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ABSTRACT In the present paper, a simple mechanical model is developed to predict the dynamic
response of a cracked structure subjected to periodic excitation, which has been used to identify the
physical mechanisms in leading the growth or arrest of cracking. The structure under consideration
consists of a beam with a crack along the axis, and thus, the crack may open in Mode I and in
the axial direction propagate when the beam vibrates. In this paper, the system is modeled as
a cantilever beam lying on a partial elastic foundation, where the portion of the beam on the
foundation represents the intact portion of the beam. Modal analysis is employed to obtain a
closed form solution for the structural response. Crack propagation is studied by allowing the
elastic foundation to shorten (mimicking crack growth) if a displacement criterion, based on the
material toughness, is met. As the crack propagates, the structural model is updated using the
new foundation length and the response continues. From this work, two mechanisms for crack
arrest are identified. It is also shown that the crack propagation is strongly influenced by the
transient response of the structure.

KEY WORDS crack propagation/arrest, elastic foundation, modal analysis, vibration, natural
frequency

I. INTRODUCTION
For structures possessing a crack (or delamination in a layered medium), numerous criteria have

been put forth predicting (i) whether crack growth will be initiated and (ii) how that growth proceeds,
for example, the review by Shukla[1]. And while some have examined how the wave propagation charac-
teristics of the system (which transmits the stress induced by a remote, impulsive load) influence crack
growth, there are relatively few authors that have examined how the overall structural response can
influence this phenomenon. One such structural model was suggested by Dowell[2], which consists of a
cantilever beam of thickness 2h with an end crack parallel to the x-axis, as shown in Fig.1(a). A couple
of external loads are applied at the right edge of the cracked beam. Because of the symmetry about
the midplane, this system can be modeled as a single beam of thickness h resting on a partial elastic
foundation, see Fig.1(b). The portion of the beam on the foundation represents the intact portion of
the structure. Dowell predicted the static parameter combinations that would lead to crack propaga-
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tion; this propagation is mimicked by allowing the
lead spring in the foundation (i.e., the crack tip) to
break — thereby shrinking the foundation size d. The
benefits of this model are twofold. First, it is not a
mathematically complex model — making it acces-
sible for undergraduates. Second, it provides useful
trends regarding parameter combinations that lead
to propagation. Moreover, these trends are explained
in the fundamental physics of the system. Finally, it
is also worth mentioning that, while this model was
originally developed to examine crack growth, it can
easily be extended to address problems of delami-
nation in composites[3], adhesion and de-adhesion in
microelectromechanical systems[4–6].

The present paper extends the Dowell model by
including dynamic effects. For a given foundation
length, the natural frequencies and mode shapes are Fig. 1 A schematic of the system.

found from the free vibration eigenvalue problem. Then the modal analysis is used to find the total
response for a periodic excitation P (t). Crack propagation is initiated if the lateral displacement at the
crack tip exceeds a critical value that is obtained from the stress intensity factor. Once the foundation
shrinks, the natural frequencies and mode shapes are recalculated and the model is updated. Of course,
this has the effect of inducing further transients in the response. This process continues until either the
system settles into a steady state (such that the crack growth is arrested) or the crack runs the length
of the structure.

The dynamic response is calculated for a set of parameters and instances of crack propagation and
crack arrest are clearly demonstrated. Three physical mechanisms are proposed to explain the various
behaviors seen. These involve (i) the change in the natural frequencies, (ii) the influence of structural
nodes, and (iii) transient effects. Finally, a diagram showing excitation parameter combinations leading
to unstable crack growth is developed. This highlights the importance of the third mechanism.

