum
block size of 8192 bytes.

Based on the information presented in Tables 4.1 and 4.2, we can cal-
culate that it will take circa 20.8 ms to complete the cryptographic calcu-
lations needed in the BEX on the server side (1 RSA signature, 1 RSA
verification, and 1 D-H key generation). This amounts to 192 key updates
processed by each DHT node per second. Considering a system comparable

4.4 Evaluation 93

to OpenDHT, which consisted of about 150 nodes on average, the system
could process about 28,800 updates per second. These estimations show
that even a moderately-sized system can support a substantial number of
mobile devices.

4.4.2 Resolution and Update Delay

The resolution and update delay of the system is a crucial factor for clients
because the resolution step precedes every communication to each host for
which the HIT-to-IP mapping is not known. The update delay determines
how long the locator information in a DHT stays outdated upon a change
of the locator. In our system, read accesses are protected by a signature
in the DHT resource record while write accesses are protected using HIP
between the client and the DHT. Using HIP prolongs the update process by
the time required for cryptographic processing plus two Round-Trip Times
(RTTs) for establishing the HIP association to the gateway or DHT node.

We measured the mean latency of an IPv6-enabled Bamboo DHT and
OpenLookup v2 to determine the resolution performance of these systems.
OpenLookup v2 implements the same XML-RPC client interface as the
Bamboo DHT, but it is not strictly speaking a DHT, and it does not share
data with OpenDHT. OpenLookup v2 is an administratively decentralized
system based on full data replication.

Bamboo DHT and OpenLookup v2 were running on the same hardware
as described in Section 4.4.1. We used a laptop with Intel Core 2, 2 GHz
CPU processor with 2 GB of main memory as the client. All machines
involved in our measurements were located in our local Gigabit network
with a mean round-trip latency of 0.88 ms (std.dev. 0.03 ms). Since we
only modified the lookup and update API, we focus on the communication
between the end host and the resolution system. For this reason, we made
our measurements using a Bamboo DHT configuration containing just one
node. Thus the results obtained do not reflect the expected total lookup
time of a world-wide deployment requiring routing within the DHT.

Figure 4.1 shows that OpenLookup v2 performs slightly better in the
lookup operations in comparison to the Bamboo DHT. The larger mean

Table 4.2: Cryptographic and communication overhead of the HIP BEX.
Verify Sign DH key

PK HMAC PK HMAC Generation # of msgs

Initiator 2 1 1 1 1 2
Responder 1 1 1 1 1 2

94 4 Secure Identifier Resolution

HIP−Bamboo Put

HIP−Bamboo Rm

Openlookup v2 Put

Openlookup v2 Rm

HIP BEX

Bamboo−DHT Get

Bamboo−DHT IPv6 Get

OpenLookup v2 Get

OpenLookup v2 IPv6 Get

0 10 20 30 40 50 60 70

HIP−Bamboo Put

HIP−Bamboo Rm

Openlookup v2 Put

Openlookup v2 Rm

HIP BEX

Bamboo−DHT Get

Bamboo−DHT IPv6 Get

OpenLookup v2 Get

OpenLookup v2 IPv6 Get

0 10 20 30 40 50 60 70

Lo
ok

up
Se

cu
re

d
U

pd
at

e

Figure 4.1: Latencies of update and get operations (in ms).

values and standard deviations for the Bamboo DHT are due to an un-
necessary periodic delay caused by the queue management in the iterative
lookup procedure, resulting in an extra delay for a small fraction of the
requests (approx. 10%). Since the shortest latencies of the Bamboo DHT
(IPv4 3.8 ms, IPv6 4.0 ms) match the shortest lookup times of OpenLookup
v2 (IPv4 4.2 ms, IPv6 4.0 ms) we assume that both systems achieve a similar
level of performance under realistic conditions.

The tested systems do not support updates of keys. However, by delet-
ing a key and re-inserting it with new locator information, updates can
be achieved. The latency of updating a record in the system is 116.4 ms
(±0.8 ms) for OpenLookup v2 and 127.6 ms (±5 ms) for the Bamboo DHT.
In fig 4.1 we also show the latencies of the HIP BEX in the test environ-
ment and the latencies of a Bamboo DHT utilizing HIP. Utilizing HIP in
the Bamboo DHT and in OpenLookup v2 did not add latency, other than
the 53 ms (±3.3 ms) caused by the BEX. Otherwise, the Bamboo DHT and
OpenLookup v2 utilizing HIP performed as expected from the results in
the get case. As pointed out in the previous section, the main cause of
the delay introduced by HIP is the cryptographic operations during the
BEX. In contrast to our estimation of the additional cryptographic load on
the DHT gateways, the additional delay of 53 ms in fig 4.1 also includes
the processing time of the client, the packet processing, and the network
latency. Our measurement focused on the performance of the gateway
and do not take into account the higher RTTs between the client and the
gateway under realistic conditions. As expected, HIP introduces a notable
delay for updates; however, at the same time it eliminates the possibility of
index poisoning and forged locator updates, without requiring additional
administrative measures like user registration.

4.5 Related Work 95

4.5 Related Work

Mathy et al. [86] describe how LISP-DHT serves as an efficient and se-
cure mapping service for the LISP 3 variant. LISP-DHT requires every
Autonomous System (AS) to have its own DHT node to serve identities in
the AS. In LISP-DHT, security is based mainly on the assumption that the
architecture is administered and joining the DHT requires a valid X.509.v3
certificate. To improve efficiency, LISP-DHT proposes the use of a Stealth
DHT, where client nodes may acquire DHT routing information (but do
not take responsibility for any data segment on the ring). In this way, the
stealth nodes can inject lookups into the system in a more efficient way
than by always directing queries via a gateway node. LISP reduces laten-
cies by caching and so hinders mobility. Mobility in LISP and its influence
on name resolution are currently under design [33].

In the Node Identity architecture [4], the node identities are the public
keys of public-private key pairs. Name resolution in the Node Identity
architecture uses the DNS to map FQDNs to EIDs, while EIDs are mapped
to locators using a global DHT shared by all node identity routers. The
Node Identity architecture is similar to LISP in the sense that both are
network-based and need customized routers to work. The security of the
mappings in the architecture is only briefly addressed by stating that the
security is inherited from registration security. However, the registration
security is not discussed in detail.

DHT-MAP [81] proposes a mapping system, useful for LISP and sim-
ilar protocols. The difference relative to other solutions is that EIDs are
mapped in the DHT to the address of a server that handles the resolution
to a host’s real RLOC. Mobility is supported by allowing the mobile host
to register with the resolution server of the access network to which it at-
taches. In this way, DHT-MAP avoids triangular routing and the concept
of a home network. Luo et al. [81] state that their approach may allow EID
spoofing attacks, and they suggest a challenge-response mechanism similar
to the mechanisms provided by HIP.

Baumgart [15] proposes a distributed two-stage name resolution service
(P2PNS) built on top of a DHT. That paper presents requirements and
solutions similar to ours but does not discuss mobility. In P2PNS, flooding
attacks are hampered by introducing computational puzzles that have to
be solved before the mappings can be inserted. As an additional feature,
the number of values under a key is restricted. When a key is queried from
P2PNS, it is queried in parallel from all replicas that have the key and
its value. Based on the received values, the issuer of the query makes a

96 4 Secure Identifier Resolution

majority decision.

4.6 Summary

In this chapter, we presented a discussion about identifier resolution for
identifier-locator split protocols and pointed out the shortcomings of the
current DNS. Based on our observations, we described an architecture for
secure identifier-locator mappings based on a distributed hash table. In
particular, we discussed three core problems of name resolution for host-
based identity locator split protocols: a) support for flat namespaces, b)
rapid user-generated updates, and c) the security of the mappings.

We address these problems by implementing secure key updates based
on the cryptographic properties of the identifiers in the HIP. Our system
works with user-generated identities and does not require any user man-
agement or the deployment of a global PKI system because it makes use
of the self-certifying identities in HIP. With its identity concept and IPv6
compatibility, HIP integrates nicely into existing lookup systems and en-
hances their security features with DoS resilience and authenticated locator
updates. Our performance analysis of the HIP-enabled DHT API demon-
strates the feasibility of the architecture and indicates that employing HIP
as a security solution provides acceptable performance with considerably
increased security.

Chapter 5

Separating Friends from Spitters

Undesired mail, such as commercials, is called spam in mail services. Spit is
what spam is for mail services, unsolicited communications. The difference
in spit and spam is that spam can be checked before the delivery to the
recipient and spit can be reliably detected only after the call is made.

VoIP community has adopted a more peer-to-peer aproach, in which the
registrars and proxies are located on the participating nodes, rather than
on separate servers. Industry has also been quite keen in the developement
of such approach, especially ones that use identifier-locator split protocols.
The lack of centralized authorities and the usage of long trust paths makes
detecting spit even harder a task.

In this chapter we describe a system to disseminate information of
friendships that are based on an end-host based identifier-locator split pro-
tocol. In our solution the existing buddy lists are used to introduce one-hop
connections in the system.

In our system we rather detect friends than spit or spitters. More-
over, our solution can be generalized for situations where the before-hand
inspection of the content is impossible or otherwise hard to implement.

97

98 5 Separating Friends from Spitters

5.1 Introduction

Everyone knows how annoying it is to open a mailbox and see it littered
with unsolicited mail. We have seen this problem grow in proportion over
the years and now we see how it spreads across different mediums. Every-
thing that draws in large crowds of users will eventually draw in hordes of
spammers in a form or another.

VoIP is one of the many new technologies that draws in users as well as
spammers. Spam over Internet Telephony (SPIT), the equivalent to spam
in VoIP, is more intrusive as a call effectively disrupts what ever the user
was doing at the moment and the spam does not. Blacklisting is the most
prominent way to fight against spam but it has its downsides and there is
no sure way of knowing if the call is SPIT before answering it.

In VoIP, SIP is the signalling protocol used to create the sessions be-
tween clients. In order to get a more scalable and less vulnerable SIP, the
IETF and the networking industry have been designing a pure peer-to-peer
alternative that does not need any centralized servers, i.e., P2PSIP. As the
architecture moves away from the centralization, the research community
has proposed the usage of trust paths in order to identify friends [44].

In this chapter we argue that trust paths longer than one-hop are too
long to retain trust. Moreover, we argue that hiding of the path structure
from the search result, for privacy reasons, enables Sybil attacks without
any fear of retaliation for the attackers.

Our solution is based on host based identifier-locator split with self-
certifying cryptographic identities. These identities are used as the entities
in the certificates that are used to communicate the one-hop paths be-
tween participants. Moreover, we show how this information can be used
in the GUI to provide more information for the users to make better trust
decisions.

It should be noted that the solution is also valid for other situations
where the before-hand inspection of the content is impossible or inconve-
nient. First, the content such as live audio and video streams cannot be
inspected before receiving it as it does not exist prior to the receival. Sec-
ond, the inspection of a large file transfer can be impossible, difficult or even
unwanted waste of resources as the file has to be transfered and stored on
the inspecting host or middlebox.

5.2 Background 99

5.2 Background

SIP is a signaling protocol for conferencing, telephony, instant messaging
and presence. SIP can create, modify and terminate two- or multi-party
sessions. In SIP the user equipment (User Agent (UA)) is the network end-
point that creates or receives the calls. The actual architecture comprises
of three elements: proxy servers, registrars, and redirect servers. Proxies
handle the routing of SIP messages between UAs and they can implement
access control. Registrars maintain the location information for the UAs,
i.e., registrars translate SIP Uniform Resource Identifiers (URIs) into one
or more IP-addresses. Redirect servers can be used to redirect SIP session
invitations to external domains.

