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ABSTRACT A shear-lag model is used to study the mechanical properties of bone-like hierarchical
materials. The relationship between the overall effective modulus and the number of hierarchy
level is obtained. The result is compared with that based on the tension-shear chain model and
finite element simulation, respectively. It is shown that all three models can be used to describe the
mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By
increasing the number of hierarchy level, the shear-lag result is consistent with the finite element
result. However the tension-shear chain model leads to an opposite trend. The transition point
position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to
soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical
materials based on the shear-lag analysis.
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I. INTRODUCTION
Hierarchical structures are widely used in nature to design robust materials from simple and weak

phases. Bone-like materials such as nacre, bone and dentin are all hierarchical bio-composites made of
mineral and protein bottom up from nanoscale. A mineral is as brittle as chalk and protein is as soft
as skin. But nacre (95% by volume of mineral) and bone (45% by volume of mineral) are both stiff
and tough. Experiments show that fracture energy of nacre is 3000 times more than that of monolithic
CaCO3

[1,2]. The stiffness of bone is in the same order as mineral[3,4].
Previous researches have revealed that the excellent mechanical properties result from the unique

micro- and nano-structures of bone-like materials. Bone-like materials have two distinct structural
characteristics:

1. Elementary structures in nanoscale. For example, the thickness of mineral platelets of nacre is
about 500 nm[5,6], the platelet in bone is about 50 nm × 25 nm × 2 nm[7,8].

2. Hierarchical structures. For example, there are 2-3 layer structures in seashells[1,2,9], and more than
7 hierarchical structures in bone[7,10–12]. Many researches have been made on the mechanical properties
of nanostructure of bone-like materials[5,13–15]. However, very few researches have been reported on the
effects of the hierarchical structures on the mechanical prosperities of biomaterials . This is a challenging
research topic, not only significant for exploring the life phenomenon but also helpful for designing novel
materials.
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It is worth pointing out that the mineral platelets in bone-like materials are insensitive to flaw due to
its small size[14]. Hierarchical structures help to extend the flaw insensitive properties to a larger scale.
Gao[16] developed a fractal bone model (Fig.1), and studied the influence of hierarchy on the overall
mechanical properties based on the tension-shear chain (TSC) model. The TSC model is simple and
easy to use analytically. In the TSC model the uniform distribution of shear stress along the platelet
is assumed. It is valid for a single hierarchical structure. However, as the number of hierarchical levels
increases, so does the fraction of mineral and the shear lag effect is enhanced[17]. The effectiveness of
TSC model needs to be studied further.

Fig. 1. Model for fractal bone. N is the total number of hierarchical levels. Hard phases in level n + 1 are composite of
level n. All levels have a similar structure. (the same volume fraction of hard phases and the aspect ratio). The sizes of

hard phases are determined by the dimensionless number[11], Λft
n = ΓnEn/(Snhn) = 1.

In the present research, the shear-lag (SL) model will be used to study the mechanical properties of
bone-like hierarchical materials. The relationship between the overall effective modulus and the number
of hierarchy levels will be developed. The SL model result will be compared respectively with the TSC
model result and the finite element (FE) simulation result.

II. THE THEORETICAL MODEL
Any real structure of the bone-like material should be complex. Here we consider the fractal bone

simplification model proposed by Gao[16]. This fractal bone model reflects the main characteristics of
hierarchical materials and is easy to analyze. As shown in Fig.1, the fractal bone is made up of N levels
of hierarchical structures. Each level has a similar staggered structure, which is also a basic structure
of bone-like material. At the first level, the hard phase is mineral and the soft phase is protein. At
the second level, the hard phase is the composite of the first level and the soft phase is protein again.
The higher-order levels are composed in the same way, as shown in Fig.1. A dimensionless number Λft

n

defined by Gao is used to determine the cell size hn for each level[16].
In order to determine the overall properties of the fractal bone, the effective modulus of the first level

is determined first. The modulus of mineral is about 3 orders higher than that of protein. The aspect
ratio of platelet is large. Consider a loading case (see Fig.2), in which the tensile load is carried mainly
by platelets and the shear stress is carried mainly by protein. We neglect the tensile load at the end of
platelets as done by Gao and Ji[14]. Consider the symmetry, a representative cell is taken into account,
as shown in Fig.2. Since dx the thicknesses of both platelets and protein are small compared with their
length, the tension stress and the shear stress can be regarded as unchanged across the thickness. Then
all variables are only functions of x. We can obtain the following equilibrium equations along x