II. MODEL DEVELOPMENT
2.1. Equation of Motion

Figure 1(b) shows a schematic of the cantilevered beam resting on a partial elastic foundation. The
crack has length a and the intact portion of the beam has length d. The beam length is L. The equation
of motion is found using Hamilton’s principle, δ

∫ t2
t1

(T −U +W )dt = 0, where T is the kinetic energy,
U is the strain energy, and W is the external work. The kinetic energy is

T =
m

2

∫ L

0

(w,t)
2dx (1)

where m = ρbh is the mass per unit length with ρ denoting the density, b and h being the width and
thickness of the beam cross section, respectively. w(x, t) is the transverse displacement, and (◦),t ≡
∂(◦)/∂t. The strain energy for a linear elastic beam resting on a partial linear elastic foundation of
length d is

U =
EI

2

∫ L

0

(w,xx)2dx+
k

2

∫ L

0

[1−H(x− d)]w2dx (2)

where E and I are the elastic modulus and the area moment of inertia, respectively. I = bh3/12 for
a rectangular cross section. w,xx = ∂2w/∂x2 and k is the elastic foundation modulus. H(x) is the
Heaviside function. External work done by the applied load P (t) is:

W =

∫ L

0

P (t)w(x, t)δ(x − xo)dx = P (t)w(xo, t) (3)

where δ(x) is the Dirac delta function and xo is the load location (xo = L in Fig.1).
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Applying Hamilton’s principle and carrying out the necessary integration by parts leads to the
following equation of motion

mw,tt + EIw,xxxx + k[1−H(x− d)]w = P (t)δ(x − xo) (4)

For convenience in use, the displacement field is written as the following two parts:

w(x, t) =

{
w1(x, t) (0 ≤ x < d)

w2(x, t) (d ≤ x ≤ L)
(5)

This reduces the equation of motion to two equations whose solutions must satisfy certain matching
conditions at x = d. Thus, the free vibration of the system can be expressed by the following two
equations

mw1,tt + EIw1,xxxx + kw1 = 0 (0 ≤ x < d) (6)

and
mw2,tt + EIw2,xxxx = 0 (d ≤ x ≤ L) (7)

The eight boundary/matching conditions are derived from the Hamilton’s principle as follows:

w1(0) = 0, w1,x(0) = 0, w,xx(L) = 0, w2,xxx(L) = 0

w1(d) = w2(d), w1,x(d) = w2,x(d), w1,xx(d) = w2,xx(d), w1,xxx(d) = w2,xxx(d)
(8)

Obviously, the two displacement fields w1 and w2 are coupled with each other through the matching
conditions at x = d.

2.2. Natural Frequencies and Mode Shapes

The free vibration solution begins by assuming w1 and w2 as the harmonic motion: w1 = ψI(x)eiΩt

and w2 = ψII(x)eiΩt. Substitution of these expressions into Eqs.(6) and (7) leads to the following two
fourth order differential equations for the functions ψI and ψII:

ψI
,xxxx −

mΩ2 − k
EI

ψI = 0 (0 ≤ x < d) (9)

ψII
,xxxx −

mΩ2

EI
ψII = 0 (d ≤ x ≤ L) (10)

Ω is the natural frequency, which will be determined by the boundary/matching conditions. Before
determiningΩ, the solution form for ψI and ψII requires a careful discussion. The solution for ψII follows
the standard beam solution. However, there are three possible solution forms for ψI depending on the

value of
mΩ2 − k

EI
.

∗ Case 1:
mΩ2 − k
EI

> 0. In this case, the wave number is real and the mode is said to be cut-on[7]. The

eigen-function is

ψI(x) = A1 sin(λ1x) +A2 cos(λ1x) + A3 sinh(λ1x) +A4 cosh(λ1x) (11)

where λ4
1 =

∣∣∣∣mΩ2 − k
EI

∣∣∣∣.
∗ Case 2:

mΩ2 − k
EI

< 0. The wave number is complex and the eigen-function is

ψI(x) = A1e
αx cos(αx) +A2e

αx sin(αx) +A3e
−αx cos(αx) +A4e

−αx sin(αx) (12)

with α =

√
2

2

4

√
k −mΩ2

EI
. This solution can be shown in Appendix I that it can not be a solution

form of a finite beam on an elastic foundation. But it is a solution form for an infinite beam on an
elastic foundation as discussed by Graff[7]. Timoshenko, Young and Weaver[8] take only cut-on frequency
solution form (Case 1) without a proof for the solution of a finite beam on an elastic foundation. Appendix
I gives a detailed proof.
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∗ Case 3:
mΩ2 − k
EI

= 0. The mode shape ψI has the solution form

ψI(x) = A1x
3 +A2x

2 +A3x+A4 (13)

The eigenfrequency solved from this form of solution is called cut-off frequency. The cut-off frequency,
as pointed out by Perkins[9] is always the solution for a characteristic equation. It is shown in Appendix
I that the above polynomial form of mode shape can only be linear (i.e., A1 = A2 = 0), which is only
possible under rigid body motion.