For scalability and security reasons the SIP research community has
introduced a peer-to-peer alternative for SIP called the P2PSIP [51]. The
infrastructure elements in SIP are defined as logical entities and are usu-
ally co-located on the same hardware. This distinction makes it easier
to move the infrastructure elements to the UAs as P2PSIP does. The
HIP [91, 92, 37] has been proposed to be used for the connection main-
tenance and transport protocol for the P2PSIP because of its support for
mobility, multihoming, NAT traversal, and security features [18, 17]. For
VoIP applications NAT traversal is a major concern and by offloading it
to HIP the connection management in VoIP applications becomes simpler.
Moreover, by using HIP VoIP applications gain support for transparent
mobility without any modification to the application.

It could be argued that why to use host identities in access controlling,
as the modern operating systems are multi-user systems. First, in our
opinion most of the machines, such as laptops, smart phones, etc. are
more personal than ever and they even require additional authentication
methods, such as Personal Identification Number (PIN) codes on smart
phones, and account passwords on laptops, etc. Second, the usage of lower
level identifiers to access control the connection avoids the need for deep
packet inspection on higher layers. For example, using SIP URIs for access
control would need inspection of SIP URIs in the SIP messages.

5.3 Requirements for the trust paths

WOT originates from the PGP and is the starting point for most trust path
related solutions. WOT is a decentralized trust model that represents the
trust that the users have for each other. A path through the WOT from
the initiator to the responder of the communication is presented as a token

100 5 Separating Friends from Spitters

of trust to the responder. We argue that long trust paths are complicated
and do not represent real trust.

First, long trust paths increase complexity of the solutions and can
have unforeseen problems. Heikkilä et al. allow long trust paths scheme
in their Pathfinder [44] approach for protection against spit. Pathfinder
uses one or more centralized servers as privacy protected search engines.
The information that the Pathfinder servers use is protected with a hash
scheme. However, we argue that by protecting the privacy of the links
the Pathfinder allows Sybil attacks. A malicious user can set up a node
that acts trustworthily among other nodes. While, acting nice, the node
then links the real spitters to the WOT. Now, when the spitter tells the
Pathfinder to search for a path from itself to the target, the path is found.
What makes this effective is the fact that the malicious user connecting the
spitters to the network does not have to fear of punishment as the path is
hidden along the responsible node.

Second, long trust paths do not represent real trust. To be trustworthy,
long trust paths require that every node on the path are honest and do not
lie in their statements. The longer the path grows, the harder it becomes
to trust every node’s decision on the path. In a country, such as Finland, it
may be possible to connect the author to the President with a reasonably
short path. However, it does not say anything about the trust between the
President and the author in either way. In our opinion trust degrades quite
fast, in the matter of few hops.

We propose, based on the discussion above that, only one-hop trust
paths are sufficient.

5.4 Our solution

HIP BEX creates an IPsec tunnel between the participating hosts and the
traffic is transported inside the tunnel between the hosts. Due to the na-
ture of IPsec being a host-to-host connection, we access control the traffic
coming from the tunnel by using the HITs from the packet headers. This
way we bind the tunnel for certain usage, VoIP in our case.

In our prototype we used OpenLookup v2 as our credential storage sys-
tem. Although, any storage that implements anonymous key-value storage
service with the XML-RPC interface can be used, such as Bamboo DHT 1

or OpenLookup v1 2. The storage does not have to be a DHT but could
be a centralized system or even less centralized system than DHT. But it

1http://bamboo-dht.org, 22.9.2012
2http://openlookup.net/, 22.9.2012

5.4 Our solution 101

A

B

C
C signs A = AC cert

B signs C = CB certInitiate BEX

Figure 5.1: Forming of a trust relation ship between host A and host B by
presenting the certificate given to host C to host A.

should be noted that by using a centralized system it may become a bot-
tleneck for the system and in less centralized systems the revocation of the
certificates may become overly complicated.

Upon an incoming connection from an unknown host the user is prompted
with a dialogue, in which a question is asked, whether to accept or drop the
new connection. If the connection is accepted, a certificate is created and
uploaded into the storage system. This certificate’s semantic statement is
that the subject has trusted the host enough to accept a connection from
the host. Upon subsequent connections from the subject, the certificates
can be checked and the user is not bothered with the dialog.

The certificate contains the HITs of the participants as the issuer and
subject. Moskowitz et al. [92] say that HIT collision maybe possible, while
improbable. For this reason the certificates contain also the full HIs. The
certificate contains also a short time frame in which the certificate is valid.
This makes the revocation easier, as the issuer can just stop renewing and
uploading the certificate. For the host the information contained in the
certificate is enough but in the new HIT dialogue of HIPL the HITs are
also presented to the user. Long hexadecimal strings are hard for the user
to recognize and for this reason we added an issuer given name into the
certificate. Moreover, we think that because the names are given by first-
hop friends they most probably have a meaning for the receiver. As the
certificates do not contain any location information they are also suitable
for mobile clients as there is no need to update the certificates in the system
upon mobility events.

In our system malicious users can try to lie about their trust but the
lying would be noticed easily and the lying friend could be punished. More-
over, the system could have an additional rating (e.g., a floating point value
from 0 to 1, where 1 is complete trust) for the trust that could be increased
or decreased based on the observed behaviour. In practice this rating could
be enforced by increasing the puzzle sizes and/or by throttling the connec-
tion by limiting the bandwidth of host with low ratings and vice versa for

102 5 Separating Friends from Spitters

Figure 5.2: Acceptance dialogue presented to the user upon an incoming
connection. The dialogue includes our modifications.

hosts with high ratings. In the end, the meaning of the rating is left as a
local policy, this way the hosts can make independent choices on the level
of enforcement. In the worst case the host could deny all connections from
the subject and remove its certificate from the system. By tying the used
puzzle size in the BEX to the used trust rating, the responder could also
choose the puzzle sizes for the initiators based on their ratings. The used
computational cycles to solve the puzzle would constitute a payment for
the service needed by the initiator of the connection.

HIPL 3 implementation has an identity management GUI that filters
all HIP based control traffic through it. Incoming connections are filtered
on the receive of I1 control packets. Incoming connection prompts the user
to make a decision on accepting or dropping the connection. The GUI is
used also used to group known HIs in to groups and give them group based
attributes. GUI can also be used to show dropped HI.

During our implementation efforts we changed the triggering point for
the access control of incoming HIP control packets. Previously the trigger
point was in the receiving of I1 control packets and we moved the trigger
point after the handling of I2 control packet. At this stage the user would
not see prompts for all easily forged I1 control packets. Instead the re-
sponder will see the incoming connection prompt only after the initiator
has solved the puzzle successfully. Moreover, the signature in the I2 control
packet has proved that the initiator actually owns the corresponding public
key, from which the used HIT was created.

In the initialization phase, i.e., when the host starts the identity man-

3http://www.infrahip.net, 22.9.201

5.5 Evaluation 103

agement GUI, the hosts upload the certificates to the used storage service.
The upload can happen sequentially or in parallel but for our purposes up-
loading sequentially was adequate. In the example, host B has previously
accepted a connection from the host C and uploaded the certificate to the
storage system (CB cert in the Figure 5.1). Moreover, host C has previously
accepted a connection from host A and has uploaded the certificate to the
storage system (AC cert in the Figure 5.1). When the initiator starts the
connection it queries all the possible concatenations of its own HIT used
in I1 and I2 control packets as the destination HIT and its friend’s HITs
and tries to find one or more suitable certificates to be presented to the
responder in the BEX. The certificates are stored by using the hash of the
concatenation of the issuer and subject HITs from the certificate as the key.
This way we retain some privacy as the key cannot be directly guessed. If
only the issuers HIT was used the malicious host could easily gather the
friend list of a host. Using the hash of the concatenation of HITs the key
is obfuscated so the malicious user has to guess what are the HITs of the
friends and while the malicious user would guess one friend it would not
reveal other friends of the host.

In our example the found trust path is the following:

B ⇒ C ⇒ A

In the scope of the certificates we have the following:

ACcertificate⇒ CBcertificate

In our example, the host A finds two certificates: one given by host
B for host C, and one given by host C for host A. Host A transports the
certificate AC in the BEX to the host B. There is no need to transport the
certificate CB as the host C is already in the friend list of host B and is
trusted.

Upon receiving the I2 control packet host B verifies its signature and
checks that the puzzle is solved correctly. If these checks were performed
successfully the identity management GUI prompts the user asking to ac-
cept or drop the connection (see Figure 5.2). In this prompt, in addition
to the used HITs, the user is presented with the user friendly name of host
A given to it by host C.

5.5 Evaluation

We measured the mean latency of OpenLookup v2, using both IPv4 and
IPv6, to determine the query performance of the system. We used a quad

104 5 Separating Friends from Spitters

OpenLookup v2 Get

OpenLookup v2 Put

OpenLookup v2 Rm

OpenLookup v2 IPv6 Get

OpenLookup v2 IPv6 Put

OpenLookup v2 IPv6 Rm

0 1 2 3 4 5 6

Figure 5.3: Average latencies measured from the storage systems in mil-
liseconds.

core Intel Xeon 5130 running at 2 GHz with 2 GB of main memory as the
server and we used a laptop with Intel Core 2, 2 GHz CPU with 2 GB of
main memory as the client. All machines involved in our measurements
were located in our local Gigabit network with a mean round-trip latency
of 0.88 ms (std.dev. 0.03 ms). We concentrated more on the query per-
formance and not on the update performance, since the friendships seldom
change and the frequency to refresh the credentials in the storage can be
even a week. The measurements were done by querying random keys with
values containing certificates of varying sizes.

From the results depicted in the fig 5.3 it can be easily calculated that
an initiator, with 100 friends, can sequentially query the system in maxi-
mum of circa 418 milliseconds. In the Internet the RTT times between the
client and the server increase the latency. With RTT of, for example, 70
milliseconds between the client and the server will the total time be circa
7418 milliseconds. In our opinion even the longer latencies are acceptable
because it bothers only the initiator of the connection. Moreover, the query
performance can be optimized by querying in parallel and by caching the
results locally on the client and thus avoiding subsequent queries of creden-
tials.

In our experiments we noticed that certificates can pose a size problem
for the control packets. If multiple suitable certificates are found, we could
send multiple certificates in the control packets to the responder so that
the information could be prompted to the user. However, the average size
of a I2 control packet, using 1024 bit RSA keys, is circa 850 bytes and
it occupies most of the minimum Maximum Transmission Unit (MTU) of
IPv6 (1024 bytes) and exceeds the minimum MTU of IPv4 (512 bytes).
When we add one or more certificates to the I2 control packet, the size will

5.6 Summary 105

exceed even the IPv6 minimum MTU. This makes it very probable that
the packets are fragmented on the wire. The solution for the size problem
is left for further study.

5.6 Summary

In this chapter we presented a discussion on how to separate friends from
spitters, using SIP as an example. Based on our observations, the discussion
identifies two problems in the proposed trust path solutions: a) trust path
solutions that hide the path details from the users allows Sybil attacks, b)
real life trust does not extend over multiple hops.

We addressed these problems by using the self-certifying cryptographic
identities of HIP to create one-hop trust paths to be used to access control
the incoming calls. Our solution is in a sense a distributed white list based
on host identifiers that identify the incoming connections from friends. We
also provided measurements from live storage systems in order to estimate
the time required to gather sufficient trust information and discussed about
the size issue caused by the addition of certificates to the control packets.