1

2

dp1 (x)

dx
+ τ1 (x) = 0,

1

2

dp2 (x)

dx
− τ1 (x) = 0 (1)
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Fig. 2. The representative volume cell. Two platelets are marked with 1 and 2. Pmax is the max force in platelet. The
thickness and length of platelet are h and L, respectively. The thickness of protein is d.

where p1, p2 are tensile forces in platelet 1 and 2, respectively. τ1 is the shear stress in protein. Both
mineral and protein are assumed linearly elastic, so

pi = Efh
dui

dx
(i = 1, 2) (2a)

τ1 (x) =
μp

d
[u2 (x)− u1 (x)] (2b)

where ui is the displacement of platelet i (i = 1, 2). Ef is the Young’s modulus of mineral. μp is the
shear modulus of protein. h is the thickness of platelets. d is the thickness of protein (see Fig.2).

The boundary condition is

Top boundary : u1|x=0 = 0, p1|x=0 = Pmax, p2|x=0 = 0 (3a)

Bottomboundary : p2|x=L/2 = Pmax (3b)

The problem described above has the following solutions

p2 = Pmax

(
2

3
+ λCeλξ + λDe−λξ

)
(4a)

τ1 =
Pmaxλ

2

2h

(
Ceλξ −De−λξ

)
(4b)

where C =
(
eλρ/2 + 2

)
/
[
3λ

(
eλρ − 1

)]
, D =

(
e−λρ/2 + 2

)
/
[
3λ

(
e−λρ − 1

)]
, λ = 2

√
(μph)/(Efd), the

aspect ratio ρ = L/h, ξ = x/L, L is the length of the platelets, Pmax is the maximum tension load in
the platelets.

Then the effective Young’s modulus of composite is

1

E
=

ε̄

σ̄
=

2 (δm + δp)

L
Pmax

h+ d

=
2 (h+ d)

[∫ L/2

0 σ1 (x) dx+ τ1 (0)d
]

LPmax
(5)
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where δm is the contribution of platelet deformation to the overall deformation. δp is the contribution
of protein shear deformation to the overall deformation. ε̄, σ̄ are the average strain and stress.

Combining Eqs.(4a), (4b) and (5), we obtain

1

E
=

4

λρΦEf tanh

(
λρ

4

) +
1

EfΦ
(6)

where Φ ≈ h/(h+ d) is the volume fraction of mineral.
Since it has been assumed that each level of the fractal bone has a similar structure, we obtain the

following interactive equation

1

En
=

4

En−1ϕnλρn tanh(λρn)
+

1

En−1ϕn
(7)

where λ = 2
√
μpϕn/[En−1 (1− ϕn)]. μp is the shear modulus of protein. En is the Young’s modulus

of the n-th level material of fractal bone. Obviously, E0 = Ef . ϕn is the volume fraction of hard phase
of the n-th level and ρn is the corresponding aspect ratio.

When the hardening modulus is much smaller than the elastic modulus, the effect of shear lag is
weak when inelastic deformation takes place in the protein region. The TSC model would be more
relevant for the case. Here we quote the strength of fractal bone given by Gao as follows[16]:

Sn =
ϕnSn−1

2
, S0 = σth (8)

where Sn is the strength of the nth level, σth is the theoretical strength of mineral.
A series of dimensionless numbers Λft

n are given by Gao in determining the flaw-insensitive size. It
is proved that materials would be insensitive to any cracks for Λft

n ≥ 1, where

Λft
n =

Γn−1En−1

S2
n−1hn

(9)

where Γn−1 = (1− ϕn) hn−1Sn−1Θ
p
n is the fractured work of the hard phase of the nth level, which is

also the fracture energy of the (n− 1)th level structure. Γ0 = γ is the fracture energy of mineral. Θp

is the effective strain of protein. En−1 is the effective modulus of the (n − 1)th level structure. Sn−1

is the strength of the (n − 1)th level structure. S0 = σth is the theoretical strength of mineral. hn is
the flaw-insensitive size of the nth level. Letting Λft

n = 1, one can obtain the interactivity equation of
flaw-insensitivity, and further obtain the flaw-insensitive size as

hn

hn−1
=

4 (1− ϕn)Θp
nEn−1

S2
n−1ϕn

, h0 =
2γEf

σ2
th

(10)

For simplicity, let the aspect ratio at different levels be a constant ρ1 = ρ2 = . . . = ρN = ρ, and
further let the ratio of the hard phase to the soft phase be the same value, ϕ1 = ϕ2 = . . . = ϕN = ϕ.
Then the overall volume fraction of mineral in fractal bone is

Φ = ϕ1ϕ2 . . . ϕN = ϕN (11)

Then the volume fraction of hard component at each level is

ϕ1 = ϕ2 = . . . = ϕN = Φ1/N (12)

And Eq.(7) can be rewritten as

1

En
=

4

En−1Φ1/Nλρ tanh(λρ)
+

1

En−1Φ1/N
, E0 = Ef (13)

where λ = 2
√
μpΦ1/N/

[
En−1

(
1− Φ1/N

)]
.
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For the TSC model, the interactive equation is given as[16]

1

En
=

4
(
1− Φ 1/N

)
μpΦ 2/Nρ2

+
1

Φ1/NEn−1
, E0 = Ef (14)

The interactive equation of strength of the fractal bone is

Sn =
Φ1/NSn−1

2
, S0 = σth (15)

The interactive equation of flaw-insensitive size of the fractal bone is as follows

hn

hn−1
=

4
(
1− Φ1/N

)
ΘpEn−1

S2
n−1Φ

2/N
, h0 =

2γEf

σ2
th

(16)

Substituting En−1 from Eqs.(13) and (14) into (16), respectively, one can obtain the flaw-insensitive
sizes of the fractal bone for the SL model and the TSC model.

III. FE SIMULATION
To verify the model, FE simulation is also performed. The representative cell is the same as that shown

in Fig.2. The displacements along y-direction on the left and right boundaries meet the symmetrical
conditions, while the bottom is fixed and the top is set a constant displacement. CPS8R (An 8-node
biquadratic plane stress quadrilateral) is used in simulation. The overall volume fraction of mineral is
fixed and the volume fraction of the hard phase of different levels is calculated according to Eq.(10) in
order to construct the representative volume. We are concerned about the effective modulus along the
platelet. The material at each level is assumed isotropic.

IV. RESULTS AND DISCUSSIONS
According to the above analyses,we obtain a theoretical expression of overall effectivemodulus (OEM)

of the fractal bone. The non-uniform distribution of shear stress along the platelets is considered. In
order to check the shear lag influence on the overall properties of the hierarchical structure, an example is
given below. For comparison, we take the same parameters as used by Gao[16]: Ef = 100 GPa, Φ = 0.45,
Ef = 1000μp, νf = 0.25, νp = 0.5, ρ = 32.

Figure 3 shows the relationship between the OEM of fractal bone and the number of hierarchy level
(NHL) predicted by the TSC model, SL model and FE model. The solid circles are the results of TSC
model, which predict an increase of the OEM with the NHL. After a few levels of hierarchy, the stiffness
saturates at about 30% of the Voigt limit. Hollow triangles stand for the results of the SL model, which
predicts two stages of the OEM. When the NHL is small, the OEM increases with the NHL, which
has a similar trend as the TSC model. But when the NHL is large the OEM decreases. Solid squares

Fig. 3. Variation of the effective modulus of fractal bone
versus the number of hierarchy levels. Ef = 100GPa, Φ =
0.45, Ef = 1000μp , νf = 0.25, νp = 0.5, ρ = 32.

Fig. 4. Distribution of shear stress in protein along the
platelet.
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Fig. 5. Variation of the effective modulus for each level. The
total number of hierarchy levels is N = 10.