ψII has the following expression

ψII = B1 sin(λ2x) +B2 cos(λ2x) +B3 sinh(λ2x) +B4 cosh(λ2x) (14)

where λ4
2 =

mΩ2

EI
. Using Eq.(11) for ψI and Eq.(14) for ψII, the eight boundary/matching conditions

of Eq.(8) are applied. This produces eight simultaneous algebraic equations. For nontrivial solutions,
the determinant is required to be zero. This leads to the following characteristic equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

sin(λ1d) cos(λ1d) sinh(λ1d) cosh(λ1d) − sin(λ2d) − cos(λ2d) − sinh(λ2d) − cosh(λ2d)

λ1 cos(λ1d) −λ1 sin(λ1d) λ1 cosh(λ1d) λ1 sinh(λ1d) −λ2 cos(λ2d) λ2 sin(λ2d) −λ2 cosh(λ2d) −λ2 sinh(λ2d)

−λ2

1
sin(λ1d) −λ2

1
cos(λ1d) λ2

1
sinh(λ1d) λ2

1
cosh(λ1d) λ2

2
sin(λ2d) λ2

2
cos(λ2d) −λ2

2
sinh(λ2d) −λ2

2
cosh(λ2d)

−λ3

1
cos(λ1d) λ3

1
sin(λ1d) λ3

1
cosh(λ1d) λ3

1
sinh(λ1d) λ3

2
cos(λ2d) −λ3

2
sin(λ2d) −λ3

2
cosh(λ2d) −λ3

2
sinh(λ2d)

0 0 0 0 −λ2

2
sin(λ2L) −λ2

2
cos(λ2L) λ2

2
sinh(λ2L) λ2

2
cosh(λ2L)

0 0 0 0 −λ2
3 cos(λ2L) λ3

2
sin(λ2L) λ3

2
cosh(λ2L) λ3

2
sinh(λ2L)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(15)
The natural frequencies Ω are obtained by numerically root solving the above characteristic equation.
Once the frequencies are obtained, the eigenfunctions are also specified; the mode shape for the entire
beam is written as a composite of the two functions ψI and ψII, namely, ψ = ψI +H(x− d)(ψII −ψI).

Orthogonality is very important here, which allows us to decouple the equation in using the Galerkin
method. The orthogonality property of mode shape ψ is proved in Appendix II.
2.3. Modal Analysis

If proportional damping is added to the system, the equation of motion becomes

mw,tt + cw,t + EIw,xxxx + k[1−H(x− d)]w = Po sin(ωt)δ(x − L) (16)

where c is the damping coefficient. As the interfacial debonding is accompanied with dissipation of
interface adhesion energy[10], a damping term as above should be introduced to model such dissipation.
Po and ω are the amplitude and the driving frequency of the external excitation force, respectively. The
external excitation force is acted at the free end (i.e. xo = L). To solve this equation, an expansion of

the form w(x, t) =
∑N

j=1 φj(t)ψj(x) is assumed, where φi(t)’s are the unknown, time-dependent modal
amplitudes. Substituting this into the equation of motion and using the orthogonality condition of the
modes results in the following equation governing the j-th modal amplitude (See Appendix III for the
derivation in detail):

φ̈j + 2ξjΩj φ̇j +Ω2
jφj =

Po sin(ωt)ψII(L)

m
∫ L

0
ψ2

j dx
= fj sin(ωt) (17)

where ξj = c/(2mΩj) and Ωj is the j-th eigenfrequency computed from the characteristic equation
of Eq.(15). It needs to be emphasized that the repeated subscript j in above Eq.(17) does not mean
summation. The overdot refers to differentiation with respect to time. The solution of φj is