106 5 Separating Friends from Spitters

Chapter 6

Secure and Efficient IPv4/IPv6
Handovers Using Host-Based
Identifier-Locator Split

Internet architecture is facing at least three major challenges. First, it
is running out of IPv4 addresses. IPv6 offers a long-term solution to the
problem by offering a vast amount of addresses but is neither supported
widely by networking software nor has been deployed widely in different
networks. Second, end-to-end connectivity is broken by the introduction of
NATs, originally invented to circumvent the address depletion. Third, the
Internet architecture lacks a mechanism that supports end-host mobility
and multihoming in a coherent way between IPv4 and IPv6 networks.

We argue that an identifier-locator split can solve these three problems
based on our experimentation with the Host Identity Protocol. The split
separates upper layer identifiers from lower network layer identifiers, thus
enabling network-location and IP-version independent applications.

Our contribution consists of recommendations to the present HIP stan-
dards to utilize cross-family mobility more efficiently based on our im-
plementation experiences. To the best of our knowledge we are also the
first ones to show a performance evaluation of HIP-based cross-family han-
dovers.

107

108
6 Secure and Efficient IPv4/IPv6 Handovers Using

Host-Based Identifier-Locator Split

6.1 Introduction

The IPv6 address space is drastically larger than for IPv4, but IPv6 has not
experienced a wide-scale deployment yet. Concurrent use of both address-
ing families causes problems for both network software and management
due to non-uniform addressing. Existing legacy software is hard-coded to
use IPv4 addresses and some of it can never be updated to support IPv6
due to the applications proprietary nature. The fact that IPv4 address
space is almost exhausted does not make things any easier because a host
might acquire only an IPv6 address in future networks. As a consequence,
proprietary network software may have trouble to access the Internet in the
future.

End-to-end communication between two hosts is not guaranteed any-
more, even considering protocols for traversing NATs. To make things even
more complicated, end-host mobility arises as a new requirement for the
Internet. Users are used to staying continuously in contact with each other
using cellular phones and may also want the same with other portable de-
vices. Users may want to benefit from access technologies, such as WLAN
and 3G, available on phones and other devices. Multiaccess is desirable for
users, for example, to reduce monetary costs, to assess benefits from device
proximity, or to obtain a faster connection. Even though cellular networks
support mobility transparently, the same does not apply to WLAN mobil-
ity.

In the current Internet, an IP-address both identifies and locates a host.
However, this binding breaks when the address of the host changes. This
is a problem both for relocating the mobile host and for maintaining long-
term transport layer connections, which break upon such a mobility event.

The identifier-locator split decouples the host identifier from its topo-
logical location. The new host identifier is present at the transport and
upper layers to provide applications a fixed identifier independent of net-
work location. The identifier-locator split introduces a layer between the
transport and the network layers, and translates the identifiers dynamically
into routable addresses and vice versa.

The concept of the HIP [92, 67] is based on identity-locator split. It pro-
vides security, global end-host mobility, multihoming, NAT traversal, and
Rendezvous/Relay services. The HIP specification [93] describes end-host
mobility and multihoming but handovers across IP families are left for fur-
ther study. In this chapter, we describe HIP-based cross-family handovers
based on our implementation experimentation and performance evaluation.
Compared to previous work [145, 98, 55, 74, 144], we focus on Linux rather
than the Berkeley Software Distribution (BSD) networking stack.

6.2 Related Work 109

6.2 Related Work

In MIP [108, 52], each node has a home address that identifies the node
independently of its location. When the mobile is not located in its home
address, the mobile node informs its HA on its current address (CoA).
Datagrams destined to the mobile node are tunneled to its current address
through its home agent. MIPv6 includes an optimization that allows end-
hosts to route MIPv6-related traffic directly between them without such a
triangular routing through the home agent. IPsec and MOBIKE [27] [32]
can be used to protect MIP traffic.

The MOBIKE protocol offers mobility functionality similar as in HIP.
For example, the LOCATOR is similar to ADDITIONAL * ADDRESS
(where * is IPv4 or IPv6) and the return routability test is similar as
in HIP. The MOBIKE standards allow the mobile node to send additional
addresses of different family than those currently in use [134].

A MIPv4 extension [133] introduces dual stack mobility by tunneling
IPv6 over IPv4. This approach needs dual stack HA and triangular routing
to offer movement between IPv4 and dual stack networks. Cross-family
handovers, where nodes move from IPv4 network to IPv6 networks or vice
versa, is left somewhat unclear in the specification.

Teredo is an IPv6-over-IPv4 tunneling protocol that includes a mecha-
nism to avoid triangular routing [50]. Teredo uses UDP encapsulation and
encodes additional information into the IPv6 addresses. Teredo defines a
dedicated IPv6 prefix (2001:0::/32) for the tunnel which can be used by
any IPv6-capable networking software.

SHIM6 [96] is a layer 3 multihoming protocol that offers locator agility
for the transport protocols. SHIM6 has multiple similarities when com-
pared with HIP. For example, the protocol formats are identical and the
initial handshake is similar. At the time of writing SHIM6 did not have
specification for the usage of IPv4. In our opinion, our work with cross-
family handovers is beneficial also for the SHIM6, when the usage of IPv4
is standardized for SHIM6.

Jokela et al. [54] first discussed about cross-family handovers in HIP
but showed no performance or implementation evaluation. Their primary
environment was FreeBSD, while we have implemented cross-family han-
dovers for the Linux networking stack. Furthermore, we specifically focus
on the fault tolerance aspects of handovers rather than load balancing.

110
6 Secure and Efficient IPv4/IPv6 Handovers Using

Host-Based Identifier-Locator Split

6.3 Cross-family IPv4/IPv6 Handovers

6.3.1 Scope of HIP Handovers

In this chapter, a handover refers to a change in the locator set of an
end-host. When the locator set changes, the end-host can perform a han-
dover procedure to sustain HIP and upper layer connectivity. A vertical
handover describes end-host movement between different link-layer access
technologies, such as WLAN and Universal Mobile Telecommunications
System (UMTS), and a horizontal handover refers to movement within the
same type of access technology devices. HIP can support both vertical and
horizontal handovers because it operates above link layer. The focus of
this chapter is on end-to-end handovers even though HIP facilitates also
end-to-middle operation using a HIP proxy [121].

In a Make-Before-Break (MBB) handover an end-host obtains a new
locator before it loses its current address. In a Break-Before-Make (BBM)
handover, the end-host loses its current address before it obtains a new
address. The latter results in a gap in connectivity during which the end-
host is not reachable which causes disruption to existing connections at the
transport layer.

6.3.2 Cross-Family Handovers

HIP specifications [92, 93] offer a possibility to include LOCATOR param-
eters in the R1 and I2 packets. However, these two documents explain
only the load balancing case with the preferred bit set. When a host sets
the preferred locator, its peer is forced to switch to it immediately. We
argue that the preferred bit complicates handling of alternative locators
and a host should prefer sending its locators in the base exchange with all
preferred bits unset.

When a host receives locators with all preferred bits unset, they should
be considered as alternative addresses for the peer. The host does not have
to use these locators immediately, but can use them for fault tolerance or
load balancing purposes. This aids also cross-family handovers because
then two communicating hosts know all the available addresses of each
other.

At the Responder side, the LOCATOR parameter could be placed into
the R2 packet instead of the R1. The LOCATOR in the R2 packet facili-
tates mobile devices to serve as Responders better. For instance, a mobile
node could disable an expensive link until the base exchange completes.
Also, this is beneficial for a mobile node employing precreated pools of R1

6.3 Cross-family IPv4/IPv6 Handovers 111

packets. As the R1 signature covers the Responder’s IP-address, it does
not have to recreate its pools upon address changes.

Using the LOCATOR parameter in the base exchange benefits also HIP
NAT traversal [71], which forbids preferred bits in NATted environments
and assumes the LOCATOR to be placed in the R2 packet. De la Oliva
et al. [26] also proposed a scheme for sending all the locators early in the
communication in order to maximize the fault tolerance.

6.3.3 Peer Locator Learning

It is possible for a host to delay the exposure of additional locators to
host’s peer for, e.g., privacy reasons to avoid exposing of the topology of
the corporation of the end-host. Alternatively, the end-host can even be
unaware of some of its locators in NATted environments [71] where the
peers of the end-host observe the address of a NAT middlebox and not
actual end-host address. In either case, a correspondent node should be
able to inform about its additional locators after the base exchange without
sending additional locators. As an example, let us consider that two hosts
have established the base exchange over IPv6 without exchanging additional
locators. Then, one of the hosts becomes mobile and moves to an IPv4-
only network. The mobile node informs its correspondent node about its
new location with an UPDATE. Now, the correspondent node can choose
to break connectivity for privacy reasons or send an echo request from its
previously unadvertised IPv4 address.

The use of unadvertized addresses is not defined in the HIP mobility
specification [93]. To achieve better flexibility, we propose that correspon-
dent node should be able to send echo requests from previously unadvertised
addresses and the mobile node should reply to them with echo responses.
We refer this as peer locator learning.

As a second example of scenario, NAT middleboxes alter source ad-
dresses of UDP encapsulated HIP packets and the end-host sending the
packets may be unaware of this. As a consequence, the packet receiver
learns a new address of the originating host that was not advertised in the
included LOCATOR parameter.

Peer locator learning is depicted in Figure 6.1. In step 1 the MN changes
its attachment point to the network and obtains one IPv4 address and one
IPv6 address after which in step 2 MN sends the new locator set to its CN.
Upon receiving the locator set, the CN starts the return routability tests
and sends one echo request to the IPv4 address and one echo request to the
IPv6 address. When the MN receives the echo request from the CN’s IPv4
address, it checks the locator lists it has for the active CNs and sees that

112
6 Secure and Efficient IPv4/IPv6 Handovers Using

Host-Based Identifier-Locator Split

the locator is already known and sends an echo response to the CN (see
Figure 6.1 step 3). Upon receiving the echo request from its IPv6 locator,
the MN checks its locator lists for the active CNs and does not find the
used locator (see Figure 6.1 step 4). Finally, MN adds this locator to the
list and starts connectivity tests for the locator, and sends an echo response
to the CN (see Figure 6.1 step 5).

ESP

BEX

IP1.3 −> IP2.1, UPDATE: E_RS

IPv6.1.4−>IPv6.2.2, UPDATE: E_RS

attachment
Change in

point
1)

IP2.1

IPv6.2.2

IP1.1

IPv6.1.2

IP2.1

IPv6.2.2

IP1.3

IPv6.1.4

IP2.1

MNCN

Locator lists on MN

MN No LOCATORs echanged in BEX

UPDATE: LOCATOR

IPv6.2.2−>IPv6.1.4, UPDATE: E_RQ

ESP

2)

3)

4)

5)

CN

IP2.1 −> IP1.3, UPDATE: E_RQ

Figure 6.1: Peer locator learning example case, where the end-hosts ex-
change no LOCATORs in the BEX and the MN learns the IPv6 address of
its CN from the return routability tests

Peer locator learning is also beneficial in cases such as simultaneous
end-host mobility. In this case both end-hosts move simultaneously and
lose connectivity due to the fact that the end-hosts do not know where to
send the UPDATE control packet. This is generally solved with third party
rendezvous service as described by Hobaya et al. [46].