Fig. 6. Influence of the overall volume fraction of mineral
on the OEM curves.

are the results of FE, which are consistent with SL model when the number of hierarchical levels is
larger than 2. At the first level, there is the relation about the OEM values: FE result > TSC result
> SL result. These differences result from the assumption of TSC and SL models. In both models, the
tension effect of protein is neglected so that the modulus results of the models are smaller than that
of FE simulation. On the other hand, in the TSC model, uniform shear stress is assumed in protein,
which overestimates the overall modulus.

The difference between the TSC and SL models is due to the assumption about the shear stress
distribution in protein. It is easy to find that the distribution of shear stress is nearly uniform when the
modulus ratio of hard phase to soft phase is large, or the aspect ratio is small, or the volume fraction
of mineral is low. By increasing the NHL, the fraction of hard phase increases, and the modulus ratio
of hard phase to soft phase decreases. Then the shear lag effect is enhanced. Figure 4 shows the shear
stress distribution along the platelet where ρ = 100. It can be seen that the shear stress distribution
becomes non-uniform with an increase in the number of hierarchy levels.

Figure 5 shows the effective modulus of each level when 10 levels (N = 10) are considered. It can be
seen that the modulus decreases with the increase of levels in both the TSC and SL models. At each
level the SL model predicts a smaller modulus than that of TSC model.

Figures 6-8 give the influence of the volume fraction of mineral, the aspect ratio and the ratio between
the modulus of hard and soft phases on the OEM. The TSC model gives the same trend for all the
cases. The results of SL model can be divided into two groups. In the first group, there are two stages
of the OEM for high volume fraction of mineral, large aspect ratio and small ratio of stiffness. In these
cases the OEM increases when the NHL is small, but it decreases when the NHL is large. In the second
group, when the volume fraction is low for small aspect ratio and for high ratio of stiffness, the OEM
decreases for all NHL’s.

Fig. 7. Influence of the aspect ratio on the overall effective
modulus.

Fig. 8. Influence of the modulus ratio between hard phase
and soft phase on the overall effective modulus.
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From the above analysis, it can be seen that the OEM given from the TSC model varies with a
different trend when the number of hierarchy is large. It limits the use of the TSC model in mechanical
behavior analysis of the hierarchical structure materials.

According to Eq.(14), the flaw-insensitive size is a function of strength and effective modulus at
different levels. By increasing the number of hier-
archy levels, the effective modulus predicted from
the SL model is consistent with that from the FE
model. Figure 9 gives the relation between the flaw-
insensitive size and the number of hierarchy level.
Solid circles and triangles are results of TSC model.
Hollow circles and triangles are results of SL model.
Here we considered the case where the effective strain
is Θp = 1 (circles), Θp = 0.25 (triangles). It can be
seen in Fig.9 that the flaw-insensitive size predicted
from TSC model is much smaller than that from the
SL model. The flaw-insensitive size predicted by SL
model is about 1 order less than that predicted by
the TSC model when 5 hierarchical structures are
considered.

Fig. 9 Variation of the flaw-insensitive size vs. total num-
ber of hierarchy levels.

V. CONCLUSIONS
Hierarchical structures are used in nature to design strong materials from simple and weak phases. In

the present research the shear-lag analysis is used to describe the mechanical behaviors of the hierarchical
structure materials. The following points are worth stressing here:

1. Compared with the Gao’s tension-shear chain model, the shear-lag model can be used to describe
the mechanical behavior of hierarchical materials in a larger range of the number of hierarchy levels,
and it is an effective model in the analysis of the hierarchical materials through comparing with FE
simulations.

2. When the hierarchy level number is small, the overall effective modulus (OEM) increases with an
increase in the hierarchy level number. However, OEM decreases with further increase of the hierarchy
level number. The transition point position depends on several factors, such as the volume fraction of
hard phase, aspect ratio, modulus ratio of the hard phase to soft phase.

3. The flaw-insensitive size always increases with an increase in the hierarchy level number. The
shear-lag model gives a much smaller size than that based on the tension-shear chain model under the
same condition.
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