φj = e−ξjΩjt[Aj sin(
√

1− ξ2Ωjt) +Bj cos(
√

1− ξ2Ωjt)] + Ej sin(ωt) + Fj cos(ωt) (18)

Aj , Bj , Ej and Fj are the constants determined by the initial conditions and external excitation force.
The first two terms associated with Aj and Bj are the transient motion and the last two associated with
Ej and Fj are the steady state motion. c is taken as c = 40 Pa·s, which sets ξ1 = 0.1 of an underdamped
case.
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2.4. A Criterion for Dynamic Crack Growth

In the above, a model for the lateral deflection of a cracked beam has been presented. In keeping with
this approach, it is desirable to have a crack growth criterion (signaling the onset of crack propagation)
expressed in terms of the lateral deflection at the crack tip, w(d, t). In contrast with the static fracture
toughness, determining dynamic fracture toughness is a difficult issue[11]. Tremendous efforts have been
made to study the dynamic crack growth[1,11–20]. Various criteria have been proposed previously, which
include using displacement quantities such as the crack gradient profile, the normal crack opening
displacement, or the vectorial crack-face displacement to predict crack growth[12–15] and others like
energy criteria[10]. In the present study, the stress intensity factor is related to the lateral displacement
at the crack tip. By using this relation, the material toughness (a critical value of the stress intensity
factor associated with the onset of crack growth) is then used to find a critical crack tip displacement,
wcr, once w(d, t) ≥ wcr, the crack is permitted to grow. The toughness used here is a static one, which
can be significantly larger than a dynamic one due to the dynamic/inertial effect[12,18,19]. Unlike those
impulse/pulse loadings[16–19], the external excitation force used here is a periodically shaking force with
a relatively low frequency. From the analysis of Freund[12] and experiments of Shockey et al.[18,19], it
is suitable to assume the dynamic toughness is the same as the static one when the loading is not
very fast and crack growth speed is low. In the calculation[21] the beam material is chosen as steel
with E = 2× 1012 Pa and KIC = 4× 107 Nm−3/2. Obviously, steel is not a brittle material and crack
growth can not be fast. For the model in this paper or others which also uses the displacement as the
variable[22], choosing the displacement as the crack growth criterion or say, translating the toughness
criterion into a displacement one makes the problem straightforward.

To explain how the critical crack tip displacement wcr is obtained, let’s begin by considering the
stress intensity factor for the double cantilever beam model[23]

KI =
2
√

3Pa

bh3/2
(19)

where P is a constant load applied at the beam tip, a is the crack length and b, h are the width and
thickness of the beam, respectively. A critical load (to initiate crack propagation) may be obtained

by substituting the toughness KIC for the stress intensity factor: Pcr =
KICbh

3/2

2
√

3a
. This is the critical

static force required to initiate crack growth. By using this load, the lateral displacement at the crack
tip w(d, t) may be found by the following procedures of statics. For statics, Eq.(16) now becomes

EIw,xxxx + k[1−H(x− d)]w = Pcrδ(x − L) (20)

Po sin(ωt) in Eq.(16) is substituted by Pcr. Assume the static displacement ws(x) =
N∑

j=1

ajψj(x), aj

is the constant modal amplitude to be determined. The following equation is obtained by the same
procedures of deriving Eq.(17)

Ω2
j aj =

Pcrψ
II(L)

m
∫ L

0 ψ2
j dx

(21)

Therefore aj =
Pcrψ

II(L)

(mΩ2
j

∫ L

0 ψ2
j dx)

and wcr = ws(d) =
N∑

j=1

ajψj(d). For this study, wcr (solved from the

statics) is presumed to be the critical lateral crack tip displacement. Once w(d, t) = wcr, the crack
begins to propagate until the tip reaches some new location x = d where w(d, t) < wcr. It should be
noted that, as the crack propagates, the value of wcr changes because the free length of the beam has
increased. This is described more completely in §3.1.