In their paper, Hobaya et al. also describe a situation where the si-
multaneous end-host mobility ends up in confusion when the UPDATE
procedures on the end-hosts get interleaved and leaves the connection in
an asymmetric state. Hobaya et al. provide also a solution for the problem
by enforcing UPDATE retransmissions. In their examples one of the end-
hosts is able to send data to the other, but not vice versa, because the other
end-host mistakenly cleared its retransmission buffers. With peer locator
learning, the end-host unable to the send data could find a new locator from
IP header of the received UPDATE control packet. After the end-host has
discovered the new address, it could trigger the return routability tests and,

6.3 Cross-family IPv4/IPv6 Handovers 113

as a result, both of the nodes could continue communicating. We believe
that the peer locator learning technique would result in faster handovers.

6.3.4 Teredo Experiments

We wanted to validate that our implementation works in the presence of
NATs with Teredo. In general, basic Teredo-based connectivity was suc-
cessful in our experimentation. We discovered some problems as well, for
example, when the mobile node moved into an IPv6-only network and could
not derive a Teredo address in the absence of an IPv4 address. Another
problem was that the mobile node sent an UPDATE packet to the Teredo
address of the correspondent node, but the local router did not know what
to do with the non-routable Teredo address. In order to work, this case
would have required a Teredo relay in the network of the mobile node or a
global IPv6 address for the corresponding node.

Miredo, the Teredo implementation for Linux, decreased the through-
put due to the tunneling overhead and unoptimized implementation. Es-
pecially in MBB handovers, it took 30 seconds at the maximum for the
Miredo software to notice a mobility event that required changing the
topology-dependent Teredo address. HIP daemon reacted instantly by
sending an UPDATE packet advertising the old but unfortunately already
invalid Teredo address. As a summary, there is room for performance im-
provements in the Miredo implementation.

6.3.5 Implementation of Cross-Family Handovers

This section discusses some of the issues we faced when implementing cross-
family handovers with HIP. We chose the HIPL implementation [105] as
our experimentation tool. Most of the changes involved only the UPDATE
packet parameters. Only minor changes were required in the processing of
R1 and I2 packets.

To make cross-family handovers possible, we implemented a new func-
tion to uniformly build LOCATOR parameters containing all the locators
of the local host. Modifications also included introducing of LOCATOR
parameter to R1 and I2 control packets.

The challenges we faced ranged from trivial to more complicated. A
trivial problem was that base exchanges with locators triggered return
routability tests before the state was ESTABLISHED on both sides. As
a solution, we had to delay the triggering of address verifications (ECHO -
REQUESTS) to avoid unnecessary dropping of UPDATE control packets.
A trickier problem originated from the sockets API that has separate raw

114
6 Secure and Efficient IPv4/IPv6 Handovers Using

Host-Based Identifier-Locator Split

sockets for IPv4 and IPv6. Raw sockets are needed for sending and receiv-
ing of HIP control packets. We experienced a problem where one of the
socket buffers contained a base exchange packet and the other sockets buffer
contained an UPDATE packet. We had to change the implementation to
handle the packets in the correct order. This was just an optimization to
the handovers because the problem could also be solved by just dropping
the UPDATE packet and relying on retransmissions of the mobile node.

ESPESPIP1.1

IP1.2

UPDATE: LOCATOR

UPDATE: E_RS

UPDATE: E_RQ

ESP

UPDATE: E_RQ

UPDATE: LOCATOR

UPDATE: E_RQ

UPDATE: E_RS

UPDATE: E_RS

MN CNs

IP2.1

IP1.3

IP1.3

IP1.4

UPDATE: LOCATOR

UPDATE: LOCATOR

IP1.1

UPDATE: E_RQ

attachment
Change in

point
1)

2)

3)

4)

Figure 6.2: Results of triggering the handover too fast after a change in the
addresses on a interface.

Performance measurements described in the Section 6.4 revealed fea-
tures in HIPL that were too aggressive in their behavior and did not con-
form to the specifications.

First, the MN triggered the first UPDATE control packet immediately
after a obtaining a new address. This resulted in an ICMP message inform-
ing the MN that the CN is unreachable because the network interface was
not fully initialized. As a result from the destination unreachable error, the
implementation queued the UPDATE control packet to the retransmission
queue for ten seconds. It would have been beneficial to start with a low
interval for the retransmission and increase it exponentially as described in

6.3 Cross-family IPv4/IPv6 Handovers 115

the specification [92]. This is also discussed by Shütz et al. [124].

Second, relying to the address notifications from the kernel, i.e., netlink
events, as the only indication for the handover and reacting too aggressively
to it resulted in excess UPDATE control packets. This situation is depicted
in Figure 6.2. For example, in a case where the MN has two addresses,
reacting instantly on netlink messages would result into multiple UPDATE
control packets unnecessarily. When the interface goes down, the addresses
are deleted one by one and this results in two UPDATE control packets,
one with LOCATOR containing one locator (see Figure 6.2 step 1) and a
second, a so called zero address readdressing packet (see Figure 6.2 step
2). As a response to this, the CN tests at least the address from which the
UPDATE packet was received for return routability. There is no guarantees
that zero address readdressing packet will be sent. When the CN obtains
the new attachment point and its interfaces are brought up the netlink
informs about the new addresses (two in the example), the kernel informs
about the addresses one at a time that will result in two more UPDATE
control packets (see Figure 6.2 steps 3 and 4). At the CN side, this will
unoptimally result in at least three more return routability tests despite
that the address seen in the previous control packet would not have to be
tested again.

To sum up, the second case leads to three update packets sent to the
CN and the CN sends four return routability tests, while we could manage
with one UPDATE control packet and trigger return routability tests for
the addresses found in the locator set contained in the control packet. As a
simple solution for this, we delayed the handover so that all the consequtive
netlink events could be handled as a single event. We have not yet optimized
the modified solution to its maximum.

This is not the best solution because it increases the latency of the
handover in overall, while in the second case described in this Section it
decreases the handover latency. In our opinion the trigger for the handovers
should not be a simple solution that relies on one type of data. For example
the netlink messages could be augmented by monitoring of the end-to-end
connectivity.

Figure 6.3 depicts the growth of the TCP sequence number during a
BBM handover. The base exchange is concluded at point of time T1. MN
loses network connectivity at T2 and regains it at T3. At point of time T4
the interfaces are fully operational and HIP update procedure is triggered.
We observed that, after the update procedure at T4, there is some extra
latency before the first IPsec ESP packet is sent at T5.

This latency varied so that it may even out the difference in the overall

116
6 Secure and Efficient IPv4/IPv6 Handovers Using

Host-Based Identifier-Locator Split

latency presented in Section 6.4 in Tables 6.1 and 6.2. This finding conforms
to the findings of Shütz et al. [124] where they found a similar period of
inactivity after a period of disconnectivity. According to them, TCP waits
for the current retransmission timeout to expire while the new address
is obtained or the connectivity is otherwise restored before TCP tries to
retransmit. Shütz et al. [124] suggest an improvement to this situation.
Their solution also tries to minimize the period of inactivity by introducing
a more aggressive way to enforce the retransmissions after an end-host
receives or sends the last echo response in the update procedure. In our
opinion, this feature is a welcome improvement to decrease the handover
latency.

To improve the chances that transport layer survives connectivity loss
automatically, we implemented a heartbeat probe. The heartbeat is used to
monitor the connectivity between the hosts. The heartbeat is an ICMPv6
messages inside the ESP tunnel between two end-hosts. As a naive approx-
imation, the implementation triggers the update procedure after n consec-
utive heartbeats are lost. Care has to be taken to avoid choosing a too long
interval for the heartbeat to avoid TCP aborting the connection. Also,
intermediary hosts, such as NAT boxes, may time out an idle ESP tunnel
when the heart beat interval is too long.

T1 T2 T3 T4 T5

S
eq

u
en

ce #

Time

Figure 6.3: Sequence number generation during BBM handover.

For the heartbeats to work the end-host needs to know more than one
address of its peer. An advantage in using Internet Control Message Proto-
col version 6 (ICMPv6) packets to implement the heartbeat is the fact that
the heartbeat mechanism must be supported only on the end-host using
the heartbeat. The end-host on the other side of the tunnel does not have
to trigger heartbeats at all. It merely has to has to support replying to

6.4 Performance Measurements 117

ICMPv6 messages inside the tunnel.
The implementation currently sends the heartbeat on regular intervals.

It could be optimized to send only when the IPsec tunnel is idle. However,
sending heartbeats all the time and gathering the monitoring results from
them is a better choice for multihoming cases as explained by Gurtov et al.
[38].

6.4 Performance Measurements

In this section, we describe the measured impact of cross-family handovers.
To avoid issues with TCP timeouts documented in detail elsewhere [124],
we primarily measured UDP throughput.

We conducted the measurements on two identical laptops (Intel Core
2, 2 GHz CPU). We concentrated on the processing cost by minimizing
the network latency (RTT 0.484 ± 0.143 ms), and therefore the laptops
were connected via single Gigabit switch to each other. Both machines
were running Ubuntu Jaunty Jackalope Linux with 2.6.28 kernel and HIPL
release 1.0.3.

We triggered handovers using ip command from ip-tools package that
allows manipulation of the network interfaces. In the test cases the CN
sent UDP packets continuously to the MN. We used Wireshark to capture
the traffic on the MN and to analyze the gathered data.The handover was
measured to begin from the sending of the first UPDATE control packet
with LOCATOR parameter (step 2 in Figure 2.12) and to cease when the
first ESP is received using the new address (step 8 in Figure 2.12).

Tables 6.1 and 6.2 show that cross-family MBB and BBM handovers
tend to last 8 milliseconds longer than handovers where the family does not
change.

Table 6.1: Durations of intra-family handovers.
Direction Duration, ms

MBB IPv4 to IPv4 53± 12
MBB IPv6 to IPv6 56± 6
BBM IPv4 to IPv4 41± 12
BBM IPv6 to IPv6 40± 6

Total average 47± 10

We observed a delay of 10 ms (±1) from sending the UPDATE control
packet with LOCATOR parameter and receiving of the UPDATE control
packet with ECHO REQUEST (steps 2 - 4 in Figure 2.12). Handling of

118
6 Secure and Efficient IPv4/IPv6 Handovers Using

Host-Based Identifier-Locator Split

Table 6.2: Durations of cross-family handovers.
Direction Duration, ms

MBB IPv4 to IPv6 56± 6
MBB IPv6 to IPv4 53± 16
BBM IPv4 to IPv6 56± 8
BBM IPv6 to IPv4 54± 11

Total average 55± 11

the ECHO REQUEST and creation of needed SAs took 19 ms (±5) in
intra-family handovers and 40 ms (±8) in cross-family handovers (step 5
in Figure 2.12). The delay between sending of the ECHO RESPONSE and
the receiving of the first ESP packet (steps 6-8 in Figure 2.12) was 6 ms
(±2). Most of the processing time was spent in processing of the UPDATE
control packet with ECHO REQUEST parameter as Pääkkönen et al. [100]
have also observed. We suspect that the processing time was doubled in
cross-family handovers due to unoptimized code.

MNCNs

point

Change in
attachment

ESP

BEX

IP1.1 IP2.1 IP2.2

ARP: Who has IP1.1

ARP: IP1.1 is at xx:xx:xx:xx:xx:xx

UPDATE: LOCATOR

ESP

TCP: Out of order / Retransmission / Segment lost

1)

2)

3)

5)

UPDATE: E_RS

ARP: IP2.2 is at xx:xx:xx:xx:xx:xx

UPDATE: E_RQ

ARP: Who has IP2.24)

Figure 6.4: An intra-family Break Before Make handover from IPv4 to IPv4
with ARP traffic before and after the handover.

In Figures 6.4 and 6.5, we depict the difference of moving from IPv4 to
IPv4 and from IPv4 to IPv6 in the BBM handover case. The mobile node
changes the attachment point and obtains a new locator (see Figure 6.4
step 1 and Figure 6.5 step 1). The major difference is the use of Address
Resolution Protocol (ARP) messaging in IPv4 (see Figure 6.4 steps 2 and

6.4 Performance Measurements 119

4) versus ICMPv6 neighbor discovery (see Figure 6.5 step 2) in IPv6.
Operationally, ARP and ICMPv6 neighbor discovery do not differ much.

In ARP, the end-host broadcasts a “Who has” message, containing the tar-
get IP-address to the network. The end-host possessing the address answers
that the queried IP-address is at the specified link-local address. In IPv6
neighbor discovery, the end-host first announces to the nearest router that it
listens to IPv6 broadcasts and excludes its own address from the broadcasts
it wants to receive. Then, the end-host broadcasts a neighbor solicitation
message asking who has the target IPv6 address. The end-host possess-
ing the IPv6 address answers with neighbor advertisement containing the
end-host’s link-local address.

MNCNs

ESP

BEX

point

Change in
attachment

ICMPv6: Neighbor Advertisement

ARP: Who has IP2.1

ESP

TCP. Out of order / Retransmission / Segment lost

ARP: Who has IP1.1

IP1.1 IP2.1 IP2.2

ICPMv6: Neighbor Solicitation

ICPMv6: Multicast listener report v2

UPDATE: LOCATOR

UPDATE: E_RQ

...

1)

2)

3)

4)

5)

UPDATE: E_RS

Figure 6.5: Cross-family Break Before Make handover from IPv4 to IPv6
with the ICMPv6 neighbor discovery traffic and with ARP messages for
the lost IPv4 connectivity.

In intra-family case with IPv4, the peer locator was discovered before
and after the UPDATE procedure (see Figure 6.4 step 3). Intra-family
handover with IPv6 or cross-family handover towards IPv6 did not incur
neighbor discovery after the UPDATE procedure (see Figure 6.5 step 3).
We observed that in cross-family handovers, from IPv4 to IPv6, the inter-
face kept broadcasting ARP queries about the previously used IPv4 ad-
dresses while it did not have a working IPv4 address anymore. In our tests
this behavior resulted in circa five broadcasted messages (see Figure 6.5
step 4), after which the ESP traffic started flowing again (see Figure 6.5

120
6 Secure and Efficient IPv4/IPv6 Handovers Using

Host-Based Identifier-Locator Split

step 5). After the handover, TCP had to retransmit some of the data and
some of it was received out of order. In overall, the amount of TCP retrans-
mits did not differ in intra-family or cross-family handovers. The similar
amounts of retransmitted TCP segments can be also explained. TCP han-
dles the retransmissions on top of the IPsec ESP and TCP is not affected
by the change of the address family, i.e., TCP is connected to a HIT and the
handover is transparent to TCP. We also observed the Credit Based Au-
thorization (CBA) (see [93] Section 3.3.1) operational in some intra-family
cases. CBA allows IPsec ESP traffic to commence before the completion of
return routability tests. We also observed that the CBA was too aggressive
and resulted in ICMP reroute messages. We also performed the same tests
with UDP which did not show any significant difference in the amount of
lost packets.

6.5 Summary

Cross-family handovers can be used as a transition mechanism towards
IPv6 now that IPv4 address space is almost depleted. In this chapter, we
have shown three key contributions. 1) We described a shortcoming in
current HIP mobility specifications preventing cross-family handovers and
suggested a simple solution to it. 2) Our performance evaluation on our im-
plementation indicates that HIP-based cross-family handovers perform as
well as intra-family handovers. 3) Our approach is compatible with NATted
networks because it can make use of Teredo-based end-to-end tunnels.

Chapter 7

Conclusion

The IP was designed in an age when the nodes in the Internet were station-
ary and few, the closest thing to mobility involved a truck. In the current
day things have changed: every day more and more equipment needs an
Internet connection and the equipment is very portable. For the Internet
this means more addresses and IPv4 cannot handle the ever growing num-
ber of equipment needing connections. IPv6 was introduced to alleviate
the shortage of the addresses. However, IPv6 has not been completely de-
ployed and in the current day Internet is in transition state, parts of the
Internet use IPv4, parts IPv6, and some parts use both families. Moreover,
the IP-address of the machine is often seen as the identity of the machine,
which in MN case is not that reliable, as the address may change according
to the attachment point in the network. As a solution the identifier-locator
split protocols were introduced to separate the meaning of the identifier
from the locator, i.e., the IP-address. However, the introduction of the
identifier-locator protocols brought along new problems: will the legacy
application work, how to securely resolve the new identifiers with fast user-
based updates, how to control access in home environments, and how to
maintain the connection in the transition state Internet.

In this thesis we addressed the new problems that were not addressed
in the specification of the current day identifier-locator protocols for the
secure connectivity of MNs in the transition state Internet. Moreover,
we concentrated on solving the problems with a host-based mapping and
encapsulating based Identifier-Locator protocol, i.e., the HIP.

121

122 7 Conclusion

7.1 Summary of Contributions

We gathered extensive statistics from a modern OS, i.e., Ubuntu Linux,
and from all of its LTS versions. From these statistics we characterized the
OS’s usage of the Berkeley Sockets API. We concentrated on five funda-
mental questions: how the end-hosts are named, name resolution, multiple
end-host identifiers, transport protocol selection, and selection of security
solutions. We reported ten interesting findings that included security, IPv6,
and configuration related issues. For example, we found out that only 10.4%
of the SSL/TLS capable software failed to provide adequate error handling.
Moreover, we found out that 28.6% of the SSL/TLS capable failed to ini-
tialize the OpenSSL library incorrectly. Out of all of the SSL/TLS capable
only 58.4% if the applications were seeding the PRNG before using it.
This is surprising as the incorrect seeding of the PRNG is considered as
a common security pitfall. From the statistics we showed that the UDP
multihoming problem persists, even in the frameworks for network appli-
cations. The UDP multihoming problem manifests itself when a client uses
the non-default address of the server to send the UDP message and the
server answers with its default address, and so to the client the response
seems to come from different entity, i.e., from different IP-address. Based
on the findings we concluded that the Sockets API usage is heterogeneous
and that it is difficult to introduce general modifications to the way appli-
cations utilize networking features. We partly addressed the extent of this
challenge by suggesting fixes on security and UDP multihoming support.

Based on our observations on resolution systems, we described an archi-
tecture for secure identifier-locator mappings based on a distributed hash
table. In particular, we discussed three core problems of name resolution for
host-based identity locator split protocols: a) support for flat namespaces,
b) rapid user-generated updates, and c) the security of the mappings. We
address these problems by implementing secure key updates based on the
cryptographic properties of the identifiers in the HIP. Our system works
with user-generated identities and does not require any user management
or the deployment of a global PKI system because it makes use of the self-
certifying identities in HIP. With its identity concept and IPv6 compatibil-
ity, HIP integrates nicely into existing lookup systems and enhances their
security features with DoS resilience and authenticated locator updates.
Our performance analysis of the HIP-enabled DHT API demonstrates the
feasibility of the architecture and indicates that employing HIP as a secu-
rity solution provides acceptable performance with considerably increased
security.

We designed a DHT-based system to distribute the information of friend-

7.2 Future Work 123

ships that is based on the self-certifying cryptographic identities of HIP.
We create one-hop trust paths to be used to access control the incoming
calls. We rather detect friends and friends-of-friends than spit or spitters.
There are less friends than spitters, so the task is far simpler. The solu-
tion we described can be generalized for situations where the before-hand
inspection of the content is impossible or otherwise hard to implement, for
example middleboxes may not have the storage to delay large transfers.

It has been shown that identifier-locator split protocols can solve two
major challenges that the Internet architecture is facing. First, end-to-
end connectivity is broken due to NATs. Second, the Internet architec-
ture lacks a mechanism that supports end-host mobility in the transition
state Internet, i.e., cross-family handovers. We demonstrated that cross-
family handovers can be used as an IPv6 transition mechanism now that
the IPv4 address space is almost depleted. We described a shortcoming in
current HIP mobility specifications preventing cross-family handovers and
suggested a simple solution to it. Our performance evaluation with our im-
plementation indicates that HIP-based cross-family handovers perform as
well as intra-family handovers. Our approach is compatible with NATted
networks because it can make use of Teredo-based end-to-end tunnels.

7.2 Future Work

In Chapter 3, our work covers only C-based software. It would be useful to
examine also software written in other languages. However, we believe that
it was important to inspect C-based software first because the bindings to
the Sockets API in other languages are essentially written in C.

Our analysis covers only Ubuntu Linux. We believe that it would be
useful to inspect also Windows applications by extending the analysis to
binary executables.

We did not profile the use of the customization of the networking stack.
This would be useful especially for application frameworks or even for pro-
viding new extensions for the sockets APIs.

Our statistics are very coarse grained and can be improved with further
work. While we have confirmed the need for synchronous decoupling in pub-
sub designs, the time and space decoupling arguments should be ratified
with a more fine-grained source-code analyzer. Deepening the analysis on
the (un)marshalling process of the application protocols could be used to
further improve network application frameworks or to affirm the message-
oriented design of pub-sub systems. Similarly our findings on SSL/TLS
issues could be further analyzed with software analysis methods proposed

124 7 Conclusion

by others [25, 7].
Based on the applications in Ubuntu Linux, we found the performance of

the current Sockets API sufficient for most applications because mmap() was
used only little. This assumption does not apply to esoteric environments,
such as High-Performance Computing (HPC), sensor and cloud network as
they have their own application bases. Nevertheless, we feel it would useful
to extend the scope of the analysis to such environments.

In Chapter 6 we identified a problem in triggering of the handovers and
as future work we intend to research solutions for triggering the handovers
and find an optimal solution for the triggers.

Based on the experiences with the CERT-parameter in HIP we started
an Internet Draft [43] that we plan to improve. The draft describes an
extension for HIP that enables HIP end-hosts and HIP-aware middleboxes
to announce services to HIP hosts during a BEX or HIP update.

References

[1] Understanding universal plug and play. whitepaper, Oct. 2007. Mi-
crosoft.

[2] A. Abdul-Rahman. The PGP Trust Model. In EDI-Forum: the
Journal of Electronic Commerce, volume 10, pages 27–31, 1997.

[3] J. Adams. RFC 2144: The cast-128 encryption algorithm. Request
for Comments 2144, Internet Engineering Task Force, Apr. 1997.

[4] B. Ahlgren, J. Arkko, L. Eggert, and J. Rajahalme. A node identity
internetworking architecture. In Proc. of INFOCOM 2006. 25th IEEE
International Conference on Computer Communications., Apr. 2006.

[5] J. Ahrenholz. RFC 6537: Host Identity Protocol Distributed Hash
Table Interface. Request for Comments 6537, Internet Engineering
Task Force, Feb. 2012.

[6] P. Albitz and C. Liu. DNS and BIND, Fourth Edition. O’Reilly and
Associates, 2001.

[7] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’02, pages 4–16, New York,
NY, USA, 2002. ACM.

[8] M. Andrews. RFC 2308: Negative Caching of DNS Queries (DNS
NCACHE). Request for Comments 2308, Internet Engineering Task
Force, Mar. 1998.