III. RESULTS AND DISCUSSION
3.1. A Mechanism for Unstable Crack Growth

It is well established in the fracture mechanics literature [12] that a specimen undergoing a constant
load, as shown schematically in Fig.2(a), with P ≥ Pcr will experience unstable crack growth, i.e., the
crack will grow indefinitely. The physical reason for this is as follows: As the crack begins to grow, the
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Fig. 2. The critical load and displacement at a = 0.1 m, Pcr = 3267.5 N and wcr = 6.454 × 10−2 m.

moment arm extending from the crack tip to the load gets larger. The increased moment fuels the crack
growth and the situation gets worse. Alternatively, this can be viewed from a mathematical perspective

by noting that the critical load, Pcr =
KICbh

3/2

2
√

3a
(from §2.4), is inversely proportional to the crack

length. This is shown graphically in Fig.2(b), which indicates that as the crack grows the critical load
diminishes. Hence, under a constant load, the crack propagation is unstable.

For the sake of this research, the crack growth criterion is described in terms of the lateral displacement
of the crack tip,w(d, t). Specifically, a critical crack tip displacement is found by using elementary statics
to determine the crack tip displacement under the critical load, Pcr. Since the critical load varies with
the crack length, the critical crack tip displacement, wcr is also dependent on crack length, as shown in
Fig.2(c). Consequently, as the crack grows, the required lateral crack tip displacement to maintain crack
growth decreases. And so, from a static perspective, the possibility of continued (unstable) crack growth
becomes more likely. This is the fundamental mechanism for unstable crack growth in this system.

3.2. Model Validation

Prior to addressing all of the mechanisms at play in the crack growth problem, our first goal is to
validate the behavior of the analytical model developed in §II of this paper. As a means of comparison,
the finite element method (FEM) is used to discretize the model using one hundred beam elements. The

Fig. 3. Motion of the beam tip and crack tip as determined by different solutions. ω = 645 Hz and Po = 1600 N.
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FEM model is integrated using Hughes-Hilbert-Taylor (HHT) implicit integrator[24] and the same crack
growth criterion is used. Though numerous test cases has been run, one typical result is shown in Fig.3
for the parameter combinations: ω = 645 Hz, Po = 1600 N, kL4/(EI) = 1.5, and ainitial/L = 0.1. Here,
the lateral displacement of the beam tip (at x = L) and the crack tip (x = d) are plotted as a function
of time. In this paper, the following parameters are fixed: E = 2× 1012 Pa, KIC = 4× 107 Nm−3/2 and
ρ = 4500 kg/m3 for steel; L = 1 m, b = 0.01 m and h = 0.02 m. The varying parameters are the external
force amplitude Po and frequency ω, elastic foundation modulus k and crack length a (d = L − a).
Figure 3(a) is the result of analytical model and 3(b) is that of the finite element method. The results are
strikingly similar and show that the system oscillates without crack propagation until approximately
t = 0.055 sec. At that time crack propagation is initiated and the crack runs the entire length of the
beam before it stops (signaling complete failure of the structure); the tip displacement simultaneously
drops to zero. The mechanism for this unstable growth is outlined in §3.1. The quantitative agreement,
observed in this simulation, confirms that the responses generated by the analytical modal analysis and
FEM models represent consistent solutions to the governing equations.

3.3. Two Mechanisms for Crack Arrest

Two fundamental mechanisms for crack arrest are identified. Not surprisingly, both of these have to
do with limiting the lateral displacement of the crack tip. The first mechanism has to do with the natural
frequencies, which (in the undamped case) are also the resonant frequencies. To explore this, consider
the influence of a crack of length a on the natural frequencies Ωj of the system. This is shown in Fig.4.
Figures 4(a) and (b) show the change in the first and the second natural frequencies, nondimensionalized
by the no foundation frequency (Ωnf

j , j = 1 and 2), as a function of crack length. Various foundation

stiffnesses (kL4/(EI) = 1.5, 20 and 50) are also shown. From these figures and from our intuition, it is
evident that as the crack grows (and less of the foundation contacts the beam) the system de-stiffens and
the frequencies drop. Asymptotically, these frequencies must approach the no foundation frequencies
as a/L→ 1.