[9] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4033:
DNS Security Introduction and Requirements. Request for Comments
4033, Internet Engineering Task Force, Mar. 2005.

125

126 References

[10] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4034:
Resource Records for the DNS Security Extensions. Technical Report
4034, Internet Engineering Task Force, March 2005.

[11] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4035:
Protocol Modifications for the DNS Security Extensions. Technical
Report 4035, Internet Engineering Task Force, March 2005. Updated
by RFC 4470.

[12] J. Arkko and A. Keränen. RFC 6586: Experiences from an IPv6-
Only Network. Request for Comments 6586, Internet Engineering
Task Force, Apr. 2012.

[13] D. Atkins and R. Austein. RFC 3833: Threat Analysis of the Do-
main Name System (DNS). Request for Comments 3833, Internet
Engineering Task Force, Aug. 2004.

[14] R. Atkinson. ILNP Concept of Operations: draft-rja-ilnp-intro-11.
Internet draft, Internet Engineering Task Force, July 2011. Expired.

[15] I. Baumgart. P2PNS: A Secure Distributed Name Service for P2PSIP.
In Proc. of 2008 Sixth Annual IEEE International Conference on
Pervasive Computing and Communications, 2008.

[16] S. M. Bellovin. Problem areas for the ip security protocols. In Pro-
ceedings of the Sixth Usenix Unix Security Symposium, pages 205–214.
AT and T Research, USENIX, July 1996.

[17] G. Camarillo. A Service-enabling Framework for the Session Initia-
tion Protocol (SIP). PhD thesis, Aalto University, Espoo, 2011.

[18] G. Camarillo, P. Nikander, J. Hautakorpi, and A. Johnston. RFC
6079: HIP BONE: Host Identity Protocol (HIP) Based Overlay Net-
working Environment (BONE). Request for Comments 6079, Internet
Engineering Task Force, Jan. 2011.

[19] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A
distributed anonymous information storage and retrieval system. In
International workshop On Designing Privact Enhancing Technolo-
gies: Design Issues In Anonymity And Unobservability, pages 46–66.
Springer-Verlag New York, Inc., 2001.

[20] B. Cohen. The BitTorrent Protocol Specification, Version 11031.,
2008. http://bittorrent.org/beps/bep_0003.html, 22.9.2012.

References 127

[21] U. D. O. Commerce. Des modes of operation. FIPS 81, U.S. Depart-
ment Of Commerce, National Institute of Standards and Technology,
Dec. 1980. Federal Information Processing Standards Publication,
Category: Computer Security Subgategory: Cryptography.

[22] U. D. O. Commerce. Data encryption standard. FIPS 463, U.S. De-
partment Of Commerce, National Institute of Standards and Tech-
nology, Oct. 1999. Federal Information Processing Standards Publi-
cation, Category: Computer Security Subgategory: Cryptography.

[23] D. Cooper, S. Santesson, S. Farrel, S. Boeyen, R. Housley, and
W. Polk. RFC 5280: Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile. Request for
Comments 5280, Internet Engineering Task Force, May 2008.

[24] R. Cox, A. Muthitacharoen, and R. Morris. Dns performance and
the effectiveness of caching. In In IEEE/ACM Transactions on Net-
working, volume 2429, pages 155 – 165. Springer-Verlag, Mar. 2002.

[25] P. de la Cámara, M. M. Gallardo, P. Merino, and D. Sanán. Model
checking software with well-defined apis: the socket case. In Pro-
ceedings of the 10th international workshop on Formal methods for
industrial critical systems, FMICS ’05, pages 17–26, New York, NY,
USA, 2005. ACM.

[26] A. de la Oliva and M. Bagnulo. Fault tolerance configurations for HIP
multihoming: draft-oliva-hiprg-reap4hip-00. Internet draft, Internet
Engineering Task Force, July 2007. Expired.

[27] V. Devarapalli and P. Eronen. RFC 5266: Secure Connectivity and
Mobility Using Mobile IPv4 and IKEv2 Mobility and Multihoming
(MOBIKE). Request for Comments 5266, Internet Engineering Task
Force, June 2008.

[28] drscholl. Napster Messages, 2000. http://opennap.sourceforge.

net/napster.txt, 27.11.2011.

[29] D. Eastlake. RFC 2535: Domain Name System Security Extensions.
Request for Comments 2535, Internet Engineering Task Force, Mar.
1999.

[30] D. Eastlake. RFC 4305: Cryptographic Algorithm Implementation
Requirements for Encapsulationg Security Payload (ESP) and Au-
thentication Header (AH). Request for Comments 4305, Internet
Engineering Task Force, Dec. 2005.

128 References

[31] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylo-
nen. RFC 2693: SPKI Certificate Theory. Request for Comments
2693, Internet Engineering Task Force, Sept. 1999.

[32] P. Eronen. RFC 4555: IKEv2 Mobility and Multihoming Protocol
(MOBIKE). Request for Comments 4555, Internet Engineering Task
Force, June 2006.

[33] D. Farinacci, V. Fuller, D. Lewis, and D. Meyer. LISP Mobility Archi-
tecture: draft-meyer-lisp-mn-07. Internet draft, Internet Engineering
Task Force, Apr. 2012. Work in progress.

[34] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID Sepa-
ration Protocol (LISP): draft-ietf-lisp-23.txt. Internet draft, Internet
Engineering Task Force, May 2012. Work in progress.

[35] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens.
RFC 3439: Basic Socket Interface Extensions for IPv6. Request for
Comments 3493, Internet Engineering Task Force, Feb. 2003.

[36] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for peer-
to-peer overlays. In In 1st USENIX/ACM Symposium on networked
systems design and implementation (NSDI ’04), San Francisco, CA,
2004, 2004.

[37] A. Gurtov. Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley and Sons, 2008.

[38] A. Gurtov and T. Polishchuk. Secure Multipath Transport for Legacy
Internet Applications. In Proceedings of BROADNETS’09, Sep 2009.

[39] D. Harkins and D. Carrel. RFC 2409: The internet key exchange
(IKE). Request for Comments 2409, Internet Engineering Task Force,
Nov. 1998.

[40] T. Heer. Direct End-to-Middle Authentication in Cooperative Net-
works. PhD thesis, Rheinisch-Westfaelische Technische Hochschule
Aachen, 2011.

[41] T. Heer, R. Hummen, K. Wehrle, and M. Komu. End-host authenti-
cation for hip middleboxes: draft-heer-hip-middle-auth-04. Internet
draft, Internet Engineering Task Force, Oct. 2011. Expired.

[42] T. Heer and S. Varjonen. RFC 6253: HIP Certificates. Request for
comments, Internet Engineering Task Force, Aug. 2011.

References 129

[43] T. Heer, H. Wirtz, and S. Varjonen. Service identifiers for hip: draft-
heer-hip-service-01. Internet draft, Internet Engineering Task Force,
Sept. 2011. Expired.

[44] J. Heikkilä and A. Gurtov. Filtering SPAM in P2PSIP communities
with web of trust. In Proceedings of the MobiSec’09, Jun 2009.

[45] R. Hinden and S. Deering. RFC 4291: IP Version 6 Addressing
Architecture. Request for Comments 4291, Internet Engineering Task
Force, Feb. 2006.

[46] F. Hobaya, V. Gay, and E. Robert. Host Identity Protocol extension
supporting end-host simultaneous mobility. In Proceedings of 2009
Fifth International Conference on Wireless and Mobile Communica-
tions, pages 261–266, 2009.

[47] R. Housley. RFC 4309: Using advanced encryption standard (AES)
CCM mode with IPsec encapsulating security payload (ESP). Re-
quest for Comments 4309, Internet Engineering Task Force, Dec.
2005.

[48] R. Housley, W. Ford, T. Polk, and D. Solo. RFC 2459: Internet X.509
Public Key Infrastructure Certificate and CRL Profile. Request for
Comments 2459, Internet Engineering Task Force, Jan. 1999.

[49] R. Housley, W. Polk, W. Ford, and D. Solo. RFC 3280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. Request for Comments 3280, Internet Engineering
Task Force, Apr. 2002.

[50] C. Huitema. RFC 4380: Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATs). Request for Comments 4380,
Internet Engineering Task Force, Feb. 2006.

[51] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne.
Resource location and discovery (reload) base protocol: draft-ietf-
p2psip-base-22. Internet draft, Internet Engineering Task Force, July
2012. Work in progress.

[52] D. Johnson, C. Perkins, and J. Arkko. RFC 3775: Mobility Support
in IPv6. Request for Comments 3775, Internet Engineering Task
Force, June 2004.

130 References

[53] P. Jokela, R. Moskowitz, and P. Nikander. RFC 5202: Using ESP
Transport format with HIP. Request for Comments 5202, Internet
Engineering Task Force, Apr. 2008.

[54] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, and J. Wall. Host Iden-
tity Protocol: Achieving IPv4 - IPv6 handovers without tunneling. In
Proceedings of Evolute workshop 2003: Beyond 3G Evolution of Sys-
tems and Services, University of Surrey, Guildford, UK, Nov 2003.

[55] P. Jokela, T. Rinta-Aho, T. Jokikyyny, J. Wall, M. Kuparinen,
J. Melén, T. Kauppinen, and J. Korhonen. Handover performance
with HIP and MIPv6. In 1st International Symposium on Wireless
Communication Systems, pages 324 – 328, 2004.

[56] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. Dns performance
and the effectiveness of caching. In In IEEE/ACM Transactions on
Networking, volume 10, pages 589 – 603. ACM Press, Oct. 2002.

[57] E. K. Zeilenga. RFC 4514: Lightweight Directory Access Protocol
(LDAP): String Representation of Distinguished Names. Request for
Comments 4514, Internet Engineering Task Force, June 2006.

[58] G. Kan. Peer-to-Peer: Harnessing the Power of Disruptive Technolo-
gies. O’reilly, 2001. Chapter 8: Gnutella.

[59] C. Kaufman. Recommendation X.690 Information Technology -
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER). ITU-T X.690-0207, International Telecommunication Union,
Dec. 2002.

[60] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet key ex-
change (ikev2) protocol. Request for Comments 5996, Internet Engi-
neering Task Force, Sept. 2010.

[61] S. Kent. RFC 4301: Security Architecture for the Internet Protocol.
Request for Comments 4301, Internet Engineering Task Force, Dec.
2005.

[62] S. Kent. RFC 4302: IP Aunthentication Header. Request for Com-
ments 4302, Internet Engineering Task Force, Dec. 2005.

[63] S. Kent. RFC 4303: IP Encapsulating Security Payload (ESP). Re-
quest for Comments 4303, Internet Engineering Task Force, Dec.
2005.

References 131

[64] S. Kent and R. Atkinson. RFC 2401: Security Architecture for the
Internet Architecture. Request for Comments 2401, Internet Engi-
neering Task Force, Nov. 1998.

[65] S. Kent and R. Atkinson. RFC 2402: IP authentication header.
Request for Comments 2402, Internet Engineering Task Force, Nov.
1998.

[66] S. Kent and R. Atkinson. RFC 2406: IP encapsulating security pay-
load (ESP). Request for Comments 2406, Internet Engineering Task
Force, Nov. 1998.

[67] A. Khurri, E. Vorobyeva, and A. Gurtov. Performance of Host Iden-
tity Protocol on lightweight hardware. In MobiArch ’07: Proceedings
of the 2nd ACM/IEEE International Workshop on Mobility in the
Evolving Internet Architecture, pages 1–8, New York, NY, USA, Aug.
2007. ACM.

[68] J. Kohl and C. Neuman. RFC 1510: The Kerberos Network Authen-
tication Service (V5). Request for Comments 1510, Internet Engi-
neering Task Force, Sept. 1993.

[69] M. Komu, M. Bagnulo, S. Sugimoto, and K. Slavov. RFC 6316:
Socket Application Program Interface (API) for Multihoming Shim.
Request for Comments 6316, Internet Engineering Task Force, July
2011.

[70] M. Komu and T. Henderson. RFC 6317: Basic Socket Interface Ex-
tensions for Host Identity Protocol (HIP). Request for Comments
6317, Internet Engineering Task Force, jul 2011.

[71] M. Komu, T. Henderson, H. Tschofenig, J. Melen, and A. Keranen.
RFC 5770: Basic Host Identity Protocol (HIP) Extensions for Traver-
sal of Network Address Translators. Request for Comments 5770,
Internet Engineering Task Force, Apr. 2010.

[72] M. Komu and J. Lindqvist. Leap-of-Faith Security is Enough for IP
Mobility. In Proceedings of the 6th Annual IEEE Consumer Commu-
nications and Networking Conference IEEE CCNC 2009, Las Vegas,
NV, Jan 2009.

[73] M. Komu, S. Varjonen, S. Tarkoma, and A. Gurtov. Sockets and
Beyond: Assessing the Code of Network Applications. In Aalto Uni-
versity publication series SCIENCE + TECHNOLOGY, volume 46,
2011. ISSN 1799-490X (pdf).

132 References

[74] J. Korhonen. IP Mobility in Wireless Operator Networks. PhD thesis,
University of Helsinki, 2008.

[75] H. Krawczyk. SKEME: A versatile secure key exchange mechanism
for the Internet. In Proceedings of the 1996 Internet Society Sym-
posium on Network and Distributed System Security, pages 114–127.
IEEE Computer Society, Feb. 1996.

[76] J. Laganier and L. Eggert. RFC 5204: Host Identity Protocol (HIP)
Rendezvous Extension. Request for Comments 5204, Internet Engi-
neering Task Force, Apr. 2008.

[77] J. Laganier, T. Koponen, and L. Eggert. RFC 5203: Host Identity
Protocol (HIP) Registration Extension. Request for Comments 5203,
Internet Engineering Task Force, Apr. 2008.

[78] X. Lai. Detailed description and a software implementation of the
ipes cipher. Technical report, Institute for Signal and Information
Processing, ETH-Zentrum, 1991.

[79] B. Laurie, G. Sisson, R. Arends, and D. Blacka. RFC 5155: DNS
Security (DNSSEC) Hashed Authenticated Denial of Existence. Re-
quest for Comments 5155, Internet Engineering Task Force, Mar.
2008.

[80] J. Liang, N. Naoumov, and K. Ross. The index poisoning attack in
p2p file sharing systems. In Proceedings of the International Con-
ference on Computer Communications (INFOCOM), pages 1 – 12.
IEEE, Apr. 2006.

[81] H. Luo, Y. Qin, and H. Zhang. A DHT-Based Identifier-to-Locator
Mapping Approach for a Scalable Internet. In IEEE Transactions on
Parallel and Distributed Systems. IEEE Computer Society, Feb. 2009.

[82] C. Madson and N. Doraswamy. RFC 2405: The EPS DES-CBC cipher
algorithm with explicit IV. Request for Comments 2405, Internet
Engineering Task Force, Nov. 1998.

[83] C. Madson and R. Glenn. RFC 2403: The use of HMAC-MD5-96
within ESP and AH. Request for Comments 2403, Internet Engi-
neering Task Force, Nov. 1998.

[84] C. Madson and R. Glenn. RFC 2404: The use of HMAC-SHA-1-96
within ESP and AH. Request for Comments 2404, Internet Engineer-
ing Task Force, Nov. 1998.

References 133

[85] J. Manner and M. Kojo. RFC 3753: Mobility Related Terminology.
Request for Comments 3573, Internet Engineering Task Force, June
2004.

[86] L. Mathy and L. Lannone. LISP-DHT: Towards a DHT to map
identifiers onto locators. In Proc. of ACM ReArch 2008, Dec. 2008.

[87] D. Maughan, M. Schertler, M. Schneider, and M. Turner.
RFC 2408: Internet security association and key management pro-
tocol (ISAKMP). Request for Comments 2408, Internet Engineering
Task Force, Nov. 1998.

[88] Merkur. The eMule Project Homepage, 2004. http://www.

emule-project.net, 27.11.2011.

[89] C. Metz and J. ichiro itojun Hagino. IPv4-Mapped Addresses on the
Wire Considered Harmful: draft-itojun-v6ops-v4mapped-harmful-02.
Internet draft, Internet Engineering Task Force, Oct. 2003. Expired.

[90] R. Moskowitz, P. Jokela, T. Henderson, and T. Heer. RFC 5201bis:
Host identity protocol. Internet draft, Internet Engineering Task
Force, Jan. 2011. Work in progress. Expires in July, 2011.

[91] R. Moskowitz and P. Nikander. RFC 4423: Host Identity Protocol
(HIP) Architecture. Request for Comments 4423, Internet Engineer-
ing Task Force, May 2006.

[92] R. Moskowitz, P. Nikander, P. Jokela, and T. R. Henderson.
RFC 5201: Host Identity Protocol. Request for Comments 5201,
Internet Engineering Task Force, Apr. 2008.

[93] P. Nikander, T. Henderson, C. Vogt, and J. Arkko. RFC 5206: End-
Host Mobility and Multihoming with the Host Identity Protocol.
Request for Comments 5206, Internet Engineering Task Force, Apr.
2008.

[94] P. Nikander and J. Laganier. RFC 5205: Host Identity Protocol
(HIP) Domain Name System (DNS) Extension. Request for Com-
ments 5205, Internet Engineering Task Force, Apr. 2008.

[95] P. Nikander, J. Laganier, and F. Dupont. RFC 4843: An IPv6 Pre-
fix for Overlay Routable Cryptographic Hash Identifiers (ORCHID).
Request for Comments 4843, Internet Engineering Task Force, Apr.
2007.

134 References

[96] E. Nordmark and M. Bagnulo. RFC 5533: Shim6: Level 3 Multihom-
ing Shim Protocol for IPv6. Request for Comments 5533, Internet
Engineering Task Force, June 2009.

[97] E. Nordmark, S. Chakrabarti, and J. Laganier. RFC 5014: IPv6
Socket API for Source Address Selection. Request for Comments
5014, Internet Engineering Task Force, Sept. 2007.

[98] S. Novaczki, L. Bokor, and S. Imre. Micromobility support in HIP:
survey and extension of host identity protocol. In Electrotechnical
Conference. MELECON 2006. IEEE Mediterranean, pages 651 – 654,
May 2006.

[99] H. Orman. RFC 2412: The OAKLEY Key Determination Protocol.
Request for Comments 2412, Internet Engineering Task Force, Nov.
1998.

[100] P. Paakkonen, P. Salmela, R. Aguero, and J. Choque. Performance
analysis of HIP-based mobility and triggering. In Proceedings of Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks, 2008. WoWMoM 2008, Newport Beach, CA, Jun 2008.

[101] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall, and G. Muller.
Faults in linux: ten years later. In ASPLOS, pages 305–318, 2011.

[102] J. Pang, J. Hendricks, A. Akella, R. De Prisco, B. Maggs, and S. Se-
shan. Availability, usage, and deployment characteristics of the do-
main name system. In In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, New York, NY, USA, 2004.
ACM Press, 2004.

[103] V. Pappas, D. Massey, A. Terzis, and L. Zhang. A comparative study
of the dns design with dht-based alternatives. In In the Proceedings
of IEEE INFOCOM’06. IEEE, Apr. 2006.

[104] K. G. Paterson and A. K. L. Yau. Cryptography in theory and prac-
tice: The case of encryption in ipsec. In Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, st. Petersburg,
Russia, May 28 - June 1, 2006, Proceedings. Springer-Verlag, 2006.

[105] A. Pathak, M. Komu, and A. Gurtov. HIPL: Give a name to your
linux box. In Linux Journal, Nov. 2009.

References 135

[106] A. Pathak, M. Komu, and A. Gurtov. Host Identity Protocol for
Linux. In Linux Journal, Nov. 2009.

[107] R. Pereira and R. Adams. RFC 2451: The ESP CBC-mode cipher
algorithms. Request for Comments 2451, Internet Engineering Task
Force, Nov. 1998.

[108] C. Perkins and et al. RFC 3344: IP Mobility Support for IPv4.
Request for Comments 3344, Internet Engineering Task Force, Aug.
2002.

[109] D. Piper. RFC 2407: The internet IP security domain of interpreta-
tion for ISAKMP. Request for Comments 2407, Internet Engineering
Task Force, Nov. 1998.

[110] V. Ramasubramanian and E. Sirer. The design and imlementation of
a next generation name service for the internet. In In Proceedings of
the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications SIGCOMM ’04, volume 34.
ACM Press, 2004.

[111] V. Ramasubramanian and E. G. Sirer. Beehive: O(1)lookup perfor-
mance for power-law query distributions in peer-to-peer overlays. In
Proceedings of the 1st conference on Symposium on Networked Sys-
tems Design and Implementation - Volume 1, pages 8–8, Berkeley,
CA, USA, 2004. USENIX Association.

[112] E. Rescorla. RFC 2631: Diffie-Hellman Key Agreement Method.
Request for Comments 2631, Internet Engineering Task Force, June
1999.

[113] E. Rescorla. SSL and TLS, Designing and Building Secure Systems.
Addison-Wesley, 2006. Tenth printing.

[114] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A Public DHT Ser-
vice and Its Uses. In Proceedings of ACM SIGCOMM 2005, Aug.
2005.

[115] R. L. Rivest. The rc4 encryption algorithm. Technical report, RSA
Data Security Inc., Mar. 1992.

[116] R. L. Rivest. The RC5 encryption algorithm, from dr. dobb’s journal,
january, 1995. In William Stallings, Practical Cryptography for Data
Internetworks, IEEE Computer Society Press, 1996. Stallings, 1996.

136 References

[117] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-Performance
Local Area Communication With Fast Sockets. In In Proceedings of
the USENIX Technical Conference, pages 257–274, 1997.

[118] J. Rosenberg. RFC 5245: Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT) Traversal
for Offer/Answer Protocols. Request for Comments 5245, Internet
Engineering Task Force, Apr. 2010.

[119] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. In:
Middleware, pages 329–350, 2001.

[120] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
of IFIP/ACM Int. Conf. on Distributed Systems Platforms (Middle-
ware), pages 329–350, Heidelberg, Germany, Nov. 2001.

[121] P. Salmela and J. Melen. Host identity protocol proxy. In E-business
and Telecommunication Networks, Communications in Computer and
Information Science, pages 126 – 138, nov 2007.

[122] D. C. Schmidt. The adaptive communication environment: An
object-oriented network programming toolkit for developing commu-
nication software. pages 214–225, 1993.

[123] B. Schneier. Description of a new variable-length key, 64-bit block
cipher (blowfish). In Fast Software Encryption, Cambridge Security
Workshop Proceedings, pages 191–204. Cambridge University, Dec.
1993. Printed by Springer-Verlag in 1994.

[124] S. Shütz, L. Eggert, S. Schmid, and M. Brunner. Protocol enhance-
ments for intermittenly connected hosts. In ACM SIGCOMM Com-
puter Communication Review, pages 5 – 18, July 2005.