Fig. 4. The change in the first two natural frequencies (normalized by the no foundation frequencies as a function of the
crack length). Various foundation stiffness to bending stiffness ratios are shown. Ωnf

1
= 427.95 Hz and Ωnf

2
= 2681.95 Hz.

So how does this phenomenon affect crack growth? Consider the following: the system has a small
crack (for example, a/L = 0.1) and is being driven at ω = Ω1. In this case, large amplitude resonance
will take place. These large oscillations can lead to sufficiently large lateral crack tip displacements to
initiate crack growth (i.e., |w(d, t)| ≥ wcr). As the crack grows, the resonant frequency decreases, as
shown in Fig.4(a). Provided the driving frequency doesn’t change, the system is now ‘off-resonance’
and the magnitude of the crack tip amplitude will decrease. This reduction of amplitude at the crack
tip may cause the crack propagation to cease.

The second mechanism for crack arrest stems from the modal aspect of the response. Consider our
system with an initial crack length a/L = 0.1, which is being excited near its second natural frequency.
The resonance will lead to sufficiently large lateral crack tip displacements to initiate crack growth.
However, as the crack propagates to the left (see Fig.1), the crack tip will encounter a node in the
vibration mode at approximately x/L = 0.783447. Since the vibration node has zero displacement, the
crack tip is unable to travel through the node and the propagation is arrested. As an example of this
arrest mechanism, consider a system with the following parameters: initial d/L = 0.9 (a/L = 0.1),
k = 2× 104 Pa, ω = 2658 Hz (close to Ω2 = 2723.8 Hz), Po = 900 N. When all of the initial conditions
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are set zero, the lateral response at the crack tip is shown in Fig.5(a). The associated longitudinal
position of the crack tip is shown in Fig.5(b). For the entire time series shown, the response is clearly
still in its transient phase but is dominated by the second mode. At t ≈ 0.0432 sec the crack tip
displacement exceeds the critical tip displacement and the lateral response jerks suddenly. What has
happened to the crack tip (how far it has propagated) is unclear from the lateral response. However,
two more such jerks are evident and labeled in Fig.5(a). The longitudinal movement of the crack tip
at these same instances are clear in Fig.5(b). At t ≈ 0.0432 sec, the crack tip suddenly runs from its
initial location to a/L = 0.16, where it is temporarily arrested. As the system continues to vibrate, the
crack tip propagates again to a/L = 0.18, where it is again arrested. A third propagation event occurs
near t = 0.06 sec and the crack tip runs to a/L = 0.20 (d/L = 0.80). There is no further propagation
and, eventually, the system settles down into a steady state oscillation. The physical reason that the
crack arrested at a/L = 0.20 stems from the fact that the system is being driven near its second natural
frequency; the crack has propagated close to the node in the vibration mode. Since the node has zero
amplitude, the lateral crack tip displacement w(d, t) must be less than wcr and the propagation is
completely arrested.

Fig. 5. Simulations showing the nodal arrest mechanisms. The driving frequency is around the second natural frequency.

3.4. The Role of Transients

In §3.1 and 3.3, mechanisms for crack growth and crack arrest have been offered. And the validity of
these mechanisms is argued largely on the base of steady state phenomenon. Transient effects compli-
cate this nice framework and tend to muddy the waters of our understanding. For example, the nodal
arrest mechanism assumes that the crack tip will propagate to a node and then stop due to a lack of
lateral motion at the node. And this can, in fact, occur (as highlighted by the example shown in Fig.5).
However, this is not the whole story. As the crack propagates toward the node, additional transient
oscillations are induced. The net/total motion, being the linear superposition of the transient and the
steady state, may not have a small amplitude near
the node. As such, the crack may not arrest. Similar
arguments, undermining the crack growth and arrest
mechanisms (§3.1 and 3.3), may be made.