[125] M. Smith and T. Howes. RFC 4516: Lightweight Directory Access
Protocol (LDAP): Uniform Resource Locator. Request for Comments
4516, Internet Engineering Task Force, Dec. 2006.

[126] H. Soliman and et al. RFC 5555: Mobile IPv6 Support for Dual Stack
Hosts and Routers. Request for Comments 5555, Internet Engineering
Task Force, June 2009.

References 137

[127] P. Srisuresh and K. Egevang. RFC 3022: Traditional IP Network
Address Translator (Traditional NAT). Request for Comments 3022,
Internet Engineering Task Force, Jan. 2001.

[128] W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei. RFC 3542:
Advanced Sockets Application Program Interface (API) for IPv6.
Request for Comments 3542, Internet Engineering Task Force, May
2003.

[129] W. R. Stevens, B. Fenner, and A. M. Rudoff. Unix Network Pro-
gramming, Volume 1, The Sockets Networking API. Addison-Wesley,
2004. Fourth printing.

[130] R. Stewart. RFC 4960: Stream Control Transmission Protocol. Re-
quest for Comments 4960, Internet Engineering Task Force, Sept.
2007.

[131] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. Technical notes, Labora-
tory for Computer Science, Massachusetts Institute of Technology,
Jan. 2002.

[132] T.Dierks and E. Rescorla. RFC 5246: The Transport Layer Security
(TLS) Protocol Version 1.2. Request for Comments 5246, Internet
Engineering Task Force, Aug. 2008.

[133] G. Tsirtsis, V. Park, and H. Soliman. RFC 5454: Dual Stack Mobile
IPv4. Request for Comments 5454, Internet Engineering Task Force,
Mar. 2009.

[134] G. Tsirtsis and H. Soliman. RFC 4977: Problem Statement: Dual
Stack Mobility. Request for Comments 4977, Internet Engineering
Task Force, Aug. 2007.

[135] J. Ubillos, M. Xu, Z. Ming, and C. Vogt. Name Based Sockets: draft-
ubillos-name-based-sockets-03. Internet draft, Internet Engineering
Task Force, Sept. 2010. Expired.

[136] S. Varjonen. HIP and User Authentication: draft-varjonen-hip-eap-
00. Internet draft, Internet Engineering Task Force, July 2009. Ex-
pired.

138 References

[137] S. Varjonen and A. Gurtov. Separating friends from spitters. In Inter-
national reports on socio-informatics - Workshop Proceedings of the
9th International Conference on the Design of Cooperative Systems,
volume 7, 2010. COOP 2010.

[138] S. Varjonen, T. Heer, K. Rimey, and A. Gurtov. Secure Resolution of
End-Host Identifiers for Mobile Clients. In Proceedings of GLOBE-
COM ’11, 2011. This paper received the best paper award at the
Next Generation Networking (NGN) Symposium.

[139] S. Varjonen, M. Komu, and A. Gurtov. Secure and efficient ipv4/ipv6
handovers using host-based identifier-locator split. In Proceedings of
the 17th international conference on Software, Telecommunications
and Computer Networks, SoftCOM’09, pages 111–115, Piscataway,
NJ, USA, 2009. IEEE Press.

[140] S. Varjonen, M. Komu, and A. Gurtov. Secure and Efficient
IPv4/IPv6 Handovers Using Host-Based Identifier-Locator Split.
Journal of Communications Software and Systems, 6(1), 2010.

[141] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. RFC 136: Dynamic
Updates in the Domain Name System (DNS UPDATE). Request for
Comments 2136, Internet Engineering Task Force, Apr. 1997.

[142] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and F. Dupont. Port
Control Protocol (PCP): draft-ietf-pcp-base-27. Internet draft, Inter-
net Engineering Task Force, Sept. 2012. Work in progress.

[143] D. Wing and A. Yourtchenko. RFC 6555: Happy Eyeballs: Suc-
cess with Dual-Stack Hosts. Request for Comments 6555, Internet
Engineering Task Force, Apr. 2012.

[144] J. Ylitalo. Secure Mobility at Multiple Granularity Levels over Het-
erogeneous Datacom Networks. PhD thesis, University of Helsinki,
2008.

[145] J. Ylitalo, J. Melén, P. Nikander, and V. Torvinen. Re-thinking Se-
curity in IP-Based Micro Mobility. In Lecture Notes in Computer
Science, pages 318 – 329, 2004. ISBN 978-3-540-23208-7.

[146] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications,
22(1):41–53, Jan. 2004.

References 139

[147] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph, B. Y. Zhao, J. Kubiatow-
icz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical report, 2001.

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 University of
Helsinki, Finland.

A-2005-2 A. Doucet: Advanced Document Description, a Sequential Approach. 161 pp. (Ph.D.
Thesis)

A-2006-1 A. Viljamaa: Specifying Reuse Interfaces for Task-Oriented Framework Specialization.
285 pp. (Ph.D. Thesis)

A-2006-2 S. Tarkoma: Efficient Content-based Routing, Mobility-aware Topologies, and Tem-
poral Subspace Matching. 198 pp. (Ph.D. Thesis)

A-2006-3 M. Lehtonen: Indexing Heterogeneous XML for Full-Text Search. 185+3 pp. (Ph.D.
Thesis)

A-2006-4 A. Rantanen: Algorithms for 13C Metabolic Flux Analysis. 92+73 pp. (Ph.D. Thesis)

A-2006-5 E. Terzi: Problems and Algorithms for Sequence Segmentations. 141 pp. (Ph.D.
Thesis)

A-2007-1 P. Sarolahti: TCP Performance in Heterogeneous Wireless Networks. 171 pp. (Ph.D.
Thesis)

A-2007-2 M. Raento: Exploring privacy for ubiquitous computing: Tools, methods and experi-
ments. 61+150 pp. (Ph.D. Thesis)

A-2007-3 L. Aunimo: Methods for Answer Extraction in Textual Question Answering. 127+18 pp.
(Ph.D. Thesis)

A-2007-4 T. Roos: Statistical and Information-Theoretic Methods for Data Analysis. 82+75 pp.
(Ph.D. Thesis)

A-2007-5 S. Leggio: A Decentralized Session Management Framework for Heterogeneous Ad-
Hoc and Fixed Networks. 230 pp. (Ph.D. Thesis)

A-2007-6 O. Riva: Middleware for Mobile Sensing Applications in Urban Environments. 195
pp. (Ph.D. Thesis)

A-2007-7 K. Palin: Computational Methods for Locating and Analyzing Conserved Gene Reg-
ulatory DNA Elements. 130 pp. (Ph.D. Thesis)

A-2008-1 I. Autio: Modeling Efficient Classification as a Process of Confidence Assessment and
Delegation. 212 pp. (Ph.D. Thesis)

A-2008-2 J. Kangasharju: XML Messaging for Mobile Devices. 24+255 pp. (Ph.D. Thesis).

A-2008-3 N. Haiminen: Mining Sequential Data – in Search of Segmental Structures. 60+78 pp.
(Ph.D. Thesis)

A-2008-4 J. Korhonen: IP Mobility in Wireless Operator Networks. 186 pp. (Ph.D. Thesis)

A-2008-5 J.T. Lindgren: Learning nonlinear visual processing from natural images. 100+64 pp.
(Ph.D. Thesis)

A-2009-1 K. Hätönen: Data mining for telecommunications network log analysis. 153 pp.
(Ph.D. Thesis)

A-2009-2 T. Silander: The Most Probable Bayesian Network and Beyond. 50+59 pp. (Ph.D.
Thesis)

A-2009-3 K. Laasonen: Mining Cell Transition Data. 148 pp. (Ph.D. Thesis)

A-2009-4 P. Miettinen: Matrix Decomposition Methods for Data Mining: Computational Com-
plexity and Algorithms. 164+6 pp. (Ph.D. Thesis)

A-2009-5 J. Suomela: Optimisation Problems in Wireless Sensor Networks: Local Algorithms
and Local Graphs. 106+96 pp. (Ph.D. Thesis)

A-2009-6 U. Köster: A Probabilistic Approach to the Primary Visual Cortex. 168 pp. (Ph.D.
Thesis)

A-2009-7 P. Nurmi: Identifying Meaningful Places. 83 pp. (Ph.D. Thesis)

A-2009-8 J. Makkonen: Semantic Classes in Topic Detection and Tracking. 155 pp. (Ph.D.
Thesis)

A-2009-9 P. Rastas: Computational Techniques for Haplotype Inference and for Local Align-
ment Significance. 64+50 pp. (Ph.D. Thesis)

A-2009-10 T. Mononen: Computing the Stochastic Complexity of Simple Probabilistic Graphical
Models. 60+46 pp. (Ph.D. Thesis)

A-2009-11 P. Kontkanen: Computationally Effcient Methods for MDL-Optimal Density Estima-
tion and Data Clustering. 75+64 pp. (Ph.D. Thesis)

A-2010-1 M. Lukk: Construction of a global map of human gene expression - the process, tools
and analysis. 120 pp. (Ph.D. Thesis)

A-2010-2 W. Hämäläinen: Efficient search for statistically significant dependency rules in binary
data. 163 pp. (Ph.D. Thesis)

A-2010-3 J. Kollin: Computational Methods for Detecting Large-Scale Chromosome Rearrange-
ments in SNP Data. 197 pp. (Ph.D. Thesis)

A-2010-4 E. Pitkänen: Computational Methods for Reconstruction and Analysis of Genome-
Scale Metabolic Networks. 115+88 pp. (Ph.D. Thesis)

A-2010-5 A. Lukyanenko: Multi-User Resource-Sharing Problem for the Internet. 168 pp.
(Ph.D. Thesis)

A-2010-6 L. Daniel: Cross-layer Assisted TCP Algorithms for Vertical Handoff. 84+72 pp.
(Ph.D. Thesis)

A-2011-1 A. Tripathi: Data Fusion and Matching by Maximizing Statistical Dependencies.
89+109 pp. (Ph.D. Thesis)

A-2011-2 E. Junttila: Patterns in Permuted Binary Matrices. 155 pp. (Ph.D. Thesis)

A-2011-3 P. Hintsanen: Simulation and Graph Mining Tools for Improving Gene Mapping Ef-
ficiency. 136 pp. (Ph.D. Thesis)

A-2011-4 M. Ikonen: Lean Thinking in Software Development: Impacts of Kanban on Projects.
104+90 pp. (Ph.D. Thesis)

A-2012-1 P. Parviainen: Algorithms for Exact Structure Discovery in Bayesian Networks. 132 pp.
(Ph.D. Thesis)

A-2012-2 J. Wessman: Mixture Model Clustering in the Analysis of Complex Diseases. 119 pp.
(Ph.D. Thesis)

A-2012-3 P. Pöyhönen: Access Selection Methods in Cooperative Multi-operator Environments
to Improve End-user and Operator Satisfaction. 211 pp. (Ph.D. Thesis)

A-2012-4 S. Ruohomaa: The Effect of Reputation on Trust Decisions in Inter-enterprise Col-
laborations. 214+44 pp. (Ph.D. Thesis)

A-2012-5 J. Sirén: Compressed Full-Text Indexes for Highly Repetitive Collections. 97+63 pp.
(Ph.D. Thesis)

A-2012-6 F. Zhou: Methods for Network Abstraction. 48+71 pp. (Ph.D. Thesis)

A-2012-7 N. Välimäki: Applications of Compressed Data Structures on Sequences and Struc-
tured Data. 73+94 pp. (Ph.D. Thesis)