To highlight the role of transient oscillations, a
parameter study is undertaken. Figure 6 shows the
excitation parameter combinations that will initiate
crack propagation for the system parameters listed
in §3.3, except that the driving frequency is near the
first natural frequency. a/L = 0.1 and k = 2 × 104

Pa in Fig.6. When ω = 0, it is calculated as a static
case and the critical load at the beam tip to initiate
the crack growth is Pcr = 3267.5 N. The solid line is
generated using only the steady state solution. The
circles are generated using the total solution (steady
state + transient). Both cases agree that as the reso-
nance is approached, the required forcing amplitude
decreases due to the response amplification. How-

Fig. 6 Effects of transients-excitation parameters lead-
ing to crack growth. f1 of the y-axis is the dimensionless
force amplitude (see Eq.(17)) required to initiate the crack
growth when the driving frequency is around the first nat-
ural frequency.
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ever, it is revealing that above resonance the total response predicts the initiation of crack propagation
at much lower forcing levels. This underscores the importance of the transient response in the initiation
of crack growth.

IV. CONCLUSION
A very simple, yet powerful model is developed to capture the coupled dynamics of crack growth

and structural vibration. The model consists of a cantilever beam attached to a linear elastic, partial
foundation. The system is driven at the tip of the beam by a periodic load. And a solution to the
governing equations is developed using classical modal analysis. The utility of this model stems from
the fact that it mimics the behavior of a cracked, vibrating structure; the portion of the beam in contact
with the elastic foundation is considered the intact portion of the structure. A crack growth criterion
(based on the material toughness and the crack tip displacement) is also developed and used with the
model; as the crack grows, the foundation length shrinks and the model must be updated.

This model is used to identify four key features related to the crack growth or crack arrest phenomenon.
They are
• As the crack propagates (i.e., the foundation length shrinks), the required lateral crack tip dis-

placement necessary to continue propagating the crack decreases. In this sense, propagation becomes
easier with increased crack size/length.
• As the crack grows, the resonant frequencies drop. If the external driving frequency is at or above

a resonance, this frequency shift (away from the driving frequency) decreases the response amplitude
and reduces the likelihood of continued crack growth.
• If the system is driven at a higher resonant frequency, the appearance of a node in the response

(associated with zero motion) can arrest crack growth.
• Transient effects can trump any of the aforementioned mechanisms. They can lead to crack growth

(arrest) — even while one of the other mechanisms suggests the crack should arrest (grow).
These mechanisms can sometimes work with or against one another muddling our intuition as to

whether crack growth will abate or continue. Regardless, the model developed herein provides some fun-
damental insight into the complex interaction between structural dynamics and the crack growth/arrest
phenomenon.
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APPENDIX I: CUT-ON v.s. CUT-OFF MODES
In §2.2, it is shown that three possible solution forms exist for the mode shape ψ1, depending on

the sign of the quantity λ =
k −mΩ2

EI
. Case 1 (λ > 0) gives the traditional solution form associated

with a foundationless beam. This is an acceptable solution. Case 2 (λ < 0) and Case 3 (λ = 0) lead to
unacceptable solutions. To see this, first consider the Case 2. The eigenvalue problem for a finite beam
resting on an elastic foundation is

ψxxxx +
k −mΩ2

EI
ψ = 0

where ψ is the mode shape. Letting λ =
k −mΩ2

EI
, the above equation is multiplied by ψ and integrated

over the domain: ∫ L

0

ψψxxxxdx− λ
∫ L

0

ψ2dx = 0

Integrating the first term by parts twice and applying the appropriate boundary conditions, this ex-
pression becomes ∫ L

0

ψ2
xxdx− λ

∫ L

0

ψ2dx = 0

Both of the integrals are positive and, as a result, there is no negative value of λ that can satisfy this
equation. So λ < 0 is not acceptable and Case 2 is eliminated as a possibility.

Finally, Case 3 is the cut-off case, λ = 0. Based on the above equation, ψ must satisfy ψ,xx = 0 in
the whole domain. This gives ψ(x) = A3x+A4, which is a rigid body motion. A3x is the rotation and
A4 is the translation. But this deflection shape can not satisfy the geometric boundary conditions for
a cantilever and, hence, Case 3 is not a possibility, either.

As shown, only Case 1 leads to an acceptable solution to the characteristic equation for a finite
beam on an elastic foundation; this justifies the solution used in §2.2.

APPENDIX II: ORTHOGONALITY OF MODE SHAPES
To ensure the orthogonality of the mode shapes of a beam on a partial elastic foundation, the problem

must be shown to be self-adjoint. To accomplish this, Eqs.(9) and (10) may be expressed as

ψI
xxxx + λ1ψ

I = 0 (x < d)

ψII
xxxx + λ2ψ

II = 0 (d ≤ x < L)
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where λ1 =
−mΩ2 + k

EI
and λ2 =

−mΩ2

EI
. The eight boundary/matching conditions associated with this

eigenvalue problem are stated in §2.1. The operator for these two equations isLi[◦] =
∂4◦
∂x4

+λi◦, i = 1, 2.

Now, consider two composite functions, f and g, which satisfy the boundary/matching conditions:

f =

{
f1 (x < d)

f2 (d ≤ x < L)
and g =

{
g1 (x < d)

g2 (d ≤ x < L)

Self-adjointedness is, by definition, assured if < L[f ], g >=< f, L[g] >. < ◦ > is an inner product
operator over the whole domain defined as follows. The left hand side of this expression may be expressed
as

< L[f ], g > =

∫ d

0

L1[f1]g1dx+

∫ L

d

L2[f2]g2dx

=

∫ d

0

∂4f1
∂x4

g1dx+

∫ d

0

λ1f1g1dx+

∫ L

d

∂4f2
∂x4

g2dx+

∫ L

d

λ2f2g2dx

Integrating the first and third terms by parts four times and applying the boundary/matching conditions
of Eq.(8) yields:

< L[f ], g >=

∫ d

0

∂4g1
∂x4

f1dx+

∫ d

0

λ1f1g1dx+

∫ L

d

∂4g2
∂x4

f2dx+

∫ L

d

λ2f2g2dx

The right hand side is simply < f,L[g] >. Hence, the system is self-adjoint.

APPENDIX III: DERIVATION OF EQUATION (17)
Substitute w(x, t) =

∑N
j=1 φj(t)ψj(x) into Eq.(16), times ψi(x) and integrate from 0 to L

∫ L

0

ψi

⎧⎨
⎩m

N∑
j=1

φj,ttψj + c

N∑
j=1

φj,tψj + EI

N∑
j=1

φjψj,xxxx + k[1−H(x− d)]
N∑

j=1

φjψj

⎫⎬
⎭ dx

=

∫ L

0

Po sin(ωt)δ(x − L)dx

By applying the orthogonality ofmodeψj(x) to the left side terms and the Dirac delta function integration
property to the right side term, the following equation is obtained∫ L

0

ψ2
j (mφj,tt + cφj,t)dx+

∫ L

0

{ψjψj,xxxxEIφj + ψ2
jk[1−H(x− d)]φj}dx = Po sin(ωt)ψII

j (L)

By using Eqs. (6) and (7), the above equation can also be written as follows

∫ L

0

ψ2
j (mφj,tt + cφj,t)dx+ EIφj

(∫ d

0

ψI
j

mΩ2 − k
EI

ψI
jdx+

∫ L

d

ψII
j

mΩ2

EI
ψII

j dx

)
+ k

∫ d

0

ψI
jψ

I
jdx

= Po sin(ωt)ψII
j (L)

Grouping the terms of the above equation, the following equation is derived∫ L

0

ψ2
j (mφj,tt + cφj,t)dx+mΩ2φj

∫ L

0

ψ2
j dx = Po sin(ωt)ψII

j (L)

When the above equation is divided by m
∫ L

0 ψ2
j dx, Eq.(17) is derived.


